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Abstract 

This thesis focuses on the problem of interpretable semantic textual similarity in English language. 

The system takes pair of sentence then it identifies the chunks in each sentence according to 

standard gold chunks, align corresponding chunk, assign degree of similarity score as well as 

predict reason of similarity/dissimilarity for each aligned chunks. To do this computation 

distributional hypothesis approach blend with knowledge based was selected. Latent semantic 

analysis (LSA) is a purely statistical technique, which leverages word co-occurrence information 

from a large unlabeled large corpus of text relies on the distributional hypothesis that the words 

occurring in similar contexts tend to have similar meanings. To do so LSA word similarity 

computed from a statistical analysis of preprocessed Wikipedia corpus as well as it boosted by 

WordNet and string similarity. 

Furthermore semantic similarity measures between corresponding chunks are introduced in the 

theoretical part. We selected and implemented 10 similarity measures. In the experimentation part 

we proposes five chunk similarity measures inspired by state-of-the-art measures described in the 

chapter three. The evaluation is conducted two results (Run1 and Run2) on two data sets (Images 

and Headlines).  

We can be concluded that the performance of the system obtained was promising and gives a best 

result on Run1 which depends on 𝑃𝑂𝑆𝑖𝑚. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background 

This chapter gives readers a general insight about the background of the study, the problems that motivated 

the study. The chapter also gives highlight  of the method  and  approaches  followed  in  come  up  with  

solutions  to  the  problems.  The objective, significance, scope and limitation of the study is also included 

in this chapter. 

Similarity is a complex concept which has been widely discussed in the linguistic, philosophical, and 

information theory communities [1]. Standard semantic relations such as synonymy, paraphrase, 

redundancy, and entailment all result from judgments of likeness whereas antonym, contradiction, and 

inconsistency derive from judgments of difference [2].  Semantic related tasks have been a noticed trend 

in NLP community.  One needs to come up with a consistent computational model to assess this type of 

relation. When a word level semantic relation requires exploration, there are many potential types of 

relations that can be considered: hierarchical (e.g. IS-A or hypernym-hyponym, part-whole, etc.), 

associative (e.g. cause-effect), equivalence (synonymy), etc. [3].  

Semantic similarity can be broadly construed as being assessed between any two texts of any size. 

Depending on the granularity of the texts, such as: word-to-word similarity, phrase-to-phrase similarity, 

sentence-to-sentence similarity, paragraph-to-paragraph similarity, or document-to-document similarity 

are measured in different ways. Mixed combinations are also possible such as assessing the similarity of 

a word to a sentence or a sentence to a paragraph. For instance, in text summarization it might be useful 

to assess how well a sentence summarizes an entire paragraph [4]. Particularly, the task Semantic Textual 

Similarity (STS) has captured a huge attention in the NLP community despite being recently introduced 

since SemEval 2012 [5] and ongoing up to date.  

Semantic Textual Similarity (STS) measures the degree of semantic equivalence between two sentences. 

STS captures the notion that some texts are more similar than others, measuring their degree of semantic 

equivalence.  

Textual similarity can range from complete un-relatedness to exact semantic equivalence, and a graded 

similarity intuitively captures the notion of intermediate shades of similarity, as pairs of text may differ 
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from some minor nuanced aspects of meaning, to relatively important semantic differences, to sharing 

only some details, or to simply being related to the same topic. 

Although STS systems measure the degree of semantic equivalence in terms of a score which is useful in 

many tasks, they stop short of explaining why the texts are similar, related, or unrelated. They do not 

indicate what kind of semantic relations exist among the constituents (words or chunks) of the target texts. 

Interpretable STS (ISTS) adds an explanatory layer. Given the input pairs of sentences participants need 

first to identify the chunks in each sentence, and then, align chunks across the two sentences, indicating 

the relation and similarity score of each alignment. ISTS for each sentence pair, participating systems had 

to identify the chunks in each sentence, align corresponding chunks and assign a similarity/relatedness 

score and type of the alignment for each alignment. The alignment types were semantically equivalent, 

opposite, similar, related and unrelated in meaning [6]. 

1.2. Motivation  

The core motivation behind interpretable semantic textual similarity is that for a local language there are 

no work has been done on interpretation of text similarity. We tried to do the thesis for a local language 

on this title. Unfortunately it needs many things to do which we cannot cop and need linguistic profession.  

First and for most to propose new algorithm or even to use existing algorithm it need train and test datasets 

that annotated by linguistic. On other hand it need human annotated train and test dataset which have pair 

sentence, split of sentences into chunks, alignment of similar chunks together, assign similarity score for 

aligned pair chunks and assign type for aligned chunks (why it is aligned). This annotation needs the effort 

of exerted linguistic, as well as lexical database toolkit like WordNet is not available for local language. 

For these reason we do on foreign (English) language.  

1.3. Statement of problem  

Methods to assess the semantic similarity of larger texts, in particular sentences, have been proposed for 

paraphrasing and entailment semantic relation identification at sentence level [7], [8], [9], and [10]. 

Semantic similarity toolkit SEMILAR has been proposed that work at different levels of text granularity 

(word-to-word, sentence-to-sentence, paragraph-to-paragraph, document-to-document, or a combination) 

[11] regardless of interpretation at which point similarity is there and why?  

STS systems measure the degree of semantic equivalence in terms of a score which is useful in many 

tasks, did not explain why the texts are similar, related, or unrelated. They do not indicate what kind of 



3 
 

semantic relations exist among the constituents (words or chunks) of the target texts. Similarities and 

difference may be clearly identified as a sentence but, on what words or chunks their similarity or 

difference recognized, how much the degrees.   

However a few researchers tried to interpret sematic textual similarity among chunks but limited one to 

one alignment only.  That is the main problem seen so far. 

Finding explicit relations among constituents in the paired texts would enable a meaningful interpretation 

of the similarity scores that attract me as topic of this thesis. 

1.4. Objective 

1.4.1. General Objective  

The general objective is to compute whether two sentences are related or unrelated, by supplementing the 

similarity score with an explanatory layer. 

1.4.2. Specific objective 

 Align the chunks across both sentences  

 For each chunks alignment, provide the corresponding similarity score. 

 For each score classify the type of relation. 

 Determining the similarity between chunks. 

1.5. Significance of the Study 

Significance of scientific study is multi-dimensional; Academic and personal. Semantic text similarity is 

more directly applicable in a number of NLP tasks such as Machine Translation and evaluation, 

Summarization, Machine Reading, Deep Question Answering etc. on other hand interpretable semantic 

text similarity shows clearly the interpretation how much the text is similar or not similar at chunk level. 

For instance in deep Question Answering by cross checking expressed answers to conceptual questions 

are similar to ideal answers and displays points at which two answers are related or unrelated is an 

interesting part of ISTS. Also, the  system  contributes  to  future researchers  in  the  area  of  Semantic 

text similarity especially  in  developing  interpretable semantic textual similarity.  Generally the research 

outcome contributes benefit to individuals and future researchers.  
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1.6. Scope of the Study 

Interpretable semantic text similarity methods work at sentence-to-sentence levels of text but not 

paragraph-to-paragraph and/or document-to-document similarity. The text (sentences) divided into 

chunks and aligned in concept, gives score and reason of similarity. Our focus is determining the similarity 

between chunks of two sentences. Due to limitation of time we focused only chunk level alignments for 

short statements whenever possible. 

1.7. Methodology 

The combination of distributional approach and knowledge base is the method of this research work. Many 

literatures related to interpretable STS (ISTS) are reviewed to understand different possible way of 

measure and interpret STS. Semantic textual similarity model is based on a combination of latent semantic 

analysis (LSA) and knowledge from WordNet. It manages the different inputs of the system, texts in 

English and with varying length, and uses the interpretable semantic textual similarity model to compute 

the similarity between the given pieces of text interprets the text. The ISTS system composes several 

modules design to handle the computation of a similarity score among pieces of text of different lengths.  

LSA word similarity relies on the distributional hypothesis that the words occurring in similar contexts 

tend to have similar meanings. Thus, evidence for word similarity can be computed from a statistical 

analysis of a large text corpus. LSA does not rely on any human-organized knowledge; rather, it “learns” 

from corpus. Statistical word similarity measures have limitations. Related words can have similarity 

scores only as high as their context overlap. Also, word similarity is typically low for synonyms having 

many word senses since information about different senses are mixed together. To reduce the limitation 

of statistical word similarity additional information is needed; which is solved by using WordNet.  

1.6.1 Literature review  

To accomplish the objectives of this research mentioned above several articles and literatures review. 

Materials concerning semantic textual similarity and its interpretation were also reviewed. Since there are 

several approaches used in computing semantic textual similarity, literature review was also carried out 

on approaches used for interpretation of semantic textual similarity.  

1.6.2 Corpus selection 

For this research corpus selection and processing is done on Wikicorpus. Wikicorpus is a corpus contains 

600 million words which collected from Wikipedia and has been automatically enriched with linguistic 
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information. Additionally knowledge based (WordNet) is another source of information for computing 

interpretable semantic textual similarity.  

1.6.3 Preprocessing  

On other hand many preprocessing perform to reduce inflectional forms of words to a common base form 

and increase performance of the system. This can be done by many preprocessing techniques such as: 

Tokenization, stop-word removal, lemmatization, part of speech tagging, parsing, named entity (name of 

location, organization, date, money, person, time and percent) recognizing are performed by Stanford 

CoreNLP toolkit [50]. 

1.6.4 Scoring pair chunks  

Scoring each pair chunks are computed by combining different features taken from lexical, semantic and 

syntactic features are computed for the texts using a variety of resources and supplied to a classifier, which 

then assigns weights to the features. It takes a set of input and predicts the scores for a set of input. 

1.6.5 Alignment 

Monolingual alignment is the task of discovering and aligning similar semantic units in a pair of sentences 

expressed in a natural language. Such alignments provide valuable information regarding how and to what 

extent the two sentences are related [62]. A chunk is a textual unit of adjacent words grouped on the basis 

of linguistic properties which display the relations between their internal words [72]. 

At chunking process two sentences split into gold standard chunks. Once sentences are chunked, and 

similarity score is calculated between chunks of all possible chunk-pairs next task is aligning pair chunks, 

based on similarity score. Where, chunk pairs with a high similarity are aligned first, followed by pairs 

with lower similarity [51].  

1.6.6 Labeling aligned chunks  

Labeling aligned chunks is another important part of the thesis. ISTS focus on explaining two sentences 

that may be related/unrelated, by supplementing the similarity score with an explanatory layer. For each 

alignment of chunks c1 and c2, the alignment type is determined according to the following rules: If the 

similarity score between c1 and c2 is 5, the type is equivalency.  If all word senses of c1 matched the word 

senses in c2, the type is general for c1 and specific for c2 similarly. If both c1 and c2 contain a single word 

sense, and are directly connected by an antonym relation then the type is opposite. Also, all unaligned 

chunks are labeled with not aligned.  
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The rule based approach is used for chunk alignments and scoring [12]. A number of conditions are 

defined for a chunk pair that might be checked before applying a rule. First identify the chunks in each 

sentence separately, regardless of the corresponding sentence in the pair. Align chunks in order, using the 

interface from the clearest and strongest correspondences to the most unclear or weakest ones. For each 

alignment, provide a similarity/relatedness from 5 (maximum similarity/relatedness) to 0 (no relation at 

all) score. A given pair of sentences, participating systems will need to  align the chunks in sentence1 to 

the chunks in sentence2, adding a  score for the similarity/relatedness between each pair 

of chunks and describing what  kind of relation exists between them. The implementation of the system 

coding, testing and maintenance will be done. Finally the performance of the developed system is 

measured by examining the correlation between human judgment and machine calculations. 

1.6.7. Experimentation and evaluation  

The experimentation for evaluating the effectiveness of the system was done by using selected test dataset. 

Once the necessary data has been used for training, another dataset were used for testing the performance 

of the system. 750 headlines were prepared for training purpose and 756 image pair sentence selected for 

training set. Moreover a total 700 pair sentence that is 350 from image and 350 from headline prepared 

for testing the system. On the other hand, since the correctness of the chunking has direct effect on the 

performance of the system. So training and testing of chunking, aligning, scoring and labeling done on 

the selected datasets. The correctness of Alignment, score and type techniques are selected for 

effectiveness measure as it is the most popular and most widely used measure of interpretable semantic 

textual similarity. 

1.7. Organization of the Thesis 

The thesis is divided into five chapters and their organization is described as follows. This chapter, Chapter 

One, is the introductory part of the study. It contains background of the study, statement of the problem, 

objective and significance of the study. It also discusses the methodology used and the evaluation 

techniques. Chapter two discusses review of literature which comprises two parts, conceptual review and 

review of related works. The conceptual review involves review of basics of semantic textual similarity 

including its three well-known method of measuring textual similarity such as: string based for lexical 

similarity, corpus based and knowledge based for sematic similarity. It also discusses an overview of 

interpretable semantic textual similarity and basic topics like preprocessing, chunk alignment, scoring and 

type of semantic textual similarity interpretation. As well as the approaches in semantic textual similarity 
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are discussed in detail. Review of related works tries to discuss related works done in the area of 

interpretable semantic textual similarity.  

Chapter three, Interpretable Semantic Textual Similarity, method and technique focuses on designing and 

developing the model of the system. It describes in detail about document pre-processing, alignment tool 

to be used, architecture of the system along with description of its components, system performance 

evaluation model. The fourth chapter focuses experimentation and discussion of test dataset as well as 

system evaluation. The chapter also discusses analysis of results obtained from experiments. The last 

chapter, Conclusion and Recommendation, concludes what has been done and achieved in the research 

and forwards direction for future work. 
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CHAPTER TWO 

LITERATURE OVERVIEW 

2.1. Introduction 

Text similarity measures play an increasingly important role in text related applications in many tasks 

such as information retrieval, text classification, document clustering, topic detection, topic tracking, 

questions generation, question answering, essay scoring, short answer scoring, machine translation, text 

summarization and others. Finding similarity between words is a fundamental part of text similarity which 

is then used as a primary stage for sentence, paragraph and document similarities. Words can be similar 

in two ways lexically and semantically. Words are similar lexically if they have a similar character 

sequence. Words are similar semantically if they have the same thing, are opposite of each other, used in 

the same way, used in the same context and one is a type of another [8]. Different methods may operate 

at different levels of representation of the input expressions; for example, they may treat the input 

expressions simply as surface strings (i.e. string sequences and character composition), they may operate 

on syntactic (i.e. an arrangement of words in a sentence) or semantic (i.e. meaning of word based on co-

occurrence or Knowledge-Based) representations of the input expressions, or on combining information 

from different levels [21]. 

In semantic textual similarity (STS), systems rate the degree of semantic equivalence between two text 

snippets. In literature there are many papers published on Paraphrase and Textual Entailment. Paraphrase 

defined as to repeat something written or spoken using different words. According to this definition 

paraphrase introduces two important aspects: same meaning and different words. Paraphrasing can be seen 

as bidirectional Textual Entailment (TE) and methods from the two areas are often similar [21]. Paraphrase 

and TE recognizers judge whether or not two given language expressions constitute paraphrases or a 

correct TE pair. STS is related to both TE and Paraphrasing, but differs in a number of ways and it 

applicable to many NLP tasks. STS is different from TE because it is bidirectional graded equivalence 

between the pair of textual snippets. In the case of TE the equivalence is directional, e.g. a car is a vehicle, 

but a vehicle is not necessarily a car. STS also differs from both TE and Paraphrasing, both tasks have 

been defined to date in the literature rather than being a binary yes/no decision (e.g. a vehicle is not a car), 

STS to be a graded similarity notion for a vehicle and a car. So a vehicle and a car are more similar than 

a wave and a car [20].  
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2.2. Possible Approaches to semantic textual similarity 

In order to measure STS word similarity has a great role. Words similarity can be measured in two ways 

lexically and semantically. Lexical similarity is introduced though different String-Based algorithms, 

Semantic similarity are introduced through Corpus-Based and Knowledge-Based algorithms. String-

Based measures operate on string sequences and character composition. A string metric is a metric that 

measures similarity or dissimilarity between two text strings for approximate string matching or 

comparison. Corpus-Based similarity is a semantic similarity measure that determines the similarity 

between words based on information gained from large corpora. Knowledge-Based similarity is a 

semantic similarity measure that determines the degree of similarity between words using information 

derived from semantic networks [21]. Some of the most popular for each type presented briefly. 

2.2.1. String-Based Similarity 

String similarity measures work on string sequences and character composition. String similarity measures 

similarity or dissimilarity (distance) between two text strings for approximate string matching or 

comparison. A basic way to compare two texts take texts representations at character level and compare 

them without any semantic processing solely based on their string sequences. Among string based 

similarity measures some of them will be presented as follow.  

One possibility is to compare the texts’ longest common substring [22] algorithm considers the similarity 

between two strings is based on the length of contiguous chain of characters that exist in both strings. 

Thereby, the length l of the longest contiguous character sequence longest common substring shared 

between the two texts t1 and t2 is compared with the text length: 

 

However, this measure has limitations, e.g. in cases of word insertions/deletions or typographical errors 

which break the common substring.  

To overcome the limitation of longest common substring the longest common subsequence measure 

proposed [23] by dropping the contiguity requirement. Similarity is then computed the longest common 

substring function now refers to the non-contiguous shared subsequence. Greedy String Tiling [24] is a 

method which further allows dealing with shared substrings which do not appear in the same order in both 

texts. The measure determines the set of shared contiguous substrings; each substring is a match of 
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maximal length. Similarity is then computed as the number of marked characters those participating in 

any shared substring divided by the text length.  

Furthermore, the popular Jaro distance [8, 9] another string based measure which based on the number 

and order of the common characters between two strings. It takes into account typical spelling deviations 

and mainly used in the area of record linkage. It is especially suitable for short strings such as person or 

place names: 

𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2) =
1

3
(

𝑚

|𝑠1|
+

𝑚

|𝑡2|
+

𝑚 − 𝑠

𝑚
) , 𝑖𝑓 𝑚 > 0, 𝑎𝑛𝑑 0 𝑒𝑙𝑠𝑒 

Where m refers to the number of matching characters between 𝑠1 and 𝑠2. Matching characters which do 

not appear in the same order in both texts are called transpositions, and t is defined as a half of the number 

of   transpositions. The Jaro-Winkler distance [28] is an extension of Jaro distance; it uses a prefix scale 

which gives more favorable ratings to strings that match from the beginning for a set prefix length. It is a 

variation of the original metric which assigns a higher similarity score to texts with a matching prefix, i.e. 

texts which match from the beginning rather than any position within the string sequence:  

𝑠𝑖𝑚𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑠1,𝑠2) = 𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2) + 𝑙. 𝑝. (1 − 𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2)) 

Where  the number of characters in a common prefix for 𝑠1 and 𝑠2  𝑝 is a scaling factor 

for assigning higher weights to a longer common prefix, and is originally set to 0 to 1 for no similarity and 

exact match respectively[28]. 

Moreover Edit distance is another way of computing the dissimilarity between two strings.  

Conventionally, the distance is computed for a set of characters with three kinds of operations like 

substitution, insertion, and deletion. At this point, the distance between two string s1 and s2 is the 

minimum number of edit operations that transform s1 into s2. The following measures are often referred 

to as edit-distance metrics. The Levenshtein distance [29] is a simple metric that assigns uniform costs to 

all edit operations insertion, deletion, and substitution. The Monge Elkan distance is an edit-distance 

metric that uses an affine gap model. The intuition behind this model is that particular sequences of 

alignments and misalignments between character sequences are more likely to occur than others. 

Damerau-Levenshtein defines distance between two strings by counting the minimum number of 

operations needed to transform one string into the other, where an operation is defined as an insertion, 

deletion, or substitution of a single character, or a transposition of two adjacent characters [30],[31].  
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Another well-known string similarity measure is N-gram. N-gram is a sub-sequence of 𝑛 items from a 

given sequence of text. Distance is computed by dividing the number of similar n-grams by maximal 

number of n-grams. N-gram models Text similarity measures based on n-gram text representations exist 

for words and characters. Character n-gram profiles [32] as implemented by [33], discard all characters 

(case insensitive) which are not in the alphabet.  All n-grams on character level are then generated and 

weighted by a tf*idf scheme. While in the original implementation only n = 3 is used, other values for 𝑛 

may also be considered. Finally, the feature vectors of both string sequences are compared by computing 

the cosine between them. A method for comparing texts by means of word n-grams has been proposed 

[34]. Two sets of n-grams are generated for both texts, and may then be compared using the Jaccard 

coefficient.  

2.2.2. Corpus-Based Similarity 

Corpus-Based similarity is a semantic similarity measure that determines the similarity between words 

based on information gained from large corpora. A corpus is a large collection of written or spoken texts 

that is used for language research. Semantic relatedness is based on co-occurrence statistics, typically over 

a large corpus. In order to produce a reliable word co-occurrence statistics, a very large and balanced text 

corpus is required [35]. 

R. Mihalcea et al, [36] Proposed to use a single word similarity measure at a time out of a rich set of 

measures in combination with a bidirectional aggregation strategy. He proposed aggregation strategy 

computes a directional similarity score from a text t1 to a second text t2 and vice-versa, whereas for each 

word a counterpart in the other text is sought which maximizes the pairwise similarity. The similarity 

scores are weighted by a term frequency (𝑡𝑓) and a term’s inverse document frequency (𝑖𝑑𝑓) [37] on a 

corpus then normalized. The final text similarity score is the average of applying this strategy in both 

directions. Corpus based similarity measure approach has several similarity metrics like: vector space 

model, latent semantic analysis, generalized latent semantic analysis, explicit semantic analysis, 

hyperspace analogue to language, word2vec, and etc. 

2.2.2.1.  Vector space model 

This model is an algebraic model in which the texts are represented as a vector.  The information retrieval’s 

vector space model [89] in which each text is modeled as a “bag of words” and represented using a vector. 

For example doc = (doc1, doc2, doc3 . . . docn) and query = (query1, query2, query3 . . . queryn) where, 

document is represented by doc. Each value in the vector is a non-zero value which weight of the term in 
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the document. This weight can be calculated by 𝑡𝑓 ∗ 𝑖𝑑𝑓, i.e., term frequency-inverse document 

frequency. The similarity between two texts is then computed as the cosine similarity of the vectors. This 

can  be calculated  by  comparing  the  deviation  of  angles  between  the  query  vector  and  the document 

vector [90] . The technique is the simplest, but performs not enough when the texts to be compared share 

few words, for instance, when the texts use synonyms to express similar messages.  

The systems have a precompiled word list with n words. The value of n is generally in the thousands or 

hundreds of thousands in order to include all meaningful words in a natural language. Each document is 

represented using these words as a vector in n-dimensional space. A query is also considered as a 

document. The relevant documents are then retrieved based on the similarity between the query vector 

and the document vector. This technique relies on the assumption that more similar documents share more 

of the same words. If this technique were applied to sentence similarity, it would have three obvious 

drawbacks: [91] 

a. The sentence representation is not very efficient. The vector dimension 𝑛 is very large compared 

to the number of words in a sentence, thus the resulting vectors would have many 𝑛𝑢𝑙𝑙 

components. 

b. The word set in IR systems usually exclude function words such as the, of, an, etc. Function words 

are not very helpful for computing document similarity, but cannot be ignored for sentence 

similarity because they carry structural information, which is useful in interpreting sentence 

meaning. If function words were included, the value for n would be greater still.  

c. Sentences with similar meaning do not necessarily share many words. One extension of word co-

occurrence methods is the use of a lexical dictionary to compute the similarity of a pair of words 

taken from the two sentences that are being compared (where one word is taken from each 

sentence to form a pair). Sentence similarity is simply obtained by aggregating similarity values 

of all word pairs. 

This technique is also trivially inappropriate for comparing individual words; using lexical resources, and 

using Latent Semantic Analysis (LSA) techniques attempt to overcome this limitation. 

2.2.2.2.  Latent Semantic Analysis  

Mostly LSA is commonly used that is a short form of Latent Semantic Analysis [44] presents a technique 

for representing a text 𝑇 in a semantic space based on corpus statistics. LSA is a purely statistical 

technique, which leverages word co-occurrence information from a large unlabeled large corpus of text. 
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In LSA, a set of representative words needs to be identified from a large number of contexts. A word by 

context matrix is formed based on the presence of words in contexts.  

LSA does not rely on any human-organized knowledge; rather, it “learns” its representation by applying 

Singular Value Decomposition (SVD) to the words-by-documents co-occurrence matrix. LSA is 

essentially a dimensionality reduction technique that identifies a number of most prominent dimensions 

in the data, which are assumed to correspond to “latent concepts”. Meanings of words and documents are 

then compared in the space defined by these concepts. 

The matrix is decomposed by SVD into the product of three other matrices including the diagonal matrix 

of singular values [91]. The diagonal singular matrix is truncated by deleting small singular values. In this 

way, the dimensionality is reduced. The original word by context matrix is then reconstructed from the 

reduced dimensional space. Through the process of decomposition and reconstruction, LSA acquires word 

knowledge that spreads in contexts. When LSA is used to compute sentence similarity, a vector for each 

sentence is formed in the reduced dimension space; similarity is then measured by computing the 

similarity of these two vectors [92].  

I. Because of the computational limit of SVD, the dimension size of the word by context matrix is 

limited to the several hundred. As the input sentences may be from an unconstrained domain (and 

thus not represented in the contexts) some important words from the input sentences may not be 

included in the LSA dimension space.   

II. Secondly, the dimension is fixed and so the vector is fixed and is thus likely to be a very sparse 

representation of a short text such as a sentence.  

III. Like other methods, LSA ignores any syntactic information from the two sentences being compared 

and is understood to be more appropriate for larger texts than the sentences dealt with in this work 

[92].  

LSA convert the term-document matrix which describes the occurrences of terms in document into three 

smaller matrixes like follows:  [93]  

Where, 𝑈 could be preserved as the semantic space of words. Each word could be represented as a row 

vector in 𝑈. When measuring semantic similarity of two sentences, all word vectors appear in the sentence 

were summed and then averaged with the length of the sentences. Vector of the two sentences represented 

by 𝑉1 and 𝑉2. With 𝑉1 and 𝑉2, the similarity of the two sentences can be measured with cosine similarity. 

Cosine similarity defined as follows: [93] 
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In experiment, [93] directly used the LSA model provided by SEMILAR [29]. A word is represented as  

a  row  vector  in  the  LSA  model and  the  model  was  decomposed  from the whole Wikipedia articles 

[93]. Also developed two weighted LSA features to further use semantic information, they are IDF 

weighted-LSA and Freq-weighted-LSA.  IDF weighted-LSA weighted  the  words; one  word  is  

represented  as  a  200-dimension  vector  generated from LSA using inverse document frequency and 

then summed up all the weighted vectors of words which appeared in the sentence to be the representation 

of the sentence. The cosine distance of two sentence representations is the value of this feature.  Freq-

weighted-LSA used word frequency to weight the words and following the same steps mentioned in IDF 

weighted-LSA.  LSA are very difficult to interpret, since the computed concepts cannot be readily mapped 

into natural concepts manipulated by humans. 

2.2.2.3.  Generalized Latent Semantic Analysis  

This semantic analysis is a framework for computing semantically motivated term and document vectors 

which represent as GLSA or General LSA [46]. It extends the LSA approach by focusing on term vectors 

instead of the dual document-term representation. GLSA requires a measure of semantic association 

between terms and a method of dimensionality reduction. The GLSA approach can combine any kind of 

similarity measure on the space of terms with any suitable method of dimensionality reduction. The 

traditional term document matrix is used in the last step to provide the weights in the linear combination 

of term vectors. 

2.2.2.4.  Explicit Semantic Analysis  

Gabrilovich and Markovitch introduced the concept of Explicit Semantic Analysis (ESA) in 2007 [47]. 

The idea underlying ESA is to represent and compare texts (from single terms to entire documents) as 

vectors in a high dimensional concept space. ESA was introduced as an approach to compute the semantic 

relatedness of terms or short phrases. ESA is a vectorial reorientation of entire document that uses a 

document as knowledge base. The ESA representation of a real-world document d is a vector dESA whose 

elements are the cosine similarities between d and all documents in a collection DI, called index collection 

here. The supposed rationale of the ESA retrieval model is that each document in DI functions as a 

semantic concept to which the original document 𝑑 is compared: dESA is understood as a projection of 

𝑑 into the concept space spanned by DI. The semantic relatedness between two documents 𝑑1 and 𝑑2 is 

computed by the cosine similarity between the ESA vectors of 𝑑1 and 𝑑2. 
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In ESA a word is represented as a column vector in the 𝑡𝑓 ∗ 𝑖𝑑𝑓 matrix of the text corpus and a document 

is represented as the centroid of the vectors representing its words. In short ESA uses prior knowledge of 

relationship between words and concepts makes it possible to assign, readable labels to the concept that 

make up the vector space.  Whereas in LSA the concepts are latent (they are undefined and need to be 

discovered) [47].   

2.2.2.5.  Hyperspace Analogue to Language  

This measure represented as HAL creates a semantic space from word co-occurrences [45]. A word-by-

word matrix is formed with each matrix element is the strength of association between the word 

represented by the row and the word represented by the column. The user of the algorithm then has the 

option to drop out low entropy columns from the matrix. As the text is analyzed, a focus word is placed 

at the beginning of a ten word window that records which neighboring words are counted as co-occurring. 

Matrix values are accumulated by weighting the co-occurrence inversely proportional to the distance from 

the focus word; closer neighboring words are thought to reflect more of the focus word's semantics and 

so are weighted higher. HAL also records word-ordering information by treating the co-occurrence 

differently based on whether the neighboring word appeared before or after the focus word.  

Indeed HAL is closely related to LSA and they both capture the meaning of a word or text using lexical 

co-occurrence information. Unlike LSA that builds an information matrix of words by text units of 

paragraphs or documents, HAL builds a word-by-word matrix based on word co-occurrences within a 

moving window of a pre-defined width [45].  The window moves over the entire text of the corpus. An 

N-N-matrix is formed for a given vocabulary of N words. Each entry of the matrix records the (weighted) 

word co-occurrences within the window moving through the entire corpus. The meaning of a word is then 

represented as a 2N dimensional vector by combining the corresponding row and column in the matrix. 

Subsequently a sentence vector is formed by adding together the word vectors for all words in the sentence.  

Similarity between two sentences is calculated using a metric such as Euclidean distance. However the 

author experimental results show that HAL was not as promising as LSA in the computation of similarity 

for short texts [45]. HAL’s drawback may be due to the building of the memory matrix and its approach 

to forming sentence vectors: the word-by-word matrix does not capture sentence meaning well and the 

sentence vector becomes weakened as large number of words are added to it.  

2.2.2.6. Latent Dirichlet Allocation (LDA) 
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LDA define the contexts across which words are distributed, and each component of the semantic 

representation corresponds to a particular topic. However, unlike content words they cannot be observed 

directly in the data. Instead they are hidden variables which arise in a generative model of the distribution 

of words across documents. LDA models the relationship between words and documents in terms of 

topics, with each document being a mixture of topics and each topic being a unigram distribution over 

words. Moreover LDA becomes computationally very expensive on large data sets [98]. 

2.2.2.7.  Word2Vec 

Word2vec is a two-layer neural net that processes text. Its input is a text corpus and its output is a set of 

vectors: feature vectors for words in that corpus. While Word2vec is not a deep neural network, it turns 

text into a numerical form that deep nets can understand. The purpose and usefulness of Word2vec is to 

group the vectors of similar words together in vector space. That is, it detects similarities mathematically 

[80]. 

Word2vec creates vectors that are distributed numerical representations of word features, features such as 

the context of individual words. It does so without human intervention [80]. Given enough data, usage 

and contexts, Word2vec make highly accurate guesses about a word’s meaning based on past appearances. 

Those guesses can be used to establish a word’s association with other words (e.g. “man” is to “boy”, 

“woman” is to “girl”). The output of the Word2vec neural net is a vocabulary in which each item has a 

vector attached to it, which can be fed into a deep-learning net or simply queried to detect relationships 

between words. Measuring cosine similarity, no similarity is expressed as a 90 degree angle, while total 

similarity of 1 is a 0 degree angle, complete overlap. 

Continuous Bag-of-Words Model (CBOW), as unlike standard bag-of-words model, it uses continuous 

distributed representation of the context. Note that the weight matrix between the input and the projection 

layer is shared for all word positions [99]. Mikolov et al. [99] introduced the Skip-gram model, an efficient 

method for learning high quality vector representations of words from large amounts of unstructured text 

data. Unlike most of the previously used neural network architectures for learning word vectors, training 

of the Skip-gram model does not involve dense matrix multiplications. This makes the training really 

efficient: an optimized single-machine implementation can train on more than 100 billion words in one 

day. The training of the Skip-gram model is to find word representations that are useful for predicting the 

surrounding words in a sentence or a document. More formally, given a sequence of training words w1, 
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w2, w3. . . wT, the objective of the Skip-gram model is to maximize the average log probability [81]. 

Skip-gram is similar to CBOW, but instead of predicting the current word based on the context, it tries to 

maximize classification of a word based on another word in the same sentence.  

2.2.2.8.  Point wise Mutual Information  

Point wise Mutual Information - Information Retrieval (PMI-IR) [49] is a method for computing the 

similarity between pairs of words, it uses AltaVista's Advanced Search query syntax to calculate 

probabilities. The more often two words co-occur near each other on a web page, the higher is their PMI-

IR similarity score. 

2.2.2.9.  Extracting DIStributionally  

Extracting DIStributionally similar words using COoccurrences (DISCO) [50]. Distributional similarity 

between words assumes that words with similar meaning occur in similar context. Large text collections 

are statistically analyzed to get the distributional similarity. DISCO is a method that computes 

distributional similarity between words by using context words for counting co-occurrences. When two 

words are subjected for exact similarity DISCO simply retrieves their word vectors from the indexed data, 

and computes the similarity according to Lin measure [51]. If the most distributionally similar word is 

required; DISCO returns the second order word vector for the given word.  

DISCO has two main similarity measures DISCO1 and DISCO2; DISCO1 computes the first order 

similarity between two input words based on their collocation sets. DISCO2 computes the second order 

similarity between two input words based on their sets of distributional similar words.  

2.2.3. Knowledge-Based Similarity 

Knowledge-based measures operate on lexical-semantic resources that express human knowledge about 

words. The knowledge based similarity includes: dictionaries, thesauri, or wordnets etc. For instance 

dictionaries and wordnets encode knowledge about words and their definitions, as well as the relations 

between words encoded in thesauri and wordnets in a machine-readable format [53]. Among a well-known 

knowledge based lexical semantic the most one is probably WordNet [54]. WordNet is a semantic network 

database which developed by University Princeton for English language. Some versions of WordNet have 

been developed in many languages. WordNet was designed in four type of word depends on their Parts of 

Speech (POS) often known as content word (noun, adjective, verb, and adverb).  
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In WordNet the smallest unit is synset, it represents a specific (single) meaning of a word. Synset includes 

the word, its synonyms and its explanation. The specific meaning of one word under one type of Part of 

speech is called a sense. Each sense of a word is in a different synset. Synsets are equivalent to senses = 

structures containing sets of terms with synonymous meanings. Each synset has a gloss that defines the 

concept it represents. For example, the words nighttime, night and dark constitute a single synset that has 

the following gloss: the time after sunset and before sunrise while it is dark outside. Synsets are connected 

to one another through the explicit semantic relations. The similarity between two words can be 

determined using their relative positions in the knowledge base hierarchy. The two words can have high 

similarity score if the words are in the same WordNet synset or if one word is a hypernym of another word 

[55]. 

As mentioned above WordNet is a lexical database hierarchically organized and groups words into 

synsets. It provides semantic relations between synonym sets based on the grammatical rules, and it 

categorizes the words as nouns, verbs, adjectives and adverbs. There Morphologic functions are used in 

order to realize the root form of the word stored in the database. If you want to check sentence similarity 

first a sentence is parsed into a list of tokens and these tokens are stemmed by WordNet to find the root 

of the token.  

In order to know similarity between two words, many similarity metrics have been proposed. Their 

similarity can be estimated by seeing their relative positions within the knowledge base hierarchy. Let see 

some of the concept of metrics one by one.  

2.3.3.1. Path-based Measures  

In Path-based similarity measures two concepts determined by the length of the path connecting between 

the concepts and its position in the hierarchy. 

The Shortest Path based Measure: This measure takes length of concept co1 and concept co2 into 

considerate. The measure assumes that the similarity (sim_path) between co1 and co2 depend on how 

close of the co1 and co2 are in the hierarchy [112]. 

sim_path(co1,co2)  2*deepmaxlength(co1,co2)       

The similarity between co1 and co2 is the shortest path length(co1,co2) from co1 to co2. 

If length (co1,co2) is 0, sim_path(co1,co2) becomes 2*deepmax (the maximum value). If length(co1,co2) 

is 2* deepmax, sim_path (co1,co2) becomes 0 (the minimum value). Thus, the values of sim_path (co1,co2) 

are propagate between 0 and 2* deepmax.  
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Where, length(co1,co2):  the length of the shortest path from synset coi  to synset coj in WordNet.  

deepmax: the max depth(coi) of the taxonomy 

sim (coi,coj): semantic similarity between concept coi and concept coj.  

Wu & Palmer’s Measure: it introduced a measure [63] takes the position of concepts co1 and co2 in the 

hierarchy into account relatively to the position of the immediate common concept lsc(co1,co2). It 

assumes that the similarity between co1 and co2 is the path length and depth in path-based measures. 

Simwp(co1,co2) =
2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))

𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜1,𝑐𝑜2)+2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))
   

Where, lsc(co1,co2) : the lowest common subsumer of co1 and co2 

The similarity between two concepts (co1, co2) is the function of their distance and the 

lsc(co1,co2). 

If the lsc(co1,co2) is root, depth(lsc(co1,co2))=1, simwp(co1,co2) >0; if the two concepts have the same 

sense, the concept co1, concept co2 and lsc(co1,co2) are the same node.  

simwp (co1,co2) = 1; otherwise 0< depth(lsc(co1,co2))< deepmax, 0<length(co1,co2)< 2* deepmax, 

0< simwp(co1,co2) < 1. Thus, the values of simwp (co1,co2) are in (0, 1].  

Leakcock&Chodorow’s Measure: according to Leakcock and Chodorow the maximum depth 

of hierarchy into account and proposed measure as the next:  

simLC(co1, co2) = −log
length(co1,co2)

2∗ 𝑑𝑒𝑒𝑝max
     

The similarity between two concepts (co1, co2) is the shortest path length(co1,co2) from co1 to co2. When 

co1 and co2 have the same sense, length(co1,co2) =0. To avoid log (0) 1 added to both length(co1,co2) 

and 2* deepmax. Thus the values of simLC(co1,co2) are in (0, log(2* deepmax +1)] 

2.3.3.2. Information Content-based Measure  

Information Content-based Measure is another key WordNet based measure. According to this measure 

each concept includes much information found in WordNet. Likewise the assumptions are based on the 

Information content of each concept. The more common information share, the more similar the concepts 

are. 
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Resnik’s Measure: Resnik proposed this similarity measure [41]. It assumes that for couple of concepts, 

similarity is depended on the information content that incorporates them in the hierarchy.  

𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘(𝑐𝑜1, 𝑐𝑜2) = −𝑙𝑜𝑔 𝑝(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2)) 𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2))    

The values of 𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘(𝑐𝑜1, 𝑐𝑜2) only rely on concept pairs’ lsc in the hierarchy. 

Lin’s Measure: Lin proposed method that measure similarity [113]. 

𝑠𝑖𝑚𝐿𝑖𝑛(𝑐𝑜1, 𝑐𝑜2) =
2∗𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))

𝐼𝐶(𝑐𝑜1)+𝐼𝐶(𝑐𝑜𝑠2)
   

Lin’s Measure uses both the amount of information which is common for both concepts and all the 

information looked-for fully describe these terms. The simLin has taken the information content of both 

concepts into account respectively. As IC(lsc(co1,co2)) <=IC(co1) and IC(lsc(co1,co2)) <=IC(co2), 

therefore the values of this measure becomes between 1 and 0. 

Jiang’s Measure: Jiang computed semantic distance to get semantic similarity [114].  

𝑑𝑖𝑠𝐽𝑖𝑎𝑛𝑔(𝑐𝑜1, 𝑐𝑜2) = (𝐼𝐶(𝑐𝑜1) + 𝐼𝐶(𝑐𝑜2) − 2𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2) 

To put it another way semantic similarity is the opposite of the semantic distance. The measure has taken 

the IC of both concepts into account respectively. 

The First step of this method is obtaining Information Content (IC) through statistical 

analysis of corpora [14]. It assumes that, for a concept co in the hierarchy, let p(co) be the probability of 

chance upon an instance of concept co. IC(co) can be calculated as negative the log: −log p(co), which 

means that it  is opposite as probability increases, IC decreases. 

𝐼𝐶(𝑐𝑜) = −log 𝑝(𝑐𝑜)  Probability of a concept was estimated as: 𝑝(𝑐𝑜) = 𝑓𝑟𝑒𝑞(𝑐𝑜)/𝑁 Where N is 

represent total number of nouns, and 𝑓𝑟𝑒𝑞(𝑐𝑜) is represent the frequency of instance of concept co taking 

place in the taxonomy. When calculating freq(co), each noun or any of its hierarchical hyponyms that 

occurred in the given corpora is included, which indicates that if co1 is-a co2, then p(co1) < p(co2). Thus 

if the concept is abstract, it is higher associated probability and the lower its information content.  

𝑓𝑟𝑒𝑞(𝑐𝑜) = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑤)𝑤 𝑊(𝑐𝑜)  

The measure is simple, unluckily, it relies on corpora analysis, and additionally sparse data problem is 

inevitable. In order to solve this problem, Nuno proposed a method hyponyms-based IC. Accordingly 

WordNet is used as a statistical resource to employ IC values. It regards value of a concept of the 

hyponyms it has [116].  
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For a concept co, the more hyponyms it has, it determines the more abstract it is. That is to say concepts 

with many hyponyms (abstract concept) express less information than concepts that are leaves.  From this 

point of view Root node is the least informative than leaf nodes which is the most informative in the 

taxonomy. To put it another way for root IC is 0 and for leaf IC is 1. When you traverse from the leaf to 

the root node, IC will declines from 1 to 0. It indicates that the method is corpora independent. 

Nevertheless two concepts with the same number of hyponyms will have the same IC and all the leaves 

will have the same IC too. 

𝐼𝐶(𝑐𝑜) =
log (

hypo(co)+1

node_max
)

log (
1

node_max
)

 =1- log (
hypo(co)+1

node_max
) 

The next one is based on the assumption that taxonomical leaves denote the semantic of the most specific 

concepts of a domain in WordNet, a concept has less, information it expresses more leaves [117]. 

𝐼𝐶(𝑐𝑜) = −log (

|leaves(co)|
|subsumers(co)|

+ 1

max _𝑙𝑒𝑎𝑣𝑒𝑠 + 1
) 

Where, let 𝑐𝑜 be the set of concepts, 𝑀𝑎𝑥_𝑙𝑒𝑎𝑣𝑒𝑠 represents the number of leaves matching to the root 

node of the hierarchy.  

The fourth states that every concept is defined with sufficient semantic embedding with the organization, 

property restrictions, property functions, and other logical assertions [118]. The IC value is the relation 

and hyponyms 

 

Where, 𝑟𝑒𝑙(𝑐𝑜): Denotes the number of relations of concept 𝑐𝑜 and  𝑟𝑒𝑙_𝑚𝑎𝑥 : The total number of 

relations. 

The last one assumes that each concept is unique in the hierarchy and IC value is the function of concept’s, 

which can separate different concepts effectively and gives more accurate value [64]. It was defined as: 
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Where for a given concept 𝑐𝑜, 𝑎 is a concept of the taxonomy hierarchy, which satisfies𝑎 ∈ ℎ𝑦𝑝𝑜(𝑐𝑜). 

If 𝑐𝑜 is root, deep (root) is 1 and log (𝑑𝑒𝑒𝑝(𝑐𝑜)) is 0. If 𝑐𝑜 is a leaf, ℎ𝑦𝑝𝑜(𝑐𝑜) is 0. Then  

∑
1

𝑑𝑒𝑝𝑡ℎ(𝑎)
= 0𝑎 ∈ ℎ𝑦𝑝𝑜(𝑐𝑜)  

𝐼𝐶(𝑐𝑜) =  
log (𝑑𝑒𝑝𝑡ℎ(𝑐𝑜))

log (𝑑𝑒𝑒𝑝_𝑚𝑎𝑥)
 

2.3.3.3. Feature-based Measure 

This measure is independent on the taxonomy as well as independent on the subsumers of the concepts, 

and attempts to exploit the properties of the ontology to obtain the similarity values. It take concept's 

feature into considerate, which is based on the assumption that each notion is described by a set of words 

representing its features or properties, of their WordNet definitions or glosses. The less non-common 

characteristics two concepts have and the more common characteristics they have indicate the more similar 

the concepts are [115]. 

2.4. Measuring Semantic textual similarity 

Recently, STS has attracted an attention of many researchers. For example the Semantic Textual Similarity 

competitions in Semantic Evaluation Exercises have been held from 2012 to current year (2017). In STS, 

systems rate the degree of semantic equivalence between two text snippets. Snippets of text, STS capture 

the notion that some texts are more similar than others, measuring their degree of semantic equivalence. 

The similarities are identified by score that ranges over a continuous scale [0, 5], where 5 represent 

semantically equivalent sentences and 0 represents unrelated sentences [20]. The similarity of both 

sentences is measured by summation of each score. Interpretable STS (ISTS) adds an explanatory layer 

to STS in order to clarify more. To do so first identify the chunks in each sentence, and then, align chunk 

based on relatedness across the two sentences, indicating the relation and similarity score of each 

alignment. 

2.4.3. Preprocessing  

Different languages use specific preprocessing techniques mostly because of grammatical and 

morphological reasons. The goal of preprocessing is to reduce inflectional forms of words to a common 



23 
 

base form and increase performance of the system. This can be done by many preprocessing techniques 

such as: Tokenization, stop-word removal, lemmatization, stemming, part of speech tagging, parsing, 

named entity recognizing, chunking etc. Some of the most popular for preprocessing will be presented 

briefly.  

2.4.3.1. Tokenization  

Tokenization is the task of chopping up documents into tokens and throwing away punctuation and other 

unwanted characters.  The same process must be applied to document and query to assure that a sequence 

of characters in text will match the same sequence typed in the query [65]. Sentences are decomposed 

after applying well known Natural Language Processing by OpenNLP [66]; Stanford CoreNLP [67], [68]; 

Tree Tagger [70]; Asiya toolkit [71]. 

2.4.3.2.  Stop Words removal 

Some words that occur in most documents have a small impact in the text similarity. The NLTK stop word 

list used for stop word removal [72] filter out punctuations and stop-words by using a pre-compiled stop-

words list. The stop word list was augmented with adverbs that occurs more than 500, 000 times in the 

corpus [73]. The function words such as prepositions, conjunctions, and articles carry less semantics than 

content words (i.e. nouns, verbs, adjectives, and adverbs) and thus removing them might eliminate the 

noise and provide a more accurate estimate of semantic similarity [75]. To determine a list of stop-words 

the terms in the document collection are sorted by collection frequency occurrences of terms, and the most 

frequent terms with little or none semantic value relative to the domain of the documents are then 

discarded. Semantic content of documents must be taken into account when selecting the stop words [40].  

2.4.3.3.  Lemmatization  

Lemmatization is a technique from Natural Language Processing which does full morphological analysis 

and identifies the base or dictionary form of a word, which is known as the lemma. Lemmatization 

performed by the WS4J library [66], Tree Tagger [70], Stanford CoreNLP Toolkit [67], [68], [73], Asiya 

toolkit [71]. Then the WordNet-based Lemmatizer implemented in Natural Language Toolkit (NLTK) 

was used to lemmatize all words to their nearest base forms in WordNet, for example, was is lemmatized 

to be [76]. The similarity is calculated as follows: first of all, words in sentences p and q are lemmatized 

and mapped to the related WordNet synsets [62].   

2.4.3.4.  Stemming  
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Stemming usually refers to a crude heuristic process that chops of the ends of words in the hope of 

retrieving the stem of the word correctly most of the time. It often includes the removal of derivational 

affixes [65] Stemming  is  language  dependent  process  in  similar  way  to  other  NLP  techniques.  It 

transforms inflated words into their most basic form. Word2Vec handles the stem variations to some extent 

when it learns the vector representation from the raw input data. Thus for the domain-specific models, 

only remove stop words and do not need stem [76]. 

2.4.3.5.  Part-of-speech (POS) 

POS-tagging is the main process of making up the chunks in a sentence as corresponding to a particular 

part of speech. POS tagging is the process of assigning a POS tag such as noun, verb, pronoun, preposition, 

and adverb, adjective or other tags to each word in a sentence. Nouns can be further divided into singular 

and plural nouns, verbs can be divided into past tense verbs and present tense verbs and so on [85]. The 

input data undergoes the data preprocessing in which it use Tree Tagger [70] to perform POS tagging. 

Also POS tagging is carried out using Stanford CoreNLP [67], [68], [69], [75] as well as tagged by 

OpenNLP [66]. The MT metrics for each text pair were computed with the Asiya toolkit [71]. Words are 

POS-tagged using Penn Treebank compatible POS-taggers: NLTK [80] for simple and OpenNLP for 

syntax [75].   

2.4.3.6.  Parsing  

Syntactic parsing with the Stanford CoreNLP Toolkit use Stanford Parser to obtain the dependency 

parsing from given sentences [67], [70], [69]. The MT metrics for each text pair were computed with the 

Asiya toolkit [71]. 

2.4.3.7.  Named Entity Recognition 

Seven types of named entities such as: location, organization, date, money, person, time and percent, 

recognized by Stanford CoreNLP toolkit [67] for English [69], [75], [76] were considered [62]. For 

English, all the pre-trained NER models made available by the Apache OpenNLP library were used [95]. 

In addition to the overlap of capitalized words, the syntax system uses the OpenNLP named entity 

recognizer and classifier to compute the overlap of entities for each entity class separately. In interpretable 

semantic textual similarity additional work is done as described next. 



25 
 

2.4.4. Alignment 

Monolingual alignment is the task of discovering and aligning similar semantic units in a pair of sentences 

expressed in a natural language. Such alignments provide valuable information regarding how and to what 

extent the two sentences are related [78]. Word alignment is direction-dependent and not restricted to one-

to-one alignments [77].  

2.4.4.1.  Identifying Chunks 

Chunking  is  a  process  to  parse  the   sentence  into  a  form  that  is  a  chunk  based  sentence structure. 

A chunk is a textual unit of adjacent POS tags which display the relations between their internal words 

[85]. A sequence of adjacent words grouped on the basis of linguistic properties [83]. OpenNLP chunker 

was used to chunk the input sentences and some post processing was done [66]. For the post processing 

[66] was based on a few rules observed from gold standard chunks. Those rules include combining chunks 

of specific chunk tags given by OpenNLP chunker. A large number of rules were discovered but the 

following were the rules, which maximized accuracy [79].  

2.4.4.2.  Aligning Chunks 

Two sentences spliced into gold standard chunks. Firstly, the similarity between chunks of all possible 

chunk-pairs is calculated, upon which chunks are aligned. Where, chunk pairs with a high similarity score 

are aligned first, followed by pairs with lower similarity [68]. To do so there are many post processing left 

which affect the alignment of chunks as well as similarity scores. Those things will be present in detail. 

Punctuation characters were removed from the tokens [77]; [80] except for the decimal point in numbers 

[80] also ignores case information, and symbols. This enables to match expressions like long term and 

long-term [77].  All numbers written as words were converted into numerals, e.g., “2.2 million” was 

replaced by “2200000” and “fifty six” by “56”. All mentions of time were converted into military time, 

e.g., “5:40pm” was replaced by “1740” and “1h30am” by “0130” [80].  Normalized temporal expressions 

are aligned if they denote the same point in time or the same time interval (e. g. 14:03 and 2.03 pm). On 

other hand measurement expressions are aligned if they express the same absolute value (e. g. $100k and 

100.000$) [77]. Abbreviations were expanded using a compiled list of commonly used abbreviations then 

aligned [80]. 

If one of both sequences consists of exactly one all-caps-token then the system test if it is the acronym of 

the other sequence (e. g. US and United States). Additionally a small database which containing high-
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frequency synonyms (e. g. does and do), antonyms (e. g. doesn’t and does) and negations (e. g. don’t, 

never, no) created for lookups [77]. Remaining content words are aligned using cosine similarity on 

word2vec vectors [81].  

According to [30] there were three lookups relations for synonym, antonym and hypernym. A strict 

synonym lookup file was created using WordNet. As well as, an antonym lookup file was created by 

building an antonym set for a given word from its direct antonyms and their synsets. Also another lookup 

file for strict hypernym was constructed [30]. 

Analogously to align each content word to the content word of the other sentence with the same POS tag 

that yields the highest similarity score.  In this way weak alignments problem can happen.  The solution 

is rejecting alignments with a similarity less than 1 / 3 [35]. 

The presence of a common word sequence in sentence 1(S1) and sentence 2 (S2) is indicative of an 

identical, and contextual similar word in the other sentence for each word in the sequence. To aligns 

identical words in a sequences of length n containing at least one content word. The system align all 

identical word sequence pairs in S1 and S2 containing at least one content word [78]. Note, afterward up 

to the end S1 represent sentence 1 and S2 represent S2. 

Named entities separately align to enable the alignment of full and partial mentions (and acronyms) of the 

same entity. The Stanford Named Entity Recognizer [67] used to identify named entities [78]. Aligning 

named entities performed in two steps separately.  First aligned the exact term matches. Second any 

unmatched term of a partial mention named entity is aligned to all terms in the full mention named entity. 

This was done based on only first letter acronyms and aligns an acronym to all terms in the full mention 

of the corresponding name. Since named entities are instances of nouns, named entity alignment is also 

informed by contextual evidence, but happens before alignment of other generic content words. Many 

stop words (e.g. determiners, modals) typically demonstrate little variation in the dependencies they 

engage in, for this reason ignored type equivalences for stop words and implemented only exact matching 

of dependencies. [78] 

Another work was done previously aligning start by constructing the token to token link matrix in which 

each element at position (i, j) determines that there exists a link between token i (from S1) and token j 

(from S2). A link exists in the matrix if and only if the monolingual word aligner has determined that both 

tokens are related. Then, the system uses token regions to group individual tokens into segments, and 

calculates the weight between every segment in the sentence pair. The weight among two segments is 
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proportional to the number of links that interconnect tokens inside those segments. Chunk to chunk 

alignment calculated by summing regions collapsed the token to token link matrix onto a chunk to chunk 

link matrix. After that, to detect chunk to chunk similarity algorithm used to discover which segments (x, 

y) are which score the highest weight. The algorithm extended to discover which are the segments that are 

linked to either segment x or segment y, but not with a maximum alignment ratio. This processing to find 

not maximal weights is essential to effectively assign the context alignment tag for 1: N relations. In 

addition, the system is also aware of chunks that have been left unaligned [82].  

The naive approach directly assigns the tag as a majority classifier would do, that is: for the segments with 

highest weight it always assigns the equivalence tag, for the segments that are linked with lower weights 

it always assigns the context alignment tag, and for the not aligned segments it always assigns the not 

aligned tag. The machine learning approach used to improve the tag assignment by overcoming the naive 

approach limitation that employs mostly only for segment pairs tagged as equivalent. In this approach 

many related features were used such as: Jaccard overlap, segment length, WordNet similarity among 

segment heads, WordNet depth, and etc. features obtained. To induce the model the Support Vector 

Machine (SVM) implemented [83] under the latest version of Weka [84].  

2.4.4.3.  Scoring Aligned Chunk 

To assign segment pair similarity scores the system can also use two distinct approaches: the naive 

approach and the cube based regression approach. The naive scorer directly assigns a certain score to each 

one of the tags, which has been previously assigned using the naive tagger: for equivalence tags it assigns 

a score of 5 and for not aligned and context aligned tags it assigns ’NIL’. The regression approach uses 

the cube to improve the score given to segment pairs tagged by the machine learning tagger. Its returning 

value is used directly as the value for the pair similarity score [82].  

The word similarity score less than fixed threshold (0.3) was reset to 0 in order to avoid noisy alignments. 

Then the chunk similarity normalized by the number of tokens in the shorter chunk such that it assigned 

higher scores to pairs of chunks for example physician and general physician. Finally optimal alignment 

at chunk level is done in order to calculate the sentence level similarity. The chunk-to-chunk similarity 

threshold is 0.4 to prevent noisy alignments. However, the similarity score was normalized by the average 

number of chunks in the given texts pair. All threshold values were set empirically based on the 

performance on the training set [30]. 
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2.4.4.4.  Labeling Aligned Chunks 

Given two sentences  split  into  gold  standard  chunks,  a system  carries out  the  task  requirements  

using  sense-based string  kernel  by  considering  each  chunk  as  a  text  snippet. After that, for each 

alignment of chunks c1 and c2, the alignment type is determined according to the following rules: If the 

similarity score between c1 and c2 is 5, the type is EQUI.  If all word senses of c1 matched the word 

senses in c2, the type is SPEC2; similarly for SPEC1. If both c1 and c2 contain a single word sense, and 

are directly connected by an antonym relation in BabelNet, then the type is OPPO. If the similarity score 

between c1 and c2 is in range [3, 5[, the type is SIM; while if it is in range] 0, 3[, the type is REL. If any 

chunk has no corresponding chunk in the other sentence, then the type is either NOALI or ALIC based on 

the alignment restriction in the subtask [68]. 
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2.5. Related work  

Very limited works have been done in the past in the areas of Interpretable STS. Interpretable STS focus 

to explain why two sentences may be related or unrelated, by supplementing the similarity score with an 

explanatory layer. As a first step in this direction, given a pair of sentences, systems needed to align the 

chunks across both sentences, and for each alignment, classify the type of relation, and provide the 

corresponding similarity score [20]. 

For interpretable STS the similarity scores range from 0 to 5. With respect to the relation between the 

aligned chunks, the present pilot only allowed 1:1 alignments. As a consequence, to include a special 

alignment context tag (ALIC) to simulate those chunks which had some semantic similarity or relatedness 

in the other sentence, but could not have been aligned because of the 1:1 restriction. In the case of the 

aligned chunks, the following relatedness tags were defined: EQUI denotes semantically equivalent 

chunks, oppositional meaning is labeled with OPPO, SPE1/2 denote similar meaning of the chunks, but 

the chunk in S1/S2 is more specific than the other one. SIM and REL denote similar and related meanings, 

respectively. ALIC is not used, because our algorithm is not restricted to one-to-one alignments. Finally, 

all unaligned chunks are labeled with NOALI [20]. According to extensive feature extraction from word 

alignments for semantic textual similarity do not differentiate between SIMI and REL; all REL alignments 

are considered as SIMI alignments. From previous work done on interpretable STS some of them which 

have relatively better result will explained in this section. 

2.5.1. Rule base approach 

In this approach the consideration is given to NeRoSim and Inspire system.  The system takes given 

sentence pair and maps chunks of the first sentence to those from the second by assigning different 

relations and scores based on a set of rules.  

For the interpretable similarity NeRoSim used a rule-based approach blended with chunk alignment 

labeling and scoring based on semantic similarity features based on regression models by combining a 

wide array of features including semantic similarity scores obtained from various methods (e.g. sim-

Mikolov). The Inspire system made use of a rule-based approach using Answer Set Programming for 

determining chunk boundaries and for aligning chunks and assigning alignment type and score.  
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Both NeRoSim and Inspire system performs similar preprocessing steps like: stop word removal, POS 

tagging, lemmatization, and named-entity recognition by Stanford CoreNLP [67]. Similarly in both system 

lookup for synonym, antonym and hypernym relations from WordNet. 

The Inspire system extends the basic ideas from NeRoSim [12], however the researchers realize the rules 

in logic programming and obtain the result with an Answer Set Solver. For chunking the Inspire system 

is based on a joint POS-tagger and dependency parser and an Answer Set Program (ASP)1 [108], [109] 

that determines chunk boundaries. The Inspire system realizes chunking as a preprocessing step. 

Inspire system alignment is based on ideas of NeRoSim entry, however re-implemented the system and 

realizes the rule engine in ASP [108], [109] which gives flexibility for reordering rules or applying them 

in parallel. ASP alignment architecture is present as follows: input sentence pairs then preprocess with 

POS, NER, WordNet and Word2Vec represented as a set of ASP facts. A generic set of rules represents 

how alignments can be defined and changed. Lookup of relate word in WordNet and distributional 

similarity with the Word2Vec tool [99] with SkipGram context representation, window size 10, vector 

dimension 200, and pruning below frequency 50. Word-to-word similarity sim(w1, w2) is computed using 

cosine similarity between vectors of words w1 and w2.  

NeRoSim experiments was applied on rules in the training data set by varying thresholds for sim-Mikolov 

scores and selected the thresholds that produced the best results in the training data set. Since three runs 

named R1, R2 and R3 were submitted. R1 applied full set of rules with 375 stop-words. However EQUI4 

was modified such that it would apply when unmatched content words of the bigger chunk were of noun 

rather than proper noun type. R2 Same as R1 but with extended stop-words from 375 to 686. R3 Applied 

full set of rules with extended stop words.  

Results F1-measures Baseline is 0.555 for Headlines whereas on Headlines test data, R3 performed well 

0.642. F1-measures Baseline of Images is 0.555 for Images test data, R1 was the best in alignment, F1-

measures metrics result found was 0.584. R3 performed better among all runs in case of Headlines data in 

overall. This was chiefly due to modified EQ4 rule which reduced the number of incorrect EQUI 

alignments. Researcher observed that performance of the system was least affected by size of stop-word 

list for Headlines data as both R1 and R2 recorded similar F1-measures for all evaluation metrics. 

However, R1 performed relatively better than R2 (0.561) in Images data-particularly in correctly aligning 

                                                                 
1 https://bitbucket.org/snippets/knowlp/yrjqr 
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chunk relations. It could be that images are described mostly using common words and thus were filtered 

by R2 as stop words. 

Similarly Inspire system adds some features and rearrangement of NeRoSim alignment order. The Inspire 

implements three run named Run1, Run2, and Run3. In their Run1 they optimized alignment, type and 

score used implementation of NeRoSim rules in the same order, as it is however SIMI4, SIMI5, and REL1 

which were excluded. Run2 is optimized for prediction of alignment this is done by using all NeRoSim 

rules in their original order for both dataset including SIMI4, SIMI5, and REL1.  In Run 2 system scorer 

tool does not strictly punish overlapping alignments. Run 3 solve the   limitation of Run 2 by rearranging 

of alignment.  

Inspire system tested and optimized it on the training data for Headlines, Images as criteria for accuracy 

the competition used the F1 full consideration of alignment, type, and score. Run 1 performs top in all 

categories on H and I. The configuration of Run 3 performs least on both datasets. For Gold-Standard 

Chunks 0.48, 0.55 and 0.56 are the baseline given for datasets image, Headlines and Answer-Students 

0.61, 0.70 and 0.51 respectively for top Run. The mean of baseline is 0.53 and mean of result found from 

the best output of three runs is 0.61.  The future directions stated in the paper are: represent semantic 

knowledge in ASP externals and use ASP guesses, constraints, and optimization. 

2.5.2. Machine learning approach with linguistic and rule blended 

SVCSTS is one of the research work on ISTS uses Monolingual word aligner [78] and supervised machine 

learning techniques for interpretable STS. In ISTS the main challenge is to find the semantic relationships 

between the chunks of S1 and S2. Chunks from the input sentence pair are to be aligned, labeled with the 

type of alignment and are to be scored on a scale of 0-5 based on their semantic similarity.  

OpenNLP chunker was used to chunk the input sentences and some post processing was done. For the 

post processing we observed a few rules from gold standard chunks. Those rules include combining 

chunks of specific chunk tags given by OpenNLP chunker. A large number of rules were discovered but 

the following were the rules, which maximized accuracy. PP +  NP +  PP +  NP, PP +  NP, VP +

 PRT, NP +  O +  NP, VP +  ADVP, and VP +  PP +  NP +  O, etc . Applying these rules they 

increased accuracy from 86.58% to 90.16% against the gold standard chunks. 

The following features were used for each chunk alignment to assign a type for the alignment. Length of 

S1 and S2 chunks are the first two features. Number of nouns, verbs, adjectives, prepositions in S1 and in 
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S2 chunk. The path similarity between words of S1 and S2 chunks another features. Unigram and Bigram 

overlap between S1 and S2 chunks are four features from N-gram.  

Labeling aligned chunks was performed by supervised machine learning using Scikit-Learn tool [94]. 

Average score for each alignment type was calculated from the gold standard data. The average scores 

that were used to score chunk alignment are 5, 3.75, 3.55, NIL, 0, 2.94, 2.82 and 4 for EQUI, SPE1, SPE2, 

ALIC, NOALI, SIMI, REL and OPPO type respectively the average score calculated from gold standard 

chunks. 

SVCSTS was experimented the classification of labels using 3 classifiers LinearSVC, SVC with RBF 

(Radial Basis Function) Kernel and SVC with Polynomial Kernel. But the classifier SVC with RBF (with 

parameters C = 1.0, gamma=0.7) demonstrated to give better results. The experimentation results (F1 

Type+Score) of the best of both data are present as: baseline and SVCSTS for Headlines are 0.5556 and 

0.5887 respectively, which is Run 1. For Images data Run 2 gives best result which is 0.5964 whereas 

baseline is 0.4326. 

UWB is another system explores machine learning and rule-based approaches to the ISTS task. More 

focus on machine learning and experiment with a wide variety of machine learning algorithms as well as 

with several types of features. The core of the system consists in exploiting distributional semantics to 

compare similarity of sentence chunks.  

As a first step of the approach perform the following text preprocessing:  32 stop-words predefined in list 

to remove from input text, remove special characters (E.g. dots, commas, quotation marks other 

punctuation) that violate the tokenization. Lowercasing all words as well as lemmatization performed with 

the Stanford CoreNLP tool [67]. 

Chunk Semantic Similarity attempts to estimate the similarity function are based upon estimating semantic 

similarity of individual words and compiling them into one number for a given chunk pair. The experiment 

was done with Word2Vec [99] and GloVe [110] for estimating similarity of words. Then compile all the 

word similarities in one number that reflects semantic similarity of whole chunks via the following 

methods: 1) the vector composition method and 2) an adapted method for constructing vectors called 

lexical semantic vectors. In this case do not weight words with their information content use methods for 

distributional semantics (Word2Vec and GloVe) rather than semantic networks. Then maximal 

similarities with words from chunks a and b, respectively was taken. Also to identify important word 

weight the vectors with invers document frequency weighting used.  
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UWB system was done on ISTS with machine learning approach task divided into to three classification 

/ regression tasks: Alignment binary classifications that decide whether two given chunks should be 

aligned with each other. Score classification / regression which experiment with both classification and 

regression of the chunks similarity score. Type classifications classify all aligned pairs of chunks into a 

predefined set of types. The classification experiment takes place with Weka [84].  

Four categories of features (lexical, syntactic, semantic, and external) employed. Lexical features consist 

of the following features: word base form overlap, word lemma overlap, chunk length difference, word 

sentence positions difference. POS tagging and syntactic parsing are performed with Stanford CoreNLP 

[67] for syntactic features. Post-processing were done if one chunk is aligned with multiple chunks in the 

other sentence, these chunks should be merged into one chunk.  Rule-based Approach was used for the 

chunk alignment to iterate over all chunks from sentence Sa and find the chunk with maximal similarity 

from sentence Sb.  

Experimental setup Machine learning approach employs the following classifiers and classification 

frameworks:  Alignment binary classification – Voted perceptron (Weka). Score classification – 

Maximum entropy (Brainy). Type classification – Support vector machines (Brainy). These classifiers 

perform best on the evaluation datasets. We achieved the best results for estimating chunk similarity with 

Word2Vec and the modified lexical semantic vectors  

Run 1 experimented with reduced feature set (word overlap, word positions difference, POS tags 

difference, semantic similarity, global semantic similarity, paraphrase database) and Run 3 with all 

features. In rule-based approach UWB have achieved the best results for estimating chunk similarity with 

Word2Vec and the modified lexical semantic vectors also, set the threshold for the similarity score to 2.5. 

All lower values are set to 0. This is the run 2. The results clearly show that the unsupervised runs 2 

perform much worse than the supervised runs 1 and 3. 

The experimentation results of the three official runs are as follow: On gold-standard chunks the result 

found from Images, Headlines and Answer students dataset is 0.6708 (run 3), 0.6296 (run 3), and 

0.6248(run 1) respectively. Generally overall results (mean) of F1 full consideration of alignment, type, 

and score is Run1 0.638, Run3 0.637, and Run2 0.566.  

VRep system was another research done on ISTS area. According to this work VRep system uses many 

features that extracted to create a learned rule-based classifier to assign a label. It uses semantic and 

syntactic (form of the chunks) relationship features. VRep makes extensive use of WordNet for both STS, 
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where the Vector relatedness measure is used, and for iSTS, where features are extracted to create a learned 

rule-based classifier. Preprocessing in the first step, consist tokenization, lowercase all characters, 

punctuation removal, POS tagging Lingua::EN::Tagger2 is used. POS tags are used for stop word removal 

and for alignment reasoning. Stop word removal remove any words that are not tagged as a noun, verb, 

adjective, or adverb. This reduces chunks and sentences to content words. 

VRep’s STS computation is similar to the method described by NeRoSim [12]. Chunk similarity takes 

two chunks (c1, c2) as input and computes the weighted sum of maximum word to word similarities, 

sim(wi, wj). To do this, the sim(wi, wj) is found for each word in c2 against c1, and the maximum is added 

to a running sum. For words in WordNet, sim(wi, wj) is the Vector relatedness measure with a threshold 

applied. The Vector measure was chosen for several reasons. 

Firstly it returns values scaled between 0 and 1 which is beneficial for applying thresholds in both chunk 

alignment and alignment reasoning. Secondly the Vector measure works well when wi and wj are different 

parts of speech because it does not rely on WordNet hierarchies. When calculating sim(wi, wj) all possible 

senses of both wi and wj are used, and sim(wi, wj) is chosen as the maximum value. This eliminates the 

need for word sense disambiguation (WSD). After computing the measure, a threshold is applied that 

reduces any value less than 0.9 to 0.0. The threshold prevents dissimilar terms from impacting the STS 

which improves the accuracy and prevents noisy chunk alignments. 

In chunk alignment chunkSim is computed between each chunk of two aligned sentences and the chunk 

with the highest chunkSim is selected for alignment. Multiple alignments are allowed for a single chunk. 

If all chunks have a similarity of 0, no alignment (NOALI) is assigned. Due to the high sim(wi, wj) 

threshold, no threshold is required for chunkSim as with NeRoSim [12]. 

Alignment Reasoning takes as input a chunk pair and provides a reason why that chunk pair is aligned. 

VRep’s alignment reasoning is inspired by NeRoSim [12] features (antonyms, synonyms, etc.) and 

SVCTSTS [79] features (number of words or counts of parts of speech in a chunk pair). Both these systems 

classify a chunk pair using features extracted from the chunk pair itself. VRep combines the two 

approaches and extracts a total of 72 syntactic and semantic features for each chunk pair. The classifier 

uses only 24 of original 72 features and a series of 10 rules. All classifiers are WEKA [84] 

implementations.   

                                                                 
2 http://search.cpan.org/ acoburn/Lingua-EN-Tagger/ 
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Alignment scores are assigned as the required scores, 0 for NOALI and 5 or EQUI, or the average 

alignment score for each class. The best performing set of scores came for all topics, came from the images 

data set alone. Scores used for each class are as follows: EQUI = 5.00, OPPO = 4.00, SPE1 = 3.24, SPE2 

= 3.69, SIMI = 2.975, REL = 3.00, NOALI = 0.00. 

The experimentation results of the three official runs are as follow: On gold-standard chunks the result 

found from Images, Headlines and Answer students dataset is 0.597 (run 3), 0.547 (run 3), and 0 .580 (run 

3) respectively. Generally overall results (mean) of F1 full consideration of alignment, type, and score is 

Run3 0.575, Run2 0.573, and Run1 0.556.   

The future directions stated in the paper are: more analysis (JRIP and other analysis criteria) should be 

done to refine the features used in classification. , additional metrics, such as word2vec measure for words 

outside of WordNet could be incorporated. Additional data should be added for training classifiers and 

also to reduce the class imbalance and will likely result in a set of rules for the REL class.  

FBK-HLT-NLP system is built combining different linguistic features in a classification model for 

predicting chunk-to-chunk alignment, relation type and STS score. The input data undergo a data pre-

processing in which we use a Python implementation of MBSP [111] a library providing tools for 

tokenization, sentence splitting, part of speech tagging, chunking, lemmatization and prepositional phrase 

attachment. To compute the chunk-to-chunk alignment, the relation type and the STS score we use a total 

of 245 features. 

Chunk tags. A total of 18 features (9 for chunk1 and 9 for chunk2) are related to chunk tags (e.g.noun 

phrase, prepositional phrase, verb phrase). For each chunk in the SYS datasets -chunked with MBSP- the 

system takes into consideration the chunk tags as identified by that library. For the GS datasets -already 

chunked datasets- the system first re-chunks the datasets with MBSP and then evaluates if chunks in the 

god standard correspond to chunks as identified in MBSP. If this is the case, chunk tag is extracted; 

otherwise the systems does the same operation (i.e. re-chunking and tag extraction) using a regular 

expressions-based shallow parser for English that uses a part-of-speech tagger extended with a tokenizer, 

lemmatizer and chunker. If no corresponding chunk is found, no chunk tag is assigned.  

Four further features are related to tokens and lemmas overlap between a pair of chunks. In particular, the 

system considers the percentage of tokens and lemmas in chunks1 that are present also in chunk2 and vice 

versa. It consider if the chunks are evaluated as aligned, if chunk1 is not aligned, if chunk2 is not aligned 

(3 features). 
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Twelve WordNet based features evaluate the type of relation between chunks by considering all the 

lemmas in the two chunks and checking whether a lemma in chunk1 is a synonym, antonym, hyponym, 

hypernym, meronym or holonym of a lemma in chunk2. 

Word embedding use a distributional representation of the chunk for a total of 200 features (100 for 

chunk1 and 100 for chunk2) by first calculating word embedding and then combining the vectors of the 

words in the chunk (i.e. by calculating the element wise mean of each vector). Mikolov word2vec [99] 

with 100 dimensions using ukWaC, GigaWords (NYT), Europarl V.7, Training Set (JRC) corpora were 

used. Neural Network used multitask MLP to classify chunk pairs. The system uses three classifiers: one 

for the chunk alignment, one for alignment type, one for STS score. 

FBK-HLT-NLP combines the output of the three classifiers organized in a pipeline. First, it label as “not 

aligned” all the punctuation chunks; then we label as “aligned” all the chunks aligned by the first classifier, 

allowing multiple alignments for each chunk. For every aligned chunk pair it adds the type label and the 

STS score. FBK-HLT-NLP do not take into consideration chunk pairs classified as “not aligned” by the 

first classifier even if they are classified with a label different from NOTALI or with an STS score higher 

than 0. 

The experimentation results of the three official runs are as follow: On gold-standard chunks the result 

found from Images, Headlines and Answer students dataset is 0.574 (run 1), 0.562 (run 3), and 0.589 (run 

3) respectively. Generally overall results (mean) of F1 full consideration of alignment, type, and score is 

Run3 0.572, Run2 0.571, and Run1 0.551.  

The future direction stated by the author is adding additional datasets should use as well as,   deep analysis 

of the distribution of the type labels and of the STS scores can improve significantly the performance of 

the system.  

Among the above study discussed in section related work Run1 of the Inspire system was the best result 

with 0.696 of F1on headline dataset. Similarity run3 of UWB system gave F1 0.6708 result that was the 

best result on Image data.  
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CHAPTER THREE 

INTERPRETABLE SEMANTIC TEXTUAL SIMILARITY (ISTS) 

3.1.  Introduction 

Interpretable semantic textual similarity (ISTS) is a semantic task adds a vital explanatory layer to pair 

semantic sentence similarity. The task was introduced for the first time as a pilot task in 2015 semeval 

semantic textual similarity (STS) tasks. Several approaches were proposed including NeRoSim [12], 

UBC-Cubes [82] and Exb-Thermis [77].  For each sentence pair, the systems identify the chunks in each 

sentence according to standard gold chunks, align corresponding chunks and assign a 

similarity/relatedness score and type of the alignment for each aligned chunks.  

The alignment types EQUI (semantically equivalent), OPPO (opposite in meaning), SPE1 (one chunk is 

more specific than other), SPE2 (one chunk is more general than other), SIM (similar meanings, but no 

EQUI, OPPO, SPE1, SPE2), REL (related meanings, but no SIM, EQUI, OPPO, SPE1, SPE2), ALIC 

(does not have any corresponding chunk in the other sentence because of the 1:1 alignment restriction), 

and NOALI (has no corresponding chunk in the other sentence) [82]. On the 2015 pilot subtask only one-

to-one (1:1) alignments were allowed. Because of 1:1 chunk alignment 1 chunk aligned only with 1 chunk, 

even if that chunk is similar with two or more chunks. So many-to-many (N:M) alignments are solution 

to this limitation and ALIC indicate N:M alignments relation in this research. 

3.2.  Architecture of ISTS 

The ISTS system is composed of several modules designed to handle the computation of similarity score 

of pieces of text of different lengths. Figure 3.1 shows its model which has four main modules, (1) for 

chunk input pair of sentence, (2) for calculating the similarity between each chunk of S1 with each chunk 

of S2, (3) align similar chunks based on similarity score, and (4) finally predict type of each alignment. 
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𝑭𝒊𝒈𝒖𝒓𝒆 − 𝟑. 1 𝑰𝒏𝒕𝒆𝒓𝒑𝒓𝒆𝒕𝒂𝒃𝒍𝒆 𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 𝒕𝒆𝒙𝒕𝒖𝒂𝒍 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒂𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆 

The core of the system is the interpretable semantic textual similarity architecture, which is based on a 

combination of corpus base (i.e. LSA) similarity score and knowledge base (i.e. WordNet). From the 

WordNet we used three features such as: antonym, synonym and hypernym. In addition LSA similarity 

measure based on Wikicorpus and also few string base similarity measure used that will discuss in section 

3.3.4. Some rules were discovered to predict the reason why it could be aligned. 

The ISTS system taking different length of inputs and many preprocessing are used before chunk pairs of 

text into segments.  After a chunk is identified post process is taking place then semantic similarity 

calculation is perform depend on surface similarity, WordNet, corpus and additional features. The next 

step is aligning chunks of S1 with chunks of S2 based on similarity score of pair chunk. Lastly ISTS result 
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is computed in the form of Type and score of similarity for all chunks. Detail of the system is presented 

in this chapter as next. 

3.2.1. Preprocessing  

The system takes two texts (S1 and S2) as input then segment paired sentence into chunks.  Before 

computing similarity many preprocessing are done to simplify the chunking and similarity calculation. 

Among preprocessing we used tokenization, part of speech tagging, and parsing is presented briefly in 

this section as follows.  

Tokenization is the task of chopping up texts into tokens and throwing away punctuation and other 

unwanted characters. A sentence is decomposed after applying well known Natural Language Processing 

by Stanford CoreNLP [67]. All punctuations removed except some punctuation explicitly described as 

next: 

There is a punctuation mark that has different uses when used in English. Apostrophe mark (‘), for 

example, in English shows possession and contraction. In English there are also a number of tricky cases 

of the use of apostrophe as it is used for the contractions. For example, it is used for the contractions 

purpose with the words like aren’t, didn’t, it’s. Therefore, an exception list is created to preserve 

apostrophe mark when it is used as contraction with English words. 

There are also punctuation markers which are used for various purposes in English language. For example, 

full stop (.) is used to indicate the end of a sentence besides to serve as abbreviation. For instance, the dot 

in “B.C”,” T.V.” serves as abbreviation. So an exception list is created for such kind of punctuation 

markers if existed in the text. On another way colon (:) is removed unless between number which use to 

separate hour from minute and minute from second.  

Another key thing done in preprocessing step is POS-tagging. It is the process of assigning a POS tag such 

as verb, noun, adverb, adjective, pronoun, and preposition or other tags to each word in a sentence. Verbs 

can be divided into past tense and present tense and nouns can be divided into plural and singular nouns, 

and so on. POS tagging are carried out using Stanford CoreNLP Toolkit [67]. Syntactic parsing with the 

Stanford CoreNLP uses Stanford Parser to obtain the dependency parsing from given sentences [67].  

3.2.2. Chunks 

I used gold chunks to perform chunking for input text. In order to make chunks according to standard gold 

chunks we used Stanford coreNLP [67] API for generating parse trees. Before chunking, we do preprocess 
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like tokenization, part of speech tagging, parsing and removed most of the punctuations except some of 

them listed above under preprocessing. Output of parser is further post-processed to combine each single 

preposition phrase with the preceding phrase. In the case of chunking based on Stanford coreNLP parser, 

a conjunction such as ‘and’ was consistently being separated into an independent chunk in most cases and 

therefore improved chunking can be realized by potentially combining chunks around a conjunction. 

These processing heuristics are based on observations from gold chunks data. We observed that quality of 

chunk has a huge impact on the overall score of system chunks track. A large number of rules were 

discovered such as: PP+NP+PP+NP, PP+NP, PP+ADJP+VP, PP+ADJP, PP+ADVP, NP+PP+ADJP, 

VP+VP, VP+NP, ADJP+ADJP, ADJP+NP, and many other rules were discovered 

3.2.3. Post processing  

Several text posts processing operations are performed after a sentence is chunked. For example replace 

all hyphens with white spaces. Also remove all non-alphanumeric symbols like slashes angular brackets 

etc. from the chunks. A predefined vocabulary, POS tags, and regular expressions are used to recognize 

multi-word terms including noun and verb phrases, proper nouns, numbers and time [73] lowercase the 

words. The two consecutive words in one sentence that appears as compound in the other sentence is 

replaced by the supposed compound if only appear in the other sentence. 

Some words that occur in most documents have a small impact in the text similarity. The NLTK stop word 

list used for stop-word removal [80] filter out punctuations and stop-words by using a pre-compiled stop-

words list. The function words such as prepositions, conjunctions, and articles carry less semantics than 

content words such as: nouns, verbs, adjectives, and adverbs and thus removing them might eliminate the 

noise and provide a more accurate estimate of semantic similarity [75]. 

Some expressions need normalized to simplify similarity calculation and alignment.  Temporal 

expressions are normalized into common form e. g. 4:00 am and 6:20 pm are normalized into 4:00 and 

18:20 respectively.  

Now a day seven types of named entities such as: location, organization, date, money, person, time and 

percent, are recognized by Stanford CoreNLP toolkit [67] for English. In addition the overlap between 

capitalized words, the syntax system uses the Stanford CoreNLP toolkit NER and classifier to compute 

the overlap between entities for each entity class separately. 
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Lemmatization is a technique from Natural Language Processing which does full morphological analysis 

and identifies the dictionary or base form of a word, which is known as the lemma. We perform 

lemmatization by Stanford CoreNLP Toolkit [67] for content words (nouns, verbs, adjectives, and 

adverbs) but not for functional words articles, pronouns, prepositions, conjunctions, auxiliary verbs, modal 

verbs, and punctuations from the chunks because they do not carry semantic content, but keep the cardinal 

numbers.  

Acronym is expanded by using a list of commonly used Acronym compiled for countries, capital cities, 

units of measurement etc. All number written in the form of text replaced by digit number, e.g. sixty six, 

two hundred nineteen, 2 million replaced by 66, 219, and 2000000 respectively.  

3.3. Similarity calculator  

The interpretable semantic textual similarity module manages inputs of text in English with different 

length, and uses the semantic chunk similarity modeled to compute the similarity between the given pieces 

of sentence. Before calculating similarity a pair of sentence should be preprocessed, chunked, and also 

post-process performed. For similarity calculation the system performs calculation based on string, corpus 

and linguistic (i.e. Named entity and WordNet) similarity. Corpus similarity measured by LSA in order to 

avoid weak alignment 0.2 threshold values taken. Then similarity calculator uses a feature extracted from 

observation of gold chunks datasets. Finally aligning chunks uses an alignment algorithm. Generally any 

word-to-word similarity measure includes simple word match, WordNet based similarity measures, and 

LSA based similarity measures. 

3.3.1. String similarity 

Content word similarity- we developed a new algorithm calculates content word (i.e. verb, noun, 

adjective and adverb) similarity. The algorithm matches words based on their string similarity and part of 

speech tag similarity (𝑃𝑂𝑆𝑖𝑚). Being same POS tag is not enough to determine pair words are similar or 

not. Additionally word N-gram similarity which calculated by jaccard coefficient between lemmas 

lowercased of word in 𝐶ℎ𝑖𝑆1 and word in 𝐶ℎ𝑗𝑆2 without stop-words for n = 2 taken into consideration. 

If all words in pair chunks are identical N-grams similarity score is = 1; otherwise, N-gram similarity is 

between 0 and 1. It’s used to calculate string similarity mostly where there is slight spelling error which 

is not handled by content word overlap. For example if we compare two string motorcycle <==> 

amotorcycle N-gram only considered as it is similar. Because ISTS model is not automatically correct 
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spelling. To clarify more we used N-gram similarity to count word overlap of content word in 𝐶ℎ𝑖𝑆1 and 

𝐶ℎ𝑗𝑆2 are identical, then Content word similarity = 1. To that end N-gram similarity considers word 

overlap if it is >=0.9 and 𝑃𝑂𝑆𝑖𝑚 measure chunk-to-chunk similarity even though it depends on word-to-

word similarity discussed in this section. The detail will discuss under chunk similarity section. 

Number similarity- is not handed by content word similarity even if the both numbers are equivalent; 

because of number is CD type given by POS tagger. Numbers overlap between 𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2 no 

matter if it’s written in text form or digit form. The similarity computed after converting number in text 

form into digit form. If number is exactly the same value the similarity score is then Number similarity 

(𝑁𝑢𝑚𝑆𝑖𝑚) = 1. Else number similarity less than 1; the explanation will discuss under feature extraction 

for chunk-to-chunk similarity measures section. 

3.3.2. Wikipedia Corpus 

3.3.2.1. Corpus Selection and Preprocess 

Wikipedia has involved much interest from researchers in different fields [96], and it is especially 

attractive for NLP: It contains many millions of words of text, as well as reasonably edited, which can be 

used for NLP purposes. Besides, its license allows the texts for the use and redistribution3. The Wikicorpus 

contains more than 750 million words is a trilingual corpus of English (600 million of words), Spanish 

(120 million of words) and Catalan (50 million of words) and that is freely available for download4. 

A very large and balanced text corpus is required to produce reliable word co-occurrence statistics. We 

selected the Wikicorpus of English that contained 600 million words collected from Wikipedia and have 

been enriched with linguistic information. In Wikicorpus to differentiate one document from another 

<doc… tag was added at begin and </doc> added at the end of a document. See sample presented as next: 

<doc id="33980" title="Waterfall model" dbindex="164"> 

The waterfall model be a sequential software development model ...  

</doc> 

                                                                 
3 http://www.fsf.org/licensing/licenses/fdl.html 
4 http://www.cs.upc.edu/~nlp/wikicorpus/ 
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The first line (i.e. header) contains information about the document like: doc id, title, database index etc. 

The remaining lines (from second line to one more line) contain the text and to that end terminated by end 

tag.  

Using large corpus is expensive for a reason like computer memory size to process term to document 

matrices. Due to the reason we used subdocument of Wikicorpus and lemmatization performed on selected 

document. 

3.3.2.2. LSA Word Similarity 

LSA word similarity relies on the distributional hypothesis that the words occurring in similar contexts 

tend to have similar meanings [25]. Thus, evidence for word similarity can be computed from a statistical 

analysis of a large text corpus. LSA is a fully mathematical/statistical technique for extracting and 

assuming relations of expected contextual usage of words in passages of discourse. It is not a traditional 

natural language processing or artificial intelligence program; it uses no humanly constructed dictionaries, 

knowledge bases, semantic networks, grammars, syntactic parsers, or morphologies, or the like, and takes 

as its input only raw text parsed into words defined as unique character strings and separated from 

meaningful passages or samples such as sentences or paragraphs [44]. 

The first step is to represent the text as a matrix in which each row stands for a unique word and each 

column stands for a document. Each cell contains the frequency with which the word of its row appears 

in the passage denoted by its column. Next, the cell entries are subjected to a preliminary transformation, 

whose details we will describe later, in which each cell frequency is weighted by a function that expresses 

both the word’s importance in the particular document and the degree to which the word type carries 

information in the domain of discourse in general [44]. 

3.3.2.3. Word Co-occurrence Generation.  

When using the values of the document-term matrix, 𝑡𝑓 ∗ 𝑖𝑑𝑓 is used to ignore word present in almost 

every document. The model is comprised of two different elements. First, the term frequency (𝑡𝑓) part 

that is the number of times a term is represented in a document, while and inverse document frequency 

(𝑖𝑑𝑓), is the number of documents in the corpus divided by the document frequency of a word, but 

inverted. 𝑡𝑓 ∗ 𝑖𝑑𝑓 is a composite weight which combines 𝑡𝑓 and 𝑖𝑑𝑓 is calculated by the following 

formula [107] 
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𝑤𝑖, 𝑗 = 𝑡𝑓𝑖, 𝑗 ∗ 𝑖𝑑𝑓𝑖 

But 𝑡𝑓 and 𝑖𝑑𝑓 are calculated by the formula 

 𝑡𝑓𝑖, 𝑗 =  (𝑓𝑟𝑒𝑞𝑖, 𝑗/𝑡, 𝑗)   

 𝑖𝑑𝑓 = 𝑙𝑜𝑔2(𝑁/𝑑𝑓𝑖) 

The 𝑤𝑖, 𝑗 is given by the formula 𝑤𝑖, 𝑗 = 𝑡𝑓𝑖, 𝑗 ∗ 𝑙𝑜𝑔2(𝑁/𝑑𝑓𝑖) 

Where, 

𝑖: a term 

𝑗: a document  

𝑡𝑓: a frequency of a term i in document j 

𝑡𝑗: total number of terms in document j 

𝑖𝑑𝑓, 𝑖: the inverse document frequency of a term i 

𝑑𝑓𝑖: the document frequency of a term i (total number of documents containing term i)  

𝑤𝑖, 𝑗: weight of term i in document j 

𝑁: total number of documents 

Because 𝑡𝑓 ∗ 𝑖𝑑𝑓 uses the logarithmic scale of its calculations 𝑖𝑑𝑓, the result cannot be negative. This 

means that the cosine similarity cannot be negative either. The range of a 𝑡𝑓 ∗ 𝑖𝑑𝑓 cosine similarity is 

therefore 0 to 1, where 0 it is not similar and 1it is exactly the same. The selected corpus from Wikipedia 

corpus is 1830 documents contained more than 2,525,357 words. We enforced to take 1830 documents 

because number of row (terms) greater than or equal to column (document). The reason why we limited 

number of documents in this corpus when SDV matrixes computed the Machine memory process if 

number of document is less than 1830. We generate word co-occurrence model based on a vocabulary of 

about 25,000 English words (noun, verb, adjective and adverb). The 25,000 common English words and 

noun phrases are extracted from Wikipedia corpus. We manually exclude proper nouns from the corpus 

because there are not many of them and they are all ranked among the top places since proper nouns start 

with an uppercase letter.  
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The final dimensions of our word co-occurrence matrices are 25,000 ⇥ 25,000 when words. Our 

vocabulary includes only content words (i.e., nouns, verbs, adjectives and adverbs). There are no proper 

nouns in the vocabulary of the only exception of a list of country names [51]. 

3.3.2.4. SVD Transformation.  

LSA applies singular value decomposition (SVD) to the matrix. SVD has been found to be effective in 

improving word similarity measures [31]. This is a form of factor analysis, or more properly the 

mathematical generalization of which factor analysis is a special case. So if document D1 contains (w1, 

w2) and document D2 contains (w2, w3), we can conclude that there is something common between 

documents D1 and D2. LSA does this by decomposing the input raw 𝑡𝑓 ∗ 𝑖𝑑𝑓 matrix (𝐴, see below) into 

three different matrices (𝑈, 𝑆 and 𝑉) that are decomposition of the original one (𝐴) using SVD. Once that 

is done, the three vectors are reduced and the original vector rebuilt from the reduced vectors. Because of 

the reduction, noisy relationships are discarded and relations become very clearly visible. In pseudo-code: 

𝐴 =  𝑈 𝑥 𝑆 𝑥 𝑉𝑡 

𝐴𝑘 =  𝑈𝑘 𝑥 𝑆𝑘 𝑥 𝑉𝑘𝑡 

Where: 

𝐴 = the original matrix 

𝑈 = the word vector 

𝑆 = the sigma vector 

𝑉 = the document vector 

𝐴𝑘 = the reduced matrix 

𝑈𝑘 = the reduced word sub-matrix consisting of 0…k-1 columns 

𝑆𝑘 = the reduced sigma sub-matrix consisting of 0…k-1 columns, 0...k-1 rows 

𝑉𝑘 = the reduced document sub-matrix consisting of 0...k-1 columns.  

𝑘= where represent dimension used  

There is a mathematical proof that any matrix can be so decomposed perfectly, using no more factors than 

the smallest dimension of the original matrix. One can reduce the dimension of the solution simply by 

deleting coefficients in the diagonal matrix, ordinarily starting with the smallest. In practice, for 

computational reasons, for very large corpora only a limited number of dimensions are used [44]. In 
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general, using the full dimension in SVD hurts the performances and dimension reduction indeed helps 

discarding noise.  

On an experiment we trained as 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 largest SVD 

dimension. Meanwhile 250 dimensions gave a good result; so we selected the 250 SVD and reduce the 

word vectors to 250 dimensions. The LSA similarity between two words is defined as the cosine similarity 

with their corresponding word vectors after the SVD transformation. To calculate term-to-term similarity 

two vectors are involved (𝑈𝑘 and 𝑆𝑘).  Now, the similarity calculated by using the cosine of the angle 

between two vectors. When it calculates word similarity it takes word 𝑥 of chunk 𝑖 in S1 (𝐶ℎ𝑖𝑆1) and it 

propagates calculating similarity with word 𝑦 of chunk 𝑗 in S2 (𝐶ℎ𝑗𝑆2),  this circulation it takes the best 

result among words of S2. Up to end the process is continuing until all words with pair sentence cross 

checked in matrix form. 

In order to calculating word-to-word similarity in LSA the system taken into account a word unmatched 

in any of the other similarity feature listed under section feature extraction. That is to say a word in S1 or 

S2 matched in one of synonym, antonym, hypernym, Date/time similarity and location similarity are 

excluded from LSA similarity calculation. 

3.3.3. Linguistic Measures  

Linguistic measures use syntactic composition of the sentence or semantic information contained in 

sentence to determine semantic similarity [8]. 

Named entity in 𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2 taken into consideration are location and date/time entity. If location 

entity is overlapped but not identical, location entity similarity score is then 𝐿𝑁𝐸𝑠𝑖𝑚 =  1. If date/time 

entity is overlapped but not identical, date/time entity similarity score is then 𝐷𝑁𝐸𝑠𝑖𝑚 =  1.  

Here it is important to understand the reason why I’m not employing for identical named entity; because, 

it is handled by content word similarity.  

3.3.3.1. WordNet based similarity  

Statistical word similarity measures have limitations. Related words can have similarity scores only as 

high as their context overlap (e.g. “doctor” and “hospital”).  Also, word similarity is typically low for 

synonyms having many word senses since information about different senses is mixed together. We 

reduced the above issues by using additional information from WordNet. 
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Many WordNet features like path depth, synonym and antonym are used to measure semantic information 

of a text. We increase the similarity between two words if any relation in the following categories. All of 

these categories 1-3 are based on linguistic properties on English.  

1. One word is the hypernym for the other. 

2. One word is the Antonym for the other. 

3. One word is the synonym for the other. 

Path depth is a function to tell whether a path passes through more general or more specific concepts. The 

Path depth similarity is calculated between each content word of each chunk in S1 (𝐶ℎ𝑖𝑆1) and each 

content word of each chunk in S2 (𝐶ℎ𝑗𝑆2). 

To calculate path depth hypernym is one of the hierarchies found in the WordNet to check whether a word 

is general or specific as well as related. Similarity of two words determined by the depth a word from 

common parent indexes where two terms join. In addition to calculate similarity hypernym use for labeling 

pair chunks. Hypernym indicates the relation of two words if 𝐴 is a kind of word 𝐵, that means 𝐴 is more 

specific than 𝐵 and 𝐵 is more general than 𝐴. The strength of similarity depends on their depth that is less 

depth more similar large depth is less similar. This can be done in two ways one is 𝐴 hypernym 𝐵 and the 

other is 𝐵 hypernym 𝐴. Both way has no impact on the depth it is always equal between two words 

however, the main thing to look two ways Common parent index (𝐶𝑃𝐼) can be different and must be 

known before calculation of hypernym similarity. 𝐶𝑃𝐼 indicates the distance between two words where it 

joins each other. The summation of 𝐶𝑃𝐼 of 𝐴 hypernym 𝐵 and 𝐵 hypernym 𝐴 give the depth. Based on 

the relation of depth and CPI, five conditions take into consideration in hypernyms similarity for score 

calculation and type prediction. All condition highlighted in Table-3.1 

 𝑨 hypernym 𝑩 𝑩 hypernym 𝑨   

Difference 𝐶𝑃𝐼 Depth 𝐶𝑃𝐼 Depth Type Score 

𝑪𝟏 0 X X X SPE2 1/√𝑥 

𝑪𝟐 X X 0 X SPE1 1/√𝑥 

𝑪𝟑 𝑥/2 X 𝑥/2 X SIMI 1/√(𝑥/2) 

𝑪𝟒 < 𝑥/2 X > 𝒙/𝟐 X - 1

√𝑥/2
 ,where x/2 is the bold one 
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𝑪𝟓 > 𝒙/𝟐 X < 𝑥/2 X - 1

√𝑥/2
 where x/2 is the bold one 

𝑻𝒂𝒃𝒍𝒆 − 𝟑. 1 𝒉𝒚𝒑𝒆𝒓𝒏𝒚𝒎 𝒔𝒄𝒐𝒓𝒆 𝒂𝒏𝒅 𝒕𝒚𝒑𝒆 

Different conditions compare word 𝐴 from chunk 𝐶ℎ𝑖𝑆1 and word 𝐵 from chunk 𝐶ℎ𝑗𝑆2 described as 

follow: In condition 𝐶1 word 𝐴 is the parent of word 𝐵 so the distance of word A from 𝐶𝑃𝐼 is zero, so 

word 𝐴 is parent and the distance of word 𝐵 from 𝐶𝑃𝐼 is equal with the depth of their hypernym so word 

𝐵 is child of word 𝐴. 𝐶1 used if word 𝐴 is more general and word 𝐵, type SPE2 is given to a chunk. The 

score calculated by dividing one for word depth. 

Condition 𝐶2 is the inverse of 𝐶1, word 𝐵 is the parent of word A so the distance of word 𝐵 from 𝐶𝑃𝐼 is 

zero, so word B is parent and the distance of word A from 𝐶𝑃𝐼 is equal with the depth of their hypernym 

so word A is child of Word 𝐵. 𝐶2  taken into account if word A is more specific and type SPE1 is given 

to a chunk. The score calculated by dividing one for word depth 

Condition C3 is used if and only if the distance of word A from 𝐶𝑃𝐼 is equal with the distance of word 

𝐵 from 𝐶𝑃𝐼. The summation of word A from 𝐶𝑃𝐼 and word B from 𝐶𝑃𝐼 gives depth. Considering one is 

as parent and others as child is not possible and type SIMI is given to a chunk. The score calculated by 

dividing one for half of the word depth. Condition 𝐶4 and 𝐶5 take place when 𝐶1, 𝐶2, and 𝐶3 have not 

occurred. These conditions fail to predict type and later the type will detected by other feature. Meanwhile 

the hypernym similarity calculated by dividing 1 for larger CPI. Here we took threshold value for 

hypernmy at depth 10; meaning if the depth greater than 10 no more involves in this similarity and the 

similarity can detected by LSA similarity measure. 

Another WordNet feature is synonyms; for a word in ChiS1, if their synonyms found in ChjS2 the 

synonym similarity (𝑆𝑦𝑛𝑜𝑆𝑖𝑚) is then 𝑆𝑦𝑛𝑜𝑆𝑖𝑚 =  1. The  𝑆𝑦𝑛𝑜𝑆𝑖𝑚 used for handling similarity that 

cannot handle by string similarity (e.g. N-gram and content word overlap) and named entity similarity. 

On other hand antonym is very important to identify a word that is opposite in meaning. For words in 

ChiS1, if their antonyms found in ChjS2 the antonyms similarity (𝐴𝑛𝑡𝑜𝑆𝑖𝑚) is then 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 =  1. 

The  𝐴𝑛𝑡𝑜𝑆𝑖𝑚 mostly used for handling similarity that cannot be handled by (e.g. 𝑃𝑂𝑆𝑖𝑚 and Named 

entity similarity). Also 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 used for labeling opposite type.  
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3.3.4. Feature Extraction for Chunk-to-Chunk Similarity Measures 

We can determine similarity between word with word, chunk with chunk and, sentence with sentence etc. 

But, complete sentence contains more information than just its words or chunks. So to clarify text 

(sentence) similarity if it is parsed into chunk, score is calculated and relation type is assigned then it 

became very attractive. This section, describes the features used for calculating chunk similarity. Chunk 

similarity measured by many features that listed in feature extraction section. Each and every feature 

depends on word -to-word described above in word and string similarity, corpus based similarity and 

linguistic similarity. Chunk similarity measured is a combinatorial similarity measure that computes 

similarity score based on the number of words shared by pair chunks of pair sentence. 

The system takes a number of features for type prediction as well as for score calculation. These features 

employ at chunk level similarity, but to determine chunk similarity it need summation of  

𝐹1, 𝐹2, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9 and 𝐹10 similarly, feature extraction is used not only for score calculation 

but also to align chunks and to predict a reason why the chunk is aligned. Likewise, 𝐹0 is also participated 

in score similarity calculation instead of 𝐹1 in different run. 

𝐹0: Dice-coefficient Similarity (lemma of content word) 

𝐹1: Common word similarity (𝑃𝑂𝑆𝑖𝑚)  

𝐹2: Number similarity 

𝐹3: has negation  

𝐹4: WordNet synonym  

𝐹5: WordNet antonym  

𝐹6: WordNet hypernym 

𝐹7: Date/time similarity 

𝐹8: Location similarity 

𝐹9: LSA similarity 

Feature extractions are used in various place of ISTS system and the detail is present as follows: 𝐹0 used 

for calculation of lemmatized content word similarity regardless of the word POS tag. 𝐹1 computed by 

equation 1 that is to calculate content word overlap the system use the new algorithm we proposed POS 
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tagged base similarity (𝑃𝑂𝑆𝑖𝑚) for computing of common content word similarity which described in 

section 3.5 If all content words are common for pair chunk 𝑃𝑂𝑆𝑖𝑚 = 1, else if some content words are 

common 𝑃𝑂𝑆𝑖𝑚 is between 0 and 1. Finally If there are no word overlap 𝑃𝑂𝑆𝑖𝑚 = 0, the equation i. 

𝑃𝑂𝑆𝑖𝑚= √
2(𝑛+𝑣)

𝑤
 + √

𝑎𝑑𝑣+𝑎𝑑𝑗

(𝑎𝑑𝑣𝑡+𝑎𝑑𝑗𝑡)
 log(2(𝑎𝑑𝑣 + 𝑎𝑑𝑗))……………………………….....… (1) 

The most used method to calculate common word similarity up to date is dice-coefficient, cosine 

similarity, Euclidean distance etc.  But, in all case all words given the same weight. However there is a 

situation in which noun has weighted than adjective and verb than adverb.  

𝑛 − count of matched  noun in pair chunk 

𝑣 − count of matched  verb in pair chunk 

𝑎𝑑𝑗 − count of matched  adjective in pair chunk 

𝑎𝑑𝑣 − count of matched  adverb in pair chunk 

𝑎𝑑𝑗𝑡 − count of adjective in pair chunk 

𝑎𝑑𝑣𝑡 − count of adverb in pair chunk 

𝑤 − count of all content words in pair chunk 

Well, the best way to describe 𝑃𝑂𝑆𝑖𝑚 would be it gives high weight for noun and verb. To realize term 

significance of weighting let take simple pair chunk example from Images data. 

𝑤𝑖𝑡ℎ 𝑎 𝑏𝑎𝑏𝑦 𝑖𝑛 ℎ𝑖𝑠 𝑙𝑎𝑝 <==>  ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎 𝑏𝑎𝑏𝑦, moreover before computing 𝑃𝑂𝑆𝑖𝑚 the chunks 

should tag by Stanford CoreNLP as: 

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 𝑖𝑛_𝐼𝑁 ℎ𝑖𝑠_𝑃𝑅𝑃$ 𝑙𝑎𝑝_𝑁𝑁 <==>  ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 Then 

content word only select for computation based on their POS tag.  

𝑏𝑎𝑏𝑦_𝑁𝑁  𝑙𝑎𝑝_𝑁𝑁 <==>  ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑏𝑎𝑏𝑦_𝑁𝑁) There is one common noun and no common verb, 

adjective and adverb. Afterward it is straightforward to compute with (𝑃𝑂𝑆𝑖𝑚) use equation 1 as 

√
2(1+0)

4
  + √

0+0

0
 log(2(0)) in deed the adjective and adverb parts become 0 to do so if neither adjective 

nor adverb matched threshold value is necessary taken the logarithm part substitute by 𝑙𝑜𝑔(1). The 

weighted part that is √
2(1+0)

4
   gives 0.707 to calculate chunk similarity unfortunately this feature (𝑃𝑂𝑆𝑖𝑚) 
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is enough because all features from 𝐹2 to 𝐹9 give zero. Finally it multiplied by 5 then 3.536 ≈ 4 that is 

equal with the human annotated score given in training dataset. 

𝐹2 - is regarding a cardinal number whether it is in text form or in digit form. If in text form it is converted 

into digit. Experimentally from the training dataset the similarity between cardinal number in ChiS1 and 

ChjS2 computed as follows: 

𝑁𝑢𝑚𝑆𝑖𝑚 = 1 −
|𝐧𝟏−𝐧𝟐|

|𝐧𝟏+𝐧𝟐|
………………………………………………………………………. (2) 

Where 𝑛1 and 𝑛2 are number in ChiS1 and ChjS2 respectively and 𝑁𝑢𝑚𝑆𝑖𝑚 is the one minus the 

difference between 𝑛1 and 𝑛2.  

If 𝑁𝑢𝑚𝑆𝑖𝑚 score is 1, assign similarity score 5 and EQUI type if and only if pair chunks matched by all 

content words or if the pair chunks contain number only. Otherwise, chunks with digits are aligned to 

produce alignment label of SIMI. The similarity score is depending on the differences between the digits 

extracted from the chunks. We have explained the following heuristics: 

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.9 and 0.99 alignment will produce similarity score 4 (e.g., 12 <==> 

10). 

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.89 and 0.55, assign similarity 3 (e.g., 18 <==> Ten). 

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.54 and 0.11, assign similarity 2 (e.g., 10 dead <==> 1 dead). 

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.0 and 0.10, assign similarity score 1 (e.g., to 35 years <==> to 1,000 

years).  

 Else 𝑁𝑢𝑚𝑆𝑖𝑚 is 0, which is when either chunk has number or none of chunk has number. 

Furthermore the above similarity score multiplied by 5 if pair chunks contain number only. However if 

pair chunk contains some extra words before multiplying by 5 it should compute other available similarity 

features then the summation is done.  Finally the result multiplied by 5 to get the actual score. On other 

hand string similarity measures have a limitation to detect semantic similarity computed by 𝐹4, 𝐹5 and 

𝐹6 which is depend on WordNet in addition to word and string similarity measure. Furthermore, F6 is one 

of these methods which explained in section linguistic measure. Word-to-word similarity scores 

calculation formula found in Table 3.1 

𝑆𝑦𝑛𝑜𝑆𝑖𝑚 =  
2∗(Schis1 n Wchjs2) 

(Wchis1+ Wchjs2) 
  …………………………………………….…..….... (3) 
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𝐴𝑛𝑡𝑜𝑆𝑖𝑚 =  (
2∗(Achis1 n Wchjs2) 

(Wchis1+Wchjs2) 
) ∗ 0.8……………………………………………..... (4) 

𝐻𝑦𝑝𝑒𝑆𝑖𝑚 =  
2∗(hchis1 n hchjs2) 

(Wchis1+Wchjs2) 
…………………………………………….…..…….... (5) 

𝐹7 is regarding date/time entity recognized by Stanford NER, if both chunks have date or time, the score 

is more than 2. Based on their similarity strength the score is given between 2 to 5.  

No way to differentiate date similarity even in hypernym all days has the same depth and the month as 

well. Providing that we used a rule base similarity based on the experiment on training dataset a date in 

chis1 is aligned with date of chjs2. To determine similarity scores and types we extracts new rules. For 

day if the day is exactly the same no doubt date similarity (𝑑𝑡𝑆𝑖𝑚) score is 1, if the day is subsequent  the 

𝑑𝑡𝑆𝑖𝑚 score is 0.8 but if not subsequent the 𝑑𝑡𝑆𝑖𝑚 score is 0.6. For a month if the month and day is 

exactly the same 𝑑𝑡𝑆𝑖𝑚 score is 1, when same in month and differ in day similarity determined by day 

rule. If  the month is subsequent  the 𝑑𝑡𝑆𝑖𝑚 score is 0.6 but if not subsequent  the 𝑡𝑆𝑖𝑚 score is 0.4. What 

discussed yet is regarding word to word similarity at word level. At chunk level if some extra words there 

date similarity calculated by the next equation 6.  

𝐷𝑎𝑡𝑒𝑆𝑖𝑚 =
2∗(dtSim)

Wchis1+Wchjs2 
…………………………………………….…..…….. (6) 

To put it another way if all content words of pair chunks are different and both chunks contain location 

𝐹8 not zero; then similarity score given 2. Additionally if some extra words are matched the similarity 

score is computed with other feature. So at word level location similarity (𝐿𝑠𝑖𝑚) = 0.4 to make at chunk 

level it calculated as the next equation. 

𝐿𝑜𝑐𝑆𝑖𝑚= 
2∗(LSim) 

Wch𝑖s1+Wch𝑗s2 
…………………………………………….…..…….. (7) 

Yet much of similarity has focused on string and linguistic similarity measure. LSA is another important 

method of the situation when linguistic and string similarity fails to capture similarity. It is the only 

measure the system used based on corpus. To put it another way if all content words of pair chunks are 

different and both chunks contain related words 𝐹9 result between 0 and 1. Importantly before calculate 

chunk (𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2) similarity among each word of the pair chunk (𝑊𝑥𝐶ℎ𝑖𝑆1 and 𝑊𝑦𝐶ℎ𝑗𝑆2) if and 

only if the words are not giving similarity in any feature of 𝐹1 to 𝐹8 used for feature F9. Where 𝑊𝑥 

represents each word in chunk of S1 and 𝑊𝑦 represent each word in chunk of S2. That is to say for every 

word in the chunk it does matrix, then it takes the best score among matrices done.  
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The step is continued to end until all of these word in 𝐶ℎ𝑖𝑆1 assigns score of term-to-term similarity. The 

sum of all pairs term of the chunk calculated.  Finally the summation is divided by a minimum number of 

words found in pair chunk. If another feature has similarity score more than 0 F10 result could not 

determine chunk scores and enforced to add together thus features; then it converted to human similarity 

score multiplying by 5. 

𝐿𝑆𝐴𝑠𝑖𝑚 =  
∑(𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥,𝑊𝑦)))

min 𝑊
 ………………..………………. (8) 

𝑊𝑥 – a word found in chunk ChiS1of S1; 𝑊𝑦 – a word found in chunk ChjS2 of S2; 

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥, 𝑊𝑦) computed on vector of word 𝑊𝑥 and 𝑊𝑦) that for a single word 𝑊𝑥 it 

calculate 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  with all word in chunk ChjS2. For a word 𝑊𝑥 we need one word which is 

most similar among words in ChjS2.To do that 𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥, 𝑊𝑦)) select one 

word for each word in ChiS1. That is to say for each word 𝑊𝑥 in ChiS1there is one best match word 

𝑊𝑦 in ChjS2 and the inverse is true. ∑ 𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ Compute the finally the summation divided by min 𝑊 

minimum number of words in either chunk.  

Before calculating chunk (ChiS1 and ChjS2) similarity we calculate the similarity among each word in 

the chunk (WxChiS1 and WyChjS2. Where 𝑊𝑥 represents each word in chunk of S1 and 𝑊𝑦 represents 

each word in chunk of S2. Yet we described the computation of each feature involve in chunk similarity 

measure. Finally the accumulation provides the chunk similarity. 

ChSim = 5 ∗ (POSim + AntoSim + SynoSim + hypeSim + Datesim + NumSim + LocSim + LSAsim) …. (9) 

Where: 

ChSim: Chunk similarity  

𝑃𝑂𝑆𝑖𝑚: Content word match  

𝐴𝑛𝑡𝑜𝑆𝑖𝑚: Antonym similarity  

𝑆𝑦𝑛𝑜𝑆𝑖𝑚: Synonym similarity 

ℎ𝑦𝑝𝑒𝑆𝑖𝑚: hypernym similarity 

Datesim: date similarity 

NumSim: Number similarity 
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LocSim: Location similarity 

LSAsim: LSA similarity 

Meanwhile the final score that is  𝐶ℎ𝑆𝑖𝑚 have been normalized multiplying by 5, so the score will be 

between 0 (minimum) and 5(maximum). However in the above equation (9)   dice- coefficient is not used. 

Moreover it taken into account in the second way of chunk similarity calculation depends on lemma of 

content word. It calculated two times of common word for both chis1 and chjs2 divided by count of words 

in both chunks. 

𝐷𝑖𝑐𝑒𝑆𝑖𝑚: = 
2∗(𝑐ℎ𝑖𝑠1 𝑛 𝑐ℎ𝑗𝑠2)

𝑐ℎ𝑖𝑠1+ 𝑐ℎ𝑗𝑠2
………………………………………….(10) 

Algorithm for score calculation  

 Input pair of sentence  

 Select 𝑐ℎ𝑖𝑆1  

 Takes  word 𝒙 of chunk 𝑐ℎ𝑖𝑆1 and recursively try to match with word 𝒚 of chunk 𝑐ℎ𝑗𝑆2 

 Start looking for 𝐷𝑖𝑐𝑒𝑆𝑖𝑚 / 𝑃𝑂𝑆𝑖𝑚 

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 

 Fail  

 move looking for 𝑆𝑦𝑛𝑜𝑆𝑖𝑚/𝐴𝑛𝑡𝑜𝑆𝑖𝑚  

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 

 Fail  

 move looking for hypernomy 

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 

 Fail  

 move looking for 𝐷𝑎𝑡𝑒𝑆𝑖𝑚/𝐿𝑜𝑐𝑆𝑖𝑚 

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 

 Fail  

 move looking for 𝑁𝑢𝑚𝑆𝑖𝑚 

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 



55 
 

 Fail  

 move looking for𝐿𝑆𝐴𝑠𝑖𝑚 

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1  

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1 

 Fail - assign score 0 to word 𝒙 then it moves to 𝐶ℎ𝑖𝑆1← i=i+1  

 Reaped until all word of S1 checked for similarity score & calculate at chunk level 

 End  
 

3.4. Alignment 

The ISTS manages the different inputs of the system, texts in English and with varying length, and uses 

the chunk similarity model to compute the similarity between the given pieces of text. In order to calculate 

similarity with different feature the system, align chunks using an alignment module. A module depends 

on several rules of chunk similarity to align pair chunk. Many-to-many (N:M) alignments without 

restrictions able to explicitly represent all interactions between chunks of pair sentence. For instance, let 

consider the following pair sentence taken from Images data (#104): 

[A yellow and blue airplane]1 [is flying]2 [in the sky]3 

[The white airplane]1 [is flying]2 [in the blue sky]3 

Alignment of chunks:  1-1 (SIMI 3), 2 - 2 (EQUI 5), 3- 3 (SPE2 4) 

 

Alignment of Chunk Score Type 

1-1 3 SIMI 

2-2 5 EQUI 

3-3 4 SPE2 

𝑻𝒂𝒃𝒍𝒆 − 𝟑. 2 𝒆𝒙𝒂𝒎𝒑𝒍𝒆 𝒐𝒇 𝒄𝒉𝒖𝒏𝒌 𝒂𝒍𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝒘𝒊𝒕𝒉 𝒔𝒄𝒐𝒓𝒆 𝒂𝒏𝒅 𝒕𝒚𝒑𝒆 

In above example fortunately all of pair chunks are aligned in parallel that is 𝐶ℎ1𝑆1 with 𝐶ℎ1𝑆2, 𝐶ℎ2𝑆1 

with 𝐶ℎ2𝑆2 and 𝐶ℎ3𝑆1 with 𝐶ℎ3𝑆2. Both 𝐶ℎ1𝑆1 and 𝐶ℎ1𝑆2 talking about the same object that is airplane 

but their difference is on extra information of the object. Furthermore the description indicate that both 

chunks pointing different airplane one is white another is yellow and blue. 𝐶ℎ2𝑆1 and  𝐶ℎ2𝑆2 are pointing 

about flying and no more information so it is equal. The last pair chunks indicates about sky in which 

airplane is flying one has extra information of sky color as it is blue; but, from S1 we have no information 
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whether sky is blue or white. Based on the information we can conclude that 𝐶ℎ3𝑆1 and is more general 

than 𝐶ℎ3𝑆2. In addition 𝐶ℎ3𝑆1 𝑎𝑛𝑑 𝐶ℎ3𝑆2 has very strong similarity.  

For the system chunks, the chunk module, converts sentences S1 and S2 to chunks ChiS1 and ChjS2 

respectively. The goal of alignment module is to determine the decision whether chunks of S1 are similar 

with chunks of S2, (which are non-zero score) or not similar (which is zero). Chunks of S1 and chunks of 

S2 can have more than one chunk (multiple alignment), that is not necessarily contiguous. Aligned chunks 

are further classified using type prediction and score classifier.  

Type prediction module identifies a pair of aligned chunks ChiS1 and ChjS2 concatenate with a relation 

type like EQUI (equivalent), OPPO (opposite), SPE1 (specific), SPE2 (general), SIMI (similar), and REL 

(related). Score classifier module assigns a similarity score ranging between 0-5 for a pair of chunks. 

The alignment module takes the chunks of given pair sentence, then it select first chunk in S1 (Ch1S1) 

and recursively try to match chunk one to each of the chunks in S2 (ChjS2). Alignment contains multiple 

steps and has precedence to apply for high accuracy. For correct alignment, a sequence has a vital role as 

Sultan [78].  

To overcome the problem of weak alignment it starts matching procedures from EQUI type if fail the 

procedures continue checking for OPPO type. If OPPO type not matched it moves to matching procedures 

for SPE1or SPE2.  Unfortunately chunk pair may not similar, or even if similar when the condition is 

difficult to decide one chunk has more information than other. Then the system moves to matching 

procedures of SIMI. If the chunk is related but not SIMI it checks for REL. If REL no matched aligns 

NOALI label to chunk ChiS1. The next step is moving to the second chunk of S2. It follows same process 

of first chunk of S2 until all chunks in S2 done matrices. At the end if chunk of S1 not matched NOAL 

will align with score zero. Similarly a process will continue cross check of each and every chunks of pair 

sentence. This is exactly what our ISTS system does, as specified in the algorithm below: 

 Input one sentence pair  

 Select ChiS1 

 Recursively try to match ChiS1to each of ChjS2 if Score >=1 

 Start looking for EQUI/OPPO 

 Succeed, move to ChiS1← i=i+1 

 Fail 

  Move to looking for SPE1/SPE2 

 Succeed, move to ChiS1← i=i+1 

 Fail 
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 Move to looking for SIMI 

 Succeed, move to ChiS1← i=i+1 

 Fail 

 Move to looking for REL 

 Succeed, move to ChiS1← i=i+1 

 Fail 

 Assign NOALI label to chunk 

 Move to ChiS1← i=i+1 

 Repeat until end of ChiS1← i=n 

 Recursively check if ChjS2 aligned with any ChiS1 

 Succeed, Move to ChjS2 ← j=j+1 

 Fail  

Assign NOAL 

 Repeat until all ChjS2 aligned 

 End 
 

3.5. Type prediction 

Alignment inputs a chunk pair and provides a reason why that chunk pair is aligned. There are seven types 

of alignment used to provide a reason for a chunk pair and one type (NOALI) for a chunk has no 

corresponding semantically similar chunk. Their difference is described as next: 

 EQUI: semantically both chunks are equivalent. 

 OPPO: semantically both chunks are opposite. 

 SPE1: semantically both chunks are similar but ChiS1 has more information. 

 SPE2: semantically both chunks are similar but ChjS2 has more information. 

 SIMI: similar chunks but no EQUI, OPPO, SPE1 or SPE2. 

 REL: related chunks but no SIMI, EQUI, OPPO, SPE1, SPE2.  

In this section, we describe the feature and rules used for chunk type. The type given to a pair chunk is 

defined. We used an alignment reasoning inspired by NeRoSim [12] features (antonyms, synonyms, etc.) 

and SVCTSTS [79] features (number of words or counts of parts of speech in a chunk pair). Both these 

systems classify a chunk pair using features extracted from the chunk pair itself. We combine the two 

approaches and extract a total of 9 syntactic and semantic features for each chunk pair in addition to the 

proposed 𝑃𝑂𝑆𝑖𝑚. 

This system uses gold chunks of a given sentence pair and maps chunks of the first sentence to those from 

the second by assigning different relations and scores based on a set of rules. The system performs stop 
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word removing, POS tagging, lemmatization, and named-entity recognition in the post processing steps. 

Lemmatization performed on noun, verb, adjective, and adverb only. It also uses lookups for synonym, 

antonym and hypernym relations from WordNet. 

Type prediction features (F2, F3, F5, F6, F7,F8 and F9) listed under similarity calculator section that 

predict type of paired chunk in addition to calculate score. Additionally the difference count of each 

content word of the chunk can determine chunk label. 

 Count of noun in chunk ChiS1 

 Count of noun in chunk ChjS2 

 Count of adjective in chunk ChiS1 

 Count of adjective in chunk ChjS2 

 Count of verb in chunk ChiS1 

 Count of verb in chunk ChjS2 

 Count of adverb in chunk ChiS1 

 Count of adverb in chunk ChjS2 

Next, we define a set of rules for each relation type. What we get from gold standard datasets indicates 

that having adjective in either chunks (ChiS1 or ChjS2) or different number of adjectives in pair chunks 

decide type of alignment. Particularly for SPE1 and SPE2 type adjective has vital role for labeling.  

E.g. – a bus <==> red double decker bus. The first chunk has no adjective but, the second chunk have 

adjective. So the first chunk is general because has no adjective and the second chunk have adjective that 

indicates specific.  

In addition a binary feature was designed to indicate whether two chunks in a given pair have the same 

polarity (i.e., affirmative or negative) by looking up a manually-collected negation list with 20 negation 

words (e.g. no, never, etc.). Negation list is mostly used for labeling opposite type. 

3.5.1. EQUI Rules    

EQUI Rules are applied when score of a chunk is 5.  

EQUE1 - Both chunks have same tokens - e.g. Resigns <==> resigns 

EQUE2 - Both chunks have same content words- e.g. in Bethlehem <==> of Bethlehem 

EQUE3 - A content words match using synonym lookup - e.g. Syrian troops <==> Syrian army 
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EQUE4 - All content words of a chunk match but proper noun type un-match the other chunk - e.g. Boeing 

787 Dream-liner ⇔ on 787 Dreamliner  

EQUE5 - Both chunks have equal number of content words (ChiS1, ChjS2) > 0.9 - e.g. in Indonesia boat 

sinking ⇔ in Indonesia boat capsize  

EQUI6 - Both chunks has 𝐿𝑆𝐴𝑆𝑖𝑚 score > 0.8 - e.g. restored <==> resumes  

3.5.2. OPPO Rules 

OPPO rules are applied only when none of chunk has number and conjunction. 

OPPO1: A content word in a chunk has an antonym in the other chunk - e.g. S. Korea <==> North Korea.  

OPPO2: if either chunk has negation - e.g.  Ethiopian ⇔ not Ethiopian  

3.5.3. SPE1, SPE2 Rules  

SP1: If chunk ChiS1 but ChjS2 has a conjunction and ChiS1 contains all the content words of ChjS2 then 

ChiS1 is SPE2 of ChjS2 or vice-versa. (4) - e.g. A motorcycle <==> A silver and blue motorcycle  

SP2: If chunk ChiS1 contains all content words of chunk ChjS2 and some extra content words that are not 

verbs, ChjS2 is a SPE2 of ChiS1 or vice-versa. (4) - e.g. A white Apple computer <==> An Apple 

computer 

SP3: If chunks ChiS1 and ChjS2 contain only one noun each say n1 and n2, n1 is hypernym of n2, ChjS2 

is SPE1 of ChiS1 or vice versa (4) - e.g.  A white dog <==> A white animal  

3.5.4. SIMI Rules 

According to SIMI relation type the most similar chunks has scoring 4 and the least one is scoring 1. A 

SIMI rule applied on all chunks pair contains a token of DATE/TIME type only or of LOCATION type 

only. Additionally when both chunks share at least one noun similarity type is determined by LSA score. 

SIMI1: Only the un-matched word in each chunk is a CD type the similarity is determined by CD type 

number difference (4)-e.g. 6 March 2013 <==> 12 March 2013 

SIMI2: Each chunk has a token of DATE/TIME type and it contains day without month similarity chunk 

score is 4 or 3. If both days are consecutive score given to a chunk is 4 - e.g. for Monday <==> for Tuesday 

But if the days are not consecutive score given to a chunk is 3 - e.g. Monday <==> Thursday  
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SIMI3: Each chunk has a token of LOCATION type (2) - e.g. in Iraq <==> in Syria 

SIMI4: When both chunks share at least one noun then assign 3 if ChSim (ChiS1, ChS2) >= 0.5 and 2 

otherwise if ChSim (ChiS1, ChjS2) >= 0.4. -e.g. Nato troops ⇔ NATO strike 

SIMI5: Each chunk contains a CD type only the similarity is determined by number difference and Type 

is SIMI (4)-e.g. 6 <==> 12  

SIMI6: Each chunk has a token of DATE/TIME type and both contains month, chunk similarity score is 

3 or 2. If both months are consecutive score given to a chunk is 3 - e.g. November 25, 2013 <==> October 

8, 2013.  But if a months are not consecutive score given to a chunk is 2 - e.g. 7 August 2013 <==> 11 

April 2013.  

3.5.5. REL Rules  

RE1: If both chunks share at least one content word then assign REL relation. However scores are assigned 

based on LSAsim similarity as follow: 

(i) 4 if LSAsim (ChiS1, ChjS2) ⇔ [0.7, 0.9)  

(ii) 3 if LSAsim (ChiS1, ChjS2) ⇔ [0.5, 0.7)  

(iii) 2 if LSAsim (ChiS1, ChjS2) ⇔ [0.40, 0.5) 

REL // 4 // in Afghanistan <==> in Afghan attack 

REL // 3 // in front of graffiti <==> in front of the building 

REL // 2 // Chinese general <==> of Chinese army singers 

3.5.6. NOALIC Rules 

NOALIC: If a chunk does not get any relation after applying all the rules and similarity calculation is 

equal zero, the chunk to be mapped, NOALIC. 

NOALIC2: If a chunk in a S1 ChiS1is aligned with more than one chunk in a S2 ChjS2. that is already 

aligned and has 𝐶ℎ𝑆𝑖𝑚 (ChiS1, ChS2) <= 2, assign NOALIC relation to ChiS1with NIL. 

3.6. Score Classification  

It is important to understand the variety of options available when using an algorithm, as they can make a 

significant difference in the quality of results. For each chunk aligned similarity score was calculated. The 

scoring module uses a variety of features listed under section feature extracted such as: 

F1, F2, F4, F5, F6, F7, F8, and F9. These entire features added together to decide pair chunk whether 
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similar or not. To that end, score for pair chunk is already described in section 3.8 beside to type 

classification which is calculated by ChSim (equation 9) 

3.7. Evaluation of ISTS 

The system evaluated using the official scorer provided by task organizers (SemEval) for evaluation of 

ISTS, which computes four distinct metrics:  𝐴𝐿𝐼 (segment pair alignment correctness), 𝑇𝑦𝑝𝑒 (segment 

pair alignment correctness taking type into account), 𝑆𝑐𝑜𝑟𝑒 (segment pair alignment correctness taking 

score into account) and 𝑇𝑦𝑝𝑒 + 𝑆𝑐𝑜𝑟𝑒 (segment pair alignment correctness taking type and score into 

account). 

3.8. Tools 

3.8.1. Java 

We used Java as programming language because of its modularity, robustness, scalability and high 

availability of libraries and tools for development. Java is an object oriented programming language we 

used for preprocessing training datasets and Wiki-corpus, chunking, post processing, extracting similarity 

from WordNet, calculating similarity, aligning chunk, scoring and labeling as well as final result output. 

Generally all algorithm used in this ISTS system were written in java on NetBeans 8.1 

3.8.2. JAMA 

JAMA is a basic linear algebra package for Java. It provides user-level classes for constructing and 

manipulating matrices. It is meant to provide sufficient functionality for routine problems, packaged in a 

way that is natural and understandable. In this thesis we used the JAMA library, and works fine as is, 

although we used NetBeans for adding the path to the JAMA library Jama-1.0.3.jar and running code. 

JAMA library uses to do the SVD decomposition matrix for computing corpus based similarity with LSA. 

3.8.3. WordNet API 

WordNet is a lexical database which is freely available to download and provides a large repository for 

English lexical items.  WordNet was designed to establish the connections between four types of Parts of 

Speech (POS) - noun, verb, adjective, and adverb. For this purpose window platform WordNet version 

2.1 is used.  
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CHAPTER FOUR  

EXPERIMENTATION AND DISCUSSION 

4.1. Introduction  

This chapter is devoted to the experimentation and method used for the evaluation of the study. It discusses 

train and test dataset used for the experimentation. The test result of the findings of the study is also 

discussed in this chapter. A brief analysis of the experimentation result is also presented.  

The ISTS system needs to perform chunk, align the chunks, label and assign score to the alignments. To 

access WordNet dictionary we used an application programming interface (API). We chose Java WordNet 

Library because of its easy configuration through properties file and its speed. MapBackedDictionary that 

requires a map representation of WordNet dictionary was used.  

net.didion.jwnl.utilities.DictionaryToMaptargetFolder properties.xml 

we use MapBackedDictionary representation and the properties file look like following truncated 

example. 

<?xml version="1.0" encoding="UTF-8"?> 

<jwnl_properties language="en"> 

<version publisher="Princeton" number="2.1" language="en"/> 

<dictionary class="net.didion.jwnl.dictionary.MapBackedDictionary"> 

 ... 

<param name="file_type" value="net.didion.jwnl.princeton.file.PrincetonObjectDictionaryFile"/> 

<param name="dictionary_path" value="c:/program files/WordNet/2.1Map/"/> 

</dictionary> 

<resource class="PrincetonResource"/> 

</jwnl_properties> 

4.2. Datasets  

This section presents dataset used for this study.We first introduce the annotation procedure, followed by 

the source of the sentence pairs, the evaluation method, and finally inter-tagger annotation data. In this 

work dataset first, a pair of sentences is given. Second, the annotator identifies the chunk in each sentence, 

despite of the corresponding sentence in the pair. Third, for each alignment, the annotator calculates a 
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score which indicate similarity of chunks pair. Fourth, the annotator aligns the chunks if score is greater 

than one or equal one. The sequence is from the strongest correspondences to weakest ones. Finally, it 

chooses the type of label for each alignment which shows a reason why it aligned. 

Source of the dataset 

The dataset comprises pairs of sentences from Headlines news and image descriptions. Wehave mentioned 

a sample pair from Images in table 4.1 with their Alignment, Score and Type. The Headlines corpus is 

composed of naturally occurring news headlines whereas the Images dataset consist of images with 

description. The dataset comprised 756 and 750 sentence pairs from Headlines and Images, respectively. 

Headlines contain slightly less chunks and few tokens per chunk than image descriptions. More than half 

of the pairs aligned in both data have a score of 5 and Type EQUI. In other way EQUI is the most used 

Type, followed by SIMI, SPE2 and SPE1, REL and OPPO respectively. The analysis in scores and types 

is very similar in both datasets. Additionally there are a large number of unaligned chunks, especially in 

the Images dataset. Finally, FACT and POL are infrequently used in the headlines dataset, and never in 

the Images dataset. We excluded FACT and POL in our work. 

Training dataset and test dataset  

Two publicly-available pair sentence datasets (Images and Headlines) used to training and to evaluate the 

performance of the interpretable sentence similarity measures.  Headlines dataset consist of 756 pairs of 

sentences used for training and 375 sentence pairs used for test. On the other hand Images dataset consist 

of 750 pairs of sentences used for training and 375 sentence pairs used for test. 

Our experiments show that there are significant differences in annotations between datasets. Particularly 

in image datasets sometimes the parser parse article as a phrase especially when a sentence begins by 

article and the next phrase is noun phrase. So it need merge with next phrase to make a correct noun 

phrase. In headline datasets space separated punctuation like colon (:), hyphen (-) and double hyphen (--) 

are where one chunk ends and another chunk starts.  Verbs are sometimes as chunk, and ‘to’ and ‘’s’ often 

start a new chunk in headline. 

4.3. Evaluation  

We have been prepared two system named Run1 and Run2. Both runs are used the same training data that 

is Headlines and Images as well as the same algorithm for score calculation except one algorithm which 

makes vary. However in both run exactly the same type prediction algorithm with the same precedence is 
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used. The algorithm is explained in section 4.5 with detail of alignment module. Run1 calculates score by 

equation 9 in contrast Run2 calculated by equation 11. The main difference is in Run1 𝑃𝑂𝑆𝑖𝑚 used for 

content word similarity. In comparison in Run2 𝑃𝑂𝑆𝑖𝑚 substituted by 𝑑𝑖𝑐𝑒𝑆𝑖𝑚 but, all other similarity 

measures are taken as it is. So Run2 calculated as the next equation (11). 

ChSim = 5 ∗ (diceSim + AntoSim + SynoSim + hypeSim + Datesim + NumSim + LocSim + LSAsim)… (11) 

Furthermore, both runs consider the same similarity measures between two words, but chunk level 

similarity measure is different. To make very clear we took sample train data from the Images that 

annotated by human along cosine, dice-coefficient and the new proposed (𝑃𝑂𝑆𝑖𝑚) chunk similarity score.  

The comparison of sample chunk pair are highlighted in table 4.1, to clarify more in the table all three 

similarity measures calculated from one. To put it in another way if chunk pair exactly match the result is 

one also if nothing is match the result is zero. To conclude the similarity result will be between zero and 

one. In table 4.1 except human annotated similarity (from training Dataset) all have three similarity scores. 

The first one is normal (non-italic and non-bold) result which indicates the similarity score directly taken 

from the output of an algorithm before normalization (multiplying by five) done. The other is the bold 

score which indicates multiplication of normal result by five as it is. The final one is an italic that is an 

approximate of the bold result. The human annotated similarity measure was represented by single digit, 

so we have taken approximate value to make a single digit. 
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 Sample pair chunks  from sentence1 and sentence2 Data

set 

cosine Dice  POSim 

 

lush green field <==> green field 

𝑖𝑛_𝐼𝑁 𝑎_𝐷𝑇 𝑙𝑢𝑠ℎ_𝐽𝐽 𝑔𝑟𝑒𝑒𝑛_𝐽𝐽 𝑓𝑖𝑒𝑙𝑑_𝑁𝑁  
𝑖𝑛_𝐼𝑁 𝑎_𝐷𝑇 𝑔𝑟𝑒𝑒𝑛_𝐽𝐽 𝑓𝑖𝑒𝑙𝑑_𝑁𝑁 

 

 

4 

0.82 0.80 0.84 

4.1 4.00 4.15 

4 4 4 

legitimate representative <==> sole representative     

𝑎𝑠_𝐼𝑁 𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒_𝐽𝐽 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑁𝑁  
𝑎𝑠_𝐼𝑁 𝑠𝑜𝑙𝑒_𝐽𝐽 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑁𝑁  

 

 

4 

0.50 0.50 0.70 

2.5 2.5 3.5 

3 3 4 

A dark brown horse <==> A brown horse 

𝑑𝑎𝑟𝑘_𝐽𝐽 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁  
𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁 

 

 

4 

0. 82 0. 8 0.84 

4.1 

4 
4.0 

4 
4.15 

4 

bitter immigration debate <==> immigration debate 

𝑏𝑖𝑡𝑡𝑒𝑟_𝐽𝐽 𝑖𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑁 𝑑𝑒𝑏𝑎𝑡𝑒_𝑁𝑁  
𝑖𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑁 𝑑𝑒𝑏𝑎𝑡𝑒_𝑁𝑁 

 

 

4 

0. 82 0. 86 0.89 

4.1 4.3 4.45 

4 4 4 

A cat <==> A black and white cat  

𝑎_𝐷𝑇 𝑐𝑎𝑡_𝑁𝑁 
𝑎_𝐷𝑇 𝑏𝑙𝑎𝑐𝑘_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑐𝑎𝑡_𝑁𝑁 

 

 

4 

0. 58 0. 5 0.70 

2.9 2.5 3.5 

3 3 4 

with a big necklace <==> with a black top and a necklace 

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑖𝑔_𝐽𝐽 𝑛𝑒𝑐𝑘𝑙𝑎𝑐𝑒_𝑁𝑁  
𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑙𝑎𝑐𝑘_𝐽𝐽 𝑡𝑜𝑝_𝑁𝑁 𝑎𝑛𝑑_𝐶𝐶 𝑎_𝐷𝑇 𝑛𝑒𝑐𝑘𝑙𝑎𝑐𝑒_𝑁𝑁 

 

 

3 

0.61 0. 60 0.63 

3.05 3.0 3.15 

3 3 3 

A passenger train <==> A passenger train 

𝑎_𝐷𝑇 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑁𝑁 𝑡𝑟𝑎𝑖𝑛_𝑁𝑁  
𝑎_𝐷𝑇 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑁𝑁 𝑡𝑟𝑎𝑖𝑛_𝑁𝑁 

 

 

5 

1.0 1.0 1.0 

5 5 5 

5 5 5 

a brown horse <==> a brown horse 

𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁  
𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁 

 

 

5 

1.0 1.0 1.0 

5 5 5 

5 5 5 

with a baby in his lap <==> holding a baby 

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 𝑖𝑛_𝐼𝑁 ℎ𝑖𝑠_𝑃𝑅𝑃$  𝑙𝑎𝑝_𝑁𝑁 

 ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁  

 

 

4 

0.47 0.5 0.70 

3.33 2.5 3.5 

3 3 4 

A yellow and blue airplane <==> The white airplane 

𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 
𝑇ℎ𝑒_ 𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 

 

 

3 

0.41 0.4 0.63 

2.05 2.0 3.15 

2 2 3 

a bus <==> Red double decker bus  

𝑎_𝐷𝑇 𝑏𝑢𝑠 _𝑁𝑁  
𝑅𝑒𝑑_𝐽𝐽  𝑑𝑜𝑢𝑏𝑙𝑒_𝐽𝐽 𝑑𝑒𝑐𝑘𝑒𝑟_𝐽𝐽 𝑏𝑢𝑠_𝑁𝑁 

 

 

3 

0.45 0.33 0.63 

2.25 1.66 3.15 

2 2 3 

𝑇𝑎𝑏𝑙𝑒 −  4. 1 𝑃𝑂𝑆𝑖𝑚 𝑐𝑎𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑, 𝑑𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐𝑜𝑠𝑖𝑛𝑒  



66 
 

If number of content words with POS tagged and without tag is equal the similarity measured by POS but 

if not equal POS tag measurement fails to compute. At the worst case it is calculated by dice-coefficient. 

Let take two chunks from training dataset “𝐴 𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑏𝑙𝑢𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 <==>  𝑇ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒” 

the chunk is taken from sentence one and sentence two respectively. According to human annotation of 

training data the chunks labeled and scored as: 

SIMI // 3 // 𝐴 𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑏𝑙𝑢𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 <==>  𝑇ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒. To boost this similarity 

calculation we used POS tagged by Stanford POS tagger. 

𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==>  𝑇ℎ𝑒_ 𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁. Any words 

except noun, verb, adjective and adverb should remove from the chunks. Hence determine the calculation 

before the words tagged gives 0.26 and 0.25 by cosine and Dice-coefficient respectively similarity score. 

The result multiplied by 5 as a reason the dataset was give score between 0 and 5. Finally cosine and Dice-

coefficient score is 1.3 and 1.25 respectively so it is far from annotated similarity score. To boost this 

similarity calculation we used POS tagged by Stanford tagger. 

 𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==> 𝑇ℎ𝑒_𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁. any words 

except noun, verb, adjective and adverb should remove from the chunks.  

Hence a determiner (𝐴, 𝑇ℎ𝑒 ) and conjunction (𝑎𝑛𝑑 ) removed from the chunks, five words remain in the 

chunk (𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==>  𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁). Therefore POS tag content 

word based similarity gives high weight to noun and verb inversely gives low weight to adjective and 

adverb. When it computed with 

√
2(𝑛+𝑣)

𝑤
 + √

𝑎𝑑𝑣+𝑎𝑑𝑗

(𝑎𝑑𝑣𝑡+𝑎𝑑𝑗𝑡)
 log(2(𝑎𝑑𝑣 + 𝑎𝑑𝑗)) we gave 1 threshold if there is no common adjective or an 

adverb with a chunk 𝑎𝑑𝑣 + 𝑎𝑑𝑗 gives zero result, 𝑙𝑜𝑔 (0) gives an error. To overcome this problem we 

take 1 instead of 0, it does no effect on the final results because 𝑙𝑜𝑔 (0 + 1) gives 0. There is no an 

unmatched noun or verbs √0.4 that is 0.632. If all content words are just matched similarity score is 1 

(maximum) and when there is no matched word in a chunk similarity score is 0 (minimum). The result 

propagates between 1 and 0. According to ISTS the score must be between 0 (un-matched) and five 

(equivalent matched). Finally the result gained from 𝑃𝑂𝑆𝑖𝑚 similarity multiplied by five gives 3.16 so it 

approximate to 3 that is exactly equal to human annotation. 
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                               𝐹𝑖𝑔𝑢𝑟𝑒 −  4. 1 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

As you see on Figure 4.2 sample output taken from Headlines data first pair chunk contain numbers only, 

so alignment reasoning must be SIMI also score calculated by NumSim which is 2. The second pair chunk 

score is 5 it shows as alignment label is EQUI, because it is exactly equal. The third pair chunk is detected 

by location similarity and given rule based score 2 alignment reason is SIMI. The last pair explaining 

about the same thing but, the degree of similarity is not equivalent crash more specific than accident. 
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𝑭𝒊𝒈𝒖𝒓𝒆 − 𝟒. 2 𝒔𝒂𝒎𝒑𝒍𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒇 𝑯𝒆𝒂𝒅𝒍𝒊𝒏𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 

4.4. ISTS results 

The system evaluation were computed by F1 score based on alignments  𝐴𝐿𝐼 (chunk pair alignment 

correctness), F1 𝑇𝑦𝑝𝑒 (chunk pair alignment correctness of type), F1 𝑆𝑐𝑜𝑟𝑒 (chunk pair alignment 

correctness of score) and F1 full consideration of alignment, type, and score are represented as 𝑇𝑦𝑝𝑒 +

𝑆𝑐𝑜𝑟𝑒 (pair chunk alignment correctness of type and score). In order to evaluate systems which perform 

ISTS, the segment align is mapped into chunk alignment, whereas all chunk pairs in the aligned pairs are 

with some weight.  

We have evaluated the chunking accuracy of SPBC chunker by comparing its output against the gold 

chunks of ISTS 2016 training data: the training and test data sets each consist of 375 pairs of Images 

annotation data and 375 pairs of Headlines texts. The chunker yielded the highest average accuracies on 

both the training and test datasets compared to other chunkers which are described next. The accuracies 

on the training dataset were 89.20% and 87.34% at chunk level and sentence level respectively. For the 



69 
 

test dataset, the accuracies were 87.81% and 87% at chunk and sentence level, respectively. The result of 

ourRun1 and Run2 of the evaluation is shown in Table-4.2 and Table-4.3 for Images and Headlines dataset 

respectively with given baseline. 

Image 

 ALI Type Score Type+Score Rank  

Baseline 0.8556 0.4799 0.7456 0.4799 

 

4 

Run1 0.8734 0.7723 0.8512 0.7514 1 

Run 2 0.8424 0.7262 0.7533 0.6611 3 

UWB_run3 0.8922 0.6867 0.8408 0.6708 2 

𝑻𝒂𝒃𝒍𝒆 − 𝟒. 2 𝒊𝒎𝒂𝒈𝒆𝒔 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 𝒓𝒆𝒔𝒖𝒍𝒕 

 

Headlines 

 ALI Type Score Type+Score Rank  

Baseline 0.8462 0.5462 0.761 0.5461 

 

4 

Run1 0.8512 0.7232 0.7612 0.7120 1 

Run 2 0.7942 0.7232 0.7365 0.660 3 

Inspire_run1 0.8194 0.7031 0.7865 0.696 2 

𝑻𝒂𝒃𝒍𝒆 −  𝟒. 3 𝒉𝒆𝒂𝒅𝒍𝒊𝒏𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 𝒓𝒆𝒔𝒖𝒍𝒕 

The ISTS task published results briefly on the organization’s website5. They evaluated 9 systems including 

baseline. 

On Table 4.2 and Table 4.3 are shown the results of the ISTS task in comparison to our best result (POSim 

Overlap Measure with dice-coefficient). The rank was awarded according to correlation for Interpretable 

STS. In comparison to the baseline our results are better on both Headlines and Images data sets. On 

                                                                 
5 http://alt.qcri.org/semeval2016/task2/index.php?id=results 
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Images data set our best (Run1) results is 0.7514. Similarly on Headlines data our best (Run1) result is 

0.7120 and it is better than the baseline.  

We computed the percentage difference of our best result in comparison to the winner and baseline. As 

you can see our result for Images is 8.02% better than the result of the winner. Likewise, our result for 

Headlines is only 1.6% better than the result of the winner. Our similarity measure is better than the 

baseline by 27.15% on the Images data and by 16.59% on the Headlines data. 

4.5. Limitation and Challenges 

Limitation of this research depends on the limitation of chunking algorithm. At the back of a chunking 

algorithm there is Stanford CoreNLP parser. That is to say, the output of parses is accepted by chunker as 

input. The accuracy of parser is well but not perfect. For insistence sometimes the parser split article as a 

phrase especially when a sentence begins by article and the next phrase is noun phrase. So it directly 

affects the accuracy of chunk as a result if it is not segmented correctly the final output also not accurate. 

In addition, there are some limitations we realized in training dataset that degrade the result of ISTS. With 

this in mind let take one sentence A young woman with a bracelet is wearing a bikini top and jeans  (#103 

in image data), human annotated chunk  parsed  the sentence into four as:  [ A young woman ]1 [ with a 

bracelet ]2 [ is wearing ]3 [ a bikini top and jeans ]4. Yet it has no problem however the human annotated 

label alignment concatenates two non-consecutive chunks (2 and 4) as: with a bracelet a bikini top and 

jeans which is illogical and degrade score as well as label. 

In addition to chunking problem the difficulty of the ISTS task of aligning the chunks and allocating 

relation types, we found some differences in annotation of human which made some errors. In image data 

(#65), for example, on a sofa <=> on a blue sofa the annotation type is SIMI but the SPE2 type best 

describes the relation of the chunks. Likewise, in the same data (#693) in a field <=> in a green field, the 

SPE1 type has been labeled in the training set but it should be SPE2. Similarly, in image data (#193) A 

young boy <=> A young blonde girl has been given a label SPE2 in the training set. Indeed the second 

chunk has more information; however these two chunks are referring to different object and actually 

difficult to decide which one is more general.  Therefore it should be SIMI because it is like comparing 

mango and apple fruit. This isn’t the only evidence that supports the challenges of the training dataset. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1. Introduction 

The results of the study are summarized in this chapter. Moreover, issues that should be 

done in the future to enhance the ISTS result which also improves the ISTS are presented. 

5.2. Conclusion 

ISTS system helps the users to take pair sentence and give the output in chunk with similarity score and 

reason of it aligned. In this study, ISTS that is based on similarity like: string/word, WordNet and corpus-

based approach were developed for English users to specify their degree and type of similarity. In addition 

some rule were used for type prediction and score calculation. All chunk alignment, similarity score and 

interpretation of similarity score depend on the 10 features. Chunk alignment depends on similarity score, 

it hasn’t its own feature. Totally we implemented 10 similarity measures including a novel similarity 

measures, for two systems named as Run1 and Run2. However we used 9 measures at a time for Run1 

also for Run2 to calculate score. Both systems has 8 common features and one difference feature that is 

Run1 used 𝑃𝑂𝑆𝑖𝑚 and Run2 used 𝐷𝑖𝑐𝑒𝑆𝑖𝑚. So in score calculation all features are participated except 

ℎ𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 feature. For type prediction (interpretation) we used 7 feature (𝑁𝑢𝑚𝑆𝑖𝑚, ℎ𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛,

𝐴𝑛𝑡𝑜𝑆𝑖𝑚, ℎ𝑦𝑝𝑒𝑆𝑖𝑚, 𝐷𝑎𝑡𝑒𝑆𝑖𝑚, 𝐿𝑜𝑐𝑆𝑖𝑚, 𝑎𝑛𝑑 𝐿𝑆𝐴𝑠𝑖𝑚). But, 𝐷𝑖𝑐𝑒𝑆𝑖𝑚, 𝑃𝑂𝑆𝑖𝑚, 𝑆𝑦𝑛𝑜𝑆𝑖𝑚 features 

are not participated in type prediction. Moreover there are five novel algorithms proposed for similarity 

score calculation and interpretation such as: 𝑃𝑂𝑆𝑖𝑚, 𝐻𝑦𝑝𝑒𝑆𝑖𝑚, 𝐷𝑎𝑡𝑒𝑆𝑖𝑚, 𝑁𝑢𝑚𝑆𝑖𝑚, and 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 

Among an introduced novel algorithm 𝑃𝑂𝑆𝑖𝑚 has great role for chunk-to-chunk similarity calculation 

based on POS tagged content word gives high and equal weight for verb and noun In contrast it gives less 

and equal weight for adverb and adjective. Additionally 𝑃𝑂𝑆𝑖𝑚 algorithm can use for any language as 

long as an adjective help to modifies (limits or describes) a noun or a pronoun as well as an adverb help 

to modifies a verb, an adjective. So giving a weight for noun and verb is very significant rather than 

considering as the same weight with adjective and adverb. The algorithm only not enough to determine 

chunk similarity because, it focus is surface similarity (word overlap).  So it boosts the ISTS by using 

three similarity features such as: synonym, antonym as well as hypernym from WordNet and LSA 

similarity demonstrated in chapter 4.  
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Hypernym similarity (𝐻𝑦𝑝𝑒𝑆𝑖𝑚) also boosted the performance the ISTS system. This similarity measure 

has a great potential to predict alignment reason as well as compute similarity score. To avoid incorrect 

weak alignment the threshold value 10 taken as the highest distance between indexes of both word. 

Another important algorithm proposed for date entity similarity (𝐷𝑎𝑡𝑒𝑆𝑖𝑚) is very useful, because all 

days are on the same hierarchy in WordNet and the months are similarly on same from their parent, so 

difficult to differentiate. Named entity recognizer recognize as it is date only, like WordNet difficult to 

differentiate. As described in section 3.4.4 𝐷𝑎𝑡𝑒𝑆𝑖𝑚 used to differentiate similarity score.  

Number similarity (𝑁𝑢𝑚𝑆𝑖𝑚) has a great role on score calculation and type prediction because it detects 

similarity between pair chunk that couldn’t handle by any other features like 𝐿𝑆𝐴𝑠𝑖𝑚, string similarity 

and WordNet based similarity feature. 

Finally 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 is another significant algorithm to identify an oppositeness of aligned chunks. It’s a kind 

of dice coefficient works for antonym only. 

Performance of systems using corpus based approach is highly affected by the size, reliability and 

correctness of the corpus used for the study [106]. The ISTS used Wikipedia corpus for LSA similarity. 

Experimentation shows that LSA similarity was relatively less reliable than WordNet and String/word 

similarity score. 

However, the size of the documents used for this research was limited which affected the level of 

performance to be achieved. Despite of the limitation, it can be concluded that the performance of the 

system obtained was promising and gives a best result.  

5.3. Recommendations 

It is believed that there is much room for improvement of the performance of ISTS system developed in 

this research. Therefore, the following recommendations should be looked at in the future so that effective 

ISTS system can be developed to help users in their similarity need: 

 The size of the documents used for this research was limited. This limitation affected the accuracy 

of chunk alignment as well as degree of similarity; because if resources used are small, we may 

not be able to generate all word co-occurrence. Therefore, some work should be done with large 

and high quality corpora to minimize these problems. 



73 
 

 This thesis work focuses on chunk to chunk similarity as well as 𝑃𝑂𝑆𝑖𝑚 algorithm proposed for 

this purpose. Moreover we recommend that 𝑃𝑂𝑆𝑖𝑚 algorithm if somebody who interest to do 

sentence to sentence similarity without chunking a sentences. 

 For local language yet there are no work done on semantic textual similarity and its interpretation, 

unfortunately no one brave to do this. They are many challenges, the first one is developing training 

and testing dataset need linguistic. Second for a local language we haven’t knowledge based lexical 

database like wordNet. The door is still open for someone who want to contribute for user of local 

language. 
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