

Jimma University

Jimma Institute of Technology

School of Graduate Studies

 Department of Information Technology

Interpretable Semantic Textual Similarity

By

Abdo Ababor

A Thesis Submitted to the Faculty of Computing of Jimma University in

Partial Fulfillment of the Requirements for Degree of Master of Science

in Information Technology

Principal Advisor: Mr. Debela Tesfaye (Ass Prof)

Co-Advisor: Mr.Tefari Kibebew(MSc)

November, 2017

Jimma, Ethiopia

ii

Jimma University

Jimma Institute of Technology

School of Graduate Studies

Department of Information Technology

Interpretable Semantic Textual Similarity

By

Abdo Ababor Abafogi

Approved By Board of Examiner:

Mr. Debela Tesfaye _____________

Advisor Signature Date

______________________ ______________ ____________

External Examiner Signature Date

______________________ ______________ ____________

Internal Examiner Signature Date

______________________ ______________ ____________

Faculty Dean Signature Date

iii

Declaration

I, Abdo Ababor declare that this thesis is my own work and this work has not been submitted

before for a degree at any other institution.

Declared by:

Name: Abdo Ababor

Signature: _______________

Date: _______________

This research has been submitted for Examination with my approval as university advisor.

Advisor name: Debela Tefaye (Ass Prof)

Signature:

Date: ________________

This research has been submitted for Examination with my approval as university co-advisor.

Co-advisor name: Tefari Kibebew (MSc)

Signature: ________________

Date: ________________

Jimma, Ethiopia

November, 2017

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank the almighty Allah for giving me the strength to complete this

work. I want to express my deepest gratitude to Mr. Debela Tesfaye for supervising this thesis

Furthermore, I appreciate the useful advises and guidance provided by Mr. Tefari Kebebew. In

addition, I want to thank all my friends for their valuable information and support. My special

thanks to my family for their moral support and encouragement during my study. I thank

especially, my spouse Fatuma Nasir and all my family.

v

Dedication

This work is dedicated to my daughter, Yasmin Abdo

vi

Table of contents

Contents page number

ACKNOWLEDGEMENTS ... iv

List of Tables .. x

List of figures ... xi

List of Abbreviations and Acronym ... xii

Abstract .. xiii

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1. Background .. 1

1.2. Statement of problem ... 2

1.3. Objective .. 3

1.3.1. General Objective ... 3

1.3.2. Specific objective .. 3

1.4. Significance of the Study ... 3

1.5. Scope of the Study.. 4

1.6. Methodology .. 4

1.7. Organization of the Thesis ... 6

CHAPTER TWO .. 8

LITERATURE OVERVIEW .. 8

2.1. Introduction .. 8

2.2. Possible Approaches to semantic textual similarity... 9

2.2.1. String-Based Similarity .. 9

2.2.2. Corpus-Based Similarity... 11

2.2.2.1. Vector space model ... 11

vii

2.2.2.2. Latent Semantic Analysis .. 12

2.2.2.3. Generalized Latent Semantic Analysis.. 14

2.2.2.4. Explicit Semantic Analysis .. 14

2.2.2.5. Hyperspace Analogue to Language .. 15

2.2.2.6. Latent Dirichlet Allocation ... 15

2.2.2.7. Word2Vec .. 16

2.2.2.8. Point wise Mutual Information ... 17

2.2.2.9. Extracting DIStributionally .. 17

2.2.3. Knowledge-Based Similarity .. 17

2.3.3.1. Path-based Measures .. 18

2.3.3.2. Information Content-based Measure .. 19

2.3.3.3. Feature-based Measure ... 22

2.4. Measuring Semantic textual similarity .. 22

2.4.3. Preprocessing .. 22

2.4.4. Alignment ... 25

2.4.4.1. Identifying Chunks ... 25

2.4.4.2. Aligning Chunks ... 25

2.4.4.3. Scoring Aligned Chunk .. 27

2.4.4.4. Labeling Aligned Chunks ... 28

2.5. Related work .. 29

2.5.1. Rule base approach ... 29

2.5.2. Machine learning approach with linguistic and rule blended 31

CHAPTER THREE .. 37

INTERPRETABLE SEMANTIC TEXTUAL SIMILARITY (ISTS) .. 37

3.1. Introduction .. 37

viii

3.2. Architecture of ISTS .. 37

3.2.1. Preprocessing .. 39

3.2.2. Chunks .. 39

3.2.3. Post processing ... 40

3.3. Similarity calculator ... 41

3.3.2. Wikipedia Corpus ... 42

3.3.2.1. Corpus Selection ... 42

3.3.2.2. LSA Word Similarity ... 43

3.3.2.3. Word Co-Occurrence Generation... 43

3.3.2.4. SVD Transformation ... 45

3.3.3.1. WordNet based similarity ... 46

3.3.4. Feature Extraction for Chunk-to-Chunk Similarity Measures 49

3.4. Alignment ... 55

3.5. Type prediction .. 57

3.6. Score Classification .. 60

3.7. Evaluation of ISTS ... 61

3.8. Tools ... 61

CHAPTER FOUR ... 62

EXPERIMENTATION AND DISCUSSION... 62

4.1. Introduction .. 62

4.2. Datasets .. 62

4.3. Limitation and Challenges ... 70

4.4. Evaluation .. 63

4.5. ISTS results .. 68

ix

CHAPTER FIVE .. 71

CONCLUSION AND RECOMMENDATIONS ... 71

5.1. Introduction .. 71

5.2. Conclusion ... 71

5.3. Recommendations .. 72

References ... 73

x

List of Tables

𝑇𝑎𝑏𝑙𝑒 − 3.1 ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚 𝑠𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒 ... 48

𝑇𝑎𝑏𝑙𝑒 − 3.2 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑐ℎ𝑢𝑛𝑘 𝑎𝑙𝑖𝑔𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒 .. 55

𝑇𝑎𝑏𝑙𝑒 − 4.1 𝑃𝑂𝑆𝑖𝑚 𝑐𝑎𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑, 𝑑𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐𝑜𝑠𝑖𝑛𝑒 65

𝑇𝑎𝑏𝑙𝑒 − 4.2 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 .. 69

𝑇𝑎𝑏𝑙𝑒 − 4.3 ℎ𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 .. 69

xi

List of figures

𝐹𝑖𝑔𝑢𝑟𝑒 − 3.1 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑎𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 38

𝐹𝑖𝑔𝑢𝑟𝑒 − 4.1 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ... 67

𝐹𝑖𝑔𝑢𝑟𝑒 − 4.2 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝐻𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ... 68

xii

List of Abbreviations and Acronym

ADJP Adjective Phrase

ADVP Adverb Phrase

EQUI Equivalent

ESA Explicit Semantic Analysis

GLSA Generalized Latent Semantic Analysis

HAL Hyperspace Analogue to Language

IDF Invers Document Frequency

ISTS interpretable Semantic Textual Similarity

NER Named Entity Relationship

NLP Natural Language Processor

NP Noun Phrase

OPPO Opposite

POS Part of Speech

PP Preposition Phrase

REL Related

SIMI Similar

SPBC Stanford Parser Based Chunk

SPE1 Specific

SPE2 General

S1 Sentence One

S2 Sentence Two

STS Semantic Textual Similarity

SVD Singular Value decomposition

VP Verb Phrase

xiii

Abstract

This thesis focuses on the problem of interpretable semantic textual similarity in English language.

The system takes pair of sentence then it identifies the chunks in each sentence according to

standard gold chunks, align corresponding chunk, assign degree of similarity score as well as

predict reason of similarity/dissimilarity for each aligned chunks. To do this computation

distributional hypothesis approach blend with knowledge based was selected. Latent semantic

analysis (LSA) is a purely statistical technique, which leverages word co-occurrence information

from a large unlabeled large corpus of text relies on the distributional hypothesis that the words

occurring in similar contexts tend to have similar meanings. To do so LSA word similarity

computed from a statistical analysis of preprocessed Wikipedia corpus as well as it boosted by

WordNet and string similarity.

Furthermore semantic similarity measures between corresponding chunks are introduced in the

theoretical part. We selected and implemented 10 similarity measures. In the experimentation part

we proposes five chunk similarity measures inspired by state-of-the-art measures described in the

chapter three. The evaluation is conducted two results (Run1 and Run2) on two data sets (Images

and Headlines).

We can be concluded that the performance of the system obtained was promising and gives a best

result on Run1 which depends on 𝑃𝑂𝑆𝑖𝑚.

1

CHAPTER ONE

INTRODUCTION

1.1. Background

This chapter gives readers a general insight about the background of the study, the problems that motivated

the study. The chapter also gives highlight of the method and approaches followed in come up with

solutions to the problems. The objective, significance, scope and limitation of the study is also included

in this chapter.

Similarity is a complex concept which has been widely discussed in the linguistic, philosophical, and

information theory communities [1]. Standard semantic relations such as synonymy, paraphrase,

redundancy, and entailment all result from judgments of likeness whereas antonym, contradiction, and

inconsistency derive from judgments of difference [2]. Semantic related tasks have been a noticed trend

in NLP community. One needs to come up with a consistent computational model to assess this type of

relation. When a word level semantic relation requires exploration, there are many potential types of

relations that can be considered: hierarchical (e.g. IS-A or hypernym-hyponym, part-whole, etc.),

associative (e.g. cause-effect), equivalence (synonymy), etc. [3].

Semantic similarity can be broadly construed as being assessed between any two texts of any size.

Depending on the granularity of the texts, such as: word-to-word similarity, phrase-to-phrase similarity,

sentence-to-sentence similarity, paragraph-to-paragraph similarity, or document-to-document similarity

are measured in different ways. Mixed combinations are also possible such as assessing the similarity of

a word to a sentence or a sentence to a paragraph. For instance, in text summarization it might be useful

to assess how well a sentence summarizes an entire paragraph [4]. Particularly, the task Semantic Textual

Similarity (STS) has captured a huge attention in the NLP community despite being recently introduced

since SemEval 2012 [5] and ongoing up to date.

Semantic Textual Similarity (STS) measures the degree of semantic equivalence between two sentences.

STS captures the notion that some texts are more similar than others, measuring their degree of semantic

equivalence.

Textual similarity can range from complete un-relatedness to exact semantic equivalence, and a graded

similarity intuitively captures the notion of intermediate shades of similarity, as pairs of text may differ

2

from some minor nuanced aspects of meaning, to relatively important semantic differences, to sharing

only some details, or to simply being related to the same topic.

Although STS systems measure the degree of semantic equivalence in terms of a score which is useful in

many tasks, they stop short of explaining why the texts are similar, related, or unrelated. They do not

indicate what kind of semantic relations exist among the constituents (words or chunks) of the target texts.

Interpretable STS (ISTS) adds an explanatory layer. Given the input pairs of sentences participants need

first to identify the chunks in each sentence, and then, align chunks across the two sentences, indicating

the relation and similarity score of each alignment. ISTS for each sentence pair, participating systems had

to identify the chunks in each sentence, align corresponding chunks and assign a similarity/relatedness

score and type of the alignment for each alignment. The alignment types were semantically equivalent,

opposite, similar, related and unrelated in meaning [6].

1.2. Motivation

The core motivation behind interpretable semantic textual similarity is that for a local language there are

no work has been done on interpretation of text similarity. We tried to do the thesis for a local language

on this title. Unfortunately it needs many things to do which we cannot cop and need linguistic profession.

First and for most to propose new algorithm or even to use existing algorithm it need train and test datasets

that annotated by linguistic. On other hand it need human annotated train and test dataset which have pair

sentence, split of sentences into chunks, alignment of similar chunks together, assign similarity score for

aligned pair chunks and assign type for aligned chunks (why it is aligned). This annotation needs the effort

of exerted linguistic, as well as lexical database toolkit like WordNet is not available for local language.

For these reason we do on foreign (English) language.

1.3. Statement of problem

Methods to assess the semantic similarity of larger texts, in particular sentences, have been proposed for

paraphrasing and entailment semantic relation identification at sentence level [7], [8], [9], and [10].

Semantic similarity toolkit SEMILAR has been proposed that work at different levels of text granularity

(word-to-word, sentence-to-sentence, paragraph-to-paragraph, document-to-document, or a combination)

[11] regardless of interpretation at which point similarity is there and why?

STS systems measure the degree of semantic equivalence in terms of a score which is useful in many

tasks, did not explain why the texts are similar, related, or unrelated. They do not indicate what kind of

3

semantic relations exist among the constituents (words or chunks) of the target texts. Similarities and

difference may be clearly identified as a sentence but, on what words or chunks their similarity or

difference recognized, how much the degrees.

However a few researchers tried to interpret sematic textual similarity among chunks but limited one to

one alignment only. That is the main problem seen so far.

Finding explicit relations among constituents in the paired texts would enable a meaningful interpretation

of the similarity scores that attract me as topic of this thesis.

1.4. Objective

1.4.1. General Objective

The general objective is to compute whether two sentences are related or unrelated, by supplementing the

similarity score with an explanatory layer.

1.4.2. Specific objective

 Align the chunks across both sentences

 For each chunks alignment, provide the corresponding similarity score.

 For each score classify the type of relation.

 Determining the similarity between chunks.

1.5. Significance of the Study

Significance of scientific study is multi-dimensional; Academic and personal. Semantic text similarity is

more directly applicable in a number of NLP tasks such as Machine Translation and evaluation,

Summarization, Machine Reading, Deep Question Answering etc. on other hand interpretable semantic

text similarity shows clearly the interpretation how much the text is similar or not similar at chunk level.

For instance in deep Question Answering by cross checking expressed answers to conceptual questions

are similar to ideal answers and displays points at which two answers are related or unrelated is an

interesting part of ISTS. Also, the system contributes to future researchers in the area of Semantic

text similarity especially in developing interpretable semantic textual similarity. Generally the research

outcome contributes benefit to individuals and future researchers.

4

1.6. Scope of the Study

Interpretable semantic text similarity methods work at sentence-to-sentence levels of text but not

paragraph-to-paragraph and/or document-to-document similarity. The text (sentences) divided into

chunks and aligned in concept, gives score and reason of similarity. Our focus is determining the similarity

between chunks of two sentences. Due to limitation of time we focused only chunk level alignments for

short statements whenever possible.

1.7. Methodology

The combination of distributional approach and knowledge base is the method of this research work. Many

literatures related to interpretable STS (ISTS) are reviewed to understand different possible way of

measure and interpret STS. Semantic textual similarity model is based on a combination of latent semantic

analysis (LSA) and knowledge from WordNet. It manages the different inputs of the system, texts in

English and with varying length, and uses the interpretable semantic textual similarity model to compute

the similarity between the given pieces of text interprets the text. The ISTS system composes several

modules design to handle the computation of a similarity score among pieces of text of different lengths.

LSA word similarity relies on the distributional hypothesis that the words occurring in similar contexts

tend to have similar meanings. Thus, evidence for word similarity can be computed from a statistical

analysis of a large text corpus. LSA does not rely on any human-organized knowledge; rather, it “learns”

from corpus. Statistical word similarity measures have limitations. Related words can have similarity

scores only as high as their context overlap. Also, word similarity is typically low for synonyms having

many word senses since information about different senses are mixed together. To reduce the limitation

of statistical word similarity additional information is needed; which is solved by using WordNet.

1.6.1 Literature review

To accomplish the objectives of this research mentioned above several articles and literatures review.

Materials concerning semantic textual similarity and its interpretation were also reviewed. Since there are

several approaches used in computing semantic textual similarity, literature review was also carried out

on approaches used for interpretation of semantic textual similarity.

1.6.2 Corpus selection

For this research corpus selection and processing is done on Wikicorpus. Wikicorpus is a corpus contains

600 million words which collected from Wikipedia and has been automatically enriched with linguistic

5

information. Additionally knowledge based (WordNet) is another source of information for computing

interpretable semantic textual similarity.

1.6.3 Preprocessing

On other hand many preprocessing perform to reduce inflectional forms of words to a common base form

and increase performance of the system. This can be done by many preprocessing techniques such as:

Tokenization, stop-word removal, lemmatization, part of speech tagging, parsing, named entity (name of

location, organization, date, money, person, time and percent) recognizing are performed by Stanford

CoreNLP toolkit [50].

1.6.4 Scoring pair chunks

Scoring each pair chunks are computed by combining different features taken from lexical, semantic and

syntactic features are computed for the texts using a variety of resources and supplied to a classifier, which

then assigns weights to the features. It takes a set of input and predicts the scores for a set of input.

1.6.5 Alignment

Monolingual alignment is the task of discovering and aligning similar semantic units in a pair of sentences

expressed in a natural language. Such alignments provide valuable information regarding how and to what

extent the two sentences are related [62]. A chunk is a textual unit of adjacent words grouped on the basis

of linguistic properties which display the relations between their internal words [72].

At chunking process two sentences split into gold standard chunks. Once sentences are chunked, and

similarity score is calculated between chunks of all possible chunk-pairs next task is aligning pair chunks,

based on similarity score. Where, chunk pairs with a high similarity are aligned first, followed by pairs

with lower similarity [51].

1.6.6 Labeling aligned chunks

Labeling aligned chunks is another important part of the thesis. ISTS focus on explaining two sentences

that may be related/unrelated, by supplementing the similarity score with an explanatory layer. For each

alignment of chunks c1 and c2, the alignment type is determined according to the following rules: If the

similarity score between c1 and c2 is 5, the type is equivalency. If all word senses of c1 matched the word

senses in c2, the type is general for c1 and specific for c2 similarly. If both c1 and c2 contain a single word

sense, and are directly connected by an antonym relation then the type is opposite. Also, all unaligned

chunks are labeled with not aligned.

6

The rule based approach is used for chunk alignments and scoring [12]. A number of conditions are

defined for a chunk pair that might be checked before applying a rule. First identify the chunks in each

sentence separately, regardless of the corresponding sentence in the pair. Align chunks in order, using the

interface from the clearest and strongest correspondences to the most unclear or weakest ones. For each

alignment, provide a similarity/relatedness from 5 (maximum similarity/relatedness) to 0 (no relation at

all) score. A given pair of sentences, participating systems will need to align the chunks in sentence1 to

the chunks in sentence2, adding a score for the similarity/relatedness between each pair

of chunks and describing what kind of relation exists between them. The implementation of the system

coding, testing and maintenance will be done. Finally the performance of the developed system is

measured by examining the correlation between human judgment and machine calculations.

1.6.7. Experimentation and evaluation

The experimentation for evaluating the effectiveness of the system was done by using selected test dataset.

Once the necessary data has been used for training, another dataset were used for testing the performance

of the system. 750 headlines were prepared for training purpose and 756 image pair sentence selected for

training set. Moreover a total 700 pair sentence that is 350 from image and 350 from headline prepared

for testing the system. On the other hand, since the correctness of the chunking has direct effect on the

performance of the system. So training and testing of chunking, aligning, scoring and labeling done on

the selected datasets. The correctness of Alignment, score and type techniques are selected for

effectiveness measure as it is the most popular and most widely used measure of interpretable semantic

textual similarity.

1.7. Organization of the Thesis

The thesis is divided into five chapters and their organization is described as follows. This chapter, Chapter

One, is the introductory part of the study. It contains background of the study, statement of the problem,

objective and significance of the study. It also discusses the methodology used and the evaluation

techniques. Chapter two discusses review of literature which comprises two parts, conceptual review and

review of related works. The conceptual review involves review of basics of semantic textual similarity

including its three well-known method of measuring textual similarity such as: string based for lexical

similarity, corpus based and knowledge based for sematic similarity. It also discusses an overview of

interpretable semantic textual similarity and basic topics like preprocessing, chunk alignment, scoring and

type of semantic textual similarity interpretation. As well as the approaches in semantic textual similarity

7

are discussed in detail. Review of related works tries to discuss related works done in the area of

interpretable semantic textual similarity.

Chapter three, Interpretable Semantic Textual Similarity, method and technique focuses on designing and

developing the model of the system. It describes in detail about document pre-processing, alignment tool

to be used, architecture of the system along with description of its components, system performance

evaluation model. The fourth chapter focuses experimentation and discussion of test dataset as well as

system evaluation. The chapter also discusses analysis of results obtained from experiments. The last

chapter, Conclusion and Recommendation, concludes what has been done and achieved in the research

and forwards direction for future work.

8

CHAPTER TWO

LITERATURE OVERVIEW

2.1. Introduction

Text similarity measures play an increasingly important role in text related applications in many tasks

such as information retrieval, text classification, document clustering, topic detection, topic tracking,

questions generation, question answering, essay scoring, short answer scoring, machine translation, text

summarization and others. Finding similarity between words is a fundamental part of text similarity which

is then used as a primary stage for sentence, paragraph and document similarities. Words can be similar

in two ways lexically and semantically. Words are similar lexically if they have a similar character

sequence. Words are similar semantically if they have the same thing, are opposite of each other, used in

the same way, used in the same context and one is a type of another [8]. Different methods may operate

at different levels of representation of the input expressions; for example, they may treat the input

expressions simply as surface strings (i.e. string sequences and character composition), they may operate

on syntactic (i.e. an arrangement of words in a sentence) or semantic (i.e. meaning of word based on co-

occurrence or Knowledge-Based) representations of the input expressions, or on combining information

from different levels [21].

In semantic textual similarity (STS), systems rate the degree of semantic equivalence between two text

snippets. In literature there are many papers published on Paraphrase and Textual Entailment. Paraphrase

defined as to repeat something written or spoken using different words. According to this definition

paraphrase introduces two important aspects: same meaning and different words. Paraphrasing can be seen

as bidirectional Textual Entailment (TE) and methods from the two areas are often similar [21]. Paraphrase

and TE recognizers judge whether or not two given language expressions constitute paraphrases or a

correct TE pair. STS is related to both TE and Paraphrasing, but differs in a number of ways and it

applicable to many NLP tasks. STS is different from TE because it is bidirectional graded equivalence

between the pair of textual snippets. In the case of TE the equivalence is directional, e.g. a car is a vehicle,

but a vehicle is not necessarily a car. STS also differs from both TE and Paraphrasing, both tasks have

been defined to date in the literature rather than being a binary yes/no decision (e.g. a vehicle is not a car),

STS to be a graded similarity notion for a vehicle and a car. So a vehicle and a car are more similar than

a wave and a car [20].

9

2.2. Possible Approaches to semantic textual similarity

In order to measure STS word similarity has a great role. Words similarity can be measured in two ways

lexically and semantically. Lexical similarity is introduced though different String-Based algorithms,

Semantic similarity are introduced through Corpus-Based and Knowledge-Based algorithms. String-

Based measures operate on string sequences and character composition. A string metric is a metric that

measures similarity or dissimilarity between two text strings for approximate string matching or

comparison. Corpus-Based similarity is a semantic similarity measure that determines the similarity

between words based on information gained from large corpora. Knowledge-Based similarity is a

semantic similarity measure that determines the degree of similarity between words using information

derived from semantic networks [21]. Some of the most popular for each type presented briefly.

2.2.1. String-Based Similarity

String similarity measures work on string sequences and character composition. String similarity measures

similarity or dissimilarity (distance) between two text strings for approximate string matching or

comparison. A basic way to compare two texts take texts representations at character level and compare

them without any semantic processing solely based on their string sequences. Among string based

similarity measures some of them will be presented as follow.

One possibility is to compare the texts’ longest common substring [22] algorithm considers the similarity

between two strings is based on the length of contiguous chain of characters that exist in both strings.

Thereby, the length l of the longest contiguous character sequence longest common substring shared

between the two texts t1 and t2 is compared with the text length:

However, this measure has limitations, e.g. in cases of word insertions/deletions or typographical errors

which break the common substring.

To overcome the limitation of longest common substring the longest common subsequence measure

proposed [23] by dropping the contiguity requirement. Similarity is then computed the longest common

substring function now refers to the non-contiguous shared subsequence. Greedy String Tiling [24] is a

method which further allows dealing with shared substrings which do not appear in the same order in both

texts. The measure determines the set of shared contiguous substrings; each substring is a match of

10

maximal length. Similarity is then computed as the number of marked characters those participating in

any shared substring divided by the text length.

Furthermore, the popular Jaro distance [8, 9] another string based measure which based on the number

and order of the common characters between two strings. It takes into account typical spelling deviations

and mainly used in the area of record linkage. It is especially suitable for short strings such as person or

place names:

𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2) =
1

3
(

𝑚

|𝑠1|
+

𝑚

|𝑡2|
+

𝑚 − 𝑠

𝑚
) , 𝑖𝑓 𝑚 > 0, 𝑎𝑛𝑑 0 𝑒𝑙𝑠𝑒

Where m refers to the number of matching characters between 𝑠1 and 𝑠2. Matching characters which do

not appear in the same order in both texts are called transpositions, and t is defined as a half of the number

of transpositions. The Jaro-Winkler distance [28] is an extension of Jaro distance; it uses a prefix scale

which gives more favorable ratings to strings that match from the beginning for a set prefix length. It is a

variation of the original metric which assigns a higher similarity score to texts with a matching prefix, i.e.

texts which match from the beginning rather than any position within the string sequence:

𝑠𝑖𝑚𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑠1,𝑠2) = 𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2) + 𝑙. 𝑝. (1 − 𝑠𝑖𝑚𝑗𝑎𝑟𝑜(𝑠1, 𝑠2))

Where the number of characters in a common prefix for 𝑠1 and 𝑠2 𝑝 is a scaling factor

for assigning higher weights to a longer common prefix, and is originally set to 0 to 1 for no similarity and

exact match respectively[28].

Moreover Edit distance is another way of computing the dissimilarity between two strings.

Conventionally, the distance is computed for a set of characters with three kinds of operations like

substitution, insertion, and deletion. At this point, the distance between two string s1 and s2 is the

minimum number of edit operations that transform s1 into s2. The following measures are often referred

to as edit-distance metrics. The Levenshtein distance [29] is a simple metric that assigns uniform costs to

all edit operations insertion, deletion, and substitution. The Monge Elkan distance is an edit-distance

metric that uses an affine gap model. The intuition behind this model is that particular sequences of

alignments and misalignments between character sequences are more likely to occur than others.

Damerau-Levenshtein defines distance between two strings by counting the minimum number of

operations needed to transform one string into the other, where an operation is defined as an insertion,

deletion, or substitution of a single character, or a transposition of two adjacent characters [30],[31].

11

Another well-known string similarity measure is N-gram. N-gram is a sub-sequence of 𝑛 items from a

given sequence of text. Distance is computed by dividing the number of similar n-grams by maximal

number of n-grams. N-gram models Text similarity measures based on n-gram text representations exist

for words and characters. Character n-gram profiles [32] as implemented by [33], discard all characters

(case insensitive) which are not in the alphabet. All n-grams on character level are then generated and

weighted by a tf*idf scheme. While in the original implementation only n = 3 is used, other values for 𝑛

may also be considered. Finally, the feature vectors of both string sequences are compared by computing

the cosine between them. A method for comparing texts by means of word n-grams has been proposed

[34]. Two sets of n-grams are generated for both texts, and may then be compared using the Jaccard

coefficient.

2.2.2. Corpus-Based Similarity

Corpus-Based similarity is a semantic similarity measure that determines the similarity between words

based on information gained from large corpora. A corpus is a large collection of written or spoken texts

that is used for language research. Semantic relatedness is based on co-occurrence statistics, typically over

a large corpus. In order to produce a reliable word co-occurrence statistics, a very large and balanced text

corpus is required [35].

R. Mihalcea et al, [36] Proposed to use a single word similarity measure at a time out of a rich set of

measures in combination with a bidirectional aggregation strategy. He proposed aggregation strategy

computes a directional similarity score from a text t1 to a second text t2 and vice-versa, whereas for each

word a counterpart in the other text is sought which maximizes the pairwise similarity. The similarity

scores are weighted by a term frequency (𝑡𝑓) and a term’s inverse document frequency (𝑖𝑑𝑓) [37] on a

corpus then normalized. The final text similarity score is the average of applying this strategy in both

directions. Corpus based similarity measure approach has several similarity metrics like: vector space

model, latent semantic analysis, generalized latent semantic analysis, explicit semantic analysis,

hyperspace analogue to language, word2vec, and etc.

2.2.2.1. Vector space model

This model is an algebraic model in which the texts are represented as a vector. The information retrieval’s

vector space model [89] in which each text is modeled as a “bag of words” and represented using a vector.

For example doc = (doc1, doc2, doc3 . . . docn) and query = (query1, query2, query3 . . . queryn) where,

document is represented by doc. Each value in the vector is a non-zero value which weight of the term in

12

the document. This weight can be calculated by 𝑡𝑓 ∗ 𝑖𝑑𝑓, i.e., term frequency-inverse document

frequency. The similarity between two texts is then computed as the cosine similarity of the vectors. This

can be calculated by comparing the deviation of angles between the query vector and the document

vector [90] . The technique is the simplest, but performs not enough when the texts to be compared share

few words, for instance, when the texts use synonyms to express similar messages.

The systems have a precompiled word list with n words. The value of n is generally in the thousands or

hundreds of thousands in order to include all meaningful words in a natural language. Each document is

represented using these words as a vector in n-dimensional space. A query is also considered as a

document. The relevant documents are then retrieved based on the similarity between the query vector

and the document vector. This technique relies on the assumption that more similar documents share more

of the same words. If this technique were applied to sentence similarity, it would have three obvious

drawbacks: [91]

a. The sentence representation is not very efficient. The vector dimension 𝑛 is very large compared

to the number of words in a sentence, thus the resulting vectors would have many 𝑛𝑢𝑙𝑙

components.

b. The word set in IR systems usually exclude function words such as the, of, an, etc. Function words

are not very helpful for computing document similarity, but cannot be ignored for sentence

similarity because they carry structural information, which is useful in interpreting sentence

meaning. If function words were included, the value for n would be greater still.

c. Sentences with similar meaning do not necessarily share many words. One extension of word co-

occurrence methods is the use of a lexical dictionary to compute the similarity of a pair of words

taken from the two sentences that are being compared (where one word is taken from each

sentence to form a pair). Sentence similarity is simply obtained by aggregating similarity values

of all word pairs.

This technique is also trivially inappropriate for comparing individual words; using lexical resources, and

using Latent Semantic Analysis (LSA) techniques attempt to overcome this limitation.

2.2.2.2. Latent Semantic Analysis

Mostly LSA is commonly used that is a short form of Latent Semantic Analysis [44] presents a technique

for representing a text 𝑇 in a semantic space based on corpus statistics. LSA is a purely statistical

technique, which leverages word co-occurrence information from a large unlabeled large corpus of text.

13

In LSA, a set of representative words needs to be identified from a large number of contexts. A word by

context matrix is formed based on the presence of words in contexts.

LSA does not rely on any human-organized knowledge; rather, it “learns” its representation by applying

Singular Value Decomposition (SVD) to the words-by-documents co-occurrence matrix. LSA is

essentially a dimensionality reduction technique that identifies a number of most prominent dimensions

in the data, which are assumed to correspond to “latent concepts”. Meanings of words and documents are

then compared in the space defined by these concepts.

The matrix is decomposed by SVD into the product of three other matrices including the diagonal matrix

of singular values [91]. The diagonal singular matrix is truncated by deleting small singular values. In this

way, the dimensionality is reduced. The original word by context matrix is then reconstructed from the

reduced dimensional space. Through the process of decomposition and reconstruction, LSA acquires word

knowledge that spreads in contexts. When LSA is used to compute sentence similarity, a vector for each

sentence is formed in the reduced dimension space; similarity is then measured by computing the

similarity of these two vectors [92].

I. Because of the computational limit of SVD, the dimension size of the word by context matrix is

limited to the several hundred. As the input sentences may be from an unconstrained domain (and

thus not represented in the contexts) some important words from the input sentences may not be

included in the LSA dimension space.

II. Secondly, the dimension is fixed and so the vector is fixed and is thus likely to be a very sparse

representation of a short text such as a sentence.

III. Like other methods, LSA ignores any syntactic information from the two sentences being compared

and is understood to be more appropriate for larger texts than the sentences dealt with in this work

[92].

LSA convert the term-document matrix which describes the occurrences of terms in document into three

smaller matrixes like follows: [93]

Where, 𝑈 could be preserved as the semantic space of words. Each word could be represented as a row

vector in 𝑈. When measuring semantic similarity of two sentences, all word vectors appear in the sentence

were summed and then averaged with the length of the sentences. Vector of the two sentences represented

by 𝑉1 and 𝑉2. With 𝑉1 and 𝑉2, the similarity of the two sentences can be measured with cosine similarity.

Cosine similarity defined as follows: [93]

14

In experiment, [93] directly used the LSA model provided by SEMILAR [29]. A word is represented as

a row vector in the LSA model and the model was decomposed from the whole Wikipedia articles

[93]. Also developed two weighted LSA features to further use semantic information, they are IDF

weighted-LSA and Freq-weighted-LSA. IDF weighted-LSA weighted the words; one word is

represented as a 200-dimension vector generated from LSA using inverse document frequency and

then summed up all the weighted vectors of words which appeared in the sentence to be the representation

of the sentence. The cosine distance of two sentence representations is the value of this feature. Freq-

weighted-LSA used word frequency to weight the words and following the same steps mentioned in IDF

weighted-LSA. LSA are very difficult to interpret, since the computed concepts cannot be readily mapped

into natural concepts manipulated by humans.

2.2.2.3. Generalized Latent Semantic Analysis

This semantic analysis is a framework for computing semantically motivated term and document vectors

which represent as GLSA or General LSA [46]. It extends the LSA approach by focusing on term vectors

instead of the dual document-term representation. GLSA requires a measure of semantic association

between terms and a method of dimensionality reduction. The GLSA approach can combine any kind of

similarity measure on the space of terms with any suitable method of dimensionality reduction. The

traditional term document matrix is used in the last step to provide the weights in the linear combination

of term vectors.

2.2.2.4. Explicit Semantic Analysis

Gabrilovich and Markovitch introduced the concept of Explicit Semantic Analysis (ESA) in 2007 [47].

The idea underlying ESA is to represent and compare texts (from single terms to entire documents) as

vectors in a high dimensional concept space. ESA was introduced as an approach to compute the semantic

relatedness of terms or short phrases. ESA is a vectorial reorientation of entire document that uses a

document as knowledge base. The ESA representation of a real-world document d is a vector dESA whose

elements are the cosine similarities between d and all documents in a collection DI, called index collection

here. The supposed rationale of the ESA retrieval model is that each document in DI functions as a

semantic concept to which the original document 𝑑 is compared: dESA is understood as a projection of

𝑑 into the concept space spanned by DI. The semantic relatedness between two documents 𝑑1 and 𝑑2 is

computed by the cosine similarity between the ESA vectors of 𝑑1 and 𝑑2.

15

In ESA a word is represented as a column vector in the 𝑡𝑓 ∗ 𝑖𝑑𝑓 matrix of the text corpus and a document

is represented as the centroid of the vectors representing its words. In short ESA uses prior knowledge of

relationship between words and concepts makes it possible to assign, readable labels to the concept that

make up the vector space. Whereas in LSA the concepts are latent (they are undefined and need to be

discovered) [47].

2.2.2.5. Hyperspace Analogue to Language

This measure represented as HAL creates a semantic space from word co-occurrences [45]. A word-by-

word matrix is formed with each matrix element is the strength of association between the word

represented by the row and the word represented by the column. The user of the algorithm then has the

option to drop out low entropy columns from the matrix. As the text is analyzed, a focus word is placed

at the beginning of a ten word window that records which neighboring words are counted as co-occurring.

Matrix values are accumulated by weighting the co-occurrence inversely proportional to the distance from

the focus word; closer neighboring words are thought to reflect more of the focus word's semantics and

so are weighted higher. HAL also records word-ordering information by treating the co-occurrence

differently based on whether the neighboring word appeared before or after the focus word.

Indeed HAL is closely related to LSA and they both capture the meaning of a word or text using lexical

co-occurrence information. Unlike LSA that builds an information matrix of words by text units of

paragraphs or documents, HAL builds a word-by-word matrix based on word co-occurrences within a

moving window of a pre-defined width [45]. The window moves over the entire text of the corpus. An

N-N-matrix is formed for a given vocabulary of N words. Each entry of the matrix records the (weighted)

word co-occurrences within the window moving through the entire corpus. The meaning of a word is then

represented as a 2N dimensional vector by combining the corresponding row and column in the matrix.

Subsequently a sentence vector is formed by adding together the word vectors for all words in the sentence.

Similarity between two sentences is calculated using a metric such as Euclidean distance. However the

author experimental results show that HAL was not as promising as LSA in the computation of similarity

for short texts [45]. HAL’s drawback may be due to the building of the memory matrix and its approach

to forming sentence vectors: the word-by-word matrix does not capture sentence meaning well and the

sentence vector becomes weakened as large number of words are added to it.

2.2.2.6. Latent Dirichlet Allocation (LDA)

16

LDA define the contexts across which words are distributed, and each component of the semantic

representation corresponds to a particular topic. However, unlike content words they cannot be observed

directly in the data. Instead they are hidden variables which arise in a generative model of the distribution

of words across documents. LDA models the relationship between words and documents in terms of

topics, with each document being a mixture of topics and each topic being a unigram distribution over

words. Moreover LDA becomes computationally very expensive on large data sets [98].

2.2.2.7. Word2Vec

Word2vec is a two-layer neural net that processes text. Its input is a text corpus and its output is a set of

vectors: feature vectors for words in that corpus. While Word2vec is not a deep neural network, it turns

text into a numerical form that deep nets can understand. The purpose and usefulness of Word2vec is to

group the vectors of similar words together in vector space. That is, it detects similarities mathematically

[80].

Word2vec creates vectors that are distributed numerical representations of word features, features such as

the context of individual words. It does so without human intervention [80]. Given enough data, usage

and contexts, Word2vec make highly accurate guesses about a word’s meaning based on past appearances.

Those guesses can be used to establish a word’s association with other words (e.g. “man” is to “boy”,

“woman” is to “girl”). The output of the Word2vec neural net is a vocabulary in which each item has a

vector attached to it, which can be fed into a deep-learning net or simply queried to detect relationships

between words. Measuring cosine similarity, no similarity is expressed as a 90 degree angle, while total

similarity of 1 is a 0 degree angle, complete overlap.

Continuous Bag-of-Words Model (CBOW), as unlike standard bag-of-words model, it uses continuous

distributed representation of the context. Note that the weight matrix between the input and the projection

layer is shared for all word positions [99]. Mikolov et al. [99] introduced the Skip-gram model, an efficient

method for learning high quality vector representations of words from large amounts of unstructured text

data. Unlike most of the previously used neural network architectures for learning word vectors, training

of the Skip-gram model does not involve dense matrix multiplications. This makes the training really

efficient: an optimized single-machine implementation can train on more than 100 billion words in one

day. The training of the Skip-gram model is to find word representations that are useful for predicting the

surrounding words in a sentence or a document. More formally, given a sequence of training words w1,

17

w2, w3. . . wT, the objective of the Skip-gram model is to maximize the average log probability [81].

Skip-gram is similar to CBOW, but instead of predicting the current word based on the context, it tries to

maximize classification of a word based on another word in the same sentence.

2.2.2.8. Point wise Mutual Information

Point wise Mutual Information - Information Retrieval (PMI-IR) [49] is a method for computing the

similarity between pairs of words, it uses AltaVista's Advanced Search query syntax to calculate

probabilities. The more often two words co-occur near each other on a web page, the higher is their PMI-

IR similarity score.

2.2.2.9. Extracting DIStributionally

Extracting DIStributionally similar words using COoccurrences (DISCO) [50]. Distributional similarity

between words assumes that words with similar meaning occur in similar context. Large text collections

are statistically analyzed to get the distributional similarity. DISCO is a method that computes

distributional similarity between words by using context words for counting co-occurrences. When two

words are subjected for exact similarity DISCO simply retrieves their word vectors from the indexed data,

and computes the similarity according to Lin measure [51]. If the most distributionally similar word is

required; DISCO returns the second order word vector for the given word.

DISCO has two main similarity measures DISCO1 and DISCO2; DISCO1 computes the first order

similarity between two input words based on their collocation sets. DISCO2 computes the second order

similarity between two input words based on their sets of distributional similar words.

2.2.3. Knowledge-Based Similarity

Knowledge-based measures operate on lexical-semantic resources that express human knowledge about

words. The knowledge based similarity includes: dictionaries, thesauri, or wordnets etc. For instance

dictionaries and wordnets encode knowledge about words and their definitions, as well as the relations

between words encoded in thesauri and wordnets in a machine-readable format [53]. Among a well-known

knowledge based lexical semantic the most one is probably WordNet [54]. WordNet is a semantic network

database which developed by University Princeton for English language. Some versions of WordNet have

been developed in many languages. WordNet was designed in four type of word depends on their Parts of

Speech (POS) often known as content word (noun, adjective, verb, and adverb).

18

In WordNet the smallest unit is synset, it represents a specific (single) meaning of a word. Synset includes

the word, its synonyms and its explanation. The specific meaning of one word under one type of Part of

speech is called a sense. Each sense of a word is in a different synset. Synsets are equivalent to senses =

structures containing sets of terms with synonymous meanings. Each synset has a gloss that defines the

concept it represents. For example, the words nighttime, night and dark constitute a single synset that has

the following gloss: the time after sunset and before sunrise while it is dark outside. Synsets are connected

to one another through the explicit semantic relations. The similarity between two words can be

determined using their relative positions in the knowledge base hierarchy. The two words can have high

similarity score if the words are in the same WordNet synset or if one word is a hypernym of another word

[55].

As mentioned above WordNet is a lexical database hierarchically organized and groups words into

synsets. It provides semantic relations between synonym sets based on the grammatical rules, and it

categorizes the words as nouns, verbs, adjectives and adverbs. There Morphologic functions are used in

order to realize the root form of the word stored in the database. If you want to check sentence similarity

first a sentence is parsed into a list of tokens and these tokens are stemmed by WordNet to find the root

of the token.

In order to know similarity between two words, many similarity metrics have been proposed. Their

similarity can be estimated by seeing their relative positions within the knowledge base hierarchy. Let see

some of the concept of metrics one by one.

2.3.3.1. Path-based Measures

In Path-based similarity measures two concepts determined by the length of the path connecting between

the concepts and its position in the hierarchy.

The Shortest Path based Measure: This measure takes length of concept co1 and concept co2 into

considerate. The measure assumes that the similarity (sim_path) between co1 and co2 depend on how

close of the co1 and co2 are in the hierarchy [112].

sim_path(co1,co2) 2*deepmaxlength(co1,co2)

The similarity between co1 and co2 is the shortest path length(co1,co2) from co1 to co2.

If length (co1,co2) is 0, sim_path(co1,co2) becomes 2*deepmax (the maximum value). If length(co1,co2)

is 2* deepmax, sim_path (co1,co2) becomes 0 (the minimum value). Thus, the values of sim_path (co1,co2)

are propagate between 0 and 2* deepmax.

19

Where, length(co1,co2): the length of the shortest path from synset coi to synset coj in WordNet.

deepmax: the max depth(coi) of the taxonomy

sim (coi,coj): semantic similarity between concept coi and concept coj.

Wu & Palmer’s Measure: it introduced a measure [63] takes the position of concepts co1 and co2 in the

hierarchy into account relatively to the position of the immediate common concept lsc(co1,co2). It

assumes that the similarity between co1 and co2 is the path length and depth in path-based measures.

Simwp(co1,co2) =
2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))

𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜1,𝑐𝑜2)+2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))

Where, lsc(co1,co2) : the lowest common subsumer of co1 and co2

The similarity between two concepts (co1, co2) is the function of their distance and the

lsc(co1,co2).

If the lsc(co1,co2) is root, depth(lsc(co1,co2))=1, simwp(co1,co2) >0; if the two concepts have the same

sense, the concept co1, concept co2 and lsc(co1,co2) are the same node.

simwp (co1,co2) = 1; otherwise 0< depth(lsc(co1,co2))< deepmax, 0<length(co1,co2)< 2* deepmax,

0< simwp(co1,co2) < 1. Thus, the values of simwp (co1,co2) are in (0, 1].

Leakcock&Chodorow’s Measure: according to Leakcock and Chodorow the maximum depth

of hierarchy into account and proposed measure as the next:

simLC(co1, co2) = −log
length(co1,co2)

2∗ 𝑑𝑒𝑒𝑝max

The similarity between two concepts (co1, co2) is the shortest path length(co1,co2) from co1 to co2. When

co1 and co2 have the same sense, length(co1,co2) =0. To avoid log (0) 1 added to both length(co1,co2)

and 2* deepmax. Thus the values of simLC(co1,co2) are in (0, log(2* deepmax +1)]

2.3.3.2. Information Content-based Measure

Information Content-based Measure is another key WordNet based measure. According to this measure

each concept includes much information found in WordNet. Likewise the assumptions are based on the

Information content of each concept. The more common information share, the more similar the concepts

are.

20

Resnik’s Measure: Resnik proposed this similarity measure [41]. It assumes that for couple of concepts,

similarity is depended on the information content that incorporates them in the hierarchy.

𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘(𝑐𝑜1, 𝑐𝑜2) = −𝑙𝑜𝑔 𝑝(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2)) 𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2))

The values of 𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘(𝑐𝑜1, 𝑐𝑜2) only rely on concept pairs’ lsc in the hierarchy.

Lin’s Measure: Lin proposed method that measure similarity [113].

𝑠𝑖𝑚𝐿𝑖𝑛(𝑐𝑜1, 𝑐𝑜2) =
2∗𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1,𝑐𝑜2))

𝐼𝐶(𝑐𝑜1)+𝐼𝐶(𝑐𝑜𝑠2)

Lin’s Measure uses both the amount of information which is common for both concepts and all the

information looked-for fully describe these terms. The simLin has taken the information content of both

concepts into account respectively. As IC(lsc(co1,co2)) <=IC(co1) and IC(lsc(co1,co2)) <=IC(co2),

therefore the values of this measure becomes between 1 and 0.

Jiang’s Measure: Jiang computed semantic distance to get semantic similarity [114].

𝑑𝑖𝑠𝐽𝑖𝑎𝑛𝑔(𝑐𝑜1, 𝑐𝑜2) = (𝐼𝐶(𝑐𝑜1) + 𝐼𝐶(𝑐𝑜2) − 2𝐼𝐶(𝑙𝑠𝑐(𝑐𝑜1, 𝑐𝑜2)

To put it another way semantic similarity is the opposite of the semantic distance. The measure has taken

the IC of both concepts into account respectively.

The First step of this method is obtaining Information Content (IC) through statistical

analysis of corpora [14]. It assumes that, for a concept co in the hierarchy, let p(co) be the probability of

chance upon an instance of concept co. IC(co) can be calculated as negative the log: −log p(co), which

means that it is opposite as probability increases, IC decreases.

𝐼𝐶(𝑐𝑜) = −log 𝑝(𝑐𝑜) Probability of a concept was estimated as: 𝑝(𝑐𝑜) = 𝑓𝑟𝑒𝑞(𝑐𝑜)/𝑁 Where N is

represent total number of nouns, and 𝑓𝑟𝑒𝑞(𝑐𝑜) is represent the frequency of instance of concept co taking

place in the taxonomy. When calculating freq(co), each noun or any of its hierarchical hyponyms that

occurred in the given corpora is included, which indicates that if co1 is-a co2, then p(co1) < p(co2). Thus

if the concept is abstract, it is higher associated probability and the lower its information content.

𝑓𝑟𝑒𝑞(𝑐𝑜) = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑤)𝑤 𝑊(𝑐𝑜)

The measure is simple, unluckily, it relies on corpora analysis, and additionally sparse data problem is

inevitable. In order to solve this problem, Nuno proposed a method hyponyms-based IC. Accordingly

WordNet is used as a statistical resource to employ IC values. It regards value of a concept of the

hyponyms it has [116].

21

For a concept co, the more hyponyms it has, it determines the more abstract it is. That is to say concepts

with many hyponyms (abstract concept) express less information than concepts that are leaves. From this

point of view Root node is the least informative than leaf nodes which is the most informative in the

taxonomy. To put it another way for root IC is 0 and for leaf IC is 1. When you traverse from the leaf to

the root node, IC will declines from 1 to 0. It indicates that the method is corpora independent.

Nevertheless two concepts with the same number of hyponyms will have the same IC and all the leaves

will have the same IC too.

𝐼𝐶(𝑐𝑜) =
log (

hypo(co)+1

node_max
)

log (
1

node_max
)

 =1- log (
hypo(co)+1

node_max
)

The next one is based on the assumption that taxonomical leaves denote the semantic of the most specific

concepts of a domain in WordNet, a concept has less, information it expresses more leaves [117].

𝐼𝐶(𝑐𝑜) = −log (

|leaves(co)|
|subsumers(co)|

+ 1

max _𝑙𝑒𝑎𝑣𝑒𝑠 + 1
)

Where, let 𝑐𝑜 be the set of concepts, 𝑀𝑎𝑥_𝑙𝑒𝑎𝑣𝑒𝑠 represents the number of leaves matching to the root

node of the hierarchy.

The fourth states that every concept is defined with sufficient semantic embedding with the organization,

property restrictions, property functions, and other logical assertions [118]. The IC value is the relation

and hyponyms

Where, 𝑟𝑒𝑙(𝑐𝑜): Denotes the number of relations of concept 𝑐𝑜 and 𝑟𝑒𝑙_𝑚𝑎𝑥 : The total number of

relations.

The last one assumes that each concept is unique in the hierarchy and IC value is the function of concept’s,

which can separate different concepts effectively and gives more accurate value [64]. It was defined as:

22

Where for a given concept 𝑐𝑜, 𝑎 is a concept of the taxonomy hierarchy, which satisfies𝑎 ∈ ℎ𝑦𝑝𝑜(𝑐𝑜).

If 𝑐𝑜 is root, deep (root) is 1 and log (𝑑𝑒𝑒𝑝(𝑐𝑜)) is 0. If 𝑐𝑜 is a leaf, ℎ𝑦𝑝𝑜(𝑐𝑜) is 0. Then

∑
1

𝑑𝑒𝑝𝑡ℎ(𝑎)
= 0𝑎 ∈ ℎ𝑦𝑝𝑜(𝑐𝑜)

𝐼𝐶(𝑐𝑜) =
log (𝑑𝑒𝑝𝑡ℎ(𝑐𝑜))

log (𝑑𝑒𝑒𝑝_𝑚𝑎𝑥)

2.3.3.3. Feature-based Measure

This measure is independent on the taxonomy as well as independent on the subsumers of the concepts,

and attempts to exploit the properties of the ontology to obtain the similarity values. It take concept's

feature into considerate, which is based on the assumption that each notion is described by a set of words

representing its features or properties, of their WordNet definitions or glosses. The less non-common

characteristics two concepts have and the more common characteristics they have indicate the more similar

the concepts are [115].

2.4. Measuring Semantic textual similarity

Recently, STS has attracted an attention of many researchers. For example the Semantic Textual Similarity

competitions in Semantic Evaluation Exercises have been held from 2012 to current year (2017). In STS,

systems rate the degree of semantic equivalence between two text snippets. Snippets of text, STS capture

the notion that some texts are more similar than others, measuring their degree of semantic equivalence.

The similarities are identified by score that ranges over a continuous scale [0, 5], where 5 represent

semantically equivalent sentences and 0 represents unrelated sentences [20]. The similarity of both

sentences is measured by summation of each score. Interpretable STS (ISTS) adds an explanatory layer

to STS in order to clarify more. To do so first identify the chunks in each sentence, and then, align chunk

based on relatedness across the two sentences, indicating the relation and similarity score of each

alignment.

2.4.3. Preprocessing

Different languages use specific preprocessing techniques mostly because of grammatical and

morphological reasons. The goal of preprocessing is to reduce inflectional forms of words to a common

23

base form and increase performance of the system. This can be done by many preprocessing techniques

such as: Tokenization, stop-word removal, lemmatization, stemming, part of speech tagging, parsing,

named entity recognizing, chunking etc. Some of the most popular for preprocessing will be presented

briefly.

2.4.3.1. Tokenization

Tokenization is the task of chopping up documents into tokens and throwing away punctuation and other

unwanted characters. The same process must be applied to document and query to assure that a sequence

of characters in text will match the same sequence typed in the query [65]. Sentences are decomposed

after applying well known Natural Language Processing by OpenNLP [66]; Stanford CoreNLP [67], [68];

Tree Tagger [70]; Asiya toolkit [71].

2.4.3.2. Stop Words removal

Some words that occur in most documents have a small impact in the text similarity. The NLTK stop word

list used for stop word removal [72] filter out punctuations and stop-words by using a pre-compiled stop-

words list. The stop word list was augmented with adverbs that occurs more than 500, 000 times in the

corpus [73]. The function words such as prepositions, conjunctions, and articles carry less semantics than

content words (i.e. nouns, verbs, adjectives, and adverbs) and thus removing them might eliminate the

noise and provide a more accurate estimate of semantic similarity [75]. To determine a list of stop-words

the terms in the document collection are sorted by collection frequency occurrences of terms, and the most

frequent terms with little or none semantic value relative to the domain of the documents are then

discarded. Semantic content of documents must be taken into account when selecting the stop words [40].

2.4.3.3. Lemmatization

Lemmatization is a technique from Natural Language Processing which does full morphological analysis

and identifies the base or dictionary form of a word, which is known as the lemma. Lemmatization

performed by the WS4J library [66], Tree Tagger [70], Stanford CoreNLP Toolkit [67], [68], [73], Asiya

toolkit [71]. Then the WordNet-based Lemmatizer implemented in Natural Language Toolkit (NLTK)

was used to lemmatize all words to their nearest base forms in WordNet, for example, was is lemmatized

to be [76]. The similarity is calculated as follows: first of all, words in sentences p and q are lemmatized

and mapped to the related WordNet synsets [62].

2.4.3.4. Stemming

24

Stemming usually refers to a crude heuristic process that chops of the ends of words in the hope of

retrieving the stem of the word correctly most of the time. It often includes the removal of derivational

affixes [65] Stemming is language dependent process in similar way to other NLP techniques. It

transforms inflated words into their most basic form. Word2Vec handles the stem variations to some extent

when it learns the vector representation from the raw input data. Thus for the domain-specific models,

only remove stop words and do not need stem [76].

2.4.3.5. Part-of-speech (POS)

POS-tagging is the main process of making up the chunks in a sentence as corresponding to a particular

part of speech. POS tagging is the process of assigning a POS tag such as noun, verb, pronoun, preposition,

and adverb, adjective or other tags to each word in a sentence. Nouns can be further divided into singular

and plural nouns, verbs can be divided into past tense verbs and present tense verbs and so on [85]. The

input data undergoes the data preprocessing in which it use Tree Tagger [70] to perform POS tagging.

Also POS tagging is carried out using Stanford CoreNLP [67], [68], [69], [75] as well as tagged by

OpenNLP [66]. The MT metrics for each text pair were computed with the Asiya toolkit [71]. Words are

POS-tagged using Penn Treebank compatible POS-taggers: NLTK [80] for simple and OpenNLP for

syntax [75].

2.4.3.6. Parsing

Syntactic parsing with the Stanford CoreNLP Toolkit use Stanford Parser to obtain the dependency

parsing from given sentences [67], [70], [69]. The MT metrics for each text pair were computed with the

Asiya toolkit [71].

2.4.3.7. Named Entity Recognition

Seven types of named entities such as: location, organization, date, money, person, time and percent,

recognized by Stanford CoreNLP toolkit [67] for English [69], [75], [76] were considered [62]. For

English, all the pre-trained NER models made available by the Apache OpenNLP library were used [95].

In addition to the overlap of capitalized words, the syntax system uses the OpenNLP named entity

recognizer and classifier to compute the overlap of entities for each entity class separately. In interpretable

semantic textual similarity additional work is done as described next.

25

2.4.4. Alignment

Monolingual alignment is the task of discovering and aligning similar semantic units in a pair of sentences

expressed in a natural language. Such alignments provide valuable information regarding how and to what

extent the two sentences are related [78]. Word alignment is direction-dependent and not restricted to one-

to-one alignments [77].

2.4.4.1. Identifying Chunks

Chunking is a process to parse the sentence into a form that is a chunk based sentence structure.

A chunk is a textual unit of adjacent POS tags which display the relations between their internal words

[85]. A sequence of adjacent words grouped on the basis of linguistic properties [83]. OpenNLP chunker

was used to chunk the input sentences and some post processing was done [66]. For the post processing

[66] was based on a few rules observed from gold standard chunks. Those rules include combining chunks

of specific chunk tags given by OpenNLP chunker. A large number of rules were discovered but the

following were the rules, which maximized accuracy [79].

2.4.4.2. Aligning Chunks

Two sentences spliced into gold standard chunks. Firstly, the similarity between chunks of all possible

chunk-pairs is calculated, upon which chunks are aligned. Where, chunk pairs with a high similarity score

are aligned first, followed by pairs with lower similarity [68]. To do so there are many post processing left

which affect the alignment of chunks as well as similarity scores. Those things will be present in detail.

Punctuation characters were removed from the tokens [77]; [80] except for the decimal point in numbers

[80] also ignores case information, and symbols. This enables to match expressions like long term and

long-term [77]. All numbers written as words were converted into numerals, e.g., “2.2 million” was

replaced by “2200000” and “fifty six” by “56”. All mentions of time were converted into military time,

e.g., “5:40pm” was replaced by “1740” and “1h30am” by “0130” [80]. Normalized temporal expressions

are aligned if they denote the same point in time or the same time interval (e. g. 14:03 and 2.03 pm). On

other hand measurement expressions are aligned if they express the same absolute value (e. g. $100k and

100.000$) [77]. Abbreviations were expanded using a compiled list of commonly used abbreviations then

aligned [80].

If one of both sequences consists of exactly one all-caps-token then the system test if it is the acronym of

the other sequence (e. g. US and United States). Additionally a small database which containing high-

26

frequency synonyms (e. g. does and do), antonyms (e. g. doesn’t and does) and negations (e. g. don’t,

never, no) created for lookups [77]. Remaining content words are aligned using cosine similarity on

word2vec vectors [81].

According to [30] there were three lookups relations for synonym, antonym and hypernym. A strict

synonym lookup file was created using WordNet. As well as, an antonym lookup file was created by

building an antonym set for a given word from its direct antonyms and their synsets. Also another lookup

file for strict hypernym was constructed [30].

Analogously to align each content word to the content word of the other sentence with the same POS tag

that yields the highest similarity score. In this way weak alignments problem can happen. The solution

is rejecting alignments with a similarity less than 1 / 3 [35].

The presence of a common word sequence in sentence 1(S1) and sentence 2 (S2) is indicative of an

identical, and contextual similar word in the other sentence for each word in the sequence. To aligns

identical words in a sequences of length n containing at least one content word. The system align all

identical word sequence pairs in S1 and S2 containing at least one content word [78]. Note, afterward up

to the end S1 represent sentence 1 and S2 represent S2.

Named entities separately align to enable the alignment of full and partial mentions (and acronyms) of the

same entity. The Stanford Named Entity Recognizer [67] used to identify named entities [78]. Aligning

named entities performed in two steps separately. First aligned the exact term matches. Second any

unmatched term of a partial mention named entity is aligned to all terms in the full mention named entity.

This was done based on only first letter acronyms and aligns an acronym to all terms in the full mention

of the corresponding name. Since named entities are instances of nouns, named entity alignment is also

informed by contextual evidence, but happens before alignment of other generic content words. Many

stop words (e.g. determiners, modals) typically demonstrate little variation in the dependencies they

engage in, for this reason ignored type equivalences for stop words and implemented only exact matching

of dependencies. [78]

Another work was done previously aligning start by constructing the token to token link matrix in which

each element at position (i, j) determines that there exists a link between token i (from S1) and token j

(from S2). A link exists in the matrix if and only if the monolingual word aligner has determined that both

tokens are related. Then, the system uses token regions to group individual tokens into segments, and

calculates the weight between every segment in the sentence pair. The weight among two segments is

27

proportional to the number of links that interconnect tokens inside those segments. Chunk to chunk

alignment calculated by summing regions collapsed the token to token link matrix onto a chunk to chunk

link matrix. After that, to detect chunk to chunk similarity algorithm used to discover which segments (x,

y) are which score the highest weight. The algorithm extended to discover which are the segments that are

linked to either segment x or segment y, but not with a maximum alignment ratio. This processing to find

not maximal weights is essential to effectively assign the context alignment tag for 1: N relations. In

addition, the system is also aware of chunks that have been left unaligned [82].

The naive approach directly assigns the tag as a majority classifier would do, that is: for the segments with

highest weight it always assigns the equivalence tag, for the segments that are linked with lower weights

it always assigns the context alignment tag, and for the not aligned segments it always assigns the not

aligned tag. The machine learning approach used to improve the tag assignment by overcoming the naive

approach limitation that employs mostly only for segment pairs tagged as equivalent. In this approach

many related features were used such as: Jaccard overlap, segment length, WordNet similarity among

segment heads, WordNet depth, and etc. features obtained. To induce the model the Support Vector

Machine (SVM) implemented [83] under the latest version of Weka [84].

2.4.4.3. Scoring Aligned Chunk

To assign segment pair similarity scores the system can also use two distinct approaches: the naive

approach and the cube based regression approach. The naive scorer directly assigns a certain score to each

one of the tags, which has been previously assigned using the naive tagger: for equivalence tags it assigns

a score of 5 and for not aligned and context aligned tags it assigns ’NIL’. The regression approach uses

the cube to improve the score given to segment pairs tagged by the machine learning tagger. Its returning

value is used directly as the value for the pair similarity score [82].

The word similarity score less than fixed threshold (0.3) was reset to 0 in order to avoid noisy alignments.

Then the chunk similarity normalized by the number of tokens in the shorter chunk such that it assigned

higher scores to pairs of chunks for example physician and general physician. Finally optimal alignment

at chunk level is done in order to calculate the sentence level similarity. The chunk-to-chunk similarity

threshold is 0.4 to prevent noisy alignments. However, the similarity score was normalized by the average

number of chunks in the given texts pair. All threshold values were set empirically based on the

performance on the training set [30].

28

2.4.4.4. Labeling Aligned Chunks

Given two sentences split into gold standard chunks, a system carries out the task requirements

using sense-based string kernel by considering each chunk as a text snippet. After that, for each

alignment of chunks c1 and c2, the alignment type is determined according to the following rules: If the

similarity score between c1 and c2 is 5, the type is EQUI. If all word senses of c1 matched the word

senses in c2, the type is SPEC2; similarly for SPEC1. If both c1 and c2 contain a single word sense, and

are directly connected by an antonym relation in BabelNet, then the type is OPPO. If the similarity score

between c1 and c2 is in range [3, 5[, the type is SIM; while if it is in range] 0, 3[, the type is REL. If any

chunk has no corresponding chunk in the other sentence, then the type is either NOALI or ALIC based on

the alignment restriction in the subtask [68].

29

2.5. Related work

Very limited works have been done in the past in the areas of Interpretable STS. Interpretable STS focus

to explain why two sentences may be related or unrelated, by supplementing the similarity score with an

explanatory layer. As a first step in this direction, given a pair of sentences, systems needed to align the

chunks across both sentences, and for each alignment, classify the type of relation, and provide the

corresponding similarity score [20].

For interpretable STS the similarity scores range from 0 to 5. With respect to the relation between the

aligned chunks, the present pilot only allowed 1:1 alignments. As a consequence, to include a special

alignment context tag (ALIC) to simulate those chunks which had some semantic similarity or relatedness

in the other sentence, but could not have been aligned because of the 1:1 restriction. In the case of the

aligned chunks, the following relatedness tags were defined: EQUI denotes semantically equivalent

chunks, oppositional meaning is labeled with OPPO, SPE1/2 denote similar meaning of the chunks, but

the chunk in S1/S2 is more specific than the other one. SIM and REL denote similar and related meanings,

respectively. ALIC is not used, because our algorithm is not restricted to one-to-one alignments. Finally,

all unaligned chunks are labeled with NOALI [20]. According to extensive feature extraction from word

alignments for semantic textual similarity do not differentiate between SIMI and REL; all REL alignments

are considered as SIMI alignments. From previous work done on interpretable STS some of them which

have relatively better result will explained in this section.

2.5.1. Rule base approach

In this approach the consideration is given to NeRoSim and Inspire system. The system takes given

sentence pair and maps chunks of the first sentence to those from the second by assigning different

relations and scores based on a set of rules.

For the interpretable similarity NeRoSim used a rule-based approach blended with chunk alignment

labeling and scoring based on semantic similarity features based on regression models by combining a

wide array of features including semantic similarity scores obtained from various methods (e.g. sim-

Mikolov). The Inspire system made use of a rule-based approach using Answer Set Programming for

determining chunk boundaries and for aligning chunks and assigning alignment type and score.

30

Both NeRoSim and Inspire system performs similar preprocessing steps like: stop word removal, POS

tagging, lemmatization, and named-entity recognition by Stanford CoreNLP [67]. Similarly in both system

lookup for synonym, antonym and hypernym relations from WordNet.

The Inspire system extends the basic ideas from NeRoSim [12], however the researchers realize the rules

in logic programming and obtain the result with an Answer Set Solver. For chunking the Inspire system

is based on a joint POS-tagger and dependency parser and an Answer Set Program (ASP)1 [108], [109]

that determines chunk boundaries. The Inspire system realizes chunking as a preprocessing step.

Inspire system alignment is based on ideas of NeRoSim entry, however re-implemented the system and

realizes the rule engine in ASP [108], [109] which gives flexibility for reordering rules or applying them

in parallel. ASP alignment architecture is present as follows: input sentence pairs then preprocess with

POS, NER, WordNet and Word2Vec represented as a set of ASP facts. A generic set of rules represents

how alignments can be defined and changed. Lookup of relate word in WordNet and distributional

similarity with the Word2Vec tool [99] with SkipGram context representation, window size 10, vector

dimension 200, and pruning below frequency 50. Word-to-word similarity sim(w1, w2) is computed using

cosine similarity between vectors of words w1 and w2.

NeRoSim experiments was applied on rules in the training data set by varying thresholds for sim-Mikolov

scores and selected the thresholds that produced the best results in the training data set. Since three runs

named R1, R2 and R3 were submitted. R1 applied full set of rules with 375 stop-words. However EQUI4

was modified such that it would apply when unmatched content words of the bigger chunk were of noun

rather than proper noun type. R2 Same as R1 but with extended stop-words from 375 to 686. R3 Applied

full set of rules with extended stop words.

Results F1-measures Baseline is 0.555 for Headlines whereas on Headlines test data, R3 performed well

0.642. F1-measures Baseline of Images is 0.555 for Images test data, R1 was the best in alignment, F1-

measures metrics result found was 0.584. R3 performed better among all runs in case of Headlines data in

overall. This was chiefly due to modified EQ4 rule which reduced the number of incorrect EQUI

alignments. Researcher observed that performance of the system was least affected by size of stop-word

list for Headlines data as both R1 and R2 recorded similar F1-measures for all evaluation metrics.

However, R1 performed relatively better than R2 (0.561) in Images data-particularly in correctly aligning

1 https://bitbucket.org/snippets/knowlp/yrjqr

31

chunk relations. It could be that images are described mostly using common words and thus were filtered

by R2 as stop words.

Similarly Inspire system adds some features and rearrangement of NeRoSim alignment order. The Inspire

implements three run named Run1, Run2, and Run3. In their Run1 they optimized alignment, type and

score used implementation of NeRoSim rules in the same order, as it is however SIMI4, SIMI5, and REL1

which were excluded. Run2 is optimized for prediction of alignment this is done by using all NeRoSim

rules in their original order for both dataset including SIMI4, SIMI5, and REL1. In Run 2 system scorer

tool does not strictly punish overlapping alignments. Run 3 solve the limitation of Run 2 by rearranging

of alignment.

Inspire system tested and optimized it on the training data for Headlines, Images as criteria for accuracy

the competition used the F1 full consideration of alignment, type, and score. Run 1 performs top in all

categories on H and I. The configuration of Run 3 performs least on both datasets. For Gold-Standard

Chunks 0.48, 0.55 and 0.56 are the baseline given for datasets image, Headlines and Answer-Students

0.61, 0.70 and 0.51 respectively for top Run. The mean of baseline is 0.53 and mean of result found from

the best output of three runs is 0.61. The future directions stated in the paper are: represent semantic

knowledge in ASP externals and use ASP guesses, constraints, and optimization.

2.5.2. Machine learning approach with linguistic and rule blended

SVCSTS is one of the research work on ISTS uses Monolingual word aligner [78] and supervised machine

learning techniques for interpretable STS. In ISTS the main challenge is to find the semantic relationships

between the chunks of S1 and S2. Chunks from the input sentence pair are to be aligned, labeled with the

type of alignment and are to be scored on a scale of 0-5 based on their semantic similarity.

OpenNLP chunker was used to chunk the input sentences and some post processing was done. For the

post processing we observed a few rules from gold standard chunks. Those rules include combining

chunks of specific chunk tags given by OpenNLP chunker. A large number of rules were discovered but

the following were the rules, which maximized accuracy. PP + NP + PP + NP, PP + NP, VP +

 PRT, NP + O + NP, VP + ADVP, and VP + PP + NP + O, etc . Applying these rules they

increased accuracy from 86.58% to 90.16% against the gold standard chunks.

The following features were used for each chunk alignment to assign a type for the alignment. Length of

S1 and S2 chunks are the first two features. Number of nouns, verbs, adjectives, prepositions in S1 and in

32

S2 chunk. The path similarity between words of S1 and S2 chunks another features. Unigram and Bigram

overlap between S1 and S2 chunks are four features from N-gram.

Labeling aligned chunks was performed by supervised machine learning using Scikit-Learn tool [94].

Average score for each alignment type was calculated from the gold standard data. The average scores

that were used to score chunk alignment are 5, 3.75, 3.55, NIL, 0, 2.94, 2.82 and 4 for EQUI, SPE1, SPE2,

ALIC, NOALI, SIMI, REL and OPPO type respectively the average score calculated from gold standard

chunks.

SVCSTS was experimented the classification of labels using 3 classifiers LinearSVC, SVC with RBF

(Radial Basis Function) Kernel and SVC with Polynomial Kernel. But the classifier SVC with RBF (with

parameters C = 1.0, gamma=0.7) demonstrated to give better results. The experimentation results (F1

Type+Score) of the best of both data are present as: baseline and SVCSTS for Headlines are 0.5556 and

0.5887 respectively, which is Run 1. For Images data Run 2 gives best result which is 0.5964 whereas

baseline is 0.4326.

UWB is another system explores machine learning and rule-based approaches to the ISTS task. More

focus on machine learning and experiment with a wide variety of machine learning algorithms as well as

with several types of features. The core of the system consists in exploiting distributional semantics to

compare similarity of sentence chunks.

As a first step of the approach perform the following text preprocessing: 32 stop-words predefined in list

to remove from input text, remove special characters (E.g. dots, commas, quotation marks other

punctuation) that violate the tokenization. Lowercasing all words as well as lemmatization performed with

the Stanford CoreNLP tool [67].

Chunk Semantic Similarity attempts to estimate the similarity function are based upon estimating semantic

similarity of individual words and compiling them into one number for a given chunk pair. The experiment

was done with Word2Vec [99] and GloVe [110] for estimating similarity of words. Then compile all the

word similarities in one number that reflects semantic similarity of whole chunks via the following

methods: 1) the vector composition method and 2) an adapted method for constructing vectors called

lexical semantic vectors. In this case do not weight words with their information content use methods for

distributional semantics (Word2Vec and GloVe) rather than semantic networks. Then maximal

similarities with words from chunks a and b, respectively was taken. Also to identify important word

weight the vectors with invers document frequency weighting used.

33

UWB system was done on ISTS with machine learning approach task divided into to three classification

/ regression tasks: Alignment binary classifications that decide whether two given chunks should be

aligned with each other. Score classification / regression which experiment with both classification and

regression of the chunks similarity score. Type classifications classify all aligned pairs of chunks into a

predefined set of types. The classification experiment takes place with Weka [84].

Four categories of features (lexical, syntactic, semantic, and external) employed. Lexical features consist

of the following features: word base form overlap, word lemma overlap, chunk length difference, word

sentence positions difference. POS tagging and syntactic parsing are performed with Stanford CoreNLP

[67] for syntactic features. Post-processing were done if one chunk is aligned with multiple chunks in the

other sentence, these chunks should be merged into one chunk. Rule-based Approach was used for the

chunk alignment to iterate over all chunks from sentence Sa and find the chunk with maximal similarity

from sentence Sb.

Experimental setup Machine learning approach employs the following classifiers and classification

frameworks: Alignment binary classification – Voted perceptron (Weka). Score classification –

Maximum entropy (Brainy). Type classification – Support vector machines (Brainy). These classifiers

perform best on the evaluation datasets. We achieved the best results for estimating chunk similarity with

Word2Vec and the modified lexical semantic vectors

Run 1 experimented with reduced feature set (word overlap, word positions difference, POS tags

difference, semantic similarity, global semantic similarity, paraphrase database) and Run 3 with all

features. In rule-based approach UWB have achieved the best results for estimating chunk similarity with

Word2Vec and the modified lexical semantic vectors also, set the threshold for the similarity score to 2.5.

All lower values are set to 0. This is the run 2. The results clearly show that the unsupervised runs 2

perform much worse than the supervised runs 1 and 3.

The experimentation results of the three official runs are as follow: On gold-standard chunks the result

found from Images, Headlines and Answer students dataset is 0.6708 (run 3), 0.6296 (run 3), and

0.6248(run 1) respectively. Generally overall results (mean) of F1 full consideration of alignment, type,

and score is Run1 0.638, Run3 0.637, and Run2 0.566.

VRep system was another research done on ISTS area. According to this work VRep system uses many

features that extracted to create a learned rule-based classifier to assign a label. It uses semantic and

syntactic (form of the chunks) relationship features. VRep makes extensive use of WordNet for both STS,

34

where the Vector relatedness measure is used, and for iSTS, where features are extracted to create a learned

rule-based classifier. Preprocessing in the first step, consist tokenization, lowercase all characters,

punctuation removal, POS tagging Lingua::EN::Tagger2 is used. POS tags are used for stop word removal

and for alignment reasoning. Stop word removal remove any words that are not tagged as a noun, verb,

adjective, or adverb. This reduces chunks and sentences to content words.

VRep’s STS computation is similar to the method described by NeRoSim [12]. Chunk similarity takes

two chunks (c1, c2) as input and computes the weighted sum of maximum word to word similarities,

sim(wi, wj). To do this, the sim(wi, wj) is found for each word in c2 against c1, and the maximum is added

to a running sum. For words in WordNet, sim(wi, wj) is the Vector relatedness measure with a threshold

applied. The Vector measure was chosen for several reasons.

Firstly it returns values scaled between 0 and 1 which is beneficial for applying thresholds in both chunk

alignment and alignment reasoning. Secondly the Vector measure works well when wi and wj are different

parts of speech because it does not rely on WordNet hierarchies. When calculating sim(wi, wj) all possible

senses of both wi and wj are used, and sim(wi, wj) is chosen as the maximum value. This eliminates the

need for word sense disambiguation (WSD). After computing the measure, a threshold is applied that

reduces any value less than 0.9 to 0.0. The threshold prevents dissimilar terms from impacting the STS

which improves the accuracy and prevents noisy chunk alignments.

In chunk alignment chunkSim is computed between each chunk of two aligned sentences and the chunk

with the highest chunkSim is selected for alignment. Multiple alignments are allowed for a single chunk.

If all chunks have a similarity of 0, no alignment (NOALI) is assigned. Due to the high sim(wi, wj)

threshold, no threshold is required for chunkSim as with NeRoSim [12].

Alignment Reasoning takes as input a chunk pair and provides a reason why that chunk pair is aligned.

VRep’s alignment reasoning is inspired by NeRoSim [12] features (antonyms, synonyms, etc.) and

SVCTSTS [79] features (number of words or counts of parts of speech in a chunk pair). Both these systems

classify a chunk pair using features extracted from the chunk pair itself. VRep combines the two

approaches and extracts a total of 72 syntactic and semantic features for each chunk pair. The classifier

uses only 24 of original 72 features and a series of 10 rules. All classifiers are WEKA [84]

implementations.

2 http://search.cpan.org/ acoburn/Lingua-EN-Tagger/

35

Alignment scores are assigned as the required scores, 0 for NOALI and 5 or EQUI, or the average

alignment score for each class. The best performing set of scores came for all topics, came from the images

data set alone. Scores used for each class are as follows: EQUI = 5.00, OPPO = 4.00, SPE1 = 3.24, SPE2

= 3.69, SIMI = 2.975, REL = 3.00, NOALI = 0.00.

The experimentation results of the three official runs are as follow: On gold-standard chunks the result

found from Images, Headlines and Answer students dataset is 0.597 (run 3), 0.547 (run 3), and 0 .580 (run

3) respectively. Generally overall results (mean) of F1 full consideration of alignment, type, and score is

Run3 0.575, Run2 0.573, and Run1 0.556.

The future directions stated in the paper are: more analysis (JRIP and other analysis criteria) should be

done to refine the features used in classification. , additional metrics, such as word2vec measure for words

outside of WordNet could be incorporated. Additional data should be added for training classifiers and

also to reduce the class imbalance and will likely result in a set of rules for the REL class.

FBK-HLT-NLP system is built combining different linguistic features in a classification model for

predicting chunk-to-chunk alignment, relation type and STS score. The input data undergo a data pre-

processing in which we use a Python implementation of MBSP [111] a library providing tools for

tokenization, sentence splitting, part of speech tagging, chunking, lemmatization and prepositional phrase

attachment. To compute the chunk-to-chunk alignment, the relation type and the STS score we use a total

of 245 features.

Chunk tags. A total of 18 features (9 for chunk1 and 9 for chunk2) are related to chunk tags (e.g.noun

phrase, prepositional phrase, verb phrase). For each chunk in the SYS datasets -chunked with MBSP- the

system takes into consideration the chunk tags as identified by that library. For the GS datasets -already

chunked datasets- the system first re-chunks the datasets with MBSP and then evaluates if chunks in the

god standard correspond to chunks as identified in MBSP. If this is the case, chunk tag is extracted;

otherwise the systems does the same operation (i.e. re-chunking and tag extraction) using a regular

expressions-based shallow parser for English that uses a part-of-speech tagger extended with a tokenizer,

lemmatizer and chunker. If no corresponding chunk is found, no chunk tag is assigned.

Four further features are related to tokens and lemmas overlap between a pair of chunks. In particular, the

system considers the percentage of tokens and lemmas in chunks1 that are present also in chunk2 and vice

versa. It consider if the chunks are evaluated as aligned, if chunk1 is not aligned, if chunk2 is not aligned

(3 features).

36

Twelve WordNet based features evaluate the type of relation between chunks by considering all the

lemmas in the two chunks and checking whether a lemma in chunk1 is a synonym, antonym, hyponym,

hypernym, meronym or holonym of a lemma in chunk2.

Word embedding use a distributional representation of the chunk for a total of 200 features (100 for

chunk1 and 100 for chunk2) by first calculating word embedding and then combining the vectors of the

words in the chunk (i.e. by calculating the element wise mean of each vector). Mikolov word2vec [99]

with 100 dimensions using ukWaC, GigaWords (NYT), Europarl V.7, Training Set (JRC) corpora were

used. Neural Network used multitask MLP to classify chunk pairs. The system uses three classifiers: one

for the chunk alignment, one for alignment type, one for STS score.

FBK-HLT-NLP combines the output of the three classifiers organized in a pipeline. First, it label as “not

aligned” all the punctuation chunks; then we label as “aligned” all the chunks aligned by the first classifier,

allowing multiple alignments for each chunk. For every aligned chunk pair it adds the type label and the

STS score. FBK-HLT-NLP do not take into consideration chunk pairs classified as “not aligned” by the

first classifier even if they are classified with a label different from NOTALI or with an STS score higher

than 0.

The experimentation results of the three official runs are as follow: On gold-standard chunks the result

found from Images, Headlines and Answer students dataset is 0.574 (run 1), 0.562 (run 3), and 0.589 (run

3) respectively. Generally overall results (mean) of F1 full consideration of alignment, type, and score is

Run3 0.572, Run2 0.571, and Run1 0.551.

The future direction stated by the author is adding additional datasets should use as well as, deep analysis

of the distribution of the type labels and of the STS scores can improve significantly the performance of

the system.

Among the above study discussed in section related work Run1 of the Inspire system was the best result

with 0.696 of F1on headline dataset. Similarity run3 of UWB system gave F1 0.6708 result that was the

best result on Image data.

37

CHAPTER THREE

INTERPRETABLE SEMANTIC TEXTUAL SIMILARITY (ISTS)

3.1. Introduction

Interpretable semantic textual similarity (ISTS) is a semantic task adds a vital explanatory layer to pair

semantic sentence similarity. The task was introduced for the first time as a pilot task in 2015 semeval

semantic textual similarity (STS) tasks. Several approaches were proposed including NeRoSim [12],

UBC-Cubes [82] and Exb-Thermis [77]. For each sentence pair, the systems identify the chunks in each

sentence according to standard gold chunks, align corresponding chunks and assign a

similarity/relatedness score and type of the alignment for each aligned chunks.

The alignment types EQUI (semantically equivalent), OPPO (opposite in meaning), SPE1 (one chunk is

more specific than other), SPE2 (one chunk is more general than other), SIM (similar meanings, but no

EQUI, OPPO, SPE1, SPE2), REL (related meanings, but no SIM, EQUI, OPPO, SPE1, SPE2), ALIC

(does not have any corresponding chunk in the other sentence because of the 1:1 alignment restriction),

and NOALI (has no corresponding chunk in the other sentence) [82]. On the 2015 pilot subtask only one-

to-one (1:1) alignments were allowed. Because of 1:1 chunk alignment 1 chunk aligned only with 1 chunk,

even if that chunk is similar with two or more chunks. So many-to-many (N:M) alignments are solution

to this limitation and ALIC indicate N:M alignments relation in this research.

3.2. Architecture of ISTS

The ISTS system is composed of several modules designed to handle the computation of similarity score

of pieces of text of different lengths. Figure 3.1 shows its model which has four main modules, (1) for

chunk input pair of sentence, (2) for calculating the similarity between each chunk of S1 with each chunk

of S2, (3) align similar chunks based on similarity score, and (4) finally predict type of each alignment.

38

𝑭𝒊𝒈𝒖𝒓𝒆 − 𝟑. 1 𝑰𝒏𝒕𝒆𝒓𝒑𝒓𝒆𝒕𝒂𝒃𝒍𝒆 𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄 𝒕𝒆𝒙𝒕𝒖𝒂𝒍 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒂𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆

The core of the system is the interpretable semantic textual similarity architecture, which is based on a

combination of corpus base (i.e. LSA) similarity score and knowledge base (i.e. WordNet). From the

WordNet we used three features such as: antonym, synonym and hypernym. In addition LSA similarity

measure based on Wikicorpus and also few string base similarity measure used that will discuss in section

3.3.4. Some rules were discovered to predict the reason why it could be aligned.

The ISTS system taking different length of inputs and many preprocessing are used before chunk pairs of

text into segments. After a chunk is identified post process is taking place then semantic similarity

calculation is perform depend on surface similarity, WordNet, corpus and additional features. The next

step is aligning chunks of S1 with chunks of S2 based on similarity score of pair chunk. Lastly ISTS result

39

is computed in the form of Type and score of similarity for all chunks. Detail of the system is presented

in this chapter as next.

3.2.1. Preprocessing

The system takes two texts (S1 and S2) as input then segment paired sentence into chunks. Before

computing similarity many preprocessing are done to simplify the chunking and similarity calculation.

Among preprocessing we used tokenization, part of speech tagging, and parsing is presented briefly in

this section as follows.

Tokenization is the task of chopping up texts into tokens and throwing away punctuation and other

unwanted characters. A sentence is decomposed after applying well known Natural Language Processing

by Stanford CoreNLP [67]. All punctuations removed except some punctuation explicitly described as

next:

There is a punctuation mark that has different uses when used in English. Apostrophe mark (‘), for

example, in English shows possession and contraction. In English there are also a number of tricky cases

of the use of apostrophe as it is used for the contractions. For example, it is used for the contractions

purpose with the words like aren’t, didn’t, it’s. Therefore, an exception list is created to preserve

apostrophe mark when it is used as contraction with English words.

There are also punctuation markers which are used for various purposes in English language. For example,

full stop (.) is used to indicate the end of a sentence besides to serve as abbreviation. For instance, the dot

in “B.C”,” T.V.” serves as abbreviation. So an exception list is created for such kind of punctuation

markers if existed in the text. On another way colon (:) is removed unless between number which use to

separate hour from minute and minute from second.

Another key thing done in preprocessing step is POS-tagging. It is the process of assigning a POS tag such

as verb, noun, adverb, adjective, pronoun, and preposition or other tags to each word in a sentence. Verbs

can be divided into past tense and present tense and nouns can be divided into plural and singular nouns,

and so on. POS tagging are carried out using Stanford CoreNLP Toolkit [67]. Syntactic parsing with the

Stanford CoreNLP uses Stanford Parser to obtain the dependency parsing from given sentences [67].

3.2.2. Chunks

I used gold chunks to perform chunking for input text. In order to make chunks according to standard gold

chunks we used Stanford coreNLP [67] API for generating parse trees. Before chunking, we do preprocess

40

like tokenization, part of speech tagging, parsing and removed most of the punctuations except some of

them listed above under preprocessing. Output of parser is further post-processed to combine each single

preposition phrase with the preceding phrase. In the case of chunking based on Stanford coreNLP parser,

a conjunction such as ‘and’ was consistently being separated into an independent chunk in most cases and

therefore improved chunking can be realized by potentially combining chunks around a conjunction.

These processing heuristics are based on observations from gold chunks data. We observed that quality of

chunk has a huge impact on the overall score of system chunks track. A large number of rules were

discovered such as: PP+NP+PP+NP, PP+NP, PP+ADJP+VP, PP+ADJP, PP+ADVP, NP+PP+ADJP,

VP+VP, VP+NP, ADJP+ADJP, ADJP+NP, and many other rules were discovered

3.2.3. Post processing

Several text posts processing operations are performed after a sentence is chunked. For example replace

all hyphens with white spaces. Also remove all non-alphanumeric symbols like slashes angular brackets

etc. from the chunks. A predefined vocabulary, POS tags, and regular expressions are used to recognize

multi-word terms including noun and verb phrases, proper nouns, numbers and time [73] lowercase the

words. The two consecutive words in one sentence that appears as compound in the other sentence is

replaced by the supposed compound if only appear in the other sentence.

Some words that occur in most documents have a small impact in the text similarity. The NLTK stop word

list used for stop-word removal [80] filter out punctuations and stop-words by using a pre-compiled stop-

words list. The function words such as prepositions, conjunctions, and articles carry less semantics than

content words such as: nouns, verbs, adjectives, and adverbs and thus removing them might eliminate the

noise and provide a more accurate estimate of semantic similarity [75].

Some expressions need normalized to simplify similarity calculation and alignment. Temporal

expressions are normalized into common form e. g. 4:00 am and 6:20 pm are normalized into 4:00 and

18:20 respectively.

Now a day seven types of named entities such as: location, organization, date, money, person, time and

percent, are recognized by Stanford CoreNLP toolkit [67] for English. In addition the overlap between

capitalized words, the syntax system uses the Stanford CoreNLP toolkit NER and classifier to compute

the overlap between entities for each entity class separately.

41

Lemmatization is a technique from Natural Language Processing which does full morphological analysis

and identifies the dictionary or base form of a word, which is known as the lemma. We perform

lemmatization by Stanford CoreNLP Toolkit [67] for content words (nouns, verbs, adjectives, and

adverbs) but not for functional words articles, pronouns, prepositions, conjunctions, auxiliary verbs, modal

verbs, and punctuations from the chunks because they do not carry semantic content, but keep the cardinal

numbers.

Acronym is expanded by using a list of commonly used Acronym compiled for countries, capital cities,

units of measurement etc. All number written in the form of text replaced by digit number, e.g. sixty six,

two hundred nineteen, 2 million replaced by 66, 219, and 2000000 respectively.

3.3. Similarity calculator

The interpretable semantic textual similarity module manages inputs of text in English with different

length, and uses the semantic chunk similarity modeled to compute the similarity between the given pieces

of sentence. Before calculating similarity a pair of sentence should be preprocessed, chunked, and also

post-process performed. For similarity calculation the system performs calculation based on string, corpus

and linguistic (i.e. Named entity and WordNet) similarity. Corpus similarity measured by LSA in order to

avoid weak alignment 0.2 threshold values taken. Then similarity calculator uses a feature extracted from

observation of gold chunks datasets. Finally aligning chunks uses an alignment algorithm. Generally any

word-to-word similarity measure includes simple word match, WordNet based similarity measures, and

LSA based similarity measures.

3.3.1. String similarity

Content word similarity- we developed a new algorithm calculates content word (i.e. verb, noun,

adjective and adverb) similarity. The algorithm matches words based on their string similarity and part of

speech tag similarity (𝑃𝑂𝑆𝑖𝑚). Being same POS tag is not enough to determine pair words are similar or

not. Additionally word N-gram similarity which calculated by jaccard coefficient between lemmas

lowercased of word in 𝐶ℎ𝑖𝑆1 and word in 𝐶ℎ𝑗𝑆2 without stop-words for n = 2 taken into consideration.

If all words in pair chunks are identical N-grams similarity score is = 1; otherwise, N-gram similarity is

between 0 and 1. It’s used to calculate string similarity mostly where there is slight spelling error which

is not handled by content word overlap. For example if we compare two string motorcycle <==>

amotorcycle N-gram only considered as it is similar. Because ISTS model is not automatically correct

42

spelling. To clarify more we used N-gram similarity to count word overlap of content word in 𝐶ℎ𝑖𝑆1 and

𝐶ℎ𝑗𝑆2 are identical, then Content word similarity = 1. To that end N-gram similarity considers word

overlap if it is >=0.9 and 𝑃𝑂𝑆𝑖𝑚 measure chunk-to-chunk similarity even though it depends on word-to-

word similarity discussed in this section. The detail will discuss under chunk similarity section.

Number similarity- is not handed by content word similarity even if the both numbers are equivalent;

because of number is CD type given by POS tagger. Numbers overlap between 𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2 no

matter if it’s written in text form or digit form. The similarity computed after converting number in text

form into digit form. If number is exactly the same value the similarity score is then Number similarity

(𝑁𝑢𝑚𝑆𝑖𝑚) = 1. Else number similarity less than 1; the explanation will discuss under feature extraction

for chunk-to-chunk similarity measures section.

3.3.2. Wikipedia Corpus

3.3.2.1. Corpus Selection and Preprocess

Wikipedia has involved much interest from researchers in different fields [96], and it is especially

attractive for NLP: It contains many millions of words of text, as well as reasonably edited, which can be

used for NLP purposes. Besides, its license allows the texts for the use and redistribution3. The Wikicorpus

contains more than 750 million words is a trilingual corpus of English (600 million of words), Spanish

(120 million of words) and Catalan (50 million of words) and that is freely available for download4.

A very large and balanced text corpus is required to produce reliable word co-occurrence statistics. We

selected the Wikicorpus of English that contained 600 million words collected from Wikipedia and have

been enriched with linguistic information. In Wikicorpus to differentiate one document from another

<doc… tag was added at begin and </doc> added at the end of a document. See sample presented as next:

<doc id="33980" title="Waterfall model" dbindex="164">

The waterfall model be a sequential software development model ...

</doc>

3 http://www.fsf.org/licensing/licenses/fdl.html
4 http://www.cs.upc.edu/~nlp/wikicorpus/

43

The first line (i.e. header) contains information about the document like: doc id, title, database index etc.

The remaining lines (from second line to one more line) contain the text and to that end terminated by end

tag.

Using large corpus is expensive for a reason like computer memory size to process term to document

matrices. Due to the reason we used subdocument of Wikicorpus and lemmatization performed on selected

document.

3.3.2.2. LSA Word Similarity

LSA word similarity relies on the distributional hypothesis that the words occurring in similar contexts

tend to have similar meanings [25]. Thus, evidence for word similarity can be computed from a statistical

analysis of a large text corpus. LSA is a fully mathematical/statistical technique for extracting and

assuming relations of expected contextual usage of words in passages of discourse. It is not a traditional

natural language processing or artificial intelligence program; it uses no humanly constructed dictionaries,

knowledge bases, semantic networks, grammars, syntactic parsers, or morphologies, or the like, and takes

as its input only raw text parsed into words defined as unique character strings and separated from

meaningful passages or samples such as sentences or paragraphs [44].

The first step is to represent the text as a matrix in which each row stands for a unique word and each

column stands for a document. Each cell contains the frequency with which the word of its row appears

in the passage denoted by its column. Next, the cell entries are subjected to a preliminary transformation,

whose details we will describe later, in which each cell frequency is weighted by a function that expresses

both the word’s importance in the particular document and the degree to which the word type carries

information in the domain of discourse in general [44].

3.3.2.3. Word Co-occurrence Generation.

When using the values of the document-term matrix, 𝑡𝑓 ∗ 𝑖𝑑𝑓 is used to ignore word present in almost

every document. The model is comprised of two different elements. First, the term frequency (𝑡𝑓) part

that is the number of times a term is represented in a document, while and inverse document frequency

(𝑖𝑑𝑓), is the number of documents in the corpus divided by the document frequency of a word, but

inverted. 𝑡𝑓 ∗ 𝑖𝑑𝑓 is a composite weight which combines 𝑡𝑓 and 𝑖𝑑𝑓 is calculated by the following

formula [107]

44

𝑤𝑖, 𝑗 = 𝑡𝑓𝑖, 𝑗 ∗ 𝑖𝑑𝑓𝑖

But 𝑡𝑓 and 𝑖𝑑𝑓 are calculated by the formula

 𝑡𝑓𝑖, 𝑗 = (𝑓𝑟𝑒𝑞𝑖, 𝑗/𝑡, 𝑗)

 𝑖𝑑𝑓 = 𝑙𝑜𝑔2(𝑁/𝑑𝑓𝑖)

The 𝑤𝑖, 𝑗 is given by the formula 𝑤𝑖, 𝑗 = 𝑡𝑓𝑖, 𝑗 ∗ 𝑙𝑜𝑔2(𝑁/𝑑𝑓𝑖)

Where,

𝑖: a term

𝑗: a document

𝑡𝑓: a frequency of a term i in document j

𝑡𝑗: total number of terms in document j

𝑖𝑑𝑓, 𝑖: the inverse document frequency of a term i

𝑑𝑓𝑖: the document frequency of a term i (total number of documents containing term i)

𝑤𝑖, 𝑗: weight of term i in document j

𝑁: total number of documents

Because 𝑡𝑓 ∗ 𝑖𝑑𝑓 uses the logarithmic scale of its calculations 𝑖𝑑𝑓, the result cannot be negative. This

means that the cosine similarity cannot be negative either. The range of a 𝑡𝑓 ∗ 𝑖𝑑𝑓 cosine similarity is

therefore 0 to 1, where 0 it is not similar and 1it is exactly the same. The selected corpus from Wikipedia

corpus is 1830 documents contained more than 2,525,357 words. We enforced to take 1830 documents

because number of row (terms) greater than or equal to column (document). The reason why we limited

number of documents in this corpus when SDV matrixes computed the Machine memory process if

number of document is less than 1830. We generate word co-occurrence model based on a vocabulary of

about 25,000 English words (noun, verb, adjective and adverb). The 25,000 common English words and

noun phrases are extracted from Wikipedia corpus. We manually exclude proper nouns from the corpus

because there are not many of them and they are all ranked among the top places since proper nouns start

with an uppercase letter.

45

The final dimensions of our word co-occurrence matrices are 25,000 ⇥ 25,000 when words. Our

vocabulary includes only content words (i.e., nouns, verbs, adjectives and adverbs). There are no proper

nouns in the vocabulary of the only exception of a list of country names [51].

3.3.2.4. SVD Transformation.

LSA applies singular value decomposition (SVD) to the matrix. SVD has been found to be effective in

improving word similarity measures [31]. This is a form of factor analysis, or more properly the

mathematical generalization of which factor analysis is a special case. So if document D1 contains (w1,

w2) and document D2 contains (w2, w3), we can conclude that there is something common between

documents D1 and D2. LSA does this by decomposing the input raw 𝑡𝑓 ∗ 𝑖𝑑𝑓 matrix (𝐴, see below) into

three different matrices (𝑈, 𝑆 and 𝑉) that are decomposition of the original one (𝐴) using SVD. Once that

is done, the three vectors are reduced and the original vector rebuilt from the reduced vectors. Because of

the reduction, noisy relationships are discarded and relations become very clearly visible. In pseudo-code:

𝐴 = 𝑈 𝑥 𝑆 𝑥 𝑉𝑡

𝐴𝑘 = 𝑈𝑘 𝑥 𝑆𝑘 𝑥 𝑉𝑘𝑡

Where:

𝐴 = the original matrix

𝑈 = the word vector

𝑆 = the sigma vector

𝑉 = the document vector

𝐴𝑘 = the reduced matrix

𝑈𝑘 = the reduced word sub-matrix consisting of 0…k-1 columns

𝑆𝑘 = the reduced sigma sub-matrix consisting of 0…k-1 columns, 0...k-1 rows

𝑉𝑘 = the reduced document sub-matrix consisting of 0...k-1 columns.

𝑘= where represent dimension used

There is a mathematical proof that any matrix can be so decomposed perfectly, using no more factors than

the smallest dimension of the original matrix. One can reduce the dimension of the solution simply by

deleting coefficients in the diagonal matrix, ordinarily starting with the smallest. In practice, for

computational reasons, for very large corpora only a limited number of dimensions are used [44]. In

46

general, using the full dimension in SVD hurts the performances and dimension reduction indeed helps

discarding noise.

On an experiment we trained as 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 largest SVD

dimension. Meanwhile 250 dimensions gave a good result; so we selected the 250 SVD and reduce the

word vectors to 250 dimensions. The LSA similarity between two words is defined as the cosine similarity

with their corresponding word vectors after the SVD transformation. To calculate term-to-term similarity

two vectors are involved (𝑈𝑘 and 𝑆𝑘). Now, the similarity calculated by using the cosine of the angle

between two vectors. When it calculates word similarity it takes word 𝑥 of chunk 𝑖 in S1 (𝐶ℎ𝑖𝑆1) and it

propagates calculating similarity with word 𝑦 of chunk 𝑗 in S2 (𝐶ℎ𝑗𝑆2), this circulation it takes the best

result among words of S2. Up to end the process is continuing until all words with pair sentence cross

checked in matrix form.

In order to calculating word-to-word similarity in LSA the system taken into account a word unmatched

in any of the other similarity feature listed under section feature extraction. That is to say a word in S1 or

S2 matched in one of synonym, antonym, hypernym, Date/time similarity and location similarity are

excluded from LSA similarity calculation.

3.3.3. Linguistic Measures

Linguistic measures use syntactic composition of the sentence or semantic information contained in

sentence to determine semantic similarity [8].

Named entity in 𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2 taken into consideration are location and date/time entity. If location

entity is overlapped but not identical, location entity similarity score is then 𝐿𝑁𝐸𝑠𝑖𝑚 = 1. If date/time

entity is overlapped but not identical, date/time entity similarity score is then 𝐷𝑁𝐸𝑠𝑖𝑚 = 1.

Here it is important to understand the reason why I’m not employing for identical named entity; because,

it is handled by content word similarity.

3.3.3.1. WordNet based similarity

Statistical word similarity measures have limitations. Related words can have similarity scores only as

high as their context overlap (e.g. “doctor” and “hospital”). Also, word similarity is typically low for

synonyms having many word senses since information about different senses is mixed together. We

reduced the above issues by using additional information from WordNet.

47

Many WordNet features like path depth, synonym and antonym are used to measure semantic information

of a text. We increase the similarity between two words if any relation in the following categories. All of

these categories 1-3 are based on linguistic properties on English.

1. One word is the hypernym for the other.

2. One word is the Antonym for the other.

3. One word is the synonym for the other.

Path depth is a function to tell whether a path passes through more general or more specific concepts. The

Path depth similarity is calculated between each content word of each chunk in S1 (𝐶ℎ𝑖𝑆1) and each

content word of each chunk in S2 (𝐶ℎ𝑗𝑆2).

To calculate path depth hypernym is one of the hierarchies found in the WordNet to check whether a word

is general or specific as well as related. Similarity of two words determined by the depth a word from

common parent indexes where two terms join. In addition to calculate similarity hypernym use for labeling

pair chunks. Hypernym indicates the relation of two words if 𝐴 is a kind of word 𝐵, that means 𝐴 is more

specific than 𝐵 and 𝐵 is more general than 𝐴. The strength of similarity depends on their depth that is less

depth more similar large depth is less similar. This can be done in two ways one is 𝐴 hypernym 𝐵 and the

other is 𝐵 hypernym 𝐴. Both way has no impact on the depth it is always equal between two words

however, the main thing to look two ways Common parent index (𝐶𝑃𝐼) can be different and must be

known before calculation of hypernym similarity. 𝐶𝑃𝐼 indicates the distance between two words where it

joins each other. The summation of 𝐶𝑃𝐼 of 𝐴 hypernym 𝐵 and 𝐵 hypernym 𝐴 give the depth. Based on

the relation of depth and CPI, five conditions take into consideration in hypernyms similarity for score

calculation and type prediction. All condition highlighted in Table-3.1

 𝑨 hypernym 𝑩 𝑩 hypernym 𝑨

Difference 𝐶𝑃𝐼 Depth 𝐶𝑃𝐼 Depth Type Score

𝑪𝟏 0 X X X SPE2 1/√𝑥

𝑪𝟐 X X 0 X SPE1 1/√𝑥

𝑪𝟑 𝑥/2 X 𝑥/2 X SIMI 1/√(𝑥/2)

𝑪𝟒 < 𝑥/2 X > 𝒙/𝟐 X - 1

√𝑥/2
 ,where x/2 is the bold one

48

𝑪𝟓 > 𝒙/𝟐 X < 𝑥/2 X - 1

√𝑥/2
 where x/2 is the bold one

𝑻𝒂𝒃𝒍𝒆 − 𝟑. 1 𝒉𝒚𝒑𝒆𝒓𝒏𝒚𝒎 𝒔𝒄𝒐𝒓𝒆 𝒂𝒏𝒅 𝒕𝒚𝒑𝒆

Different conditions compare word 𝐴 from chunk 𝐶ℎ𝑖𝑆1 and word 𝐵 from chunk 𝐶ℎ𝑗𝑆2 described as

follow: In condition 𝐶1 word 𝐴 is the parent of word 𝐵 so the distance of word A from 𝐶𝑃𝐼 is zero, so

word 𝐴 is parent and the distance of word 𝐵 from 𝐶𝑃𝐼 is equal with the depth of their hypernym so word

𝐵 is child of word 𝐴. 𝐶1 used if word 𝐴 is more general and word 𝐵, type SPE2 is given to a chunk. The

score calculated by dividing one for word depth.

Condition 𝐶2 is the inverse of 𝐶1, word 𝐵 is the parent of word A so the distance of word 𝐵 from 𝐶𝑃𝐼 is

zero, so word B is parent and the distance of word A from 𝐶𝑃𝐼 is equal with the depth of their hypernym

so word A is child of Word 𝐵. 𝐶2 taken into account if word A is more specific and type SPE1 is given

to a chunk. The score calculated by dividing one for word depth

Condition C3 is used if and only if the distance of word A from 𝐶𝑃𝐼 is equal with the distance of word

𝐵 from 𝐶𝑃𝐼. The summation of word A from 𝐶𝑃𝐼 and word B from 𝐶𝑃𝐼 gives depth. Considering one is

as parent and others as child is not possible and type SIMI is given to a chunk. The score calculated by

dividing one for half of the word depth. Condition 𝐶4 and 𝐶5 take place when 𝐶1, 𝐶2, and 𝐶3 have not

occurred. These conditions fail to predict type and later the type will detected by other feature. Meanwhile

the hypernym similarity calculated by dividing 1 for larger CPI. Here we took threshold value for

hypernmy at depth 10; meaning if the depth greater than 10 no more involves in this similarity and the

similarity can detected by LSA similarity measure.

Another WordNet feature is synonyms; for a word in ChiS1, if their synonyms found in ChjS2 the

synonym similarity (𝑆𝑦𝑛𝑜𝑆𝑖𝑚) is then 𝑆𝑦𝑛𝑜𝑆𝑖𝑚 = 1. The 𝑆𝑦𝑛𝑜𝑆𝑖𝑚 used for handling similarity that

cannot handle by string similarity (e.g. N-gram and content word overlap) and named entity similarity.

On other hand antonym is very important to identify a word that is opposite in meaning. For words in

ChiS1, if their antonyms found in ChjS2 the antonyms similarity (𝐴𝑛𝑡𝑜𝑆𝑖𝑚) is then 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 = 1.

The 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 mostly used for handling similarity that cannot be handled by (e.g. 𝑃𝑂𝑆𝑖𝑚 and Named

entity similarity). Also 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 used for labeling opposite type.

49

3.3.4. Feature Extraction for Chunk-to-Chunk Similarity Measures

We can determine similarity between word with word, chunk with chunk and, sentence with sentence etc.

But, complete sentence contains more information than just its words or chunks. So to clarify text

(sentence) similarity if it is parsed into chunk, score is calculated and relation type is assigned then it

became very attractive. This section, describes the features used for calculating chunk similarity. Chunk

similarity measured by many features that listed in feature extraction section. Each and every feature

depends on word -to-word described above in word and string similarity, corpus based similarity and

linguistic similarity. Chunk similarity measured is a combinatorial similarity measure that computes

similarity score based on the number of words shared by pair chunks of pair sentence.

The system takes a number of features for type prediction as well as for score calculation. These features

employ at chunk level similarity, but to determine chunk similarity it need summation of

𝐹1, 𝐹2, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹8, 𝐹9 and 𝐹10 similarly, feature extraction is used not only for score calculation

but also to align chunks and to predict a reason why the chunk is aligned. Likewise, 𝐹0 is also participated

in score similarity calculation instead of 𝐹1 in different run.

𝐹0: Dice-coefficient Similarity (lemma of content word)

𝐹1: Common word similarity (𝑃𝑂𝑆𝑖𝑚)

𝐹2: Number similarity

𝐹3: has negation

𝐹4: WordNet synonym

𝐹5: WordNet antonym

𝐹6: WordNet hypernym

𝐹7: Date/time similarity

𝐹8: Location similarity

𝐹9: LSA similarity

Feature extractions are used in various place of ISTS system and the detail is present as follows: 𝐹0 used

for calculation of lemmatized content word similarity regardless of the word POS tag. 𝐹1 computed by

equation 1 that is to calculate content word overlap the system use the new algorithm we proposed POS

50

tagged base similarity (𝑃𝑂𝑆𝑖𝑚) for computing of common content word similarity which described in

section 3.5 If all content words are common for pair chunk 𝑃𝑂𝑆𝑖𝑚 = 1, else if some content words are

common 𝑃𝑂𝑆𝑖𝑚 is between 0 and 1. Finally If there are no word overlap 𝑃𝑂𝑆𝑖𝑚 = 0, the equation i.

𝑃𝑂𝑆𝑖𝑚= √
2(𝑛+𝑣)

𝑤
 + √

𝑎𝑑𝑣+𝑎𝑑𝑗

(𝑎𝑑𝑣𝑡+𝑎𝑑𝑗𝑡)
 log(2(𝑎𝑑𝑣 + 𝑎𝑑𝑗))……………………………….....… (1)

The most used method to calculate common word similarity up to date is dice-coefficient, cosine

similarity, Euclidean distance etc. But, in all case all words given the same weight. However there is a

situation in which noun has weighted than adjective and verb than adverb.

𝑛 − count of matched noun in pair chunk

𝑣 − count of matched verb in pair chunk

𝑎𝑑𝑗 − count of matched adjective in pair chunk

𝑎𝑑𝑣 − count of matched adverb in pair chunk

𝑎𝑑𝑗𝑡 − count of adjective in pair chunk

𝑎𝑑𝑣𝑡 − count of adverb in pair chunk

𝑤 − count of all content words in pair chunk

Well, the best way to describe 𝑃𝑂𝑆𝑖𝑚 would be it gives high weight for noun and verb. To realize term

significance of weighting let take simple pair chunk example from Images data.

𝑤𝑖𝑡ℎ 𝑎 𝑏𝑎𝑏𝑦 𝑖𝑛 ℎ𝑖𝑠 𝑙𝑎𝑝 <==> ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎 𝑏𝑎𝑏𝑦, moreover before computing 𝑃𝑂𝑆𝑖𝑚 the chunks

should tag by Stanford CoreNLP as:

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 𝑖𝑛_𝐼𝑁 ℎ𝑖𝑠_𝑃𝑅𝑃$ 𝑙𝑎𝑝_𝑁𝑁 <==> ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 Then

content word only select for computation based on their POS tag.

𝑏𝑎𝑏𝑦_𝑁𝑁 𝑙𝑎𝑝_𝑁𝑁 <==> ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑏𝑎𝑏𝑦_𝑁𝑁) There is one common noun and no common verb,

adjective and adverb. Afterward it is straightforward to compute with (𝑃𝑂𝑆𝑖𝑚) use equation 1 as

√
2(1+0)

4
 + √

0+0

0
 log(2(0)) in deed the adjective and adverb parts become 0 to do so if neither adjective

nor adverb matched threshold value is necessary taken the logarithm part substitute by 𝑙𝑜𝑔(1). The

weighted part that is √
2(1+0)

4
 gives 0.707 to calculate chunk similarity unfortunately this feature (𝑃𝑂𝑆𝑖𝑚)

51

is enough because all features from 𝐹2 to 𝐹9 give zero. Finally it multiplied by 5 then 3.536 ≈ 4 that is

equal with the human annotated score given in training dataset.

𝐹2 - is regarding a cardinal number whether it is in text form or in digit form. If in text form it is converted

into digit. Experimentally from the training dataset the similarity between cardinal number in ChiS1 and

ChjS2 computed as follows:

𝑁𝑢𝑚𝑆𝑖𝑚 = 1 −
|𝐧𝟏−𝐧𝟐|

|𝐧𝟏+𝐧𝟐|
………………………………………………………………………. (2)

Where 𝑛1 and 𝑛2 are number in ChiS1 and ChjS2 respectively and 𝑁𝑢𝑚𝑆𝑖𝑚 is the one minus the

difference between 𝑛1 and 𝑛2.

If 𝑁𝑢𝑚𝑆𝑖𝑚 score is 1, assign similarity score 5 and EQUI type if and only if pair chunks matched by all

content words or if the pair chunks contain number only. Otherwise, chunks with digits are aligned to

produce alignment label of SIMI. The similarity score is depending on the differences between the digits

extracted from the chunks. We have explained the following heuristics:

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.9 and 0.99 alignment will produce similarity score 4 (e.g., 12 <==>

10).

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.89 and 0.55, assign similarity 3 (e.g., 18 <==> Ten).

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.54 and 0.11, assign similarity 2 (e.g., 10 dead <==> 1 dead).

 If the 𝑁𝑢𝑚𝑆𝑖𝑚 is between 0.0 and 0.10, assign similarity score 1 (e.g., to 35 years <==> to 1,000

years).

 Else 𝑁𝑢𝑚𝑆𝑖𝑚 is 0, which is when either chunk has number or none of chunk has number.

Furthermore the above similarity score multiplied by 5 if pair chunks contain number only. However if

pair chunk contains some extra words before multiplying by 5 it should compute other available similarity

features then the summation is done. Finally the result multiplied by 5 to get the actual score. On other

hand string similarity measures have a limitation to detect semantic similarity computed by 𝐹4, 𝐹5 and

𝐹6 which is depend on WordNet in addition to word and string similarity measure. Furthermore, F6 is one

of these methods which explained in section linguistic measure. Word-to-word similarity scores

calculation formula found in Table 3.1

𝑆𝑦𝑛𝑜𝑆𝑖𝑚 =
2∗(Schis1 n Wchjs2)

(Wchis1+ Wchjs2)
 …………………………………………….…..….... (3)

52

𝐴𝑛𝑡𝑜𝑆𝑖𝑚 = (
2∗(Achis1 n Wchjs2)

(Wchis1+Wchjs2)
) ∗ 0.8……………………………………………..... (4)

𝐻𝑦𝑝𝑒𝑆𝑖𝑚 =
2∗(hchis1 n hchjs2)

(Wchis1+Wchjs2)
…………………………………………….…..…….... (5)

𝐹7 is regarding date/time entity recognized by Stanford NER, if both chunks have date or time, the score

is more than 2. Based on their similarity strength the score is given between 2 to 5.

No way to differentiate date similarity even in hypernym all days has the same depth and the month as

well. Providing that we used a rule base similarity based on the experiment on training dataset a date in

chis1 is aligned with date of chjs2. To determine similarity scores and types we extracts new rules. For

day if the day is exactly the same no doubt date similarity (𝑑𝑡𝑆𝑖𝑚) score is 1, if the day is subsequent the

𝑑𝑡𝑆𝑖𝑚 score is 0.8 but if not subsequent the 𝑑𝑡𝑆𝑖𝑚 score is 0.6. For a month if the month and day is

exactly the same 𝑑𝑡𝑆𝑖𝑚 score is 1, when same in month and differ in day similarity determined by day

rule. If the month is subsequent the 𝑑𝑡𝑆𝑖𝑚 score is 0.6 but if not subsequent the 𝑡𝑆𝑖𝑚 score is 0.4. What

discussed yet is regarding word to word similarity at word level. At chunk level if some extra words there

date similarity calculated by the next equation 6.

𝐷𝑎𝑡𝑒𝑆𝑖𝑚 =
2∗(dtSim)

Wchis1+Wchjs2
…………………………………………….…..…….. (6)

To put it another way if all content words of pair chunks are different and both chunks contain location

𝐹8 not zero; then similarity score given 2. Additionally if some extra words are matched the similarity

score is computed with other feature. So at word level location similarity (𝐿𝑠𝑖𝑚) = 0.4 to make at chunk

level it calculated as the next equation.

𝐿𝑜𝑐𝑆𝑖𝑚=
2∗(LSim)

Wch𝑖s1+Wch𝑗s2
…………………………………………….…..…….. (7)

Yet much of similarity has focused on string and linguistic similarity measure. LSA is another important

method of the situation when linguistic and string similarity fails to capture similarity. It is the only

measure the system used based on corpus. To put it another way if all content words of pair chunks are

different and both chunks contain related words 𝐹9 result between 0 and 1. Importantly before calculate

chunk (𝐶ℎ𝑖𝑆1 and 𝐶ℎ𝑗𝑆2) similarity among each word of the pair chunk (𝑊𝑥𝐶ℎ𝑖𝑆1 and 𝑊𝑦𝐶ℎ𝑗𝑆2) if and

only if the words are not giving similarity in any feature of 𝐹1 to 𝐹8 used for feature F9. Where 𝑊𝑥

represents each word in chunk of S1 and 𝑊𝑦 represent each word in chunk of S2. That is to say for every

word in the chunk it does matrix, then it takes the best score among matrices done.

53

The step is continued to end until all of these word in 𝐶ℎ𝑖𝑆1 assigns score of term-to-term similarity. The

sum of all pairs term of the chunk calculated. Finally the summation is divided by a minimum number of

words found in pair chunk. If another feature has similarity score more than 0 F10 result could not

determine chunk scores and enforced to add together thus features; then it converted to human similarity

score multiplying by 5.

𝐿𝑆𝐴𝑠𝑖𝑚 =
∑(𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥,𝑊𝑦)))

min 𝑊
 ………………..………………. (8)

𝑊𝑥 – a word found in chunk ChiS1of S1; 𝑊𝑦 – a word found in chunk ChjS2 of S2;

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥, 𝑊𝑦) computed on vector of word 𝑊𝑥 and 𝑊𝑦) that for a single word 𝑊𝑥 it

calculate 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 with all word in chunk ChjS2. For a word 𝑊𝑥 we need one word which is

most similar among words in ChjS2.To do that 𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑊𝑥, 𝑊𝑦)) select one

word for each word in ChiS1. That is to say for each word 𝑊𝑥 in ChiS1there is one best match word

𝑊𝑦 in ChjS2 and the inverse is true. ∑ 𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ Compute the finally the summation divided by min 𝑊

minimum number of words in either chunk.

Before calculating chunk (ChiS1 and ChjS2) similarity we calculate the similarity among each word in

the chunk (WxChiS1 and WyChjS2. Where 𝑊𝑥 represents each word in chunk of S1 and 𝑊𝑦 represents

each word in chunk of S2. Yet we described the computation of each feature involve in chunk similarity

measure. Finally the accumulation provides the chunk similarity.

ChSim = 5 ∗ (POSim + AntoSim + SynoSim + hypeSim + Datesim + NumSim + LocSim + LSAsim) …. (9)

Where:

ChSim: Chunk similarity

𝑃𝑂𝑆𝑖𝑚: Content word match

𝐴𝑛𝑡𝑜𝑆𝑖𝑚: Antonym similarity

𝑆𝑦𝑛𝑜𝑆𝑖𝑚: Synonym similarity

ℎ𝑦𝑝𝑒𝑆𝑖𝑚: hypernym similarity

Datesim: date similarity

NumSim: Number similarity

54

LocSim: Location similarity

LSAsim: LSA similarity

Meanwhile the final score that is 𝐶ℎ𝑆𝑖𝑚 have been normalized multiplying by 5, so the score will be

between 0 (minimum) and 5(maximum). However in the above equation (9) dice- coefficient is not used.

Moreover it taken into account in the second way of chunk similarity calculation depends on lemma of

content word. It calculated two times of common word for both chis1 and chjs2 divided by count of words

in both chunks.

𝐷𝑖𝑐𝑒𝑆𝑖𝑚: =
2∗(𝑐ℎ𝑖𝑠1 𝑛 𝑐ℎ𝑗𝑠2)

𝑐ℎ𝑖𝑠1+ 𝑐ℎ𝑗𝑠2
………………………………………….(10)

Algorithm for score calculation

 Input pair of sentence

 Select 𝑐ℎ𝑖𝑆1

 Takes word 𝒙 of chunk 𝑐ℎ𝑖𝑆1 and recursively try to match with word 𝒚 of chunk 𝑐ℎ𝑗𝑆2

 Start looking for 𝐷𝑖𝑐𝑒𝑆𝑖𝑚 / 𝑃𝑂𝑆𝑖𝑚

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

 Fail

 move looking for 𝑆𝑦𝑛𝑜𝑆𝑖𝑚/𝐴𝑛𝑡𝑜𝑆𝑖𝑚

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

 Fail

 move looking for hypernomy

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

 Fail

 move looking for 𝐷𝑎𝑡𝑒𝑆𝑖𝑚/𝐿𝑜𝑐𝑆𝑖𝑚

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

 Fail

 move looking for 𝑁𝑢𝑚𝑆𝑖𝑚

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

55

 Fail

 move looking for𝐿𝑆𝐴𝑠𝑖𝑚

 Succeed calculate similarity score & move to next word in chunk 𝑐ℎ𝑖𝑆1

 if the chunk has no extra word it move to 𝐶ℎ𝑖𝑆1← i=i+1

 Fail - assign score 0 to word 𝒙 then it moves to 𝐶ℎ𝑖𝑆1← i=i+1

 Reaped until all word of S1 checked for similarity score & calculate at chunk level

 End

3.4. Alignment

The ISTS manages the different inputs of the system, texts in English and with varying length, and uses

the chunk similarity model to compute the similarity between the given pieces of text. In order to calculate

similarity with different feature the system, align chunks using an alignment module. A module depends

on several rules of chunk similarity to align pair chunk. Many-to-many (N:M) alignments without

restrictions able to explicitly represent all interactions between chunks of pair sentence. For instance, let

consider the following pair sentence taken from Images data (#104):

[A yellow and blue airplane]1 [is flying]2 [in the sky]3

[The white airplane]1 [is flying]2 [in the blue sky]3

Alignment of chunks: 1-1 (SIMI 3), 2 - 2 (EQUI 5), 3- 3 (SPE2 4)

Alignment of Chunk Score Type

1-1 3 SIMI

2-2 5 EQUI

3-3 4 SPE2

𝑻𝒂𝒃𝒍𝒆 − 𝟑. 2 𝒆𝒙𝒂𝒎𝒑𝒍𝒆 𝒐𝒇 𝒄𝒉𝒖𝒏𝒌 𝒂𝒍𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝒘𝒊𝒕𝒉 𝒔𝒄𝒐𝒓𝒆 𝒂𝒏𝒅 𝒕𝒚𝒑𝒆

In above example fortunately all of pair chunks are aligned in parallel that is 𝐶ℎ1𝑆1 with 𝐶ℎ1𝑆2, 𝐶ℎ2𝑆1

with 𝐶ℎ2𝑆2 and 𝐶ℎ3𝑆1 with 𝐶ℎ3𝑆2. Both 𝐶ℎ1𝑆1 and 𝐶ℎ1𝑆2 talking about the same object that is airplane

but their difference is on extra information of the object. Furthermore the description indicate that both

chunks pointing different airplane one is white another is yellow and blue. 𝐶ℎ2𝑆1 and 𝐶ℎ2𝑆2 are pointing

about flying and no more information so it is equal. The last pair chunks indicates about sky in which

airplane is flying one has extra information of sky color as it is blue; but, from S1 we have no information

56

whether sky is blue or white. Based on the information we can conclude that 𝐶ℎ3𝑆1 and is more general

than 𝐶ℎ3𝑆2. In addition 𝐶ℎ3𝑆1 𝑎𝑛𝑑 𝐶ℎ3𝑆2 has very strong similarity.

For the system chunks, the chunk module, converts sentences S1 and S2 to chunks ChiS1 and ChjS2

respectively. The goal of alignment module is to determine the decision whether chunks of S1 are similar

with chunks of S2, (which are non-zero score) or not similar (which is zero). Chunks of S1 and chunks of

S2 can have more than one chunk (multiple alignment), that is not necessarily contiguous. Aligned chunks

are further classified using type prediction and score classifier.

Type prediction module identifies a pair of aligned chunks ChiS1 and ChjS2 concatenate with a relation

type like EQUI (equivalent), OPPO (opposite), SPE1 (specific), SPE2 (general), SIMI (similar), and REL

(related). Score classifier module assigns a similarity score ranging between 0-5 for a pair of chunks.

The alignment module takes the chunks of given pair sentence, then it select first chunk in S1 (Ch1S1)

and recursively try to match chunk one to each of the chunks in S2 (ChjS2). Alignment contains multiple

steps and has precedence to apply for high accuracy. For correct alignment, a sequence has a vital role as

Sultan [78].

To overcome the problem of weak alignment it starts matching procedures from EQUI type if fail the

procedures continue checking for OPPO type. If OPPO type not matched it moves to matching procedures

for SPE1or SPE2. Unfortunately chunk pair may not similar, or even if similar when the condition is

difficult to decide one chunk has more information than other. Then the system moves to matching

procedures of SIMI. If the chunk is related but not SIMI it checks for REL. If REL no matched aligns

NOALI label to chunk ChiS1. The next step is moving to the second chunk of S2. It follows same process

of first chunk of S2 until all chunks in S2 done matrices. At the end if chunk of S1 not matched NOAL

will align with score zero. Similarly a process will continue cross check of each and every chunks of pair

sentence. This is exactly what our ISTS system does, as specified in the algorithm below:

 Input one sentence pair

 Select ChiS1

 Recursively try to match ChiS1to each of ChjS2 if Score >=1

 Start looking for EQUI/OPPO

 Succeed, move to ChiS1← i=i+1

 Fail

 Move to looking for SPE1/SPE2

 Succeed, move to ChiS1← i=i+1

 Fail

57

 Move to looking for SIMI

 Succeed, move to ChiS1← i=i+1

 Fail

 Move to looking for REL

 Succeed, move to ChiS1← i=i+1

 Fail

 Assign NOALI label to chunk

 Move to ChiS1← i=i+1

 Repeat until end of ChiS1← i=n

 Recursively check if ChjS2 aligned with any ChiS1

 Succeed, Move to ChjS2 ← j=j+1

 Fail

Assign NOAL

 Repeat until all ChjS2 aligned

 End

3.5. Type prediction

Alignment inputs a chunk pair and provides a reason why that chunk pair is aligned. There are seven types

of alignment used to provide a reason for a chunk pair and one type (NOALI) for a chunk has no

corresponding semantically similar chunk. Their difference is described as next:

 EQUI: semantically both chunks are equivalent.

 OPPO: semantically both chunks are opposite.

 SPE1: semantically both chunks are similar but ChiS1 has more information.

 SPE2: semantically both chunks are similar but ChjS2 has more information.

 SIMI: similar chunks but no EQUI, OPPO, SPE1 or SPE2.

 REL: related chunks but no SIMI, EQUI, OPPO, SPE1, SPE2.

In this section, we describe the feature and rules used for chunk type. The type given to a pair chunk is

defined. We used an alignment reasoning inspired by NeRoSim [12] features (antonyms, synonyms, etc.)

and SVCTSTS [79] features (number of words or counts of parts of speech in a chunk pair). Both these

systems classify a chunk pair using features extracted from the chunk pair itself. We combine the two

approaches and extract a total of 9 syntactic and semantic features for each chunk pair in addition to the

proposed 𝑃𝑂𝑆𝑖𝑚.

This system uses gold chunks of a given sentence pair and maps chunks of the first sentence to those from

the second by assigning different relations and scores based on a set of rules. The system performs stop

58

word removing, POS tagging, lemmatization, and named-entity recognition in the post processing steps.

Lemmatization performed on noun, verb, adjective, and adverb only. It also uses lookups for synonym,

antonym and hypernym relations from WordNet.

Type prediction features (F2, F3, F5, F6, F7,F8 and F9) listed under similarity calculator section that

predict type of paired chunk in addition to calculate score. Additionally the difference count of each

content word of the chunk can determine chunk label.

 Count of noun in chunk ChiS1

 Count of noun in chunk ChjS2

 Count of adjective in chunk ChiS1

 Count of adjective in chunk ChjS2

 Count of verb in chunk ChiS1

 Count of verb in chunk ChjS2

 Count of adverb in chunk ChiS1

 Count of adverb in chunk ChjS2

Next, we define a set of rules for each relation type. What we get from gold standard datasets indicates

that having adjective in either chunks (ChiS1 or ChjS2) or different number of adjectives in pair chunks

decide type of alignment. Particularly for SPE1 and SPE2 type adjective has vital role for labeling.

E.g. – a bus <==> red double decker bus. The first chunk has no adjective but, the second chunk have

adjective. So the first chunk is general because has no adjective and the second chunk have adjective that

indicates specific.

In addition a binary feature was designed to indicate whether two chunks in a given pair have the same

polarity (i.e., affirmative or negative) by looking up a manually-collected negation list with 20 negation

words (e.g. no, never, etc.). Negation list is mostly used for labeling opposite type.

3.5.1. EQUI Rules

EQUI Rules are applied when score of a chunk is 5.

EQUE1 - Both chunks have same tokens - e.g. Resigns <==> resigns

EQUE2 - Both chunks have same content words- e.g. in Bethlehem <==> of Bethlehem

EQUE3 - A content words match using synonym lookup - e.g. Syrian troops <==> Syrian army

59

EQUE4 - All content words of a chunk match but proper noun type un-match the other chunk - e.g. Boeing

787 Dream-liner ⇔ on 787 Dreamliner

EQUE5 - Both chunks have equal number of content words (ChiS1, ChjS2) > 0.9 - e.g. in Indonesia boat

sinking ⇔ in Indonesia boat capsize

EQUI6 - Both chunks has 𝐿𝑆𝐴𝑆𝑖𝑚 score > 0.8 - e.g. restored <==> resumes

3.5.2. OPPO Rules

OPPO rules are applied only when none of chunk has number and conjunction.

OPPO1: A content word in a chunk has an antonym in the other chunk - e.g. S. Korea <==> North Korea.

OPPO2: if either chunk has negation - e.g. Ethiopian ⇔ not Ethiopian

3.5.3. SPE1, SPE2 Rules

SP1: If chunk ChiS1 but ChjS2 has a conjunction and ChiS1 contains all the content words of ChjS2 then

ChiS1 is SPE2 of ChjS2 or vice-versa. (4) - e.g. A motorcycle <==> A silver and blue motorcycle

SP2: If chunk ChiS1 contains all content words of chunk ChjS2 and some extra content words that are not

verbs, ChjS2 is a SPE2 of ChiS1 or vice-versa. (4) - e.g. A white Apple computer <==> An Apple

computer

SP3: If chunks ChiS1 and ChjS2 contain only one noun each say n1 and n2, n1 is hypernym of n2, ChjS2

is SPE1 of ChiS1 or vice versa (4) - e.g. A white dog <==> A white animal

3.5.4. SIMI Rules

According to SIMI relation type the most similar chunks has scoring 4 and the least one is scoring 1. A

SIMI rule applied on all chunks pair contains a token of DATE/TIME type only or of LOCATION type

only. Additionally when both chunks share at least one noun similarity type is determined by LSA score.

SIMI1: Only the un-matched word in each chunk is a CD type the similarity is determined by CD type

number difference (4)-e.g. 6 March 2013 <==> 12 March 2013

SIMI2: Each chunk has a token of DATE/TIME type and it contains day without month similarity chunk

score is 4 or 3. If both days are consecutive score given to a chunk is 4 - e.g. for Monday <==> for Tuesday

But if the days are not consecutive score given to a chunk is 3 - e.g. Monday <==> Thursday

60

SIMI3: Each chunk has a token of LOCATION type (2) - e.g. in Iraq <==> in Syria

SIMI4: When both chunks share at least one noun then assign 3 if ChSim (ChiS1, ChS2) >= 0.5 and 2

otherwise if ChSim (ChiS1, ChjS2) >= 0.4. -e.g. Nato troops ⇔ NATO strike

SIMI5: Each chunk contains a CD type only the similarity is determined by number difference and Type

is SIMI (4)-e.g. 6 <==> 12

SIMI6: Each chunk has a token of DATE/TIME type and both contains month, chunk similarity score is

3 or 2. If both months are consecutive score given to a chunk is 3 - e.g. November 25, 2013 <==> October

8, 2013. But if a months are not consecutive score given to a chunk is 2 - e.g. 7 August 2013 <==> 11

April 2013.

3.5.5. REL Rules

RE1: If both chunks share at least one content word then assign REL relation. However scores are assigned

based on LSAsim similarity as follow:

(i) 4 if LSAsim (ChiS1, ChjS2) ⇔ [0.7, 0.9)

(ii) 3 if LSAsim (ChiS1, ChjS2) ⇔ [0.5, 0.7)

(iii) 2 if LSAsim (ChiS1, ChjS2) ⇔ [0.40, 0.5)

REL // 4 // in Afghanistan <==> in Afghan attack

REL // 3 // in front of graffiti <==> in front of the building

REL // 2 // Chinese general <==> of Chinese army singers

3.5.6. NOALIC Rules

NOALIC: If a chunk does not get any relation after applying all the rules and similarity calculation is

equal zero, the chunk to be mapped, NOALIC.

NOALIC2: If a chunk in a S1 ChiS1is aligned with more than one chunk in a S2 ChjS2. that is already

aligned and has 𝐶ℎ𝑆𝑖𝑚 (ChiS1, ChS2) <= 2, assign NOALIC relation to ChiS1with NIL.

3.6. Score Classification

It is important to understand the variety of options available when using an algorithm, as they can make a

significant difference in the quality of results. For each chunk aligned similarity score was calculated. The

scoring module uses a variety of features listed under section feature extracted such as:

F1, F2, F4, F5, F6, F7, F8, and F9. These entire features added together to decide pair chunk whether

61

similar or not. To that end, score for pair chunk is already described in section 3.8 beside to type

classification which is calculated by ChSim (equation 9)

3.7. Evaluation of ISTS

The system evaluated using the official scorer provided by task organizers (SemEval) for evaluation of

ISTS, which computes four distinct metrics: 𝐴𝐿𝐼 (segment pair alignment correctness), 𝑇𝑦𝑝𝑒 (segment

pair alignment correctness taking type into account), 𝑆𝑐𝑜𝑟𝑒 (segment pair alignment correctness taking

score into account) and 𝑇𝑦𝑝𝑒 + 𝑆𝑐𝑜𝑟𝑒 (segment pair alignment correctness taking type and score into

account).

3.8. Tools

3.8.1. Java

We used Java as programming language because of its modularity, robustness, scalability and high

availability of libraries and tools for development. Java is an object oriented programming language we

used for preprocessing training datasets and Wiki-corpus, chunking, post processing, extracting similarity

from WordNet, calculating similarity, aligning chunk, scoring and labeling as well as final result output.

Generally all algorithm used in this ISTS system were written in java on NetBeans 8.1

3.8.2. JAMA

JAMA is a basic linear algebra package for Java. It provides user-level classes for constructing and

manipulating matrices. It is meant to provide sufficient functionality for routine problems, packaged in a

way that is natural and understandable. In this thesis we used the JAMA library, and works fine as is,

although we used NetBeans for adding the path to the JAMA library Jama-1.0.3.jar and running code.

JAMA library uses to do the SVD decomposition matrix for computing corpus based similarity with LSA.

3.8.3. WordNet API

WordNet is a lexical database which is freely available to download and provides a large repository for

English lexical items. WordNet was designed to establish the connections between four types of Parts of

Speech (POS) - noun, verb, adjective, and adverb. For this purpose window platform WordNet version

2.1 is used.

62

CHAPTER FOUR

EXPERIMENTATION AND DISCUSSION

4.1. Introduction

This chapter is devoted to the experimentation and method used for the evaluation of the study. It discusses

train and test dataset used for the experimentation. The test result of the findings of the study is also

discussed in this chapter. A brief analysis of the experimentation result is also presented.

The ISTS system needs to perform chunk, align the chunks, label and assign score to the alignments. To

access WordNet dictionary we used an application programming interface (API). We chose Java WordNet

Library because of its easy configuration through properties file and its speed. MapBackedDictionary that

requires a map representation of WordNet dictionary was used.

net.didion.jwnl.utilities.DictionaryToMaptargetFolder properties.xml

we use MapBackedDictionary representation and the properties file look like following truncated

example.

<?xml version="1.0" encoding="UTF-8"?>

<jwnl_properties language="en">

<version publisher="Princeton" number="2.1" language="en"/>

<dictionary class="net.didion.jwnl.dictionary.MapBackedDictionary">

 ...

<param name="file_type" value="net.didion.jwnl.princeton.file.PrincetonObjectDictionaryFile"/>

<param name="dictionary_path" value="c:/program files/WordNet/2.1Map/"/>

</dictionary>

<resource class="PrincetonResource"/>

</jwnl_properties>

4.2. Datasets

This section presents dataset used for this study.We first introduce the annotation procedure, followed by

the source of the sentence pairs, the evaluation method, and finally inter-tagger annotation data. In this

work dataset first, a pair of sentences is given. Second, the annotator identifies the chunk in each sentence,

despite of the corresponding sentence in the pair. Third, for each alignment, the annotator calculates a

63

score which indicate similarity of chunks pair. Fourth, the annotator aligns the chunks if score is greater

than one or equal one. The sequence is from the strongest correspondences to weakest ones. Finally, it

chooses the type of label for each alignment which shows a reason why it aligned.

Source of the dataset

The dataset comprises pairs of sentences from Headlines news and image descriptions. Wehave mentioned

a sample pair from Images in table 4.1 with their Alignment, Score and Type. The Headlines corpus is

composed of naturally occurring news headlines whereas the Images dataset consist of images with

description. The dataset comprised 756 and 750 sentence pairs from Headlines and Images, respectively.

Headlines contain slightly less chunks and few tokens per chunk than image descriptions. More than half

of the pairs aligned in both data have a score of 5 and Type EQUI. In other way EQUI is the most used

Type, followed by SIMI, SPE2 and SPE1, REL and OPPO respectively. The analysis in scores and types

is very similar in both datasets. Additionally there are a large number of unaligned chunks, especially in

the Images dataset. Finally, FACT and POL are infrequently used in the headlines dataset, and never in

the Images dataset. We excluded FACT and POL in our work.

Training dataset and test dataset

Two publicly-available pair sentence datasets (Images and Headlines) used to training and to evaluate the

performance of the interpretable sentence similarity measures. Headlines dataset consist of 756 pairs of

sentences used for training and 375 sentence pairs used for test. On the other hand Images dataset consist

of 750 pairs of sentences used for training and 375 sentence pairs used for test.

Our experiments show that there are significant differences in annotations between datasets. Particularly

in image datasets sometimes the parser parse article as a phrase especially when a sentence begins by

article and the next phrase is noun phrase. So it need merge with next phrase to make a correct noun

phrase. In headline datasets space separated punctuation like colon (:), hyphen (-) and double hyphen (--)

are where one chunk ends and another chunk starts. Verbs are sometimes as chunk, and ‘to’ and ‘’s’ often

start a new chunk in headline.

4.3. Evaluation

We have been prepared two system named Run1 and Run2. Both runs are used the same training data that

is Headlines and Images as well as the same algorithm for score calculation except one algorithm which

makes vary. However in both run exactly the same type prediction algorithm with the same precedence is

64

used. The algorithm is explained in section 4.5 with detail of alignment module. Run1 calculates score by

equation 9 in contrast Run2 calculated by equation 11. The main difference is in Run1 𝑃𝑂𝑆𝑖𝑚 used for

content word similarity. In comparison in Run2 𝑃𝑂𝑆𝑖𝑚 substituted by 𝑑𝑖𝑐𝑒𝑆𝑖𝑚 but, all other similarity

measures are taken as it is. So Run2 calculated as the next equation (11).

ChSim = 5 ∗ (diceSim + AntoSim + SynoSim + hypeSim + Datesim + NumSim + LocSim + LSAsim)… (11)

Furthermore, both runs consider the same similarity measures between two words, but chunk level

similarity measure is different. To make very clear we took sample train data from the Images that

annotated by human along cosine, dice-coefficient and the new proposed (𝑃𝑂𝑆𝑖𝑚) chunk similarity score.

The comparison of sample chunk pair are highlighted in table 4.1, to clarify more in the table all three

similarity measures calculated from one. To put it in another way if chunk pair exactly match the result is

one also if nothing is match the result is zero. To conclude the similarity result will be between zero and

one. In table 4.1 except human annotated similarity (from training Dataset) all have three similarity scores.

The first one is normal (non-italic and non-bold) result which indicates the similarity score directly taken

from the output of an algorithm before normalization (multiplying by five) done. The other is the bold

score which indicates multiplication of normal result by five as it is. The final one is an italic that is an

approximate of the bold result. The human annotated similarity measure was represented by single digit,

so we have taken approximate value to make a single digit.

65

 Sample pair chunks from sentence1 and sentence2 Data

set

cosine Dice POSim

lush green field <==> green field

𝑖𝑛_𝐼𝑁 𝑎_𝐷𝑇 𝑙𝑢𝑠ℎ_𝐽𝐽 𝑔𝑟𝑒𝑒𝑛_𝐽𝐽 𝑓𝑖𝑒𝑙𝑑_𝑁𝑁
𝑖𝑛_𝐼𝑁 𝑎_𝐷𝑇 𝑔𝑟𝑒𝑒𝑛_𝐽𝐽 𝑓𝑖𝑒𝑙𝑑_𝑁𝑁

4

0.82 0.80 0.84

4.1 4.00 4.15

4 4 4

legitimate representative <==> sole representative

𝑎𝑠_𝐼𝑁 𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒_𝐽𝐽 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑁𝑁
𝑎𝑠_𝐼𝑁 𝑠𝑜𝑙𝑒_𝐽𝐽 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑁𝑁

4

0.50 0.50 0.70

2.5 2.5 3.5

3 3 4

A dark brown horse <==> A brown horse

𝑑𝑎𝑟𝑘_𝐽𝐽 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁
𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁

4

0. 82 0. 8 0.84

4.1

4
4.0

4
4.15

4

bitter immigration debate <==> immigration debate

𝑏𝑖𝑡𝑡𝑒𝑟_𝐽𝐽 𝑖𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑁 𝑑𝑒𝑏𝑎𝑡𝑒_𝑁𝑁
𝑖𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑁 𝑑𝑒𝑏𝑎𝑡𝑒_𝑁𝑁

4

0. 82 0. 86 0.89

4.1 4.3 4.45

4 4 4

A cat <==> A black and white cat

𝑎_𝐷𝑇 𝑐𝑎𝑡_𝑁𝑁
𝑎_𝐷𝑇 𝑏𝑙𝑎𝑐𝑘_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑐𝑎𝑡_𝑁𝑁

4

0. 58 0. 5 0.70

2.9 2.5 3.5

3 3 4

with a big necklace <==> with a black top and a necklace

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑖𝑔_𝐽𝐽 𝑛𝑒𝑐𝑘𝑙𝑎𝑐𝑒_𝑁𝑁
𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑙𝑎𝑐𝑘_𝐽𝐽 𝑡𝑜𝑝_𝑁𝑁 𝑎𝑛𝑑_𝐶𝐶 𝑎_𝐷𝑇 𝑛𝑒𝑐𝑘𝑙𝑎𝑐𝑒_𝑁𝑁

3

0.61 0. 60 0.63

3.05 3.0 3.15

3 3 3

A passenger train <==> A passenger train

𝑎_𝐷𝑇 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑁𝑁 𝑡𝑟𝑎𝑖𝑛_𝑁𝑁
𝑎_𝐷𝑇 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑁𝑁 𝑡𝑟𝑎𝑖𝑛_𝑁𝑁

5

1.0 1.0 1.0

5 5 5

5 5 5

a brown horse <==> a brown horse

𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁
𝑎_𝐷𝑇 𝑏𝑟𝑜𝑤𝑛_𝐽𝐽 ℎ𝑜𝑟𝑠𝑒_𝑁𝑁

5

1.0 1.0 1.0

5 5 5

5 5 5

with a baby in his lap <==> holding a baby

𝑤𝑖𝑡ℎ_𝐼𝑁 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁 𝑖𝑛_𝐼𝑁 ℎ𝑖𝑠_𝑃𝑅𝑃$ 𝑙𝑎𝑝_𝑁𝑁

 ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑉𝐵𝐺 𝑎_𝐷𝑇 𝑏𝑎𝑏𝑦_𝑁𝑁

4

0.47 0.5 0.70

3.33 2.5 3.5

3 3 4

A yellow and blue airplane <==> The white airplane

𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁
𝑇ℎ𝑒_ 𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁

3

0.41 0.4 0.63

2.05 2.0 3.15

2 2 3

a bus <==> Red double decker bus

𝑎_𝐷𝑇 𝑏𝑢𝑠 _𝑁𝑁
𝑅𝑒𝑑_𝐽𝐽 𝑑𝑜𝑢𝑏𝑙𝑒_𝐽𝐽 𝑑𝑒𝑐𝑘𝑒𝑟_𝐽𝐽 𝑏𝑢𝑠_𝑁𝑁

3

0.45 0.33 0.63

2.25 1.66 3.15

2 2 3

𝑇𝑎𝑏𝑙𝑒 − 4. 1 𝑃𝑂𝑆𝑖𝑚 𝑐𝑎𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑢𝑚𝑎𝑛 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑, 𝑑𝑖𝑐𝑒 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑐𝑜𝑠𝑖𝑛𝑒

66

If number of content words with POS tagged and without tag is equal the similarity measured by POS but

if not equal POS tag measurement fails to compute. At the worst case it is calculated by dice-coefficient.

Let take two chunks from training dataset “𝐴 𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑏𝑙𝑢𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 <==> 𝑇ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒”

the chunk is taken from sentence one and sentence two respectively. According to human annotation of

training data the chunks labeled and scored as:

SIMI // 3 // 𝐴 𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑏𝑙𝑢𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 <==> 𝑇ℎ𝑒 𝑤ℎ𝑖𝑡𝑒 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒. To boost this similarity

calculation we used POS tagged by Stanford POS tagger.

𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==> 𝑇ℎ𝑒_ 𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁. Any words

except noun, verb, adjective and adverb should remove from the chunks. Hence determine the calculation

before the words tagged gives 0.26 and 0.25 by cosine and Dice-coefficient respectively similarity score.

The result multiplied by 5 as a reason the dataset was give score between 0 and 5. Finally cosine and Dice-

coefficient score is 1.3 and 1.25 respectively so it is far from annotated similarity score. To boost this

similarity calculation we used POS tagged by Stanford tagger.

 𝐴_𝐷𝑇 𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑎𝑛𝑑_𝐶𝐶 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==> 𝑇ℎ𝑒_𝐷𝑇 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁. any words

except noun, verb, adjective and adverb should remove from the chunks.

Hence a determiner (𝐴, 𝑇ℎ𝑒) and conjunction (𝑎𝑛𝑑) removed from the chunks, five words remain in the

chunk (𝑦𝑒𝑙𝑙𝑜𝑤_𝐽𝐽 𝑏𝑙𝑢𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁 <==> 𝑤ℎ𝑖𝑡𝑒_𝐽𝐽 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒_𝑁𝑁). Therefore POS tag content

word based similarity gives high weight to noun and verb inversely gives low weight to adjective and

adverb. When it computed with

√
2(𝑛+𝑣)

𝑤
 + √

𝑎𝑑𝑣+𝑎𝑑𝑗

(𝑎𝑑𝑣𝑡+𝑎𝑑𝑗𝑡)
 log(2(𝑎𝑑𝑣 + 𝑎𝑑𝑗)) we gave 1 threshold if there is no common adjective or an

adverb with a chunk 𝑎𝑑𝑣 + 𝑎𝑑𝑗 gives zero result, 𝑙𝑜𝑔 (0) gives an error. To overcome this problem we

take 1 instead of 0, it does no effect on the final results because 𝑙𝑜𝑔 (0 + 1) gives 0. There is no an

unmatched noun or verbs √0.4 that is 0.632. If all content words are just matched similarity score is 1

(maximum) and when there is no matched word in a chunk similarity score is 0 (minimum). The result

propagates between 1 and 0. According to ISTS the score must be between 0 (un-matched) and five

(equivalent matched). Finally the result gained from 𝑃𝑂𝑆𝑖𝑚 similarity multiplied by five gives 3.16 so it

approximate to 3 that is exactly equal to human annotation.

67

 𝐹𝑖𝑔𝑢𝑟𝑒 − 4. 1 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

As you see on Figure 4.2 sample output taken from Headlines data first pair chunk contain numbers only,

so alignment reasoning must be SIMI also score calculated by NumSim which is 2. The second pair chunk

score is 5 it shows as alignment label is EQUI, because it is exactly equal. The third pair chunk is detected

by location similarity and given rule based score 2 alignment reason is SIMI. The last pair explaining

about the same thing but, the degree of similarity is not equivalent crash more specific than accident.

68

𝑭𝒊𝒈𝒖𝒓𝒆 − 𝟒. 2 𝒔𝒂𝒎𝒑𝒍𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒐𝒇 𝑯𝒆𝒂𝒅𝒍𝒊𝒏𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕

4.4. ISTS results

The system evaluation were computed by F1 score based on alignments 𝐴𝐿𝐼 (chunk pair alignment

correctness), F1 𝑇𝑦𝑝𝑒 (chunk pair alignment correctness of type), F1 𝑆𝑐𝑜𝑟𝑒 (chunk pair alignment

correctness of score) and F1 full consideration of alignment, type, and score are represented as 𝑇𝑦𝑝𝑒 +

𝑆𝑐𝑜𝑟𝑒 (pair chunk alignment correctness of type and score). In order to evaluate systems which perform

ISTS, the segment align is mapped into chunk alignment, whereas all chunk pairs in the aligned pairs are

with some weight.

We have evaluated the chunking accuracy of SPBC chunker by comparing its output against the gold

chunks of ISTS 2016 training data: the training and test data sets each consist of 375 pairs of Images

annotation data and 375 pairs of Headlines texts. The chunker yielded the highest average accuracies on

both the training and test datasets compared to other chunkers which are described next. The accuracies

on the training dataset were 89.20% and 87.34% at chunk level and sentence level respectively. For the

69

test dataset, the accuracies were 87.81% and 87% at chunk and sentence level, respectively. The result of

ourRun1 and Run2 of the evaluation is shown in Table-4.2 and Table-4.3 for Images and Headlines dataset

respectively with given baseline.

Image

 ALI Type Score Type+Score Rank

Baseline 0.8556 0.4799 0.7456 0.4799

4

Run1 0.8734 0.7723 0.8512 0.7514 1

Run 2 0.8424 0.7262 0.7533 0.6611 3

UWB_run3 0.8922 0.6867 0.8408 0.6708 2

𝑻𝒂𝒃𝒍𝒆 − 𝟒. 2 𝒊𝒎𝒂𝒈𝒆𝒔 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 𝒓𝒆𝒔𝒖𝒍𝒕

Headlines

 ALI Type Score Type+Score Rank

Baseline 0.8462 0.5462 0.761 0.5461

4

Run1 0.8512 0.7232 0.7612 0.7120 1

Run 2 0.7942 0.7232 0.7365 0.660 3

Inspire_run1 0.8194 0.7031 0.7865 0.696 2

𝑻𝒂𝒃𝒍𝒆 − 𝟒. 3 𝒉𝒆𝒂𝒅𝒍𝒊𝒏𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕 𝒓𝒆𝒔𝒖𝒍𝒕

The ISTS task published results briefly on the organization’s website5. They evaluated 9 systems including

baseline.

On Table 4.2 and Table 4.3 are shown the results of the ISTS task in comparison to our best result (POSim

Overlap Measure with dice-coefficient). The rank was awarded according to correlation for Interpretable

STS. In comparison to the baseline our results are better on both Headlines and Images data sets. On

5 http://alt.qcri.org/semeval2016/task2/index.php?id=results

70

Images data set our best (Run1) results is 0.7514. Similarly on Headlines data our best (Run1) result is

0.7120 and it is better than the baseline.

We computed the percentage difference of our best result in comparison to the winner and baseline. As

you can see our result for Images is 8.02% better than the result of the winner. Likewise, our result for

Headlines is only 1.6% better than the result of the winner. Our similarity measure is better than the

baseline by 27.15% on the Images data and by 16.59% on the Headlines data.

4.5. Limitation and Challenges

Limitation of this research depends on the limitation of chunking algorithm. At the back of a chunking

algorithm there is Stanford CoreNLP parser. That is to say, the output of parses is accepted by chunker as

input. The accuracy of parser is well but not perfect. For insistence sometimes the parser split article as a

phrase especially when a sentence begins by article and the next phrase is noun phrase. So it directly

affects the accuracy of chunk as a result if it is not segmented correctly the final output also not accurate.

In addition, there are some limitations we realized in training dataset that degrade the result of ISTS. With

this in mind let take one sentence A young woman with a bracelet is wearing a bikini top and jeans (#103

in image data), human annotated chunk parsed the sentence into four as: [A young woman]1 [with a

bracelet]2 [is wearing]3 [a bikini top and jeans]4. Yet it has no problem however the human annotated

label alignment concatenates two non-consecutive chunks (2 and 4) as: with a bracelet a bikini top and

jeans which is illogical and degrade score as well as label.

In addition to chunking problem the difficulty of the ISTS task of aligning the chunks and allocating

relation types, we found some differences in annotation of human which made some errors. In image data

(#65), for example, on a sofa <=> on a blue sofa the annotation type is SIMI but the SPE2 type best

describes the relation of the chunks. Likewise, in the same data (#693) in a field <=> in a green field, the

SPE1 type has been labeled in the training set but it should be SPE2. Similarly, in image data (#193) A

young boy <=> A young blonde girl has been given a label SPE2 in the training set. Indeed the second

chunk has more information; however these two chunks are referring to different object and actually

difficult to decide which one is more general. Therefore it should be SIMI because it is like comparing

mango and apple fruit. This isn’t the only evidence that supports the challenges of the training dataset.

71

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1. Introduction

The results of the study are summarized in this chapter. Moreover, issues that should be

done in the future to enhance the ISTS result which also improves the ISTS are presented.

5.2. Conclusion

ISTS system helps the users to take pair sentence and give the output in chunk with similarity score and

reason of it aligned. In this study, ISTS that is based on similarity like: string/word, WordNet and corpus-

based approach were developed for English users to specify their degree and type of similarity. In addition

some rule were used for type prediction and score calculation. All chunk alignment, similarity score and

interpretation of similarity score depend on the 10 features. Chunk alignment depends on similarity score,

it hasn’t its own feature. Totally we implemented 10 similarity measures including a novel similarity

measures, for two systems named as Run1 and Run2. However we used 9 measures at a time for Run1

also for Run2 to calculate score. Both systems has 8 common features and one difference feature that is

Run1 used 𝑃𝑂𝑆𝑖𝑚 and Run2 used 𝐷𝑖𝑐𝑒𝑆𝑖𝑚. So in score calculation all features are participated except

ℎ𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛 feature. For type prediction (interpretation) we used 7 feature (𝑁𝑢𝑚𝑆𝑖𝑚, ℎ𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛,

𝐴𝑛𝑡𝑜𝑆𝑖𝑚, ℎ𝑦𝑝𝑒𝑆𝑖𝑚, 𝐷𝑎𝑡𝑒𝑆𝑖𝑚, 𝐿𝑜𝑐𝑆𝑖𝑚, 𝑎𝑛𝑑 𝐿𝑆𝐴𝑠𝑖𝑚). But, 𝐷𝑖𝑐𝑒𝑆𝑖𝑚, 𝑃𝑂𝑆𝑖𝑚, 𝑆𝑦𝑛𝑜𝑆𝑖𝑚 features

are not participated in type prediction. Moreover there are five novel algorithms proposed for similarity

score calculation and interpretation such as: 𝑃𝑂𝑆𝑖𝑚, 𝐻𝑦𝑝𝑒𝑆𝑖𝑚, 𝐷𝑎𝑡𝑒𝑆𝑖𝑚, 𝑁𝑢𝑚𝑆𝑖𝑚, and 𝐴𝑛𝑡𝑜𝑆𝑖𝑚

Among an introduced novel algorithm 𝑃𝑂𝑆𝑖𝑚 has great role for chunk-to-chunk similarity calculation

based on POS tagged content word gives high and equal weight for verb and noun In contrast it gives less

and equal weight for adverb and adjective. Additionally 𝑃𝑂𝑆𝑖𝑚 algorithm can use for any language as

long as an adjective help to modifies (limits or describes) a noun or a pronoun as well as an adverb help

to modifies a verb, an adjective. So giving a weight for noun and verb is very significant rather than

considering as the same weight with adjective and adverb. The algorithm only not enough to determine

chunk similarity because, it focus is surface similarity (word overlap). So it boosts the ISTS by using

three similarity features such as: synonym, antonym as well as hypernym from WordNet and LSA

similarity demonstrated in chapter 4.

72

Hypernym similarity (𝐻𝑦𝑝𝑒𝑆𝑖𝑚) also boosted the performance the ISTS system. This similarity measure

has a great potential to predict alignment reason as well as compute similarity score. To avoid incorrect

weak alignment the threshold value 10 taken as the highest distance between indexes of both word.

Another important algorithm proposed for date entity similarity (𝐷𝑎𝑡𝑒𝑆𝑖𝑚) is very useful, because all

days are on the same hierarchy in WordNet and the months are similarly on same from their parent, so

difficult to differentiate. Named entity recognizer recognize as it is date only, like WordNet difficult to

differentiate. As described in section 3.4.4 𝐷𝑎𝑡𝑒𝑆𝑖𝑚 used to differentiate similarity score.

Number similarity (𝑁𝑢𝑚𝑆𝑖𝑚) has a great role on score calculation and type prediction because it detects

similarity between pair chunk that couldn’t handle by any other features like 𝐿𝑆𝐴𝑠𝑖𝑚, string similarity

and WordNet based similarity feature.

Finally 𝐴𝑛𝑡𝑜𝑆𝑖𝑚 is another significant algorithm to identify an oppositeness of aligned chunks. It’s a kind

of dice coefficient works for antonym only.

Performance of systems using corpus based approach is highly affected by the size, reliability and

correctness of the corpus used for the study [106]. The ISTS used Wikipedia corpus for LSA similarity.

Experimentation shows that LSA similarity was relatively less reliable than WordNet and String/word

similarity score.

However, the size of the documents used for this research was limited which affected the level of

performance to be achieved. Despite of the limitation, it can be concluded that the performance of the

system obtained was promising and gives a best result.

5.3. Recommendations

It is believed that there is much room for improvement of the performance of ISTS system developed in

this research. Therefore, the following recommendations should be looked at in the future so that effective

ISTS system can be developed to help users in their similarity need:

 The size of the documents used for this research was limited. This limitation affected the accuracy

of chunk alignment as well as degree of similarity; because if resources used are small, we may

not be able to generate all word co-occurrence. Therefore, some work should be done with large

and high quality corpora to minimize these problems.

73

 This thesis work focuses on chunk to chunk similarity as well as 𝑃𝑂𝑆𝑖𝑚 algorithm proposed for

this purpose. Moreover we recommend that 𝑃𝑂𝑆𝑖𝑚 algorithm if somebody who interest to do

sentence to sentence similarity without chunking a sentences.

 For local language yet there are no work done on semantic textual similarity and its interpretation,

unfortunately no one brave to do this. They are many challenges, the first one is developing training

and testing dataset need linguistic. Second for a local language we haven’t knowledge based lexical

database like wordNet. The door is still open for someone who want to contribute for user of local

language.

74

References

[1] V. Hatzivassiloglou et al. “Detecting text similarity over short pas-sages: Exploring linguistic

feature combinations via machine learning”. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, 1999, pp.203–212

[2] R. Jackendoff. “Semantics and Cognition”, MIT Press, Cambridge, MA, 1983

[3] R. Rada, et al. “Development and Application of a Metric on Semantic Nets”, IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 19, No. 1, 17-30.

[4] V. Rus. “Opportunities and Challenges in Semantic Similarity”, Proceedings of the Twenty-

Seventh International Florida Artificial Intelligence Research Society Conference, pp. 208–213,

2014.

[5] E. Agirre et al. “SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity”, First Joint

Conference on Lexical and Computational Semantics (*SEM), pp 385–393, Montreal, Canada,

June 7-8, 2012.

[6] E. Agirre et al. “SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot

on Interpretability”, Proceedings of the 9th International Workshop on Semantic Evaluation

(SemEval 2015), Denver, Colorado, pp 252–263, June 4-5, 2015

[7] V. Rus et al. “Assessing Student Paraphrases Using Lexical Semantics and Word Weighting”, In

Proceedings of the 14th International Conference on Artificial Intelligence in Education,

Brighton, UK. 2009.

[8] I. Androutsopoulos & P. Malakasiotis. “A survey of paraphrasing and textual entailment

 methods”, Journal of Artificial Intelligence Research, 38:135-187, 2010

75

[9] S. Fernando & M. Stevenson, “A semantic similarity approach to paraphrase detection”,

 Computational Linguistics UK (CLUK 2008) 11th Annual Research Colloquium, 2008

[10] C. Corley & R. Mihalcea, “Measuring the Semantic Similarity of Texts”, In Proceedings of the

ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, MI,

2005.

[11] V. Rus et al. “Semilar: The semantic similarity toolkit”, In Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics, 2013.

[12] R. Banjade et al., “NeRoSim: A System for Measuring and Interpreting Semantic Textual

Similarity”, In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval

2015), pp. 164–171, Denver, Colorado, June 4-5, 2015.

[13] E. Agirre et al. “SEM 2013 shared task: Semantic Textual Similarity”, Second Joint Conference

on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference

and the Shared Task, pp.32–43, Atlanta, Georgia, June 13-14, 2013

[14] M. R. Aliguliyev. “A new sentence similarity measure and sentence based extractive technique for

automatic text summarization”, Expert Systems with Applications, 36(4):7764–7772, 2009.

[15] V. Rus & C. Graesser, “Deeper Natural Language Processing for Evaluating Student Answers in

Intelligent Tutoring Systems”, Proceedings of the Twenty-First National Conference on Artificial

Intelligence (AAAI-06), (2006).

[16] P.M. McCarthy & D.S. McNamara, “User-Language Paraphrase Corpus Challenge”, online, 2008.

76

[17] V. Rus & M. Lintea, “A comparison of greedy and optimal assessment of natural language student

input using word-to-word similarity metrics”, In Proceedings of the Seventh Workshop on Building

Educational Applications Using NLP, pp. 157-162, 2012

[18] http://trac.research.cc.gatech.edu/ccl/export/158/SecondMindProject/SM/SM.WordNet/

Paper/WordNetDotNet_Semantic_Similarity.pdf

[19] E. Agirre et al. “SemEval-2014 Task 10: Multilingual semantic textual similarity”, Proceedings of

the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 81–91, Dublin,

Ireland, August 23-24, 2014

[20] E. Agirre, “SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on

Interpretability”, Proceedings of the 9th International Workshop on Semantic Evaluation

(SemEval 2015), pp. 252–263, Denver, Colorado, June 4-5, 2015. ©2015 Association for

Computational Linguistics

[21] W. H. Gomaa, A. A. Fahmy, “A Survey of Text Similarity Approaches”, International Journal of

Computer Applications (0975 – 8887), Volume 68– No.13, April 2013

[22] D. Gusfield, “Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology”, Cambridge University Press, 1997.

[23] L. Allison, & T. I. Dix, “A bit-string longest-common-subsequence algorithm”, Information

Processing Letters, 23:305–310, 1986.

[24] M. J. Wise, “YAP3: Improved detection of similarities in computer program and other texts”, In

Proceedings of the 27th SIGCSE technical symposium on computer science education, pp. 130–

134, Philadelphia, PA, USA, 1996.

http://trac.research.cc.gatech.edu/ccl/export/158/SecondMindProject/SM/SM.WordNet/

77

[25] W. W. Cohen, P. Ravikumar, & S. E. Fienberg, “A Comparison of String Distance Metrics for

Name-Matching Tasks”, In Proceedings of the IJCAI Workshop on Information Integration on the

Web, pp. 73–78, Acapulco, Mexico, 2003b.

[27] M. A. Jaro, “Probabilistic linkage of large public health data file”, Statistics in Medicine, 491-

8, 1995.

[28] W. E. Winkler, “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter

Model of Record Linkage”, In Proceedings of the Survey Research MMethods Section, pp. 354–

359, 1990.

[29] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals”, Soviet

Physics Doklady, 10(8):707–710, 1966.

[30] P. A. Hall, & G. R. Dowling, “Approximate string matching”, Comput. Surveys, 12:381-402,

1980.

[32] V. Keselj, et al. “N-gram-based author profiles for authorship attribution”, In Proceedings of the

Conference of the Pacific Association for Computational Linguistics, pp. 255–264, Halifax,

Canada, 2003.

[33] E. Agirre, et al. “Plagiarism Detection across Distant Language Pairs”, In Proceedings of the 23rd

International Conference on Computational Linguistics, pp. 37–45, Beijing, China, 2010.

[34] C. Lyon, et al. “Detecting short passages of similar text in large document collections”, In

Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 118–

125, Pittsburgh, PA USA, 2001.

78

[35] L. Han, et al. “UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems”, In Proceedings

of the 2nd Joint Conference on Lexical and Computational Semantics, pp. 44–52, Atlanta, GA,

USA, 2013.

[36] R. Mihalcea, C. Corley, & C. Strapparava, “Corpus-based and Knowledge based Measures of Text

Semantic Similarity”, In Proceedings of the 21st National Conference on Artificial Intelligence,

pp. 775–780, Boston, MA, USA, 2006.

[37] G. Salton, & M. J. McGill, “Introduction to Modern Information Retrieval”, McGraw-Hill,1983.

[39] Y. Li, et al, “Sentence Similarity Based on Semantic Nets and Corpus Statistics”, IEEE

Transactions on Knowledge and Data Engineering, 18(8):1138–1150, 2006.

[40] R. Rada, et al, “Development and Application of a Metric on Semantic Nets”, IEEE Transactions

on Systems, Man, and Cybernetics, 19(1):17–30, 1989.

[41] P. Resnik, “Using Information Content to Evaluate Semantic Similarity in a Taxonomy”, In

Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 448–453,

Montreal, Canada, 1995.

[43] C. D. Manning, P. Raghavan, & H. Schütze, “Introduction to Information Retrieval”, Cambridge

University Press, 2008.

[44] T. K. Landauer, P. W. Foltz, & D. Laham, “An Introduction to Latent Semantic Analysis”,

Discourse Processes, 25(2):259–284, 1998.

[45] C. Burgess, K. Livesay, & K. Lund, “Explorations in context space: Words, sentences, discourse,”

Discourse Processes, vol. 25, no. 2-3, pp. 211-257, 1998.

79

[46] I. Matveeva, et al, “Generalized latent semantic analysis for term representation”, In Proc. of

RANLP, 2005.

[47] E. Gabrilovich & S. Markovitch, “Computing Semantic Relatedness using Wikipedia-based

Explicit”, 2007.

[49] P. Turney, “Mining the web for synonyms: PMIIR versus LSA on TOEFL”, In Proceedings of the

Twelfth European Conference on Machine Learning (ECML), 2001

[50] K. Peter, “Experiments on the difference between semantic similarity and relatedness”, In

Proceedings of the 17th Nordic Conference on Computational Linguistics - NODALIDA '09,

Odense, Denmark, 2009.

[51] D. Lin, “Extracting Collocations from Text Corpora”, In Workshop on Computational

Terminology, Montreal, Kanada, 57–63, 1998,

[53] A Composite Model for Computing Similarity between Texts. Dissertation August 2013

[54] C. Fellbaum, “WordNet: An Electronic Lexical Database”, MIT Press, 1998.

[55] B. Alberto, et al. “Plagiarism Detection across Distant Language Pairs, In Proceedings of the

23rd International Conference on Computational Linguistics, pp. 37–45, 2010.

[56] G. Tsatsaronis, I. Varlamis, & M. Vazirgiannis, “Text Relatedness Based on a Word Thesaurus”,

Journal of Artificial Intelligence Research, 37:1–39, 2010.

[57] A. Kennedy, & S. Szpakowicz, “Evaluating Roget’s Thesauri”, In Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.

416–424, Columbus, OH, USA, 2008.

80

[58] D. Ramage, A. N. Rafferty, & C. D. Manning, “Random Walks for Text Semantic Similarity”, In

Proceedings of the Workshop on Graph-based Methods for Natural Language Processing, pp. 23–

31, Singapore., 2009.

[59] E. Yeh, D. Ramage, C. D. Manning, E. Agirre, & A. Soroa, “ WikiWalk: Random walks on

Wikipedia for Semantic Relatedness”, In Proceedings of the Workshop on Graph-based Methods

for Natural Language Processing, pp. 41–49, Singapore, 2009.

[62] B. Davide et al., “SOPA: Random Forests Regresssion for the Semantic Textual Similarity task”,

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 132–

137, Denver, Colorado, June 4-5, 2015, ©2015 Association for Computational Linguistics

[63] Z. Wu, & M. Palmer, “Verb semantics and lexical selection”, In Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics, pp. 133–138, Las Cruces, NM, USA,

1994.

[64] L. Meng, et al. “A New Model of Information Content Based on Concept's Topology for measuring

Semantic Similarity in WordNet”, International Journal of Grid and Distributed Computing, vol.

5, no. 3, (2012) September, pp. 81-94.

[65] R. L. Cilibrasi, and P. M. Vitanyi, “The Google Similarity Distance”, IEEE Trans. Knowledge

and Data Engineering,19:3, pp. 370-383, 2007.

[66] O. Ana, et al. “ASAP-II: From the Alignment of Phrases to Text Similarity”, Proceedings of the

9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 184–189, Denver,

Colorado, June 4-5, 2015.©2015 Association for Computational Linguistic.

81

[67] D. Manning, et al. “The Stanford CoreNLP natural language processing toolkit”, In Proceedings

of ACL: System Demonstrations, 2014.

[68] H. Basma, et al. “FCICU: The Integration between Sense-Based Kernel and SurfaceBased

Methods to Measure Semantic Textual Similarity”, Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015), pp. 154–158, Denver, Colorado, June 4-5,

2015.©2015 Association for Computational Linguistic.

[69] T. T. Vu, et al. “TATO: Leveraging on Multiple Strategies for Semantic Textual Similarity”,

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 190–

195, Denver, Colorado, June 4-5, 2015.©2015 Association for Computational Linguistic.

[70] P. A. Ngoc, et al. “FBK-HLT: A New Framework for Semantic Textual Similarity”, Proceedings

of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 102–106, Denver,

Colorado, June 4-5, 2015,©2015 Association for Computational Linguistic.

[71] T. Liling, et al. “USAAR-SHEFFIELD Semantic Textual Similarity with Deep Regression and

Machine Translation Evaluation Metrics”, Proceedings of the 9th International Workshop on

Semantic Evaluation (SemEval 2015), pp. 85–89, Denver, Colorado, June 4-5, 2015. ©2015

Association for Computational Linguistics

[72] A. Piyush, et al. “DCU: Using Distributional Semantics and Domain Adaptation for the Semantic

Textual Similarity SemEval-2015 Task 2”, Proceedings of the 9th International Workshop on

Semantic Evaluation (SemEval 2015), pp. 143–147, Denver, Colorado, June 4-5, 2015. ©2015

Association for Computational Linguistics

82

[73] H. Lushan, et al. “Samsung Align-and-Differentiate Approach to Semantic Textual Similarity”,

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 172–

177, Denver, Colorado, June 4-5, 2015,©2015 Association for Computational Linguistics.

 [75] F. Saric, et al. “TakeLab: systems for measuring semantic text similarity”, In: 1st Joint Conf. on

Lexical and Computational Semantics, pp.441–448 (2012)

[76] Z. Jiang, et al. “ECNU: Using Traditional Similarity Measurements and Word Embedding for

Semantic Textual Similarity Estimation”, Proceedings of the 9th International Workshop on

Semantic Evaluation (SemEval 2015), pp. 117–122, Denver, Colorado, June 4-5, 2015. ©2015

Association for Computational Linguistics

[77] H. Christian, et al. “ExB Themis: Extensive Feature Extraction from Word Alignments for

Semantic Textual Similarity”, Proceedings of the 9th International Workshop on Semantic

Evaluation (SemEval 2015), pp. 264–268, Denver, Colorado, June 4-5, 2015©2015 Association

for Computational Linguistics

[78] Md. S. Arafat, et al. “Dls©cu: Sentence similarity from word alignment”, In Proceedings of the

8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 241–246, Dublin,

Ireland, 2014, Association for Computational Linguistics and Dublin City University.

[79] K. Sakethram, et al. “UMDuluth-BlueTeam: SVCSTS - A Multilingual and Chunk Level Semantic

Similarity System”, Proceedings of the 9th International Workshop on Semantic Evaluation

(SemEval 2015), pp. 107–110, Denver, Colorado, June 4-5, 2015©2015 Association for

Computational Linguistics.

83

[80] B. Steven, “NLTK: The Natural Language Toolkit”, Proceedings of the COLING/ACL 2006

Interactive Presentation Sessions, pp. 69–72, Sydney, July 2006.© 2006 Association for

Computational Linguistics

[81] M. Tomas, “Distributed representations of words and phrases and their compositionality”, In

Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.

[82] E. Agirre, et al. “UBC: Cubes for English Semantic Textual Similarity and Supervised Approaches

for Interpretable STS”, Proceedings of the 9th International Workshop on Semantic Evaluation

(SemEval 2015), pp. 178–183, Denver, Colorado, June 4-5, 2015.©2015 Association for

Computational Linguistics

[83] C. C. Chang, and C. J. Lin, “LIBSVM: A library for support vector machines” ACM Transactions

on Intelligent Systems and Technology, 2(3):27:1–27, 2011.

[84] M. Hall, “The WEKA Data Mining Software: An Update. SIGKDD Explorations", 11(1):10–18,

2009.

[85] Y. L. Nay, et al. “Developing a Chunk-based Grammar Checker for Translated English

Sentences”, 25th Pacific Asia Conference on Language, Information and Computation, pp. 245–

254

[86] S. Abney, “Tagging and Partial Parsing, In: Ken Church, Steve Young, and Gerrit Bloothooft (eds.),

Corpus-Based Methods in Language and Speech”, Kluwer Academic Publishers, Dordrecht, 1996.

[87] Landauer and S. Dumais, “A solution to plato’s problem: The latent semantic analysis theory of

the acquisition, induction, and representation of knowledge”, In PsychologicalReview, 104, pp.

211–240, 1997.

84

[89] C. T. Meadow, “Text Information Retrieval Systems”, Academic Press, Inc. 1992.

[90] Corpus-based and Knowledge-based Measures of Text Semantic Similarity

http://www.cse.unt.edu/~rada/papers/mihalcea.aaai06.pdf

[91] N. Okazaki, et al. “Sentence Extraction by Spreading Activation through Sentence Similarity,”

IEICE Trans. Information and Systems, vol. E86D, no. 9, pp. 1686-1694, 2003.

[92] P. W. Foltz, et al. “The measurement of textual coherence with latent semantic analysis”,

Discourse Processes, vol. 25, no. 2-3, pp. 285-307,1998.

[93] L. Yang, et al. “yiGou A Semantic Text Similarity Computing System Based on SVM”,

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 80–

84, Denver, Colorado, June 4-5, 2015.©2015 Association for Computational Linguistics

[94] F. Pedregosa, “Scikit-learn: Machine learning in Python”, The Journal of Machine Learning

Research, vol. 12, pp. 2825-2830, (2011).

[95] B. Hanna, et al. “MiniExperts An SVM Approach for Measuring Semantic Textual Similarity”,

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 96–

101, Denver, Colorado, June 4-5, 2015.© 2015 Association for Computational Linguistics

[96] S. Reese, et al. “Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus”,

Paper presented at the 7th Language Resources and Evaluation Conference, LaValleta, Malta.

(2010). (http://www.cs.upc.edu/~nlp/papers/reese10.pdf)

[98] D. Blei, et al. “Latent dirichlet allocation”, Journal of Machine Learning Research, 3:993–1022,

2003.

http://www.cse.unt.edu/~rada/papers/mihalcea.aaai06.pdf

85

[99] T. Mikolov, et al. “Efficient Estimation of Word Representations in Vector Space”, In Proceedings

of Workshop at ICLR, 2013.

[100] Y. H. Li, et al. “An Approach for Measuring Semantic Similarity Using Multiple Information

Sources”, IEEE Trans. Knowledge and Data Eng.,vol. 15, no. 4, pp. 871-882, July/Aug, 2003.

[101] M. Anderka, B. Stein, “The ESA Retrieval Model Revisited SIGIR”, 09, July 19–23, 2009, Boston,

Massachusetts, USA. ACM 978-1-60558-483-6/09/07.

[102] N. Okazaki, et al. “Sentence Extraction by Spreading Activation through Sentence Similarity”,

IEICE Trans. Information and Systems, vol. E86D, no. 9, pp.1686-1694, 2003.

[103] A. Budanitsky, and G. Hirst, “Evaluating WordNet-based measures of lexical semantic

relatedness”, Comp. Linguistics, 32(1), 13–47, 2006.

[104] M. A. Rodriguez and M. J. Egenhofer, “Determining Semantic Similarity among Entity Classes

from Different Ontologies”, IEEE Trans. Knowledge and Data Eng.,vol. 15, no. 2, pp. 442-456,

Mar./Apr. 2003

[105] E. Agirre et al. “Why do you say they are similar? Interpretable Semantic Textual Similarity”,

Proceedings of SemEval-2016, pp. 524–536, San Diego, California, June 16-17, 2016.©2016

Association for Computational Linguistics

[106] L. Ballesteros, and B. Croft, “Dictionary-based methods for cross-lingual information retrieval”,

In Proceedings of the 7th International DEXA Conference on Database and Expert Systems

Applications, pp. 791-801

[107] R. Baeza-Yates, and Ribeiro-Neto, B. (1999). Modern information retrieval. England:

ACM Press.

86

[108] V. Lifschitz. 2008. What is answer set programming?. In AAAI, volume 8, pp. 1594–1597.

[109] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński, (2011), Answer set programming at

a glance, Communications of the ACM, 54(12):92–103.

[110] R. S. Jeffrey Pennington, and Christopher Manning, “Glove: Global vectors for word

representation”, In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing(EMNLP), pp. 1532–1543, Association for Computational Linguistics. 2014.

[111] D. Walter & V. Antal,“Memory-based language processing”, Cambridge University Press. 2005.

[112] G. Varelas, et al. “Semantic similarity methods in WordNet and their application to information

retrieval on the web”, Proceedings of the 7th annual ACM international workshop on Web

information and data management, (2005) October 31- November 05, Bremen, Germany.

[113] D. Lin, “An information-theoretic definition of similarity”, Proceedings of the 15th International

Conference on Machine Learning, Madison, Wisconsin, USA (1998).

[114] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus statistics and lexical

taxonomy”, Proceedings of International Conference on Research in Computational Linguistics,

(1997) August 22-24; Taipei, TaiWan.

[115] A. Tversky, “Features of Similarity”, Psycological Review, vol. 84, no. 4, (1977).

[116] N. Seco, et al. “An intrinsic information content metric for semantic similarity in WordNet”,

Proceedings of the 16th European Conference on Artificial Intelligence, (2004) August 22-27,

Valencia, Spain.

[117] D. Sánchez, et al. “Ontology-based information content computation”, Knowl.-Based Syst., vol.

24, no. 2, (2011).

87

[118] Md. H. Seddiqui and M. Aono, “Metric of intrinsic information content for measuring semantic

similarity in an ontology”, Proceedings of 7th Asia-Pacific Conference on Conceptual Modeling,

(2010) January 18-21; Brisbane, Australia.

