

Jimma University

Jimma Institute of Technology

School of Computing

Hierarchical and Answer-to-Answer Attention Based Neural

Network for Subjective Question Marking

Abebawu Eshetu

A Thesis Submitted to the School of Graduate Studies of Jimma

University in Partial Fulfillment for the Degree of Master of Science in

Information Technology

 Jimma, Ethiopia

November (2017)

Jimma University

Jimma Institute of Technology

School of computing

Hierarchical and Answer-to-Answer Attention Based Neural Network for

Subjective Question Marking

Abebawu Eshetu

Advisor: Dr. Fekade Getahun

This is to certify that the thesis prepared by Abebawu Eshetu, titled: Hierarchical and Answer-to-

Answer Attention Based Neural Network for Subjective Question Marking submitted in partial

fulfillment of the requirements for the Degree of Master of Science in Information Technology

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality

Signed by Examining Committee:

 Name Signature Date

Advisor: Fekade Getahun (PhD) ________ _ _________________ ___09/11/2017_________

Examiner: __

Examiner: __

Abstract

The Evaluation of students’ capacity to construct a sustained argument with subjective questions

allows mentors to assess implicit understanding ability of learners. However, manual evaluation

of subjective question is challenging process and results grading inconsistency. From early 1960

several approaches are proposed to automate subjective question marking by giving due attention

for essays. Recently, with advent of deep learning technique automatic essay assessment shown

improved result that approaches to human raters without need of handcrafted features.

The aims of this study were to model that can able to evaluate both essay and short answer

questions without handcrafted features using deep learning technique. Given essay or short answer

word sequences, our model first embed word level context using FastText word vectors and sub-

word embedding built by character based convolutional neural network. For essay, the model

encodes embedded essay vectors hierarchically by applying two level bidirectional recurrent

neural network. We applied hierarchical word and sentence level attention that extract most salient

words encapsulated in a sentences and sentences encapsulated in an essay respectively. For short

answer, we used the same encoder as essay for both model and student answer vectors. Then, we

applied reference attention on encoded vectors using model answer vector as weight. Finally,

answer-to-answer attention is applied to get the relatedness level of resulting vector and encoded

model answer from model to student and student to model answer.

We evaluated our model on three datasets: Kaggle essay and short answer English dataset and

Amharic short answer dataset prepared for this thesis work. Experimental results on Kaggle dataset

show that our model achieves the state-of-the-art performance for both essay and short answer by

improving weighted Kappa to +2 and +4 respectively. The experiment done on Amharic dataset

shows promising result by achieving 66% and 62% correlation on Pearson and Kappa respectively

on small sized dataset. This shows our model is capable of evaluating both short answer and essay

questions from any domain in very human like way if trained on enough data. Our work not

considered subjective questions with formulas and diagrams and we left open. We also recommend

to include feedback that show how the model scored and rated missed points to student answer.

Key words: Deep Learning, Subjective Question Marking, Character CNN, FastText embedding,

Reference attention, Answer-to-Answer attention, Hierarchical attention

Dedication

Fafiye you are always special!!!

Acknowledgments

Most of all, I would like to thank God, who makes everything possible, for helping me pass all

those challenging times.

I owe my deepest gratitude to my advisor Dr. Fekade Getahun for the continuous support for his

time, patience and undeniably helping comments all the way through this study. His knowledge

and advice have helped me to keep on track and work at a smooth pace. I would like to thank Mr.

Habtamu, Head Department of Jimma University Amharic Language and Literature, for

facilitating all required resources including mentors who participated to score answers from

department and his very helpful expert support.

Finally, and most importantly, I would like to thank my best Fafiye. Your support, encouragement,

quiet patience and unwavering love were undeniably the bedrock upon which the past two years

of my life have been built. Your tolerance of my occasional vulgar moods is a testament in itself

of her unyielding devotion and love. I owe my deepest gratitude to Mahi for her encouragement

and unreserved assistance. I will always cherish the time you spent with us. I also like to express

my appreciation to my family members and friends who have helped me in so many ways. Finally,

I want to thank all the people who have contributed in one way or another on this thesis work.

i

Table of Contents

List of Tables .. iv

List of Figures .. v

List of Algorithms .. vi

List of Acronym... vii

CHAPTER ONE ... 1

1. INTRODUCTION ... 1

1.1 Background .. 1

1.2 Statement of the Problem ... 3

1.3 Objective of Study .. 4

1.4 Methodology .. 5

1.4.1 Literature Review.. 5

1.4.2 Data Collection ... 5

1.4.3 Building Word Vectors ... 5

1.4.4 Creating Automatic Marking Model ... 5

1.4.5 Testing and Evaluation ... 6

1.4.6 Scope and Limitation .. 6

1.5 Application of Results .. 6

1.6 Organization of the Thesis ... 8

CHAPTER TWO .. 9

2. LITERATURE REVIEW... 9

2.1 Overview ... 9

2.2 Assessment .. 9

2.3 Types of Assessment ... 10

2.4 Subjective Question Assessment .. 12

2.4.1 Criteria for Subjective Question Assessment .. 13

2.4.2 Automatic Subjective Question Marking (SQM) ... 14

2.4.3 Approaches to Automatic Subjective Question Marking .. 15

2.5 Tools for Deep Learning ... 42

2.6 Performance Evaluation Measurements for SQM .. 43

CHAPTER THREE .. 47

3. RELATED WORK ... 47

3.1 Subjective Question Assessment .. 47

3.1.1 Statistical and Probabilistic Based Approach ... 47

ii

3.1.2 Ontology Based Approach .. 48

3.1.3 Text Similarity Based Approach ... 50

3.1.4 Supervised Machine Learning Based Approach ... 51

3.1.5 Deep Learning Based Approach ... 54

3.2 Amharic Subjective Question Assessment ... 55

CHAPTER FOUR ... 57

4. DESIGN OF AUTOMATIC SUBJECTIVE QUESTION MARKING (SQM)........................... 57

4.1 Overview .. 57

4.2 SQM Architectural Model .. 57

4.3 Preprocessing Module .. 58

4.4 Word Vector Building Module .. 62

4.5 Embedding Module .. 66

4.6 Encoding Module ... 74

4.7 Attention Module ... 77

4.8 Modeling Module ... 82

4.9 Scoring Module .. 82

CHAPTER FIVE .. 83

5. EXPERIMENTATION AND EVALUATION OF SUBJECTIVE QUESTION MARKING

(SQM) ... 83

5.1 Overview .. 83

5.2 Data Preparation and Analysis ... 83

5.2.1 Dataset for Word Embedding ... 83

5.2.2 Dataset for SQM ... 84

5.3 Experimentation ... 93

5.3.1 Experiments of FastText Word Vectors ... 93

5.3.2 Experiments of SQM .. 97

CHAPTER SIX ... 106

6. CONCLUSION AND RECOMMENDATION .. 106

6.1 Conclusion .. 106

6.2 Contribution of the Study ... 108

6.3 Recommendation and Future Work ... 109

References .. 110

Annexes .. 116

iii

Annex A: Amharic Homonym Characters ... 116

Annex B: Amharic Labialized characters used interchangeably in writing 116

Annex C: Common Short forms to their expanded form in Amharic 117

Annex D: Experimental Hyper-parameters used to train SQM models 118

Annex E: Sample Questions and answers with score assigned by two raters 119

iv

List of Tables
Table 2-1: Survey of Subjective Evaluation techniques .. 15

Table 5-1: Statistics of data collected to train FastText for Amharic word vectors 84

Table 5-2:Kaggle AES dataset statistics .. 85

Table 5-3:Kaggle short answer scoring dataset statistics per each scores 87

Table 5-4:A sample question with short answers provided by students and the grades assigned

by the two human raters .. 89

Table 5-5:Data visualization per question sets, number of answer per question set and inter-rater

agreement in Amharic short answer dataset ... 91

Table 5-6:Hyper-parameters used to train both CBOW and Skip-gram models for our FastText

vector builder .. 95

Table 5-7: Results of the different models on the Kaggle dataset. .. 99

Table 5-8:SQM short answer result on Kaggle short answer dataset .. 102

Table 5-9: SQM short answer result on Amharic short answer dataset. 103

v

List of Figures
Figure 2-1: General Architectural Model for Deep Learning based subjective question marking ... 20

Figure 2-2:Word2Vec [31] CBOW Model .. 25

Figure 2-3:Word2Vec [26] Skip-gram model. ... 26

Figure 2-4: Figure that depicts how RNN works to get context of sentence 34

Figure 2-5: How LSTM RNN [35] works ... 37

Figure 2-6: How GRU RNN [35] works .. 39

Figure 4-1: General Architectural Model of SQM... 58

Figure 4-2: Amharic FastText Word Vector Generator Model Adapted from Joulin et al., [32] 64

Figure 4-3: Proposed Bi-directional RNN (GRU/LSTM) Encoder that represent contextual

representation of words in input answer.. ... 755

Figure 5-1: Visualizing Amharic short answer dataset how scores are distributed 92

Figure 5-2: Visualizing most 30 similar words for ‘internet’ from FastText embedding trained

on Kaggle .. 93

Figure 5-3: Visualizing top most nearest neighbors of word 'happy' ... 94

Figure 5-4: Visualizing morphologically related Amharic words in vector space 96

Figure 5-5: Sample visualization of semantically clustered FastText embeddings in vector space

... 97

Figure 5-6: Loss and mean absolute error rate per epochs on training and validation set for our

best performed model on Kaggle Essay dataset. Mae indicates mean absolute error. 100

vi

List of Algorithms
Algorithm 4-1:Proposed Algorithm for tokenizing and normalizing Amharic Text 60

Algorithm 4-2:Algorithm proposed to extract word and character embedding from pre-trained

FastText model SQM .. 67

vii

List of Acronym
BLEU: Bi-Lingual Evaluation Understudy

BLSTM: Bidirectional Long Short Term memory

BRNN: Bidirectional Recurrent Neural network

CNN: Convolutional Neural Network

CPU: Central Processing Unit

DISCO: Distributional Similarity Co-occurrences

ESA: Explicit Semantic Analysis

GLSA: Generalized Latent Semantic Analysis

GMAT: General Management Aptitude Test

GPU: Graphics Processing Unit

GRU: Gated Recurrent Unit

IEA: Intelligent Essay Assessor

LDA: Latent Dirichlet Allocation

LSA: Latent Semantic Analysis

LSTM: Long Short Term Memory

MaxEnt: Maximum Entropy

NLP: Natural language Processing

OOV: Out of Vocabulary

PEG: Project Essay Grader

RNN: Recurrent Neural Network

SSWE: Score Specific Word Embedding

SQM: Subjective Question Marking

SVD: Single Value Decomposition

TOEFL: Test of English as a Foreign Language

1

CHAPTER ONE

1. INTRODUCTION

1.1 Background

E-assessment is the use of information technology for any assessment-related activity. This

definition embraces a wide range of student activity ranging from the use of a word processor to

on-screen testing. Due to its obvious similarity to e-learning, the term e-assessment is becoming

widely used as a generic term to describe the use of computers within the assessment process [1].

Now a day, the most dominant assessment methods is paper based examinations. However, it is

cumbersome, tedious and inefficient because it requires more time and resources in carrying out

the checking and grading. In addition, when it is open questions it becomes much more difficult

to evaluate than more restricted tests such as multiple choice tests or oral exams. Moreover, the

time spent by teachers and moderators in E-learning courses is critical and costly in resources, so

multiple choice questions (MCQ) seem to be a good option because they can automatically be

evaluated even if such questions lack evaluating student reasoning skill and easy to guess. As

compared to MCQ, subjective questions want students to write their own answer, it also permits

students to put across and prop up their thoughts in response to the question. Because of this,

students can exhibit their various capabilities and talents like describing his or her individual

responses, producing their own assumptions, or explaining analysis. But on the other hand, the

grading of such descriptive questions is costly and protracted. Furthermore, it includes probable

measurement fault to check outcomes because of discrepancies in the grading process.

In addition, subjective question assessment is an inherently subjective process when carried out

manually. Evaluators read, analyze and interpret the answer to be scored with different rate of

errors and subjective differences. For instance, two teachers may not give the same grade to the

same essay and also the same teacher may not give the same grade to the same essay on different

occasions. Choosing representative and trained evaluators can circumvent this only to a limited

amount. Empirical evidence for this can be found in the usually rather low inter rater correlation

of two human assessors which typically floats around 0.6 to 0.8 [15]. So, applicability of computer

based assessment has untold benefit from different point of view.

2

Supporting the human assessment process with automated scoring mechanisms is an excellent

option to increase both effectiveness and efficiency in the assessment process and several attempts

are proposed to automate assessment process by giving due consideration to essay assessment.

With the initiation of innovative technology, for example, enhancement in the area of natural

language processing, information extraction, and artificial intelligences, it is feasible to incorporate

specific categories of subjective questions in automated tests because their trustworthy

computerized scoring is now achievable. Some of the currently deployed automated essay scoring

system including Electronic Essay Rater (E-rater) [2], Intelligent Metric System (IntelliMetric)

[3], and the Intelligent Essay Assessor (IEA) [4] have shown to be successful and many standard

international exams like General Management Aptitude Test (GMAT), Test of English as a

Foreign Language (TOEFL) and others have started integrating them. It has also been developed

in other language for example Japan Essay Scoring System [5], Automatic Chinese Essay Scoring

[6] and so on. But, more focus is given to essay than short answer questions that are more common

to assess students’ implicit knowledge than essay questions.

State-of-art works used to automate subjective question marking use or combines machine learning

community and knowledge based approaches [26]. However, both lexicalized machine learning

approaches and Ontologies are relying on handcrafted quality features. Ontology based approaches

usually better represent answer semantically, but are restrictive and domain dependent. One should

build specific domain knowledge base to use such system. Similarly, machine learning approaches

are also challenged to score answers in human manner as they need several features that represent

input answer statement which are oversimplified and incomplete. Moreover, as Ontology the

features are usually domain dependent and not transferable.

With the advent of artificial inelegancies, deep learning based models can represent feature for the

given text as human beings do. They encode word vectors as knowledge to represent the given

text. Recently, Dimitiros et al., [47], proposed deep learning based approach to assess written essay

and achieved promising accuracy in Kaggle essay dataset using domain trained word vectors as

the only feature. The feature used with such deep learning models are transferable and easy to

build as they can be encoded from unlabeled data that is readably exist today.

3

As compared to resourced languages such English, Amharic language gets limited attention despite

the fact that about 18 government universities are launched in Ethiopian, Amharic Language and

Literature department with mode of delivery of Amharic at undergraduate level and 10 universities

at graduate level [7]. More than 12 core modules with different courses are delivering under

Amharic Language and Literature department [8]. Amharic is also given as subject for primary

and secondary school class in all region and all subjects are delivered with Amharic for primary

school [9] on the other hand, number of student who join both higher and primary school education

in Ethiopia increasing as intake capacity of universities and schools increase. As the result,

especially in countries like Ethiopia that follow continuous assessment, load on teachers or

lecturers also increase simultaneously.

The aim of this thesis is to develop the system that automatically evaluate and score Amharic and

English subjective questions using neural attentive deep learning technique.

1.2 Statement of the Problem

In the context of Amharic language, despite the increasing number of students and schools offering

courses in Amharic language, only one attempt has been proposed using Latent Semantic Analysis

(LSA) by Abel [15] which limited to content of the text for Amharic factual essay. With advent of

deep learning that encode meaning of words using neural word embeddings we can represent input

answer in both syntactic and semantic way that is capable of assessing both essay and short answer

without handcrafted features.

However, state-of-art works proposed by Dimitiros et al., [47] represented essay in single vector

by applying two-layer essay level bidirectional recurrent neural network. Unlike short answer,

assessing essay is not restricted to few sentences. Essay are long and usually span into one or more

paragraphs. Moreover, we need coherency in essay. That is how essay is organized than simple

content analysis. Looking essays as hierarchically organized text can better represent essay

structure than encoding all essay words to single vector. Furthermore, not all words in essay are

equally important for meaning of essay. Because of the word vectors used to represent words in

essay the model of Dimitiros et al., [47] poorly treat rare words which is especially problematic

for morphologically rich languages such as Amharic.

4

The works used to assess short answer used machine learning and or ontology to represent given

model answer and student answer. Ontologies are domain dependent and restrictive for only those

concepts which exist in taxonomy used. Moreover, to deal with structure of given answer such

models require external sophisticated NLP tools such parser and pos-tagger. Machine learned

models need features that are over simplified to represent answer. Furthermore, designing such

features require intensive human power. However, short answer can be also assessed using deep

learning models as essay.

Research questions

1. How to evaluate essay text by considering coherency as essay text is hierarchically or

coherently organized using deep learning models?

2. How to assess short answer question using deep learning model?

3. How to consider rarely occurring and miss-spelled words in student answer with word

vectors?

4. How to treat out-of-vocabulary words when encoding student answer?

5. How to score student answer by giving attention to only relevant concepts using neural

models?

1.3 Objective of Study

General Objective

The general objective of this research is to investigate an automatic marking system model for

subjective questions using deep learning model.

Specific Objective

The following specific objectives are identified in order to achieve the specified general objective:

 Conduct a literature search and literature review of existing subjective assessment

techniques

 Collect corpus used for training word embedding model the system

 Collect corpus used to train and evaluate subjective question marking model

 Create word vectors for Amharic text

 Develop assessment and grading model for subjective question

5

 Evaluate the model in both English and Amharic dataset using appropriate statistical

techniques

1.4 Methodology

The following methods are applied in order to achieve the above specified objectives.

1.4.1 Literature Review

A thorough literature review done on computer based assessment/E-assessment/Auto Marker in

general and deep learning based approaches in particular for subjective question assessment.

Moreover, techniques and tools used in each approach investigated and techniques or tools that

can be used for assessment are adopted.

1.4.2 Data Collection

Two category of data is required to develop SQM; the data used to train and extract Amharic

FastText word vector and data used to evaluate SQM system. The former collected from Amharic

news, Amharic Wikipedia, educational sources, etc. The latter is answered pre-graded data

collected from Jimma University Amharic Language and Literature department. For English we

used publicly available standard Kaggle essay and short answer dataset1.

1.4.3 Building Amharic Word Vectors

We trained our data collected for word vectors on Neural Network based FastText predictive model

and generate meaningful word vectors to be used as external knowledge for our SQM system. In

addition to word vectors, we also created character vector for each character in a word by averaging

vectors of words that contain a character as characters are constituent of word.

1.4.4 Automatic Marking Model

We used attention based neural network model to assess both essay and short answer. For essay

we represented input text hierarchically as essay are organized in coherent nature, we first encode

sentences in essay to get more informative essay words and generate sentence level attended

vectors. Then using sentence vectors we again apply same encoder to get essay level context. Since

1 https://www.kaggle.com/c/asap-sas/data

6

short answer length may span from phrase to sentences, we encoded at answer level only. Then

the encoded and attended essay or short answer context is provided as input to output layer Softmax

classifier to predict score.

1.4.5 Testing and Evaluation

The SQM model evaluated using Amharic short answer sets collected from Amharic Language

and Literature department. We also evaluated our model on Kaggle standard dataset for both essay

and short answer. Using human rated score as gold standard, we evaluated correlation between

gold standard and predicted scores using standard metrics such Pearson, Spearman, and Kappa.

All tests in Kaggle dataset will be evaluated in Quadratic Kappa as Kappa is taken as standard

evaluation metric for Kaggle dataset.

1.4.6 Scope and Limitation

The scope of our work is limited to score two subjective type questions such short answer and

essay questions and model evaluation is done for both independently. We evaluate SQM essay

model only on Kaggle standardized English written essay dataset and experiment for short answer

will be done to both languages. For short answer, English dataset is used from Kaggle short answer

and for Amharic we collect and prepare Amharic short answer data for experimentation purpose.

We develop Amharic FastText word vectors as the only feature that our neural model use. Finally,

we experiment and analyze result of our SQM.

Because of time constraints we will not consider the following subjective questions that require

figures (diagrams), formulas, etc., proof type questions experimental questions. Our work also will

not include feedback which is specific to missed points and instructional for specific student.

1.5 Application of Results

This research work is believed to produce an effective approach for assessments subjective

question. The main application of this thesis result is on finding an efficient method of automatic

evaluation system for subjective question. Therefore, it will have a significant usage for easing of

a teaching and learning process in education.

More specifically, the proposed work will have applied on educational institutes to bring the

following significance for instructors, students, and institutions.

7

Students

 Improves impartiality (machine marking does not 'know' the students so does not favor nor

make allowances for minor errors)

 Improves reliability (machine marking is much more reliable than human marking)

Instructor

 It enables the assessment of a wide range of topics very quickly, with an associated

reduction in the time that lecturers dedicate to marking.

 The need for double marking is totally eliminated. This time and resource saving allows

more regular assessment than might otherwise have been possible, consequently enabling

more detailed knowledge of students’ progress and quicker identification of problems.

 Tests can be tailored to match students’ abilities and, with formative assessments, it may

be possible for content to be varied automatically as the test itself progresses, matching

students’ weaknesses as they emerge during the test.

 Being able to regularly evaluate student progress.

Institution

 The saving of time in marking, and a reduction in subjectivity and human error in the

marking process itself. When dealing with large groups of students, the time and resource

saving can be of a significant order.

 Given the computer-based nature of the exercise, substantial reductions in printing costs

should be achieved when assessments are updated or altered.

Therefore, it will have a significant aid for the development of education, since examinations

determine the extent to which educational objectives have been achieved as well as the extent to

which educational institutions have served the needs of community and society.

8

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter two discusses about educational assessment

and different types of assessment then it will direct to automating this task. The chapter explains

background information about Automatic Subjective Question Marking, criteria on assessing

subjective questions and various approaches to Automatic Subjective Question Marking system.

Chapter three critically reviews related work on Automatic Subjective Question Marking system.

The review focuses on approach and performance of the system. It also indicates relevant method

to that of Amharic Automatic Subjective Question Marking. Chapter four presents our proposed

approaches to Automatic Amharic Subjective Question Marking System and describes the

architecture of the proposed system along with the implementation issues. Chapter five presents

the empirical results of the proposed system along with their interpretations. Finally, Chapter six

concludes the thesis with the research findings, conclusions and future works.

9

CHAPTER TWO

2. LITERATURE REVIEW

2.1 Overview

In this chapter, a brief overview of the field of subjective question marking is explained. It begins

by introducing the broader topic educational assessment, and among the various types of

assessment which are considered to be relevant to the research. Assessment, types of subjective

question, and method of evaluation are among the topics described in this chapter. Moreover, tools

and techniques used to evaluate subjective question are described.

A number of research papers are reviewed to discuss background information related to subjective

question assessment is addressed in this chapter. Furthermore, the research investigates state of the

art techniques used in the area of subjective question assessment. Automatic subjective question

marking is a hot topic of research and hence, there are a lot of works available, but this thesis only

present those works whose contribution made a great progress to the automatic assessment for

short answer questions.

2.2 Assessment

Assessment is the systematic collection of information about student learning, using the time,

knowledge, expertise, and resources available, in order to inform decisions that affect student

learning. The purpose of assessment is informed decision-making, including the use of information

about student learning [2]. According to Farrell [11], assessing student is used to determine that

the intended learning outcomes of the course are being achieved, to provide feedback to students

on their learning, enabling them to improve their performance, to motivate students to undertake

appropriate work, to support and guide learning, to describe student attainment, informing

decisions on progression and awards, to demonstrate that appropriate standards are being

maintained, and to evaluate the effectiveness of teaching. Assessment strongly influences students’

learning, including what they study, when they study, how much work they do and the approach

they take to their learning.

Meaningful and constructive assessments need to make students to think critically and should

encourage students’ interest in learning. As it is widely acknowledged, assessment drives student

10

learning and directs student effort, assessment design must be planned accordingly and must be an

integral part of course design. Furthermore, assessment tasks influence the direction and quality

of student learning. Therefore, to move forward students need to be given more responsibility for

assessment processes and must be encouraged to participate in this task.

2.3 Types of Assessment

Though the notion of assessment is generally more complicated and those classifications which

are relevant to this thesis work are expressed below. The first classification is based on the purpose

of assessment. Accordingly, there are two types of assessment namely, formative and summative

[12].

Summative Assessment: - is the process of summing up or checking what has been learned at the

end of a particular stage of learning, whether it is a module or a course. The goal of summative

assessment is to evaluate student learning at the end of an instructional unit by comparing it against

some standard or benchmark. It is used towards and at the end of the instruction period. Teachers

document the conclusion of students’ learning achievements through tasks that invite students to

demonstrate their mastery and knowledge of the course content. As stated by [13], summative

assessment data provides teachers with information about how effective teaching strategies have

been, time needed for instruction and how to improve teaching for future students. In an

educational setting, summative assessments are evaluative and typically used to assign students a

course grade.

Formative Assessment: - is part of teaching and learning and is generally carried out throughout

a course or project. It is used at the beginning of an instructional period and during the process of

instruction as teachers check for student understanding [12]. Diagnostic tools determine what

students already know and where there are gaps and misconceptions. Formative assessment also

includes assessment as learning, where students reflect on and monitor their own progress. The

information gained guides teachers’ decisions in how to enhance teaching and learning. Formative

assessment enables students to learn through the process of feedback and opportunities to practice

and improve. More specifically, formative assessments help students identify their strengths and

weaknesses and target areas that need work and help faculty recognize where students are

struggling and address problems immediately. It is also referred to as educative assessment which

11

is used to aid learning. In an educational setting, formative assessment might be a teacher or peer

or the learner, providing feedback on a student's work, and would not necessarily be used for

grading purposes rather it is diagnostic.

Summative and formative assessments are often referred to in a learning context as assessment of

learning and assessment for learning respectively. Assessment of learning is summative in nature

and intended to measure learning outcomes and reports those outcomes to students, parents, and

administrators. In addition, Assessment of learning generally occurs at the end of a class, course,

semester, or academic year. Assessment for learning is formative in nature and is used by teachers

to consider approaches to teaching and next steps for individual learners and the class [14]. As

indicated in [13] and others, most of existing assessment procedures, for example, tests, exams,

mark and grades have evolved in relation to the needs of summative assessment. Although

formative assessment has always been part of the teaching and learning process, as in the case of

teachers comment in the paper, it only very recently that it has become an explicit focus for

attention. The educational community is much more confused about what constitutes formative

assessment and how it may conduct than it is in relation to more familiar forms of assessment

practice. So the research has noticed this gap and believes that a lot has to be done in supporting

formative assessment through various techniques, considering the benefits to the students’

improvement as well as to the educational community at large.

The second classification is based on the type of question included in the exam. Assessment (either

summative or formative) is often categorized as either objective or subjective based on type of

question. The student’s performance is evaluated with the help of Objective and Subjective

examinations as per the need of the course. Subjective Examinations include short-answer, long-

answer and essay-length answer questions. The answers are evaluated on the basis of a number of

parameters like correctness, presence of keywords and style of writing.

Objective Assessment: - is a type of assessment which requires a form of questioning which has

a single correct answer. Objective question types include እዉነት/ሐሰት (true/false answers), ምርጫ

(multiple choice), and አዛምድ (matching) questions. Objective question can be described as a

closed ended question that expects a yes or no, true or false or a choice among several options. For

12

example, the question “ሰዋሰው ስም ሲሆን፣ አንደኛው ትርጉሙ፤ መሰላል፤ መረማመጃ፤ መወጣጫ፤

መውረጃ ነው።እዉነት/ሐሰት? “is objective type of question [15].

Subjective Assessment: - is a type of assessment which requires a form of questioning which may

have more than one correct answer or more than one way of expressing the correct answer.

Subjective questions include extended-response questions and essays [16]. Subjective question can

be described as open ended question having many right answers. Essays and short answer question

are in this category. For example, the question “ሰዋሰው ማለት ምን ማለት ነዉ? አብራራ/ሪ”, “ሰዋሰዉ

በቋንቋ ዉስጥ ያለውን ጠቀሜታ በምሳሌ አስረዳ” is short answer subjective type of question.

Subjective assessment means assessing answers which have Descriptive, Define or Explain types

of question; such examinations are to evaluate the conceptual grasping level of a candidate to how

much the concepts are understood in a particular subject.

Assessment through objective questions like multiple choice, fill in the blanks, matching, and

true/false is common in educational systems, but this type question format is widely criticized,

because it allows students to blindly guess the correct answer and lacks deeper assessment.

Moreover, students may also reduce the writing skills. Subjective types of assessment on the other

hand can reveal the depth and breadth of student’s knowledge but are much more difficult to grade

because of the perceived subjectivity and more effort needed to do the task [16]. One can more

effectively assess the learner’s knowledge using descriptive type questions.

Furthermore, objective assessment is well suited to the increasingly popular computerized or

online assessment format. Whereas automated technology for analysis and scoring of subjective

assessment is still open problem. A lot of work has to be done in subjective assessment considering

its importance and the need for improving the assessment process. This thesis focuses on assessing

subjective answer type questions. Consequently, the following sub section devoted to discuss on

subjective assessment.

2.4 Subjective Question Assessment

Subjective examination has been a major way of evaluating a candidate’s knowledge &

understanding about on course or subject in traditional education system for centuries [17]. Every

university has its own examination pattern based on subjective examination. According to Amharic

Language and Literature department, the questions may be considered in the following forms.

13

 ምን(what), እንዴት(how), ለምን(why)

 አስረዳ/ግለጽ/Define: explain the meaning and (often) provide an appropriate example

 በምሳለ አስረዳ/Describe / illustrate: present the main points with clear examples that

enhance the discussion

 ልዩነቱን ግለጽ/Differentiate / distinguish: present the differences between two things

 በምሳሌ አብራራ/Discuss / explain: present the main points, facts, and details of a topic; give

reasons

 ዘርዝር/Enumerate / List / Identify / Outline: write a list of the main points with brief

explanations

 የራስህን እይታ ስጥ/Interpret: present your analysis of the topic using facts and reasoning

 አረጋግጥ/Justify / Prove: present evidence and reasons that support the topic

 በአጭር ገለጽ/Summarize: briefly state the main ideas in an organized manner

With subjective assessment, the scores assigned by human raters are intrinsically subjective.

Human raters have different characteristics like age, training, mood, prejudices, social, ethnic

backgrounds, and reaction to the handwritten style that may influence the way they assign scores.

That is, there are always intra-rater and inter-rater variations. For example, the same person scoring

the same question at different times may assign different scores (intra-rater variation) depending

on their mood or health. Different raters scoring the same question may assign different scores

(inter-rater variation). The teachers may be influenced by personal knowledge of different students

(positive or negative bias) and the general pressure of the schools to have higher scores (as a

competition factor).

2.4.1 Criteria for Subjective Question Assessment

Defining criteria to assess subjection question is usually personal. It depends on purpose of test

and type of test assessment. As defined in different literatures assessing subjective questions

criteria is set depending upon the purpose of the question, subjective question may be evaluated in

one or most of features like (1) mechanics, (2) structure, (3) content and (4) style (5) Vocabulary

and Language use (5) Grammar and the scores must reflect these areas [18]. The following sub

section define each of criteria and their relevance in assessment.

14

Content: refers to knowledge of subject and semantic similarity and substantive development of

idea which is relevant to assigned topic. According to Abel [15], content is the most important

features and focuses on what is said rather that how it is said. Student answer may be related to a

specific subject and it must fulfill some content criteria. For example, answer may be related to

some area of cell structure in biology and the scores must show that the corresponding contents

are covered.

Style: refers to the way in which sentences or group of sentences put to together. It is very

subjective and the focus is on how it is structured rather that what is included.

Structure: deals with fluent expression, ideas clearly supported flow of ideas and have logical

sequencing of statements.

Vocabulary and Language use: in this case the focus is on knowledge of vocabulary or idiom

choice.

Grammar usage: deals with complex sentences, errors of agreement, tense, number, word order,

articles, pronouns and prepositions.

Mechanics: refers to the correctness of a paper: complete sentences, correct punctuation,

accurate word choice. The mechanics represent the grammar and spelling requirements. Correct

spelling and grammar are usually basic requirements in all educational subjective question

assessment.

Plagiarism: deals with similarity between student answers. The aim is to detect whether student

‘A’ answer is copy of student ‘B’ or not.

Usually, based on the above features a specific criterion is prepared to perform the evaluation

process in any language.

2.4.2 Automatic Subjective Question Marking (SQM)

The manual system for evaluation of subjective answers for technical subjects involves a lot of

time and effort of the evaluator. Assessing through computerized intelligent techniques ensures

uniformity in marking as the same inference mechanism is used for all the students. Subjective

answers are evaluated on the basis of content and style of writing. For technical subjects, emphasis

is more on content. If standard keywords are found in students’ answer, then answer is correct.

15

However, we cannot mark the answers by just counting the number of keywords. A more

wholesome approach is required, which can evaluate on the basis of not only keyword presence

but the semantic relationship between words and concepts. Starting from early work of PEG [19],

different works has been researched to deal with the aforementioned problem. The following sub

section discuss some of approaches.

2.4.3 Approaches to Automatic Subjective Question Marking

Literature of Automatic Subjective Question Marking Systems is vast and, there have been many

publications in the last decade in particular. Besides, there have been a considerable amount of

different classifications of techniques to automatically assess subjective question or free text

answers [18]. Table 2-1, summarizes list of most common Automatic Subjective Question

Marking Systems and their respective approaches.

Table 2-1: Survey of Subjective Evaluation techniques: Correlation metrics and evaluation dataset used

is may vary from approach to approach

Year Author Tool Technique

Results

(Correlation

with human)

1998 Burstein E-rater Hybrid of features 84-94%

2001 Callear

Automated

Text

Marker

Conceptual Dependency None

2002 Rudner Betsy Bays Theorem 80%

2003 Landauer

Inteliigent

Essay

Assessor

Latent Semantic Processing 59-88%

2005 Perez Atenea
BiLingual Evaluation

Understudy, LSA
50%

2008 Kakkonen

Automatic

essay

Assessor

LSA,

Probabilistic LSA, Latent

Dirichlet Allocation

LSA better

than

rest (not

defined)

2008 Li bin K-Nearest Neighbor 76%

2010 Islam Generalized Latent

Semantic Analysis
86-96%

2012 Sukkarieh C-rater Maximum Entropy 80%

2016 Shourya

An Iterative Transfer

Learning Based

Ensemble Technique

Ensemble of two classifiers

(First classifier use TFIDF,

then second classifier

predict correlation of texts

1.04 (MAE)

16

Year Author Tool Technique

Results

(Correlation

with human)

for Automatic Short

Answer Grading

using output of first and

other features)

2016

M. Syamala

Devi and

Himani

Mittal

Machine Learning

Techniques With

Ontology For

Subjective Answer

Evaluation (Both

Essay and short

answer)

MaxEnt with domain

ontology (hybrid approach)
90%

2016
Dimitrios et

al.,

Automatic Text

Scoring Using

Neural Networks

(Essay)

score-specific word

embeddings (SSWEs) + 2

Layer Bi-directional LSTM

96% (2.4

MAE)

It can be seen from the above table that various approaches are used in the development of

automated essay and short answer assessment system. When the computer technology advances

the approaches used to develop the system also advances, as a result there are now various types

of approaches. It is not the aim of this thesis to review all the approaches rather, we give due

emphasis to those approaches whose contribution made a great progress to the Automatic

Subjective Question Marking field. For the simplicity, the thesis would like to classify the various

approaches as in to four general categories as Machine Learning, Text Similarity, Deep Learning,

and Ontology based. Deep Learning based approach is given due consideration and a detail

description is given as thesis body of knowledge depends on deep learning approach.

1. Machine Learning Approach for SQM

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability

to learn without being explicitly programmed. Machine learning focuses on the development of

computer programs that can change when exposed to new data. Machine learning systems typically

utilize some number of measurements extracted from natural language processing techniques and

similar, which are then combined into a single grade or score using a classification or regression

17

model. This can be supported by a machine learning toolkit such as Weka, LIBSVM, etc. Features

involving bag-of-words and n-grams are typical of this category, as are decision trees and support

vector machines as representative learning algorithms. Implicitly or explicitly, previous work has

primarily treated text scoring as a supervised text classification task, and has utilized a large

selection of techniques, ranging from the use of syntactic parsers, via vector semantics combined

with dimensionality reduction, to generative and discriminative machine learning.

Vast research done using this approach to deal with subjective question evaluation problem [21].

All works relay on hand crafted lexical, syntactic and semantic features. As multiple factors

influence the quality of texts, Machine Learning based systems typically exploit a large range of

textual features that correspond to different properties of text, such as grammar, vocabulary, style,

topic relevance, and discourse coherence and cohesion. In addition to lexical and part-of-speech

(POS) n-grams, linguistically deeper features such as types of syntactic constructions, grammatical

relations and measures of sentence complexity are among some of the properties that form an SQM

system’s internal marking criteria. The final representation of a text typically consists of a vector

of features that have been manually selected and tuned to predict a score on a marking scale.

Popular machine learning techniques such as SVM, MaxEnt, MLP, RF, Decision Tree, etc. are

used to score specific student grade based on labeled answer provided by instructor.

2. Text Similarity Approach for SQM

This approach addresses the grading problem from a text similarity perspective and examine the

usefulness of various text to-text semantic similarity measures for automatically grading student

answers. Text similarity measures play an increasingly important role in text related research and

applications in tasks such as information retrieval, text classification, document clustering, topic

detection, topic tracking, questions generation, question answering, essay scoring, short answer

scoring, machine translation, text summarization and others [22].

Finding similarity between words is a fundamental part of text similarity which is then used as a

primary stage for sentence, paragraph and document similarities. Words can be similar in two ways

lexically and semantically [23]. Words are similar lexically if they have a similar character

sequence. Words are similar semantically if they have the same thing, are opposite of each other,

used in the same way, used in the same context and one is a type of another. Lexical similarity is

introduced in this approach though different String-Based algorithms, Semantic similarity is

18

introduced through Corpus-Based and Knowledge-Based algorithms. String-Based measures

operate on string sequences and character composition. A string metric is a metric that measures

similarity or dissimilarity (distance) between two text strings for approximate string matching or

comparison. Corpus-Based similarity is a semantic similarity measure that determines the

similarity between words according to information gained from large corpora using LSA, ESA,

Distributional Similarity Co-occurrences (DISCO), etc. [24]. Knowledge-Based similarity is a

semantic similarity measure that determines the degree of similarity between words using

information derived from semantic networks such as WordNet, Wikipedia, etc. [23]. To score

student answer, this approach uses some heuristics that combine different similarity results

obtained from measuring string, corpus-based and knowledge based similarity approaches.

3. Ontology Based Approach for SQM

Ontologies are applied in different approach for question marking process. One is using ontology

as knowledge base and other is ontology mapping. The following sub-section discuss the two

approaches in detail.

A. Knowledge Representation

As a branch of symbolic Artificial Intelligence, knowledge representation and reasoning aims at

designing computer systems that reason about a machine-interpretable representation of the world,

similar to human reasoning. A knowledge-based system maintains a knowledge base which stores

the symbols of the computational model in form of statements about the domain, and it performs

reasoning by manipulating these symbols. Domain ontology is one of knowledge representation

technique and used in different domain [25]. It specifies the concepts, and the relationships

between concepts, in a particular subject area rather than specifying only generic concepts, as

found in an upper ontology. A domain ontology models the information known about a particular

subject and therefore should closely match the level of information found in a textbook on that

subject.

In this approach concepts extracted from student answer is mapped to concepts of model answer.

Ontology construction for student and model answer is not required. The ontology is extracted

from domain course ontology for the concept that has relation to model answer or question.

19

Similarity between student answer concept and extracted model answer is calculated using text

semantic similarity technique or given to classifier to predict correlation between two texts [49].

B. Ontology Mapping

This approach requires two ontologies to map or align concepts. Ontology mapping seeks to find

semantic correspondences between similar elements of different ontologies [26]. We first model

ontology for both model or correct answer and student answer using manual or automatic ontology

learning techniques. Then we try to align each concept in ontology to other. Given two ontologies

O1 and O2, mapping one ontology onto another means that for each entity (concept C, relation R,

or instance I) in ontology O1, we try to find a corresponding entity, which has the same or similar

semantics, in ontology O2 and vice versa. Works done with this approach follow first extract

machine understandable format such as RDF, RDFS, OWL, etc. from two text then map two

created ontologies.

4. Deep Learning Approach for SQM

Although current approaches to scoring, such as regression and ranking, have been shown to

achieve performance that is indistinguishable from that of human examiners, there is substantial

manual effort involved in reaching these results on different domains, genres, prompts and so forth.

Linguistic features intended to capture the aspects of writing to be assessed are hand-selected and

tuned for specific domains. In order to perform well on different data, separate models with distinct

feature sets are typically tuned.

Recent advances in deep learning reveal another promising direction to solve this problem. Instead

of discrete features and logics, continuous representation of the sentence is more robust to unseen

features without sacrificing performance [27]. Success in unsupervised approaches for learning

embedding’s for textual entities from large text corpora altered the way NLP problems are studied

today. This embedding’s have been shown to capture syntactic and semantic information as well

as higher level analogical structure. These methods have been adopted to learn vector

representations of sentences, paragraphs and entire documents. Embedding based approaches

allow models to be trained end-to-end from scratch with no handcrafting.

Deep neural networks are known for automatically learning useful features from data, with lower

layers learning basic feature detectors and upper levels learning more high-level abstract features

20

[28]. Recurrent neural networks and convolutional neural networks are well-suited for modeling

the compositionality of language and have been shown to perform very well on the task of language

modeling.

Deep learning approaches use word vectors as knowledge to encode sentence. Main components

that every deep learning models utilize is used for subjective question assessment also. General

architectural model for deep learning neural network based subjective question assessment system

is depicted in Figure 2.1 below.

Figure 2-1: General Architectural Model for Deep Learning based subjective question marking

Neural Network work with continuous values than discrete input. But, the task input is natural

language so we have discrete values (sequence of words). We should first change such sequence

in the way applicable for neural network. To make the data sequence compatible with the network,

the first task is transposing this discrete sequence to continuous value (integers). To do so,

vocabulary of words to their indices is created from training data. Using created vocabulary, we

build integer sequence by replacing each words in answer to their respective indices. Next we

represent our data sequence in to vector what we call it word representation or embedding. This

module is responsible to represent input into meaningful feature representations and are integral

part of any neural network based models. In the following section we will brief remaining

components in detail.

Feature Representation

For NLP tasks, we know that all the information required to successfully perform the task is

encoded in the data (i.e., sequence of words or characters). To work with neural network, we need

to represent our input into d dimensional vector. When dealing with natural language, the input

21

encodes features such words, part-of-speech tags or other linguistic information. The biggest jump

when moving from sparse input with linear models to neural network model is to stop representing

each feature as a unique dimension (one-hot representation) and representing them instead as a

dense vector.

One-hot Representation

NLP systems traditionally treat words as discrete atomic symbols as one-hot representation of

word index. One-hot sparse representation is a technique that treat words as atomic units, there is

no notion of similarity between words as this are represented as indices in a vocabulary. The

method represents only one element as 1 and the other elements are 0 in the vector. These

encodings are arbitrary, and provide no useful information to the system regarding the

relationships that may exist between the individual symbols. If we represent 'ድመት (cat)' and 'ዉሻ

(dog)' in one-hot representation, the occurrence of cat does not tell us anything about the

occurrence of dog. However, in the dense vector representation the learned vector for cat may be

similar to the learned vector from dog allowing the model to share statistical strength between the

two events.

Vector Representation

Vector representation also called embedding is used to extract meaning from text to understand

natural language. Word embedding is a learned dense representation for words where words with

similar meaning have similar representation. So instead of using one-to-one mapping between an

element in the vector (one-hot vector) and a word, the representation of a word is spread across all

of the elements in the vector, and each element in the vector contributes to the definition of many

words. These distributed representations encode shades of meaning across their dimensions,

allowing for two words to have multiple, real-valued relationships encoded in a single

representation. We can use these word vectors as meaning bearer features for various supervised

NLP tasks [33]. The models do not need labels in order to create meaningful representations. This

is useful, since most data in the real world is unlabeled. If the model is given enough training data,

it produces word vectors with intriguing characteristics. Words with similar meanings appear in

clusters, and clusters are spaced such that some word relationships can be easily inferred.

22

Many different types of models were proposed for estimating continuous representations of words,

including the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA).

The different approaches that leverage this principle can be categorized into two categories: count-

based methods (LSA, GloVe [29]), and predictive methods (e.g., neural probabilistic language

models [29, 32]).

Count-based methods compute the statistics of how often some word co-occurs with its neighbor

words in a large text corpus, and then map these count-statistics down to a small, dense vector for

each word. From count based models GloVe recently gain better attention as predictive models.

GloVe (Global Vectors) is an unsupervised learning algorithm for obtaining vector representations

for words [29]. Training is performed on aggregated global word-word co-occurrence statistics

from a corpus, and the resulting representations showcase interesting linear substructures of the

word vector space. Glove is similar with Word2Vec model except vector representation used. With

word2vec you stream through n-grams of words, attempting to train a neural network to predict

the n-th word given words [1… n-1] or the other way round. The end result is a matrix of word

vectors or context vectors respectively. With Glove, you build a co-occurrence matrix for the entire

corpus first, then factorize it to yield matrices for word vectors and context vectors.

Predictive models such as Word2vec [31] and FastText [32] directly try to predict a word from its

neighbors in terms of learned small, dense embedding vectors (considered parameters of the

model). Predictive model embed word in a continuous vector space where semantically similar

words are mapped to nearby points significantly changed the way NLP does. With predictive

models, each word is represented by a distribution of weights across those elements. The weights

associated with each word becomes that word’s dense vector embedding. This predictive ability

of predictive models over count based models and memory consumption of count based model is

usually taken as criticizing point for both predictive and count based models.

Inspired by their power on representing words, we use predictive models to create word vectors

we will use for both English and Amharic word vectors that are used as only feature that we provide

to our neural model to score subjective question. In the following sub section, we give detail review

on predictive word embedding models.

23

Neural Word Embedding

Word embeddings are one of the few currently successful applications of unsupervised learning.

Their main benefit arguably is that they don't require expensive annotation, but can be derived

from large unannotated corpora that are readily available. The term word embeddings is coined in

2003, but the eventual popularization of word embedding can be attributed to Mikolov et al., [31]

in 2013 who created word2vec, a toolkit that allows the seamless training and use of English pre-

trained embedding. In 2016, Facebook released another predictive model called FastText that

represent word information through sub-words or character n-grams. FastText is extension of

word2vec model by extending character n-gram feature.

Word2Vec

Word2Vec is the name given to a class of neural network models with two layer that, given an

unlabeled training corpus, produce a vector for each word in the corpus that encodes its semantic

information. Word2vec can utilize either of two model architectures to produce a distributed

representation of words: continuous bag-of-words (CBOW) or continuous skip-gram. In the

continuous bag-of-words architecture, the model predicts the current word from a window of

surrounding context words. The order of context words does not influence prediction (bag-of-

words assumption). In the continuous skip-gram architecture, the model uses the current word to

predict the surrounding window of context words. The skip-gram architecture weighs nearby

context words more heavily than more distant context words. CBOW is faster while skip-gram is

slower but does a better job for infrequent words [31]. Word2vec uses a single hidden layer for

both architecture, fully connected neural network as shown below in Figure 2.2 and 2.3. The

neurons in the hidden layer are all linear neurons. The input layer is set to have as many neurons

as there are words in the vocabulary for training. The hidden layer size is set to the dimensionality

of the resulting word vectors. The size of the output layer is same as the input layer. Thus, assuming

that the vocabulary for learning word vectors consists of V words and N to be the dimension of

word vectors, the input to hidden layer connections can be represented by matrix W of

size V×N with each row representing a vocabulary word. In same way, the connections from

hidden layer to output layer can be described by matrix 𝑊′ of size N×V. In this case, each column

of 𝑊′output matrix represents a word from the given vocabulary.

24

The one-hot encoded input vectors are connected to the hidden layer via a weight matrix and the

hidden layer is connected to the output layer via a weight matrix. The weights between the input

layer and the output layer can be represented by a V × N matrix W. Each row of W is the N-

dimension vector representation 𝑉𝑤 of the associated word of the input layer. That is hidden layer

of the network. The word vectors W and 𝑊′ are learned via backpropagation and stochastic

gradient descent. Finally, the output layer is output word in the training example which is also one-

hot encoded.

Continuous Bag-of-Word Model (CBOW)

While a language model is only able to look at the past words for its predictions, as it is evaluated

on its ability to predict each next word in the corpus, a model that just aims to generate accurate

word embeddings does not suffer from this restriction. Mikolov et al., [31] thus use both

the n words before and after the target word wt to predict it as depicted in Figure 2.2 below.

In Word2Vec framework, every word W in the dictionary V is mapped to a vector w(x), which is

a column in the matrix W (matrix W is randomly initialized). The CBOW model predicts a word

w(x) using its context w(x - n),⋯, w(x - 1), w(x + 1),⋯, w(x + n). CBOW described in Figure 2.2

below is implemented in the following steps.

Step 1: Generate one hot vectors for the input context of size C.

For each alphabetically sorted unique vocabulary terms as target word, we create one hot vector

of size C. i.e., for a given context word, only one out of V units,{𝑥1 ⋯𝑥𝑣} will be 1, and all other

units are 0.

Step 2: Compute the output of the hidden layer.

Hidden layer is based one hot encoded input layer. When computing the hidden layer output,

instead of directly copying the input vector of the input context word, the CBOW model takes the

average of the vectors of the input context words, and use the product of the input→hidden weight

matrix W and the average vector as the output.

ℎ =
1

𝐶
𝑊𝑇(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑐) (2.1)

25

=
1

𝐶
(𝑣𝑤1 + 𝑣𝑤2 + ⋯+ 𝑣𝑤𝑐)

T (2.2)

, where C is the number of words in context, 𝑤1, ⋯ ,𝑤𝑐 are the words in context and 𝑣𝑤 is the input

vector of word w (is product of its weight vector to input one hot vector x).

Step 3: Compute the inputs to each node in the output layer

Next we compute score of each input vectors of output layer as

𝑢𝑗 = 𝑣′𝑤𝑗

𝑇
ℎ (2.3)

, where 𝑣′𝑤𝑗
 is the jth column of the output matrix 𝑊′. And finally we compute the output of the

output layer.

Figure 2-2:Word2Vec [31] CBOW Model

Step 4: Compute probability distribution of target word.

Finally, the output 𝑦𝑗 i.e., the jth unit in output layer, is obtained by passing the input 𝑢𝑗 through

the soft-max function. The Softmax log-linear classification model used to calculate the probability

distribution of the target word given a specific context is:

𝑝(𝑤𝑦|𝑤1,⋯ ,𝑤𝑐) =
𝑒𝑥𝑝(𝑢𝑗)

∑ 𝑒𝑥𝑝(𝑢𝑗
′)𝑣

𝑗=1

 (2.4)

26

Skip-gram Model

Instead of using the surrounding words to predict the center word as with CBOW, skip-gram uses

the center word to predict the surrounding words as can be seen as opposite of CBOW model as

shown in Figure 2-3 below. The input of the skip-gram model is a single target word and the output

is the words in 𝑤𝐼 's context {𝑤𝑜, 1,⋯𝑤𝑜, 𝐶} defined by a word window of size. We still use 𝑣𝑊𝐼 to

denote the input vector of the only word on the input layer, and thus we have the same definition

of the hidden→layer outputs h as in CBOW, which means h is simply copying (and transposing) a

row of the input→hidden weight matrix, W, associated with the input word .

Figure 2-3:Word2Vec [26] Skip-gram model.

In the above model x represents the one-hot encoded vector corresponding to the input word in the

training instance and {𝑦1, ⋯ 𝑦𝐶} are the one-hot encoded vectors corresponding to the output words

in the training instance. The V x N matrix W is the weight matrix between the input layer and

hidden layer whose ith row represents the weights corresponding to the ith word in the vocabulary.

This weight matrix W is what we are interested in learning because it contains the vector encodings

of all of the words in our vocabulary (as its rows). Each output word vector also has an associated

N x V output matrix 𝑊′. There is also a hidden layer consisting of N nodes (the exact size of N is

a training parameter). We know that the input to a unit in the hidden layer ℎ𝑖is simply the weighted

sum of its inputs. Since the input vector X is one-hot encoded, the weights coming from the nonzero

27

element will be the only ones contributing to the hidden layer. Therefore, for the input X with 𝑋𝑘 =

1 and 𝑋𝑘′ = 0 for all 𝑘′ ≠ 𝑘 the outputs of the hidden layer will be equivalent to the kth row of W.

ℎ = 𝑥𝑇𝑊 = 𝑊(𝑘,.)
: = 𝑉𝑤𝐼

 (2.5)

In the same way, the inputs to each C x V of the output nodes is computed by the weighted sum of

its inputs. Therefore, the input to the jth node of the cth output word is

𝑢𝑐𝑗
= 𝑣′𝑤𝑗

𝑇
ℎ (2.6)

However we can observe that the output layers for each output word share the same weights

therefore 𝑢𝑐𝑗
= 𝑢𝑗 . We can finally compute the output of the jth node of the cth output word via the

Softmax function which produces a multinomial distribution.

 𝑝(𝑤𝑐,𝑗 = 𝑤0,𝑐|𝑤𝐼) = 𝑦𝑐,𝑗 =
𝑒𝑥𝑝(𝑢𝑐,𝑗)

∑ 𝑒𝑥𝑝(𝑢𝑗)
𝑣
𝑗=1

(2.7)

In simple term, this value is the probability that the output of the jth node of the cth output word is

equal to the actual value of the jth index of the cth output vector (which is one-hot encoded).

FastText

Motivated by, Google’s word2vec embeddings, in 2016 Facebook released an embedding model

that recently attracted a great deal from the machine learning community especially for

morphologically rich languages called FastText [32]. The main goal of the FastText embeddings

is to take into account the internal structure of words while learning word representations; this is

especially useful for morphologically rich languages like Amharic, where otherwise the

representations for different morphological forms of words would be learnt independently. The

limitation becomes even more important when these words occur rarely unless we use external

language dependent tools such as morphological analyzers. The semantic and syntactic

information of words that is contained in these vectors make them powerful features for NLP tasks.

One issue FastText criticized is its memory consumption to construct character n-gram level, it

takes longer to generate FastText embeddings compared to word2vec model. However, word2vec

and GloVe treats each word in corpus like an atomic entity and generates a vector for each word.

For example, the word ዘገባ, ለዘገባ, በዘገባ, ስለዘገባ, etc are treated as atomic unless we apply

28

morphology analysis before providing dataset to model. For morphologically rich languages such

as Turkic, Arabic, Chinese, Amharic, etc. treating each varieties of words as atomic unit not

effective approach. In contrast, FastText treats each word as composed of character n-grams. So

the vector for a word is made of the sum of this character n grams. For example, the word vector

“ዘገባ” is a sum of the vectors of the n-grams “<ዘገ”, “ዘገባ”,” ገባ”>. With this manifest it benefits

to generate better word embeddings for rare words. Moreover, FastText predict vector for out of

vocabulary words from its character n-grams even if word doesn't appear in training corpus. In

contrast both Word2vec and Glove leave unseen words as out-of-vocabulary words. So, with this

intuition, we proposed to use FastText as word vector generating model for SQM.

As it is extension to Word2Vec [31] model, FastText also has two architectures for computing

word representations called Skip-gram and CBOW (continuous-bag-of-words). The Skip-gram

model learns to predict a target word given a nearby word. On the other hand, the CBOW model

predicts the target word according to its context. For instance, given the sentence “የህዝብ ግንኙነት

ለህዝብ መረጃ በመስጠት የህዝብን አዝማሚያዎችና ተግባራት ለማስተካከል የሚከሄድ የማሳመን ሥራ

ነዉ” and the target word “ተግባራት”. The Skip-gram model predicts the target using a random

close-by word, like “አዝማሚያዎችና” or “የማሳመን”. Whereas the CBOW model takes all the

words in a surrounding window, like {የህዝብን: አዝማሚያዎችና, ለማስተካከል: የሚከሄድ}, and uses

the sum of their vectors to predict the target word “ተግባራት”. At the time of training, FastText

trains by sliding a window over the input text and either learning the target word from the

remaining context (CBOW), or all the context words from the target word (“Skip-gram”), and

learning can be viewed as a series of updates to a neural network with two layers of weights

and three tiers of neurons, in which the outer layer has one neuron for each word in the

vocabulary and the hidden layer has as many neurons as there are dimensions in the embedding

space. In this way, it is similar to Word2Vec. Unlike word2vec, FastText also learn vectors for

sub-parts of words called character n-grams ensuring that e.g., the words “የህዝብን”, “የህዝብ”,”

ህዝብ” and “ህዝብን” all fall into same dimension in vector space, even if they tend to appear in

different contexts. This feature enhances learning on heavily inflected languages. Despite use

of sub-word information, training FastText is same as Word2Vec for both CBOW and Skip-gram

models.

29

The key difference between FastText and Word2Vec is the use of n-grams. Word2Vec learns

vectors only for complete words found in the training corpus. FastText, on the other hand, learns

vectors for the n-grams that are found within each word, as well as each complete word. At each

training step in FastText, the mean of the target word vector and its component n-gram vectors are

used for training. The adjustment that is calculated from the error is then used uniformly to update

each of the vectors that were combined to form the target. This adds a lot of additional computation

to the training step. At each point, a word needs to sum and average its n-gram component parts.

The trade-off is a set of word-vectors that contain embedded sub-word information. These vectors

have been shown to be more accurate than Word2Vec vectors by a number of different measures.

Treating character n-gram manifests FastText the following advantage over Word2Vec:

 Generate better word embeddings for rare words (even if words are rare their character n

grams are still shared with other words - hence the embeddings can still be good). This is

simply because, in word2vec a rare word (e.g., 10 occurrences) has fewer neighbors to be

pulled by, in comparison to a word that occurs 100 times whereas FastText has more

neighbor context words and hence is pulled more often resulting in better word vectors.

 Out of vocabulary words - they can construct the vector for a word from its character n

grams even if word doesn't appear in training corpus. Both Word2vec and Glove can't.

It is not clear to use which embedding in what situation, but based on comparative study done by

[32], FastText built on the top of Word2Vec do significantly better on morphology dependent

tasks. In contrast, word2vec model seems to perform better on semantic tasks, since words in

semantic analogies are unrelated to their char n-grams, and the added information from irrelevant

char n-grams worsens the embeddings. But, in all task FastText significantly outperformed

Word2vec models for morphologically rich languages. In this thesis as Amharic is one of

morphologically rich language we will be using FastText model for Amharic word vector.

Moreover, FastText allows us to cluster words with spelling errors to their semantically similar

words which are common in student written exams. Using those word vectors, embedding module

represent word index sequence into sequence of vectors.

30

Other than words character level language model also performs comparable result to represent text

meaning. Character model is used with NLP in two approach. One is encoding entire text as

sequence of character and the other is enhancing word vectors by concatenation sub-word

information of each words to their vector. In practice the later outperformed the former approach

[48]. In languages such as Amharic, a word is usually composed of several characters and contains

rich internal information since semantic meaning of a word is also related to the meanings of its

composing characters. Enhancing word embedding with character embedding may improve the

embedding capacity of word embeddings in morphologically rich language such as Amharic [48].

It allows us to tackle mechanics problem (i.e., spelling errors and heterogeneity in word formation)

happen in writing. Character encoding can be performed either RNN or CNN. As stated by Zhang

et al., [61] using CNN model for encoding character has advantage on treating morphemes due to

the property of CNN in extracting informative feature. Moreover, it is recommended technique to

represent out-of-vocabulary words with their character level information than treating them as zero

encoded or with dummy randomized vectors [48, 61].

Answer Encoding

Encoding text is semantic representation of the word in the text sequence that hold global

contextual features of the whole text. Embedding module represents words independently, but we

need how each words contributed to meaning of sentence or whole answer to score entire answer.

Several techniques are used ranging from simple vector averaging to recurrent neural networks.

The input to this step is vector representation i.e., whether one-hot encoded or word embedding

vectors2. Averaging vectors tries to get cumulative context of a sentence vectors by summing all

word vectors of words in a sentence or use word frequencies (can be also inverse document

frequency) as weight and multiply to their vectors to minimize effect of frequent words (i.e., stop

words) [55]. Finally, to get sentence level context summation of vectors is divided into number of

words in a sentence. One benefit of averaging vectors is its fastness to represent sentence.

However, averaging does not consider word order in a sentence. Such model looks existence of

words than their location. If word exist in both model and student answer statement, the approach

reward highest value. In practice, word order changes the meaning because of subject and object

2 Practical approach is representing words to their meaning distribution using pre-trained word vectors

such as FastText or word2vec. For tasks with high probability to spelling error and out-of-vocabulary

words FastText is preferable.

31

change. The possible encoder to use for tasks such as assessment that require word sequence is

neural sequence encoder.

Popular deep learning models such as convolutional neural networks (CNN), recurrent neural

networks (RNN), and recursive neural networks (RecursiveNN) are used to represent contextual

representation of input answer to fixed-length high-level context dense vectors usually called

sentence matrix [52]. The job encoder network is to read the input word sequence to sequence

encoder model and generate a fixed-dimensional context vector for the entire sequence.

Convolutional Neural Networks (CNN)

For some NLP task such as sentiment analysis we need to predict on availability of some salient

information than sequential representation by scarifying order of words. Convolutional neural

networks (CNNs) [63] architecture is an elegant and robust solution to model such problem [60].

A convolutional neural network is designed to identify indicative local predictors in a large

structure, and combine them to produce a fixed size vector representation of the structure,

capturing these local aspects that are most informative for the prediction task at hand. The main

idea behind a convolution and pooling architecture for language tasks is to apply a non-linear

(learned) function over each instantiation of a k-word sliding window over the sentence. This

function (also called “filter”) transforms a window of k words into a d dimensional vector that

captures important properties of the words in the window (each dimension is sometimes referred

to in the literature as a “channel”). Then, a “pooling” operation is used to combine the vectors

resulting from the different windows into a single d-dimensional vector, by taking the max (also

known as MaxPooling) or the average (also called AveragePooling) value observed in each of the

d channels over the different windows. The intention is to focus on the most important “features”

in the sentence, regardless of their location. The d-dimensional vector is then fed further into a

network that is used for prediction. The gradients that are propagated back from the network’s loss

during the training process are used to tune the parameters of the filter function to highlight the

aspects of the data that are important for the task the network is trained for. Intuitively, when the

sliding window is run over a sequence, the filter function learns to identify informative k-grams.

32

Recursive Neural Networks

The recursive neural network (RecursiveNN) is a generalization of the RNN from sequences to

(binary) trees popularized in late 2014 [30]. Much like the RNN encodes each sentence prefix as

a state vector, the RecursiveNN encodes each tree-node as a state vector in ℝ𝑑. We can then use

these state vectors either to predict values of the corresponding nodes, assign quality values to each

node, or as a semantic representation of the spans rooted at the nodes. The main intuition behind

the recursive neural networks is that each subtree is represented as a d dimensional vector, and the

representation of a node p with children c1 and c2 is a function of the representation of the nodes:

𝑣𝑒𝑐(𝑝) = 𝑓(𝑣𝑒𝑐(𝑐1), 𝑣𝑒𝑐(𝑐2)), where f is a composition function taking two d-dimensional

vectors and returning a single d-dimensional vector. Context ℎ𝑖 is used to encode the entire

sequence𝑥1: 𝑖, the RecursiveNN state associated with a tree node p encodes the entire subtree

rooted at p. It is on debate whether sentence structure is recursive or not, but if we have parsed

data RecursiveNN can do well for structure dependent NLP tasks.

From survey [60], for sequence dependent tasks CNNs are not preferable as they skip order of

sequence and considered good at extracting local and position-invariant features. However, for

assessment we need to give attention for text structure in addition to content level contexts.

Recursive NN can do well with sequence dependent tasks, but such model require external tools

such as syntactic or dependency parser to create parsed sentences [30]. Recurrent Neural Networks

are deep learning model that are suitable to represent sequence dependent tasks that require context

dependencies and sequence order [60]. As subjective question marking is one of sequence

dependent task the thesis use RNN to build abstraction of input answer by analyzing each words

sequentially. In the following subsection we will discuss the detail how RNN works and its

variants.

Recurrent Neural Network (RNN)

When dealing with language data, it is very common to work with sequences, such as words

(sequences of characters), sentences (sequences of words) and documents (sequence of sentences

or paragraphs). Recurrent Neural Networks is initially proposed by Elman in 1990 [65] and

explored for use in language modeling by Mikolov in 2012 [66] are a family of neural networks

designed specifically for sequential data processing and allow representing arbitrarily sized

33

structured inputs in a fixed-size vector, while paying attention to the structured properties of the

input. RNNs are called recurrent because they perform the same task for every words of

a sequence, with the output being depended on the previous operations. Recurrent Neural

Networks have become the common approach to sequence learning and mapping problems in

recent times [34]. The Sequence to sequence mapping [34], as well as several of its variants have

fueled RNN based approaches to a wide variety of problems including language modeling,

language generation, machine translation, question answering, automated essay scoring and many

others. The intuition behind is to predict next word given previous word information for sentence

level task and predicting next sentence given previous sentence vector in a document for document

level task. To formalize this chain assumption let we want to compute the likelihood of the

sentence “በአማርኛ ከሚታወቁት የዜማ ቅኝት አይነቶች አንዱ አምባሰል ነዉ”, we need to estimate the

following probabilities:

𝑝(በአማርኛ), 𝑝(ከሚታወቁት|በአማርኛ), 𝑝(የዜማ| በአማርኛ ከሚታወቁት),⋯,

𝑝(ነዉ|በአማርኛ ከሚታወቁት የዜማ ቅኝት አይነቶች አንዱ አምባሰል)

We know that we have word vectors that we discussed on previous section. Each words are

represented to their word vectors that give how the word is related to entire vocabulary word in a

vector space; with RNN we first, initialize the memory vector h to zero. In the first time step

(denoted by zero) the input to the RNN unit is special token <\s> which symbolizes the beginning

of a sentence. As an output, we get the probability of every possible word in the vocabulary

given the start of sentence token. The memory vector gets updated in this same operation and

sent to the next time step. Now we repeat the procedure for time step 1 in which በአማርኛ is the

input of the cell, ℎ1 is the memory state which contains information about the past

and 𝑝(𝑤2| <\s > በአማርኛ)is the output. The following Figure 2-4 illustrate how Vanilla RNN

compute score of the entire sentence.

34

Figure 2-4: Figure that depicts how RNN works to get context of sentence

In general, at each time step, we seek to estimate a probability distribution over all the possible

next words in the vocabulary V given the previous words. The output layer of the RNN is then a

Softmax layer which returns a vector of size |V| whose i-th element indicates the predicted

probability of the word 𝑉𝑖 being the next word to appear in the sentence. More precisely, the

recurrent neural network computes the following function, with a Softmax output layer predicting

the conditional probability of input 𝑥𝑖 given the sequence of length k [𝑥1, 𝑥2, ⋯ , 𝑥𝑘], which

guarantees positive probabilities summing to 1:

𝑒𝑡 =
𝑒𝑥𝑝(ℎ𝑡)

∑ exp (ℎ𝑘)1
 𝑓𝑜𝑟 𝑡 = 1,⋯ , 𝑘

(2.8)

, whereas 𝑒𝑡 is the resulting vector of non-negative real numbers, ℎ𝑡 is the memory hidden state

is calculated as:

ℎ𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1 + 𝑏) (2.9)

, where U and 𝑊 are learnable weights, ℎ𝑡−1is previous hidden state output vector, b is bias also

learned, 𝑥𝑡 is current input vector in a sequence, ℎ𝑡 is the output at step t i.e., used to predict the

next word in a sentence it would be a vector of probabilities across our vocabulary, and .f is non-

linearity function. There is no good theory as to which non-linearity to apply in which conditions,

and choosing the correct non-linearity for a given task is for the most part an empirical question.

But, the common nonlinearities from the literature used in NLP applications are sigmoid, tanh,

hard-tanh and the rectified linear unit (ReLu) [52]. However, because of its easiness to implement

and cheaper computation in back-propagation as ReLu not susceptible for vanishing gradient

35

problem as compared to tanh and sigmoid, to efficiently train more deep neural network ReLu is

commonly used in recent NLP applications [64].

The weight matrices U and W are filters that determine how much importance to accord to both

the present input and the past hidden state. The error they generate will return via backpropagation

and be used to adjust their weights until error can’t go any lower. To update learnable weights U

and W we apply gradient update called backpropagation through time (BPT). The goal of the BPT

is to modify the weights of a RNN in order to minimize the error (cross entropy error or loss) of

the network outputs compared to expected output in response to corresponding inputs. BPT can be

directly applied to Figure 2-4, the computational graph of the unfolded network, to compute the

derivative of a total error (for example, the log-probability of generating the right sequence of

outputs) with respect to all the states ℎ𝑡 and all the parameters. The intuition is we compare

predicted output 𝑒𝑡with actual word in a vocabulary and calculate error. Then if actual is different

from predicted we adjust weights and repeat the same process. The loss function L for a given

sequence is the negative log probability that the model assigns to the correct output is given by:

𝐿(𝑥) = −∑log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑤𝑡 = 𝑥𝑡+1) =

𝑡

− ∑log 𝑜𝑡[𝑥𝑡+1]

𝑡

(2.10)

, where 𝑜𝑡[𝑥𝑡+1]is the element of the output Softmax corresponding to the real word𝑥𝑡+1.

With the loss defined and given that the whole system is differentiable, we can back propagate

the loss through all the previous RNN units and embedding matrices and update its weights

accordingly.

In theory, RNNs are absolutely capable of handling such long-term dependencies. But, in practice it’s

not usually true especially when sequence is very long [35]. During the gradient back-propagation

phase, the gradient signal can end up being multiplied a large number of times (as many as the

number of time steps) by the weight matrix associated with the connections between the neurons of

the recurrent hidden layer. This means that, the magnitude of weights in the transition matrix can

have a strong impact on the learning process. If the weights (eigenvalue) in this matrix are less than

1, it can lead to a situation called vanishing gradients where the gradient signal gets so small that

learning either becomes very slow or stops working altogether. It can also make more difficult the

task of learning long-term dependencies in the data. Conversely, if the weights (eigenvalue) in this

36

matrix are greater than 1, it can lead to a situation where the gradient signal is so large that it can

cause learning to diverge. This is often referred to as exploding gradients. Long short term memory

(LSTM) and Gated Recurrent Unit (GRU) are variants of recurrent neural network designed to deal

with such problem [35].

Long Short Term Memory (LSTM)

In gradient problem that happen because of long dependency, Hochreiter & Schmidhuber [35]

introduce Long-short term memory (LSTM). The LSTM uses self-connected unbounded internal

memory cells that ensure a constant error flow. A memory cell is composed of four main elements:

an input gate, a neuron with a self-recurrent connection (a connection to itself), a forget gate and an

output gate. The self-recurrent connection has a weight of 1.0 and ensures that, barring any outside

interference, the state of a memory cell can remain constant from one-time step to another. The gates

serve to modulate the interactions between the memory cell itself and its environment. The input

gate can allow incoming signal to alter the state of the memory cell or block it. On the other hand,

the output gate can allow the state of the memory cell to have an effect on other neurons or prevent

it. Finally, the forget gate can modulate the memory cell’s self-recurrent connection, allowing the

cell to remember or forget its previous state, as needed. This allows the model to capture information

across a wide range of timescales. Since then LSTMs have been implemented effectively across

many natural language processing tasks [35] all tasks that place importance on the sequence of

events. Figure 2-5 depicts how LSTM RNN works to calculate hidden state weights.

37

Figure 2-5: How LSTM RNN [35] works

In the above Figure 2-5:

 Gates i, f, and o are called the input, forget and output gates, respectively. They have the

exact same equations as defined below, with different parameter weight matrices. They

called gates because the sigmoid function (𝜎) squashes the values of these vectors between

0 and 1, and by multiplying them elementwise with another vector you define how much

of that other vector you want to “let through”. The input gate defines how much of the

newly computed state for the current input you want to let through. The forget gate defines

how much of the previous state you want to let through. Finally, the output gate defines

how much of the internal state you want to expose to the external network (higher layers

and the next time step). All the gates have the same dimensions𝑑(𝑡), the size of the hidden

state.

 𝑔 is a new hidden state that is computed based on the 𝑋(𝑡) current input and ℎ(𝑡−1) previous

hidden state

 𝐶(𝑡) is called the internal memory of the unit is a combination of the previous memory

𝐶(𝑡−1) multiplied by the forget gate f, and the newly computed hidden state 𝑔, multiplied by

38

the input gate. Thus, intuitively it is a combination of how we want to combine previous

memory and the new input. We could choose to ignore the old memory completely (forget

gate all 0’s) or ignore the newly computed state completely (input gate all 0’s), but most

likely we want something in between these two extremes.

 Given the memory𝐶(𝑡), we finally compute the output hidden state ℎ(𝑡) by multiplying the

memory with the output gate. Not all of the internal memory may be relevant to the hidden

state used by other units in the network.

 𝑈 𝑎𝑛𝑑 𝑊are learnable weights

To formalize how LSTM hidden state ℎ(𝑡) is computed:

ℎ(𝑡) = 𝑜(𝑡)⨀𝑡𝑎𝑛ℎ (𝐶(𝑡)) (2.11)

 𝐶(𝑡) = 𝑓(𝑡)⨀𝐶(𝑡−1) + 𝑖(𝑡)⨀𝑔(𝑡) (2.12)

 𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊(𝑐)[𝑥(𝑡)] + 𝑈(𝑐)ℎ(𝑡−1) + 𝑏(𝑐)) (2.13)

 𝑜(𝑡) = 𝜎(𝑊(𝑜)[𝑥(𝑡)] + 𝑈(𝑜)ℎ(𝑡−1) + 𝑏(𝑜)) (2.14)

 𝑖(𝑡) = 𝜎(𝑊(𝑖)[𝑥(𝑡)] + 𝑈(𝑖)ℎ(𝑡−1) + 𝑏(𝑖)) (2.15)

 𝑓𝑡 = 𝜎(𝑊(𝑓)[𝑥(𝑡)] + 𝑈(𝑓)ℎ(𝑡−1) + 𝑏(𝑓)) (2.16)

, where 𝜎 is sigmoid, ⨀ is element-wise operation, non-linearity function, that decides which values

will be updated. To update weights U and W it is same procedure as we did for Vanilla RNN above.

Gated Recurrent Unit (GRU)

A gated recurrent unit (GRU) was proposed by Cho et al., [37] in 2014 to make each recurrent unit

to adaptively capture dependencies of different time scales. Similarly, to the LSTM unit, the GRU

has gating units that modulate the flow of information inside the unit, however, without having a

separate memory cells. Unlike LSTM, GRU has two gates, a reset gate r, and an update

39

gate z. Intuitively, the reset gate determines how to combine the new input with the previous

memory, and the update gate defines how much of the previous memory to keep around. If we set

the reset to all 1’s and update gate to all 0’s its function is same as Simple RNN model. The basic

idea of using a gating mechanism to learn long-term dependencies is the same as in a LSTM, but

there are a few key differences as depicted in Figure 2-6 below:

Figure 2-6: How GRU RNN [35] works

To formalize Figure 2-6: the equation used to compute GRU hidden state ℎ(𝑡) is given by:

ℎ(𝑡) = 𝑧(𝑡)⨀ℎ̃(𝑡) + (1 − 𝑢(𝑡))⨀ℎ(𝑡−1) (2.17)

 ℎ̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊[𝑥(𝑡)] + 𝑈(𝑟(𝑡)⨀ℎ(𝑡−1)) + 𝑏) (2.18)

 𝑧(𝑡) = 𝜎(𝑊(𝑧)[𝑥(𝑡)] + 𝑈(𝑧)𝑥(𝑡−1) + 𝑏(𝑧)) (2.19)

 𝑟(𝑡) = 𝜎(𝑊(𝑟)[𝑥(𝑡)] + 𝑈(𝑟)𝑥(𝑡−1) + 𝑏(𝑟)) (2.20)

40

GRU has the following difference when compared to LSTM cells:

 GRU has two gates, an LSTM has three gates.

 GRUs don’t possess and internal memory that is different from the exposed hidden state.

They don’t have the output gate that is present in LSTMs.

 The input and forget gates are coupled by an update gate z and the reset gate r is applied

directly to the previous hidden state. Thus, the responsibility of the reset gate in a LSTM

is split up into both r and z.

 We don’t apply a second nonlinearity when computing the output.

According to empirical evaluations in RNN variants [36], there isn’t a clear point of reference to

select. In many tasks both architectures yield comparable performance and tuning hyper-

parameters like layer size is probably more important than picking the ideal architecture. GRUs

have fewer parameters (U and W are smaller) and thus may train a bit faster or need less data to

generalize. On the other hand, if one has enough data, the greater expressive power of LSTMs

may lead to better results.

Bidirectional-RNN

So far, we have focused on RNNs that look into the past words to predict the next word in the

sequence. It is possible to make predictions based on future words by having the RNN model read

through the corpus backwards. Dependencies in sentences don’t just work in one direction; a word

can have a dependency on another word before or after it. For natural language, we need to be able

to effectively encode any input, regardless of dependency directions within that input, so this won’t

cut it. Bidirectional RNNs fix this problem by traversing a sequence in both directions and

concatenating the resulting outputs (both cell outputs and final hidden states). For every RNN cell,

we simply add another cell but feed inputs to it in the opposite direction; the output 𝑜𝑡

corresponding to the t-th word is the concatenated vector [𝑜𝑡
(𝑓)

𝑜𝑡
(𝑏)

], where 𝑜𝑡
(𝑓)

 is the output of

the forward-direction RNN on word t and 𝑜𝑡
(𝑏)

 is the corresponding output from the reverse

direction RNN. Similarly, the final hidden state is h = [ℎ(𝑓)ℎ(𝑏)], whereℎ(𝑓) is the final hidden

state of the forward RNN and ℎ(𝑏) is the final hidden state of the reverse RNN.

41

To sum up, one shortcoming of Vanilla RNNs is that they are only able to make use of previous

context. In assessment task, the decision is made after the whole answer is processed and syntactic

and semantic information behind provided answer should be summarized. Therefore, we need an

encoder that analyze relevance of concepts in student answer with context of model answer by

exploring both previous and future context in sequence representation. According to survey done

on state of art deep learning networks recurrent neural network (RNN) and its variant has good

performance on semantic feature learning [60], they declared evidence that both LSTM and GRU

can work well with NLP task by computing a weighted combination of all words in the sentence

for sentence level and weighted sum of all sentence for document level encoder. This variant of

RNN, LSTM and GRU, can do well on long-dependency in sentence. With this inspiration, in this

thesis we will explore the power of both bidirectional LSTM and or GRU to score essay by

encoding essay level context and short answer at sentence level context.

Attention in Neural Network

Naturally word sequences are represented as meaningful information using last time-step of

encoder. However, since not all vector in a vector sequence is relevant, it is hard to encode all the

relevant input information needed in a fixed-length vector. This problem is addressed by

introducing an attention mechanism at each level that estimates the importance of each time-step

vector to the representation of the sentence or document meaning. The idea behind attention

mechanisms is certainly motivated by observing the visual attention of humans. Despite processing

the visual input all at the same time, humans rather pay attention to part of it sequentially one after

the other. This allows to keep the amount of information to be manageable. Then we grasp only

import representation of a text to infer meaning of what we are reading about. With an attention

mechanism, we no longer try encode the full source text into a fixed-length vector. Importantly,

we let the model learn what to attend based on the input sequence and what it has produced so far.

As the result, attention mechanisms have become fundamental part of sequence modeling in

various tasks. In subjective question assessment the goal of using attention is to derive a context

vector that captures relevant answer information to help scoring module by clueing which answer

words are more relevant. Several attention mechanisms are used in NLP. The most common way

is applying similarity between provided or learned vector and attending vector then providing the

42

result to Softmax to get relevancy score distribution. Finally, getting maximum or average of

attended vectors as relevant information.

Scoring

In subjective question assessment, this module works as score predictor by aiming to minimize

cross entropy error or mean absolute error by treating the task as classification or regression

respectively. It takes trained model and answers represented in the same format to training data,

then predict score between specified ranges. Usually this layer is output layer in neural network

using Softmax linear regression to predict score of provided answer.

2.5 Tools for Deep Learning

With advent of deep learning, several tools are designed to minimize programming load. The

following are popular deep learning tools used for word representation and neural networks such

as RNNs and CNNs [59].

TensorFlow

TensorFlow is open source python library for deep learning experimentation that is created by

Google Brain team. It works on Linux, Mac OS X, Windows platform and it has C++, Python

implementation. Its libraries are quite similar to Theano. It has pre-trained models for Recurrent

Neutral Network (RNN) and Convolutional Neural Network (CNN).

Keras

Keras is an open source software for deep learning created by François Cholet. It is written by

python and works on Linux as well as on window when there is Theano at back end. It has pre-

trained models for Recurrent Neutral Network (RNN) and Convolutional Neural Network (CNN).

It is deep learning library for Theano and TensorFlow that was developed with the intention of fast

experimentation. It was developed with a focus on enabling fast experimentation and runs

seamlessly on CPU and GPU. This make it preferable for research work.

Torch

Torch is also open source that work on Linux, MacOS, windows and Android. It is a computational

framework with an API written in Lua that supports machine-learning algorithms. It is powerful

43

but, was not designed to be widely accessible to the Python-based community it has also pre-

trained models for RNN and CNN.

Theano

It is a platform for deep learning library that allows to create the neural network models. Theano

is a library that handles multidimensional arrays, like Numpy. Numerous open-source deep

learning libraries have been built on top of Theano, including Keras.

Gensim

Gensim is free Python wrapper designed to process raw, unstructured texts to create word

representation. It has efficient implementations for several popular word representation learning

such as FastText, Word2Vec, and LSA.

Scikit-Learn

Scikit-Learn is simple and efficient tool for data mining and data analysis. It also automatically

evaluates inter rater correlation between two rater values provided. Popular metrics included

under scikit-learn are Pearson, Spearman, and Cohen’s Kappa.

2.6 Performance Evaluation Measurements for SQM

The assumption in most of the SQM systems is that grades given by human assessors describe the

true quality of an answer. Thus the aim of the systems is to simulate the grading process of human

raters. Therefore, SQM systems is said to perform well if it’s able to grade subjective question

answers as accurately as human raters. According to [38] there are basically three critical elements

of an assessment system: these are validity which deals with worth of measuring whereas the

reliability question focused on the acceptable range of score consistency from one rating to

another. Finally, the accountability question deals with how testing results are to be reported to the

public. These issues should be considered when evaluating the performance of automated systems

through various evaluation metrics [41].

Currently, there are a number of evaluation metrics available to measure the performance of

SQM. However, common benchmarks and evaluation measures for this application do not

currently exist. It is yet impossible to perform a comparative evaluation or progress tracking of

this application across similar systems. Moreover, there is no common measure used to make

44

scoring results comparable. Scoring agreement has been reported in terms of exact or adjacent

percentages, Pearson or Spearman’s correlation, and kappa statistics [21]. Since correlation is most

commonly used measurement in automated subjective text scoring, this thesis will use correlation

of manual and system result, exact or adjacent agreement as a performance measurement which

measures the percentage of agreement between system score and manual score.

Pearson Correlation or inter-rater reliability: It measures the standard correlation

how much the actual scores (X) are related with the predicted scores (Y) [42] and calculated by

applying the following Equation:

Correlation(X, Y) =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋, 𝑌)

𝑆𝑎𝑡𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣(𝑋) ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣(𝑌)

(2.21)

Spearman rank correlation is a non-parametric test that is used to measure the degree of

association between the two ordinal variables reduced to ordinal scale. It uses ranks as

opposed to actual values unlike that of Pearson correlation. Equation 2.22 is used to calculate the

spearman rank correlation.

𝜌 = 1 −
6𝑥 ∑𝑑2

𝑛𝑥(𝑛2 − 1)

(2.22)

Where 6 is a constant, n the number of paired ranks and d is the difference between the

paired ranks

Root Mean Square Error (RMSE): is the standard deviation of the prediction errors. Prediction

errors are a measure of how far from the regression line data points are; RMSE3 is a measure of

how spread out these residuals are. In other words, it tells you how concentrated the data is around

the line of best fit. Root mean square error is commonly used in and regression analysis to verify

experimental results. The formula is:

𝑅𝑀𝑆𝐸 = √(𝑝 − 𝑎)2 (2.23)

, where p is expected values (predicted) and a is observed values (actual).

3 http://www.statisticshowto.com/rmse/

45

Cohen’s Kappa

Cohen’s kappa4 takes into account disagreement between the two raters, but not the degree of

disagreement. It is a measure of the agreement between two raters who determine which category

a finite number of subjects belong to whereby agreement due to chance is factored out. The two

raters either agree in their rating (i.e., the category that a subject is assigned to) or they disagree;

there are no degrees of disagreement (i.e., no weightings).

Score predictions are evaluated based on objective criteria, and specifically using the quadratic

weighted kappa error metric, which measures the agreement between two raters.

Kappa does not take into account the degree of disagreement between observers and all

disagreement is treated equally as total disagreement. Therefore, when the categories are ordered,

it is preferable to use Weighted Kappa, and assign different weights 𝑤𝑖to subjects for whom the

raters differ by i categories, so that different levels of agreement can contribute to the value of

Kappa. This metric typically varies from 0 (only random agreement between raters) to 1 (complete

agreement between raters). In the event that there is less agreement between the raters than

expected by chance, this metric may go below 0. The quadratic weighted kappa is calculated

between the automated scores for the responses and the resolved score for human raters on each

set of responses. The mean of the quadratic weighted kappa is then taken across all sets of

responses. For linear metric, if there are k categories, the weight w is calculated as follows:

 𝑤𝑖 = 1 −
𝑖

𝑘−1

(2.24)

And quadratic weighted kappa is calculated as:

 𝑤𝑖 = 1 −
𝑖2

(𝑘−1)2

(2.25)

4 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html

46

Summary

With this chapter reviewed educational assessment and its major classification based on its

relevance to our work point of view. The thesis focused on subjective type of question and

significant to measure the learning outcomes. Assessment as whole and subjective question

assessment in particular and approaches to automatically assess subjective question answer is

explained. Further literatures related to historical overview, benefits of automated subjective

question scoring and approaches used to develop the system are reviewed. A number of approaches

or techniques are available in order to develop the automatic subjective question marking, but

among the most common approaches, thesis only deep learning approaches in detail and machine

learning, ontology based and text similarity approach in highlight, considering their significance

to our proposed method of development. Regarding performance measurement of the system, there

are a number of metrics available which are used to measure the performance of the system. The

research discussed some of the most common metric systems which are relevant to our work.

47

CHAPTER THREE

3. RELATED WORK

3.1 Subjective Question Assessment

Research in grading subjective questions has a history dating back to the early 1960’s the

development of Project Essay Grader (PEG) [19]. Since then, automatic grading of natural

language responses has become a large field and several methodologies have been proposed to

solve the problems in automatic evaluation of open questions. The key focus of the grading

technique in subjective question grading systems tend to focus more on content and style [44].

Based on techniques used to understand implicit knowledge hidden in student answer through

either or both content and style analysis, we have classified previous approaches used in short

answer grading into five categories. The following sub sections discuss earlier works introduced

by different authors to deal with subjective question assessment problem.

3.1.1 Statistical and Probabilistic Based Approach

In 2001 Lemaire et al., [39] developed another essay scoring system, Intelligent Essay Assessor

(IEA), analyzes and scores an essay using a semantic text-analysis method called Latent Semantic

Analysis (LSA The underlying idea of LSA is that the meaning of a text is very much dependent

on its words and changing even only one word can result in meaning differences in the passage.

On the other hand, two texts with different words might have a very similar meaning [40]. IEA

main focus is more on the content related features rather than the form related ones; however, this

does not mean that IEA provides no feedback on formal in an essay. In other words, even though

the system uses an LSA-based approach to evaluate mainly the quality of the content of an essay,

it also includes scoring and provide feedback on spelling, grammar and redundancy. The system

needs to be trained on a set of domain-representative texts in order to measure the overall quality

of an essay. As stated by [18], IEA uses three sources to analyze an essay: (1) pre-scored essays

of other students, (2) expert model essays and knowledge source materials, (3) internal comparison

of an unscored set of essays. This approach allows IEA to compare each essay with similar texts

in terms of the content quality. First, IEA compares content similarity between a student’s essay

and other essays on the same topic scored by human raters to determine how closely they match.

48

It then predicts the overall score by adding a “corpus-statistical writing-style” and. It also spots

plagiarism and provides feedback. IEA requires only 100 domains representative pre-graded

training essay to predict score for new essay, which is less than PEG training set requirement.

Weakness of IEA is, it is limited to assess the content of an essay and fails to provide information

regarding word order.

In 2009, Sukkarieh et al., [21] developed Conceptual Rater (C-rater) that is a Natural language

based prototype aimed at the evaluation of short answers related to content-based questions. There

are four main steps in c-rater. The first one is Model Building, where a set of model answers are

generated. Second, c-rater automatically processes model answers and students’ answers using a

set of natural language processing (NLP) tools and extracts the linguistic features. Third, the

matching algorithm Gold map uses the linguistic features culminated from both first step and NLP

to automatically determine whether a student’s response entails the expected concepts. Finally, C-

Rater applies the scoring rules to produce a score and feedback that justifies the score to the

student. It used gold standard model patterns to score student answers according to their syntactical

structure. These patterns are built semi-automatically by converting each answer into a set of one

or more predicate-argument tuples. C-Rater reported having an accuracy of between 81% and 90%

when used by The National Assessment of Education Progress agency. Modern work on C-Rater

treats the grading task more similar to a textual entailment task. It analyzed 100-150 graded student

answers to create a set of concepts for which each is represented by a set of sentences supplemented

by a lexicon. Scoring is based on the presence or absence of these concepts. For more development

of C-Rater, the student answers are parsed, to extract a predicate argument structure that is then

categorized as absent, present, or negated for each concept, using a maximum entropy-based

matching algorithm. The reported agreement (per concept-math) was 84.8% compared to an

annotator agreement of 90.3%. Primary drawback of this approach is dependency on linguistic

feature in addition to annotated matching corpora used create concepts.

3.1.2 Ontology Based Approach

In 2012, Fernando et al., [49] proposed Ontology-based Information Extraction (OBIE) for short

answer grading that support both marking and feedback. OBIE has mainly ontology, preprocessing

and rule extractor modules to deal with marking problem. Manually created ecosystem domain

ontology is used as knowledge source to extract concepts. The preprocessing stage considers

49

completing sentences, eliminating non-informative words, and correcting misspellings. The third

module deal with extracting information from text. Based on extraction rule information extraction

technique that use regular expression, authors categorized student summary into three as correct

statements, incorrect statements, and incomplete statements. To identify correct, incorrect, and

incomplete statements from student answer, authors constructed first order logic rules manually

depending on level of importance, presence or absence of concepts on constructed ontology.

Grading metrics used in this approach are existence of main concepts or ideas presented in the

student answer, length of the text, and amount of relevant information.

One strength of this approach is it can generate constructive and individualistic feedback for

students. However, generating rules for unstructured text is usually vulnerable to error prediction.

Moreover, metrics used in grading are content based and style analysis is not considered. Because

of length of text is included as metric the system is susceptible for cheating. Also assessment is

dependent on domain knowledge that is not feasible to create quality knowledge for all domain. It

needs domain knowledge with all concept coverage for all domain. Any unknown concept is

treated as out-of-vocabulary. With this condition it is not feasible solution as compared to recent

transfer learning approaches that follows train in one domain score other domain.

In 2015, V Senthil and A Sankar [26], proposed Ontology mapping for assessing short answer

subjective questions. The system has four main modules. The first module is Sentence Extractor

which read text (both model answer and student answer) and return sentence. The second module

is part of NLP linguistic preprocessing feature that take sentence and apply NLP parse using

Stanford Dependency Parser to build typed dependency representation of the sentence. The third

module take dependency relation of each sentence and construct Ontology that is used for mapping

in next step. The fourth module is Ontology mapping that perform similarity between two

Ontology concepts (i.e., model answer ontology and student answer ontology). This module

returns mark for student answer based on the weightage and similarity score. Strength of this

approach is it overcome the problems related to syntax variation (order of sentence elements) and

semantic understanding. As indicated by experimentation part of the article, using NLP based

preprocessing with Ontology outperformed other conventional approaches. It has above 0.79 (79

%) Pearson correlation with human grader. However, according to [50], mapping two ontology

concepts has uncertainty issue. Concept A exist in domain x is not usually same with concept A in

50

domain y. Moreover, learning ontology needs sophisticated NLP tools and model is not

transferable.

3.1.3 Text Similarity Based Approach

In 2009, Michael M. and Rada M. [51] proposed unsupervised techniques for the task of automatic

short answer grading by considering the problem of marking as text similarity. Experimentation

of this paper focus on identifying semantic similarity measure suitable for short answer grading

and determining extent to which domain and size of data used to train corpus based similarity

approaches that influence accuracy of grading. To achieve the goal, several corpora based and

knowledge based similarity measures are experimented. In addition, set of experiments which vary

the size and domain of the corpus used to train corpus based semantic similarity measure metrics

are done to show effect on accuracy of short answer grading. Latent Semantic Analysis (LSA) and

the Explicit Semantic Analysis (ESA) are two corpus-based measures selected on this paper. All

the word-to-word similarity scores obtained in this way are summed up and normalized with the

length of the two input texts (model answer and student answer). The results indicate that when

used in their original form, the results obtained with the best knowledge-based i.e., WordNet

shortest path and corpus-based measures i.e., LSA and ESA have comparable performance.

Finally, authors introduced a technique for integrating feedback from the student answers using a

method similar to the pseudo-relevance feedback technique used in information retrieval to

grading system and improved accuracy.

Strength of this approach is authors compared effect of several knowledge based and corpus based

semantic similarity approaches in different corpus size and domain and introduced integrating

relevance feedback from student answer to grading system. However, like other supervised

approaches, only content is analyzed in marking process. Moreover, knowledge source used

(WordNet) is not suitable to detect domain implicit knowledge and taxonomic databases like

WordNet may not include some domain dependent terms.

In 2012, Hassan and Aly [23] presented string similarity and corpus based similarity technique for

short-answer scoring. The presented system aims to measure the similarity between the student’s

answer and the model answer to produce the final score for the student response. Thirteen string-

based similarity algorithms seven character-based distance measures and six term-based distance

51

measures are used. In addition to string similarity, corpus based semantic similarity algorithm

called Distributional Similarity Co-occurrences (DISCO) that computes distributional similarity

between words by using a simple context window of size ±3 words for counting co-occurrences is

used. When two words are subjected for exact similarity DISCO simply retrieves their word

vectors from the indexed data, and computes the similarity according to Lin measure [45].

To grade score of student answer, the system passes through three stages. The First stage is

measuring the similarity between model answer and student answer using String-Based algorithms

using. Secondly, measuring the similarity using DICSO corpus-based similarity is performed. In

this stage removing the stop words, getting distinct words and constructing the similarity matrix is

performed. The similarity matrix represents the similarity between each distinct word in the model

answer and each distinct word in the student’s answer. Each row represents one word in the model

answer, and each column represents one word in the student’s answer. The last two columns

represent the maximum and the average similarity of each word in the model answer. Finally,

overall similarity is determined by computing the average of the last two columns (Max, Average).

This final overall similarity is taken as student mark. Strength of this approach is it cannot require

any linguistically annotated corpus for training and requires only low level linguistic preprocessing

such as tokenization, stop word removal and stemming. However, according to experimentation it

achieved maximum correlation value of 0.504 which is comparatively less than other supervised

approaches discussed above. Moreover, style grading is doesn’t taken into account.

3.1.4 Supervised Machine Learning Based Approach

In 1998, Burstein et al., [2], developed and later enhanced in 2006. E-rater employs a corpus-based

approach to model building, in which actual essay data are used to examine sample essays. The

features of e-rater include a syntactic module, a discourse module, and a topical-analysis module.

These modules provide outputs for model building and scoring. E-rater has been trained on a set

of essays scored by at least two human raters on a 6-point holistic scale to build models. The origin

of the syntactic module is parsing. The discourse module uses a conceptual framework of

conjunctive relations including cue words (e.g., using words like “perhaps” or “possibly” to

express a belief), terms (e.g., using conjuncts such as “in summary” and “in conclusion” for

52

summarizing), and syntactic structures to identify discourse-based relationship and organization

in essays. Finally, the topical analysis module identifies vocabulary usage and topical content.

To summarize, e-rater uses NLP linguistic feature extraction techniques to identify the features of

scored essays in its sample collection and store them-with their associated weights-in a database.

E-rater can evaluate both style and content of essay. When e-rater evaluates a new essay, it

compares its features to those in the database in order to assign a score. Because e-rater is not

doing any actual reading, the validity of its scoring depends on the scoring of the sample essays

from which e-rater’s database is created. E-rater needs 465 expert scored essays as training set. It

is successfully used in GMAT with agreement rates between human expert and system consistently

between 84%. However, it is not suitable for technical answers and is like an extension of PEG

[19].

In 2016 M. Syamala [58], compared four machine learning techniques (Latent Semantic Analysis

(LSA), Generalized Latent Semantic Analysis (GLSA), Maximum Entropy (MaxEnt) and

BiLingual Evaluation Understudy (BLEU)) in both with and without Ontology approach for

subjective English answer evaluation. Author justified that use of Ontology looks not just for

keywords but the keywords appearing in right context and thus models human mind more

accurately as human evaluation is by and large influenced by answer length, keyword presence

and context of keywords. From analysis done Ontology with Maximum Entropy (MaxEnt) shows

that high correlation (up to 90 percent) with Human Performance. From training data word context

is detected by analyzing word that follow and precede the given word. The entropy is calculated

for the current word to appear in a given context. Using word context and similarity between each

concept in Ontology calculated using path length between each concept in knowledge base

ontology and given as weight for concepts appear and concepts not included in model answer are

used to enhance unseen model answer. Finally, mapped concepts are passed to MaxEnt for context

analysis and score is predicted based on output of MaxEnt classifier. This is state-of-art result

achieved for short answers, but their dataset is not released. The drawback of this technique is it

relies on domain knowledge with all concepts. If concept is not avail in knowledge base it is treated

as out-of-vocabulary. Moreover, it requires external vocabularies such as WordNet for synonymy

search. Gives more credit for concept presence. Can be vulnerable for cheating if student

53

repeatedly use keywords in answer. Moreover, because of Ontology concept relation, it may

include not related concepts to reference answer.

In 2016, Shourya et al., [46] proposed iterative technique on an ensemble of text classifier of

student answers and classifier using numeric features derived from various similarity measures

with respect to model answers. The aim of this paper is to overcome couple of problems in previous

supervised approach for short answer grading. The article criticized previous approaches for their

great reliance on instructor provided model answers and need for labeled training data in the form

of graded student answers for every assessment task. According to the author, variedness of nature

of model answers across questions and difference on student answers and corresponding model

answers matters the score. To address the above shortcomings, authors introduced automatic short

answer grading as a supervised learning task where they employ an ensemble of two classifiers to

predict student scores. In the ensemble, the first classifier is a text classifier trained using the

classical TF-IDF representation of bag of word (BoW) model of student answers. It is independent

of model answers and learns textual features (words and n-grams) from graded student answers to

discriminate between student answers belonging to different scores. The second classifier has

features expressed as real numbers indicating similarity of student answers with the corresponding

model answer (analogous to model answer based classifiers). This reduce continuous labeling

effort needed for the task.

 Authors employ five generic short-text similarity measures to compute similarity between the

model and student answers covering lexical, semantic and vector-space measures. Evaluating

Responses with BLEU (a lexical measure comparing student answers against model answers using

a modified version of the n-gram co-occurrence scoring algorithm), WordNet based similarities,

Latent Semantic Analysis (LSA) trained on a Wikipedia dump and Word2Vec trained on 100

billion words of Google news dataset are five similarity measures used to compute similarity

between student answer and model answer. Word-to-word similarity measures obtained using

Euclidean distance between word vectors are used. Additionally, the model of the first classifier is

question specific (i.e., a word which is a good feature for a question is not necessarily a good

feature for another question), whereas features for the second classifier are more question agnostic

(i.e., high similarity with respective model answer is indicative of high scores irrespective of

question). The two classifiers thus capture complementary information useful for grading student

54

answers. It is done in two steps - (i) obtaining the second classifier through a feature based transfer

of the model from the source to the target question, followed by (ii) iteratively building the first

classifier and the ensemble using pseudo labeled data from the target question. Finally, these two

classifiers are combined in a weighted manner to form an ensemble which is used to predict the

final score. The authors experimented their approach with dataset released by for the joint task of

student response analysis in SemEval 2013 Task 7 and achieved promising result.

Strength of this approach is its transferable feature. Assessing without model answer minimize

load on instructor. In addition, features used are not domain dependent and unsupervised. It is good

because most of data is unlabeled. External knowledge used are learned from unlabeled data

except WordNet. However, this approach treated assessment as presence of related keywords.

Assessment is beyond looking for presence of concepts; we should care about context on which

the concept exists. Simple word order change can change meaning. Moreover, if trained on domain

dependent dataset Word2Vec can represent words in more specific to the task and WordNet

taxonomy may not have concepts of domain and predictive models such as Word2Vec [26] and

FastText [32] and count based word representation GloVe [29] can do better.

3.1.5 Deep Learning Based Approach

In 2016, Dimitrios et al., [47] introduced a model that forms word representations by learning the

extent to which specific words contribute to the text’s score using special kind of recurrent neural

network (RNN), capable of learning long-term dependencies, called Long-Short Term Memory

(LSTM) [35] networks to represent the meaning of texts. The aim here is to construct

representations which, along with the linguistic information given by the linear order of the words

in each sentence, are able to capture usage information and called score-specific word embeddings.

With this approach, having no prior knowledge of syntactic structure of the language or the domain

of the text, authors demonstrated SSWE outperform existing state-of-art word embedding’s.

Furthermore, no any further pre-processing of the text other than simple tokenization is done. This

solve problem raised in earlier approaches that deal more linguistic preprocessing such as POS

tagging and parser. Instead of simple LSTM [35] that encode text in forward direction, bi-

directional LSTMs is utilized i.e., two independent RNN encode the essay (from left to right and

from right to left) and the result of two LSTM layers is concatenated together and passed to next

layer. Finally, they passed encoded essay vectors to a linear unit in the output layer which predicts

55

the essay score. Authors experimented LSTM, BLSTM, Two-layer LSTM, Two-Layer BLSTM

with SSWEs and word2vec models in addition to baseline SVM and doc2vec model. SSWE +

Two-layer BLSTM model that trained on domain (essay) achieved state-of-art result by improving

correlation of Spearman (ρ) to 0.91 and Pearson (r) to 0.96.

Usually when students write answer, possibility for spelling error is high. Word with spell error

are not occur in globally released word vectors Word2vec [31]. Even training from domain essay

as SSWE, with Word2Vec do not detect spelling errors. Moreover, with such embeddings rare

words are poorly estimated, leading to high perplexities for rare words (and words surrounding

them). This is especially problematic in morphologically rich languages with long-tailed frequency

distributions or domains with dynamic vocabularies. Additionally, out-of-vocabulary (OOV)

words are left zero embedding while are relevant to infer text wise meaning. Hence, sub-word

information can play an important role in improving the representations for infrequent words and

even OOV words [48]. Using FastText embedding or character level language modeling we can

fix such problem. Moreover, not all encoded essay terms are equally relevant to scoring an essay.

With recent attention approaches we can get most informative words from an essay. Moreover,

essay text is hierarchically structured and usually need coherency.

3.2 Amharic Subjective Question Assessment

Current research in Amharic Natural Language Processing (NLP) covers different aspects of the

language such as morphological Analysis, syntax and speech recognition, Part of Speech Tagger,

Parses, Word Sense Disambiguation etc. This is very promising, but these researches mainly

focused on lower level of NLP applications. Though morphological analysis is often considered

as the first phase of a more complex NLP application, a significant research needs to be done in

other areas in educational domain like computer based assessment.

Automatic subjective question assessment system is being extensively researched in English and

other languages and has shown good as discussed in previous section. But there is only one attempt

done by Abel in 2010 [15] in Amharic despite the aforementioned benefit which mainly focus on

content of the text for Amharic factual essay. The author used Latent Semantic Analysis (LSA)

method to evaluate and score Amharic factual essay. LSA fist processes a corpus of machine-

readable language and then represents the words that are included in a sentence, paragraph, or

56

essay through statistical computations. LSA measures of similarity are considered highly

correlated with human meaning similarities among words and texts. Moreover, it successfully

imitates human word selection and category judgments. It uses a ‘bag-of-words’ approach in which

similarity and co-location of words is evaluated. It is a corpus-based text comparison approach and

uses an algebraic technique to determine the level of similarity between the text and the corpus.

Two texts that use similar words would be considered semantically similar using LSA. The

underlying idea is that the meaning of a passage is very much dependent on its words and changing

even only one word can result in meaning differences in the passage. On the other hand, two

passages with different words might have a very similar meaning.

When LSA is used to compute sentence similarity, a vector for each sentence is formed in the

reduced dimension space, similarity is then measured by computing the similarity of these two

vectors [10]. Because of the computational limit of SVD, the dimension size of the word by context

matrix is limited to the several hundred. As the input sentences may be from an unconstrained

domain (and thus not represented in the contexts) some important words from the input sentences

may not be included in the LSA dimension space. Secondly, the dimension is fixed and so the

vector is fixed and is thus likely to be a very sparse representation of a short text such as a sentence.

Like other statistical methods, LSA ignores any syntactic information from the two sentences being

compared and is understood to be more appropriate for larger texts than the sentences dealt with

in this work. Therefore, with LSA the sentences “ፈጣኑ ዉሻ ደካማዉን ቀበሮ ዘሎ አለፈ (The quick

dog jumped over the lazy fox)” and “ፈጣኑ ቀበሮ ደካማዉን ዉሻ ዘሎ አለፈ (The quick fox jumped

over the lazy dog)” would be considered semantically similar while they are very different.

Moreover, LSA has no ability to check technical correctness of the sentence. Beyond methodology

used, Automatic Amharic Essay Scoring system proposed by Abel [15] is limited to assess content

of an essay.

57

CHAPTER FOUR

4. DESIGN OF AUTOMATIC SUBJECTIVE QUESTION

MARKING (SQM)

4.1 Overview

The literature review has revealed that the majority of the work done in automatic subjective

question evaluation relies on hand crafted feature based approaches or restrictive external

vocabularies such as Ontology. Handcrafting features is time-consuming. Moreover, extracted

features are often over-specified and incomplete. In other way feature extracted for one domain is

not fit to other domain or task. With recent advances in Artificial Intelligence, computers can do

representations for learning and reasoning same way as human can do by learning context of

words, characters or sentences in the text. In this thesis, motivated by the recent breakthroughs in

NLP with deep learning, we proposed to design attention based neural network for subjective

question marking. This chapter sets out to provide an overview of the proposed approach used to

develop SQM system. The chapter begins with explaining over all architecture of the proposed

model. The technical aspects regarding each part of the proposed model is detailed and as part of

this investigation along with design decision justifications is discussed. Finally, summary of the

chapter is included.

4.2 SQM Architectural Model

Though there are basic components such input module, preprocessing module, matching module,

and scoring module that every automatic subjective question assessment system comprises of, the

internal structures and algorithms of every SQM system differs from system to system depending

on approach used. Hence, we will briefly describe the main components of SQM explored in this

thesis work in details. In this study, we have identified seven fundamental components:

preprocessing, building word vectors, sequence generator, word representation, context encoding,

attention, modeling and scoring module as shown in Figure 4.1.

58

Figure 4-1: General Architectural Model of SQM

4.3 Preprocessing Module

Preparing quality data is the primary step in a machine learning task. Preprocessing module of

SQM is responsible to make the input data collected from different source to a format applicable

to each modules. The primary use this module is to standardize data collected to train our FastText

Embedding Module

Answer-To –Answer

Ref Attention

Modeling

Scoring

Score

Essay Encoder

Essay Attention

Student answer

Model answer

Essay

Student answer word seq. Model answer word seq. Essay word seq.

Essay word vec. Model answer word vec. Student answer word vec.

Essay sentence
matrix

Student answer sentence matrix.

Max

Short answer Essay

Sentence Attention Sentence Encoder

Normalization Tokenization

Character embedding
Word embedding

Model answer

sentence matrix

59

embedding as unstructured Amharic data is collected from different source such as Amharic

Wikipedia, Amharic news, course modules, fictions, spiritual files, examinations answer sheets,

and etc. which exhibit heterogeneity in writing style (i.e., use of words as well as character

language property). In addition, we incorporate preprocessing to normalize mismatch exist in

model and student answer because of heterogeneity in writing style (e.g., ኃይል in one answer can

be expresed as ሀይል in another answer). Unless input text is normalized to one standard style,

assessment will severely be affected. Therefore, to minimize error prediction, we need to deal with

language variations. Here under sub modules of preprocessing are described in detail. The

proposed algorithm for preprocessing text is depicted in Algorithm 4.1.

i. Tokenization

Given a character sequence and defined delimiters, tokenization is the task of chopping a text into

pieces usually characters, words and or sentences. This module applies character, word, and

sentence level splitter over original text. Character splitter is used for character level answer

modeling task, whereas word and sentence level tokenization’s are used for word sequence

generation module and word vector building module respectively.

Character level splitter treats each alphabet as unique token and outputs vocabulary of character

to their index. All characters except whitespace are recognized under character vocabulary. To

make splitting task easy, a whitespace character is append before any Amharic pucutaion mark5.

Any pucutaion mark detected is treated as word, then our encoder can consider it as single time

step and learn context of punctuation. In Amharic, the individual words in a sentence are separated

by two dots (: ሁለትነጥብ). The end of a sentence is marked by Amharic full stop (። አራት ነጥብ).

The symbol (፣ ነጠላ ሰረዝ) represents a comma, while (፤ ድርብ ሰረዝ) correspond to a semicolon.

‘!’ and ‘?’ punctuations are used to end exclamatory and interogative sentence respectively.

ii. Normalization

Normalization is the process of canonizing tokens to a standard format by avoiding differences in

the character sequences of the tokens. In this work, three level tasks are identified and addressed.

5 List of puncutation marks, short hand form words, and interchangeably written characters in Amharic language are

collected from Jimma University Amharic Literature and Language Department and documented in Annex A and

B.

60

The first task is character and word level normalization. Character level mismatch. Amharic has

different characters that are interchangeably used in writing and reading such as (ሀ, ኀ, ሐ, and ኸ),

(ሰ and ሠ), (ጸ and ፀ), (ው and ዉ) and (አ and ዓ). Amharic words with suffix such as ቷል are also

written as ቱዋል. We normalize any character under such category to common canonical

representation. The second variation in Amharic language that need normalization in Amharic text

is short form5 expression. For example, ትምህርት ቤት can also be represented as ት/ቤት in Amharic

text. To deal with such difference, the list of short forms in Amharic language are consulted (c.f.

Annex C) to expand a short form expression to its long form. The third task is data standardization.

The dataset used for word embedding module is collected from different source and it has many

non geez characters. To make our data in regular format, we preserve only geez characters. Also,

we omitted any numbers from dataset collected from multiple source.

Algorithm 4-1: Proposed Algorithm for tokenizing and normalizing Amharic Text

 Amharic Text Tokenizer and Normalizer Algorithm

1. Input:

2. INPUT_FILE_DIR: STRING //name of directory for documents to be normalized

3. IS_WORD_LEVEL: BOOLEAN // If True tokenizer split text into word level otherwise character

 Level

4. ABREVATIONS: DICTIONARY //all identified short forms in Amharic to their expanded form

 (e.g., ት/ሚ to ትምህርት ሚኒስቴር)

5. REPLACEABLE _CHARS: DICTIONARY //dictionary of characters with same sound and used

 interchangeably

6. VARIABLE:

7. OUTPUT:

8. WORD_PER_SENTENCE: Nested List //returns words in given input as list of tokenized and

 normalized words

9. CHARACTER_PER_SENTENCE: Nested List //returns list of Non-space geez characters in

 a text including Amharic punctuations (?!፡።፤;፦፥፧፨፠፣)

10. BEGIN:

61

 Amharic Text Tokenizer and Normalizer Algorithm

11. READ Content as TEXT IN INPUT_FILE_DIR // read content of file

12. SENTENCES=TOKENIZE (TEXT, [?።፤!]) // Tokenize to sentence level using delimiters

13. FOR EACH sentence IN SENTENCES

14. FOR EACH common_char, char_to_replace in REPLACEABLE _CHARS

15. IF any existence of char from REPLACEABLE _CHARS IN sentence THEN

16. REPLACE common_char // For example if any char or sequence match from

 [ሃኅኃሐሓኻ]' group replace with 'ሀ'

17. ELSE IF any NUMBER or Non Amharic Character or Punctuation THEN

18. REPLACE by WHITE SPACE

19. ELSE // is considered as Amharic punctuation

20. CONCATENATE with WHITE SPACE // Concatenate white space with

 character and replace character

21. END IF

22. IF IS_WORD_LEVEL TRUE THEN

23. WORD_SEQUENCE=TOKENIZE (sentence, SPACE) // Tokenize by whitespace

 Character

24. FOR EACH word IN WORD_SEQUENCE

25. IF word IN ABREVATIONS THEN // get value based on key from abbreviations

 dictionary

26. REPLACE word by expanded form ABREVATIONS

27. APPEND to WORD_PER_SENTENCE // append word to inner list

28. NEXT

29. ELSE

30. FOR EACH non_space_char IN sentence

31. APPEND to CHAR_PER_SENTENCE // append to inner list that hold character per

 Sentence

32. NEXT

62

 Amharic Text Tokenizer and Normalizer Algorithm

33. END IF

34. RETURN CHAR_PER_SENTENCE and WORD_PER_SENTENCE

35. END

4.4 Word Vector Building Module

The result of pre-processing unstructured Amharic text is used as input to this component. The

result of preprocessing is list of small sized files contains sentence per line for efficient use when

training model. Then from preprocessed document, we first create vocabulary used as input for

both input and output layer as one-hot vector. Then using created vocabulary and list of sentence

word level chunked, we train both CBOW and Skip-gram neural model6. The architecture of

Amharic FastText model is depicted in Figure 4.2.

FastText use a simple neural network with a single hidden layer to learn the weights of the hidden

layer are actually the “word vectors”. First step is building a vocabulary of words from our training

data (output of preprocessing module). Vocabulary builder module generate dictionary of unique

words to their sub-words (i.e., character n-grams). Our vocabulary breaks down each word to

different character n-grams. As recommended by author [32], practical approach is chunking to

tri-grams and hexa-gram. For example our vocabulary for word ‘በፅሁፍ’ contains (<በፅ, <በፅሁ,

<በፅሁፍ, <በፅሁፍ>), (በፅሁ,በፅሁፍ,በፅሁፍ>),(ፅሁፍ,ፅሁፍ>),(ሁፍ>). Special characters ‘<’ and ‘>’

are appended to show start and end of word respectively. So the resulting word vector for the word

will be the collection of the n-grams along with the word.

Then context builder module builds training samples based on given sliding window size (number

of words taken as context at a time). If window size is 2 that means the network is training on 2

words-to-the-left of the target and 2 words-to-the-right of the target. Based on this window, our

CBOW model define 'context' as the window of words to the left and to the right of a target word

and tries to predict probability of target word based on context words and Skip-gram predicts

6 https://radimrehurek.com/gensim/models/wrappers/fasttext.html

https://radimrehurek.com/gensim/models/wrappers/fasttext.html

63

probability of context words being appear nearby target word. The following example shows how

our context builder module works for both CBOW and Skip-gram FastText models:

Given the sentence “በፅሁፍ የሚቀርብ ዘገባ አቅራቢው በአካል ተገኝቶ መልዕክቱን እንዲያስተላልፍ

አያስገድድም” with window size 2, our context builder generates:

በፅሁፍ የሚቀርብ ዘገባ

 Skip-gram training samples: (በፅሁፍ, የሚቀርብ), (በፅሁፍ, ዘገባ)

 CBOW training samples: ([የሚቀርብ, ዘገባ], በፅሁፍ)

በፅሁፍ የሚቀርብ ዘገባ አቅራቢው

 Skip-gram training samples: (የሚቀርብ, በፅሁፍ), (የሚቀርብ, ዘገባ), (የሚቀርብ, አቅራቢው)

 CBOW training samples: ([በፅሁፍ], የሚቀርብ), ([ዘገባ, አቅራቢው], የሚቀርብ)

በፅሁፍ የሚቀርብ ዘገባ አቅራቢው በአካል

 Skip-gram training samples: (ዘገባ, በፅሁፍ), (ዘገባ, የሚቀርብ), (ዘገባ, አቅራቢው), (ዘገባ,

በአካል)

 CBOW training samples: ([በፅሁፍ, የሚቀርብ], ዘገባ), ([አቅራቢው,በአካል], ዘገባ)

የሚቀርብ ዘገባ አቅራቢው በአካል ተገኝቶ

 Skip-gram training samples: (አቅራቢው, የሚቀርብ), (አቅራቢው, ዘገባ), (አቅራቢው, በአካል),

(አቅራቢው, ተገኝቶ)

 CBOW training samples: ([የሚቀርብ, ዘገባ], አቅራቢው), ([በአካል, ተገኝቶ], አቅራቢው)

.

.

.

መልዕክቱን እንዲያስተላልፍ አያስገድድም

 Skip-gram training samples: (አያስገድድም, መልዕክቱን), (አያስገድድም, እንዲያስተላልፍ)

 CBOW training samples: ([መልዕክቱን, እንዲያስተላልፍ], አያስገድድም)

አቅራቢው በአካል ተገኝቶ መልዕክቱን እንዲያስተላልፍ አያስገድድም

በአካል ተገኝቶ መልዕክቱን እንዲያስተላልፍ

አአአአአአአ

ተገኝቶ መልዕክቱን እንዲያስተላልፍ አያስገድድም

መልዕክቱን እንዲያስተላልፍ አያስገድድም በፅሁፍ

በፅሁፍ የሚቀርብ ዘገባ አቅራቢው በአካል

ተገኝቶ

64

Word in shaded column is target word selected at a time and words under white column are nearby

words (context) in sliding window of size 2. Each words are constituent of character n-grams, so

it constructs the vector for a word from character n-gram vectors that constitute a word and the

training processed on each n-grams in contexts including word itself as n-gram. Order of word in

a sentence is not preserved, but order of n-grams in each word is preserved. For example, the vector

for the word “ከመረጃ” is not the same as the vector for the word “ከደረጃ”, because the n-grams

constituting both these vectors are very different. But vector for “በመረጃ” is more similar to

“ከመረጃ” as they share multiple n-grams in addition to sharing same context as a word. This allows

us to cluster word with same meaning, but has different syntax because of extended morphemes

without using external tools such as stemmers or morphological analyzers. When training through

whole dataset, our network cluster not only words semantically or syntatically related, but also

words with spell error based on shared character n-grams. Based on extracted training samples the

network is going to learn the statistics from the number of times each pairing shows up.

When training network on word pairs, instead of feeding words, we represent each vocabulary

words as one-hot vector representing the input word (target) by placing 1 in the position

corresponding to the target word, and 0s in all of the other positions.

Figure 4-2: Amharic FastText Word Vector Generator Model Adapted from Joulin et al., [32]

At input layer, for each alphabetically sorted unique vocabulary terms as target word, we create

one hot vector of size C. i.e., for a given context word, only one out of V units, {𝑥1 ⋯𝑥𝑣}, will be

1, and all other units are 0. Hidden layer of the network is based on this one hot encoded vector

and represented in 𝐷𝑥𝑉 matrix where 𝐷 is column (i.e., number of neurons (a.k.a. features) one

65

for every neuron) and 𝑉 is size of vocabulary. This D dimensional feature is finally printed as word

vector for the word where size of D is defined at the time of training. The matrix is initially

randomized and later updated by stochastic gradient learning. When computing the hidden layer

output h, the CBOW model takes the average of the vectors of the input context words, and use

the product of the input layer to hidden layer weight matrix W and the average vector as the output

as shown Equation 4.1 and 4.2 below.

ℎ =
1

𝐶
𝑊

(4.1)

=
1

𝐶
(𝑣𝑤1 + 𝑣𝑤2 + ⋯+ 𝑣𝑤𝑐) (4.2)

, where C is the number of words in context, 𝑤1, ⋯ ,𝑤𝑐 are the words in context and 𝑣𝑤 is the input

vector of word w averaged and W is learnable input layer to hidden layer weight matrix.

While, the input vector of Skip-gram is the only word on the input layer, and thus we have the

same definition of the hidden outputs as in CBOW, which means output h is simply copying (and

transposing) a row of the input to hidden weight matrix, associated with the input word. Since the

input vector is one-hot encoded, the weights coming from the nonzero element will be the only

ones contributing to the hidden layer as indicated in Equation 4.3. Therefore, for the input x with

𝑥𝑘 = 1 and 𝑥𝑘′ = 0 for all 𝑘′ ≠ 𝑘 the outputs of the hidden layer h will be equivalent to the kth

row of input layer to hidden layer weight matrix W.

ℎ = 𝑊𝑘: = 𝑣𝑤 (4.3)

, where 𝑊𝑘 is kth row of weight in which one hot vector position is 1 (target word) and 𝑣𝑤is

transposed word vector.

The output vector of hidden layer is fed to output layer. At this layer we use Softmax log-linear

[52] classification model to calculate the probability distribution of the target word given a specific

context for CBOW and probability distribution of contexts given target word for Skip-gram.

66

Specifically, each output neuron has a weight vector which it multiplies against the word vector

from the hidden layer, then it applies the Softmax to the result. Finally, in order to get the outputs

to sum up to 1, we divide this result by the sum of the results from all vocabulary size output nodes.

Both input to hidden and hidden to output weight matrix is learned by stochastic gradient update.

Final output is hidden layer weight matrix (float value between -1 and 1) with shape V x D, where

V is vocabulary size and D is hidden layer neuron size (feature dimension) that show how each

vocabulary word dimension is distributed in vector space. In that situation words with similar

meaning fall to most likely similar space.

4.5 Embedding Module

Word embedding module of SQM has three sub components that allows us to represent meaning

of words in answer. In the following sub section, we discuss each component in detail.

i. Sequence Generator Module

This module generates sequence of strings into sequence of integers (a.k.a. indices). Sequence

shows how words are ordered in a sentence and or how characters are ordered in a word. It takes

two input. One is preprocessed training data and the other is embedding matrix generated in word

vector building module. Then we create character and word vocabulary that contain unique

character to index and unique word to index respectively from input sequences. Using created

word and character vocabulary, we generate sequence of character indices and word indices. Since

we have two different task (essay and short answer as subjective answer), way of sequence

generated depends on task approach. For essay we proposed hierarchical encoding of text i.e., we

first encode sequence of words in a sentence then we encode how sentences are organized in essay

paragraphs. So the output of sequence generator for essay should be three dimensional. The first

dimension is essay size (indicates total number of essay used for training). The second dimension

is number of sentences in each essay and the last is number of words in a sentence. For character

sequence we generate same sequence for the first two dimension, but the last dimension is

sequence of characters in a sentence. For short answer task, we have two input one is model answer

and other is student answer. Unlike, essay statement, for short answer task our model expect

optional model answer (abstract and summarized correct answer) as reference. So, our sequence

generator module looks for how words and or characters are arranged in answer statement. This

67

shows dynamic nature of our model for model answer dependent and non-dependent short answer

questions. In two input case (student and model answer), we generate 2 dimensional output for

both input otherwise it generates single sequence like essay. Similarly, the first dimension of short

answer is total number of answers used for training. The second is number of words in answer or

number of characters in answer for character sequence. This is because of the nature of answer for

short answer is short (usually from phrases to sentences).

Since, embedding layer expects fixed length sequence, the generated sequence less than selected

threshold is padded and sequence greater than threshold value is truncated. For example, if we

have 12000 essay and maximum threshold value selected are 5 words and 3 sentence, we create

(1200, 3, 5) dimensional array stored in multi-dimensional Array. If the length of sentence in essay

is less than 3 we fill it with <PAD> special token for 3 minus length sentence in essay times. If it

exceeds 3, any sentence from greater than three is truncated. We do same for word and character

sequence. To minimize information loss, we will consider threshold value based on maximum

value on which more than 96% of dataset satisfy.

The other important task performed in this module is generating word and character embedding

for each words and character vocabulary items. For word embedding, we use the result word vector

building module FastText embedding matrix. Using character model, with one hot vector means

taking each character as meaningful vector. But, we can infer meaning of characters from our

training dataset. To train character embedding from large dataset, it is computationally inefficient

approach. We can infer embedding of characters from word embedding as words are constituent

of characters. For example, from the embedding of the word “ዘገባ”, we can infer the embedding

for “ዘ”, “ገ”, and “ባ”, and average the ዘ/ገ/ባ vectors from all words in the dataset corpus. The

proposed algorithm for word and character embedding generator is depicted in Algorithm 4.2.

Algorithm 4-2: Algorithm proposed to extract word and character embedding from pre-trained FastText

model SQM

 Word and character Embedding extractor Algorithm

1. Input:

2. E: 2D ARRAY //FastText pre-trained word embedding matrix

3. CHAR_VOCAB: DICTIONARY // character level vocabulary that contain unique characters in

SQM dataset to their index

68

 Word and character Embedding extractor Algorithm

4. WORD_VOCAB: DICTIONARY // word level vocabulary that contain unique words in

 in SQM dataset to their index

5. EMBEDDING_DIM: INTEGER //embedding dimension of the vector. It should be equal to the

 feature dimension of pre-trained embedding

6. VARIABLE:

7. CHAR_VECTOR: DICTIONAR // variable that hold cumulative sum of word vectors on

 which character exist to frequency of characters. For example,

 if two words are ‘መረጃ’ and ‘ደረጃ’, the variable holds summation

 of two word vectors from our embedding and 2 its occurrence as

 value and the character ‘ረ’ as key. Here dictionary takes character

 as key and tuple with two elements (vector, frequency) as value.

8. WORD_VOCAB_LENGTH: INTEGER // length of WORD_VOCAB

9. CHAR_VOCAB_LENGTH: INTEGER // length of CHAR_VOCAB

10. OUTPUT:

11. CHAR_VECTOR_MATRIX: 2D ARRAY // FastText character embedding for character in

 character dictionary. Shape is length of

 CHAR_VOCAB times EMBEDDING_DIM

12. WORD_VECTOR_MATRIX: 2D ARRAY // FastText word embedding for word in

 word vocabulary. Shape is length of

 WORD_VOCAB times EMBEDDING_DIM

13. BEGIN:

14. READ word vectors from E // loading and reading pre-trained FastText embedding. E is matrix

 of N-dimensional vector representation of each unique words in

 word embedding training dataset (the global or domain dataset).

15. WORD_VOCAB_LENGTH = LENGTH(WORD_VOCAB)

16. INTIALIZE WORD_VECTOR_MATRIX with shape WORD_VOCAB_LENGTH times

 EMBEDDING_DIM filled by ZEROS // Filling with zeros allows us to initialize zero

 embedding for ‘PAD’ key word. Our vocabulary has

69

 Word and character Embedding extractor Algorithm

 especial word ‘PAD’ in first index to assign

 common index for padded dummy word.

17. FOR EACH Word W IN WORD_VOCAB

18. WORD_VECTOR_MATRIX[WORD_VOCAB[W]] = E[W] // WORD_VOCAB[W]

 is index of word W. Here we assigning vector for word W from E. If

 word exist in E it extracts its vector otherwise it infers vector for new

 word based on character n-grams (morphemes) it share it words in

 vocabulary of E.

19. FOR EACH char C IN W

20. IF C IN CHAR_VECTOR THEN

21. CHAR_VECTOR[C]=(CHAR_VECTOR[C][0] + V,

 CHAR_VECTOR[C][1] +1)

 // Increment occurrence of C and add new word vector to

 existing. The second index on tuple takes occurrence.

22. ELSE // C is occurring for first time so we set frequency 1

23. CHAR_VECTOR[C]=(V,1)

24. END IF

25. NEXT // Repeat step 19 for each character

26. NEXT // Repeat step 17 for each word in WORD_VOCAB

27. CHAR_VOCAB_LENGTH = LENGTH(CHAR_VOCAB)

28. INTIALIZE CHAR_VECTOR_MATRIX with shape CHAR_VOCAB_LENGTH times

 EMBEDDING_DIM filled by ZEROS // Initializing character vector variable is same except

 size of CHAR_VECTOR_MATRIX first dimension depends

 on length of CHAR_VOCAB.

29. FOR EACH char C IN CHAR_VOCAB

30. IF C IN CHAR_VECTOR

31. CHAR_VECTOR_MATRIX[C]= CHAR_VECTOR[C][0] / CHAR_VECTOR[C][1]

 // Average cumulative sum of C’s vector with its

70

 Word and character Embedding extractor Algorithm

 occurrence. CHAR_VECTOR[C][0] if first index of value

 in CHAR_VECTOR with key ‘C’. It is summed vector of C

32. END IF

33. NEXT //Repeat step 29 for each character in CHAR_VOCAB

34. RETURN CHAR_VECTOR_MATRIX and WORD_VECTOR_MATRIX

35. END

Finally, word and character vocabulary, FastText word and character vector matrix and sequence

of word and charcters indices is passed to embedding layer.

i. Character Representation Module

Given a sequence of character index with character embedding and vocabulary of characters, our

character representation module learns context of each characters in a word using convolutional

neural network. Let {𝑎1,⋯ 𝑎𝑡} represent a sequence of words in input answer where t is maximum

sequence length of the sentence. Character representation module use CNN to convolve through

sequence using characters bi-grams, tri-grams, quarter-grams, etc., and learn organization of

characters in a word. Character level modelling enables us to deal with common miss-spellings

and different morphological variety of words that are more common in languages like Amharic.

Below, we will give detail description of the proposed character-level temporal convolution neural

network (2-dimensional convolutional network).

Convolution Layer

Let C be the vocabulary of characters, d be the dimensionality of character embedding’s, and 𝑄 ∈

ℝ𝑑 𝑥 |𝐶| be the matrix character embedding’s. Suppose that word 𝐾 ∈ 𝑉 is made up of a sequence

of characters in {𝑚1, ⋯𝑚𝑙} answer, where l is length of word K in sequences. Given 𝐶 ∈ ℝ𝑑 𝑥 |𝑙|

matrix representation of word (of length l), 𝑄 ∈ ℝ𝑑 𝑥 𝑤 convolutional filter matrix where d is

dimensionality of character embedding and w is width of convolution filter (e.g., 1, 2, 3, 4, 5). Our

character representation module represents word context in the following two steps:

1. Apply 2D convolution between C and Q. After which we add a bias and apply a

nonlinearity to obtain a vector feature map f ∈ ℝ𝑙−𝑤+1:

71

𝑓𝑘[𝑖] = 𝑅𝐸𝐿𝑈(〈𝐶[∗, 𝑖: 𝑖 + 𝑤 − 1], 𝑄〉 + 𝑏) (4.4)

, where 𝐶[∗, 𝑖: 𝑖 + 𝑤 − 1] is the i-to-(i+w−1)-th column of 𝐶𝑘 and

- 〈𝐴, 𝐵〉 is a Frobenius inner product (component-wise inner product of two vectors

matrices).

- 𝑏 ∈ ℝ is a bias term

- ReLU[64] is a nonlinear kernel function layer that applies an element-wise activation

function such as, max{0, 𝑥} threshold at zero.

- Q is a filter applied to each possible window of characters to produce a feature map 𝒇𝒌

for word K in V.

2. Take the max-over-time as the feature corresponding to the filter Q (when applied to

word k). The idea is to capture the most important feature the one with the highest value

for a given filter. A filter is essentially picking out a character n-gram, where the size of

the n-gram corresponds to the filter width. Maximum pooling used to get the representative

maximum features is given as:

𝑦𝑘 = max
𝑖

𝑓𝑘[𝑖] (4.5)

The following example demonstrate how the proposed character representation works:

Let we have filter weight matrix 𝑄 ∈ ℝ𝑑 𝑥 𝑤, where dimension d=4 and filter w=3 and 𝐶 ∈ ℝ𝑑 𝑥 𝑠,

is our FastText character representation with dimension d=4 and s=5 characters of word ‘የዘገባን’:

Our Char CNN model first apply total of 3 (s-w+1) convolution over C and extract 1 submatrix

for each filter of size 3 and applies component-wise inner product with 𝑄(common for all filters)

to get single representative value.

72

- 𝑓𝑘[1] = 〈𝐶[∗ ,1: 3], 𝑄〉) applied on vectors of the first three characters ‘የዘገ’

- 𝑓𝑘[2] = 〈𝐶[∗ ,2: 4], 𝑄〉) applied on vectors of the second to fourth characters ‘ዘገባ’

- 𝑓𝑘[3] = 〈𝐶[∗ ,3: 5], 𝑄〉) applied on vectors of the third to fifth characters ‘ገባን’

Then we apply non-linearity RELU function with bias vector 𝑏 ∈ ℝ (similarly as Q, bias b is also

learned by backpropagation) and on each feature map 𝑓𝑘.

- 𝑓𝑘[𝑖]=RELU(𝑓𝑘[𝑖]+�⃗�)

Finally, we apply max-over-time pooling strategy over resulting feature maps to get only

maximum value output vector.

- 𝑦 = max
1

𝑓𝑘[𝑖]

From our example when we apply max operation over𝑓𝑘, we get character trigram ‘ዘገባ’ as salient

character sequence as it has maximum value 0.7.

We have described the process by which one feature is obtained from one filter matrix and how

our max-over time function works. Our character CNN uses multiple filters of varying widths to

obtain the feature vector for k. So if we have a total of h filters7 𝑄1,⋯ , 𝑄ℎ then 𝑦𝑘 = [𝑦1
𝑘, ⋯ , 𝑦ℎ

𝑘]

is the input representation of k.

7 When we say filters region (a.k.a. kernel) it is character n-gram on which our Char CNN convolves over.

We use varying size character n-grams (bi-gram, tri-gram, quarter-gram, etc.). We also use varying features

(filters). Features are number of feature maps extracted from one n-gram size. If we use 2 filter region with

3 filters, that means we are applying 3 convolutions over 2 size n-grams. Multiple times in same region.

So, output of our character CNN model is l times summation of filters q where l is sequence length.

73

ii. Word Representation (Embedding)

 Word representation module represents each word in the answer with d-dimensional vector. We

construct d-dimensional vector with two components: word embedding and character-composed

embedding. The word embedding is a fixed vector for each individual word, which is pre-trained

with FastText. The character-composed embedding is the output of character representation

module. The input to this module is results of previous two modules which are generated sequence

for input answer, FastText word embedding matrix for each vocabulary words and CNN character

representation and generate combined vector sequence that represent character and word meaning

in answer.

The first step here is replacing sequence of indices returned from sequence generator sub module

into sequence of vectors. For simplicity this work as lookup table. In word embedding matrix rows

are indices and column is vector, so using index and vector we transpose sequence of indices to

sequence of vectors. Here we take 𝐸 ∈ ℝ𝑣𝑥𝑑 where E is word embedding matrix, V is size of word

vocabulary and D is dimension, and copy D sized vector of word 𝑊𝑡 from sequence S with size l

where t is time-step and l is total length of word in a sequence to get 𝑆 ∈ ℝ𝑙𝑥𝑑. Since, sequence is

padded and truncated to fixed length we create fixed length embedding sequence with length l.

Once we have sequence of word level embedding matrix, next step is concatenating each word

vectors in a sequence to respective character embedding’s from char CNN.

The output from our CNN character model output 𝐶 ∈ ℝ𝑞𝑥|𝑙|is sequence of matrices where q is

dimension equal to summation of filters used. Each matrix 𝐶𝑡 in C is sequence of character vector

as words are given to the model as a sequence of characters.

So, when we concatenate word embedding to its sub word character CNN representation we get

embedding E:

𝐸𝑡 = 𝑆𝑡⨁𝐶𝑡 (4.6)

, where 𝐶𝑡 is the CNN encoding of characters in a t-th word of S

- 𝑆𝑡 is t-th word embedding from sequence S.

- 𝐸𝑡 is the concatenation of two embedding’s for t-th word in sequence S

74

- ⨁ is concatenation operator.

When we apply our concatenated embedding E for all words in a sequence S with length l we get

sequence of word representation enhanced by its sub word 𝐸 ∈ ℝ(𝑞+𝑑)𝑥|𝑙| where (𝑞 + 𝑑)output

feature dimension is summation of character dimension q and word dimension d:

𝐸 = [𝐸1, 𝐸2, ⋯ , 𝐸𝑙] (4.7)

By concatenating the embedding’s, we implicitly preserve the order of the characters: the

embedding for e.g., the first character of a word will always correspond to the same portion of the

input vector. Even if word is not occurring in our FastText embedding vocabulary (possibly occurs

because FastText predict for unknown words if word share character n-grams with FastText

vocabulary words), we can still model the embeddings for out of vocabulary (OOV) words with

the help of their characters. By doing so our model reduces the number of errors made immediately

after OOV words.

4.6 Encoding Module

In SQM, input text is not restricted i.e., it may range from phrase to paragraphs; may also extends

to multiple paragraphs for essay type questions. So beyond word level context, sentence and

paragraph level semantics between input answer is needed. To utilize contextual information

appearing in input answer, we proposed to apply two level of contextual encoder that are sentence

and paragraph level. As RNN analyze data sequentially for problems that work on sentence level

it is suitable encoder. Since words are constituent of sentences, we have to know the meaning of

word to understand or represent the meaning of sentence. To this analogy the bidirectional RNN

encoder use word embedding vectors as input and sequentially analyze these word vectors in

forward and backward direction. The output at each end will be merged to represent contextual

information that the sentence holds.

 In this process RNN analyze words how they are structured through a sentence using sequence

and what meaning is encapsulated in a word with the help of word and character level meaning

vectors provided. It accepts d-dimension word vector for each word in the answer and output

answer matrix that represent contextual information. Again when we lift up to essay we should

know the information that a sentence denotes in essay. Following [53], we again apply same

encoder with sentence level vector inputs at essay level that allows to learn coherences with how

75

sentences are organized across the essay. By doing so our model can learn how sentences are

structured in whole training set and learn their representation.

Figure 4-3: Proposed Bi-directional RNN (GRU/LSTM) Encoder that represent contextual representation

of words in input answer. In the above figure each word input is represented with our FastText 2-D

embedding and 2D CNN-character representation for each characters in a word. Each hidden state of

previous input is passed as past information to current input for both forward and backward representation

and the concatenation of both forward and backward representation is taken as sentence context. The above

figure depicts 1-layer bidirectional RNN (GRU/LSTM). When we use more than one layer the last

representation of 4-vector matrix is passed as input to next layer and same process is applied to extract

more enhanced feature.

We use deep bidirectional recurrent neural network (LSTM/GRU) [54] to get context of words by

capturing important information from both directions for sequence of words in input answer. At

each time step t (for each word), the model maintains two hidden states, one for the left-to-right

ℎ𝑡⃗⃗ ⃗ (forward direction) and the other for the right-to-left ℎ𝑡⃖⃗ ⃗⃗ (backward direction). Then we

76

concatenate the hidden state of two forward and backward hidden states as depicted in Figure 5.3.

We use deep bidirectional RNNs by replacing each hidden sequence ℎ𝑛 vectors with the forward

and backward sequences ℎ𝑛⃗⃗ ⃗⃗ and ℎ𝑛⃖⃗ ⃗⃗⃗ and ensuring that every hidden layer receives input from both

the forward and backward layers at the level below. This allows us to detect enhanced sentence

level or essay level representations generated by multi-layer bidirectional RNN by encapsulating

the character and word levels information (vector). Figure 4.3 shows how our bidirectional encoder

encode sentence context.

Given sequence of word previous module output word vector sequence 𝐸 ∈ ℝ𝑑𝑥|𝑙|, our

Bidirectional RNN (LSTM/GRU) encode each sequence in a sentence and results sentence matrix

𝑆 ∈ ℝ𝑐𝑥|𝑙| ,where C is low dimensional space representation of sequence, using Equation 4.9 and

4.10.

ℎ⃗ 𝑖 = 𝑅𝑁𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑥𝑖) 𝑖 = 1,⋯ ,𝑚 (4.9)

ℎ⃗⃖𝑖 = 𝑅𝑁𝑁⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑥𝑖) 𝑖 = 𝑚,⋯ ,1 (4.10)

, where 𝑅𝑁𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is forward and 𝑅𝑁𝑁⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ backward GRU/LSTM, 𝑥𝑖is input word vector (concatenation

of word and character representation) at time i where i ranges from 1 to sequence length m for

ℎ𝑡 = 𝑂𝑡⨀ReLu (𝐶𝑡)

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀�̃�𝑡

�̃�𝑡 = 𝑅𝑒𝐿𝑢(𝑊𝑐[𝑥𝑡] + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑂𝑡 = 𝜎(𝑊𝑜[𝑥𝑡] + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑖𝑡 = 𝜎(𝑊𝑖[𝑥𝑡] + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓[𝑥𝑡] + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)

ℎ𝑡 = 𝑧𝑡⨀ℎ̃𝑡 + (1 − 𝑢𝑡)⨀ℎ𝑡−1

ℎ̃ = 𝑅𝑒𝐿𝑢(𝑊[𝑥𝑡] + 𝑈(𝑟𝑡⨀ℎ𝑡−1) + 𝑏)

𝑧𝑡 = 𝜎(𝑊𝑧[𝑥𝑡] + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎(𝑊𝑟[𝑥𝑡] + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

 RNN 1: Proposed GRU [55] Transformation

Equation: where r and z are reset and update gates

respectively; ℎ𝑡−1is previous hidden-state output

and 𝑥𝑡is current input (word vector); W and U

learnable weights and b is bias; ReLu and

𝜎(Sigmoid) are non-linearity activation functions

RNN 2:Proposed LSTM [35] Transformation

Equation: where 𝑥𝑡is input at time-step t; W and U

learnable weights and b is bias; ReLu and 𝜎(Sigmoid)

are non-linearity activation functions; and i, f, o and c

are the input, forget, output gates and the cell

activation vectors respectively.

77

forward and m to 1 for backward direction. Same equation is applied for both backward and

forward RNN using equation represented in the above RNN 1 and RNN 2 for GRU and LSTM

respectively. Finally, we concatenate sequence hidden matrix of answer ℎ⃗ ∈ ℝ𝑑 𝑥 𝑙with ℎ⃗⃖ ∈ ℝ𝑑 𝑥 𝑙

to form the sentence representation 𝑆 ∈ ℝ(𝑛∗(2∗𝑑))𝑥𝑙. We refer to n as the number of RNN layers

used, d as last hidden state dimensionality for forward or backward direction RNN and l is number

of time-step (or sequence length).

For essay type question, we repeat the step in sentence encoder representing each sentence as

single vector as shown in equation 4.9 and 4.10. Then, concatenation of forward and backward

network is passed to attention layer.

4.7 Attention Module

This module is the core layer within our model that clues the next layer to predict score. For both

short answer and essay type questions, we proposed different level attention mechanism. As

discussed, in related work section, short answer assessment depends on two input strategy. One is

strategy is only using student answer and the other is providing model answer as reference to

predict score of student answer. The attention mechanism we proposed to employ on short answers

is to infer which student answer vectors are more informative to given reference model answer

from all word vectors encoded in student answer. The purpose of this attention is to couple the

model and student answer vectors and produces a set of model answer aware feature vectors for

each words in student answer. Under this module we proposed two step attention. The first is to

reward sentences that are clues to correctly assess student answer, here we use attention

mechanism at sentence level context vector by measuring how each sentence vectors in student

answer are important in context of model answer. For simplicity, we called it reference attention

flow. The other is responsible for fusing information from the model and the student answer

concepts. Unlike popular attention approaches used in language modeling tasks [56], the answer-

to-answer attention is not used to encapsulate the model and student answer concepts into single

feature vectors. Instead, we adapted state-of-art bi-directional attention [57] model proposed for

machine comprehension task with slight modification at comparison layer and we called it answer-

to-answer attention flow.

78

For essay questions, since it has no reference answer usually raters looking for organization of an

idea and searching for whether each terms included are informative to what the essay taking about

or not. Even if it is challenging to get main topic about the essay without reference answer, we can

still infer representative vector by matching each word vectors element wise [47]. Essay statements

may range to multiple paragraphs and usually domain raters expect coherence analysis for essay

than short answer. Not all terms included under student statement are informative to essay score.

As shown in Figure 4.1, to get more important content when constructing the essay representation,

we will be using Hierarchical Attention mechanism [53] that mirrors hierarchical structure of an

essay. Two level of attention is applied in a given input with hierarchical attention. One is to look

at words that are more relevant in sentences. In this case we first get maximum representative

vectors using Global Maximum Pooling8 from entire essay and apply reference attention on each

sentences in an essay. The other attention is applied at essay level based on output of sentence

level attention that aims to get most relevant sentence vector in essay.

i. Reference Attention Flow

The idea of reference attention flow was inspired by the observation of human raters when scoring

student answer. When human rater assesses one answer, people usually can roughly form an

intuition about which part of the answer is more important according to reference answer provided

or meaning of words included in a sentence for the case of answer with no reference answer. First

they skim all paragraph then point out the attentive sentence or phrase in student answer based on

reference answer information. Using this idea, we design sentence level attention for each

sentences in student answer. Specifically, we first encapsulate maximum average pooling of

answer as context vector and use this vector to measure relevancy of each sentences in student

answer. Here the context vector 𝑚𝑐 can be seen as a high level representation of a model answer

over all concepts used in memory networks by representing model answer. The attention

mechanism is formalized as follows:

𝑅𝑡 = 𝑅𝑒𝑙𝑢(𝑚𝑐 + 𝑊𝑆ℎ𝑡
+ 𝑏) (4.11)

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑡) (4.12)

8 https://keras.io/layers/pooling/

79

𝑂 = ∑𝛼𝑡𝑆ℎ𝑡

(4.13)

, where 𝑚𝑐 is global maximum pooling4 of answer statement (if answer has model answer we use

it as reference instead of self-representative vectors) given as weight, 𝑆ℎ𝑡
is matrix consisting of

output vectors of BRNN at time step t, W and b are learnable weight and bias respectively, 𝛼𝑡 is

attention vector at time step t, and O is attention weighted sentence vector in student answer.

In general, the intuition behind reference attention flow is it select the most important vectors from

each time step of student answer and weight it with a learned multiple of a provided reference

answer vector. Finally, we get attention weighted student answer vector.

Before passing final result to next module, we again contextualize the result of reference attention

flow with BRNN to get enhanced context information of student answer.

ii. Answer-to-Answer Attention

This attention used when we score short answer with reference model answer. Unlike Reference

attention, this attention analyzes a given input pair in two directions i.e., from model answer to

student answer and student to model answer. The difference from reference attention flow is it

allows us to capture how two vectors in encoded sequence are related whereas reference attention

flow give clue which vector does the network attend to predict.

The inputs to the layer are contextual vector representations of the model answer M and the

attention weighted student answer S. The outputs of the layer are the model answer-aware vector

representations of the student answer concepts, G, along with the contextual embedding from the

previous layer.

The attention is computed in two directions: from model to student as well as from student to

model. Both of these attentions, which will be discussed below, are derived from a shared

similarity. The enhancement we made here is the original paper used dot product to define shared

similarity whereas we design cosine similarity between two tensor objects. The inputs are

processed in two directions and the final result is merged using element-wise concatenation.

80

The similarity matrix 𝑆 ∈ ℝ𝑡 𝑥 𝑗 shared between the contextual embeddings of the model answer

(M) and the student answer (S), where 𝑆𝑡𝑗indicates the similarity between 𝑡−𝑡ℎ model answer

concept and 𝑗−𝑡ℎ student answer concept, is given by

𝑆𝑡𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑀𝑡 , 𝑆𝑗) 𝑡, 𝑗 = 1,⋯ ,𝑁 (4.14)

Here cosine similarity is applied for each word vectors in both student and model answer and

concatenated across the row. Now we use S as weight to obtain the attentions and the attended

vectors in both directions.

Model Answer-to-Student Answer Attention (M2S): signifies which student answer concepts

are most relevant to each model answer concepts. Let 𝑎𝑡 ∈ ℝ𝐽 represent the attention weights (𝑆𝑡𝑗)

on the student answer concepts by 𝑡−𝑡ℎ model answer concept, ∑𝑎𝑡𝑗 = 1, for all t. The attention

weight is computed by

𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑡:) ∈ ℝ𝐽 (4.15)

, and subsequently each attended student answer vector is

�̃�𝑡 = ∑ 𝑎𝑡𝑗𝑈:𝑗𝑗 (4.16)

, where �̃� is a 2d-by-T matrix containing the attended student answer vectors for the entire model

answer.

Student Answer-to-Model Answer Attention (S2M): signifies which model answer concepts

have the closest similarity one of the student answer concepts and are hence critical for scoring the

student answer. We obtain the attention weights on the model answer concepts by

𝑏𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑚𝑎𝑥𝑐𝑜𝑙(𝑆) ∈ ℝ𝑇) (4.17)

, where the maximum function (𝑚𝑎𝑥𝑐𝑜𝑙) is performed across the column. Then the attended

context vector is

81

ℎ̃𝑠 = ∑ 𝑏𝑠𝑡ℎ:𝑡𝑗 ∈ ℝ𝐷 (4.18)

This vector indicates the weighted sum of the most important concepts in the model answer with

respect to the student answer. ℎ̃ is tiled T times across the column, thus giving �̃� ∈ ℝ𝐷𝑥𝑇.

Finally, the contextual embeddings of model answer and the attention vectors are combined

together to yield G, where each column vector can be considered as the student answer-aware

representation of each model answer concept.

 We define G by

𝐺𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑀𝑡 , �̃�𝑡, �̃�𝑡) ∈ ℝ𝑑 (4.19)

, where 𝐺𝑡 is the 𝑡−𝑡ℎ column vector (corresponding to 𝑡−𝑡ℎ model answer concept), 𝑐𝑜𝑛𝑐𝑎𝑡𝑖𝑛𝑎𝑡𝑒

is a method used to merge input vectors (𝑀, �̃�, �̃�), 𝑑 is the output dimension.

iii. Hierarchical Attention

Unlike reference and answer-to-answer, we will be using hierarchical attention for essay questions.

The idea of hierarchical attention is same for both word and sentence level vectors except input

varies. For sentence level attention we apply encoded word vectors whereas essay level attention

we apply sentence vector. Similarly, we apply Equation 4.11, 4.12, and 4.13 as we are applying

similar idea with reference attention except reference attention expects summarized model answer

vector whereas with hierarchical sentence and essay level attention, vector is maximum pooling of

sentence or essay. Hierarchical attention mechanism used for essay sentence level vector and essay

level vectors is formalized as follows:

𝑅𝑡 = 𝑅𝑒𝑙𝑢(𝑚𝑐 + 𝑊𝐸𝑡 + 𝑏) (4.20)

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑡) (4.21)

𝑂 = ∑𝛼𝑡𝐸𝑡 (4.22)

, where 𝑚𝑐 is global maximum pooling of entire essay as weight, 𝐸𝑡is matrix consisting of output

vectors of BRNN at time step t, W and b are learnable weight and bias respectively, 𝛼𝑡 is attention

vector at time step t, and O is attention weighted sentence or essay vector in for given essay.

82

4.8 Modeling Module

The input to the modeling layer is G, which encodes the student answer-aware representations of

model answer concepts. The output of the modeling layer captures the interaction among the model

answer concepts conditioned on the student answer. This is different from the contextual

embedding layer, which captures the interaction among model answer concepts independent of the

student answer concepts. We use multi layers of bi-directional RNN, with the output size of d for

each direction. Hence we obtain a matrix 𝑀 ∈ ℝ2𝑑 𝑥 𝑇 , which is passed onto the output layer to

predict the score. Each column vector of M is expected to contain contextual information about

the concept with respect to the entire model answer concepts and the student answer concepts.

4.9 Scoring Module

The input to this layer is output of modeling module matrix M and score range. Given M and score

range (varying depending weight assigned to question), the model tries to predict probability

distribution of scores. We consider short answer assessment task as regression problem. Here the

model predicts continuous score in the expected range of scores (0 to 5) and our objective is to

minimize the square error between the predicted scores and the actual scores. The objective in this

case objective was Mean Squared Error. Given a set of predictions �̂� and the true grades y, we

sought to minimize:

𝐽 =
1

𝑁
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑁
𝑖 (4.23)

83

CHAPTER FIVE

5. EXPERIMENTATION AND EVALUATION OF

SUBJECTIVE QUESTION MARKING (SQM)

5.1 Overview

This chapter aims to provide a detailed evaluation of the approach in addition to experimental

environment used to develop SQM. The chapter evaluates SQM system component wise. As

subjective question we experimented and evaluated essay as subjective question and short answer

questions. The following sub sections give detailed description about component wise evaluation

we conducted and including dataset preparation.

5.2 Data Preparation and Analysis

SQM needs two different data for different dataset for FastText model training and for evaluation

of the design scorer. The proposed model semantics highly depend on quality of word vectors

created. So, generating Amharic FastText vector is core step in SQM. To achieve informative

vectors, we have collected large sized data from different sources. Table 5.1 depicts statistics of

data collected from different sources. In addition to word embedding dataset, we need number of

scored Amharic short answer questions for training and testing the model. SQM has two sub

components. One is a model that assess essay questions as subjective examination and the other

deal with short answers. As we discussed in previous chapter both models has different but related

architecture. So we need different dataset for both models. We experiment our essay model with

publicly available English dataset prepared for Hewlett Foundation’s Automated Student

Assessment Prize competition by Kaggle9. For short answer, we are evaluating on both Amharic

datasets prepared for this thesis work and publicly available English dataset [50]. In the following

section we discuss statistics behind the datasets for both essay and short answer in addition to

Amharic FastText word embedding training dataset.

5.2.1 Dataset for Word Embedding

The only feature provided for SQM model is word vector created from unlabeled dataset. So, better

achievement of scoring module totally depends up on quality of word vectors created from word

9 https://www.kaggle.com/c/asap-aes

https://www.kaggle.com/c/asap-aes

84

representation module. As we discussed in chapter four, we have proposed FastText word

embedding model. To identify word context in different situation we have considered social, sport,

political, and business sub domains for news domain; bible, blogs, and written documents from

spiritual domain; Amharic Wikipedia; and three selective course modules10 collected from Jimma

University Department of Amharic Language and Literature. In addition we comprised of all

student answers collected for evaluating SQM as additional domain dataset. To collect web

dependent data, we used HTTRACK Website Copier as offline crawler to copy files from web.

Python based BeautifulSoup11 library is used to extract text content from web files crawled. Then

after small preprocessing such as tokenization and normalization we used to train FastText model

that can able to extract Amharic word meaning from given corpus.

Table 5-1: Table that depict statistics of data collected to train FastText for Amharic word vectors

Domain Statistics

Total Document 32,941

Total Tokens 40,816,929

Vocabulary Size 275,829

5.2.2 Dataset for SQM

As discussed above, we used two distinct datasets for essay and short answer assessment. For short

answer we experiment on Kaggle short answer dataset for English and Amharic dataset collected

for this thesis purpose. Because of time constraint essay part of our model is experimented with

only standard publicly available Kaggle dataset. In the following subsection will narrate

preparation and statistics of two datasets.

10 The three selected modules are “የዘገባ አፃፃፍና አስተውሎታዊ እሳቤ (Report Writing and Critical Thinking),

የቋንቋና ሥነልሳን ጥናት, and ህዝብ ግንኙነት (public relation)”. No special criteria is used to select courses,

except a copy of modules is easily accecible from the department.
11 https://pypi.python.org/pypi/beautifulsoup4

https://pypi.python.org/pypi/beautifulsoup4

85

i. Essay Dataset

In 2012, the Hewlett Foundation sponsored a competition on Kaggle called the Automated Student

Assessment Prize (ASAP) and prepared standardized dataset as Kaggle AES dataset. The dataset

contains 12,976 essays ranging from 150 to 550 words each, marked by two raters (Cohen’s κ =

0:86). There are eight different sets of essays written by students ranging from Grade 7 to Grade

10. Each prompted by eight different prompts, with distinct marking criteria and score range. For

our experiments, we use the resolved combined score between the two raters, which is calculated

as the average between the two raters’ scores (if the scores are close), or is determined by a third

expert (if the scores are far apart).

Table 5-2: Kaggle AES dataset statistics

Essay set Essay Type Score Range Average word

length

Total

1

Persuasive / narrative / expository 2-12 350 1785

2

Persuasive / narrative / expository 1-6 350 1800

3

Source dependent responses 0-3 150 1726

4

Source dependent responses 0-3 150 1772

5

Source dependent responses 0-4 150 1805

6

Source dependent responses 0-4 150 1800

7

Persuasive / narrative / expository 0-30 250 1730

8

Persuasive / narrative / expository 0-60 650 918

The competition used quadratic weighted kappa to measure the similarity between the human

scores and the automated scores. Currently, the state-of-the-art on this dataset has achieved a

86

Cohen’s κ = 0.96 (using quadratic weights) [65]. The dataset originally released by Kaggle

competition has not gold score annotated test set. However, following state-of-art Dimitrios et al.,

[65] work, for our experimentation we are splitting the given training set to create a new test set.

We follow same setup as Dimitrios et al., [65] 80% of the entire dataset is used for training and

validating the model and the left 20% is used for testing. In absolute term we split 64% training,

16% validation and 20% testing of entire dataset. Table 5.2 summarizes some characteristics of

Kaggle dataset.

ii. Short Answer Dataset

An automatic short answer marking system is one that automatically assigns a grade to an answer

provided by a student, usually by inferring from provided one or more reference correct answers.

Traditionally, automatic assessment tasks more focus on essay questions than short answer. One

reason is lack of standardized dataset. In 2012, Kaggle sponsored short answer scoring part of

Automatic Student Assessment Prize (ASAP). The aim was to select best predictor system by

giving graded short answer responses and their corresponding prompts. For task completion

Kaggle released about 17,000 graded short answer. Unlike essay, achieved result in short answer

was not promising. Best result of first winner was 0.771 kappa. That is because short answers are

more subjective and more diverse than essay. Factual essay usually focus on fact and organization

of sentences and ideas is required. Whereas, for short answers no common way to express the idea.

It is open and left for student as they want. In addition to Kaggle, Mohler et al., [50] released small

sized data focused from introductory computer science course assignments with answers provided

by a class of undergraduate students. The data set consists of a total of 2273 student answers.

1. Kaggle Short Answer Dataset

Kaggle short answer dataset12 consisted of answer texts of approximately 50 words that cover a

broad range of disciplines (from English Language Arts to Science) which were written by 10th

grade students. Approximately 17,000 answer with two scores graded by two different people in

total of 10 questions (sets) is provided for training. On average, each answer is approximately 50

words in length. Most training sets consist of about 1,800 responses. With training dataset, Kaggle

also provided test data which consists of approximately 6,000 answers. However, the test set was

12 https://www.kaggle.com/c/asap-sas

https://www.kaggle.com/c/asap-sas

87

released without the gold score annotations, rendering any comparisons ineffective, and we are

therefore restricted in splitting the given training set to create a new test set as we did in essay

dataset.

As default feature, our SQM model for short answer expects two input answers as model and

student answer. But, Kaggle dataset has no reference answer explicitly provided. Still we can train

our model using by inferring answer representative vector using sentence level attention proposed.

This shows the dynamic nature of our model to work with both situations. The following Table

5.3 depicts some statistics on Kaggle short answer dataset including score distribution to data size

in selected each sets.

From total of 17000 graded answer from Kaggle short answer dataset, 80% of the entire dataset is

used for training and validating the model and the left 20% is used for testing. In total we split

80% training, 10% validation and 10% testing of entire dataset using 10-fold cross validation.

Table 5-3: Kaggle short answer scoring dataset statistics per each scores assigned. ‘-’ means score

ranges between 0-2 for set

Question

/Set

Average word per

score points

Score distribution

(%)

Data

Distribution

Human Agreement

(Kappa)

0 1 2 3 0 1 2 3
Total

1 38 50 57 62 23 26 31 30 1672 0.86

2 36 50 68 - 38 58 8 - 1278 0.68

5 23 43 62 93 77 18 3 2 1795 0.91

6 22 41 55 76 84 9 5 3 1797 0.89

88

2. Amharic Short Answer Dataset

Unlike previous standard datasets, this dataset is created for the purpose of thesis completion to

evaluate performance of SQM in Amharic short answer questions. We use two techniques to

collect answer. One and ease technique applied was collecting pre-graded answer for selected

course modules. We have collected examination papers already graded by course instructor for

third year Amharic Language and Literature Department undergraduate students. Total of 84

student answers each with on average 7 answer set for 2 different courses named “የዘገባ አፃፃፍና

አስተውሎታዊ እሳቤ (Report Writing and Critical Thinking) and አማርኛ ቋንቋ ፎክሎር መግቢያ

(Introduction to Foklore in Amharic)” is collected. Other technique applied is providing purposeful

examination. With the collaboration to Jimma University Amharic Language and Literature

department, we incorporate especial exam for third year summer students to “Public Relation

(የህዝብ ግንኙነት)” course. Seven questions are pre-prepared from course module with the help of

course instructor focused on objective of the thesis. Students are not informed anything about

purpose of question except ordered by course instructor about structure and type of exam content.

Total of 155 students sit on examination. From both techniques we have collected 1112 answers

and provided to two independent raters. The answers were independently graded by two human

domain raters, using an integer scale varying on question set as provided by instructor for each

questions. Both human raters were Lecturer at Jimma University Amharic Language and Literature

department; one is course instructor currently and the other is also familiar with the course as he

instructed the course for regular class. We treat the average grade of the two raters as the gold

standard against which we compare our SQM. The annotators were given no explicit instructions

on how to assign grades. Both raters gave the same grade for 747 answers from total and

approximately near grades for 202 answers. Inter rater correlation between two rates is 87 %

Pearson and 89 % Spearman. Table 5.4 shows two question-answer pairs with three sample student

answers each to show poor match or perfect match between student answer and raters score

provided13.

13 We also included sample questions their model answer and score assigned by two raters in Annex E

89

Table 5-4: A sample question with short answers provided by students and the grades assigned by the two

human raters

 Sample question, model answer, and student answers Score

Rater

1

Rater

2

Question ሚዲያ ለህዝብ ግንኙንት ሙያ /ስራ ያለውን ጠቀሜታ አስረዳ/ጂ። （4 ነጥብ）

Model

Answer

ሚድያ ለህዝብ ለህዝብ ግንኙነት የሚያበረክተው ጠቀሜታ ብዙ ነው ፡፡

የተቋሙን የድርጅቱን እንቅስቃሴ መልእክት ለማስተላለፍ ያስችላል

በቀውስ ወቅት የተቋሙን ደህንነት መልስ ለመገንባት ስለተቋሙ የሚወሩ

አሉባልታዎችን ለማወቅና ለማስወገድ የሚቻለው በሚድያ ነው ፡፡

የተቋሙን ጊዴታ መልሶ ለመገንባት የሚቻለው በሚዲያ አማካይነት ነው

፡፡ለተቋሙ ለአገር ግንባታ የሚያስፈልጉ ገንዘብ ለማሰባባሰብ ያግዛል ፡፡

ህዝብን ተደራሽን ለማሳመን ይጠቅማል የህግ ባለሙያ ያዘጋጀውን ዕቅድ

ወደተግባር ለመቀየር ያስችላል ፡፡ ምርትና አገልግሎትን ለማስተዋወቅ ፡፡

Student 1 ከድርጅቱና ከማህበረሰቡ ጋር ያለውን ግንኙነት ያጠናክራል፣ ድርጅቱ

/ተቋሙ የሚያቀርባቸውን አገልግሎቶ በቀላሉ ሊያሳውቃቸው ይችልበታል፡

፡ ለደራሹ ወቅታዊ የሆኑ መረጃዎችን ያስተላልፉላቸዋል፡፡

4 4

Student 2 ሚዲያ ለህግ ስራ ዋነኛ መሳሪያው ነው፡፡ የህግ ሰራተኛው ስራውን

የፃፈውን ጽሁፍ በሚዲያ አማካኝነት ነው ወደ ህዝቡ ለማድረስ የሚችለው

ህዝብን በየቀኑ ስብሰባ መጥራት አይቻልም፡፡ ነገር ግን በሚዲያ አማካኝነት

የህግ ሰራተኛው ለህዝቡ በርካታ ስራዎችን በየቀኑ ማስተላለፍ ይችላል፡፡

1 2

Student 3 ሚዲያ ለህዝብ ግንኙነት ሙያ ስራ ያለው ጠቃሜታ ለህዝብ መልዕክት

ማስተላለፍ፣ ከተለያዩ አቅጣጫ የሚፈጠሩትን ትኩስና አዳዲስ ወቅታዊ

የሆኑ ዜናዎችን በማስተላለፍ ይጠቆማል፡፡ በሀገር ውስጥም ሆነ ከውጭ

3 3

90

 Sample question, model answer, and student answers Score

Rater

1

Rater

2

የሚከሰቱት ክስተቶችን ህዝብ የሚከታተለው ከሚዲያ ነው ማለት

ይቻላል፡፡

Question የህዝብ ግንኙነት ሙያተኞች ነጻ የመሆን ስነ ምግባር ሊኖራቸው የገባል ሲባል ምን ማለት

ነው? በሚገባ ግለጪ/ጽ （4 ነጥብ）

Model

Answer

የህዝብ ግንኙነት ባለሙያ መቸም ቢሆን ተጨባጩን እውነት ለማንም

ሲባል ማጣመም ስለሚያስፈልግ ነው ፡፡ የህግ ስራ በተጨባጭ እውነት ላይ

ካልተመሰረተ ጥፋት ማስከተሉ ስለሚያቀርበው የህግ ባለሙያ ነፃ ካልሆነ

ሥራውን በሚገባ ሊያከናውን አይችልም ፡፡

Student 1 ለሚደርስባቸው ተጽዕኖ በመሸነፍና ለይሉኝታ በመጋለጥ ነገሮችን

ሳያጣምመው ያለውን እውነታና ሀቅ ባለው ይዘት፣ ተቋሙንም

ወደግሽፈት በማያደርስ /በማይመራ/ መልክ ማቅረብ እንዳለባቸው

የሚገልጽ እሳቤ ነው፡፡

3 1

Student 2 የህዝብ ግንኙነት ባለው ሙያ ለህዝቦች በአግባቡ ማገልገል አለበት፡፡ 0 0

Student 3 የህዝብ ግንኙነት ሙያተኛ ነፃ የመሆን ስነ ምግባር ሊኖራቸው ይገባል፡፡ ስል

በተቋሙና በተደራሹ መካከል እንደ ድልድይ ሆነው ያለ ስነምግባር ስልት

በተለያዩ ነገሮች ሳይዳሰሱ ለአንዱ ላይ ወግኑ በሁለቱም እኩል በመቆም

የተቋሙን ወደ ተደራሹ የተደራሹን ደግሞ ወደ ድርጅቱ ሚዛናዊ በሆነ

መንገድ ማቅረብ ይጠበቅባቸዋል፡፡ ከምንም አይንት ግፊት፣ ድለላ፣ ሙስና

ለአንዱ ሳይወግን ወይም ለሌላው ክፍተት ሳያሳይ ነፃ ሆኖ መልዕክቱን

ማስተላለፍና ቀጥተኛና ተዓማን መሆን አለባቸው፡፡

3 4

On average, each answer is approximately 60 to 80 words in length. Most question sets consist of about

150 responses. Table 5-5 shows some statistics behind prepared Amharic short answer dataset and Figure

5.1 shows how score is distributed in Amharic SQM dataset.

91

Table 5-5: Data visualization per question sets, number of answer per question set and inter-rater

agreement in Amharic short answer dataset

Question /Set Number of answer in each set Inter rater agreement on question sets

1 130 Totally agreed on 104 answer out of 130

(80%)

2 118 Totally agreed on 77 answer out of 118

(65%)

3 113 Totally agreed on 88 answer out of

113(78%)

4 113 Totally agreed on 83 answer out of

113(73.5%)

5 97 Totally agreed on 60 answer out of

97(62%)

6 115 Totally agreed on 78 answer out of

115(68%)

7 100 Totally agreed on 66 answer out of

100(66%)

8 36 Totally agreed on 35 answer out of

36(97%)

9 36 Totally agreed on 34 answer out of

36(94%)

92

Question /Set Number of answer in each set Inter rater agreement on question sets

10 36 Totally agreed on 31 answer out of

36(86%)

11 25 Totally agreed on 25 answer out of

25(100%)

12 25 Totally agreed on 23 answer out of

25(92%)

13 25 Totally agreed on 21 answer out of

25(84%)

14 25 Totally agreed on 22 answer out of

25(88%)

Figure 5-1: Visualizing Amharic short answer dataset how scores are distributed

93

We follow same setup for data as we did in Kaggle short answer dataset. From total of 1112

Amharic short answer dataset we split 80% training, 10% validation and 10% testing of entire

dataset using stratified k-fold cross validation techniques with k=10.

5.3 Experimentation

In this section, we evaluate our model for both essay and short answer on the above discussed

datasets. Experimentation will be applied on each component to analyze how components favor

for score prediction. We begin with visualizing and evaluating our FastText embeddings to ensure

how vectors provide meaning to words appear in answer statement.

5.3.1 Experiments of FastText Word Vectors

We experimented FastText mainly for two objectives. One is Amharic FastText word vector that

is used as the only feature to provide meaning words in answer. The other is English FastText

word vector trained on domain dataset (essay and short answer).

Figure 5-2: Visualizing most 30 similar words for ‘internet’ from FastText embedding trained on Kaggle

94

To test how word vector models, perform well on domain data we trained FastText on Kaggle

essay dataset using Skip-gram model with negative sampling. It is important to examine word

embedding and see how words cluster together to their nearest words based on our FastText model.

To visualize this, we applied Principal Component Analysis and reduce the word dimensionality

to 2 components. We use PCA transformed word vectors and represent them on a 2D plot. We

examine the top 30 most similar words to a word of our choice.

As shown on Figure 5-2, the result of our FastText embedding has ability to cluster words with

spell-error such as ‘enternet and inernet’ to their semantically related words in vector space such

as web, computer, information, and website. In addition, it also detected morphological variants

of ‘internet’ such as ‘internets’ and detected capitalization also (‘Internet’).

Figure 5-3: Visualizing top most nearest neighbors of word 'happy'

We can also see from Figure 5-3, our FastText trained on domain Kaggle essay dataset clustered

words such as sad and unhappy that are opposite words to given word ‘happy’ to same cluster and

95

synonyms such as cheerful and joyful are also detected. Another interesting feature is it detected

vague word ‘memory’ as related word to happy. The word ‘memory’ also indicate celebration and

our model related these two words based on contextual meaning.

Both CBOW and Skip-gram model trained on Amharic text with defined hyper-parameters. The

parameters defined to train both CBOW and Skip-gram model is depicted Table 5.6 below.

Table 5-6: Hyper-parameters used to train both CBOW and Skip-gram models for our FastText vector

builder

Hyper parameter Value

Window 5,10

Embedding dimension 100 ,300

Learning rate 0.05

Workers 30

Negative Sampling 10,15

Iteration 10

N-gram size 3,6

For Amharic we trained our model for both global and domain dependent dataset. The following

Figure 5-4 and 5-5 shows how our FastText cluster word vectors related to same space. Moreover,

we visualized how our FastText model handle morphologically related words.

96

Figure 5-4: Visualizing morphologically related Amharic words in vector space

From the above figure we can visualize that our domain trained FastText model is capable of

clustering syntactically related word to their semantic space. Moreover, it detected word with

spelling error ‘የህዝ’ to say ‘የህዝብ’. It interesting feature of our FastText model is its ability to

cluster words with different morphological varietiy, but same in meaning. As we can see from

Figure 5.4 different mophological variants of Amharic word is clustered to one their semaintically

related words.

97

Figure 5-5: Sample visualization of semantically clustered FastText embeddings in vector space

Another interesting feature of our word representation module is its capacity to cluster words on

their semantic category. From the above Figure our FastText model categorized Amharic words

such ወር, ቀን, ሰዓት to one category using as time measurement. We can see that ሜትር and ኪሎ

are clustered together. It clusters large number ሚሊየን, ቢሊዮን, ትሪሊዮን, and ሺህ to one; በአማካይ

and በመቶ; ክፍያ, ወጪ and ገቢ at one category. Because of space limit we visualized only sample

ones. This shows that our word vectors are semantically and syntactically rich and our SQM model

easily get meaning of words using this embeddings.

5.3.2 Experiments of SQM

For both models different experimental setup is used. For both models we used Python version of

Keras14 2 deep learning library that run on the top of Tensor flow. Keras made the complex nature

of neural network user friendly. Keras is powerful, easy to customize and high level abstraction

API for deep neural network. Keras made training neural network models easy by providing

14 http://www.keraso.io/

http://www.keraso.io/

98

training on line fashion and also has capability of storing current hidden layer best weight that

support evaluation process. The other capability of Keras is it allows us to create user defined

function for hidden layer network. As we have several attention approaches, Keras is suitable to

experiment SQM.

For our FastText word vector building module, we used genism15 wrapper class that allows us to

use efficient original c-version Facebook FastText implementation. TSNE is used to visualize our

embeddings on dimensionality space. Every algorithm we have developed are implemented using

the Python programming language. Reason for using python is its ease feature and recent

popularity in deep learning. In addition to the above main tools we used number of python

dependency sub libraries. We have experimented our system on core i5, 1 Tera disk, 8 GB memory.

This is because training deep learning requires powerful hardware components.

i. Experiments of Essay

Given student written essay, the essay as SQM task predict score in a defined range. For Kaggle

essay score range differ from set to set. We created model friendly score by using the following

equation: Given minimum score 𝑆𝑚𝑖𝑛 and maximum score 𝑆𝑚𝑎𝑥of the given prompt or question

set, we calculate model friendly score range that lay between 0 and 1 as:

𝑆𝑖 =
𝑆𝑖 − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

(5.1)

, where Si score for i-th answer question set. Similarly, for evaluation we reverse score to original

range using:

𝑆𝑖 = 𝑆𝑖* (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) + 𝑆𝑚𝑖𝑛 (5.2)

15 https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/

99

Table 5-7: Results of the different models on the Kaggle dataset. All resulting vectors were trained using

linear regression. We used the dataset split released by Dimitrios at el. [47. ρ is Spearman and r is for

Pearson’s metric. MSE is mean squared error, RMSE is Root Mean Squared Error. In model names FT

means FastText vector used is domain trained and Glove denotes we used GloVe word vector; Hie_att

indicates our hierarchical encoding and attention model. no_sen_att denotes model with no sentence level

encoding and attention, but encoded at essay level. no_att is model without any attention.

For essay, we have evaluated our SQM system on different perspective to check performance of

our system to predict score on new unseen essay. All experimentations are done using hyper-

parameter included under Annex D. We evaluated how each component in our model affect score

prediction by passing components individually as shown in Table 5.7. First we have evaluated how

our FastText vector specific to the domain works well on scoring. We used GloVe word vectors

with 840B16 represented in 300D. The reason for choosing GloVe vectors, is it has less OOV words

than Facebook pre-trained FastText vector in our domain. More than 1200 tokens were out-of-

vocabulary from Facebook’s FastText vectors. But, as compared only 102 words are treated as

OOV in GloVe vectors. We can see from the result that using our least performed model that use

character vectors of domain trained FastText vectors FT_char _2BiGRU_Hie_att only use

character level information increased spearman’s and Pearson’s and quadratic kappa to +4, +1

16 https://nlp.stanford.edu/projects/glove/

Model MSE RMSE Ρ r Kappa

(QWK)

Kappa

(Linear)

Dimitrios at el. [47] - 2.4 0.91 0.96 0.96 -

Glove_word_2BiLSTM_Hie_att 6.32 2.51 0.89 0.97 0.96 0.81

FT_word_2BiGRU_no_sen_att 3.41 1.94 0.96 0.97 0.98 0.87

FT_word_2BiGRU_no_att 4.90 2.30 0.93 0.96 0.96 0.85

FT_char_word_2BiGRU_ Hie_att 4.20 2.01 0.95 0.98 0.97 0.88

FT_char _2BiGRU_Hie_att 4.21 2.12 0.95 0.97 0.96 0.87

FT_word_2BiLSTM_Hie_att 3.99 2.00 0.96 0.98 0.98 0.88

FT_word _2BiGRU_Hie_att 3.35 1.83 0.96 0.98 0.98 0.88

https://nlp.stanford.edu/projects/glove/

100

respectively and minimized RMSE to 2.01. Model trained on global vectors

Glove_word_2BiLSTM_Hie_att is one that performed less in our experimentation from all tests.

This shows that our domain trained vectors easily infer meaning of word in an essay than global

vectors. Since the essays in the dataset were answers to a specific set of prompts, training the word

vectors helped to capture the essence of the words in the domain of the essay prompts thus leading

to better performance. Moreover, Kaggle essay has more noise words such with spell errors

according to their report and our domain trained word vector easily detected such error.

In addition to vector level evaluation we experimented how hierarchical attention we proposed

affect score prediction. From the Table 5.7, all models with suffix ‘Hie_att’ indicates hierarchical

model. We can see from the above table that both models FT_word_2BiGRU_no_sen_att (Only

essay level encoding and attention) and FT_word_2BiGRU_no_att (without any attention)

increased RMSE to 1.94 and 2.3 where as our best performing model with attention has 1.83

RMSE. From this result we can conclude that treating essay as hierarchically organized text allow

us to learn essay more than word meanings. Figure 5.5 below shows performance of our regression

model by minimizing loss rate per epochs at the time of training.

Figure 5-6: Loss and mean absolute error rate per epochs on training and validation set for our best

performed model on Kaggle Essay dataset. Mae indicates mean absolute error.

101

Moreover, we have conducted evaluation on how our character level language model helps on

scoring. As expected even if it achieved better result than state-of-art work, it less performed than

word level model for English. It is because in English words are not morphologically rich. We

tested on different RNN encoders also, as expected both GRU and LSTM performed comparable

result. In terms of correlation both shown equal result, but GRU outperformed by minimizing

RMSE.

In all approaches tested our hierarchical essay evaluation approach significantly outperformed

state-of-art result on Kaggle dataset by increasing performance +6% spearman, +2% Pearson, +2%

Cohen’s quadratic kappa from state-of-art result. Our best performed models is FT_word

_2BiGRU_Hie_att, which use word level FastText vectors trained on essay dataset minimized

RMSE to 1.83 by increasing +0.57. Given the results of the pre-trained FastText model, we believe

that the performance of our best model will further improve should more training data be given to

it and further analysis applied on hyper-parameters as deep learning approach highly dependent

on parameter setting.

ii. Experiments of short answer

Recall from related word section, we see that short answers are evaluated in two strategies. One is

inferring new student answer without having knowledge of reference answer or model answer.

And the other is given specific, but not limited correct answer predicting relatedness level of

student answer with respect to given model answer. To make our model dynamic to both situations

we experimented both approach with and without model answer. Table 5.8 and 5.9 depicts short

answer based evaluations experimented on Kaggle short answer dataset and Amharic short answer

dataset respectively. Given pair of answers, our SQM short answer assessor predicts score how

given student answer is related to provided reference model answer.

Implementation Detail

Unlike, essay we did not treat short answer as hierarchically structured text. For short answers that

has no reference or model answer, we encoded given answer using our RNN encoder module and

get maximum pooling of the whole answer as representative vector to student answer. Then we

align each words in answer with attentive vector to get informative answer words. For answers

with reference answer, we applied two level attention one is our reference attention that align

102

words in student answer to representative vector of model answer i.e., GlobalMaximumPooling17

of model answer words. In both case we pre-processed input answer before passed to embedding

layer. The result of preprocessing output is passed to sequence generator sub module that generate

sequence by padding and truncating answer to defined threshold. For both Kaggle and Amharic

short answer dataset, we used threshold value on which 96%18 of the dataset shares. We trained

FastText model on Kaggle short answer dataset and used as domain specific meaning bearer

feature for our SQM model. For Amharic part, we trained all student answer plus course modules

on which question sets defined as domain dataset and trained FastText CBOW and Skip-gram

model with parameters defined in Table 5.6. We generated character embeddings from word

vectors for Amharic part. We did not include character level information to English dataset, as we

did not get promising result than word only embeddings for essay experimentation. We used same

hyper-parameters with essay to experiment both models except the dropout rate and batch-size19.

Table 5-8: SQM short answer result on Kaggle short answer dataset

Model MSE RMSE Spearman Pearson Kappa

(QWK)

Kappa

(Linear)

Kaggle ASAP best performed

Luis Tandalla [62] - - - - 77 -

Our Approach

FT_word_2BiGRU 0.343 0.586 0.82 0.86 0.81 0.68

FT_word_2BiGRU_no_att 0.489 0.613 0.79 0.82 0.79 0.64

Discussion on Kaggle Short Answer Dataset

The aim of this experimentation is how our model works for well if we have no reference answer.

We conducted two experimentations with or without reference_attention. As we can see from

17 https://keras.io/layers/pooling/
18 For Kaggle dataset maximum word sequence is 120 and maximum character sequence used is 10. For

Amharic dataset we used 83-word length and 7 as character sequence per words. All value is used by

inspecting
19 For Amharic we experimented on 32, 64, and 100 batch-size and we get our best result with 100. The

dropout rate used for English is 0.3 and 0.5 for Amharic as we have small data. Using 50% dropout with

batch normalization enable us to control overfitting of our model in dataset.

https://keras.io/layers/pooling/

103

Table 5.8, our model outperformed baseline on Kaggle dataset20and achieved encouraging result

on short answer. Recently, reported result on short answer in 90% correlation [63] with human

annotator using Pearson’s metric, but their dataset is not publicly released. Our experimentation

shows that applying our model is dynamic and support both condition with and without reference

answer. Representing all words in answer equally dropped -0.02% from our best achieved and

state-of-art result on Kaggle dataset. From this result we can conclude that our reference attention

model can do best if it gets quality data and further analysis is applied to hyper-parameters.

Table 5-9: SQM short answer result on Amharic short answer dataset. P is spearman and r is Pearson

correlation. no_ref_att means model trained without reference attention; no_a2a_att means no

answer_to_answer attention; char_embed is for model trained without pre-generated character

embeddings but trained with one-hot embedding.

Model MSE RMSE p R Kappa

(QWK)

Kappa

(LWK)

FT_word_char_BiGRU_ref_a2a 1.35 1.16 0.60 0.61 0.58 0.41

FT_word_char_BiGRU_no_model 1.39 1.19 0.56 0.56 0.53 0.35

FT_word_char_BiGRU_model_ref 1.31 1.14 0.62 0.62 0.59 0.42

FT_word_char_BiGRU_merge 1.15 1.07 0.65 0.66 0.62 0.44

FT_char_embed_BiGRU_no_model 1.36 1.16 0.56 0.57 0.53 0.36

FT_word_char_BiGRU_no_ref_att 1.55 1.24 0.46 0.47 0.42 0.28

FT_word_char_BiGRU_no_

att_no_model

1.74 1.32 0.57 0.54 0.44 0.32

Skip_global_ word_char_BiGRU 1.21 1.15 0.58 0.60 0.57 0.40

Cbow_ global _word_char_BiGRU 1.20 1.14 0.56 0.59 0.55 0.42

FT_word_BiGRU_merge 1.80 1.12 0.60 0.61 0.57 0.42

Discussion on Amharic Short Answer Dataset

As far as our knowledge is concerned, there no system that automatically assess Amharic short

answers. We conducted thorough evaluation on our small sized dataset and achieved promising

20 Kaggle’s technical report of winner’s shows first winner achieved 77% correlation with human rater.

104

result that can be taken as baseline work. As opening work, we evaluated our model in various

metrics; MSE, RMSE, Spearman, Pearson, Kappa (Quadratic), Kappa (Linear). Our best result

achieved 0.65 spearman, 0.66 Pearson, 0.62 quadratic kappa and minimized mean squared error

to 1.07.

We have conducted evaluation on our Amharic short answer marking system component wise. We

valued how our character model works in Amharic as Amharic is one of morphologically rich

language and as expected the model that contain domain trained FastText vector with

concatenation to our character CNN that use generated character vector. All models except the one

in last row (FT_word_BiGRU_merge), use character word information. We evaluated our best

performed model by skipping character model and as expected it drops -0.05 from best performed

model Kappa (QWK) correlation and increase error rate to 1.12. But, it still shows competitive

result it’s because of our FastText has character n-gram information. Our character based model

that use one-hot encoded input and later represent word vectors character from our char-CNN

(FT_char_embed_BiGRU_no_model) perform better than the one that use pre-trained FastText

character embeddings (FT_char_word_BiGRU_no_model). It is because the former represent

characters by based on training dataset whereas the later use global information of character. But,

in terms of Kappa both performed equally.

We also conduct how our answer-to-answer and reference attention affect score prediction. We

can see from Table 5.9 that all models with attention (FT_word_char_BiGRU_ref_a2a (with both

attention), FT_word_char_BiGRU_model_ref (with reference attention only)), have promising

result. Even if the data is limited, both attention helps reach better scoring by clueing the network.

From result we may think that if we have enough data our attention techniques better clue the score

prediction. Because of the data size the result with answer-to-answer achieved less than reference

only attention. It is because as model become complex and data not able fit and is overfitting the

model.

Based on result obtained by evaluating effect of word vectors, both domain trained21and global

vectors achieved promising result in terms of correlation and RMSE. In our experimentation,

model that use Skip-gram (Skip_global_word_char_BiGRU) slightly shown better than CBOW

21 All tests except Cbow_ global _word_char_BiGRU and Skip_ global _word_char_BiGRU used domain

trained vectors.

105

(Cbow_ global_word_char_BiGRU). This shows ability of word vectors in representing word

meaning. Moreover, we can conclude that using domain vector are good for subjective question

assessment task than representing words in global domain.

We also evaluated the effect of using model answer, the result shown that correct reference answer

helps to get better prediction. The model named (FT_word_char_BiGRU_no_ref_att) without

model and also self-reference attention downs the result by increasing RMSE to 1.32.

FT_word_char_BiGRU_no_ att_no_model model tested without model answer and no attention

increased again RMSE to 1.74 even if it does well in terms of correlation. From our

experimentation all best performed model use model answer as reference correct answer (see row

1, 3, 4 from Table 5.9). From this result we can conclude that our reference attention model rely

on model answer can do best if given quality data and further analysis is applied to hyper-

parameters.

In general, SQM experimentation shown that our deep learning approach can further improve the

result with best working parameters.

106

CHAPTER SIX

6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Evaluation of the students is a crucial issue in the teaching-learning process especially open

questions are considered to be the most appropriate because they help to evaluate the

understanding of ideas, the students’ ability to organize material and to evaluate the originality of

the thoughts. However, scoring subjective questions manually is challenging task for instructors.

As the result objective question which is not suitable to evaluate skill of student is taken as a de

facto question type used to assess student performance.

We designed subjective question marking system called SQM capable of assessing both short

answer and essays questions automatically. SQM has five main components named pre-

processing, word representation, encoding, attention and scoring. The pre-processing module

normalize pre-graded student answer and provided to word representation also called embedding

module. Based on output of pre-processing module primarily embedding module generate integer

sequence by transposing word to their index. Then each word indices are replaced to FastText

word and character vector that has meaning bearer units of the word and sequence of vectors are

returned to answer or sentence representation module. We used two different word vectors; one

that is trained on domain dataset that is specific to the question seen at the time of training and the

other is global word vector. We trained our model using both global and domain FastText vectors

for Amharic dataset and only train domain word vectors for English dataset. In addition to FastText

word vectors we generate character vectors by averaging word vector of all words in vocabulary

in which the character exists and incorporate to word vector as word sub-information. Using

FastText vectors allowed our model to treat rare words based on their relevancy level. In addition

because of concatenated character level word context, our model encoded out-of-vocabulary words

based on their context. Moreover, with FastText ability to infer word vector using their shared

character n-grams, our model considered words with spelling error to their meaningful words.

The result of word representation layer is passed to sequence encoders. At this layer we applied

two task dependent encoders. To deal with coherency in essay, we first encode each sentence in

essay to get sentence vectors and using each sentence vectors we encoded high level essay context.

107

At each phase of encoders in essay instead of passing all information about words in essay we

applied sentence level and essay level attention that allows us to get most informative essay vectors

only. By doing so, we shown dealing only with salient information in text allow us to get more

answer context than treating each words equally relevant. To deal with short answer questions

using deep learning model, we introduced new model that apply answer level encoder to get

context of all words (vectors) in answer to fixed length low-dimensional space using bidirectional

RNN. Both variants of RNN; GRU and LSTM are experimented. Our model works for both answer

with model answer and without model answer. For answers with model answer we build attentive

vector from model answer and aligned each words of student answer in to attentive vector. Then

model answer aware student answer vector and model answer are matched using answer-to-answer

attention. i.e., from model answer words to student answer and student answer words to model

answer. Then contextual information of both side attention output is encoded with bidirectional

RNN to model interaction between two vectors. Finally, Softmax linear regression is used to

predict score based on range specified by question set.

We evaluated our SQM model component wise and shown that this kind of architecture is able to

suppress systems developed using knowledge based approach as well as system that depend on

manual feature engineering. Without having prior knowledge about grammar and any handcrafted

features our model performed very human like way and outperformed all state-of-art works on

Kaggle dataset by achieving 98% quadratic Kappa on essay dataset and 81% quadratic Kappa on

Kaggle short answer dataset.

Our Amharic short answer model evaluation shown that our Amharic SQM system is the first

Amharic short answer marking system that shows promising result on small sized dataset as

compared to resourced languages. The best performed Amharic short answer assessing model

achieved correlation Pearson, Spearman and Kappa as 66%, 65% and 62% respectively to human

graded answer and minimized root mean squared error to 1.07. This shows that if we pass enough

data with pre-trained model we can, it can score unseen subjective question from any domain as

near exact correlation to human raters.

108

6.2 Contribution of the Study

The main contribution of this thesis works are:

 The study identifies architecture used in developing neural network based approach for

subjective question marking

 We introduced hierarchical encoding and attention method to assess essay that can be taken

as framework for education sector

 We made known deep learning based attentive neural model that can assess subjective

questions from any domain without expecting domain dependent features.

 The Amharic dataset created by two raters for the purpose of evaluating our system

performance for Amharic can be used for successive works on this area

 We show ability of FastText word vectors performance in subjective assessment domain

as written answers are susceptible to spelling error

 Design and develop model requiring no appeal to natural language specific process beyond

tokenization and simple normalization at character level

 We developed FastText word vectors that can be used with any NLP application as external

knowledge by inferring word meaning. Our vectors are skillful on representing words with

syntactic difference and can be used as tool to replace morphology analyzers and contribute

on filling the gap on fundamental NLP tools

 The study clearly shown that when and how to use of sequence encoders in deep learning

such GRU and LSTM for assessment task

 The study shown using the value of incorporating character level language model with

concatenation to word vector to represent words by incorporating sub-word information

and minimize out-of-vocabulary words

 The study shown that short answer questions can be assessed with and without model

(correct reference) answer. But one with reference answer is best choice.

109

6.3 Recommendation and Future Work

The following enhancements are recommended for SQM.

 Deep learning models are transferable to best perform in this area quality dataset is has

major relevance so preparing enough quality data is recommended

 Our work not considered subjective question with formulas and figures. To make SQM

complete is recommended to analysis such question and incorporate to SQM.

 With recent advent in deep learning, we can visualize network hidden layer behavior in

human understandable way. To make SQM applicable to educational sector we recommend

to incorporate feedback that is specific and instructional to missed points made by certain

student.

 FastText word vectors can be used as background knowledge for today’s NLP application

such as question answering, sentiment analysis, textual entailment etc. Evaluating

performance of our FastText in such application is recommended.

110

References

[1] S. J. Hussain. “Validity and Credibility of Public Examinations in Pakistan” Unpublished Ph.D.

Thesis, Department of Education, Islamic University Bahawalpur, Pakistan, 2002.

[2] B. Jill, K. Kukich, S. Wolff, C. Lu, M. Chodorow, L. Braden-Harder, and M. D. Harris,

“Automated Scoring Using a Hybrid Feature Identification Technique”, in Proceedings of the 36th

Annual Meeting of the Association for Computational Linguistics, Vol.1, pp. 206-210, 1998.

[3] B. Yigal, A. Jill, “Automated Essay Scoring with E-rater”, Journal of Technology Learning

and Assessment, Vol.4, No. 3, 2006.

 [4] F. Peter, W. D. Laham, T. K. Landauer, “Automated Essay Scoring: Applications to

Educational Technology”, in World Conference on Educational Multimedia, Hypermedia and

Telecommunications, Vol. 1, pp. 939-944, 1999.

[5] I. Tsunenori, M. Kameda, “Automated Japanese Essay Scoring System Based on Articles

Written by Experts”, in Proceedings of the 21st International Conference on Computational

Linguistics, pp. 233-240, 2006.

[6] C. Tao-Hsing, C.-H. Lee, Y.-M. Chang, “Enhancing Automatic Chinese Essay Scoring System

from Figures-of-Speech” in PACLIC, 2006.

[7] National Educational Assessment and Examination Agency, “Universities 2009 E.C Intake

Capacity”, retrieved from www.nae.gov.et/5/neaea_download_refereces, last accessed on October

20, 2016.

 [8] “Harmonized Modular Curriculum: Ethiopian Language(s) & Literature – Amharic program”,

retrieved from http://www.kuc.edu.et/images/pdf/ETH.LL.pdf, last accessed on October 20, 2016.

[9] M.L. Bender, J. D. Bowen, C. R. Cooper, C. Ferguson, “Government Language Policy:

Language in Ethiopia” Oxford University Press, 1976.

111

 [10] L. Thomas, J. Psotka, “Simulating Text Understanding for Educational Applications with

Latent Semantic Analysis: Introduction to LSA” in proceeding of Interactive Learning

Environments, Vol. 8, No. 2, pp. 73-86, 2000.

[11] C. O’Farrell. “Enhancing Student Learning Through Assessment: A Toolkit Approach.”

Centre for Academic Practice and Student Learning, Dublin, 2004.

[12] E. Lorna, Assessment as Learning: Using Classroom Assessment to Maximize Student

Learning, Corwin Press, 2003.

 [13] P. Weeden, J. Winter, “Assessment what is not for School”, Routledge Falmer 270 Madison,

New York, USA and Canada, 2002.

[14] L. Iasonas, J. A. Athanasou, A Teacher’s Guide to Educational Assessment, sense publisher

2009.

[15] Abel Teklemariam, “Automatic Amharic Essay Scoring System Using Latent Semantic

Analysis”, Unpublished Master Thesis, Department of Computer Science, Addis Ababa, 2010.

[16] M. Jang, J-C. Sohn, H. K. Cho, “Automated Question Answering using Semantic Web

Services”, IEEE Asia-Pacific Services Computing Conference, 2007.

[17] M. Syamala, and H. Mittal. “Review of Computerized Evaluation Tools in Education.”

IJAICR, Vol. 4, No. 2, pp. 111-117, 2012.

 [18] S. Dikli, “An Overview of Automated Scoring of Essays.” Journal of Technology, Learning,

and Assessment, Vol.5, No.1, 2006.

 [19] E. Batten, “Computer Grading of Student prose, using Modern Concepts and Software”, The

Journal of experimental education, Vol. 62, No. 2, pp.127-142, 1994.

 [20] M. Shermis, M. Howard, J. Olson, S. Harrington, “On-line Grading of Student Essays: PEG

Goes on the World Wide Web”, Assessment & Evaluation in Higher Education, Vol. 26, No. 3,

247-259, 2001.

[21] J. Sukkarieh, S. Svetlana, “Automating Model Building in C-Rater” In Proceedings of the

2009 Workshop on Applied Textual Inference, pp. 61-69, 2009.

112

 [22] R. Philip, “Using Information Content to Evaluate Semantic Similarity in A

Taxonomy”, arXiv preprint cmp-lg/9511007, 1995.

[23] H. Gomaa, A. Fahmy “A Survey of Text Similarity Approaches”, International Journal of

Computer Applications, Vol. 68, No.13, pp. 0975 – 8887, 2013.

[24] D. Lin, “Extracting Collocations from Text Corpora”, In Workshop on Computational

Terminology, Montreal, Canada, pp. 57–63, 1998.

[25] S. Boyce, C. Pahl, “Developing Domain Ontologies for Course Content.” Educational

Technology & Society, Vol. 10 No.3, pp.275-288, 2007.

[26] V. Senthil, A. Sankar, “Towards an Automated System For Short-Answer Assessment Using

Ontology Mapping”, International Arab Journal of e-Technology, Vol. 4 No. 1, 2015.

[27] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson, “One

Billion Word Benchmark for Measuring Progress in Statistical Language Modeling”, in arXiv

preprint, 2013.

[28] A. Conneau, H. Schwenk, Y. L. Cun, L. Barrault, “Very Deep Convolutional Networks for

Text Classification” arXiv: 1606.01781v2, 2017.

[29] J. Pennington, R. Socher, D. Manning, “GloVe: Global Vectors for Word

Representation”, Empirical Methods in Natural Language Processing, pp. 1532-1543, 2014

 [30] R. Socher, “Recursive Deep Learning for Natural Language Processing and Computer

Vision” Unpublished Ph.D. Thesis, Stanford University, 2014.

 [31] T. Mikolov, I. Sutskever, K. Chen, S. Corrado, J. Dean, “Distributed Representations Of

Words And Phrases And Their Compositionality”, in Advances in Neural Information Processing

Systems, pp. 3111–3119, 2013.

[32] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jegou & T. Mikolov “Fasttext.zip:

Compressing Text Classification Models”, arXiv: 1612.03651v1, 2016.

113

[33] P. Ofir, L. Wolf, “Using the Output Embedding to Improve Language Models”, in

Proceedings of the 15th Conference of the European Chapter of the Association for Computational

Linguistics: Vol. 2, pp.157-163, 2016.

[34] I. Sutskever, O. Vinyals, V. Le, “Sequence to Sequence Learning with Neural Networks”, in

Advances in neural information processing systems, pp. 3104-3112, 2014.

[35] H. Sepp, J. Schmidhuber, “Long Short-Term Memory”, Neural computation, Vol. 9 No.8, pp.

1735-1780, 1997.

[36] C. Junyoung, G. Caglar; C. KyungHyun, Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling” arXiv: 1412.3555, 2014.

[37] K. Cho, B. Merrienboer, D. Bahdanau, Y. Bengio, “On The Properties of Neural Machine

Translation: Encoder-Decoder Approaches.” arXiv preprint arXiv: 1409.1259, 2014.

 [38] M. Shermis, J. Burstein, “Automated Essay Scoring: A Cross Disciplinary

Derspective”, Routledge, 2003.

 [39] F. Peter, “Latent Semantic Analysis for Text-based Research.” Behavior Research

Methods, Vol. 28, No. 2 pp. 197-202, 1996.

[40] L. Yuhua, M. David, A. Bandar, D. O’Shea, and K. Crockettthe “Sentence Similarity Based

on Semantic Nets and Corpus Statistics”, IEEE transactions on knowledge and data engineering”,

Vol. 18 No. 8, 2006.

[41] J. Burstein, M. Chodorow, C. Leacock, “Criterion SM Online Essay Evaluation: An

Application for Automated Evaluation of Student Essays”, in proceedings of the fifteenth annual

conference on innovative applications of artificial intelligence, Acapulco, Mexico, 2003.

[42] J. Lani “Statistics Solution Advancement Through Clarity,” retrieved from

http://www.statisticssolutions.com/pearsons-correlation-coefficient, last accessed on June 17

2017.

 [43] G. Kendall, Rank Correlation Methods, Oxford University Press, 1990.

http://www.statisticssolutions.com/pearsons-correlation-coefficient

114

[44] S.Burrows, I. Gurevych, B. Stein “The Eras and Trends of Automatic Short Answer Grading”,

International Journal of Artificial Intelligence in Education IOS Press, Vol.25, pp.60 – 117, 2015.

[45] G. Wael, F. Aly, “Short Answer Grading Using String Similarity and Corpus-Based

Similarity” International Journal of advanced Computer Science and Applications (IJACSA), Vol.

3, No. 11, pp. 115-121, 2012.

[46] R. Shourya, S. Himanshu, Y. Narahari, “An Iterative Transfer Learning Based Ensemble

Technique for Automatic Short Answer Grading”, arXiv: 1609.04909v2 [cs.CL], 2016.

[47] A. Dimitrios, Y. Helen, R. Marek, “Automatic Text Scoring Using Neural Networks”, arXiv:

1606.04289v2 [cs.CL], 2016.

[48] Y. Kim, Y. Jernite, D. Sontag, M. Rush, “Character-Aware Neural Language Models”, arXiv:

1508.06615, 2015.

[49] F. Gutierrez, D.Dou, S. Fickas, “Providing Grades and Feedback for Student Summaries by

Ontology-based Information Extraction”, ACM, 2012.

[50] K. Rajiv, R. Ramesh, A Handbook of Principles, Concepts and Applications in Information

Systems, Oxford University Press, 2007.

[51] M. Mohler, R. Mihalcea, “Text-to-text Semantic Similarity for Automatic Short Answer

Grading”, in Proceedings of the 12th Conference of the European Chapter of the ACL, Athens,

Greece, pp. 567-575, 2009.

[52] Y. Goldberg, “A Primer on Neural Network Models for Natural Language Processing” arXiv:

1510.00726v1 [cs.CL], 2015.

[53] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, “Hierarchical Attention Networks for

Document Classification” In HLT-NAACL, pp. 1480-1489, 2016.

[54] M. Schuster, K. Paliwal, “Bidirectional Recurrent Neural Networks” IEEE Transactions On

Signal Processing, Vol. 45, NO. 11, pp. 2673-2681, 1997

 [55] S. Arora, Y. Liang, M. Tengyu, “A Simple but Tough-to-beat Baseline for Sentence

Embeddings”, ICLR, 2017

115

[56] Sebastian Ruder “Deep Learning for NLP Best Practice” retrieved from http://ruder.io/deep-

learning-nlp-best-practices/index.html#attention, last accessed on April 08, 2017.

[57] S. Minjoon, K. Aniruddha, F. Ali, H. Hannaneh, “Bidirectional Attention Flow for Machine

Comprehension”, arXiv: 1611.01603 [cs.CL], 2017.

[58] M. Syamala, H. Mittal, “Machine Learning Techniques with Ontology for Subjective Answer

Evaluation”, International Journal on Natural Language Computing (IJNLC), Vol. 5, No.2, pp.

1-11, 2016.

[59] C. Gulcehre, “Deep Learning” retrieved from http://deeplearning.net/software_links/, Last

accessed on June, 11 2017.

[60] Y. Wenpeng, K. Katharina, Y. Mo, S. Hinrich, “Comparative Study of CNN and RNN for

Natural Language Processing”, arXiv:1702.01923v1, 2017

[61] X. Zhang, J. Zhao, Y. Lecun, “Character-level Convolutional Networks for Text

Classification”, in Advances in Neural Information Processing Systems pp. 649-657, 2015.

[62] L. Tandalla, “Scoring Short Answer Essays”, retrieved from

https://kaggle2.blob.core.windows.net/competitions/kaggle/2959/media/TechnicalMethodsPaper.

pdf, last accessed on May, 09 2017.

[63] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-Based Learning Applied to Document

Recognition.” Proceedings of the IEEE, Vol.86 No. 11, pp. 2278–2324, 1998.

[64] L. Maas, Y. Hannun, Y. Ng, “Rectified Linear Units Improve Neural Network Acoustic

Models”, in Proceedings of the 30-th International Conference on Machine Learning, Atlanta,

Georgia, USA, Vol. 28, 2013.

[65] J. Elman, “Finding Structure in Time”, Cognitive Science, Vol.14, No. 2, pp.179–211, 1990.

[66] T. Mikolov, “Statistical Language Models Based on Neural Networks.” Unpublished Ph.D.

thesis, Brno University of Technology, 2012.

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://kaggle2.blob.core.windows.net/competitions/kaggle/2959/media/TechnicalMethodsPaper.pdf
https://kaggle2.blob.core.windows.net/competitions/kaggle/2959/media/TechnicalMethodsPaper.pdf

116

Annexes

Annex A: Amharic Homonym Characters

Homophone characters Characters to replace

ሃ, ኅ, ኃ, ሐ, ሓ, ኻ ሀ

ሑ, ኁ, ዅ ሁ

ኂ, ሒ, ኺ ሂ

ኌ, ሔ, ዄ ሄ

ሕ, ኅ ህ

ኆ, ሖ, ኾ ሆ

ሠ ሰ

ሥ ስ

ሡ ሱ

ሢ ሲ

ሣ ሳ

ሤ ሴ

ሦ ሶ

ዓ, ኣ, ዐ አ

ዑ ኡ

ዒ ኢ

ዔ ኤ

ዕ እ

ዖ ኦ

ጸ ፀ

ጹ ፁ

ጺ ፂ

ጻ ፃ

ጼ ፄ

ጽ ፅ

ጾ ፆ

ቍ ቁ

ኵ ኩ

Annex B: Amharic Labialized characters used interchangeably in writing

Form 1 Form 2 Labialized form

ሙዋ ሙአ ሟ

ቱዋ ቱአ ቷ

117

Form 1 Form 2 Labialized form

ሩዋ ሩአ ሯ

ሱዋ ሱአ ሷ

ሹዋ ሹአ ሿ

ቁዋ ቁአ ቋ

ቡዋ ቡአ ቧ

ቹዋ ቹአ ቿ

ሁዋ ሁአ ኋ

ኑዋ ኑአ ኗ

ኙዋ ኙአ ኟ

ኩዋ ኩአ ኳ

ዙዋ ዙአ ዟ

ጉዋ ጉአ ጓ

ዱዋ ዱአ ዷ

ጡዋ ጡአ ጧ

ጩዋ ጩአ ጯ

ጹዋ ጹአ ጿ

ፉዋ ፉአ ፏ

Annex C: Common Short forms to their expanded form in Amharic

Short Form Expanded Form Short Form Expanded Form

 ት/ቤት ትምህርት ቤት ዶ/ር ዶክተር

መ/ር መምህር ሚ/ር ሚኒስትር

ት/ክፍል ትምህርት ክፍል ተ/ሃይማኖት ተክለ ሃይማኖት

ሃ/አለቃ ሀምሳ አለቃ ጠ/ሚኒስትር ጠቅላይ ሚኒስትር

ሃ/ስላሴ ሀይለ ስላሴ ኮ/ል ኮለኔል

ደ/ዘይት ደብረ ዘይት ሜ/ጀነራል ሜጀር ጀነራል

ደ/ታቦር ደብረ ታቦር ብ/ጀነራል ብርጋዳር ጀነራል

መ/ቤት መስሪያ ቤት ሌ/ኮለኔል ሌተናሌ ኮለኔሌ

ጽ/ቤት ጽህፈት ቤት ሊ/መንበር ሊቀ መንበር

ክ/ከተማ ክፍለ ከተማ ር/መምህር ርእሰ መምህር

ክ/ሀገር ክፍለ ሀገር አ/አ አዲስ አበባ

ወ/ር ወታደር ፕ/ት ፕሬዝዳንት

ወ/ሮ ወይዘሮ ዓ.ም አመተ ምህረት

ወ/ሪት ወይዘሪት ዓ.ዓ ዓመተ ዓለም

ወ/ስላሴ ወሌተ ስላሴ ዶ.ር ዶክተር

ቤ/ክርስትያን ቤተ ክርስትያን ፕ/ር ፕሮፌሰር

ቤ/ያን ቤተ ክርስትያን እ.አ.አ እንደ አዉሮፓዊያን አቆጣጠር

118

Short Form Expanded Form Short Form Expanded Form

ም/ቤት ምክር ቤት ሰ/ት/ቤት ሰንበት ትምህርት ቤት

ፍ/ስላሴ ፍቅረ ስላሴ ኃ/የተ/የግ ኃላፊነቱ የተወሰነ የግል

ፍ/ቤት ፍርድ ቤት ሲ/ር ሲስተር

Annex D: Experimental Hyper-parameters used to train SQM models

Parameter Name Value Experimented

for Essay

Value

Experimented for

Kaggle short

answer

Value

Experimented

for Amharic

short answer

RNN

RNN Size 100 100 100

RNN GRU/LSTM GRU/LSTM GRU/LSTM

Merge Mode Concat Concat Concat

Number of Layer 2 2 1

Highway Layer 2 2 1

CNN

Kernels 7,3,4,5 2,3,4,5 2,2,3

Pooling MaxPooling MaxPooling MaxPooling

Feature maps 16,32,32,32 16,32,32,64 16,32,32

Padding Valid Valid Valid

Training Parameters

batch size 64 64 32

Epochs 20 100 100

Dropout 0.2 0.5 0.5

BatchNormalization True True True

Activation ReLu ReLu ReLu

Optimizer Adam Adam Adam

Seed 3435 1024 1024

character length per

word

10 10 7

Word length per

sentence

40 120 83

Sentence per essay 35 - -

119

Annex E: Sample Questions and answers with score assigned by two raters

ጅማ ዩኒቨርሲቲ

በሶሻል ሳይንስ እና ሂዩማኒቲስ ኮሌጅ

የአማርኛ ቋንቋ እና ስነጽሁፍ ትምህርት ክፍል

የህዝብ ግንኙነት መግቢያ አጠቃላይ ፈተና

 ቀን: ነሐሴ 26፣ 2009 ዓ.ም

 የተሰጠው አጠቃላይ ሰዓት 2:00

የተማሪው ስም: ______________________________

መታወቂያ ቁጥር: _____________________________

ማስጠንቀቂያ

 ተማሪዎች የመታወቂያ ቁጥር በመልስ መስጫ ወረቀት ላይ ደግማቹ ጻፉ። የፈተና ወረቀቱ ዘጠኝ ገጾች

መያዙን አረጋግጡ።ከተቀመጠው መልስ መስጫ ቦታ ውጪ መጠቀም አይቻልም።

መልካም ፈተና!

ትዕዛዝ ሶስት፡- ለሚከተሉት ጥያቄዎች ግልጽና የተብራራ መልስ ስጪ/ጥ (26 ነጥብ)

1. በቀውስ ወቅት የሚኖር ተግባቦት ሶስት መሰረታዊ ግቦችን ለማሳካት አልሞ መካሄድ እንደሚገባው

ይታወቃል፡፡ እነኝህን ሶስት መሰረታዊ ግቦች በቅደም ተከተል ዘርዝሪያቸው/ራቸው (3 ነጥብ)

 መልስ：ቀውሱን በፍጥነት ማስቆም፤ ቀውሱን ያስከተለውን ጉዳይ በአፋጣኝ መቀነስና የመንግስት

ወይም የተቋመን ተአማኒነት መልሶ መገንባት ናቸው።

120

2. ሚዲያ ለህዝብ ግንኙነት ሙያ/ስራ ያለውን ጠቀሜታ አስረጂ/ዳ (4 ነጥብ)፡፡

 መልስ：ሚድያ ለህዝብ ለህዝብ ግንኙነት የሚያበረክተው ጠቀሜታ ብዙ ነው የተቋሙን

የድርጅቱን እንቅስቃሴ መልእክት ለማስተላለፍ ያስችላል። በቀውስ ወቅት የተቋሙን ደህንነት መልስ

ለመገንባት ስለተቋሙ የሚወሩ አሉባልታዎችን ለማወቅና ለማስወገድ የሚቻለው በሚድያ ነው።

የተቋሙን ጊዴታ መልሶ ለመገንባት የሚቻለው በሚዲያ አማካይነት ነው። ለተቋሙ ለአገር ግንባታ

የሚያስፈልጉ ገንዘብ ለማሰባባሰብ ያግዛል። ህዝብን ተደራሽን ለማሳመን ይጠቅማል። የህዝብ

ግንኙነት ባለሙያ ያዘጋጀውን ዕቅድ ወደተግባር ለመቀየር ያስችላል። ምርትና አገልግሎትን

ለማስተዋወቅ።

3. የህዝብ ግንኙነት ሙያተኞች ነፃ የመሆን ስነ ምግባር ሊኖራቸው ይገባል ሲባል ምን ማለት ነው በሚገባ

ግለጪ/ጽ (4 ነጥብ)

 መልስ：የህዝብ ግንኙነት ባለሙያ መቸም ቢሆን ተጨባጩን እውነት ለማንም ሲባል ማጣመም

ስለሚያስፈልግ ነው። የህዝብ ግንኙነት ስራ በተጨባጭ እውነት ላይ ካልተመሰረተ ጥፋት ማስከተሉ

ስለሚያቀርበው የህዝብ ግንኙነት ባለሙያ ነፃ ካልሆነ ሥራውን በሚገባ ሊያከናውን አይችልም።

4. ከእቅድ ዝግጅት ዋና ዋና ተግባራት አንዱ የሁኔታዎች ግምገማ ማካሄድ መሆ ይታወቃል፡፡ ከዚህ አንፃር

የሁኔታ ግምገማ ለማካለሄድ የሚያስችሉ ስልቶችን በመጠቆም ስለምንነታቸው አጠር አጠር ያለ

ማብራሪያ አቅርቢ/ብ (4 ነጥብ)

 መልስ：በመጀመርያ የሁኔታቸው ግምገማ በጠራ መረጃ ላይ መመስረት አለበት ያለውን

አመለካካት ለማወቅ ያስችላል። ጥናትና ምርምር ማካሄድ በታሰበው ጉዳይ ላይ ተደራሹ ማህበረሰብ

ያለውን አመለካከት ለማወቅ ያስችላል የናሙና ጥናት ማካሄድ የናሙና ጥናት የተደረገላቸውን

ማህበረሰብ አስተያየት ለማወቅ ያስችላል ናሙና በተወሰኑ መጠይቆች አማካነት የሚዘጋጅ ነው።

ግብር መልክ በአንድ ጥናት በተላለፈ መልእክት ላይ ተደራሹ ማኅበረሰብ የሚፈጥረውን ግንዛቤና

የሚያሳየውን አዝማሚያ መነሻ በማድረግ የሚሰበሰብና ለመልእክት አመንጩ የሚተላለፍ ምላሽ

ነው።

121

5. በፕሬስ መግለጫ በዜና መግለጫ እና በፕሬስ ኪት መካከል ያለውን ተመሳስሎና ልዩነት አብራሪ/ራ (3

ነጥብ)

 መልስ：ተመሳስሎ ሁሉም መልእትን ለማስተላላፍ ያግዛሉ። ወደ ተደራሽ ማህበረሰብ ለማቅረብ

አይነተኛ መሳርያዎች ናቸው። ልዩነት： የፕሬስ መግለጫ ለቆዩ ጉዳዮች ላይና ህዝቡ ሊያውቀው

በሚገባ ጉዳይ ላይ ይዘጋጃል። የዜና መግለጫ ለትኩስና ባልቆዩ ጉዳዩች ላይ ይመሰረታል። የፕሬስ

ኪት የህዝብ ግንኙነት ሙያተኛው የሚወክለውን ተቋም ወይም አገር ለማስተዋወቅ አስፈላጊ

መረጃዎችን አሰባስቦ ለሚድያው ለተደራሹ ማህበረሰብ የሚቀርቡበት ጥራዝ ነው።

6. የህዝብ ግንኙነት ሙያተኛ ራሱን በተለያዩ ሚዲያዎች ካስተዋወቀ በኋላ ውጤቱን መመዘን እንዳለበት

ይታመናል፡፡ ከዚህ አንፃር አንድ የህዝብ ግንኙነት ሙያተኛ የማስተዋወቁን ውጤት የሚለካባቸውን

አስተማማኝ መንገዶች በመጠቆም ስለምንነታቸው ማብራሪያ አቅርቢ/ብ (4 ነጥብ)፡፡

 መልስ：አገሪቱ ተቋሙ በሚድያው ባገኘው ሽፋን መጠንና አይነት በተደራሹ ማህበረሰብ ዘንድ

በተፈጠሩ አስተያየቶች እና ይህንን ተከትሎ በተወሰዱ ተግባራዊ እርምጃዎች በመመዘን

የሚያረጋግጥ ነው። ይህንን ጉዳዩ በሶስተኛ ወገን በማስጠናት ማረጋገጥም ይቻላል ሶስተኛ ወገኑ

ፕሮፌሽናል ወይም ለራስ ባለሙያም ማስጠናት ይቻላል።

7. በመልዕክቱና በቋንቋው ጥራት ታዳሚን የሚያማልልና ለተግባር የሚያነሳሳ ጥሩ የአደባባይ ወይም

የንግግር ጽሁፍ ሲዘጋጅ የምትከተያቸውን/ላቸውን አራት ዋና ዋና ጉዳዮች ወይም አካሄዶች

በመጠቆም አብራሪ/ራ (4 ነጥብ)፡፡

 መልስ：የአደባባይ የንግግር ጽሁፍ ለማካሄድ ለጽሑፍ መዘጋጀት ዝግጅት ማድረግ ይገባል።

ዝግጅቱን ማን ምን የትና መቼ የሚሉት ጉዳዮች ሊመለሱ ይገባል ። ቃለ መጠይቅ ማድረግ፣

ከተናጋሪው ጋር የሚደረግ አጭር ቃለ ምልልስ ማደረግ፣ የሚዘጋጀውን ጽሁፍ በጥናት የማረጋገጥ

ከፍተኛ ሂደት ያጎናጽፋል። ምርምር ጥናት ማካሄድ፤ በጉዳዩ ላይ ቀደም ተብሎ የተሠራ መጽሀፍ

ጽሁፍ ሊፈተሸ ይገባል። በጉዳዩ ላይ የተሻለ እውቀት ያላቸውን ሰዎችም ማረጋገጥ ይገባል። ሃሳብ

አደረጃጀት መፃፍ ከዚህ በኋላ ሃሳብን በማደራጀት መፃፍ ይገባል። በዚህ ጊዜ ጽሁፉ ጥሩ መግቢያ

መሪ ሃሳብ ዋና አካል እና ጥሩ ማጠቃለያ ሊቀርብ ይገባል።

122

No Student Answer Score_1 Score_2

1 የቀውሱን መንስኤ ወይም ምክንያት ለማወቅ

ለተከሰተው ቀውስ መፍሔ ለመፈለግ

መንግስትን (ተቋምን) ከገባበት ቀውስ እንዲወጣ ለተደራሽ ለማሳወቅ

3 3

2 ሚዲያ ለህዝብ ግንኙነት ሙያ እጅግ የጎላ ጠቀሜታ አለው፡፡ ጠቀሜታውም

በህዝብ ግንኙነት ሙያ ውስጥ ያሉ መረጃዎ፣ የተገኙ ጠቃሚ የሆኑና ለተደራሽ

አስፈላጊ የሆኑ ነገሮ በሙሉ ለተደራሹ የሚደርሱት ሚዲያን በመጠቀም ነው፡፡

ስለሆነም ሚዲያ ለህዝብ ግንኙነት ሙያ አስፈለጊና ጠቃሚ ነው፡፡

3 4

3 የህዝብ ግንኙነት ሙያተኛ ሊከተላቸው ከሚገቡት ስነምግባሮች አንዱ ነፃ

መሆን 3 ነው፡፡ የህዝብ ግንኙነት ሙያተኛ ነፃ መሆን አለበት ሲባልም

የትኛውንም አቅጣጫ ሳይዝ ማትም ተቋሙን ብቻ ወይም ተደራሹን ብቻ

ሳይወግን ከሁለቱም ነፃ ሆኖ ፊትሐዊ በሆነ መንገድ መረጃ ማስተላለፍ

ስላለበት ነው፡፡

3 2

4 ግምገማ ለማስሄድ የሚያስችሉ ስልቶች፡-

 1- ምርምር ማካሄድ፡- ዕቅድ ከመዘጋጀቱ በፊት ችግር ናቸው የሚባሉትን

መለየትና በነዛ ጉዳዮች ላይ ጥናትና ምርምር ማካሄድ አለበት፡፡

 2- የናሙና ጥናት ማካድ፡- ይህ ሲባል የተወሰኑ ቡድኖችን ናሙና

በመውሰድ የችግሩን አቅጣጫ የሚለይበት ነው፡፡

3- ግብረ መልስ መውሰድ፡- ይህ ሲባል ደግሞ በተነሱት ችግሮ ዙሪያ የጠሰጡ

ግብረ መልሶችን በመሰብሰብ ዕቅዱን የሚያዘጋጅበት ሂደት (ስልት ነው) ፡፡

4 4

5 የፕሬስ መግለጫ ፡- የሚባለው ታዋቂነትና ቀልብ ሳቢነት ያለው ሆኖ ቀድሞ

የተላለፈውም ቢሆን የህዝብ ፍላጎት ካለ ተደግሞ የሚቀርብ መግለጫ ነው፡፡

 ዜና መግለጫ የሚባለው ደግሞ አዲስነት፣ ግጭት፣ ወቅታዊነት፣… ጉዳዮችን

የያዘ ሆኖ በትኩስና ወቅታዊ ነገሮች ላይ የተመሰረተ ነው፡፡

ፕሬስ ኪት የሚባለው ደግሞ የተቋሙ መረጃዎች ማለትም ፎቶ ግራፎች፣ ፋስት

ሺቶች፣ የዜና መግለጫዎችን፣ የፕሬስ መግለጫዎ... የሚቀመጡበት

4 4

123

No Student Answer Score_1 Score_2

ተመሳስሎአቸው ደግሞ ሁሉም ሁሉም በሚዲያ አማካኝነት የሚቀርቡ

ወይም ለሚዲያ የሚቀርቡ ጉዳዮች ናቸው፡፡

6 ራስንየማስተዋወቅ ውጤት የሚላከው

1- ከሚዲያ በተስጠው ሽፋን

2- ከማህበረሰቡ በተፈጠረ አስተያየት

3- በተወሰዱ ተግባራዊ እርምጃዎች

4 4

7 1.አዳዲ ነገሮች ማቅረብ

2.ተጨባጭና አካባቢያዊ ይዘቶችን ማቅረብ

3.አዎንታዊ ምላሽ (መልስ) የሚያሰጡ ነገሮች ማቅረብ

4.ለተግባር የሚያሰነሳሱ ጉዳዮች ማቅረብ

2 3

Declaration

I, the undersigned, declare that this thesis is my original work and has not been presented for a

degree in any other university, and that all sources of materials for the thesis have been duly

acknowledged.

Abebawu Eshetu Yigezu

This thesis has been submitted for examination with my approval as an advisor.

__

Fekade Getahun, PhD

Addis Ababa

Jimma, Ethiopia November 2017

