
i

JIMMA UNIVERSITY

COLLEGE OF NATURAL SCIENCE

DEPARTMENT OF INFORMATION SCIENCE

DEVELOPING A KNOWLEDGE BASED SYSTEM TO SUPPORT

DEBUGGING COMPUTER PROGRAM SOURCE CODE

By: Tariku Fetene

 June, 2017

 Jimma, Ethiopia

ii

JIMMA UNIVERSITY

COLLEGE OF NATURAL SCIENCE

DEPARTMENT OF INFORMATION SCIENCE

DEVELOPING A KNOWLEDGE BASED SYSTEM TO SUPPORT

DEBUGGING COMPUTER PROGRAM SOURCE CODE

A THESIS SUBMITTED TO COLLEGE OF NATURAL SCIENCES OF JIMMA

UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF INFORMATION SCIENCE (INFORMATION AND

KNOWLEDGE MANAGEMENT)

By: Tariku Fetene

 June, 2017

 Jimma, Ethiopia

iii

JIMMA UNIVERSITY

COLLEGE OF NATURAL SCIENCE

DEPARTMENT OF INFORMATION SCIENCE

DEVELOPING A KNOWLEDGE BASED SYSTEM TO SUPPORT

DEBUGGING COMPUTERPROGRAM SOURCE CODE

By: Tariku Fetene

Name of Member of the Examiner Board

Name Title Signature Date

__________ Chairperson __________ __________

__________ Advisor __________ __________

__________ Co - Advisor __________ __________

__________ External Examiner __________ __________

__________ Internal Examiner __________ __________

i

DEDICATION

I dedicate this research to my dearly loved, genuine, very kind, God-fearing, and

beautiful and even much more to me, mother who passed away not taking part of my

success and happiness with me. You are always in my heart, Rest in peace!

ii

Acknowledgement

First and for most, my great thank goes to God who consent the accomplishment of this

research. His mother also deserves a thank. Next, I would like to thank Dr. Million

Meshesha and Mr. Miniyechil Belay for their unreserved and genuine comments and

advise throughout the improvement of this research. I also express my thank to Mizan

Teppi University school of informatics staff members and Jimma University Department

of Information Science who provided me with the facilities required for this research.

Afterward, I would like to express my gratitude to all family members of mine who help

me in one way or another for the successful accomplishment of this very research.

Once again thank you to everyone who never gave up on me, made sure I was on the

right track, supported me all throughout this struggle, and believed I can make it!

x

iii

Table of Contents

Dedication .. i

Acknowledgement ..ii

List of figures ...vi

List of tables ... vii

Abbreviations and Acronyms ... viii

Abstract ...ix

CHAPTER ONE .. 1

Introduction ... 1

1.1 Background of the study ... 1

1.2 Statement of the problem ... 2

1.3 Research questions ... 4

1.4Objectives of the study ... 5

1.4.1 General objective ... 5

1.4.2 Specific objectives .. 5

1.5 Scope and Limitations of the study ... 5

1.6 Significance of the study ... 6

1.7 Methodology of the study ... 7

1.7.1 Research Approach ... 7

1.7.2 Research Design .. 7

1.7.3 Study Area ... 8

1.7.4 Data sources ... 9

1.7.5 Population of the study and sampling procedures .. 10

1.7.6 Instrument of data collection ... 11

1.7.7 Data collection procedures ... 13

1.7.8 Method of data analysis .. 14

1.7.9 Knowledge Acquisition .. 14

1.7.10 Knowledge Modeling ... 15

1.7.11 Knowledge Representation .. 15

1.7.12 System Development Approach .. 15

1.7.13 System Evaluation Method ... 16

iv

1.8 Operational definitions .. 17

1.9 organization of the study .. 18

CHAPTER TWO.. 19

Literature Review .. 19

2.1 Concepts of Artificial Intelligence .. 19

2.2 Knowledge Based Systems ... 20

2.3 Knowledge Based Systems Development ... 20

2.3.1 Knowledge Acquisition .. 21

2.3.2 Knowledge Modeling ... 22

2.3.3 Knowledge Representation ... 22

2.3.4 Knowledge based system development tools .. 26

2.3.5 Methods of Evaluation ... 27

2.4 Related works... 28

CHAPTER THREE .. 32

Data Presentation, Analysis and Interpretation .. 32

3.1 Validity and Reliability of Scale Measures ... 32

3.2 Data Presentations and analysis from learner‘s perspective .. 33

3.3 Analysis and Discussion from Teacher‘s perspective .. 42

3.4 The need for the Knowledge Based System ... 51

CHAPTER FOUR .. 53

Knowledge Acquisition, Modeling and Representation ... 53

4.1 Knowledge acquisition .. 53

4.2 Conceptual Modeling ... 62

4.3 Knowledge representation ... 65

CHAPTER FIVE .. 68

Design and Implementation of the prototype ... 68

5.1 Structural design of KB-DAS.. 69

5.2 The knowledge base ... 70

5.3 The inference engine .. 71

4.4 The user interface .. 72

v

CHAPTER SIX .. 76

Testing and Evaluation of the prototype ... 76

6.1 User acceptance evaluation ... 77

6.2 System evaluation using Test Cases ... 82

6.3 Comparison with related works ... 84

CHAPTER SEVEN .. 87

Conclusion and Recommendations .. 87

7.1 Conclusion .. 87

7.2 Recommendations ... 89

References ... 91

APPENDIXES ... 96

vi

List of figures

Figure 2.1: Development of a Knowledge-Based System ……………………….……….20

Figure 3.1: Decision tree for undefined symbol……………………………………….……36

Figure 3.2: Decision tree for compound statement missing………………………………37

Figure 4.1: Structural design of KB-DAS………………….…………………………….…..42

Figure 4.2: Error message by compiler……………………………………………………..45

Figure 4.2: Welcoming window of KB-DAS…………………………………………………46

Figure 4.3: Dialog on undefined symbol…………………………………………………....47

Figure 4.3: Dialog on declaration syntax errors...………………………………………....47

vii

List of tables

Table 1.1: Samples considered for the current study…………………………………….11

Table 3.1 Sex of students…………………………………………………………………...33

Table 3.2 Department of students………………………………………………………….33

Table 3.3 Student's interest on computer programming…………………………………………..34

Table 3.4 Students grade in programming………………………………………………..………...34

Table 3.5 Reason for students achieving low grade………………………………………….……35

Table 3.6 Level of perception for compiler message……………………………………………….35

Table 3.7 Similar frame of mind for teachers in teaching…………………………………………..36

Table 3.8 Observed teacher's problem………………………………………………………………37

Table 3.9 Student's nature in solving problem………………………………………………………37

Table 3.10 Difficulty for students in writing computer programming………………………………38

Table 3.11 Conceptual difficulties…………………………………………………………………….39

Table 3.12 Place to study computer programming…………………………………………………40

Table 3.13 Place to find answers for questions, if any……………………………………………..40

Table 3.14 Place to find answers for questions……………………………………………………..41

Table 3.15 Identified Categories of Root-Cause factors………………………………………….42

Table 5.1: User acceptance (teacher‘s perspective)…………………….…..……………48

Table 5.2: User acceptance (novice‘s perspective)………………………….……………49

Table 5.3: Total user acceptance (both teacher and novice perspective)………………49

Table 5.4: Testing the Accuracy of KB-DAS by using test cases………………………..53

Table 5.5: Dealing with the previous related works with the current system…….……..55

viii

Abbreviations and Acronyms

AI Artificial Intelligence

DE Domain Expert

ES Expert Systems

HC Harmonized Curriculum

IDE Integrated Developmental Environment

IE Inference Engine

ICT Information and Communication Technology

KB-DAS Knowledge Base Debugging Assistance System

KBS Knowledge Based System

KE Knowledge Engineer

KR Knowledge Representation

ResQue Recommender Systems‘ Quality of user experience

RBS Rule Based System

MTU MizanTeppi University

ix

Abstract

To write programming is an essential skill for students of computing and informatics.

However, learning programming skills in finding errors and correcting them to make the

program run has been recognized as a great challenge for novice programmers. Most of

the errors currently thrown by the compiler don‟t automatically point the novice

programmers to the right direction since some of the messages need deep

understanding and expertise. This finally leads students to suffer and discouraged hope

of solving the problem on their own which results in programming phobia. Even worse,

repetitive failures may defeat students‟ enthusiasm for learning. This study therefore

investigates a number of different compilers, logical and run time errors that novice

programmer‟s encounter and the associated debugging behaviors to assists them in

writing error free code so that the primary objective of the study is to develop a

knowledge based system to assist novice programmers in debugging computer

program source code. This research has followed a Knowledge engineering process for

knowledge acquisition, modeling, representation and prototype development and

testing, The conceptual model of the knowledge based system is designed by using a

decision tree structure which is easy to understand and interpret the causes involved in

the program error. Based on the conceptual model, the knowledge is represented using

„if – then„rules. The developed prototype infers the rules by backward chaining and

provides appropriate suggestions as per the users query. The prototype was evaluated

for its usability in which it registers 87.27% user‟s acceptance. In addition, the

performance of the system was evaluated with twenty five test cases. The results of the

validation test indicate that the prototype registers on the average of 80% accuracy.

Most of the errors handled in this study are compile time errors. Our observation shows

that there is a great challenge in understanding logical errors in writing source codes

which left as a future research direction.

Keywords: Computer Programming, Debugging, Knowledge Base System

1

CHAPTER ONE

Introduction

1.1 Background of the study

Many researchers mention that programming is a very useful skill and can be a

rewarding career (Kurland et al, 2013). The primary mission of each tertiary institution in

the field of computing and information technology is to offer high quality and relevant

education in order to produce skillful and competent graduates. Akinola et al.(2015)

mentioned that the students‘ academic performance is the outcome of the final

examinations, quizzes, assignments, attendance and other graded points related to the

course. To accomplish this, a number of practical and instructional strategies were

designed to improve the students‘ academic performance in programming (Akinola et

al., 2015).

According to (Winslow, 2013), programming courses generally contain lots of practical

exercises: the issues to be learned do not become concrete for the student until start

witting a program. The first programming courses aim at giving students the basic

programming skills on which they can later build more advanced skills and knowledge.

In practical exercises novice students do errors and challenged for fixing those errors

which finally leads students to be stopper, those students who simply stop and abandon

all hope of solving the problem on their own while they notice the program has error

(Winslow, 2013).

Debugging is a process of removing bugs from coded programs. If the program is not

working according to design, developers must debug the source code and fix the

issues. Hwang et al. (2012) mentioned it has been known to account for more than half

of the effort and time spent in software development.

Level of debugging skill is one of the major differences between novice and expert

programmers. Experts make fewer errors and locate and correct bugs faster than

novices. Debugging training is even more needed by novice programmers (Oman et al,

2011). Unlike experienced programmers who can easily locate errors or root causes of

a problem, novice programmers often turn to trial and errors for debugging.

2

Technologies, especially knowledge based system are playing a big role in educational

development and for the revolution in learning systems. They bring new opportunities to

the educational system (Marcus and McDermott, 2011).The emergence of Knowledge

Based Systems (KBS) provides a means for students, doctors, lawyers, engineers and

other people to use the computer as an aid in finding at solution for their problem. KBS

are interactive computer programs that incorporate the knowledge and judgment of

experts in appropriate domains. These systems promise to introduce changes at least

as far-reaching as the entire computer revolution to date. The development of a KBS

presently involves the cooperative effort between a knowledge engineer (KE) and one

or more experts who possess the domain-dependent knowledge. The KE elicits the

knowledge and uses either an expert system building tool or a general-purpose

language to represent and manipulate it.

1.2 Statement of the problem

Learning computer programming is a complex task since programming requires new

ideas in thinking and creative skills in problem solving (Hristova, 2003).Programming is

a skill that is considered hard to learn and even after two years of instruction, the level

of programming understanding is low (Kurland et al., 2013). However, if supported by

suitable teaching strategies and tools it can be mastered by pupils to some extent

(Akinolaet al., 2015).

The need assessment conducted at Mizan Teppi University revealed that 61% of

students in the University have poor academic performance in programming courses

[appendix I]. There observed high dropout rate in programming courses. Since most

courses offered in computing and informatics related to programming courses observed

a high percentage of students with poor academic performance every semester as

noted by Marcus and McDermott (2011), this affect the quality of education greatly.

In the scientific literature, many reasons are pointed out for student‘s high dropout rate,

such as the following. Students‘ motivation, way of study, methodology and tools used

traditional teaching methods, normally based on lectures and specific programming

language syntaxes, often fail in what concerns the students‘ motivation in getting

3

involved in meaningful programming activities (Schulte &Bennedsen, 2006). But are

these challenges a reason to achieve low grade (61%) for our students in the local

University or are there other challenges in the teaching learning process of computer

programming courses? were addressed in this research.

Students from computing and informatics take as many programming course in their

stay in the University as a partial fulfillment for their degree. Novice programmers,

however, easily forget issues of programming style during programming coursework. In

particular in most classes, most students fail in programming courses or else, in some

cases, may pass the courses without having a good knowledge. Winslow (2013) noticed

that students may know the syntax and semantics of individual statements, but they do

not know how to combine these features into valid programs.

Actually high level programming language like turbo C++, Quincy, java tell what and

where the problem is but lots of novice students still confused that is why they need

their teachers to correct their errors Winslow (2013). Compiler is not helpful all of the

time (Salcedo, 2016). It may give misleading messages regarding the error. This can

cause confusion to novice programmers. Too often, compile error messages are

hidden, long, or hard to understand even for experienced programmers (Kordaki, 2010).

That is why some students even can‘t fix the same errors that already fixed by the

instructor and again the question raised by the students may despair instructors.

According to Kordaki, (2010) this problem is worse especially in large programming

class sizes since it is very difficult and time-consuming issue for teachers to assess and

give feedback to students every time. Syntax errors make a program incomprehensible

to compilers and are then easily pointed out. While compilers detect the obvious syntax

errors, their error messages do not necessarily point the students to the right direction

needed to fix errors in the source code (Salcedo, 2016).

Computing curricula rarely provide formal debugging training (Harmonized curriculum,

2013). Novice programmers are then left to develop their own skills. When they do, they

develop debugging skills with limited abilities in formulating ideas about the possible

bugs in their code. A more recent study, Lewis and Gregg discussed the benefits of

4

introducing certain debugging tools earlier or later in the curriculum (lewis& Gregg,

2016). The observation conducted throughout the research shown that most of novice

students are struggling to find and correct their errors by trial and error which takes lots

of time and even sometimes lead them into stopping trying and loss hope in

programming. Hence, it seems logical to start them early case; those who are trained

early in debugging would become better debuggers more quickly. Therefore, it has

become an important and challenging issue to develop improvement strategies or tools

for assisting novices in debugging experience (Hwang et al., 2012).

Therefore, the more specific errors messages from the compiler help students to clarify

concepts, misconceptions, or improve their mental models (Salcedo, 2016). In

particular, it helps them become better programmers in terms of debugging and writing

error-free programs by improving their program comprehension skills and giving them

debugging experience for the next programming courses in their stay in the University.

Thus, the principal concern of this study is to design a knowledge based system for

supporting novice programmers in debugging source code and writing error free

program. To the end, the study attempt to explore and answer the following research

questions.

1.3 Research questions

The research questions which are explored and answered by this research has

presented as follow:

 What are the challenges, for both teachers and students, in teaching learning

computer programming?

 What are the common errors novices are experiencing and how can these

problems be solved?

 What knowledge of programming style and coding conventions are there to write

error free program?

 To what extent the application of knowledge based system support novice

programmers in debugging computer program?

5

1.4Objectives of the study

1.4.1 General objective

The general objective of this study is to assess the teaching learning process of

computer programming and developing a knowledge based system for supporting

novice programmers in debugging source code written in high level programming

language.

1.4.2 Specific objectives

 To assess the challenges for both teachers and students, in teaching learning

computer programming

 To explore the common errors novice programmers are encountered

 To explore the knowledge of programming style and coding conventions in

finding and correcting those common errors novices experiencing

 To identify, acquire, model and represent the knowledge required for the

knowledge based system development.

 To develop, test and evaluate the prototype knowledge based system

1.5Scope and Limitations of the study

There are a number of different approaches for designing knowledge based system but

this system has employed with rule based approach. According to Sajja and Akerkar

(2010). Rule based reasoning in the development of knowledge based system is

advantageous in compact representation of general knowledge. It is also mentioned as

rules can easily represent general knowledge about a problem domain. Rule based

representation has uniform syntax. Hence, the meaning and interpretation of each rule

can be easily analyzed. Each rule is an independent piece of knowledge about the

problem domain. Rules are a very natural knowledge representation method with a high

level of comprehensibility. Rules can emulate the expert‗s way of thinking in natural

expression (Sajja & Akerkar, 2010). And finally it is founded that errors novice

programmers experiencing can easily represented with rule based.

6

The research is compassed for novice undergraduate students from school of

computing and informatics since the negative impact of basic introductory courses may

have harmful consequences in the learners‘ attitude towards the next programming

courses and totally to field of study. Those who are trained early in debugging would

become better debuggers more quickly (Hwang et al, 2012).The research is limited for a

specific programming language called C++ since novice programming students are

practicing their first program is in C++.The research is ranged on developing knowledge

based debugging assistance system prototype according to the common errors which

novices are encountering as it is gathered from their instructors.

One of the limitations for this research is extracting the logical errors and codify it into a

format that can be used in knowledge based system and then representing it into rule

based. So, it could not be handled by the system as many as expected logical errors.

There are three common types of computer programming errors but there is no exactly

specified number for the errors novice programmer do in each type of errors. The C++

IDE has no additional feature which enables to add an extension into it just like other

programming languages; Java and VB. So that with this limitation the researcher forced

to develop a standalone system which enhance the C++ compiler by providing a

specific error message. Another limitation was giving the knowledge base system self

learning ability.

1.6 Significance of the study

Since those who are trained early in debugging would become better debuggers more

quickly and it is found as logical to start from novices (Hwang et al., 2012), this research

would be useful for students in introductory computer programming classes. This

improves their program comprehension ability and gives them debugging experience. It

also minimizes the time students spend on finding and correcting errors by trial and

error. The system can act like their instructor in case of error happening while practicing

to write computer program source code by their own since their instructors could not be

available 24/7. Instructors are benefited from the system in a way to be assisted in the

area that their students needed a help on fixing errors, especially for large class size

(which is large number of students in the class). Since compiler designers seem to

7

ignore helping a special group of programmers: novice programmers because they

often encounter cryptic compiler error messages that are difficult to understand and thus

difficult to resolve, Compiler designers are befitted from this research to think over on

developing a more detailed errors notification for novice programmers. Future

researchers are benefitted, to study on how to assist students in improving their

debugging experiences in computer programming courses.

1.7 Methodology of the study

1.7.1 Research Approach

Research approaches are strategies of inquiry that provide specific direction for

procedure in a research design. Creswell (2003) classified scientific research

approaches into three: quantitative, qualitative and mixed research. Qualitative research

seeks to describe various aspects of social and human behavior through particular

methods such as interview, observation, focus of quantitative properties and

phenomena and their relationships. Whereas, mixed research approach involves

collecting and analyzing both quantitative (numeric) and qualitative (descriptive) forms

of primary data in a single study (Creswell, 2003).

Accordingly, this research follows mixed approach in addressing the research question

raised. The use of quantitative approach is to evaluate/measure perception of students

in the overall teaching learning computer programming. On the other hand, the

deployment of qualitative approach; i.e. semi structured interview for teachers is to

ascertain or triangulate and complete the information obtained from students and to

investigate the overall problems which novice are encountering in the debugging

process of computer programs.

1.7.2 Research Design

Over the years, the discipline of knowledge engineering has evolved into the

development of theory, methods and tools for developing knowledge-intensive

applications (Marcus and McDermott, 2011). So, in this research it is employed a

Knowledge engineering method for knowledge acquisition, knowledge model building,

knowledge representation and prototype development and testing, whereas other

8

suitable methods are also used for knowledge elicitation through discussion with

experts which are professional and experienced teachers and survey design to assess

the level of students in understanding compiler error messages, the way how students

debug their program and teachers reaction in assisting them. Survey design is more

effective in assessing the current practices in its natural setting (Best & Kahn, 2003).

This study was used cross sectional survey design with the intention to get the general

picture of the current status of the students and teachers in teaching learning process of

computer programming courses and on the way how students debug their program and

instructor‘s reaction in assisting them as well. What are the problems, for both

instructors and students, in teaching/learning computer programming? What are the

common errors novices‘ encounters in writing C++ program and what kind of

programming style and coding conventions are there? In supporting this idea different

authors, (Creswell, 2003) suggested that cross-sectional survey is used to gather data

at a particular point in time with the intention of describing the nature of existing

conditions or identifying standards against which existing conditions can be compared

or determined the relationships that exist between specific events. Moreover, the cross

sectional survey design is more effective in assessing the current practices in its natural

setting.

1.7.3 Study Area

Mizan Teppi University is one of the higher institutions in Ethiopia which is found in the

southern regional state of Ethiopia. It is located in both BenjiMaji and Sheka zones. It

has two campus branches located in Mizan town which is the zonal town of BenjiMaji

and Teppi which is one of wereda in Sheka zone. The University is giving the social

science fields in Mizan campus and natural science fields in Teppi campus. Mizan

campus is564 KM and Teppi is 614 KM far from the capital city of Ethiopia (Addis

Abeba). Most of natural science students are taking computer programming

(computational science, informatics and engineering). However, the researcher was

focused on the novice programmer in the University which means students who takes

fundamental programming course since the high drop rate is observed in these students

in the pre survey. This is not only the reason but it is also noticed by different scholars

9

Winslow (2013) that the negative impact of these basic introductory courses may have

harmful consequences in the learners‘ attitude towards the next programming courses

and totally to field of study.

1.7.4 Data sources

In this study, the researcher has employed both primary and secondary data sources to

obtain reliable information about teaching learning computer programming. Sources of

data are students and teachers. Different literatures are also reviewed for additional

required data.

1.7.4.1 Primary data

The researcher has obtained the primary sources of data from the students and

experienced teachers in delivering computer programming courses through

questionnaire and interview. The researcher has used questionnaire for students and

interview for teachers. Those sources were helped the researcher to acquire first-hand

information and to draw inferences.

According to (Dreyfus, 1996), there are five stages of programmers namely; novices,

advanced beginners, competent, proficient and expert. As noted by (winslow, 2013) that

it takes roughly 10 years to turn a novice into an expert programmer. So, the researcher

had two different types of students: very novices (year I) and students with some

knowledge of programming (year II) at least have taken two programming courses

(Fundamentals of programming I & II). The students from year I, at Mizan Teppi

University, were enrolled in the second semester of the first curricular year. They are at

the initial stage of learning how to program. In year II, the students are more advanced

beginner in learning how to program, they were at the University, enrolled in the second

year, second semester, and had already studied introductory aspects of the C++

programming language in the previous semester and developed a semester-long

project in C++ (second year informatics students). While they are participating in this

research, they are also taking a different course on object-oriented programming in

java.

10

1.7.4.2 Secondary data

The secondary sources of data were obtained through different methods. The

researcher was used secondary sources of data by using document analysis, books,

handouts, forums, lab manuals and resources from the internet for supporting the

primary sources of the data, to collect necessary data related to expert system.

1.7.5 Population of the study and sampling procedures

The population of the study included all informatics first year and second year students

(computer science, information technology and information system). Teachers who

have the exposure in teaching learning computer programming have also been included

in this very research. Accordingly, 643 students and 14 teachers have been taken as a

population for this study.

Due to the fact that the student population is mostly too large for the researcher to

consider, small but carefully chosen samples were used to represent the population.

The sample size will reflect the characteristics of the population from which it is drawn.

There are several methods for determining the sample size. In this study has taken a

simple formula from Yamane to determine the sample size. The formula from Yamane

(as cited in Robert- and Bas, 2010):

n= N

 1+N (e) 2

Where: n, N & e are sample size, population size and the level of precision respectively.

This formula assumes a degree of variability (i.e. proportion) of 0.05 and a confidence

level of 95%.

Sample size of students, n= N

 1+N (e) 2

n= 643

 ` 1+643(0. 05)2

n= 643 = 247

 2.6075

11

Next, sample students have been selected from each department using proportional

simple random sampling techniques from a list of department students (see table 1.1). It

is a sampling technique appropriate to meet the objective of the study sample.

The population non overlap in the study samples the proportional allocation from each

selected department. Furthermore, the data obtain from Mizan Teppi University,

University‘s registrar and each of department‘s purposively selected to this study since

they are on the mandate to provide programming courses and it is the scope of the

research.

Table 1.1: Samples considered for the current study

Departments Year I Year II

Total Sampled Total sampled

Computer science 136 52 98 38

Information technology 121 46 96 37

Information systems 103 40 89 34

1.7.6 Instrument of data collection

In order to acquire the necessary information from participants, three types of data

collecting instruments were used such as Questionnaire, Interview and Observation.

Questionnaire

Both closed and open-ended questionnaires were used to collect quantitative and

qualitative data from sampled students. This is because questionnaire is convenient to

conduct survey and to acquire necessary information from large number of study

subject with short period. Furthermore, it makes possible an economy of time and

expense and provides a high proportion of usable response (Best & Kahn, 2003).The

questionnaire was prepared in English language, because all of the sample students

(136*247)

643

12

can have the necessary skills to read and understand the concepts that were

incorporated.

The questionnaire has two parts. The first part of the questionnaire describes the

respondents‘ background information; categories include gender, department, and their

batch and area of specialization. The second and the largest part incorporate the whole

possible reasons on teaching learning process of computer programming courses and

where the conceptual difficulty that students are facing.

The researchers were dispatched and collected the questionnaires through the

assigned data collectors who are lab attendants in each departments of the school of

informatics. To make the data collection procedure smart and cleared from confusions,

the data collectors was properly oriented about the data collection procedures by the

principal researcher.

Interview

Semi-structured interview were used to gather in-depth qualitative data from 5 computer

programming instructors, who are picked from the three departments according to

student‘s preference and school staff member recommendation, within the University on

the overall teaching learning computer programming courses.

Because interview has greatest potential to release more in-depth information, provide

opportunity to observe non-verbal behavior of respondents, gave opportunities for

clearing up misunderstandings, as well as it can be adjusted to meet many diverse

situations (Best & Kahn, 2003). The researcher was conducted the interview to get in

depth information and used for data triangulation. The interview is presented to

experienced teacher in the school about the whole teaching learning process, reasons

for grading low in programming, what must be done to motivate, encourage and uplift

student in computer programming courses,

Observation

This data collection instrument was used to see the real situation in teaching learning

process, challenges that students were facing while practicing in laboratory especially in

13

error handling. Using this method, the researcher had exposure to see different issues

like teachers teaching procedures, students learning procedures, problem experience,

program developmental tool and student skill in understanding errors and trying to

correct them.

1.7.7 Data collection procedures

To answer the research question raised, the researcher went through a series of data

gathering procedures. These procedures helped the researcher to get authentic and

relevant data from the sample units. Thus, after having letters of authorization from

Jimma University for ethical clearance, the researcher directly went to Mizan Teppi

University to have a pilot test of the data gathering instruments. To do so, before

administrating the questionnaire, the researcher was taken10% of the respondents,

which has been taken in to account 25 of students from Jimma University since the

university is very near to the researcher. At the end of all aspects related to pilot test,

the researcher went to Mizan Teppi University.

The researcher made an agreement with the concerned data collectors having

introduced his objectives and purposes. Then, the final questionnaires were

administered to sampled students in the selected University, Mizan Teppi University.

The participants were allowed to give their own answers to each item independently and

the data collectors closely assisted and supervised them to solve any confusion

regarding to the instrument. Finally, the questionnaires were collected and made it

ready for data analysis.

In addition, the researcher was conducted a kind of semi structures interview with

computer programming teachers in Mizan Teppi University (research area) and Jimma

University, since it is one of the senior University in Ethiopia and the place where the

research is attending his masters class, in order to have an experience exchange.

During the process of interview, the researcher attempted to select free and calm

environment to lessen communication barriers that disturb the interviewing process.

14

1.7.8 Method of data analysis

The primary data collected from the survey questionnaire was analyzed on statistical

package of SPSS version 20 for windows in order to address the research questions.

The data collected from students through closed ended questionnaire (the quantitative

one) were processed and analyzed using several sets of statistical tools. Descriptive

analysis was employed to have the presentation of the data in frequency and percent.

The qualitative data were organized according to concepts identified from research

questions, transcribed and then analyzed according to their major concepts. The results

of the qualitative data are then presented using narration. Moreover, the thematic

approach was followed to display the analysis and findings from both quantitative and

qualitative data. The themes for the data analyses were derived from the conceptual

framework of the study that is grounded in the basic research questions. Analysis of

quantitative data displayed first and then in corporate by qualitative data analysis in the

form of texts and quotes.

1.7.9 Knowledge Acquisition

Knowledge Acquisition (KA) is the process of acquiring relevant knowledge from domain

experts and other sources of information such as books, databases, guidelines,

manuals, journal articles, computer files, etc. KA is the process of eliciting, structuring

and representing (formalizing) domain knowledge acquired from the different sources.

The acquired knowledge can be specific to the problem domain, it can be general or it is

meta-knowledge (knowledge about knowledge). Knowledge acquisition is the first step

and critical task in the development of knowledge based system (Sagheb, 2009).

The knowledge acquisition process of this study consists of activities such as gathering

essential knowledge, analyzing the knowledge, identifying vital concepts and modeling

the knowledge using decision trees. In this study, to acquire the needed knowledge,

both primary and secondary sources of knowledge are used. Before critical knowledge

is gathered from the teachers, a preliminary assessment has been done to investigate

where students gets conceptual difficulty in learning computer programming. Primary

knowledge gathered from experts in the domain area, the instructors of the University in

15

this context, using semi-structured interview. Due to this, the researcher purposely

selected 5 computer programming course instructors as per the recommendation of the

school staff members, seniority and course exposure.

1.7.10 Knowledge Modeling

Modeling of domain knowledge implies capturing the static structure of information and

knowledge types. Decision trees (DTs) are modeling tools that are used in a variety of

different settings to organize and break down clusters of data. Similarly, decision tree

have been widely used in practical applications area, due to its interpretability and ease

of use. Currently, decision trees are used in many disciplines such as medical

diagnosis, cognitive science, law and computer diagnosis. The decision tree was used

in the three main types of errors (syntax, logical and run time) domain to understand the

dimension of the problem. Each tree starts with a set of errors and ends with solutions

1.7.11 Knowledge Representation

The acquired knowledge from the domain experts has been used to represent by using

decision tree modeling in formal language logic. Rule based reasoning mechanism has

been employed for the inference engine. In knowledge based system there are many

reasoning mechanisms; among that the most commonly used are rule based approach,

case based approach or the combination of the two. Case based approaches are

designed to work in the way that the basic idea of similar problems having similar

solutions (Aamodt& Plaza, 2013). It is a rule based System that solves problems by

remembering past situations and reusing its solution and lesson learned from it. Case

based approach represents situations or domain knowledge in the form of cases and it

uses case based reasoning techniques to solve new problems or to handle new

situations (Abdulah et al., 2014). Rule based reasoning, on the other hand reason from

domain knowledge represented in a set of rules.

1.7.12 System Development Approach

Prototyping approach was followed to develop the knowledge based system.

Prototyping allows participating users who are students and domain experts for

evaluating systems accuracy, performance, effectiveness and efficiency. So that the

16

researcher has developed a prototype of which debug errors occurred in writing

computer programming based on the conceptual difficulty that is surveyed from

students and the method to correct syntax errors as interviewed programming

instructors.

To develop knowledge based systems there are various tools which are available both

freely and commercially. Among this SWI Prolog and Lisp are among the most widely

used and known frameworks for teaching and academic research purpose (Aamodt&

Plaza, 2013). The actual implementation of KBS was based on high level programming

languages. However, modern knowledge based system development tools highly

depend on their purposes, functionality and some additional features. Based on their

purposes, KBS tools are classified as general purpose programming tools such as Java,

and framework .NET. On the other hand, there are also specific purpose programming

languages such as JRULES, CLIPS, JESS (java expert shell system) (Endris, 2011). In

addition programming Language such as C++ provides objects as a mechanism for

programmer to control the layout and data structures (Kingston, 2008).

However this prototype is implemented by C++, software which novice programmers

are practicing their program, in the intention to be easily usable and accessible for them

as an extension for the compiler. Even if prolog is open source software and it is the

preferred programming language for developing knowledge based system but it lacks a

graphical interface and integration with C++ IDE. Another reason is that because it was

found that the rules produced by the knowledge engineer (the researcher this time)

could easily be represented by C++.

1.7.13 System Evaluation Method

Once the prototype is developed, the functionality and user acceptance of the system

should be tested. So that the evaluation processes focus on systems user acceptance

of the prototype and the performance of the system. Accordingly, the system is

evaluated by user acceptance testing by preparing questionnaire which is adapted from

(Puet al, 2011) that used to evaluate the model called ResQue (Recommender

17

Systems‘ Quality of user experience) with users‘ point of view. Then calculate the total

user acceptance by using the following formula:

Where AVP is average

performance SV scale value and,

TNR total number of respondent

and NR is number of respondent

Then the result of user acceptance average performance is calculated out 100%.as

follow:

Where; NS is number of scale.

1.8 Operational definitions

Domain Expert: - is a person who expertise in his/her domain area. In addition, an

instructor who provides and facilitates teaching learning process in programming

courses is a domain expert in his domain.

Compiler: - is a program which converts the high level language into machine language

so that the Integrated Developmental Environment (IDE) can understand what have

been written in it as machine language or computer language.

Knowledge Based System: - is the collection of relevant knowledge that is stored in

the computer and is organized in such a manner that it can be used for inferences,

which is the reasoning process of Artificial Intelligence that takes place in the brain of an

Artificial Intelligence process

Novices: - they are new programmers or beginners who have no deep knowledge

about programming.

Computer Programming: -. It is a process that leads from an original formulation of a

computing problem to executable computer programs.

Source (Aboneh, 2013)

Source (Aboneh, 2013)

18

1.9 organization of the study

This study comprises seven chapters. Chapter one discusses background of the study,

the problem statement and research questions, the general and the specific objectives

of the study, and methodologies that the researcher used to conduct this study.

Chapter two discusses about theoretical and empirical works review that are relevant for

this study. In this chapter, the researcher discussions about artificial intelligence,

knowledge bases systems, types of knowledge representation techniques, System

Performance Evaluation Methods and related works which are relevant for this study.

Chapter three presents the data presentation, analysis and interpretation of the data

gathered by different instruments, mainly questionnaire and semi-structured interview.

The summary of the quantitative data is presented by the use of Tables that

incorporates various statistical tools. Similarly, the qualitative data was organized

according to the themes, analyzed and used to strengthen or to elaborate more that of

the quantitative one.

Chapter four of this thesis presents the about the knowledge acquisition processes

which show how the required knowledge for system is acquired , how the acquired

knowledge is modeled so that it would be easy to represent it into the system and

knowledge representation techniques.

Chapter five discusses about Design and Implementation. In this chapter the structural

design of the system, knowledge base and inference engine as well as the user

interface are presented.

Chapter six discusses about implementation and evaluation of the prototype systems. In

this chapter the performance of the prototype is evaluated both the performance of the

system and the acceptance of the system by the users.

Finally, the researcher dedicated chapter six for conclusion and recommendation. In this

chapter, the researcher discussed the evaluation results and based on the result the

researcher presents findings and concludes the study by recommending future works.

19

CHAPTER TWO

Literature Review

2.1 Concepts of Artificial Intelligence

Technology has become crucial in educational development and for the revolution in

learning systems (Olapiriyakul, 2012).Technology creates and transforms the learning

and teaching processes, which brings new opportunities to the educational system.

One of such technological advancement is an expert system or a knowledge based

system (Rajeswari, 2012).

The main examples of the Knowledge Based System (KBS) developed at the early

stages of AI include PUFF (1979), MYCIN (1976), CADUCEUS (1984), QMR (1988),

and DENDRAL (1960s and 1970s) and WATSON (2016). Pulmonary function analysis

(PUFF) was of the oldest KBS in the field of medicine. It was developed for the

interpretation of respiratory tests for diagnosis of pulmonary disorders. Patient

inhales/exhales through a tube connected to computerized instrument which measures

flow rates and air volumes. PUFF accepts this data along with auxiliary data (age, sex,

smoking history), and prints diagnosis in English. As for the knowledge base, a

knowledge engineer sat down with an expert pulmonary physiologist at the Pacific

Medical Center in San Francisco and developed rules (64 in all). A more recent version

of PUFF had about 400 rules.

MYCIN, a precursor to PUFF, was developed for the identification of bacteria in blood

and urine samples and prescription of antibiotics 1976. It uses IF-THEN rules (with

certainty factors) to represent knowledge. It also interacts with a physician to acquire

clinical data. The system asks questions based on current hypothesis and known data

and reasons backward from its goal of recommending a therapy for a particular patient.

It stores approx. 500 IF-THEN rules, and can recognize about 100 causes of bacterial

infection. TEIRESIAS serves as a front-end to MYCIN. It was the first program to

provide explanations of how conclusions were reached. TEIRESIAS can answer "why"

questions by examining its internal tree of sub goals.

20

2.2 Knowledge Based Systems

According to Kesarwani & Misra (2013), a knowledge base is the collection of relevant

knowledge that is stored in the computer and is organized in such a manner that it can

be used for inferences, which is the reasoning process of Artificial Intelligence that takes

place in the brain of an Artificial Intelligence process. It is one of the major family

members of the AI group. With the availability of advanced computing facilities and

other resources, attention is now turning to more and more demanding tasks, which

might require intelligence (Kesarwani & Misra, 2013).

KBS can act as an expert on demand without wasting time, anytime and anywhere.

KBS can save money by leveraging expert, allowing users to function at a higher level

and promoting consistency. In fact, a KBS is a computer based system, which uses and

generates knowledge from data, information and knowledge (Sajja & Akerkar, 2010).

Rajeswari (2012) mentioned that these systems are capable of understanding the

information under process and can take decision based on the residing

information/knowledge in the system, whereas the traditional computer systems do not

know or understand the data/information they process. The KBS consists of a

Knowledge Base and a search program called Inference Engine (IE). The IE is a

software program, which infers the knowledge available in the knowledge base. The

knowledge base can be used as a repository of knowledge in various forms. As an

expert‘s power lies in his explanation and reasoning capabilities, the expert system‘s

credibility also depends on the Explanation and Reasoning of the decision

made/suggested by the system.

2.3 Knowledge Based Systems Development

Mostly knowledge engineering, the process of building an expert system, involves some

basic steps. The main phases of a knowledge based system development processes

are planning, knowledge acquisition, knowledge representation and evaluation (Sajja &

Akerkar, 2010).The knowledge of the expert(s) is stored in his mind in a very abstract

way. Also every expert may not be familiar with knowledge-based systems terminology

and the way to develop an intelligent system. The Knowledge Engineer (KE) is

21

responsible person to acquire, transfer and represent the experts‘ knowledge in the

form of computer system (Sajja & Akerkar, 2010).

Figure 2.1: Development of a Knowledge-Based System (Sajja & Akerkar, 2010)

2.3.1 Knowledge Acquisition

The knowledge acquisition process incorporates typical fact finding methods like

interviews, questionnaires, record reviews and observation to acquire facts and explicit

knowledge. However, these methods are not much more effective to extract tacit

knowledge which is stored in the subconscious mind of experts and reflected in the

mental models, insights, values, and actions of the experts. For this, techniques like

concept sorting, concept mapping, and protocol analysis are being used (Sajja &

Akerkar, 2010).

The acquired knowledge should be immediately documented in a knowledge

representation scheme. At this initial stage, the selected knowledge representation

strategy might not be permanent. However, documented knowledge will lead the

knowledge engineer/ development to better understanding of the system and provides

guidelines to proceed further. Rules, frames, scripts and semantic network are the

typical examples of the knowledge representation scheme. It is the responsibility of the

knowledge engineer to select an appropriate knowledge presentation scheme that is

22

natural, efficient, transparent, and developer friendly. One may think for hybrid

knowledge representation strategies like rules within the frames in slots like ―on need‖

and ―on request‖; semantic network of default frames etc (Rajeswari, 2012).

2.3.2 Knowledge Modeling

Several key contributions made during the 1980s, including Allen Newell‘s notions of

knowledge level, William Clancey‘s critical analyses and the broader wave of second-

generation ES research, have shaped our current perception of the knowledge

acquisition problem (Rajeswari, 2012). Central to the current perception is the

knowledge model, which views knowledge acquisition as the construction of a model of

problem-solving behavior, that is, a model in terms of knowledge instead of

representations. The concept of knowledge-level modeling has matured considerably.

The practical knowledge level models incorporated in today‘s methodologies do not

simply reflect the knowledge content of a system; they also make explicit the structures

within which the knowledge operates in solving various classes of problems. This

enables the reuse of models across applications.

Decision tree

According to (Rajeswari, 2012), decision trees (DTs) are modeling tools that are used in

a variety of different settings to organize and break down clusters of data. Similarly,

decision tree have been widely used in practical applications area, due to its

interpretability and ease of use. Currently, decision trees are used in many disciplines

such as medical diagnosis, cognitive science, law and computer diagnosis. Decision

tree structures are the bases for the development of prototype knowledge based

system.

2.3.3 Knowledge Representation

To build the knowledge base we have the problem of how to represent it. Knowledge

representation concerns the mismatch between human and computer ‗memory‘. We call

these representations, knowledge bases, and the operations on these knowledge

bases, inference engine.

23

A knowledge representation (KR) is an idea to enable an individual to determine

consequences by thinking rather than acting, i.e., by reasoning about the world rather

than taking action in it. The knowledge acquired from experts or induced from a set of

data must be represented in a format that is both understandable by humans and

executable on computers. Good Knowledge Representation Languages should be

Expressive, Concise, Unambiguous, and Independent of context, Efficient and effective

(Kesarwani & Misra, 2013).

Knowledge Representation methods all have advantages and limitations. Production

rules are popular in the design of the first-generation expert system. The object-oriented

method has become very popular in recent years. Predicate logic provides a theoretical

foundation for rule based inferences. To navigate the problem associated with single

knowledge representation technique the integrated knowledge representation came into

the picture.

Sometimes, no single knowledge representation method is by itself ideally suited for all

tasks. When several sources of knowledge are used simultaneously, the goal of

uniformity may have to be sacrificed in favor of exploiting the benefits of multiple

knowledge representations, each tailored to a different subtask. The necessity of

translating between knowledge representations becomes a problem in these cases.

Nevertheless, some recent expert system shells use two or more knowledge

representation Schemes, e.g., the CORVID, KRYPTON, MANTRA, FRORL system

(Kesarwani & Misra, 2013).

2.3.3.1 Frames based Representation

A frame is a node with additional structure that facilitates differentiated relationships

between objects and properties of objects. Sometimes it is called as ―slot-and-filler‖

representation. Frames overcome the limitation of semantic network that differentiates

relationships and properties of objects. Each frame represents a class or an instance

(an element of a class). Frames are application of object-oriented programming for

expert systems.

24

The concept of a frame is defined by a collection of slots. Each slot describes a

particular attribute or operation of the frame. Slots are used to store values. A slot may

contain, a default value or a pointer to another frame, a set of rules or procedure by

which the slot value is obtained (Sharma & Kelkar, 2012).

2.3.3.2 Semantic Networks

Semantic networks are an alternative to predicate logic as a form of knowledge

representation. The knowledge can be stored in the form of a graph, with nodes

representing objects in the world, and arcs representing relationships between those

objects. Semantic network also called as Associative Network.

Semantic representation consists of 4 parts. Part one is Lexical. It tells which symbols

are allowed in the representation‘s vocabulary. Nodes denote objects, links denote

relations between objects, and link-labels denote particular relations. The second part is

Structural that describes constraints on how the symbols can be arranged. Nodes are

connected to each other by links. The third is Procedural which specifies the access

procedures (to create, modify, answer questions).Procedures are constructor

procedure, reader procedure, writer procedure and erasure procedure. The last part is

Semantic that establishes the way of associating the meaning. Nodes and links denote

application specific entities.

2.3.3.3Case-Based Representation

Case-Based Representation is a computer technique which combines the knowledge

based support philosophy with a simulation of human reasoning when past experience

is used, i.e. mentally searching for similar situations happened in the past and reusing

the experience gained in those situations (Kesarwani&Misra, 2013). The concept of

case based reasoning is founded on the idea of using explicit, documented experiences

to solve new problems. The decision maker uses previous, explicit experiences, called

cases, to help him solve a present problem. He retrieves the appropriate cases from a

larger set of cases. The similarities between a present problem and the retrieved case

are the basis for the latter‘s selection (Rajeswari, 2012).

25

2.3.3.4 Rule Based Representation

Rule based reasoning is a system whose knowledge representation in a set of rules and

facts. Symbolic rules are one of the most popular knowledge representation and

reasoning methods. This popularity is mainly due their naturalness, which facilitates

comprehension of the represented knowledge. The basic forms of a rule, if<condition>

then<conclusion> where <condition> represents premises, and <conclusion>

represents associated action for the premises. The condition of the rules is connected

between each other with logical connectives such as, AND, OR, NOT, etc., thus forming

a logical function. When sufficient conditions of a rule are satisfied, then the conclusion

is derived and the rule is said to be fired.

Rules based reasoning was dominantly applied to represent general knowledge. Rule

based expert systems have a significant role in many different domain areas such as

medical diagnosis, electronic troubleshooting and data interpretations. A typical rule

based system consists of a list of rules, a cluster of facts and an interpreter (prentzas &

Hatzilygeroudis, 2007).

Rules in the system represent possible actions to take when specified conditions hold

items in the working memory. The conditions are usually patterns that must match with

the items in the working memory. In forward chaining, actions are usually involved

adding or deleting items from the working memory. Interpreter of the inference engine

controls the application of the rules, given the working memory. The system first checks

to find all the rules whose condition holds true (Rajeswari, 2012).

Rule Based Reasoning Techniques

It is mentioned as there are two main inference methods in rule based reasoning

mechanism. These are backward chaining and forward chaining. The former is guided by

the goals (conclusions), whereas the latter one is guided by the given facts (Freeman-

Hargis, 2014).

26

Forward chaining

During forward chaining, the inference engines first predetermine the criterion and the next

steps are to add the criterion one at a time, until the entire chain has been trained. With

data driven control, facts in the system are represented in a working memory which is

continually updated. Rules in the system represent possible actions to take when specified

conditions hold items in the working memory. The conditions are usually patterns that must

match with the items in the working memory. In forward chaining, actions are usually

involves adding or deleting items from the working memory. Interpreter of the inference

engine controls the application of the rules, given the working memory. The system will first

checks to find all the rules whose condition holds true (Nalepa, 2015). Both data driven and

goal driven chaining method follows the same procedures. However, the difference lies on

the inference process. The system keeps track of the current state of problem solution and

looks for rules. This cycle will be repeated until no rules fire or the specified goal state is

satisfied (Rajeswari, 2012).

Backward chaining

This strategy focuses its effort by only considering rules that are applicable to the

particular goal. It is similar with forward chaining the difference is it receives the problem

description as a set of conclusions instead of conditions and tries to find the premises

that cause the conclusion. Given a goal state and then the system try to prove if the

goal matches with the initial facts. When a match is found goal is succeeded. But, if it

doesn't then the inference engine start to check the next rules whose conclusions

(previously referred to as actions) match with the given fact. Note that a backward

chaining system does not need to update a working memory instead it keeps track of

what goal is needed to prove its main hypothesis. Goal driven control is commonly

known as top-down or backward chaining (Nalepa, 2015).

2.3.4 Knowledge based system development tools

In the 1980s and early 1990s, when commercial interest in knowledge based system

was reach at its peak, approximately there are more than 200 commercially available

KBS tools (Sajja & Akerkar, 2010). Many are still available but no longer described as

KBS tools for marketing reasons. A knowledge based system tool is a set of computer

27

software that manipulates programs and other information in order to design and assist

the development of knowledge based systems (Kesarwani & Misra, 2013). The actual

implementation of KBS was based on high level programming languages. However,

modern knowledge based system development tools highly depend on their purposes,

functionality and some additional features. Based on their purposes, KBS tools are

classified as general purpose programming tools such as Java, and framework 1.NET.

On the other hand, there are also specific purpose programming languages such as

JRULES, CLIPS, JESS (java expert shell system) (Endris, 2011). In addition

programming Language such as C++ provides objects as a mechanism for programmer

to control the layout and data structures (Kingston, 2008).

There are many knowledge based system tools. According to Kingston (2008) different

author classified KBS development tools based on their functionality. The simplistic

nature and additional feature it provides is used as parameters to select KBS

development tools. Expert systems are typically written in special programming

languages. The use of languages like LISP and PROLOG in the development of an

expert system simplifies the coding process. The major advantage of these languages,

as compared to conventional programming languages, is the simplicity of the addition,

elimination, or substitution of new rules and memory management capabilities.

2.3.5 Methods of Evaluation

Knowledge based systems evaluation method can be split into Verification, validation,

assessment of human factors and assessment of correctness. These evaluation

methods are discussed as follow (Thomas, 2014):

Verification is an evaluation process that should be implemented during system design

and development to answer the question Did we build the system correctly‗. Verification

can be defined as the process that involves checking for compliance with the system

specifications, checking for syntactic and semantic errors in the knowledge based

system. Specification assessment includes user interface, explanation facility, real time

performance and security provisions specified in the system design. To verify a

knowledge based system, it is possible to use either a program proof or a test strategy.

28

The program proof confirms total correctness of the program logic with mathematical

methods and the test proof strategy confirms partial correctness of the program with

given test cases (s).

Validation: The concept of validation refers to determining the correctness of the

system with respect to users‘ needs. Validation criteria include comparisons with known

results (e.g. past cases or solved problem), comparison against expert performance,

and comparison against theoretical possibilities. Empirical validation checks whether the

results of content remain stable when the system is under full workload. The system test

examines the complete system performance in its working environment. Validation tests

include user acceptance surveys, direct comparison on random test cases between

human expert and that of the system.

Evaluation of human factors is the process of determining the acceptability and

usability of the knowledge based system. Usefulness of a system is often measured by

examining user satisfaction. User satisfaction measured from different point of views

such as content satisfaction, interface satisfaction and institutional objective. Personal

aspect such as individuals ‗dislike of computer takes into consideration.

Evaluation of explanations is used to evaluate the explanation ability of knowledge

based system. An explanation facility must have the ability to accept feedback from the

user and provide response for the given feedback. An explanation facility must be able

to offer brief description in more than one way. An explanation module should be able to

answer a range of questions that a users‘ wishes to ask and not limited to those

questions predicted by developers. An explication module should take into account the

user's goals, the problem domain and the previous explanatory dialogue. :

2.4 Related works

Researchers have focused on identification of specific bugs for different reasons: some

used their results to create debugging tools, while others to gain insight into computer

programming education (Hristova, 2003). Various methods have been used including

surveys, interviews, talk aloud exercises, observing students while they solve problems,

and hand analysis of program assignments.

29

A more recent study, Lewis and Gregg (2016) discussed the benefits of introducing

certain debugging tools earlier or later in the curriculum. McCartney, (2007) investigated

novices debugging strategies and suggested that skills at debugging are distinct from

general programming ability which deserves individual attention pedagogically.

Smith and Webb (1992) also did a study called ―Recent Progress in the Development

of a Debugging Assistant for Computer Programs―. They made a debugging

assistant that provides the users with explicit models of their programs and hence

encourage them to find errors for themselves. The transparency debugger called

Bradman was created to help novice programmers debug their C programs. The system

is an interactive system which builds two models of the user‘s program one reflecting

what the program actually does and the other reflecting what the programmer intended

to do. Conflicts between these two models are used by Bradman to find bugs in the

program. This way it also provides an active support during the debugging process.

They have demonstrated novices appreciate having such information made explicit and

that a facility that explains individual statements supports them in their debugging

efforts. The limitation of the system is Bradman takes the user‘s syntactically correct

program code as input. This code is parsed and relevant information extracted from each

statement. This information is stored in a. tree structure and is called the implementation

model. It reflects what the program actually does. At this stage, statements are treated as

individual entities and no attempt is made to understand their purpose in relation to other

statements.

A research done by Salcedo, Najinar Raysal Marie G (2016) which is entitled as

―novice Assistance in Java Introduction” is an extension developed for BlueJ on the

primary objective of giving a clearer explanation for root cause of a compile error so that

it helps new programmers being introduced to Java in their debugging. The researcher

has highly argued on the compile errors currently thrown by the compiler don‘t

necessarily point the novice programmers to the right direction. With the help of NAJI

(Novice Assistance in Java Introduction), these compile errors are processed to have a

more detailed output like background, root cause, and example. The research is done

by using the five errors identified in methods and tools for exploring novice compilation

30

behavior to develop an extension of IDE to help novice programmers understand the

compiler errors. In this research an object oriented system analysis and design

methodology has employed. It is presented as the system is useful but user acceptance

and performance test values are not specified (Salcedo, 2016).

A social recommender system that can help different programmers in debugging their

program has been done. It is entitled as HelpMeOut is supports the debugging of errors

by suggesting fixes that peers have applied in the past. It collects examples of code

changes that fix errors in a central database. The user feeds the error to a suggestion

interface then it queries the database for relevant fixes. In developing the system anova

system development methodology is employed. The system is able to suggest useful

fixes for 47% of the errors since it is tried to include all types of errors in different

programming language C++, java and vb (Bradnt, 2010).

Adil (Automated Debugger in Learning system) is a knowledge-based automated

debugger in C language. Stereotyped code and bugs are stored as knowledge base

library of plans in the knowledge-base. Adil is able to understand an error-free program

and locate, pinpoint, and explain logical errors. It also acts as an IDE by having

necessary supporting tools to facilitate the recognition and debugging. Given a syntax

error-free program and its specification, this debugger is able to locate, pinpoint and

explain logical errors of programs. Knowledge engineering methodology is used

(Aljunidet al, 2000).

A study made by Lee and Wu, (1999) has findings on improving programming skills of

novice programmers by the way they debug. They developed a debugging training

which will uncover and correct any misconceptions of the programmers and improve

their debugging skills. The model they developed called DebugIt covers frequently

committed errors in Pascal language. The results showed that the model of supervised

debugging was effective in improving novice programmers‗ debugging skills (Lee & Wu,

1999).

Expresso was done in Bryn Mawr College to overcome the problem of cryptic compiler

messages (Hristova et al, 2003). The primary objective of the research is to help novice

31

java programmers in debugging process. The approach Expresso did is object oriented

system analysis design to do a better job of generating error messages and suggesting

possible solutions to those errors. It is an educational tool for Java programming. It is

mentioned as the tool could enhance the function of the compiler. However, the tool

specifically does not eliminate the need for understandable compiler error messages;

rather, the tool enhances the functions of a compiler. The intention was to create a

helpful interactive tool that would do a better job generating error messages than

existing compilers and also provide suggestions on how to fix the code (Hristova et al,

2003).

Java Intelligent Tutoring System was a prototype developed to aid in tutoring the

language. It focuses on variables, operators, and looping structures. It is a web-based

application where you will upload your java program and run your program and returns

the output (Sykes & Franek, 2004).

To conclude, several studies have been developed so as to assist students in their

debugging skill but they are whether higher levels like java or very low language like

pascal and C. there is no debugging assistance system specifically done for C++, which

is very popular and working environment to teach fundamentals of programming in

many Universities in Ethiopia. So this research is on this very language, C++, to

develop a knowledge base debugging assistant system.

32

CHAPTER THREE

Data Presentation, Analysis and Interpretation

This chapter presents the data analysis and interpretation of the data gathered by

different instruments, mainly questionnaire and semi-structured interview on assessing

the challenges for both teachers in teaching learning computer programming courses.

The data helps as a requirement for the knowledge base system. The summary of the

quantitative data is presented by the use of Tables that incorporates various statistical

tools. Similarly, the qualitative data was organized according to the themes, analyzed

and used to strengthen or to elaborate more that of the quantitative one. Thus the

qualitative data is used to support the result obtained from the interpretation of the

quantitative data. Data presentation and analysis in this very research is divided into

two perspectives: learner‘s and teacher‘s perspectives.

3.1 Validity and Reliability of Scale Measures

The validity analysis of the measurement instrument was based on pilot study on 10 %

respondents that can be representative of the sample population. The respondents of

the pilot study were provided with the original questionnaire and have rated their extent

of agreement/disagreement on the statements of the questionnaire. To do so, before

administrating the questionnaire, the researcher took 10% of the respondents, which

has been taken in to account 25 of students from Jimma University. Furthermore, they

have pointed out the shortages of the original data collection instrument by rendering

critical suggestions, which are incorporated by revising the survey questionnaire. At the

end of all aspects related to pilot test, the researcher went to Mizan Teppi University to

distribute the questionnaire for target sample population.

The reliability measurements were calculated on students‘ side questionnaire for the

overall teaching learning process of computer programming of the primary data set by

applying internal consistency measurement (Cronbach Alpha). The total average

intertermcorrelation/Cronbach alpha coefficient was computed to be(α= 0.836). The

value of alpha is close to one (1) indicating a salient level of reliability and well beyond

the cutoff point (α≥0.7) (Leary, 2004).

33

3.2 Data Presentations and analysis from learner‟s perspective

The research has conducted by asking 247 students to provide their own perspective of

why students fail computer programming courses and drop out of the university. The

premise is that there is no better way to find out than to ask the students directly if

something has helped and encouraged them to learn and succeed or held them back

and discouraged them from learning (Bain, 2004). Actually instructors have also been

the participant of the study on strengthening the data on their perspective since

teaching learning process is between students and teachers. Accordingly, there are 17

unreturned and lack of full answers questionnaires from the whole sample data. So that

the total returned questionnaire is 230 and the researcher presented and analyzed only

for the returned questionnaire.

Table 3.1Sex of students

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

Male 154 67.0 67.0 67.0

Female 76 33.0 33.0 100.0

Total 230 100.0 100.0

Here is the background information of the student respondents. As depicted in table 3.1

67% of the respondents are male and the remaining 33% are female.

Table 3.2 Department of students

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

Computer Science

Information

technology

Information system

Total

83

78

69

230

36.0

34.0

30.0

100.0

36.0

34.0

30.0

100.0

36.0

70.0

100.0

The table above implies that out of the total sample size 36% are computer science

students, 34% information technology and 30% information system.

34

Table 3.3 Student's interest on computer programming

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

Yes

No

Total

159

71

230

69.0

31.0

100

69.0

31.0

100

69.0

100.0

As the questionnaire distributed randomly to students implied that students are very

interested in computer programming courses. About 69% of the students answered they

are interested with the course and they have already joined the school of informatics as

per their own interest.

However, student‘s grade in programming courses on average relative to other courses

shows the reverse of their interest, as shown in table 3.4 below.

Table 3.4 Students grade in programming

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

Very high 11 5.0 5.0 5.0

High 36 15.0 15.0 20.0

Fair 55 24.0 24.0 44.0

Low 101 44.0 44.0 88.0

Very low 27 12.0 12.0 100.0

Total 230 100.0 100.0

As depicted in the above table 3.4 most of students accounting for 56% scored low and

very low grade in comparison only 20% very high and high.

The study also explored the reason for students to score low grade in programming

courses, as shown in table 3.5.the main reasons students provided for failing computer

programming courses were grouped into seven main categories.

35

Table 3.5 Reason for students achieving low grade

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

course complexity 157 43.0 43.0 43.0

teaching methodologies

and strategies
51 14.0 14.0 57.0

student motivation 25 7.0 7.0 64.0

program development

tool
27 7.0 7.0 71.0

natural language problem 26 7.0 7.0 78.0

previous experience

way of study

70

11

19.0

3.0

19.0

3.0

97.0

100.0

Total 367 100.0 100.0

Note: as we can see the frequency because the question in questionnaire gives the

respondent a chance to select more than one answer.

As presented in table 3.5 the main reason students provided for failing computer

programming courses was course complexity with 43%. This is followed by student‘s

previous experiences in any kind of programming (19%), teaching methodologies and

strategies (14%), computer program developmental tool and natural language problem

(7%), student‘s motivation (7%) and way of study (3%).

We also raised for respondents the issue of level of student perception for compiler

design. Summary of suggestion made by respondents is presented in table 3.6.

Table 3.6 Level of perception for compiler message

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

very easily 23 10.0 10.0 10.0

Easily 30 13.0 13.0 23.0

neutral

not easily

7

89

3.0

39.0

3.0

39.0

26.0

65.0

even can't understand 81 35.0 35.0 100.0

Total 230 100.0 100.0

36

According to the above table 3.6, Out of the total respondents, 74% (not easily and

even can‘t understand responses altogether) mentioned they can‘t easily understand

what the compiler is notifying while writing computer program. Students understanding

of the message forwarded by the compiler while witting computer programming is

presented in the above table according to the descriptive analysis of SPSS. It already

mentioned by students that programming developmental tool has its own contribution

for being stopper in computer programming courses. Stoppers are those students who

simply stop and abandon all hope of solving the problem on their own while they notice

the program has error and can‘t fix it with the help of compiler message. Computer

program development tools or environments have their own compiler which is built in to

the software for notifying students while any syntax and other errors like fatal error. But

sometimes it displays many errors for one syntax error which makes student abandon

all hope to continue

Table 3.7 Similar frame of mind for teachers in teaching

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

Strongly agree

Agree

30

31

13.0

13.0

13.0

13.0

13.0

26.0

no idea 23 10.0 10.0 36.0

Disagree 121 53.0 53.0 89.0

strongly

disagree
25 11.0 11.0 100.0

Total 230 100.0 100.0

For the question said ―teacher‟s teaching frame of mind is always the same.‖ Students

answered as follow. As the survey implied that 64% of student respondents replied that

teacher‘s mood of teaching is not the same (disagree 53%, strongly disagree11%).

Especially teacher‘s moods in lab are very different. They are very tired in correcting

errors where there is large number of student in the lab to follow in every desk, other

observation is getting bored and being incomprehensible for students. Here is the

presentation.

37

Table 3.8 Observed teacher's problem in teaching learning computer

programming

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

bored 64 28.0 28.0 28.0

tiresome 92 40.0 40.0 68.0

Incomprehensible

Not subject

knowledgeable

57

17

25.0

7.0

25.0

7.0

93.0

100.0

Total 230 100.0 100.0

As depicted in table 3.8 above, 40% of students have observed there is a tiresome

problem on teachers when teaching computer program especially in laboratory class,

28% of students observed getting bored feeling problem on teachers, 25% of students

as there are teacher when teacher teach computer programming it is incomprehensible

and 7% of students mentioned there are some teachers who are not subject

knowledgeable.

It has been seen by this research that there are two kinds of students in teaching

learning computer programming. These are stoppers and movers. Stoppers are those

students who simply stop and abandon all hopes of solving the problem by their own.

Different reasons have discussed with different instructors which is presented later in

this very research. While movers are those students who just keep trying, modifying

their code and use feedback about errors effectively. According, the frequencies of

these students has presented as follows in table 3.9.

Table 3.9 Student's nature in solving problem

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

mover 30 13.0 13.0 13.0

stopper 200 87.0 87.0 100.0

Total 230 100.0 100.0

From table 3.9 one can understand that, there are 87 % stoppers and the remaining

13% are movers.

38

Table 3.10 further presents some of the difficulty in writing source code using

programming language.

Table 3.10 Difficulty for students in writing computer programming

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

source code writing 58 16.0 16.0 16.0

programming concept

understanding
135 37.0 37.0 53.0

logical design 66 18.0 18.0 71.0

compiler error

correction
105 29.0 29.0 100.0

Total 364 100.0 100.0

Note: as we can see the total frequency number is increased since some question in

questionnaire gives the respondent a chance to select more than one answer.

The table above shows that, among the given conceptual problems in writing computer

program, programming concept understanding comes first with 37%, whereas logical

design (18%), source code writing (16%), and compiler error correction (29%).

Having seen the difficulty for student in learning computer programming, the researcher

has surveyed every conceptual difficulties of the curriculum. Concepts were gathered

from the course outline of fundamentals of computer programming course and then

approved by programming instructors. Having approved the concepts the researcher

presented the concept to investigate how students got difficulty in these concepts. So,

the student respondents were asked to rate every concept of fundamentals of computer

programming as high, medium and low. Table 3.11 presents summary of respondent‘s

suggestion.

39

Table 3.11 Conceptual difficulties

Concepts
High Medium Low

Remark

Frequency Percent Frequency Percent Frequency Percent

Variable and

data type

62 27% 131 57% 37 16%

Medium

Syntax 94 41% 76 33% 60 26% High

Conditional

statement

96 42% 87 38% 47 20% High

Switch

statement

69 30% 122 53% 39 17% Medium

Loop

statement

107 46% 88 38% 35 15% High

Array 110 48% 94 41% 26 11% High

Pointer 122 53% 76 33% 32 14 High

Modular

programming

126 55% 76 33% 28 12% High

Debugging 85 37% 74 32% 71 31% High

Exception

handling

80 35% 104 45% 46 20% Medium

Overall

programming

156 68% 46 20% 28 12% High

As depicted in table 3.11 above, syntax, conditional statement, loop statement, array,

pointer and modular programming as well as debugging errors are rated as high

difficulty. Variable and data type, switch statement and exception handling are medium

40

in their difficulty. Unfortunately there is no low conceptual difficulty rated from the

concepts provided for student respondent.

Having asked the student respondents the conceptual difficulty in the curriculum, the

researcher has provided the question to ask where student frequently spend their time

to study programming courses. Here is the question and its corresponding answer with

their frequencies. ―Where do you frequently spend your time to study your programming

courses?”

Table 3.12 Place to study computer programming

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid

laboratory 67 25.0 25.0 25.0

independent

study
117 44.0 44.0 69.0

peer group study 84 31.0 31.0 100.0

Total 268 100.0 100.0

Note: as we can see the total frequency number is increased since some question in

questionnaire gives the respondent a chance to select more than one answer

The data gathered and summarized in table 3.12 implied that only 25% of students have

preferred to study programming in laboratory. But it is believed that programming

courses generally contain lots of practical exercises: the issues to be learned do not

become concrete for the student until tried in a program (Kordaki, 2010).

Another question presented to student respondent was the place where to find out any

kind of help. Here was the question‖ Where do you try so as to find answers for every

question you have in writing programming?‖Respondents answer presented in table

3.13.

Table 3.13 Place to find answers for questions, if any

 Frequency Percent Valid

Percent

Cumulative

Percent

Valid
from teachers

from students

41

66

15.0

24.0

15.0

24.0

15.0

39.0

41

from development

tool
33 12.0 12.0 51.0

from internet 79 28.0 28.0 79.0

from books

no place

31

29

11.0

10.0

11.0

10.0

90.0

100.0

Total 279 100.0 100.0

Note: as we can see the total frequency number is increased since some question in

questionnaire gives the respondent a chance to select more than one answer.

The cross tabulation analysis between the places where students prefer to have an

answer for their question, if any, and the reason for why they prefer it is presented as

follows in table 3.14:

Table 3.14 Place to find answers for questions.

Count

 Reason for choosing way to get

answer for any question

Total

easy to

access

easy to

use

easy to

understand

frequency percent

Place to find answers

for questions, if any

From teachers

from students

14

34

0

7

23

22

37

63

16

27

from development

tool
13 7 5 25 11

from internet 38 21 18 77 34

from books

no place

10

 0

7

 0

11

 0

28

 0

12

 0

Total 109 42 79 230 100

The above table depicted that students prefer to use different mechanisms to find the

solution for any problem they come across. Accordingly, 16% students prefer teachers

for any help (since they are easy to understand and easy to contact), 27% of them

preferred their peer students (since they are easy to contact, understand and use), from

internet (34%, since it is easy to access, use and understand.

42

3.3 Analysis and Discussion from Teacher‟s perspective

In this study, the researcher has also carried out semi-structured interview to 5

instructors who are preferred good by their students, recommended by their staff

members, senior and have experience in teaching any computer programming course

so as to hear their perspectives on why students fail computer programming courses.

The next part of this research report presents the results and discusses the implications

of the findings for students and instructors. The researcher has been proposed that

being aware of how both students and college of informatics perceive the causes of

student failure in academic settings is a necessary step in clinically analyzing the

complexity of the problem and in finding workable solutions that could productively lead

to helping instructors in teaching and students learn and study computer programming

courses.

The study‘s participants who have experience in teaching computer programming

course provided many reasons why some students may fail computer programming

courses in the University. Based on the analysis of the answers provided, the reasons

for student failure were grouped into four main areas, which were broken into eight

categories. The feedback from the face-to-face interview, in-depth discussion with

instructors in the school helped in the analysis of the results.

Teacher interviewees perceive that the four main root-cause factors for students failing

are (1) student-related factors; (2) course nature; (3) source code developmental tools;

and (4) teaching methodologies and strategies (Table 3.15).

Table 3.15. Identified Categories of Root-Cause factors

Major Area Categories

Student related factors

Previous experience

Lack of effort

Lack of motivation

43

Personality issues

Course Nature Course multidisciplinary

Source code

developmental tools

Unclear Compiler error message

Teaching methodologies

and strategies

Facilities, Materials and Delivery systems

Lack of student-friendly delivery

Student-related Factors

In the opinion of university school members who responded to the study, the first major

area, and largest by far, for failure of students is Student-related Factors. As seen in

Table 3.15, under this area there are four categories: (1) previous experiences; (2) Lack

of effort; (3) Lack of Motivation or interest; and (4) Personality Issues.

Previous experience

The student-related factor that teacher interviewee mentioned most often was students

previous experience in any kind of computer programming even basic computer before.

Instructors stated many reasons, including the fact that a significant number of incoming

students have poor levels of or a complete lack of academic preparedness for

University courses, lack of learning and study skills, and/or lack of the skill of time

management and setting priorities. Teacher interviewees cited students‘ lack of

academic preparedness and poor study skills, note-taking skills, reading, and scientific

reasoning skills, lack of experience, and more, without directly attributing responsibility.

Students lack numerous academic skills, such as critical thinking, and math and science

backgrounds even writing skill. All these can be categorized into the main problem of

student‘s previous experience. They have not been adequately prepared for computer

programming courses (lack foundational skills such as the ability to think, comprehend

the nature of assignment and exams, follow instructions, understanding programming

concepts etc.) that interfere with their ability to achieve passing grades. For some

44

reason, many students do not learn these skills throughout grade school and high

school even no satisfactory orientation in their very first year, and so when they reach

university they are not ready for what it demands.

Teacher interviewees argue that students are not aware of the rigors of their chosen

discipline. Many students arrive without knowing how to learn, without having the

academic prerequisites, or without having the skill set needed to be successful. A

number of students do not realize that university requires a higher level of commitment

involving a variety of learning skills, such as deep reading, purposeful study, critical

thinking, and browsing different resources like book, internet or even asking for help. As

one programming teacher explained ―It is to be seen not only by students who take

programming but also by many university students that Students can have difficulty in

adjusting their own career expectations. Some students have/aspire to become what

they want . . . but they do not realize that it is a very difficult and long road academically

. . . some students have not realized this yet.‖

Teacher interviewees saw insufficient academic skills as closely related to lack of time

management skills. Target teacher respondents said too many students do not know

how to study or learn, do not know how to organize their time and set priorities, do not

ask for help from their instructors or advisors, and do not use available resources, such

as the library, internet and tutors. They most likely lack critical thinking skills and other

higher-level learning skills so necessary in University.

Lack of Effort

The next category of student-related issues was lack of effort. Almost all interviewed

teachers mentioned as they were disturbed by how many students are satisfied with a

grade of C or D instead of working harder to get better grades. They stated that even

when they give students opportunities to improve their grades by redoing assignment,

lab reports, many students do not bother. Some participants stated that students do not

exert enough effort and do not bother to find out, either from the instructor or fellow

students, or from book or internet how much work is really needed to pass a given

class.

45

It is said by teacher interviewees that some students expect teachers to excuse multiple

missed assignments and absences and to pass just because they attend class. They do

not read the material before class and do not complete their assignments. Some

students do not care if they fail in programming course. Because they believe they can

score well in common courses. A few instructors stated that some students do not value

education because they do not have to work to pay for it, or if they fail, they can always

repeat the course. And they don‘t care since their seniors have passed in that way.

Students are unable or unwilling to put effort into learning. This could be due to lack of

motivation or inadequate preparation to be successful. One teacher respondent

explained that many University students do not read to learn: ―In my opinion students

fail because they do not put in the effort needed to succeed. They only read in order to

answer a question or to pass a test, instead of reading the entire assigned chapters‖

Lack of Motivation or Interest

Lack of Motivation or Interest, engagement, persistence, and ―not being active learners‖

were mentioned frequently in this survey. This category included the following

subcategories: Lack of motivation; Lack of engagement; Lack of interest, direction, or

focus. Some teacher interviewed thought that failing students have little understanding

of how their education relates to their lives. They do not know what they want in life and

have no clear goals as to where they are going. Let me use a saying from one teacher

interviewed ―If someone has no idea where they are going, it will likely be extremely

difficult to get there.‖ This was taken from a teacher interviewee. So, most teachers

believe in to be done something in student‘s motivation, interest, and engagement and

make them very active learners.

Personality Issues

This category includes Lack of social connection, Lack of support system and network,

and Poor self-esteem and self-confidence. One teacher interviewed thought lack of self-

confidence was the major reason for failure: here is a direct word from the instructor “I

think most students fail because of a lack in self-confidence. Often the students that I

see are bright but make failing grades due to their not believing that they are smart

enough to do the work. We try to work through this and if there is some improvement in

46

self-confidence, grades improved.”It is also believed by another instructor that Learning

is social—no connection to the instructors or the classmates can make a student feel

isolated and hence, un-engaged. The general feeling was that if students were ―active

on campus, and have interactions with the teachers and students outside of the

classroom,‖ they would be more likely to succeed in University. One interviewee

mentioned teamwork as an important factor in informatics and engineering classes. So

teacher interviewees argue on that teachers need to encourage students to increase

teamwork sprit. One teacher interviewee concluded that ―for encouraging students self-

confidence, we instructors need to familiar students with the programmers communities

like programming forums and blogs instead of orienting students only online tutorial

websites.”

Nature of the course

Computer Programming is a process that leads from an original formulation of a

computing problem to executable computer programs. It is the process of taking an

algorithm & encoding it into a notation, a programming language, so that it can be

executed by a computer (McCracken, 2014).It is the process of developing and

implementing various sets of instructions to enable a computer to do a certain task.

Computer programming is linked with Mathematics, Physics, Engineering, Linguistics,

Philosophy, Psychology, Economy, Business, and Social Sciences in general (Mulder,

2002).So that one teacher interviewee said “this nature of the course results in a

relatively difficult and very despairing kind of course for students.”However, if supported

by suitable teaching strategies and tools it can be mastered by pupils to some extent

(Akinola et al., 2015).

Interviewee teachers thought that computer programming courses are very heavy in

content, but the instructors do not have time to cover the material in depth. They felt that

many of the students do not have enough time to absorb the material in the allotted

time. One said that by the time students were just starting to understand, he had to

move on to the next issue.

47

Source code developmental tool

Every computer programming has its own developmental environment which enables

computer programmer, a person who writes a source code or computer program, to

make applicable the algorithm s/he writes. So this developmental environment has its

own compiler or interpreter which converts the source code or high level language

which is human readable to machine language or computer readable. These compilers

or interpreters check any errors in the source code before running. One of the

disadvantages of compilers is said one teacher interviewee ―source code developmental

environments do not tolerate students for error. Actually the developmental tool notifies

the error with its line but not understandable by many novice students. This is because

compilers are not always correct they may show 10 errors for one mistake. Novice

programmers often encounter cryptic compiler error messages that are difficult to

understand and thus difficult to resolve. Unfortunately, most related disciplines,

including compiler technology, have not paid much attention to this important aspect

that affects programmers significantly, apparently because it is felt that programmers

should adapt to compilers. ‖

Teaching methodologies and strategies

This survey includes categories of teacher interviews that do not put fault on students

but, instead, on the school and the educational system. The factors in student failures

that are not related to students but are related, instead, to the Failures of the teaching

methodologies and strategies were mentioned by teacher interviewee. It is well known

that students are very new and have no previous experience in any kind of computer

programming courses in their previous classes even they may not have experience in

using computer. But sometimes staffs forget this big issue. The teacher experts believe

that the reason why there is lack of skills on the part of students in solving and

analyzing problems in programming is as a result of the poor teaching methodology

adapted by programming lecturers. The techniques used by them in the problem

representation are not effective. They said that teachers of programming do not employ

multiple teaching methods in teaching programming courses. They said that most

students lack the understanding of concepts in major topics in programming due to the

48

style/method of teaching. Some teachers only adapt the lecturing method; others project

approach, some tutorials, etc. The method either make the course easy to understand

or difficult to understand. They believe that most teachers do not consider the

background of the students into consideration when teaching programming. They also

said that some teachers of programming teach only the theoretical aspect of

programming neglecting the practical aspects that will provide the student the

necessary skill. In solving this problem, the experts believe that teachers of

programming must adapt more than one teaching method to improve their teaching in

programming courses to increase the skill and thinking capacity of the student.

Teacher interviewed mentioned that there is a high turnover rate of instructors in the

University which can really diminishes the working experience of the University in

teaching learning process. This is actually seen by the researcher on carrying out

interview with instructors while talking about their seniority. There is a highest

experience of 5 years in teaching learning computer programming in the University. So

that some of the instructors believe that there is no a kind of instructor assignment for

programming course based on specialization or course exposure. This is more the

problem of course and exam team in the school. It is said by teacher interviewed that

the teaching methodologies and strategies lacks to address students‘ diverse learning

style, how student need to study, encouraging student to use different resources, how to

accommodate lab classes, tutoring, where concept have to focus.

Interviewees said that some of their colleagues lack the skills of teaching computer

programming. They cited failure to make the subject interesting or relatable, inadequate

teaching methods, or failure to inspire. As one teacher explained, “school members

have to take the students from where they are to where they ought to be not from where

they think they should be to start, but from where they are. Many students are behind

through no fault of their own the school members have to build up student confidence,

not tear down student confidence.”

Many of the faculty respondents thought that some faculty members do not put enough

effort into engaging the underprepared students in the subject or only help those

49

students who ask for help- no consideration for others. One faculty member was quite

passionate about this failure:

The teaching style of some school members was identified as contributing to students‘

lack of success. Some students had failed because they could not respond to the

teaching style, which prevented them from learning, or they had a poor teacher who

was unable to effectively communicate the material. As one interviewee put it, in cases

like these, ―It is not students who fail, but that faculty fails their students!‖ Using different

teaching styles and active, problem-solving teaching was offered as the best way to fully

engage students. Here are some concepts obtained from teacher interviewees about

the factor of teaching methodology and strategies.

Facilities, Materials, and Delivery Systems

Facilities, Materials, and Delivery Systems was mentioned as most often overall root-

cause in general and most often root-cause under teaching methodologies and

strategies. Lack of tutoring or lack of tutors with the right skills in the subjects was also

mentioned as a concern. Attendance has also its own impact. Also, there are those

students who stop coming to class but, for some unknown reason, do not withdraw.

A number of faculty members blamed the course delivery format, especially long time

for theory class, for failing many students in classes. But the exam is more laboratory

oriented. One interviewed teacher said this to strengthen the methodology failure ―we

are asking students to answer what we didn‟t teach them it is like asking a land to

produce which is not planted.‖ The materials sometimes do not get updated. We are still

teaching the material that is prepared by other teachers as it is prepare according the

knowledge of the author which sometimes may not fit with the teacher. So, instructors

need to have the intention to prepare their own material which can go along with their

students.

The way some teachers used to deliver the course is also under blamed by the

interviewed teachers. It is mentioned that there are some examples which don‘t exactly

show the concept of programming. It is highly believed by teachers that “examples we

used need to show the exact concept we want to explain not for the sake of example

50

since we get it from the internet or other materials used. We need to use example which

is near to students‟ eye, the thing they know it well, for easy understanding.”

Another problem observed as mentioned by teachers about in laboratory class is that

there observed a feeling of fatigue, getting bored, losing hope about students because

they can‘t easily understand the programming concept. This behavior observed by

some teachers especially in laboratory class. Some teachers sometimes forget students

come to class to know and the course is complex.

The length of courses was also cited by instructors as a cause for some students. So,

teachers need to think over on how to preparing materials which is short and precise

and can easily be understood by their students.

Lack of student-friendly delivery

Another problem observed in teaching learning computer programming is lack of

student-friendly delivery. One instructor said that ―we are striving to make a change in

student, so the course delivery style should be student-friendly and consistent. But

some teachers present the course as per their interest and even do not follow the

course outline. They amend even the course outline based on their interest; which is

very wrong!‖This problem has also observed by students as it is tried to present the

students‘ perspective in table 3.8; it shows as 40% of students have observed there is a

tiresome problem on teachers when teaching computer program especially in laboratory

class, 28% of students observed getting bored feeling problem on teachers, 25% of

students as there are teacher when teacher teach computer programming it is

incomprehensible and 7% of students mentioned there are some teachers who are not

subject knowledgeable.

51

3.4 The Need for the Knowledge Based System (Requirements)

As the need assessment conducted revealed that 61% of students in the University

have poor academic performance in programming courses, there observed high dropout

rate in programming courses. Then to ensure what are the exact challenges for

students to score low in computer programming courses should have been addressed,

so that the researcher has done an assessment from the perspective of both students

and instructors. Based on the finding 69% of students are interested in computer

programming courses, but student‘s grade in programming courses shows the reverse

of their interest. Similarly, the study also explored the reason for students to score low

grade in programming courses, as shown in table 3.5. Accordingly, the main reasons

from the perspective of students were grouped into seven main categories such as

course complexity, student‘s previous experiences in any kind of programming, teaching

methodologies and strategies, computer program developmental tool, natural language

problem, student‘s motivation and the way of study. And again from teachers‘

perspective that the four main root-cause factors for students failing are (1) student-

related factors; (2) course nature; (3) source code developmental tools; and (4) teaching

methodologies and strategies (Table 3.15).

According to (Winslow, 2013), programming courses generally contain lots of practical

exercises: the issues to be learned do not become concrete for the student until start

witting a program. So, as tried to show in table 3.6, the level of students‘ perception for

compiler error notification out of the total respondents, 74% (not easily and even can‘t

understand responses altogether) mentioned they can‘t easily understand what the

compiler is notifying while writing computer program. From table 3.9 one can

understand that, there are 87 % stoppers and the remaining 13% are movers. In

problematic situation stoppers simply stop and abandon all hope of solving the problem

on their own, while movers keep trying, modifying their code and use feedback about

errors effectively. In being mover the compilers have their own advantage but as shown

in table 3.6 level of students‘ perception for compiler error notification is very low. So, it

must be done something to foster the compiler in some extent so that students can

easily understand what their problem in the program was. This must be done by

52

providing specific error message to the students. The more specific errors messages

from the compiler help students to clarify concepts, misconceptions, or improve their

mental models (Salcedo, 2016).

According to Marcus and McDermott (2011) technologies, especially knowledge based

system is playing a big role in educational development and for the revolution in

learning systems. They bring new opportunities to the educational system. So, this

research further go for to what extent the application of knowledge based system

support novice programmers in debugging computer program so that knowledge

engineering principles followed in the next chapter.

53

CHAPTER FOUR

Knowledge Acquisition, Modeling and Representation

4.1 Knowledge acquisition

In this study, to acquire the needed knowledge, both primary (tacit knowledge) and

secondary sources of knowledge are used. Before critical knowledge is gathered from

the instructors, a preliminary assessment has been done to investigate where students

get conceptual difficulty in learning computer programming. Accordingly, it is found as

students get difficulty in conditional statement, switch statements, array, loop, modular

programming and debugging as highest conceptual difficulty out of the course concepts.

So, based on this information the researcher gets to sampled instructors to have

knowledge for the system. Primary knowledge gathered from experts in the domain

area, the instructors of the University in this context, using semi-structured interview.

Due to this, the researcher purposely selected 5 senior instructors out of 14 computer

programming instructors according to their seniority and course exposure as suggested

by school staff members. Accordingly, it was highly advised by instructors to do a

solution in debugging process, which rated highly difficult by students, since in

debugging it is also possible to teach other concepts which are rated as high difficulty

for students like loop, array, module or function. So that the process of knowledge

acquisition included some basic activities such as interviewing of domain expert‗s

(instructors of computer programming courses), review of relevant sources of

information and observing when instructors are correcting errors while students

practicing in lab.

According to (Sajja & Akerkar, 2010), mentioned the knowledge acquisition process

incorporates typical fact finding methods like interviews, questionnaires, record reviews

and observation to acquire facts and explicit knowledge. However, these methods are

not much more effective to extract tacit knowledge which is stored in the subconscious

mind of experts and reflected in the mental models, insights, values, and actions of the

experts. For this, techniques like concept sorting, concept mapping, and protocol

analysis are being used (Sajja & Akerkar, 2010). The objective of knowledge acquisition

is to gather the required knowledge, interpreting the acquired knowledge, analyzing and

54

validating the knowledge content. Therefore, knowledge acquisition process of this

thesis was based on domain expert interviewing, observing and reviewing of related

documents, books, lab manuals and guidelines, forums.

Interviewing domain experts

Primary sources of knowledge were collected from human experts in the domain area at

Mizan Teppi University computer programming course instructors. To gather the

required knowledge semi-structured interview technique was used since one of the

main focuses of this research is eliciting relevant knowledge from the domain experts.

As already tried to mention five domain experts were selected using purposive sampling

technique according to school staff recommendation on seniority and course exposure.

The interview with experts covered issues such as how the instructors teaches

programming, debugging errors while students faced a problem, what style and coding

conventions are there for the concepts.

During the extensive discussion, the researcher acquired the relevant knowledge which

was significant to generate the rules. In addition, the domain experts were actively

participated throughout the research work and they were consulted to confirm the

correctness of the acquired knowledge. During face to face communication, the

acquired knowledge from domain experts was recorded manually by using pen and

paper sheet. The semi structured interview questions were prepared based on the very

discussion with instructors teachers result was discussed below:

The first question presented for teacher interviewee was the definition of debugging in

writing computer program. Accordingly, teacher interviewees share the same definition

for the concept debugging could be defined as the process of finding errors, if any, and

then correcting all of them. It is one of the problem happened while writing a computer

program and many students are facing. It is also mentioned as an obvious issue as a

challenge for many students from informatics department and other field students who

take programming courses.

Secondly, the researcher has raised a question for teacher interviewees by leaning on

the first question which is based on the definition like if debugging is the process of

55

finding and correct errors, which are known as bugs in programming, how bugs happen

in writing computer program. So, teacher interviewees answered as follow. Since

programming courses generally contain lots of practical exercises: the issues to be

learned do not become concrete for the student until tried in a program. While students

trying practical exercises they forget some obvious issues -especially novices students

forget some issues even which are even considered as easy concepts like syntax for

example. This very statement can be strengthened by Winslow (2013) who noticed that

students may know the syntax and semantics of individual statements, but they do not

know how to combine these features into valid programs. In general, students need to

know the programming style, language rule, language semantic and convention. So, if

these issues are violated, then bugs happen in their program.

Thirdly, it was questioned how these bugs could have effect on students practical

exercise. When students debug their programs, they may get stuck, which then turns

the students into being stopper. Once a student becomes a stopper, s/he starts to fear

computer programming courses and can‘t score a good grade or even drop out from the

University. If a student is not able to obtain assistance in debugging their program in a

timely and appropriate manner, an excellent educational opportunity turns into a mis-

educative one (Dewey, 1997). Instead of practicing proper debugging techniques, the

frustrated student learns that programming is difficult, confusing and lonely.

Fourthly, a question ―is these bugs can be debugged?‖ was provided to the domain

experts. Then accordingly, they answered as there is no bug which can‘t be corrected.

But it needs a skill and knowledge to find the errors and correct them. There is a big

difference between novice and expert programmers in debugging computer program.

Experts can easily debug their program or other‘s program as well since they have

experience which is developed throughout their life in writing computer program but this

skill is not easy for novice programmers.

In the Fifth question, what are the general types of errors that are common in C++, the

language the novice programmers used? Accordingly, teachers classified error into

three common errors; compile time error, run time errors and logical errors. Here,

56

different types of errors have gathered from teacher interviewees which are discussed

as follow:

Compile time errors

As acquired from teacher experts, compiler errors are those errors novice students are

experiencing every time since they easily forget programming issues like language

syntax and semantic. These errors actually can be adapted throughout their practice but

sometimes if these errors can‘t debug early students may give up and stop struggling

for the next programming concept since there are stoppers, who don‘t want to move on

while an error experienced. Here are some errors acquired from teacher experts and

document reviewed.

Misleading syntax error messages, interpreting syntax errors which point to the

wrong line: the compiler in any program development environment wherever there is a

syntax error, which is the violation of language rules, it notify error messages. But some

students may not understand these messages since they are novice. The development

tools sometimes points out to the wrong line which leads novices to confusion.

Missing library: C++ programs are typically created by linking together one or more

OBJ files with one or more libraries. A library is a collection of linkable files that were

supplied with the compiler. All C++ compilers come with a library of useful functions (or

procedures) and classes that you can include in your program. In writing any C++

program, we need to include the libraries we want in the program like Input-output

library, mathematical library, and graphical library and so on. Theses libraries run each

time you start your compiler. They are called preprocessors. So, many students

sometimes forget and miss these library which leads to an error.

Variable not declared: A variable is a symbolic name for a memory location in which

data can be stored and subsequently recalled. Variables are used for holding data

values so that they can be utilized in various computations in a program. All variables

have two important attributes: A type, which is, established when the variable is defined

(e.g., integer, float, character). A value is which can be changed by assigning a new

value to the variable. Declaring a variable means defining (creating) a variable. You

57

create or define a variable by stating its type, followed by one or more spaces, followed

by the variable name and a semicolon. So, variables need to be declared at first before

stating to use but novice students forget this issue and try to use a variable which is not

declared at this time it will create error.

Variable and data type mismatch: when we create a variable it must be along with its

respective data type. Data type is simply the description of a variable. There are

different variables such as int, float, char, string, double. Novice students sometimes

mismatch variables with their data type. For example to declare a real number they try

to declare with int data type but float is correct.

Int and void main function misunderstanding: the actual program begins with a

function named main().Every C++ program has a main() function. Usually functions are

invoked or called by other functions, but main() is special. When your program starts,

main() is called automatically. main(), like all functions, must state what kind of value it

will return. Many novice student programmers invoking a non-void method without using

the return value or they fail to return a value from a non-void method.

Missing semicolon: Since first year students are novice for programming, they may

easily forget obvious issues. For example semicolon expected error on a line where

there is a statement with a semicolon, but on the previous line the statement is missing

its semicolon.

Missing brace and blocks- especially end block: novice programmers miss brace

and block. As a rule in programming for every opened block and brace there should be

an end block and brace respectively especially in function, conditional statement

(nested if), looping statement.

Missing semicolon causes semantic error: a compiler error with a missing semicolon

which, when fixed incorrectly leads to a more complex semantic error. The semicolon is

actually missing from the line above but the compiler shows a ―semicolon expected‖

error on a line where a semicolon is not needed.

58

Type mismatch in re-declaration: when novices write a modular program they

sometimes mismatch data type of the function while trying to define it. This simply

means that when a function is declared with a data type then it must be defined with

similar data type. but whenever trying to define with no data type or different data type

then this time the compiler sends an error message ‖type mismatch in re declaration‖.

Call to undefined function: this error message would be displayed whenever there is

undefined function used in calling or a function defined and called is different in naming.

Linker error: undefined symbol: a linker error which express as there is a kind 4of

undefined symbol if a novice is trying to define a function which is not already declared

or even different function name in declaration and definition is used.

„)‟ Expected: this error happen because of having extra open brace for function

declaration or IF or even loop.

Logical errors

These errors are done while running the program whenever there is a logical wrong.

This is the very difficult issue for novice programmers to correct.

Confusion between assignment (=) and equals to operator (==): the incorrect use of

an assignment operator (=) when an equality (==) operator is needed. A single equals is

actually an assignment operation and the type value of an assignment is based on the

type of the left hand side of the statement. The Boolean expression is then corrected by

using == instead of =.

Confusion between and (&&) and or (||) operators: novice programmers committed

confusion on using logical operators for example and & or operators. They use and

operator (&&) when the need to use or (||) operator so that there happen logical error.

Sometimes novices use single operator (&) and (|) instead of using (&&) and (||).

Arithmetic expressions with operator precedence problems: in writing a program

for arithmetic expression, novice programmers miss the precedence between arithmetic

operators so that they do a logical error which results beyond the expected output.

59

Improper use of modulus: modulus is an arithmetic operator which helps to calculate

the remaining number while dividing a number. Novice students use this arithmetic

operator in logical programming intension which creates an error.

Infinite loop: This occurs due to lack of update of a loop iterator, the condition

statement or inside an if statement in the loop. It identifies that an infinite loop is

happening when the program does not seem to end. In looping statement there are

there conditions to be satisfied such as initialization, condition and increment. Novice

programmers do wrong in conditional statement which results unstoppable output.

Missing input statement: This shows an infinite loop that occurs due to a lack of an

input statement inside a validation loop. If the novice programmers miss the input

statement which is called initialization then there will be error in the program.

Using improper data type for a variable: novice programmers do a mistake in

selecting a data type for a variable. They use int for a variable which is expected the

output to be float. This simply means that they use integer data type for real number.

Example int average or char name.

Missing break statement in switch: novice programmers miss a break statement in

switch so that unexpected result would be seen in the output.

Wrong condition in if or loop statements: when novice programmers write a program

especially which includes if or loop statements, they use a wrong condition that leads

the program to display an output which is not expected

Uninitialized variables: when using a loop, variable must be declared and initialized

before the condition is checked but novice students trying to run a loop statement with

uninitialized variable which is only declared. For example

int count;
while (count < 100)
{
cout<< count;
count++;
}

60

This time the compiler compilers well but cannot output any result just silent!

Setting a variable to an uninitialized value: frequently novice programmers believe

that variables work like equations - if you assign a variable to equal the result of an

operation on several other variables that whenever those variables change, the value of

the variable will change. In C++ assignment does not work this way: it's a one shot deal.

Once you assign a value to a variable, it's that value until you reassign the values. In the

example below, because a & b are not initialized, sum will equal an unknown random

number from the integer range since a & b are declared as integer, no matter what the

user inputs.

int a, b;
int sum = a + b;
cout<< "Enter two numbers to add: ";
cin>> a;
cin>> b;
cout<< "The sum is: " << sum;

Run time errors

Array index out of bound: this shows the runtime error that results when an index

references beyond the end of an array. It points out that one should always look both at

the line number in a runtime error and the index listed in an ―ArrayIndexOutOfBounds‖

error. This error is fixed by changing the constant index values which are used to index

the array. A general tip is given at the end that usually one indexes arrays with a

variable and one should watch that the value of that variable does not become too

large.

Unhandled exception (Divide error exception): this very error happens while novice

students are trying to divide a number by zero. In this case the compiler will return a run

time error which says unhandled exception or divide error exception.

Unhandled exception (General protection exception): this very error happens while

novice students are trying to use less than symbol for ‗cout‘ statement if different print

statements are intended to use in one cout. Example cout<<‖hello‖<‖ world‖

61

Wrong input to output display window: Novice programmers do error in inputting a

data to the output display window which is illegal. When they are expected to input an

integer value then they sometimes enter another type of data because sine they may do

wrong in asking the user while using cout statement.

In the sixth question, it was asked the instructor ―What do students do when they get

stuck while they debug their program?‖When possible, they turn to their instructors, a

lab assistant or perhaps a classmate or senior friend if such human help is readily

available. If it is not, they may email someone for help or search their textbook; they

may even search the internet.

The seventh question was raised about feasibility of human intervention in student

help. Of course, it is not feasible to provide human intervention on 24/7 basis. So, the

question ―what is the best thing to being there?‖ was followed and a kind of knowledge

based system which identifies different errors that are experienced by novice student

programmers and the help them in their practical exercise to debug their code and

helping them to develop debugging skills.

Document review

The researcher has reviewed different additional documents so as to find errors that

novice students are experiencing while writing a computer program especially in C++.

Ahmadzadeh et al, (2005) only look at errors that can be found by compiler. It is

mentioned by ahmedzadeh et al (2005), all these errors must be faced by student

before any other debugging begins. Perkins et al (2014) has tried to explore some of

lists of the run time errors which experienced by beginner programmers. Oman et al

(2011) has viewed the semantics of some common compile time errors which is done

by novice programmers.

Observation

Knowledge has explored by observing students while practicing program writing in

laboratory. Accordingly, the strategies that students use when debugging their programs

has acquired. Students have compared by their debugging practices of novice

programmers with those of advanced programmers and have found differences in

62

effectiveness, efficiency and techniques used. Students tend to use different debugging

strategies based on their familiarity with the program being debugged. Accordingly,

some students have observed on focusing on successive lines of code while debugging

a program- especially when debugging the work of another programmer. Other students

were trying to locate the bug based on program output- especially observed when

debugging their own code.

4.2 Conceptual Modeling

Conceptual Modeling of domain knowledge implies capturing the static structure of

information and knowledge types. Decision trees (DTs) are modeling tools that are used

in a variety of different settings to organize and break down clusters of data. Similarly,

decision tree have been widely used in practical applications area, due to its

interpretability and ease of use. Currently, decision trees are used in many disciplines

such as medical diagnosis, cognitive science, law and computer diagnosis. The

decision tree was used in the three main types of errors (syntax, logical and run time)

domain to understand the dimension of the problem. Each tree starts with a set of errors

and ends with solutions.

Decision tree structures are the bases for the development of prototype knowledge

based system. The prototype follows the same procedures as presented in the decision

tree when finding and correcting errors in any program. The system is implemented as

defined in the succeeding diagrams. Generally, the tool's input and output requirements

are defined in the framework below.

63

yes

Any missed

brace ―(― or ―)‖

in if or loop?

yes no

Declare a variable

before use
Did you missed semicolon

(;) in loop statement or

used illegal ending like .,?

no

Check there is

an open { and

ending } block

You missed an

open block

yes
yes

Is there no missed

double quote (“) in cout

Is there no any variable

which is not declared?

yes

Spell it correctly
and use lowercase

Add double quote (―)

no

Check you correctly write

#include<iostream.h>

You missed .hCheck

correctly write

#include<iostream.h>

or #include<math.h>

Is there no any

missed brace

in main()

function?

What about

missed block?

yes no

Use main

function

correctly like

main()

Undefined symbol?

Is there library ?

Is there no any

misspelled keyword or

keyword in uppercase?

yes

yes

yes

Declaration syntax

error ?

No

Add a

required

library

no

no

Did you miss # before

include<iostream.h> or

misspelled it?

Unable to open

include file?

yes

yes

no

yes no
no

Unknown

preprocessor

directive

Unexpected }

no

Write library correctly

& use lowercase like

#include<iostream.h>

yes

No file

name

ending?

no

You missed

> in

iostream.h

Bad file

name

format

no

yes

yes

yes
Add a missed

brace

Use only semicolon (;) for

ending do not use other

illegal punctuations like .,?

no

Any wrong identifier

like space, hyphen,

Do not use space or hyphen

for variable

yes

You missed

< in

iostream.h

Figure 4.1: Decision tree for undefined symbol,

declaration syntax error, unable to open include file

64

Is there any missed

double quote in cout

statement?

Is there no missed

double quote (“) in cout

Is there any missed

semicolon or illegal

symbol like.,at end?

Did you use {

or [instead of

using (

no

no

yes

no

Close any

opened

block

no

Add double quote
(“) to

coutstatement

yes

Add double quote (―)

no

yes

Use semicolon at

the end

Use brace ()

yes

Use >>for cin and

<<for cout

Expression

syntax error?

yes
no

yes

Did you use >>> or

<<< or <<>

no

Statement

missing?

Declaration terminated

incorrectly?

no

Any variable begin

with number symbol?

yes

Any comma instead

of semicolon?

yes

Compound

statement missing?

Is there any

missed closed

block (})?

yes

Illegal structure

operation ?

No

yes

yes

Use << for

cout or >> for

cin

Did you use comma

instead of semicolon?

no

yes

Use semicolon

instead of

comma

Did you use + instead

of ++ for increment or

<== or >== in loop

statement?

no

yes

Use valid

expression

Any wrong expression

in your if statement?

no

yes

Use valid

expression

What about wrong array

initialization?

no
Unnecessary symbol

like |for comment

Use correct array

initialization

yes

no

Any semicolon

missed?

no

Is there no <<for

cout statement?

Any missed brace in

your if statement?

no

Use brace for your expression

yes

no

What about missed“

incout statement?

Change

comma into

semicolon

yes

Use semicolon

at end of

statement

yes

Add << for any

cout statement

yes

Do not begin

variable with

number orsymbo

yes

Any comma

instead semicolon

or Missed

semicolon

no

Figure 4.2: Decision tree for compound statement

missing, illegal structure operation, expression syntax

error, statement missing, and declaration terminated

65

4.3 Knowledge representation

The acquired knowledge should be immediately documented in a knowledge

representation scheme. To build the knowledge base we have the problem of how to

represent it. Knowledge representation concerns the mismatch between human and

computer ‗memory‘. We call these representations, knowledge bases, and the

operations on these knowledge bases, inference engine.

A knowledge representation (KR) is an idea to enable an individual to determine

consequences by thinking rather than acting, i.e., by reasoning about the world rather

than taking action in it. The knowledge acquired from experts or induced from a set of

data must be represented in a format that is both understandable by humans and

executable on computers. Good Knowledge Representation Languages should be

Expressive, Concise, Unambiguous, and Independent of context, Efficient and effective

(Kesarwani&Misra, 2013).

Rule based representation

Rule based reasoning mechanism were employed for the inference engine. In

knowledge based system there are many reasoning mechanisms; among that the most

commonly used are rule based approach, case based approach or the combination of

the two. Case based approaches are designed to work in the way that the basic idea of

similar problems having similar solutions (Aamodt& Plaza, 2013). It is a rule based

System that solves problems by remembering past situations and reusing its solution

and lesson learned from it. Case based approach represents situations or domain

knowledge in the form of cases and it uses case based reasoning techniques to solve

new problems or to handle new situations (Abdulahet al., 2014). Rule based reasoning,

on the other hand reason from domain knowledge represented in a set of rules. The

basic format of a rule is

IF <condition> THEN <conclusion>, where <condition> represents premises and

<conclusion> represents associated action for the given premises.

66

Rule based reasoning is a system whose knowledge representation in a set of rules and

facts. Symbolic rules are one of the most popular knowledge representation and

reasoning methods. This popularity is mainly due their naturalness, which facilitates

comprehension of the represented knowledge. The basic forms of a rule, if<condition>

then <conclusion> where <condition> represents premises, and <conclusion>

represents associated action for the premises. The condition of the rules is connected

between each other with logical connectives such as, AND, OR, NOT, etc., thus forming

a logical function. When sufficient conditions of a rule are satisfied, then the conclusion

is derived and the rule is said to be fired.

Rules based reasoning was dominantly applied to represent general knowledge. Rule

based expert systems have a significant role in many different domain areas such as

medical diagnosis, electronic troubleshooting and data interpretations even in teaching

concepts. A typical rule based system consists of a list of rules, a cluster of facts and an

interpreter (Rajeswari, 2012).

It is mentioned as there are two main inference methods in rule based reasoning

mechanism. These are backward chaining and forward chaining. The former is guided by

the goals (conclusions), whereas the latter one is guided by the given facts (Freeman-

Hargis, 2014). During forward chaining, the inference engines first predetermine the

criterion and the next steps are to add the criterion one at a time, until the entire chain has

been trained. With data driven control, facts in the system are represented in a working

memory which is continually updated. Rules in the system represent possible actions to

take when specified conditions hold items in the working memory. The conditions are

usually patterns that must match with the items in the working memory. In forward chaining,

actions are usually involves adding or deleting items from the working memory. Interpreter

of the inference engine controls the application of the rules, given the working memory. The

system will first checks to find all the rules whose condition holds true (Nalepa, 2015).

The backward chaining focuses its effort by only considering rules that are applicable to

the particular goal. It is similar with forward chaining the difference is it receives the

problem description as a set of conclusions instead of conditions and tries to find the

premises that cause the conclusion. Given a goal state and then the system try to prove

67

if the goal matches with the initial facts. When a match is found goal is succeeded. But,

if it doesn't then the inference engine start to check the next rules whose conclusions

(previously referred to as actions) match with the given fact. Note that a backward

chaining system does not need to update a working memory instead it keeps track of

what goal is needed to prove its main hypothesis. Goal driven control is commonly

known as top-down or backward chaining (Nalepa, 2015).

According to (Nalepa, 2015), both forward chaining and backward chaining have similar

function. But, the difference occurs due to the data structure of the knowledge based

system. So, as noted by (Nalepa, 2015) the backward chaining is more efficient if there is

particular goal and avoid drawing a conclusion from irrelevant facts, the developed

prototype infers the rules by backward chaining and provides appropriate

recommendations as per the users query.

68

CHAPTER FIVE

Design and Implementation of the prototype

A knowledge based system tool is a set of computer software that manipulates

programs and other information in order to design and assist the development of

knowledge based systems (Kesarwani & Misra, 2013). In the 1980s and early 1990s,

when commercial interest in knowledge based system was reach at its peak,

approximately there are more than 200 commercially available KBS tools (Sajja &

Akerkar, 2010). Many are still available but no longer described as KBS tools for

marketing reasons. The actual implementation of KBS was based on high level

programming languages. However, modern knowledge based system development

tools highly depend on their purposes, functionality and some additional features. Based

on their purposes, KBS tools are classified as general purpose programming tools such

as Java, and framework .NET. In addition programming Language such as C++

provides objects as a mechanism for programmer to control the layout and data

structures (Kingston, 2008).

There are many knowledge based system tools. According to Kingston (2008) different

author classified KBS development tools based on their functionality. The simplistic

nature and additional feature it provides is used as parameters to select KBS

development tools. Expert systems are typically written in special programming

languages. The use of languages like LISP and PROLOG in the development of an

expert system simplifies the coding process. The major advantage of these languages,

as compared to conventional programming languages, is the simplicity of the addition,

elimination, or substitution of new rules and memory management capabilities

This knowledge based novice assistance, is a tool that aids novice programmers in

debugging computer programs source code. The user compiles their code in turbo and

if there‘s a compile error, the KB-DAS system first determines the compile error. The

second step is it provides information on the error and suggests the fixes.

Without the tool, the error messages by the compiler are not helpful and often lead to

confusion for novice programmers. Too often, the compile error messages are cryptic,

69

long or hard to understand. These don‘t necessarily point the students in the right

direction needed to fix the code. New students of the language have a hard time

identifying the errors, let alone applying fixes.

With the tool, the errors are described clearly, real causes are pointed out, and better

error messages are generated. It‘s useful during the early phase of learning C++

programming as they become more proficient and knowledgeable with the language.

Once the user compiles the code and a compile error results, the tool then assesses the

line which caused the error and processes the code. It scans the code to check the

syntax, points out the actual error, and suggests the fix for it. It also gives examples for

the students to have better understanding.

Users gain self-confidence and experience in debugging with the assistance of this tool.

They are able to save time and improve their program comprehension skills.

5.1 How KB-DAS interacting with users

Figure 5.1 depicts how the prototype works during helping novices students debugging

computer program written in C++ language. Accordingly, the novice programmer first

write his or her program in turbo C++ developmental tool then if there is any error

happen to the program and error message is arise then he or she go to the knowledge

base debugging assistance system by having that error message for help then the

system asks the programmer some question to suggest a solution.

Figure 5.1: structural design of KB-DAS

Write a

program

Novice programmer

Turbo C++

KB-DAS Turbo compiler error

result

KB-DAS result

Any help

70

5.2 Architecture for KB-DAS

As it could be observed in the figure 5.2, there is no a learning component for the

knowledge base debugging assistance system which is one of the limitation of this

research.

5.3 The knowledge base

The knowledge base incorporates the relevant knowledge that was acquired from the

domain experts. The knowledge base stores all relevant knowledge, fact, rules, and

relationships used by the KBS. The knowledge base of the prototype contains the

domain knowledge which is used to identify the types of error and solutions in

debugging computer program for novice programmer.

Figure 5.2: architecture of KB-DAS

Human expert

Knowledge

acquisition

Knowledge validation

& verification

Knowledge

representation

Implementation

Knowledge base

Inference engine
Explanation

facilities

User

User interface

71

The fact base component of knowledge based system includes basic facts of different

cases that are handled during problem solving. The number of facts depends on the

number of rules incorporated into the knowledge base. Functionally, the facts in the fact

base are used to compare against the condition part of rules. In other words, if the given

facts satisfy all the conditions which proved to be true, then the inference engine draw a

conclusion. This is based on the pattern matching between the facts in fact base and

their respective rules in the knowledge base.

5.4 The inference engine

Two most general types of inference are: forward chaining and backward chaining.

Furthermore, combinations of the two types can be applied. The most typical strategy is

to use forward chaining as a general control strategy, while at some stages, if detailed

goals are to be inferred, backward chaining is employed. Forward chaining is guided by

the goals or conclusions, whereas the backward chaining is guided by the given facts.

The inference engine simulates the domain expert reasoning process in debugging any

computer program errors written in turbo C++. It works from the facts in the working

memory (fact base) and stored knowledge in the knowledge base to fire the rule. It

achieves the goal by searching through knowledge base to find rules whose premises

match with the given facts in working memory. The searching process continues until

the inference engine unable to match any premise with the facts in the working memory.

As the result, the prototype system uses backward chaining reasoning mechanism.

During the reasoning process, the inference engine start from the consequence (from

the problem or error occurred) and checks the reasons of the occurrence of this error

message to provide suggestions for the problem. If certain antecedents (facts) are

evaluated as true, then it logically follows the consequent are proved, and then the

problem type, cases and solutions for the problems are provided. As the conceptual

model indicated in the decision tree of figure 4.2, during the debugging any

programming errors the system first asks the cases of the error. Next the general

practitioner tries to prove whether these causes are match with the causes in the

knowledge base or not. Then the system provides suggestion to the novice programmer

depending on the actual causes feed to the system. The inference engine of the rule

72

based system follows similar procedures like the general practitioner(s). The inference

engine sequentially searches each rules then draw the conclusion for the errors. The

rules that used to debug computer program errors in turbo C++ programming language

are represented as indicated below.

Rule 1: undefined symbol, if

There is no library or

There is misspelled keyword or keyword in uppercase or

There is any missed double quote in cout statement or

There is any used variable which is not declared first or

There is any missed brace in if or loop statements or

‗endl‘ is not correctly spelled or

Rule 2: declaration syntax error, if

There is missed # in libraries and misspelled or

There is missed brace in main function or

There is any missed block for main function or

There is any missed semicolon in loop or illegal punctuation for statement ending

like comma, colon or period or

There is any wrong variable declaration like space or hyphen.

Others remaining production rules are attached with the document in the appendix

[appendix IV]

5.5 The user interface

The acceptability of a KBS depends on the quality of the user interface. The user

interface is used as the means of interaction between a user and the knowledge base

system. For this Knowledge base debugging assistance system, novice users are able

to interact with the system through a yes or no response only. Based on the user‗s

response the system draws a conclusion for each rule in the knowledge base. The

user‘s response helps the knowledge base system as premises for drawing to

conclusion. The systems conclusion displayed in the user interface window. The figure

below shows when the novice programmer write a computer program then tries to

73

debug it the compiler notifies the following errors. The sample code is one of the test

cases with 12 compiler errors [appendix vi].

So, here after the novice programmer starts asking a help from a system called KB-

DAS, which is knowledge based system developed for this purpose. The figure below

shows the welcome window and it describes the functions of KBS.

Figure 5.3: error message by compiler when the user tries to debug own program

74

Once the welcome window of KB-DAS user interface displayed, the user can interact

with the system by choosing the problem which is the user has encountered while

writing C++ program. The system requests the user what error he or she has faced. If

the response for this request is not given, the system does not allow the user to proceed

because the system expected the user has come across with an error. However, If the

user gives a choice then the system allows the user to the next request because the

user has come across with a kind of error. If the system is certain that the program

written has a kind of error of X, then the inference engine draws the conclusion.

The following figure depicts the rule1, ―Undefined Symbol‖, where all the conditions are

satisfied. Since the undefined symbol error is displayed by the compiler because of

more than six reasons so that novices may be conduct one of these reasons so the

system dialog with the novice to investigate what is the most possible reasons which

makes this error happened as follow:

Figure 5.4: Welcoming window of KB-DAS

75

Figure 5.5: dialog between user and the system on solving undefined symbol error

As already tried to express the novice user has different options to choose as per his or

her desire or error faced. So that the below figure shows that when a user has

encountered an error which is defined in rule 2, ―declaration syntax error‖, the possible

reasons would be raised to the user to have a look his or her program for correction.

Here is the sample:

Figure 4.5: dialog on solving declaration syntax errors

76

CHAPTER SIX

Testing and Evaluation of the prototype

This chapter focuses on issues regarding to testing and evaluation of the prototype.

This is the place where measuring the performance of the system to know the extent to

which it has achieved the objective of the research or not. For the purpose of this study,

KB-DAS is tested and evaluated based on the objective of the system. This is to

measure the accuracy of the system during the error solving processes. In this study the

performance of the system was measured against human domain expert decision in

correcting errors. The user acceptance of the system was carried out during system

user interaction.

The KBS user acceptance was measured by using open and close ended questions. It

is used to evaluate the performance of the prototype from the users‘ point of view.

Similarly, the questionnaires helped to assess and evaluate the acceptability and

applicability of KB-DAS in the domain area. The system evaluators directly interact with

the system to measure its performance from the points of its correctness in providing

solutions for different problems. In addition, the validation test was done by comparing

solved errors against the system conclusions on the similar issues. By comparing the

result obtained from the system conclusion, the evaluators determine the performance

of the system. Next to this the system has measured by using test case validation

method. The evaluation questionnaires are adapted from (Puet al, 2011) that used to

evaluate the model called ResQue (Recommender Systems‘ Quality of user

experience) with users‘ point of view. The adopted questionnaires are modified to some

extent to fit them to the context of this study. These questionnaires are attached in

Appendix III. System performance testing on the other hand was done by comparing the

suggestions manually done by the experts with suggestions provided by KB-DAS.

10% of the previous student sample (25 in number) novice students have been selected

by purposive sampling technique for user acceptance test; eight of them from computer

science, seven of them from information technology and five of them from information

system; Ten domain experts were selected; five of them were those instructors who

77

already had an interview for knowledge acquisition and the rest of five were new from

the departments; in evaluating the prototype system.

6.1 User acceptance evaluation

The type of questionnaires distributed for feedback collection from the evaluators was

closed ended and open ended questionnaires focusing on easiness, attractiveness,

time efficiency, and accuracy of the knowledge based debugging assistance system for

novice C++ programmer (KB-DAS). The evaluators were allowed to rate the options

using checkbox questions. The options of the check box questions are excellent, very

good, good, fair, and poor for these closed ended questions. Therefore, for easiness of

analyzing the relative performance of the prototype based on the user evaluation after

the interaction with the system, the researcher assigned numeric value for each of the

options given in words. The values are given as Excellent = 5, Very good = 4, Good = 3,

Fair = 2, and Poor = 1. The Table below indicates the feedbacks obtained from the

domain experts (evaluators) on systems, interaction as calculated based on the given

scale. Thus, this method helps the researcher to manually examine the user acceptance

based on evaluator‗s response. The average performance of user acceptance of the

system is measured manually as follows:

Table 6.1: User acceptance of the system domain expert‘s perspective

No Questions 1 2 3 4 5 Average Percent

1 Is the system more efficient in running

time?

0

0

2

4

4

4.2

84

2 Does the system incorporate sufficient

knowledge to solve an error which

faces you?

0 0 3 3 4 4.1 82

3 Is the system accurate in analyzing

facts and decision making?
0 0 2 3 5 4.3 86

78

4 Is the system‘s attractive to users?

0 0 1 3 6 4.5 90

5 Is the system‘s easy to use?

0 0 0 4 6 4.6 92

6

Is the system provides the right

description and suggestion to be

followed while finding and correcting

errors by human expert

0

0 1 4 5 4.4 88

7 How do you rate the significance of the

system in the domain area?
0 0 1 3 6 4.5 90

Total

4.37 87.4

Table 6.2: User acceptance of the system novice student‘s perspective

No Questions 1 2 3 4 5 Average Percent

1 Is the system more efficient in

running time?

0

0

2

11

12

4.4

88

2 Does the system incorporate

sufficient knowledge to solve an error

which faces you?

0 0 3 11 11 4.3 86

3 Is the system accurate in analyzing

facts and decision making?
0 0 2 11 12 4.4 88

4 Is the system‘s attractive to users?

0 0 3 11 11 4.3 86

5 Is the system‘s easy to use?

0 0 1 6 18 4.7 94

6

Is the system provides the right

description and suggestion to be
0 0 5 10 10 4.2 84

79

followed while finding and correcting

errors by human expert

7 How do you rate the significance of

the system in the domain area?
0 0 5 10 10 4.2 84

Total

4.357 87.14

Table 6.3: total user acceptance (both teacher and novice perspective)

Perspectives Average Percent

Experts (teacher‟s) 4.37 87.4

Novice (student‟s) 4.357 87.14

Total 4.3635 87.27

As shown in the above tables, 40 % of the evaluators scored the efficiency of the

system in time; how efficient the system is while interacting with the prototype system

criteria of evaluation as excellent and 40% as very good , 20 % as good . The second

evaluation criteria was how does the system incorporate sufficient knowledge to solve

an error which faces the user and it was scored 40 % as excellent, 30 % as very good,

and 30% as good. For system accuracy in analyzing facts and decision making, 50 % of

the evaluators scored as excellent, 30 % as very good, and the rest 20% as good. The

system attractiveness is also tested. Accordingly, 60% experts are satisfied with the

interface which is scored excellent, 30% of them selected very good and 10% are in

good mood with interface attractiveness. It is scored 60% excellent and 0% very good

regarding to it easiness to use sine it presents with the environment which fundamentals

of programming course is delivered.

Moreover, 50 % of the evaluators gave the prototype system an excellent score with

regard to the system provides the right description and suggestion to be followed while

80

finding and correcting errors by human expert40 % as very good, and 10% as good.

The significance of the knowledge based system to assist debugging for novices was

rated by 60 % of respondents as excellent while 30 % rated the prototype system as

very good and 10 % as good. Finally, the average performance of the prototype system

according to the evaluation results filled by the domain experts is 4.37 out of 5 4.357 by

novice students and total is 4.3635 which is 87.27 %.

In addition to the closed ended questions, the evaluators were provided with open

ended questions to forward their suggestions and opinions. These questions focus on

how the KB-DAS differs from the teacher experts in processing debugging codes written

by turbo C++.

The first open-ended question the respondents were asked was to know how is KB-

DAS different from a debugging style conducted by human expert. All respondents

agreed on that the system differs from the style which human expert can debug a

program, it asks lots of questions which are the most possible cause for the single error

message so that novices can learn lots of error causes for a single error message and

again for the their next program they may remember the cause for an error which is

come across when they debug another error. But human expert do not provide the

possible reasons for that single error but instead they go to find the error and correct it

this time novice students think that error is the only reason for the error they

encountered but in reality it is wrong since the compiler notifies a single error message

for may be lots of reasons. For instance for a single error message ―statement missing‖

there may be lots of reasons like there is any punctuation instead of semicolon, there is

any missed semicolon or illegal punctuation at end of statement such as period, comma

or colon, there is no <<for cout statement, there is any missed brace in if statement,

there is missed double quote in cout statement, there is double quote in cout statement

repeatedly without backward slash (\) and so on. All these are the possible reasons for

the error statement missing.

Another difference in between the system and human expert is that human intervention

cannot be 24/7 or in the time they practice their own code personally. So this kind of

81

debugging assistance system helps novices to get involved with it for their problems

concerning to debugging.

The second open ended question raised was ―what makes KB-DAS different from the

websites available to consult debugging‖ respondents answered this question by raising

the problems of those websites. One of the big problems for most websites is there is

no much focus on debugging but rather on concepts tutorial. Actually there are some

Q&A, forums, and blogs which are socialized but we may not get specific answer for

specific question but sometimes if we are luck and similar case is already asked then

we may get solution. Another big problem for novices is they do not know those

websites name since they are may not be oriented by their teachers. So, searching for

good Q&A, forums and blogs takes too much time for their specific question. Another

challenge for those websites is, they only answer for frequently asked questions and in

case the error which novice faced is new they have no solution. However, such a kind of

system (KB-DAS) will be encouraged and different from websites.

In the general, all respondents agreed that the system can really assist novices in

debugging process and encourage them well to be a mover in their program writing skill,

but it might need further development because the errors which is committed by novices

are very complicated and too much.

The third question was ―Does the system have any significance in the domain area‖ and

accordingly respondents answered it as the system has significance in the domain area.

All the system evaluator‗s responded that the system add value in the domain area. In

addition the system also can reduce the burden of human expert by saving their time

and energy spent while debugging especially for large class size in where many

students has come across with errors in their program ad since it is very difficult for

teachers to be always there for students 24/7, the system can substitute teacher when

the need come to novices.

The fourth question was about the significant strength of the system and accordingly it

is mentioned as it saves the user‘s time and energy. It does not expect every input from

82

the user because it does its own internal processing by asking the possible chance of

the error to take the load off the user. The system makes accurate and reliable

decisions and reduces the chance of errors in writing C++ program. The perceived

limitations of the system are that the types of error limitation and user interface of the

system needs improvement to make the system more attractive to users. Another

limitation raise was since the system interacts with the user using only ‗yes‘ or ‗no

‗replies. Therefore, it lacks some flexibility.

6.2 System evaluation using Test Cases

In the user acceptance evaluation, it is discussed about the evaluation of system

performance using both closed and open ended questions. System evaluators directly

interacted with system using these questions in order to forward their feedback and

suggestion on the performance of the system.

In this section the performance of the system was tested and validated using test cases.

The test cases were used to measure the accuracy of the system. For the purpose of

validation process a total of twenty five cases were selected. To achieve the goal of the

system evaluators were purposively selected according to their willingness and

specialty.

The KB-DAS testing procedure was carried out by system evaluator to evaluate the

solutions suggested by the system were correct or incorrect. System evaluators

compared the decisions made by the system against human expert. Then system

evaluators validated the number of correct decisions made by the system. The result of

the comparison shows that the rule based system has made close decision in the

debugging process of problems as human experts did. As indicated in table 6.4 below,

the result provided by system evaluators showed that the knowledge based system is

about 75% accurate in debugging computer program errors written in turbo C++.

83

Table 6.4: Testing the Accuracy of KB-DAS by using test cases

Errors Total number of

errors selected

Correct

suggestion

Incorrect or no

suggestion

The accuracy
of the
prototype in %

Undefined
symbol

4 3 1 75

Declaration
syntax error

4 4 0 100

Compound
statement
missing

3 3 0 100

Expression
syntax error

4 3 1 75

Statement
missing

4 3 1 75

For statement
missing

3 3 0 100

Runs well but
display wrong
output

5 2 3 40

Total 25 20 5 80.0

From table 6.4 above twenty five cases, which incorporated with errors novice

experiencing, were used to validate the accuracy of the system. For any errors stored in

the knowledge base, the knowledge base system can suggest solutions. Purposively

selected errors are used to challenge the system performance. As a result, for

―undefined symbol errors‖ in the above table 6.4 from the given four cases three of them

are correctly suggested by the system (75%). This simply shows that there are other

factors which make undefined symbol error happened rather than what we have

84

acquired from experts which is forwarded for further research. Similarly, from the given

four cases all of them are classified correctly in the ―declaration syntax errors‖ (100%).

For the ―compound statement missing‖ errors while writing computer program in turbo

C++ the system correctly provided suggestion (solutions) for all the errors (100%). Out

of four presented cases for an error ―expression syntax error‖ three of them are correctly

suggested by the system which means the system is 75% accurate. The same is true

for ―statement missing‖ errors which 75% accurate. “For statement missing‖ registered

as 100% accurate but the ―runs well but wrong output‖ logical error registered below half

which is 40%. This simply implied that there needs additional effort on logical and run

time errors.

Finally, the result indicated that all the cases are directly similar with knowledge

incorporated in the knowledge base and average performance of the KB-DAS is 80%. It

reveals that the compile time errors have addressed well but further research should be

done on logical and run time errors. Finally, sample of errors and cases are attached at

the appendix VI.

6.3 Comparison with related works

Table 6.5: Dealing with the previous related works with the current system

Related works Done for Author Success

Novice Assistancein

Java Introduction

Java novices Salcedo,

NajinarRaysal

Marie G

The system has gained

User acceptance and

system performance is not

specified

DebugIt Pascal language Lee and Wu 94.75% accurate and user

acceptance does not

registered

Recent Progress in

the Development of

C language Smith and

Webb

76.4% accuracy and user

acceptance is unspecified

85

a Debugging

Assistant for

Computer

Programsor

―Bradman”

The limitation of

Bradmanstatements are

treated as individual

entities and no attempt is

made to understand their

purpose in relation to other

statements.

Expresso Java language Bryn Mawr

College

86.75% accuracy

registered. No specified

user acceptance. The tool

specifically does not

eliminate the need for

understandable compiler

error messages; rather,

the tool enhances the

functions of a compiler.

Adil (Automated

Debugger in

Learning system)

C language John F, Alex

Myth, Watson

G.

Given a syntax error-free

program and its

specification, this

debugger is able to locate,

pinpoint and explain

logical errors of programs

HelpMeOut (social

recommender

system)

It collects examples

of code changes

that fix errors in a

central database

Gate H,

Kenedy J,

Mark F

The system is able to

suggest useful fixes for

47% of the errors.

Java Intelligent

Tutoring System

It is a web-based

application where

you will upload your

Daniel T,

Wiston B and

Criss R.

Presented as it is

accurate in user

acceptance and system

86

java program and

run your program

and returns the

output

performance but not

numbered in percentage

KB-DAS (knowledge

base debugging

assistance system)

C++ language Tariku Fetene 87.27% user acceptance

and 80 % accuracy

performance

So, the prototype knowledge based debugging assistance system for C++ program can

be concluded as promising and applicable in the domain area. The feedback and

suggestion of domain expert reveals that the knowledge based system satisfactorily

gained user acceptance. The system acceptance evaluations used open and close

ended questions to directly interact with system and registered good accuracy.

87

CHAPTER SEVEN

Conclusion and Recommendations

7.1 Conclusion

In teaching and learning programming ideas and skills in finding errors and correcting

them to have an error free program has been recognized as a great challenge for

novice programmers. The primary objective of this study was to develop knowledge

base system that supports novice programmers in debugging computer program written

in C++.

The study focused on novice programmer, according to Dreyfus (1996) categorization of

programmers novices are the very beginner programmers who has no any previous

knowledge in any kind of computer programming others are advanced beginners,

competent, proficient and expert at the last. This is because it was found as logical to

start them early case and again it is supported by scholars those who are trained early

in debugging would become better debuggers more quickly (Hwang et al,

2012).Debugging training is even more needed by novice programmers (Oman et al,

2011).

To achieve the objective of the study, the following research questions were raised to

be answered:

 What are the challenges for both teachers and students, in teaching learning

computer programming?

 What are the common errors novices are experiencing how can these problem

be solved?

 What knowledge is there in programming style and coding conventions to write

error free program?

 To what extent the application of knowledge based system support novice

programmers in debugging computer program?

Since, over the years, the discipline of knowledge engineering has evolved into the

development of theory, methods and tools for developing knowledge-intensive

88

applications (Marcus and McDermott, 2011). So, in this research it is employed a

Knowledge engineering method for knowledge acquisition, model building,

representation and prototype development and testing, whereas other suitable methods

are also used for knowledge elicitation through discussion with experts which are

professional and experienced teachers and survey design to assess the level of

students in understanding compiler error messages, the way how students debug their

program and teachers reaction in assisting them. Survey design is more effective in

assessing the current practices in its natural setting (Best & Kahn, 2003).

Accordingly, the following were the major findings of the study:

 Course Complexity (multidisciplinary), Students‘ motivation, way of study,

methodology and tools used traditional teaching methods, normally based on

lectures and specific programming language syntaxes, often fail in what concerns

the students‘ motivation in getting involved in meaningful programming activities,

Student‘s previous experiences in any kind of programming, source code

developmental tools (unclear compiler error message), natural language problem

are found as the main reasons for students‘ failure in computer programming

courses.

 Different common errors novices are experiencing have explored such as missing

library, variable not declared, variable and data type mismatch. For more common

errors (page 56-61 of this thesis).

 Knowledge which exists in programming style and coding conventions to help in

writing error free program in turbo C++ are also explored so that they could be

used as an input for the knowledge base system.

 Another major finding is that the more specific errors messages from the

compiler could help students to clarify concepts, misconceptions, or improve their

debugging experience so that their level of understanding for compiler errors

message would be high and they can easily find and correct the errors.

 Since compilers are not always helpful, with the help of KB-DAS, knowledge

base debugging assistance system that addresses the needs of novice

programmers. It implemented the about 89 errors identified. The more specific

89

messages from the KB-DAS help students to become better programmers in

terms of debugging and writing error-free programs by improving their program

comprehension skills and giving them debugging experience

 Applicability of KBS for debugging computer programs has been proved. And the

prototype knowledge based system is promising and applicable in the domain

area. The feedback and suggestion of domain expert reveals that the knowledge

based system satisfactorily gained user acceptance. But, to fully provide

debugging some types of error especially logical and run time errors need to be

incorporated into the current system.

7.2 Recommendations

The prototype knowledge based debugging assistant system is promising and

applicable in the domain area of debugging computer program written in turbo C++ and

the feedback and suggestion of domain expert reveals that the knowledge based

system gained user acceptance and tested its performance so that it is highly

recommended for school of informatics use the system for improving students skill in

debugging.

In the system developed, 89common errors (35 compiler error messages), in which

there are on average three types of errors (syntax, logical and run time) novices do,

were handled which are acquired from teacher experts. So that the prototype is

developed by having these 35 production rules however it would be better to add more

errors in order to make the system inclusive of all the errors committed by the novice

programmers in turbo C++.

Most of the errors tried to represent into the knowledge base system are compile time

errors so that it needs further investigation for logical error which is another headache

for novice and other higher experts. It is recommended the scope of the knowledge

based system should be extended to incorporate other logical and run time errors.

In this study an attempt is made to apply rule based systems. But, there are different

solved cases available in computer program error debugging especially logical errors.

90

Rule based systems solve problems from scratch, while case based systems use pre-

stored situations to deal with similar new instances. Therefore, the integration of rule

based reasoning with case based reasoning would solve the limitation when

representing knowledge in the form of if then rules unable to draw a conclusion for

logical errors.

It is also recommended to have an alternative idea to use specialized tools to log

students' actions in order to easily explore their behavior while programming and

compiling, which can provide good insight into which students are facing most problems

when, and guide the instructors consequently. Or in other word it means a tool that not

only collects actual compilation errors but also prepares reports both for instructors and

students with suggestions and recommendations.

Another recommendation is goes to compiler designers to think over and add a feature

of automatic keyword options in turbo so that it would be possible to decrease the

probability of novices to experience some simple errors which happens because of

keyword usage and misspelling.

91

References

Aamodt, A., Plaza, E. (2013). Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. AI Communications. IOS

Press, Vol. 7: 1, pp. 39-59

Aboneh, T. (2013). Knowledge based system for pre-medical triage treatment at Adama

University Asella Hospital.‖ Masters Thesis, Addis Ababa University, Ethiopia,

2013.

Abdulah,M., Paige, R., Thpmpson, I., Benes, C. (2014). Conceptual modeling of

knowledge Based Systems by Using UML‖ , pp. 24-33, Sawed Arabia.

Ahmadzadeh, M., Elliman, D and Higgins, C. (2005).An analysis of patterns of

debugging among novice Computer Science students, SIGCSE, pp. 84-88.

Akinola, K. E.,Olanrewaju, G. O., Oyenuga, A. Y.(2015).Improvement Strategies for

Computer Science Students‘ Academic Performance in Programming

Skill.American Journal of Computer Science and Information Engineering. Vol. 2,

No. 5, 2015, pp. 45-50..

Aljunid, S., Nordin, M., Shukur, Z. and Zin, A. (2000) A Knowledge-based Automated

Debugger in Learning System

Bain, K. (2004). What the best college teachers do. Cambridge, MA: Harvard University.

Bradnt, J., Hartmann, B., Klemmer, S, and MacDougall, D. (2010). What Would Other

Programmers Do? Suggesting Solutions to Error Messages.

Deek, F., Kimmel, H. & McHugh, J. (2014). Pedagogical changes in the delivery of the

first-course in computer science: Problem solving, then programming. Journal of

Engineering Education, 87, pp. 313-320.

Dewey, J. (1997) Experience and Education.Free Press, New York, 1997 (reprint

edition).

92

Eckerdal, A. (2009). Novice programming students‘ learning of concepts and

practise(Doctoral dissertation), Retrieved from

http://uu.divaportal.org/smash/record.jsf?pid=diva2:173221

Endris, U. (2011). An Introduction to Prolog Programming.Amsterdam University, van

Amsterdam.

Freeman-Hargis, J. (2014). Methods of Rule-Based Systems. Retrieved from http://ai-

depot.com/Contest/Rule- Based Systems and Identification Trees

Hristova, M., Misra, A., Rutter, M and R. Mercuri.(2003). Identifying and correcting

programming errors for introductory computer science students,‖ ACM SIGCSE,

pp. 153-156.

Hwang, W. Y., Shadiev, S., Wang, C. Y., & Huang, Z. H. (2012).A pilot study of

cooperative programming learning behavior and its relationship with students‘

learning performance.Computers & Education, 58, 1267–1281.

Katz, I. and Anderson, J. (1987).Debugging: An analysis of bug location

strategies.Human-Computer Interaction, 3, 4, 351-399.

Kesarwani, P., &Misra, A. (2013).selecting integrated approche for knowledge

representation by comparative study of knowledge representation schemes.

International Journal of Scientific and Research Publications, 1-5.

Kingston, J. (2008). Knowledge based system development tools. Artificial Intelligence,

University of Edinburgh, Scotland.

Kolling, M. & Rosenberg, J. (2013). Blue - A Language for Teaching Object-Oriented

Programming, Proc. of the 27th SIGCSE Technical Symposium on Computer

Science Education, pp. 190-194.

Kordaki, M. (2010). A drawing and multi-representational computer environment for

beginner learning of programming using C: Design and pilot formative evaluation.

Computers & Education, 54, 69–87.

http://uu.divaportal.org/smash/record.jsf?pid=diva2:173221

93

Kurland, D.M., Pea, R.D., Clement, C., Mawby, R. (2013). A study of the development

of programming ability and thinking skills in high school students. In: Soloway, E.,

Spohrer, J.C. (Eds.), Studying the Novice Programmer. London, Lawrence

Erlbaum Associates, 83–112.

Lee, G. C., & Wu, J. C. (1999). Debug It.Computers& Education, 32(2), 165-179.

Lewis, M and Gregg,C. (2016). How do you teach debugging?: resources and strategies

for better student debugging, ACM SIGCSE, pp. 706-706.

Maher, M. L. (1984). An Expert System For The Preliminary Structural Design Of High

Rise Buildings, Forthcoming Ph. D. thesis, Department of Civil Engineering,

Carnegie-Mellon University.

Marcus, S and McDermott, J. (2011). A knowledge acquisition language for propose

and- revise systems. Artificial Intelligence, 39(1):1–38.

McCartney, A.,Eckerdal , J. E.,Mostrom , K., Sanders , C. (2007). Successful students'

strategies for getting unstuck, The 12th annual SIGCSE conference on

Innovation and technology in computer science education, 2007, Dundee,

Scotland.

McCracken, J.,Mayer, R., Dyck, J. &Vilberg, W. (2014). Learning to program and

learning to think: what's the connection? In Soloway&Spohrer: Studying the

Novice Programmer, pp. 113-124

Mulder, F. (2002). Computer Science: from a BÈTA to a DELTA subject. Informatica,

Tinfon, 11, 48.

Nalepa, G. (2015). Methodologies and Technologies for Rule-Based Systems Design

and Implementation.Towards Hybrid Knowledge Engineering.AGH University of

Science and Technology, Poland.

Olapiriyakul, K. &Scher, J. M. (2012). A guide to establishing hybrid learning courses:

employing information technology to create a new learning experience, and a

case study. The Internet and Higher Education, 9, 287–301.

94

Oman, P. W., Cook, R., &Nanja, M. (2011). Effects of programming experience in

debugging semantic errors.Journal of Systems and Software, 9(3), 197-207.

Perkins, D., Hanconck, C., Hobbs, R., Martin, F. & Simmons, R. (2014). Conditions

of learning in novice programmers. In Soloway&Spohrer: Studying the Novice

Programmer, pp. 261-279.

prentzas, j., &Hatzilygeroudis, l. (2007). Categorizing approaches combining rulebased

and casebased reasoning. Exprt systems, 24(2), 97-122.

Pu, P., Chen, L., & Hu, R. (2011).A User-Centric Evaluation Framework for

Recommender Systems.5th ACM Conference on Recommender Systems , (pp.

157 – 164). Chicago.

Rajeswari, P. V. (2012). Hybrid Systems for Knowledge Representation in Artificial

Intelligence.International Journal of Advanced Research in Artificial Intelligence.

Robert-Jan Mora and Bas Kloet. (2010). The application of statistical sampling in digital

forensics (Vol. Version:1.0). Hoffmann Investigations, Almere The Netherlands.

Sajja, P., &Akerkar, R. (2010).Knowledge-Based Systems for Development.Advanced

Knowledge Based Systems:Model, Applications & Research (Vol. I, pp. 1 – 11).

Salcedo, G. (2016). Novice Assistance in Java Introduction.University of the

philippinesmanila , college of arts and sciences , department of physical sciences

and mathematics.

Schulte, C. &Bennedsen, J. (2006).What do teachers teach in introductory

programming? In Proceedings of the Second International Workshop on

Computing Education Research, Canterbury, UK, September 9–10, (pp. 17–

28).ICER ‗06. New York: ACM.

Sharma, T., &Kelkar, D. (2012). A Tour Towards Knowledge Representation tecniques.

International Journal of Computer Technology and Electronics Engineering, 131-

135.

95

Sykes, E., & Franek, F. (2004).A Prototype for an Intelligent Tutoring System for

Students Learning to Program in Java.Advanced Technology for Learning, 1(1),

1-6.

Smith, P and Webb G. (1992).Recent Progress in the Development of a Debugging

Assistant for Computer Programs

Thomas, B. (2014). Evaluation of Knowledge based systems. What can be evaluated

and what cannot? Journal of Evaluation in Knowledge base system, Vol. 4, pp.

373–385, US.

Verdú, E., Regueras. L. M., Verdú, M. J., Leal, P. J., Castro, J. P., &Queirós, R. (2012).

A distributed system for learning programming online.Computers & Education,

58, 1–10.

Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012). Assessment of programming

language learning based on peer code review model: Implementation and

experience report. Computers & Education, 59, 412–422.

Winslow, L.E. (2013). Programming pedagogy - A psychological overview. SIGCSE

Bulleting, 28(3), pp. 17-22.

96

APPENDIXES

Appendix I

Pre survey of student‟s grade reports (below C) for consecutive three year in programming courses

Below Grade C

Courses

Fundamental

of

programming

I

Year C S IT IS Physics Statistics Mathematics Civil

Eng.

Mech

Eng.

Elec

Eng.

Total (%)

2006E.C 67 / 97 61/93 27/43 31/56 21/35 19/43 76/104 81/121 69/98 62.20%

66.25% 2007E.C 61/88 67/91 21/38 38/62 29/42 23/36 59/108 62/114 47/78 63.53%

2008E.C 81/101 69/90 30/45 38/57 26/40 22/33 89/117 67/101 51/73 73.02%

Fundamental

of

programming

II

2006E.C 59 / 81 57/84 21/39 67.15%

67.62% 2007E.C 38/82 61/82 22/36 60.5%

2008E.C 77/95 64/88 29/43 75.22%

2006E.C 54/79 49/80 23/37

 43/85 60.14%

97

Object

oriented

programming

2007E.C 56/80 58/78 19/37 31/82 59.21% 58.09%

2008E.C 61/90 53/86 18/43

 30/76 54.91%

Advanced

programming

2006E.C 54/72 48/78 23/39 39/75 62.12%

59.92%

2007E.C 56/70 48/66 21/37 31/80 61.66%

2008E.C 51/67 43/79 19/41

 33/74 56%

Visual

Basic

2006E.C 41/77 18/39 41/75 52.35%

51.46% 2007E.C 39/71 21/37 31/80 48.4%

2008E.C 43/79 23/41

 38/74 53.62%

98

Appendix II

Jimma University

College of Natural Science

Department of Information Science

Questionnaire for the fulfillment of masters program in information science

First of all I would like to thank you for your cooperativeness to help me in assessing the

overall status in teaching learning computer programming and also I appreciate your

genuine response. Then, kindly I will ask you to fulfill the following requirements.

“Thanks in advance”

For students in Mizan Teppi University

1. Sex

2. Department

3. Year I II III IV V

4. How is your interest in programming courses? Do you like programming

courses? Yes No

5. If No, why?

__

___.

6. How about your grades in programming courses on average relative to other

courses? (Very high A+ & A, high A-,B+ &B, fair B-,C+ &C, low C-,D and Fx

very low F) Very High High Fair Low

Very low

7. If your grade is not very high or high, what do you think is the reason?

 Course complexity

 Teaching methodologies

and strategies

 Student‘s motivation

 Developmental tool

 Natural language problem

 Previous experience

 Way of study

99

8. How do you understand the message, whether it is warning or errors, notified by

the compiler while writing a computer program?

Very easily Easily Neutral Not easily even can‘t understand

9. Teacher‘s teaching frame of mind is always the same

Strongly agree agree no idea disagree strongly

disagree

10. What kind of problem did you observe by teachers while teaching computer

programming course?

 Bored

 Tiresome

 Not subject

knowledgeable

 Carelessness

 Incomprehensible

11. If there is one or more teacher who is your favorite in teaching computer

program, what is the reason?

 Teach the course easily

 They are friendly

 They are encouraging

 They are

understandable

12. How do you see yourself? Are you stopper or mover (In problematic situation

stoppers simply stop and abandon all hope of solving the problem on their own,

while movers keep trying, modifying their code and use feedback about errors

effectively.)?

Stopper Mover

13. Where is the conceptual problem in writing computer programming?

 Source code writing

 Programming conceptual

understanding

 Completing incomplete

code

 Outputting for fragment code

 Logical design

 Compiler error correction

 Running time error correction

14. Please rate the conceptual difficulty or challenge for you in writing computer

programming?

a. Variable&data type High Medium Low

b. Conditional statement High Medium Low

c. Loop statement High Medium Low

d. Array High Medium Low

e. Pointer High Medium Low

f. Modular programming High Medium Low

100

g. Structure statement High Medium Low

h. File system High Medium Low

i. Syntax High Medium Low

j. OOP concepts High Medium Low

k. Exception handling High Medium Low

l. Other

15. Where do you frequently spend your time to study your programming courses?

 Trying codes in laboratory

 By reading only hand out independently

 Peer Group study

16. How much time on average do you spend in studying programming courses (per

day)?

 Less than 1 hour

 Up to 2 hours

 Up to 4 hours

 Above 4 hours

17. Where do you try so as to find answers for every question you have in writing

programming?

 From teachers

 From students

 From development

environment or tool

 From internet

 From books

 No place

18. What is the reason for preferring to solve your challenges by the method you

already checked for the above questions (question number 17)

 Easy to access

 Easy to use

 Easy to understand

101

Appendix III

Jimma University

College of Natural Science

Department of Information Science

Interview checklist for teachers for the fulfillment of masters program in

information science

First of all I would like to thank you for your cooperativeness to help me in assessing the

overall status in teaching learning computer programmingand also I appreciate your

genuine response. Then, kindly I will ask you to fulfill the following requirements.

“Thanks in advance”

For teachers in MizanTeppi University

1. Sex

2. Department

3. Educational status

PHD MSc BSc G-3 BSc G-2 BSc G-1

4. For how long have you stayed in teaching?

1-2 year 2-4 years 4-6 years 6-10 years above 10 years

5. Have you ever provided programming courses? Yes No

6. What do you think the reason why students score low in computer programming

courses?

7. How computer program debugging can be defined?

8. How bugs happen in writing computer programming?

9. How these bugs could have effect on student‘s practical exercise?

10. Are these bugs can be debugged?

11. What are the general types of errors that are common across different

programming languages and those that are particular to C++, the language the

novice programmers used?

12. When students debug their program, what do they do when they get stuck?

13. What kind of consult do you recommend to improve student‘s debugging skills

which can also assist teachers in teaching learning computer program?

102

Appendix IV

Production rules

Rule 1: undefined symbol, if

There is no library;

There is misspelled keyword or keyword in uppercase;

There is any missed double quote in cout statement;

There is any used variable which is not declared first;

There is any missed brace in if or loop statements;

‗endl‘ is not correctly spelled,

Rule 2: declaration syntax error, if

There is missed # in libraries and misspelled;

There is missed brace in main function;

There is any missed block for main function;

There is any missed semicolon in loop or illegal punctuation for statement ending

like comma, colon or period;

There is any wrong variable declaration like space or hyphen.

Rule 3: unable to open include file, if

There is missed .h in importing libraries.

Rule 4: unknown preprocessor directive, if

There is library is not correctly written like missing <>;

There written include in uppercase.

Rule 5: unexpected }, if

There is a missed open block.

Rule 6: no file name ending, if

There is a missed > in iostream.h.

Rule 7: bad file name format, if

There is a missed < in iostream.h.

Rule 8: compound statement missing, if

 There is any missed closed block;

There is any missed semicolon or illegal punctuation at end of statement such

as period, comma or colon;

103

There is missed double quote in cout statement;

{ or [symbol is used instead of brace for if and loop statements.

Rule 9: illegal structure operation, if

>> is used for cout statement and << for cin statements.

Rule 10: expression syntax error, if

 >>>or<<< or<<> or other wrong way is used for cin and cout statements;

 One < is missed in cout statement when concatenating two or more statements;

 Comma, colon or period is used instead of semicolon;

+ instead of ++,<== instead of <=, >== instead of >= is used in if or loop

statement;

There is any wrong expression in if or loop statement;

There is wrong array initialization;

There is unnecessary symbol like | or / for comment.

Rule 11: statement missing, if

 There is any punctuation instead of semicolon;

 There is any missed semicolon or illegal punctuation at end of statement such as

period, comma or colon;

 There is no <<for cout statement;

 There is any missed brace in if statement;

 There is missed double quote in cout statement.

 There is double quote in cout statement repeatedly without backward slash (\)

Rule 12: declaration terminated incorrectly, if

 There is any variable begins with number or symbol;

 There is any missed semicolon or illegal punctuation at end of statement such as

comma, period or colon;

Rule 13: unterminated string or character, if

 We initialize character for int data type;

 Missed ― for closing cout statement like cout<<‖Hello world;

Rule 14: for statement missing, if

 Missed semicolon in loop statement;

 Only + used for incremental statement ++;

104

 Wrong expression in loop statement;

 Missed brace or other symbol used like [] or { } for loop statement;

 Missed initialization, condition and increment for looping statement.

Rule 15: cannot convert char to int, if

 ― is used for int variable. Egint age = ―18‖

Rule 16: possibly incorrect assignment, if

 = is used instead of == for equal statement.

Rule 17: too many types in declaration, if

 Data type is used as a variable.

Rule 18: too many initializers, if

 Too many values are initialized for array, which is out of the index;

 There is no closed block ―}‖ for array initialization;

 Wrong use of block for array initialization such as [] or ().

.Rule 19: size is unknown, if

 Do not initialize the size of an array.

Rule 20: multiple declarations, if

 There are similar variable name with the same data type or even different data

type.

Rule 21: duplicated case in function main(), if

 There is the same case in switch statement.

Rule 22: if statement missing, if

 There is missed brace in IF, either open brace ‗(‘ or closed ‗)‘ .

Rule 23: unexpected output, if

 There is incorrect condition in loop of if statements.

Rule 24: unhandled exception (Divide error exception), if

 A number is divided by 0.

Rule 25: general protection exception, if

 One < is missed in cout statement when concatenating two or more that two

statements egcout<<‖hello‖<‖world‖.

Rule 26: misplaced else, if

 There is no closing block ‗}‘ for IF but used else.

105

Rule 27: additional ‗0‘ output for array program, if

 The size of the array or index is more than the values initialized at first.

Rule 28: unwanted number output, if

 The compiler gets an output which is array index out of bound especially when

loop is used and data type of the array is int, float or double.

Rule 29: unwanted character output, if

 The compiler gets an output which is array index out of bound especially when

loop is used and data type of the array is character.

Rule 30: type mismatch in re-declaration, if

 The data type of a function definition is different from its declaration.

Rule 31: size of ‗function name‘ is unknown or 0, if

 hyphen is used for a function name while declaring.

Rule 32: call to undefined function, if

 There is undefined function used in calling;

 Function defined and called is different in naming.

Rule 33: linker error: undefined symbol, if

 Trying to define a function which is not declared first;

 main() function is in uppercase like this Main()

 Different Function name in declaration and definition is used.

Rule 34: ‗)‘ Expected, if

 There is extra open brace for function declaration or IF or even loop.

Rule 35: character constant must be one or two character long, if

 ‗ is used instead of ― in cout statement

Rule 36: misplaced break, if

 The compiler encountered a break statement outside a switch or looping.

Rule 37: misplaced continue, if

 The compiler encountered a continue statement outside a looping.

Rule 38: do statement must have while, if

 Your source file contained a do statement that was missing the closing while

keyword

106

Appendix V

Evaluation questionnaires

Questionnaire to test and validate the performance of the knowledge base debugging

assistance system (KB-DAS) for novice programmers:

1. Is the system more efficient in running time?

Poor Fair Good . Very good Excellent

2. Does the system incorporate sufficient knowledge to solve an error which faces you?

Poor Fair Good . Very good Excellent

3. Is the system accurate in analyzing facts and decision making?

Poor Fair Good . Very good Excellent

4. Is the system‘s attractive to users?

Poor Fair Good . Very good Excellent

5. Is the system‘s easy to use?

Poor Fair Good . Very good Excellent

6. Do you believe that KBDAS can effectively handle debugging processing?

 Yes No

7. Is the system provides the right description and suggestion to be followed while

finding and correcting errors by human expert.

Poor Fair Good . Very good Excellent

8. How do you rate the significance of the system in the domain area?

Poor Fair Good . Very good Excellent

9. Does the system update its knowledge base?

Poor Fair Good . Very good Excellent

107

10. How is KB-DAS different from a debugging style conducted by human expert?

__

__

__

__.

11. What makes KB-DAS different from the websites available to consult debugging?

__.

12. Does the system have any significance in the domain area?

___.

13. What is the strength of KB-DAS?

___.

14. What are the limitations of KB-DAS?

___.

108

Appendix VI

Sample of Test Case Used to Validate the Accuracy of KB-DAS System

Case1: Undefined symbol error (no library)

void Main(){

cout<<"hello World";

}

Undefined symbol error (capitalized keyword ‘Cout’)

#include<iostream.h>

void main(){

Cout<<"hello World";

}

Undefined symbol error (missed double quote (“) for cout statements)

#include<iostream.h>

void main(){

cout<<hello World";

}

Undefined symbol error (undeclared variable)

#include<iostream.h>

void main(){

cout<<sum;

}

Case2: declaration syntax error (missed # for including library)

include<iostream.h>

void Main(){

cout<<"hello World";

}

109

declaration syntax error (missed brace ’(’ for main function)

include<iostream.h>

void Main){

cout<<"hello World";

}

declaration syntax error (missed block ‘{’ for main function)

include<iostream.h>

void Main ()

cout<<"hello World";

}

declaration syntax error (use hyphen for variable declaration or miss semicolon

at the end of the statement)

include<iostream.h>

void Main(){

int person-age

cout<<"hello World";

}

Case3: compound statement missing (missed closed block ‘}’)

#include<iostream.h>

void main(){

cout<<"Hello World";

compound statement missing (using ‘{’ instead of ‘(’ for IF statement)

#include<iostream.h>

void main(){

int a=5;

if{a>4)

cout<<"Hello World";

 }

110

Case 4: Expression Syntax Error(using extra „<‟ for cout statement)

#include<iostream.h>

void main(){

cout<<<"Hello World";

 }

Expression Syntax Error(using wrong operation for example „>==‟)

#include<iostream.h>

void main(){

int a=5;

if(a>==4)

cout<<"Hello World";

 }

Expression Syntax Error (using „[‟ instead of „{‟ for array initialization)

#include<iostream.h>

void main(){

int a[]=[1,2];

cout<<"Hello World";

 }

Expression Syntax Error (using „||‟ or „/‟ instead of „//‟ for comment)

#include<iostream.h>

void main(){

int a[]=[1,2];

||cout<<"Hello World";

 }

111

Long fragment of code with 12 errors

void Main(){

int b;

int a[]=[1,2,3,4,5];

cin<<b

cout<<"hello World";

cout<<‟it is to check‟;

Cout<<"what can be the problem?";

cout<<hello World";

||cout<<"Hello World";

cout<<sum;

if{b>4)

cout<<"b must be greater than 4";

switch(b)

 {

case 1:cout<<"To check!";

case 1:cout<<"case number duplication!";

 }

And the corrected one by the system

#include<iostream.h>

void main(){

intsum,b;

int a[]={1,2,3,4,5};

cin>>b;

cout<<"hello World";

cout<<”it is to check”;

cout<<"what can be the problem?";

cout<<”hello World";

//cout<<"Hello World";

cout<<sum;

if(b>4)

cout<<"b must be greater than 4";

switch(b)

 {

case 1:cout<<"To check!";

case 2:cout<<"case number duplication";

 }

112

AppendixVII

Sample codes of the kb-das

#include<iostream.h>

#include<windows.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

Void display();

Void re_check();

void main(){

 int choice;

 charans;

 cout<<"\t^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^

^^\n";

 cout<<"\t\t^^^^^^^^^^^^^^^^^^^^^^^^^

^^^^^^^^^^^^^^^^^^^^^^^^^^^\n";

 cout<<"\t\t\tWELCOME TO

DEBUGGING ASSISTANCE SYSTEM\n\n";

//cout<<"REMIND: remember that the

compiler highlights below for an error which

is above!\n";

 cout<<"\t\t&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&\n";

 cout<<"\t^^^^^^^^^^^^^^^^^^^^^^^^^^

^^^

^^\n";

 cout<<"\tNOTE:-This knowledge

based debugging assistance system is a

system which \thelps ";

 cout<<"novice programmers to find

and correct errors while writing any

\t\tprogram in turbo C++. It is developed by

Tariku Fetene.";

 //cout<<"\tfullfilment of the

requirement for masters degree in

information science\n";

 cout<<"\n\n *** Remind: \" ERRORS

are happened on the top of the highlighted

line\" ***\n ";

 cout<<"_______________________

_____________________\n";

 cout<<"\tWhat error message did

you find? please choose from the list

below.\n";

 cout<<"\t1. Undefined Symbol\t\t11.

Statement missing\n";

 cout<<"\t2. Declaration Syntax

error\t12. Declaration terminated

incorrectly\n";

 cout<<"\t3. Unable to open include

file\t13. Unterminated string or char\n";

 cout<<"\t4. Unknown preprocessor

direct\t14. For statement missing\n";

 cout<<"\t5. Unexpected }\t\t\t15. Can

not convert char to int\n";

 cout<<"\t6. No file name

ending\t\t16. Possibly incorrect

assignment\n";

 cout<<"\t7. Bad file name

format\t\t17. Too many types in

declaration\n";

113

 cout<<"\t8. Compound statement

missing\t18. Too many initializers\n";

 cout<<"\t9. Illeg

al structure operation\t19. Size is unknown\n";

 cout<<"\t10.Expression syntax

error\t20. Unhandled exception\n";

 cout<<"\nWhat is your choice?\n";

 cin>>choice;

 switch(choice)

 {

 case 1: cout<<"Have you

include library like this

'#include<iostream.h>'? Y or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"Any keyword or reserved

word which is misspelled or in uppercase?Y

or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t*** Use correct spelling

for keywords and do not use uppercase!

***\n\n";

 }

 else

 {

 cout<<"What about missed

double quote in 'cout' statement? Y or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t*** Do not miss double

quote in 'cout' statement! ***\n\n";

 }

 else

 {

 cout<<"Is there any

variable which is not declared? Y or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t*** Variable must be

declared before use it! ***\n\n";

 }

 else

 {

114

 cout<<"Any missed brace in if or

loop statement? Y or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t*** Do not miss

brace for IF or loop statements! ***\n\n";

 }

 else

 {

 cout<<"did you

spelled 'endl' in wrong way? Y or N\n";

 cin>>ans;

if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t\t\t*** Write 'endl'

correctly! ***\n\n";

 }

 else

 {

 cout<<"\n\tSorry! This is a new case.

No suggestion for now!\n\n";

 }

 }

 }

 }

 }

 }

else

 {

 cout<<"\n\t*** You have to correctly

include library first! ***\n\n";

 }

 break;

case 2: cout<<"Have you missed '#' symbol

in include library or misspelled it? Y or N\n";

 cin>>ans;

 if(ans=='n'||ans=='N')

 {

 cout<<"What about missed brace for

main function?Y or N\n";

 cin>>ans;

 if(ans=='y'||ans=='Y')

 {

 cout<<"\n\t*** Use

correct syntax for main functions like 'void

main()' ***\n\n";

 }

DECLARATION

This thesis is my original work and has not been submitted as a partial requirement for a

degree of master in any other university.

Tariku Fetene Sewunet, June 2017

This thesis has been submitted for examination with my approval as a university

advisor.

Million Meshesha (PHD), Principal Advisor___________________

Miniychil Belay (MSc), Co-Advisor __________________________

