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Abstract

In this thesis we analyze a nondegenerate three-level cascade laser with cavity mode

coupled to a two-mode squeezed vacuum reservoir with the aid of master equa-

tion, We obtain the stochastic differential equations associated with the normal or-

dering,correlations of the noise force and the solutions of the resulting differential

equations.Applying the solutions of the resulting differential equations.we calculate

quadrature variances, photon entanglement Photon number correlations,normalized

second-order correlation functions and fluctuation of intensity difference for the cav-

ity modes.We also determine the mean photon number sum and difference and the

photon number variance sum and difference for the two mode cavity light employing

the Q function.We study the squeezing properties and entanglement of the two mode

cavity light.It turns out that the generated light exhibits a two-mode squeezing and en-

tanglement when initially there are more atoms in the lower level.Moreover,a strong

correlation between photon numbers along with a significant fluctuation in the inten-

sity difference is found.
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1

Introduction

Entanglement is one of the fundamental tools for quantum information processing

and communication protocols. The generation and manipulation of entanglement has

attracted a great deal of interest with wide applications in quantum teleportation[1],

quantum dense coding[2], quantum computation[3],quantum error correction[4],and

quantum cryptography[5]. Squeezing is one of the nonclassical features of light that

have been extensively studied by several authors[1 8].squeezed light has potential ap-

plications in the detection of week signals and in low-noise communications [1,2].

Squeezed light can be generated by various quantum optical processes such as subhar-

monic generations [15,10 12],resonance florescence [6,7],and three-level laser under

certain conditions[1, 3, 4, 9, 16 27].Hence it proves useful to find some convenient

means of generating a bright squeezed light.We define a three-level cascade laser as a

quantum optical system in which three-level atoms in a cascade configuration and ini-

tially prepared in a coherent superposition of the top and bottom levels are injected at

a constant rate into a cavity coupled to a two mode squeezed vacuum reservoir.

These atoms are removed from the cavity after some time, which is long enough for the

atoms to decay spontaneously to levels other than the middle or bottom. using these

mechanisms simultaneously [10, 12, 13, 14]. The top, intermediate, and bottom levels

of a three-level cascade atom can be conveniently denoted by |a〉, |b〉, and|c〉, respec-

tively.A direct transition between levels |a〉 and |c〉 is taken to be dipole forbidden. When

a three-level cascade atom decays from the top level to the bottom level via the interme-

1
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diate level, two photons are emitted. If the two photons have the same frequency, the

three-level atom is called degenerate otherwise nondegenerate. Nondegenerate three-

level cascade laser is a source of a two-mode squeezed light that is characterized by a

strong correlation of the modes at two different frequencies.

The emission of light when the atoms makes the transition from the top level to in-

termediate level is light mode a, and the emission of light when the atoms makes the

transition from the intermediate level to the bottom level is light mode b. The squeezing

does not exist in each mode, but in the correlated state formed by the two modes.Due

to the strong correlation between the modes, the two-mode squeezed light generally

violates certain classical inequalities and hence can be applied in preparing Einstein-

Podolsky-Rosen (EPR) [28].

The generation and evolution of macroscopic entanglement in non-degenerate three-

level laser with driven coherence has been examined [29] using the sufficient entangle-

ment test proposed by Duan et al. Opposed to this work,Tesfa [30] and Alebachew [31]

have studied the entanglement properties when the atomic coherence is induced by

the superposition of atomic states.It is found that the entanglement obtained in such

lasers highly depends on the amount of squeezing in the two-mode light. Moreover, it

has been shown that the quadrature squeezing can be enhanced by coupling the cavity

mode to a squeezed vacuum reservoir [32].

Since the squeezed vacuum is coupled to the cavity modes via the single port mir-

ror, it makes the experimental realization difficult. However, experimentally realizable

scheme has been proposed by Gilles et al.[33] and was shown that the squeezing can

be increased effectively.Thus it appears that the combined system we have considered

could generate highly squeezed light.

In this thesis,we study the squeezing and entanglement properties of the two mode

cavity light generated by a nondegenerate three-level cascade laser with a cavity modes

coupled to a two-mode squeezed vacuum reservoir via a single-port mirror. We rigor-
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ously derive the master equation for the cavity mode coupled to a two-mode squeezed

vacuum reservoir and applying the master equation,we obtain stochastic differential

equations, the correlation properties of the noise force for the cavity mode variables

associated with the normal ordering and the solutions of stochastic differential equa-

tions.

we calculate the quadrature variance and squeezing, the mean and variances of the

photon number sum and difference,the photon number correlation, normalized corre-

lation photon number as well as fluctuations of the intensity difference for the cavity

modes employing the Q function.The Q function is obtained with the aid of the anti-

normally ordered characteristic function defined in the Heisenbeg picture. Moreover,

applying the entanglement criterion developed by Duan et al.[34],we investigate the

squeezing and entanglement non-degenerate three-level cascade laser coupled to a

two-mode squeezed vacuum reservoir.



2

Stochastic Differential Equations

In this chapter we seek to study the squeezing and statistical properties of the light pro-

duced by a nondegenerate three-level laser whose cavity contains a parametric ampli-

fier and coupled to a two-mode squeezed vacuum reservoir. Three-level atoms initially

prepared in a coherent superposition of the top and bottom levels are injected into the

cavity at a constant rate and removed from the cavity after sometime. We first obtain

the master equation and stochastic differential equations for the cavity mode variables

associated with the normal ordering. Using the solutions of the resulting differential

equations and the correlation properties of the noise forces, we calculate the quadra-

ture variances,.

In addition, we determine the mean and variances of the photon number sum and dif-

ference for the cavity modes employing the Q function. The Q function is obtained

with the aid of the antinormally ordered characteristic function defined in the Heisen-

beg picture.

2.1 Master Equation

In this section we wish to obtain the equation of evolution of the density operator for a

nondegenerate three-level laser and coupled to a two-mode squeezed vacuum reser-

voir. We first drive the equation of evolution of the density operator for the three-

level laser applying the linear and the adiabatic approximation schemes [4, 21]. Then

after obtaining the properties of the reservoir submode operators, we drive the time

4
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Figure 2.1: Scheme of a non-degenerate three-level cascade laser coupled to a two-

mode squeezed vacuum reservoir.

evolution of the reduced density operator for a cavity modes coupled to a two-mode

squeezed vacuum reservoir [22]. Finally, with the help of the two resulting equations,

we write the master equation for the system under consideration.

We consider a non-degenerate three-level cascade laser coupled to a two-mode squeezed

vacuum reservoir. In this quantum optical system, three-level atoms in a cascade con-

figuration, initially prepared in a coherent superposition of the top and bottom levels

are injected into a cavity at a constant rate ra and removed after certain time τ .

We denote the top, intermediate, and bottom levels of a three-level atom by |a〉, |b〉,

and |c〉 as shown fig.1 we assume the cavity mode to be at resonance with the two

transitions|a〉, |b〉, and |c〉and |b〉 → |c〉, with direct transition between levels|a〉 and |c〉 to

be dipole forbidden.The interaction of a nondegenerate three-level atom with the cav-

ity modes can be described by the Hamiltonian.

Ĥ = ig(|a〉〈b|â− â†|b〉〈a|+ |b〉〈c|b̂− b̂†|c〉〈b|) (2.1)
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where g is the coupling constant, â and b̂ are the annihilation operators for the cavity

modes. We consider a three-level atom initially in the state

|ψA(0)〉 = Ca|a〉+ Cc|c〉 (2.2)

The density operator for a single atom can then be written as

ρ̂A(0) = ρ(0)
aa |a〉〈a|+ ρ(0)

ac |a〉〈c|+ ρ(0)
ca |c〉〈a|+ ρ(0)

cc |c〉〈c| (2.3)

where

ρ(0)
aa = |Ca|2andρcc = |Cc|2 (2.4)

are the probability for the atom to be in the upper and the lower levels at the initial time

ρ(0)
ac = CaC

∗
c andρ

(0)
ca = CcC

∗
a (2.5)

represent the atomic coherence at the initial time. We note that

|ρ(0)
ac |2 = ρ(0)

aa ρ
2
cc (2.6)

Suppose ρ̂AR(t, tj) is the density operator for as single atom plus the cavity mode at time

t, with the atom injected at time tj such that t − τ ≤ tj ≤ t. Then the density operator

for all atoms in the cavity plus the cavity mode at time t can be written as

ρ̂AR(t) = ra

∑
ρ̂AR(t, tj)∆tj, (2.7)

in which ra∆tj represents the number of atoms are injected in to the cavity at time∆tj .

Now converting the summation into integration in the limit ∆tj −→ 0, we have at time

t

ρ̂AR(t) = ra

∫ t

t−τ

ρ̂AR(t, t
′
)dt

′
(2.8)

and on differentiating with respect to t, there follows

dρ̂AR(t)

dt
= ra(ρ̂AR(t, t)− ρ̂AR(t, t− τ)) + ra

∫ t

t−τ

ρ̂AR(t, t
′
)dt

′
(2.9)
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We observe that ρ̂AR(t, t) is the density operator for the cavity modes plus an atom in-

jected at time t and ρ̂AR(t, t − τ), represents the density operator for an atom plus the

cavity modes at time twith the atom being removed from the cavity at this time. There-

fore, these density operators can be decoupled, so that

ρ̂AR(t, t) = ρ̂A(0)ρ̂(t), (2.10)

ρ̂AR(t, t) = ρ̂A(t− τ)ρ̂(t), (2.11)

with ρ̂(t) being the density operator for the cavity mode alone. In view of Eqs. (2.10),

Eq.(2.11) and Eq. (2.9) can be written as

dρ̂AR(t)

dt
= ra(ρ̂AR(0)− ρ̂AR(t, t− τ))ρ̂(t) + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′
)dt

′
, (2.12)

In the absence of damping of the cavity mode by a vacuum reservoir, the density oper-

ator ρ̂(t, t
′
) evolves in time according to

∂

∂t
ρ̂AR(t, t

′
)dt

′
= −i[Ĥ, ρ̂AR(t, t

′
)], (2.13)

so that using Eq.(2.13) and taking into account Eq.(2.10),one can put Eq. (2.12), Eq.in

the from

dρ̂AR(t)

dt
= ra(ρ̂AR(0)− ρ̂AR(t, t− τ))ρ̂(t)− i[Ĥ, ρ̂AR(t, t

′
)]. (2.14)

Furthermore,tracing over the atomic variables, we have

d ˆρ(t)

dt
= −iT rA[Ĥ, ρ̂AR(t)], (2.15)

With the aid of Eqs. (2.15) and (2.1), the equation of evolution of the density operator

for the cavity modes can be put in the form

dρ̂

dt
= g(âρ̂ba − ρ̂baâ− â†ρ̂ab + ρ̂abâ

† + b̂ρ̂cb − ρ̂cbb̂− b̂†ρ̂bc + ρ̂bcb̂
†), (2.16)

where

ρ̂αβ = 〈α|ρ̂AR(t)|β〉, (2.17)
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with α,β = a, b, c.next we proceed to determine the matrix elements ρ̂αβ.We see from Eq.

(2.14) that

dρ̂αβ

dt
= ra{〈α|ρ̂A(0)|β〉 − 〈α|ρ̂A(t− τ)|β〉ρ̂(t)} − 〈α|[Ĥ, ρ̂AR(t)]|β〉 − γρ̂αβ, (2.18)

in which the last term is included to account for the decay of the atoms due to sponta-

neous emission. Here γ, considered to be the same for all the three levels, is the atomic

decay rate. We assume that the atoms are removed after they have decayed to a level

other than levels |b〉 and |c〉. then we see that

〈α|ρ̂A(t− τ)|β〉 = 0 (2.19)

with α, β = a, b, c. next we proceed to determine the matrix elements ρ̂αβ involved in Eq.

(2.17). Taking into account Eqs. (2.18), (2.19), (2.3), and (2.1), we can write

dρ̂αβ

dt
= ra(ρ

(0)
aa δαaδaβ + ρ(0)

ac δαaδcβ + ρ(0)
ca δαcδaβ + ρ(0)

cc δαcδcβ)ρ̂

+g(âρ̂bβδαa − â†ρ̂cβδαb − b̂†ρ̂bβδαc

−ρ̂αaâδbβ + ρ̂αbâ
†δaβ − ρ̂αbb̂δcβ + ρ̂αcb̂

†δbβ)− γρ̂αβ, (2.20)

Applying Eq.(2.20), we obtain

dρ̂ab

dt
= g(âρ̂bb − ρ̂aaâ+ ρ̂acb̂

†)− γρ̂ab, (2.21)

dρ̂bc

dt
= g(b̂ρ̂cc − ρ̂bbb̂− â†ρ̂ac)− γρ̂bc, (2.22)

dρ̂aa

dt
= raρ̂

(0)
aa ρ̂+ g(âρ̂ba + ρ̂abâ

†)− γρ̂aa, (2.23)

dρ̂cc

dt
= raρ̂

(0)
cc ρ̂− g(b̂†ρ̂bc + ρ̂cbb̂)− γρ̂cc, (2.24)

dρ̂ac

dt
= raρ̂

(0)
ac ρ̂+ g(âρ̂bc + ρ̂abb̂)− γρ̂ac, (2.25)

dρ̂ac

dt
= −g(â†ρ̂ab − b̂ρ̂cb + ρ̂baâ− ρ̂bcb̂

†)− γρ̂bb. (2.26)
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Dropping the g terms in Eqs. (2.22),(2.23),(2.24),(2.25) and then applying the adiabatic

approximation scheme,we get

ρ̂aa =
raρ

(0)
aa

γ
ρ̂, (2.27)

ρ̂cc =
raρ

(0)
cc

γ
ρ̂, (2.28)

ρ̂ac =
raρ

(0)
ac

γ
ρ̂, (2.29)

ρ̂bb = 0. (2.30)

Putting the above results into Eqs.(2.20) and (2.21), we have

dρ̂ab

dt
=

gra

γ
(ρ(0)

ac ρ̂b̂
† − ρ(0)

aa ρ̂â)− γρ̂ab, (2.31)

d̂ρbc

dt
=

gra

γ
(b̂ρ(0)

cc ρ̂− â†ρ(0)
ac ρ̂)− γρ̂bc, (2.32)

so that employing once more the adiabatic approximation scheme, we get

ρ̂ab =
gra

γ2
(ρ(0)

ac ρ̂b̂
† − ρ(0)

aa ρ̂â), (2.33)

ρ̂bc =
gra

γ2
(ρ(0)

cc b̂ρ̂− ρ(0)
ac â

†ρ̂), (2.34)

Finally on account of Eqs. (2.22) and (2.23), the equation of evolution of the density

operator for the cavity modes given by Eq. (2.7)turn out to be

dρ(t)

dt
=

Aρ
(0)
aa

2
(2â†ρ̂â− ââ†ρ̂− ρ̂â†ρ̂− ρ̂ââ†)

+
Aρ

(0)
cc

2
(2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂)

−Aρ
(0)
ac

2
(2â†ρ̂b̂† − b̂†â†ρ̂− ρ̂b̂†â†)

−Aρ
(0)
ca

2
(2b̂ρ̂â− ρ̂âb̂− âb̂ρ̂). (2.35)
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Two-Mode Squeezed Vacuum Reservoir

The density operator for a two-mode squeezed vacuum reservoir can be expressed as

ρ̂(r) =
∏

i

Ŝi|0i0i〉〈0i0i|Ŝ†i (r) (2.36)

where

Ŝi(r) = er(ĉ†i d̂i−ĉid̂i) (2.37)

is the squeeze operator with the squeeze parameterr taken for convenience to be real

and positive, and ĉiand d̂i represent the annihilation operators for the reservoir sub-

modes. With the aid of Eq. (2.37) and the identity operator Î = Ŝi(r)Ŝ
†
i (r), we can write

as

〈Ĉj d̂k〉 =
∏

i

〈0i0i|ĉj(r)d̂k|0i0i〉, (2.38)

in which

ĉj(r) = Ŝ†i (r)ĉjŜi(r) (2.39)

and

d̂k(r) = Ŝ†i (r)d̂k(r)Ŝi(r). (2.40)

Differentiating Eq.(2.40) and the adjoint of Eq.(2.41) with respect to r, we obtain

d

dr
ĉj = d̂†i (r)δij (2.41)

and

d

dr
d̂†k(r) = ĉi(r)δik. (2.42)

In order to decouple these equations, we differentiate Eq. (2.42) once more with respect

to r. We then get

d2

dr2
ĉj(r) = ĉj(r). (2.43)
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The solution of this equation can be put in the form

ĉj(r) = Aer +Be−r. (2.44)

Applying the condition r = 0, we see that

ĉj|r=0 = A+B = ĉiδij, (2.45)

d

dr
ĉj|r=0 = A−B = d̂†δij. (2.46)

It then follows that

A =
1

2
(ĉi + d†i )δij, (2.47)

B =
1

2
(ĉi − d̂†i )δij, (2.48)

so that on account of these, Eq. (2.45) takes the form

ĉj(r) = (ĉi cosh r + d̂†i sinh r)δij. (2.49)

Following a similar procedure, we can easily verify that

d̂k(r) = (d̂i cosh r + ĉ†i sinh r)δik (2.50)

In view of Eqs. (2.49) and (2.50), we have

〈ĉj d̂k〉 =
∏

i

〈0i0i|ĉid̂i cosh2 r + (d̂†d̂i + ĉiĉ
†
i ) cosh r sinh r + d̂†i sinh2 r|0i0i〉δijδik.(2.51)

Applying the relation ĉiĉ
†
i = 1 + ĉ†i ĉi, we find

〈ĉj d̂k〉 = Mδjk (2.52)

whereM = sinh r cosh r. We assume that k is of the order of the central wave number k0,

so that we can replace k by 2k0 − k. In view of this, Eq. (2.53) can be rewritten as

〈ĉj d̂k〉 = Mδj,2k0−k. (2.53)
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One can also easily establish in a similar manner that

〈ĉk〉 = 〈d̂k〉 = 〈ĉj ĉk〉 = 〈d̂j d̂k〉 = 〈ĉj d̂†k〉 = 〈ĉ†j ĉ
†
k〉 = 〈d̂†j d̂

†
k〉 = 〈ĉ†j d̂k〉 = 0, (2.54)

〈ĉ†j d̂
†
k〉 = Mδj,2k0−k, (2.55)

〈ĉ†j ĉk〉 = 〈d̂†j d̂k〉 = Nδjk, (2.56)

〈ĉj ĉ†k〉 = 〈d̂j d̂
†
k〉 (2.57)

in which

N = sinh2 r (2.58)

We now proceed to drive the equation of evolution of the density operator for cavity

modes coupled to a two-mode squeezed vacuum reservoir.

In general, the reduced density operator for cavity modes coupled to a reservoir can be

expressed in Born approximation as

d

dt
ρ̂(t) = −i[〈ĤSR(t)〉, ρ̂(0)]−

∫
dt

′
TrR(ĤSR(t)ĤSR(t

′
)ρ̂(t)

′
R)

+

∫
dt

′
TrR(ĤSR(t)ρ̂(t

′
)RĤSR(t

′
)

+

∫
dt

′
TrR(ĤSR(t

′
)ρ̂(t

′
)RĤSR(t)

−
∫
dt

′
TrR(ρ̂(t

′
)RĤSR(t

′
)ĤSR(t). (2.59)

We seek to obtain the equation of evolution of the reduced density operator for cav-

ity modes coupled to a two-mode squeezed vacuum. The Hamiltonian describing the

interaction of the cavity modes with the two-mode squeezed vacuum reservoir can be

written as

ĤSR(t) = i
∑

k

λk(â
†ĉke

i(ωa−ωk)t − âĉ†ke
−i(ωa−ωk)t + b̂†d̂ke

i(ωa−ωk)t + b̂b̂†ke
−i(ωb−ωk)t),(2.60)
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where ĉk and d̂k are the annihilation operators for reservoir submodes and λk is the

coupling constant. Using Eqs.(2.60), one can write Eq.(2.61) as

d

dt
ρ̂(t) =

∫
dt

′
(I1(â

†2ρ̂(t
′
)â†2 − 2â†ρ̂(t

′
)â†) + I2(â

†âρ̂(t
′
) + ρ̂(t

′
)â†â− 2âρ̂(t

′
)â†

+I3(ââ
†ρ̂(t

′
) + ρ̂(t

′
)ââ† − 2â†ρ̂(t

′
)â) + I4(â

2ρ̂(t
′
) + ρ̂(t

′
)â2 − 2âρ̂(t

′
)â)

+I5(b̂
†2ρ̂(t

′
) + ρ̂(t

′
)b̂†2 − 2b̂†ρ̂(t

′
)b̂†) + I6(b̂

†b̂ρ̂(t
′
) + ρ̂(t

′
)b̂†b̂− 2âρ̂(t

′
)b̂†)

+I7(b̂b̂
†ρ̂(t

′
) + ρ̂(t

′
)b̂b̂† − 2b̂†ρ̂(t

′
)b̂) + I8(b̂

2ρ̂(t
′
) + ρ̂(t

′
)b̂2 − 2b̂ρ̂(t

′
)b̂)

+2I9(â
†b̂†ρ̂(t

′
) + ρ̂(t

′
)â†b̂† − b̂†ρ̂(t

′
)b̂†)

+2I10(â
†b̂ρ̂(t

′
+ ρ̂(t

′
)â†b̂− b̂ρ̂(t

′
)â† − â†ρ̂(t

′
)b̂)

+2I11(âb̂
†ρ̂(t

′
+ ρ̂(t

′
)âb̂† − b̂†ρ̂(t

′
)â− âρ̂(t

′
)b̂†)

+2I12(âb̂ρ̂(t
′
) + ρ̂(t

′
)âb̂− b̂ρ̂(t

′
)â− âρ̂(t

′
)b̂), (2.61)

where

I1 =
∑
kk′

λkλk′ 〈ĉkĉk′ 〉ei(ωa−ωk)t+ i(ωa − ω
′

k)t
′
, (2.62)

I2 =
∑
kk′

λkλk′ 〈ĉkĉ
†
k′
〉ei(ωa−ωk)t− i(ωa − ω

′

k)t
′
, (2.63)

I3 = −
∑
kk′

λkλk′ 〈ĉ
†
kĉk′ 〉e

−i(ωa−ωk)t+ i(ωa − ω
′

k)t
′
, (2.64)

I4 = −
∑
kk′

λkλk′ 〈ĉ
†
kĉ
†
k′
〉e−i(ωa−ωk)t+ i(ωa − ω

′

k)t
′
, (2.65)

I5 =
∑
kk′

λkλk′ 〈d̂kd̂k′ 〉ei(ωa−ωk)t− i(ωa + ω
′

k)t
′
, (2.66)

I6 = −
∑
kk′

λkλk′ 〈ĉ
†
kĉ
†
k′
〉ei(ωa−ωk)t− i(ωa − ω

′

k)t
′
, (2.67)

I7 = −
∑
kk′

λkλk′ 〈d̂
†
kd̂k′ 〉e−i(ωa−ωk)t+ i(ωa − ω

′

k)t
′
, (2.68)
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I8 =
∑
kk

′

λkλk′ 〈d̂
†
kd̂

†
k′
〉e−i(ωa−ωk)t− i(ωa − ω

′

k)t
′
, (2.69)

I9 =
∑
kk′

λkλk
′ 〈ĉkd̂k

′ 〉e−i(ωa−ωk)t+ i(ωa − ω
′

k)t
′
, (2.70)

I10 =
∑
kk′

λkλk′ 〈ĉkd̂
†
k′
〉ei(ωa−ωk)t− i(ωa − ω

′

k)t
′
, (2.71)

I11 = −
∑
kk′

λkλk′ 〈ĉ
†
kd̂k

′ 〉e−i(ωa−ωk)t+ i(ωa − ω
′

k)t
′
, (2.72)

I12 =
∑
kk′

λkλk′ 〈ĉ
†
kd̂

†
k
′ 〉ei(ωa−ωk)t+ i(ωa − ω

′

k)t
′
, (2.73)

In view of Eqs. (2.55), We easily see that

I1 = I4 = I5 = I8 = I10 = I11 = 0. (2.74)

On account of Eqs.(2.69),we have

I2 = −(N + 1)
∑

k

λ2
ke

i(ωa−ωk)(t− t
′
) (2.75)

Now replacing ωa by the average value ω0 = ωa−ωb

2
, and assuming the reservoir submode

frequencies to be closely spaced then the summation can be converted into integration.

We then write

I2 = −(N + 1)

∫ ∞

0

dωg(ω)λ2(ω)λ(ω)ei(ω0−ω)(t− t
′
), (2.76)

where g(ω) is the density of the reservoir submodes. We expect ωto vary little around

ω0.In view of this, we can replace g(ω)andλ(ω) by g(ω0) and λ(ω0) and extend the lower

limit of the integration to −∞, so that

I2 = −(N + 1)g(ωO)λ2(ω0)

∫ ∞

−∞
dωei(ω0−ω)(t− t

′
) (2.77)

Moreover, upon setting ω
′
= ω − ω0, we see that

I2 = −(N + 1)g(ωO)λ2(ω0)

∫ ∞

−∞
dω

′
ei(t−t

′
)ω

′

, (2.78)



2.1 Master Equation 15

From which follows

I2 = −k(N + 1)δ(t− t
′
) (2.79)

where

k = 2πg(ω0)λ
2(ω0) (2.80)

is defined to be the cavity damping constant.Following a similar procedure, we can also

easily obtain

I3 = I7 = −kNδ(t− t
′
), (2.81)

I6 = −k(N + 1)δ(t− t
′
), (2.82)

I9 = I12 = kMδ(t− t
′
). (2.83)

Upon substituting Eqs.(2.75), (2.80),(2.82),(2.83), and (2.84) into Eq.(2.62), we have

d

dt
ρ̂(t) = k

∫
(dt

′
(N + 1)(2âρ̂(t

′
)â† − â†âρ̂(t

′
)− ρ̂(t

′
)â†â))

+N(2âρ̂(t
′
)â† − â− ââ†ρ̂(t

′
)− ρ̂(t

′
)ââ†)

+(N + 1)(2b̂ρ̂(t
′
)b̂† − b̂†b̂ρ̂(t

′
)− ρ̂(t

′
)b̂†â)

+N(2b̂†ρ̂(t
′
)b̂− b̂b̂†ρ̂(t

′
)− ρ̂(t

′
)b̂b̂†)

−2M(b̂†ρ̂(t
′
)â† + â†ρ̂(t

′
)b̂† − â†b̂†ρ̂(t

′
)− ρ̂(t

′
)â†b̂†)

−2M(b̂ρ̂(t
′
)â+ âρ̂(t

′
)b̂− âb̂ρ̂(t

′
)− ρ̂(t

′
)âb̂)δ(t− t

′
), (2.84)

so that carrying out the integration, we get

d

dt
ρ̂(t) =

k

2
(N + 1)(2âρ̂â† − â†âρ̂− ρ̂â†â+ 2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂)

k

2
N(2â†ρ̂â− ââ†ρ̂− ρ̂ââ† + 2b̂†ρ̂b̂− b̂b̂†ρ̂− ρ̂b̂b̂†)

−kM(â†ρ̂b̂† + b̂†ρ̂â† − â†b̂†ρ̂− ρ̂â†b̂† + b̂ρ̂â+ âρ̂b̂− b̂âρ̂− ρ̂b̂â) (2.85)
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This represents the equation of evolution of the reduced density operator for cavity

modes coupled to a two-mode squeezed vacuum reservoir. Taking into account Eqs.

(2.45)and(2.85), the master equation for the cavity modes of a nondegenerate three-

level laser whose cavity mode coupled to a two-mode squeezed vacuum reservoir can

be written as

dρ̂(t)

dt
=

1

2
[(Aρ(0)

aa + kN)(2â†ρ̂â− ââ†ρ̂− ρ̂ââ†) + (Aρ(0)
cc k(N + 1))(2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂)]

−1

2
[(Aρac + kM)(2â†ρ̂b̂† − b̂†â†ρ̂− ρ̂b̂†â†) + (Aρ(0)

ca + k(2b̂ρ̂â− âb̂ρ̂− ρ̂âb̂)]

+
1

2
k[(N + 1)(2âρ̂â† − â†âρ̂− ρ̂â†â) +N(2b̂†ρ̂b̂− b̂b̂†ρ̂− ρ̂b̂b̂†)]

−1

2
kM(2b̂†ρ̂â† − â†b̂†ρ̂− ρ̂â†b̂† + 2âρ̂b̂− b̂âρ̂− ρ̂b̂â) (2.86)

where

A =
2g2ra

γ2
(2.87)

is the linear gain coefficient with γ being the spontaneous atomic decay rate assumed

to be the same for all the three levels.

2.1.1 Stochastic Differential Equations

Next we wish to obtain stochastic differential equations associated with the normal or-

dering. The expectation value of an operator â evolves in time in the Schrodinger pic-

ture according to

d

dt
〈Â〉 = Tr

(
dρ̂

dt
Â

)
(2.88)
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Employing Eq.(2.86)and Eq.(2.88we see that

d

dt
〈â〉 =

1

2
(Aρ(0)

aa + kN)Tr(2â†ρ̂ââ− ââ†ρ̂â− ρ̂ââ†â)

+
1

2
(Aρ(0)

cc + k(N + 1))Tr(2b̂ρ̂b̂†â− ρ̂b̂†b̂â− b̂†b̂ρ̂â)

−1

2
(Aρ(0)

ac + kM)Tr(2â†ρ̂b̂†â− b̂†â†ρ̂â− ρ̂b̂†â†â)

−1

2
(Aρ(0)

ca + kM)Tr(2b̂ρ̂ââ− âb̂ρ̂â− ρ̂âb̂â)

+
k

2
[(N + 1)Tr(2âρ̂â†â− â†âρ̂â− ρ̂â†ââ) +NTr(2b̂†ρ̂b̂â− b̂b̂†ρ̂â− ρ̂b̂b̂†â)]

−k
2
MTr(2b̂†ρ̂â†â− â†b̂†â+ 2âρ̂b̂â− b̂âρ̂â− ρ̂b̂ââ). (2.89)

Applying the cyclic property of the trace operation and the commutation relation

[â, â†] = [b̂, b̂†] = 1, (2.90)

we get

d

dt
〈â〉 = −1

2
µa〈â〉 −

1

2
Aρ(0)

ac 〈b̂†〉 (2.91)

where

µa = k − Aρ(0)
aa , (2.92)

ν− = −Aρ(0)
ac . (2.93)

Following the same procedure, it can also be easily verified that

d

dt
〈b̂〉 = −1

2
µc〈b̂〉+

1

2
Aρ(0)

ac 〈â†〉, (2.94)

d

dt
〈â2〉 = −µa〈â2〉 − Aρ(0)

ac 〈b̂†â〉, (2.95)

d

dt
〈b̂2〉 = −µc〈b̂2〉+ Aρ(0)

ac 〈â†b̂〉, (2.96)

d

dt
〈â†â〉 = −µa〈â†â〉 −

1

2
Aρ(0)

ac 〈â†b̂†〉+
1

2
Aρ(0)∗

ac 〈âb̂〉+ Aρ(0)
aa + kN, (2.97)
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d

dt
〈b̂†b̂〉 = −µc〈b̂†b̂〉+

1

2
Aρ(0)

ac 〈b̂†â†〉 −
1

2
Aρ(0)∗

ac + kN, (2.98)

d

dt
〈â†b̂〉 = −1

2
(µa + µc)〈â†b̂〉+

1

2
Aρ(0)

ac 〈â†2〉 −
1

2
Aρ(0)∗

ac 〈b̂2〉, (2.99)

d

dt
〈âb̂〉 = −1

2
(µa + µc)〈âb̂〉+

1

2
Aρ(0)

ac 〈â†â〉 −
1

2
Aρ(0)

ac 〈b̂†b̂〉+
1

2
(Aρ(0)

ac + 2kM),(2.100)

in which

µa = k − Aρ(0)
aa , µb = k + Aρ(0)

cc , µc =
1

2
[2k + A(ρ(0)

cc − ρ(0)
aa )] (2.101)

d

dt
〈α〉 = −1

2
µa〈α〉 −

1

2
Aρ(0)

ac 〈β∗〉 (2.102)

d

dt
〈β〉 = −1

2
µc〈β〉+

1

2
Aρ(0)

ac 〈α∗〉 (2.103)

d

dt
〈α2〉 = −µa〈α2〉 − Aρ(0)

ac 〈β∗β〉, (2.104)

d

dt
〈β2〉 = −µa〈β2〉 − Aρ(0)

ac 〈α∗β〉, (2.105)

d

dt
〈α∗α〉 = −µa〈α∗α〉 −

1

2
Aρ(0)

ac 〈α∗β∗〉+
1

2
Aρ(0)∗

ac 〈αβ〉+ Aρ(0)
aa + kN, (2.106)

d

dt
〈β∗β〉 = −µc〈β∗β〉+

1

2
Aρ(0)

ac 〈β∗α∗〉+
1

2
Aρ(0)∗

ac 〈αβ〉+ kN, (2.107)

d

dt
〈α∗β〉 = −1

2
(µa + µc)〈α∗β〉+

1

2
Aρ(0)

ac 〈α∗2〉+
1

2
Aρ(0)∗

ac 〈β2〉, (2.108)

d

dt
〈αβ〉 = −1

2
(µa + µc)〈αβ〉+

1

2
Aρac〈α∗α〉 −

1

2
Aρ(0)

ac 〈β∗β〉+
1

2
(Aρ(0)

ac + 2kM).(2.109)

the basis of Eqs. (2.89) and (2.92), we can write(2.108)

d

dt
α(t) = −1

2
µaα(t)− 1

2
Aρ(0)

ac α
∗(t) + fα(t), (2.110)
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d

dt
β∗(t) = −1

2
µcβ

∗(t)− 1

2
Aρ(0)

ac β
∗(t) + f ∗β(t), (2.111)

where fα(t) and fβ(t) are noise forces. The formal solutions of these equations can be

put in the form

α(t) = α(0)e−µa
t
2 +

∫ t

0

dt
′
eµa(t−t

′
)/2

[
− 1

2
Aρ(0)

ac β
∗(t

′
) + fα(t

′
)

]
, (2.112)

β∗(t) = β∗(0)e−µc
t
2 +

∫ t

0

dt
′
eµc(t−t

′
)/2

[
1

2
Aρacα(t

′
) + f ∗β(t

′
)

]
, (2.113)

2.1.2 Correlations of Noise Forces

We proceed to determine the properties of the noise forces. We note that Eq. (2.92) and

the expectation value of Eq. (2.100) as well as Eq. (2.93) and the expectation value of

Eq.(2.101) will have the same form provided that

〈fα(t)〉 = 〈fβ(t)〉 = 0. (2.114)

Applying the relation d
dt
〈α2〉 = 2〈α d

dt
α〉 along with Eq.(2.95)

d

dt
〈α2〉 = −µa〈α2〉 − Aρ(0)

ac 〈β∗α〉+ 2〈α(t)fα(t)〉 (2.115)

Comparison of this equation with (2.94) leads to

〈α(t)fα(t)〉 = 0. (2.116)

On account of Eq.(2.102) along with (2.106) we see that

〈α(0)fα(t)〉e−µat/2 +

∫ t

0

e−µa(t−t
′
)/2

[
− 1

2
Aρ(0)

ac 〈β∗(t
′
fα(t))〉+ 〈fα(t

′
)fα(t)〉

]
dt

′
= 0,(2.117)

so that taking into account Eq.(2.104) and the fact that a noise force at a certain instant

does not affect the cavity mode variables at earlier time, we have

〈fα(t
′
)fα(t)〉 = 0. (2.118)
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Similarly, we can easily establish that

〈fβ(t
′
)fβ(t)〉 = 〈f ∗α(t

′
)fβ(t)〉 = 0. (2.119)

Furthermore, using Eq.(2.100) and its complex conjugate, we have

d

dt
〈α∗α〉 = −µa〈α∗α〉 −

1

2
Aρ(0)

ac 〈α∗β∗〉 (2.120)

+〈α∗(t)fα(t)〉+ 〈f ∗α(t)f ∗α(t)α(t)〉. (2.121)

Comparison of this equation with Eq.(2.96) shows that

〈f ∗α(t)f ∗α(t)α(t)〉 = Aρ(0)
aa + kN. (2.122)

we note that the property of the dirac delta function∫ t

0

f(t
′
)δ(t− t

′
)dt

′
=

1

2
f(t) (2.123)

In view of Eq.(2.112) so that Eq. (2.111) can be rewritten as∫ t

0

e−µa(t−t)/2〈f ∗α(t
′
)fα(t)〉dt′ =

∫ t

0

e−µa(t−t)/2(Aρ(0)
aa +KN)δ(t− t

′
)dt

′
(2.124)

It then follows that

〈f ∗α(t
′
)fα(t)〉 = (Aρ(0)

aa +KN)δ(t− t
′
). (2.125)

It can also be established in a similar fashion that

〈f ∗α(t
′
)fα(t)〉 = KNδ(t− t

′
) (2.126)

〈f ∗α(t
′
)fα(t)〉 =

1

2
(Aρ(0)

ac + 2kM)δ(t− t
′
) (2.127)

The results described by Eqs. (2.109), (2.113), (2.114), (2.119), (2.123) and (2.125) rep-

resent the correlation properties of the noise forces and fα(t) and fβ(t) associated with

the normal ordering.
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2.1.3 Solutions of Stochastic Differential Equations

In the previous section we have found two Stochastic Differential Equations forα(t) and

β∗(t).

In this section we seek to obtain the solution of these coupled Stochastic Differential

Equations using matrix method.

On account of Eq.(2.108)and Eq.(2.109)

d

dt
J(t) = −1

2
MJ(t) + F (t), (2.128)

J(t) =

 α(t)

β(t)

 (2.129)

M =

 µa Aρ
(0)
ac

−Aρ(0)
ac µc

 (2.130)

F (t) =

 fα(t)

f ∗β(t)

 (2.131)

Introducing a matrix defined by

V =

 ν11 ν12

ν21 ν22

 (2.132)

V1 =

 ν11

ν21


and

V2 =

 ν12

ν22


being the eigenvectors of the matrix B, Eq.(2.121)can be written as

d

dt
J(t) = −1

2
V V −1J(t) + F (t). (2.133)
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Multiplying both sides from the left by V −1 we see that

d

dt
(V −1J(t)) = −1

2
R(V −1J(t)) + V −1F (t), (2.134)

where

R = = V −1MV

 1
2
(2κ+ Aη + λ) 0

0 1
2
(2κ− Aη − λ)

 (2.135)

in which λ+ and λ− are the eigenvalues of the matrix M . We note that Eq. (2.124) has a

well defined solution for λ+ > 0and λ− > 0. The solution of this equation can be written

as

J(t+ τ) = V e−
1
2
R(τ)V −1J(t) +

∫ τ

0

V e−
1
2
R(τ−τ

′
)V −1F (t+τ

′
))dτ

′
. (2.136)

We next proceed to find the eigenvalues and eigenvectors of the matrixM . Applying the

eigenvalue equation

MVi = λVi (2.137)

along with Eq (2.119), we find the characteristic equation

λ2 − (µa + µc)λ+ (µaµc − Aρ(0)∗
ac Aρ(0)

ac ) = 0. (2.138)

λ± =
1

2
(2k + Aη ± λ). (2.139)

Taking into account Eqs. (2.91), (2.100), and the relation

ρ(0)
aa + ρ(0)

cc = 1, (2.140)

η = ρ(0)
cc − ρ(0)

aa , (2.141)

λ =

√
A2 − 4Aρ

(0)∗
ac Aρ

(0)
ac . (2.142)

With the aid of Eqs.(2.80),(2.90),(2.119), (2.131), and (2.132), we have

(A+ λ)ν11 − 2Aρ(0)
ac ν21 = 0, (2.143)
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and taking into account the normalization condition:

ν2
11 + ν2

21 = 1, (2.144)

we get

ν11 =
−2(Aρ

(0)
ac )√

(A+ λ)2 + 4(−Aρ(0)
ac )2

ν21 =
A+ λ√

(A+ λ)2 + 4(−Aρ(0)
ac )2

(2.145)

Similarly we can also easily show that the elements of the eigenvector corresponding to

λ− to be

ν12 =
2Aρ

(0)
ac√

(A− λ)2 + 4(−Aρ(0)
ac )2

ν22 =
A− λ√

(A− λ)2 + 4(−Aρ(0)
ac )2

(2.146)

Now substitution of Eqs. (2.136) and (2.137) into Eq.(2.112) yeids

v =


−2Aρ

(0)
ac√

(A2
++4(−Aρ

(0)
ac )2

2Aρ
(0)
ac√

A2
−+4(−Aρ

(0)
ac )2

− A+√
A2

++4(−Aρ
(0)
ac )2

A−√
A2
−+4(−Aρ

(0)
ac )2

 , (2.147)

in which

A± = A± Aη (2.148)

And the inverse of the matrix V is found to be

V −1 =
1

4Aρac(0)λ

 A−

√
A2

+ + 4(−Aρ(0)
ac )2 −2Aρ

(0)
ac

√
A2

+ + 4(−Aρ(0)
ac )2

A+

√
A2
− + 4(−Aρ(0)

ac )2 −2Aρ
(0)
ac

√
A2
− + 4(−Aρ(0)

ac )2

 .(2.149)

Since Eq.(2.125) describes a diagonal matrix, we observe that

e−
1
2
Rτ =

 e−
1
4
(2κ+Aη+λ)τ 0

0 e−
1
4
(2κ−Aη−λ)τ

 , (2.150)
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e−
1
2
R(τ − τ

′
) =

 e−
1
4
(2κ+Aη+λ)(τ−τ

′
) 0

0 e−
1
4
(2κ−Aη−λ)τ−τ

′

 , (2.151)

From which follows

V e−
1
2
RτV −1

=

 T1(τ) C1(τ)

C2(τ) T2(τ)

 (2.152)

and

V e−
1
2
R(τ−τ

′
)V −1

=

 T1(τ − τ
′
) C1(τ − τ

′
)

C2(τ − τ
′
) T2(t− t

′
)

 , (2.153)

where

T1(τ) =
A+ Aη

2Aη
e−

1
2
(κ)τ − A− Aη

2Aη
e−

1
2
(κ+Aη)τ , (2.154)

T2(τ) =
A+ Aη

2Aη
e−

1
4
(2κ+2Aη)τ − A− Aη

2Aη
e−

1
2
(κ+2Aη+)τ , (2.155)

C1(τ) =
−Aρ(0)

ac

Aη
e−

1
2
(κ)τ +

Aρ
(0)
ac

Aη
e−

1
2
(κ+2Aη)τ , (2.156)

C2(τ) =
Aρ

(0)∗
ac

Aη
e−

1
2
(κ)τ − Aρ

(0)∗
ac

Aη
e−

1
2
(κ+Aη+)τ (2.157)

T1(τ − τ
′
) =

A+ Aη

2κ
e−

1
2
(κ)(τ−τ

′
) − A− Aη

2Aη
e−

1
2
(κ+Aη+λ)(τ−τ

′
), (2.158)

T2(τ − τ
′
) =

A+ Aη

2Aη
e−

1
2
(κ+Aη)(τ−τ

′
) − A− Aη

2Aη
e−

1
2
(κ)(τ−τ

′
), (2.159)

C1(τ − τ
′
) =

−Aρ(0)
ac

Aη
e−

1
2
(κ)(τ−τ

′
) +

Aρ
(0)
ac

Aη
e−

1
2
(κ+Aη)(τ−τ

′
), (2.160)

C2(τ − τ
′
) =

Aρ
(0)∗
ac

Aη
e−

1
2
(κ)(τ−τ

′
) − Aρ

(0)∗
ac

Aη
e−

1
2
(2κ+Aη)(τ−τ

′
), (2.161)
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With the aid of Eqs. (2.121), (2.122), (2.123),(2.128), (2.144), and (2.145), we finally ob-

tain

α(t+ τ) = T1α(t) + C1(τ)β
∗(t) +G+(t+ τ), (2.162)

β∗(t+ τ) = T2β
∗(t) + C2(τ)β

∗(t) +G−(t+ τ), (2.163)

where

G+(t+ τ) =

∫ τ

0

[T1(τ − τ
′
)fα(τ

′
+ t) + C1(τ − τ

′
)f ∗β(τ

′
+ t)]dτ

′
, (2.164)

G−(t+ τ) =

∫ τ

0

[T2(τ − τ
′
)fα(τ

′
+ t) + C2(τ − τ

′
)f ∗β(τ

′
+ t)]dτ

′
, (2.165)

Furthermore, upon setting t = 0 and τ = t, the cavity mode variables α(t) and β(t) take

the form

α(t) = T1(t)α(0) + C1(t)β
∗(0) +G+(t), (2.166)

β∗(t) = T1(t)α(0) + C2(t)α(0) +G−(t). (2.167)



3

Quadrature Squeezing

In this chapter we seek to analyze the quadrature squeezing properties of the two-mode

cavity light.

3.1 Quadrature Variance

A two-mode cavity light can be described by an operator

ĉ =
1√
2
(â+ b̂). (3.1)

where â and b̂ represent the separate modes.

On the other hand, employing the commutation relations

[â, â†] = [b̂, b̂†] = 1 (3.2)

[â†, â] = [b̂†, b̂] = 0 (3.3)

we have

[ĉ, ĉ†] = 1 (3.4)

[ĉ, ĉ] = 0 (3.5)

The squeezing of the two-mode cavity light can be studied applying the quadrature

operators defined by

ĉ+ = ĉ† + ĉ, (3.6)

26
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ĉ− = i(ĉ† − ĉ) (3.7)

where ĉ+and ĉ−are Hermitian operators representing the physical quantities called plus

and minus quadratures, respectively while ĉ†and ĉ are the creation and annihilation

oprators of the two-mode cavity light. Usind Eq.(3.7)and (3.8),one can verify that

[ĉ+, ĉ−] = 2i. (3.8)

We now seek to calculate the variance of the quadrature operators (3.4) and (3.6).

To begin with, making use of the commutation relations(3.8)we get

∆c2± = 1± [〈ĉ†2〉+ 〈ĉ†〉 ± 2〈ĉ†ĉ〉+ 〈ĉ†〉2 + 〈ĉ〉2 ± 2〈ĉ〉2〈ĉ†〉2]. (3.9)

We notice that all operators in Eq. (3.9) are in the normal order. Therefore, the c-

number equation corresponding to (3.9) can be expressed as

∆c2± = 1± 〈γ±(t), γ±(t)〉, (3.10)

in which

γ±(t) =
1√
2
(α∗(t) + β∗(t)± α(t)± β(t)). (3.11)

On account of Eq.(3.11), we see that

〈γ±(t), γ±(t)〉 =
1

2
(〈α(t), α(t)〉+ 〈β∗(t), β∗(t)〉2〈α(t), β(t)

〈±〈α∗(t), α(t)〉 ± β∗(t), β∗(t)± 2〈β∗(t), α(t)〉) + s.c.c., (3.12)

in which c.c. stands for complex conjugate. Using Eqs. (2.104),(2.108), (2.109),(2.154),

(2.155), (2.156), (2.157), and assuming the cavity modes are initially in vacuum states

along with the fact that a noise force at a certain time does not affect the cavity mode

variables at earlier time, we easily find

〈α(t), β(t)〉 = 〈β(t), β(t)〉 = β∗(t), α(t) = 0, (3.13)
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so that in view of these results, Eq. (3.10) reduces to

〈γ±(t), γ±(t)〉 = 〈α(t), β(t)〉+ 〈α(t)β∗(t)〉 ± 〈α∗(t), α(t)〉 ± 〈β∗, β(t)〉. (3.14)

Furthermore, taking into account Eq. (2.156) along with its complex conjugate, we get

〈α∗(t)α(t)〉 = 〈G∗
1(t)G1(t)〉. (3.15)

With the aid of Eqs.(2.154),(2.114),(2.115), and (2.116), we have

〈α∗(t), α(t)〉 =

∫ t

0

(|p1(t− t
′
)|2fα∗α + p∗1(t− t

′
)q1(t− t

′
)f ∗αβ)

+q∗1(t− t
′
)p1(t− t

′
)fαβ + |q1(t− t

′
)|2kN)dt

′
. (3.16)

Applying (2.148) and (2.150) in Eq. (3.15) and then carrying out the integration, we get

〈α∗(t), α(t)〉 =
A+ Aη[(A+ Aη)fα∗α− 2Aρ

(0)
ac fαβ]− 2Aρ

(0)∗
ac [A+ Aηfαβ − 2Aρ

(0)
ac kN ]

4A2η2κ
(1 + e−(κ)t)

−A+ Aη[(A− Aη)fα∗α− 2Aρ
(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A− Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(2κ+ Aη)/2

×(1 + e(κ−
Aη
2

)t)

−A− Aη[(A+ Aη)fα∗α− 2Aρ
(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A+ Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(κ+ Aη)

×(1 + e−(κ+Aη
2

)t)

+
A∗

+[A−fα
∗α− 2Aρ

(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A+ Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(κ+ Aη)
(1 + e(κ−Aη)t)

(3.17)

Following a similar procedure, we also find

〈β∗(t)β(t)〉 =
A+ Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη)
(1− e−(κ+aη)t)

−
A+ Aη[A−kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη)
(1− e−(κ+Aη)t))

−
A− Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A−f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη/2)
(1− e−

1
2
(2κ+Aη)t)

+
A+ Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2κ
(1− e−(κ)t),(3.18)
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and

〈α(t)β(t)〉 =
A+ Aη[A+fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A+fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη/2)
(1− e−

1
2
(λ∗++λ−)t)

−
A+ Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A−fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη)
(1− e−

1
2
(λ∗++λ+)t)

−
A− Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A+fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ)
(1− e−

1
2
(λ∗−+λ−)t)

+
A+ Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A−fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη/2)
(1− e−

1
2
(λ∗−+λ+)t).

(3.19)

At stades state Eqs.(3.17),(3.18),(3.19)takes the form

〈α∗(t), α(t)〉ss =
A+ Aη[(A+ Aη)fα∗α− 2Aρ

(0)
ac fαβ]− 2Aρ

(0)∗
ac [A+ Aηfαβ − 2Aρ

(0)
ac kN ]

4A2η2κ

−A+ Aη[(A− Aη)fα∗α− 2Aρ
(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A− Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(κ+ Aη/2)

−A− Aη[(A+ Aη)fα∗α− 2Aρ
(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A+ Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(κ+ Aη)

+
A∗

+[A−fα
∗α− 2Aρ

(0)
ac fαβ]− 2Aρ

(0)∗
ac [(A+ Aη)fαβ − 2Aρ

(0)
ac kN ]

4A2η2(κ+ Aη)
(3.20)

〈β∗(t)β(t)〉ss =
A+ Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη)

−
A+ Aη[A−kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη)

−
A− Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A−f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2(κ+ Aη/2)

+
A+ Aη[A+kN − 2Aρ

(0)∗
ac fαβ]− 2Aρ

(0)
ac [A+f

∗
αβ − 2Aρ

(0)∗
ac fα∗α]

4A2η2κ
,(3.21)

〈α(t)β(t)〉ss =
A+ Aη[A+fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A+fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη/2)

−
A+ Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A−fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη)

−
A− Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A+fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ)

+
A+ Aη[A−fαβ − 2Aρ

(0)
ac kN ]− 2Aρ

(0)
ac [A−fα

∗α− 2Aρ
(0)
ac f ∗αβ]

4A2η2(κ+ Aη/2)
.(3.22)
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where ss stands for steady state

To simplify our task it is more convenient to introduce parameter η as follows

ρ(0)
aa =

1− η

2
, (3.23)

ρ(0)
cc =

1 + η

2
, (3.24)

ρ(0)
ac =

√
1− η2

2
. (3.25)

η = ρ(0)
cc − ρ(0)

aa , (3.26)

We notice that the steady state solutions Eqs. (2.91)(2.95) are valid only for non-negative

values of η, that is, 0 ≤ η ≤ 1.

The atomic coherence introduced by the superposition of atomic states is given by Eq.

(2.98).

We clearly see that the atomic coherence is maximum when there is equal probabilities

of finding for an atom to be in the upper or lower level and it is zero when all atoms are

initially in lower level.

It worth mentioning that the degree of squeezing of the two-mode cavity light produced

by the three-level cascade laser highly depends on the atomic coherence.

We note that the c-number equations corresponding to Eqs.(2.79)-(2.90) which are in

the normal order,now substitution of Eqs. (3.18), (3.19), (3.20), and the complex conju-
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gate of Eq. (3.21) into Eq. (5.13) leads to

〈γ±(t), γ±(t)〉 = ± 1

4A2η2

[
(A+ Aη ± 2Aρ

(0)∗
ac )[(A∗

+ ± 2Aρ
(0)
ac )f ∗α, α∓ (A∗

− + 2Aρ
(0)∗
ac )fα,β]

2κ

+
(A− Aη + 2Aρ

(0)
ac )(A∗

− + 2Aρ
(0)∗
ac )kN ∓ (A∗

+ ± 2Aρ
(0)
ac )f ∗α,β

2κ

]
± 1

4A2η2

[
(A− ± 2Aρ

(0)∗
ac )[(A∗

− ± 2Aρ
(0)
ac )fα∗,α ∓ (A∗

+ + 2Aρ
(0)∗
ac )fα,β]

2κ+ 2Aη

+
(A+ Aη ∓ 2ν−)[(A∗

+ + 2Aρ
(0)∗
ac )kN ∓ (A∗

− ± 2Aρ
(0)
ac )f ∗α,β]

2κ+ 2Aη

]
∓ 1

2A2η2

[
(A− ± 2Aρ

(0)∗
ac )[(A∗

+ ± 2Aρ
(0)
ac )fα∗,α ∓ (A∗

− + 2Aρ
(0)∗
ac )fα,β]

2κ+ Aη

+
(A+ Aη + 2Aρ

(0)
ac )[(A∗

− + 2Aρ
(0)∗
ac )kN ∓ (A∗

+ ± 2Aρ
(0)
ac )f ∗α,β]

2κ+ Aη

]
+c.c. (3.27)

On account of Eqs.(3.19),(3.22),(3.23),(3.28) to gether with Eq.(3.4),the quadrature vari-

ances of the two-mode cavity light turn out to be

∆c2± = 1 +
1

2A2η2

[
|A+ Aη ± 2Aρ

(0)∗
ac |2

2κ
+
|A− Aη ± 2Aρ

(0)∗
ac |2

2κ+ 2Aη

−(A+ Aη ± 2Aρ
(0)
ac )(A− Aη ± 2Aρ

(0)∗
ac )

2κ+ Aη
− (A+ Aη ± 2Aρ

(0)∗
ac )(AAη ± 2Aρ

(0)
ac )

2κ+ Aη

]
fα∗α

+
1

2A2η2

[
|A− Aη + 2Aρ

(0)
ac ∗|2

2κ
+
|A+ Aη + 2Aρ

(0)
ac |2

2κ+ 2Aη

−(A+ Aη + 2Aρ
(0)
ac )(A− Aη + 2Aρ

(0)∗
ac )

2κ+ Aη
− (A+ Aη + 2Aρ

(0)∗
ac )(A− + 2Aρ

(0)
ac )

2κ+ Aη

]
kN

∓ 1

2A2η2

[
(A+ Aη ± 2Aρ

(0)∗
ac )(A− Aη + 2Aρ

(0)∗
ac )(A− Aη ± 2Aρ

(0)∗
ac )

2κ+ 2Aη

−(A− Aη + 2Aρ
(0)∗
ac )(A− Aη ± 2Aρ

(0)∗
ac )

2κ
− (A+ Aη ∓ 2Aρ

(0)∗
ac )(A+ aη ± 2Aρ

(0)∗
ac )

2κ+ Aη

]
fαβ

∓ 1

2A2η2

[
(A+ Aη ± 2Aρ

(0)∗
ac )− (A− Aη + 2Aρ

(0)
ac )

2κ
+

(A+ + Aρ
(0)
ac )(A− Aη ± 2Aρ

(0)
ac )

2κ+ 2Aη

−(A+ Aη + 2Aρ
(0)
ac )(A+ aη ± 2Aρ

(0)
ac )

2κ+ Aη
−

(A∗
− ± 2Aρ

(0)
ac )(A− Aη + 2Aρ

(0)
ac )

2κ+ Aη

]
f ∗αβ. (3.28)
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∆c2± = 1 +
1

C

[
|E ±B|2

2κ
+
|F ±B|2

2κ+ 2Aη

−(E ±B)(F ±B

2κ+ Aη
− (E ±B)(F ±B)

2κ+ Aη

]
fα∗α

+
1

C

[
|F +B|2

2κ
+
|E +B|2

2κ+ 2Aη

−(E +B)(F + F

2κ+ Aη
− (E +B)(F +B

2κ+ Aη

]
kN

∓ 1

C

[
(E ±B)(F +B)(F +B)

2κ+ 2Aη

−(F +B)(F +B

2κ
− (F +B)(E±)B

2κ+ Aη

]
fαβ

∓ 1

C

[
(E ±B)− (F +B)

2κ
+

(E +B)(F ±B)

2κ+ 2Aη

−(E +B)(E ±B)

2κ+ Aη
− (F ±B)(F +B)

2κ+ Aη

]
f ∗αβ. (3.29)

in which

C = 2A2η2 (3.30)

E = A+ Aη, (3.31)

F = A− Aη, (3.32)

B = 2Aρ(0)∗
ac = 2Aρ(0)

ac (3.33)

fα∗α = (A(1− η) + 2κN)/2 = Aρ(0)
aa + kN, (3.34)

fαβ = f ∗αβ = (A
√

1− η2 + 4κM)/4 (3.35)

fαβ = 2Aρ(0)
ac + kM)/2. (3.36)

λ− = 2κandλ+ = 2κ+ Aη (3.37)
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Now experecing Eq.(3.20),(3.21)and (3.22) interims of η as

〈α∗(t), α(t)〉ss =
κA(1− η)(4κ+ 3Aη + A)

4[κ(κ+ Aη)](2κ+ Aη)

+
[2κ(2κ+ 2Aη + A) + A2(1 + η)]2κN

4[κ(κ+ Aη)](2κ+ Aη)

+
[−A

√
1− η2](2κ+ Aη + A)2κM

4[κ(κ+ Aη)](2κ+ Aη)
. (3.38)

〈β∗(t)β(t)〉ss =
k(A

√
1− η2) + (A

√
1− η2)[2k + Aη − A]2kM + [A2(1− η)]2kN

4[κ(κ+ Aη)](2κ+ Aη)

+
[A2

√
1− η2]2kN

4[κ(κ+ Aη)](2κ+ Aη)
(3.39)

(3.40)

〈α(t)β(t)〉ss =
k(A

√
1− η2)2[2k + Aη + A] + [(2k + Aη)2 − A2]2kM

4[κ(κ+ Aη)](2κ+ Aη)
(3.41)

〈α2(t)〉 = 〈β2(t)〉 = 〈α†(t)β(t)〉 = 0. (3.42)

Hence on account of Eqs.(3.29)-(3.42),the quadrature variances of the two-mode cavity

light at a steady state turn out to be

∆c2± = 1 +
2κA(1− η)(2κ+ 2Aη + A)− 4κA2η2N

4[κ(κ+ Aη)](2κ+ Aη)

±2κ(A
√

1− η2)(2κ+ Aη + A)

4[κ(κ+ Aη)](2κ+ Aη)

+
4κ[(2κ+ Aη)(2κ+ Aη)(N ±M) + A2(

√
1− η2)(N ∓M)]

4[κ(κ+ Aκ)](2κ+ Aκ)
. (3.43)

We clearly shows that in Fig.3.1, we plot the variance of the minus quadrature versus

η for different values of the linear gain coefficient(A). We note from this figure that the

two-mode cavity light exhibits a two-mode squeezing.We also see that the degree of

squeezing increase with the linear gain coefficient which is in a complete agreement

with previous studies [9,13,16,20].
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Figure 3.1: Plot of the quadrature variance of the two-mode cavity light at steady state[

Eq. 3.43]versus η for different values of the linear gain coefficient when r = 0.5,and

κ = 0.8.

The plots in Fig. 3.1 represent the quadrature variance for different values of lin-

ear gain coefficients,r = 0.5 and κ = 0.8. As depicted in the Fig.3.1 we note that the

quadrature variance attained its small values for larger gain coefficients and slightly

small values of η.

This implies that the quadrature squeezing increases with linear gain coefficients for

η between 0and 0.85. The minimum value of the quadrature variance is found to be

∆c2± = 0.1487 and occurs at η = 0.1 for A = 100, κ = 0.8, r = 0.5,. This result indi-

cates that the maximum squeezing for the above value is found to be 85.13% below the

coherent-state level.
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Table 3.1: : Maximum squeezing occurs for η = 0.1, κ = 0.8,r = 0.5 and different values

of linear gain coefficient (A).

η Maximum squeezing Maximum squeezing occurs for

0.26 72.73% A = 5

0.13 83.05% A = 50

0.1 85.13% A = 100

Table 3.2: Maximum squeezing occurs forA = 100, κ = 0.8, η = 0.09 and different values

of squeezed parameter (r).

η Maximum squeezing Maximum squeezing occurs for

0.18 65.3% r = 0

0.12 79.2% r = 0.3

0.09 87.4% r = 0.6

Figure 3.2: Plot of the quadrature variance of the two-mode cavity light at steady

state[3.43]versus η for different values of the squeeze parameter r when A = 100,and

κ = 0.8.
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Photon Statistics

In this section we study the statistical properties of the cavity modes produced by a

nondegenerate three-level laser coupled to a two-mode squeezed vacuum reservoir.

We first obtain, using the anti-normally ordered characteristic function defined in the

Heisenberg picture, the Q function for the cavity modes then applying the resulting Q

function, we calculate the mean photon number ,the mean photon variances and the

photon number correlations.

4.1 Photon Statistics of the Cavity Modes

The Q function for a two-mode cavity light can be expressed as

Q(α, β, t) =
1

π2

∫
d2z

π

d2ω

π
ΦA(z, ω, t)ez∗α−zα∗+ω∗β−ωβ∗ , (4.1)

where

ΦA(z, ω, t) = Tr(ρ(0)e−z∗â(t)ezâ†(t)e−ω∗b̂(t)eω b̂†(t)) (4.2)

is the antinormally ordered characteristic function defined in the Heisenberg picture.

Employing the Baker-Hausdorff identity, we can rewrite Eq. (4.2) in the normal order as

ΦA(z, ω, t) = e−z∗z−ω∗ωTr(ρ(0)e−z∗â(t)ezâ†(t)e−ω∗b̂(t)eω b̂†(t)) (4.3)

so that the corresponding c-number equation is

ΦA(z, ω, t) = e−z∗z−ω∗ω〈ezα∗(t)−z∗α(t)+ωβ∗(t)−ω∗β(t)〉. (4.4)

36
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Now taking into account Eqs. (2.165) and (2.166) along with their complex conjugates,

Eq. (4.4) can be put in the form

ΦA(z, ω, t) = e−z∗z−ω∗ω〈ezα∗(t)−z∗α(t)+ωβ∗(t)−ω∗β(t)〉. (4.5)

where

α
′
(t) = p1(t)α(0) + q1(t)β

∗(0) +G1(t), (4.6)

β
′
(t) = p2(t)β(0) + q2(t)α

∗(0) +G∗
2(t). (4.7)

With the aid of Eqs. (2.133), (2.151), (2.152), (2.153), (2.154), (2.157), and (2.158), it can

be easily established that

d

dt
〈α′

(t)〉 =
1

2
µa〈α

′
(t)〉+

1

2
ν−〈β

′
(t)〉, label8c (4.8)

d

dt
〈β ′

(t)〉 =
1

2
µa〈β

′
(t)〉+

1

2
ν+〈β

′
(t)〉, (4.9)

We see that Eqs. (2.91) and (4.9) are linear differential equations for α
′
(t) and β

′
(t). On

the other hand, taking into account Eqs. (4.14), (4.15) and (2.147), and the assumption

that the cavity modes are initially in a vacuum state, we have

〈α′
(t)〉 = 〈β ′

(t)〉 = 0. (4.10)

Thus we observe that α
′
(t) and β

′
(t) are Gaussian variables with a vanishing mean. In

view of this, Eq. (4.5) can be expressed as [32]

ΦA(z, ω, t) = e−z∗z−ω∗ω

×exp
[〈

1

2
(zα

′
(t)− z∗α

′
(t) + ωβ

′∗(t)− ω∗β
′
(t))2

〉]
(4.11)
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or

ΦA(z, ω, t) = exp

[
− z∗z(1 + 〈α′∗(t)α(t)〉) +

1

2
(z2〈α′∗2(t)〉+ z∗2〈α′2〉)

+z∗(ω〈α′
(t)β(t)〉 − ω〈α′

(t)β
′∗〉)

+z(ω〈α′∗(t)β
′∗(t)〉 − ω∗〈α′∗β

′
(t)〉

−ω∗ω(1 + 〈α′∗(t)β
′∗(t)〉) +

1

2
(ω2〈β ′∗2(t)〉)

+ω∗2〈β ′2〉
]

(4.12)

Now on account of Eq. (4.6), we have

〈α′2(t)〉 = 〈(p1α(0) + q1(t)β
∗(0))2〉+ 2〈(p1α(0) + q1(t)β

∗(0))G1(t)〉

+〈G1(t)G1(t)〉. (4.13)

With the aid of Eqs. (2.164), (2.117), and (2.118) along with the assumption that initially

the cavity modes are in vacuum state and the fact that a noise force at a given instant

does not affect the cavity mode variables at earlier time, we obtain

〈α′2〉 = 0. (4.14)

Similarly, we easily get

〈β ′∗2(t)〉 = 〈β ′∗(t)α
′
(t)〉 = 0, (4.15)

〈β ′
(t)β

′
(t)〉 = 〈G∗

2G1(t)〉, (4.16)

〈α′∗(t)α
′
(t)〉 = 〈G1(t)G1(t)〉, (4.17)

〈β ′∗(t)β
′
(t)〉 = 〈G∗

1(t)G2(t)〉 (4.18)

Hence on account of Eqs. (4.14), (4.15), (4.16), (4.17), and (4.18),the characteristic func-

tion can be put in the form

ΦA(z, ω, t) = e−aαz∗z+z∗(ω∗b)+z(ωb∗)e−aβω∗ω

, (4.19)
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where

aα = 1 + 〈G∗
1(t)G1(t)〉 (4.20)

aβ = 1 + 〈G∗
2(t)G2(t)〉, (4.21)

b = 〈G∗
2(t)G2(t)〉 (4.22)

With the aid of Eqs. (2.165), (2.166), (2.125),(2.126), (2.127), and (4.18), we can write

(4.20), (4.21), and (4.22) as

aα = 1 +
κA(1− η)(4κ+ 3Aη + A)

4[κ(κ+ Aη)](2κ+ Aη)

+
[2κ(2κ+ 2Aη + A) + A2(1 + η)]2κN

4[κ(κ+ Aη)](2κ+ Aη)

+
[−A

√
1− η

2
](2κ+ Aη + A)2κM

4[κ(κ+ Aη)](2κ+ Aη)
(4.23)

aβ = 1 +
κ(A

√
1− η2)2 + A

√
1− η2[2κ+ Aη − A]2κN

4[κ(κ+ Aη)](2κ+ Aη)

+
[2κ(2κ+ 2Aη − A) + A2(1− η)]2κM

4[κ(κ+ Aη)](2κ+ Aη)
(4.24)

and

b =
κ(A+

√
1− η2)(2κ+ Aη + A) + [(2κ+ Aη)2 − A2]2κM

4[κ(κ+ Aη)](2κ+ Aη)

[(A2
√

1− η2)]2κN

4[κ(κ+ Aη)](2κ+ Aη)
(4.25)

Now using Eq.(4.19) in Eq (4.1), we have

Q(α, β, t) =
1

π2

∫
d2z

π

d2ω

π
exp

{
− aαz

∗z + z∗(α+ ω∗b)− z(α− ωb∗)

}
×exp

{
− aβω

∗ω + ω∗β − ωβ∗
}
, (4.26)

Employing the relation∫
d2α

π
e−α∗α+ bα + cα∗ +Bα2 + cα∗2 =

1√
a2 − 4BC

exp

{
abc+BC2cb2

a2 + 4BC

}
, a > 0

(4.27)
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so that carrying out the integration with the help of Eq. (4.27), the Q function is found

to be

Q(α, β, t) =
υαυβ − υ∗υ

π2

×exp
[
− υβα

∗α+ α(p∗ + υβ) + α∗(p+ υβ∗)− υαβ
∗β + βq∗

]
, (4.28)

where

υα =
aα

aαaβ − b∗b
, (4.29)

υβ =
aα

aαaβ − b∗b
, (4.30)

υ =
b

aαaβ − b∗b
(4.31)

p = υβ − υ, (4.32)

q = υα − υ. (4.33)

4.1.1 Mean Photon Number Sum and Difference

We next proceed to calculate the mean and variances of the photon number sum and

difference of mode a and mode b applying the Q function. We define the operators

representing the photon number sum and difference of mode a and mode b by

n̂± = â†â± b̂†b̂. (4.34)

Then the mean of the photon number sum and difference can be written in terms of

the Q function as

n̄± =

∫
d2αd2βQ(α, β, t)(α∗α± β∗ − 1∓ 1). (4.35)
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On account of Eq.(4.28), we see that

n̄± =
υαυβ − υ∗υ

π2
e−p∗−q

∫
d2αd2β(α∗α± β∗β − 1∓ 1)

×e−υβ |α|2+α∗(p+υβ)+α(p∗+υ∗β)−υα|β|2+β∗q+βq∗ . (4.36)

This equation can be rewritten as

n̄± =
υαυβ − υ∗υ

π2
e−p∗−q

(
∂2

∂p∗∂p
± ∂2

∂q∗∂q
− 1∓ 1

)
×

∫
d2αd2βe−υβ |α|2+α∗(p+υ∗β)+α(p∗+υβ∗)+α(p∗+υ∗β)−υα|β|2+q+β∗qβq∗ . (4.37)

Upon carrying out the integration with the help of Eq.(4.27), we obtain

n̄± = ep∗−q

(
∂2

∂p∗∂p
± ∂2

∂q∗∂q
− 1∓

)
exp

{
υαp

∗p+ υβq
∗q + υ∗pq + υp∗q∗

υαυβ − υ∗υ

}
, (4.38)

from which follows

n̄± = n̄a ± n̄b, (4.39)

where

n̄a =
υα

υαυβ − υ∗υ
− 1 (4.40)

n̄b =
υβ

υαυβ − υ∗υ
− 1 (4.41)

are the mean photon numbers of mode a and mode b. With the aid of Eqs.(4.27),(4.28),

and (4.24) we can write

n̄a =
κA(1− η)(4κ+ 3Aη + A)

4[κ(κ+ Aη)](2κ+ Aη)

+
[2κ(2κ+ 2Aη + A) + A2(1 + η)]2κN

4[κ(κ+ Aη)](2κ+ Aη)

+
[−A

√
1− η2](2κ+ Aη + A)2κM

4[κ(κ+ Aη)](2κ+ Aη)
. (4.42)

and

n̄b =
κ(A

√
1− η2) + (A

√
1− η2)[2κ+ Aη − A]2κM

4[κ(κ+ Aη)](2κ+ Aη)

+
[2κ(2κ+ 2Aη − A) + A2(1− η)]2κN

4[κ(κ+ Aη)](2κ+ Aη)
. (4.43)
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On account of Eqs. (4.41) and (4.42), the mean of the photon number sum and differ-

ence can be written in the form

n̄± =
2κA(1− η)(2κ+ Aη) + (1± 1)κA2[1− η2]

4[κ(κ+ Aη)](2κ+ Aη)

+
[(1± 1)[2κ(2κ+ 2Aη) + A2] + (1∓ 1)A[2κ+ Aη]]2κN

4[κ(κ+ Aη)](2κ+ Aη)

+
[(1± 1)[−A2

√
1− η2] + (1∓ 1)A[(2κ− Aη)

√
1− η2]]2κM

4[κ(κ+ Aη)](2κ+ Aη)
(4.44)

This represents the mean of the photon number sum and difference of the cavity modes

for a nondegenerate three-level laser and coupled to a two-mode squeezed vacuum

reservoir.

n̄+ =
2κA(1− η)(2κ+ Aη) + 2(kA2[1− η2])

4[κ(κ+ Aη)](2κ+ Aη)

+
[(4k2 + 4kAη) + A2(4κ+ Aη)] + (2− A2

√
1− η2)2kM

4[κ(κ+ Aη)](2κ+ Aη)
. (4.45)

n̄− =
2κA(1− η)(2κ+ Aη) + [2A(2κ+ Aη)]2κN + [2A(2κ+ Aη)]2κM

4[κ(κ+ Aη)](2κ+ Aη)
(4.46)

Fig.4.1 shows that a relatively better squeezing can be achieved for large values of the

linear gain coefficient A. And Fig.4.2 indicates that the degree of squeezing increases

with the squeeze parameter r.

4.1.2 The Photon Number Variance Sum and Difference

Next we proceed to calculate the variances of the photon number sum and difference

of mode aand mode b. The variances of the photon number sum and difference defined

by

∆n2
± = 〈(ââ± b̂†b̂)2〉 − 〈â†â± b̂†b̂〉2 (4.47)

can be expressed as

∆n2
± = ∆n2

a + ∆n2
b ± 2nab, (4.48)
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Figure 4.1: Plot of the mean photon number sum of the two-mode cavity light at steady

state [Eq.4.45]versus η for different values of the linear gain coefficient when r = 0.5,and

κ = 0.8.

Figure 4.2: Plot of the mean photon number difference of the two-mode cavity light

at steady state[Eq.4.46]versus η for different values of the squeezed parameter r when

A = 100,and κ = 0.8.
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in which

∆n2
a = 〈(â†â)〉 − n̄2

a (4.49)

is the photon number variance of modea,

∆n2
b = 〈(b̂†b̂)〉 − n̄2

b (4.50)

is the photon number variance of mode b, and

nab = 〈â†âb̂†b̂〉 − n̄ab̄ (4.51)

with n̄a = 〈â†â〉 and n̄b = 〈b̂†b̂〉. Using the commutation relation [â, â†] = 1,we can write

∆n2
a = 〈â2â†2〉 − n̄2

a − 3n̄a − 2. (4.52)

The first term on the right side of Eq.(4.52) can be expressed in terms of the Q function

as

〈â2â†2〉 =

∫
dα2dβ2Q(α, β, t)α∗α2. (4.53)

On account of Eq.(4.1)and ,we have

〈â2â†2〉 =
υαυβ − υ∗

π2∫
d2αd2βα2e−υβ |α|2+α∗α∗(p+υβ∗)+α(p∗+υβ)−υα|β|2+β∗q+βq∗ . (4.54)

or

〈â2â†2〉 =
υαυβ − υ∗

π2

× ∂4

∂p2∂p∗2

∫
d2αd2βα2e−υβ |α|2+α∗α∗(p+υβ∗)+α(p∗+υβ)−υα|β|2+β∗q+βq∗ . (4.55)

Hence carrying out the integration, we get

〈â2â†2〉 =
∂4

∂p2∂p∗2
exp

{
υap

∗p+ υβq
∗q + υ∗pq + υp∗q∗

υαυβ − υ∗υ

}
. (4.56)
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Then performing the differentiation, we find

〈â2â†2〉 =
2υ2

α

υαυβ − υ∗υ
+

4υα

υαυβ − υ∗υ

∣∣∣∣ υαp+ υq∗

υαυβ − υ∗υ

∣∣∣∣2 +

∣∣∣∣ υαp+ υq∗

υαυβ − υ∗υ

∣∣∣∣2 (4.57)

With the aid of Eqs.(4.30), (4.31), and (4.38), we can write as

〈â2â†2〉 = 2(n̄a + 1)2 (4.58)

Therefore,substitution of [Eq.(4.54)] into [Eq.(4.48)] yields

∆n2
a = n̄2

a + n̄a. (4.59)

Following the same procedure, we easily obtain

∆n2
b = n̄2

b + n̄b (4.60)

and

nab =

∣∣∣∣κ(A+
√

1− η2)(2κ+ Aη + A) + [(2κ+ Aη)2 − A2]2κM

4[κ(κ+ Aη)](2κ+ Aη)

[(A2
√

1− η2)]2κN

4[κ(κ+ Aη)](2κ+ Aη)

∣∣∣∣2 (4.61)

Hence combination of Eqs. (4.41), (4.42), (4.43), and (4.49) results in

∆n2
+ = n̄2

a + n̄a + n̄2
b + n̄b + 2|b|2 (4.62)

∆n2
− = n̄2

a + n̄a + n̄2
b + n̄b − 2|b|2 (4.63)

Fig.4.3.shows that the variance of the photon number sum increase with the amount

of the linear gain coefficient increases.

Fig.(4.4) shows that the variance of the photon number sum in the absence of squeezed

vacuum reservoir and in the presence of squeezed vacuum reservoir.

Fig.(4.5) shows that the variance of the photon number difference increase with the

linear gain coefficient A increase.

Fig.(4.6) shows that the variance of the photon number difference in the absence of

squeezed vacuum reservoir and in the presence of squeezed vacuum reservoir.
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Figure 4.3: Plots of the variance of the photon number sum [Eq.4.62] versus η for κ =

0.8,r = 0.5and for different values of the linear gain coefficient.

Figure 4.4: Plots of the variance of the photon number sum [Eq. 4.62] versus η for A =

100, κ = 0.8,and r = 0.5and for different values of the squeezed parameter r.
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Figure 4.5: Plots of the variance of the photon number different [Eq.4.63] versus η for

κ = 0.8,r = 0.5and for different values of the linear gain coefficient.

Figure 4.6: Plots of the variance of the photon number difference[Eq. 4.63] versus η for

A = 100,κ = 0.8,and for different values of the squeezed parameter r
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Photon Entanglement

In this chapter, we wish to study entanglement properties of the two modes cavity light.

It is known that a state of a system ρ of two modes a and b is said to be entangled or not

separable if it is not possible to express in the form

ρ =
∑

j

ρ̂
(1)
j ⊗ ρ̂

(2)
j (5.1)

where ρ(a)
i aand ρ

(b)
i a bare assumed to be the normalized density operators of modes

a and b, respectively, with Pi ≥ 0 and
∑

i Pi = 1. A maximally entangled continuous

variable state can be expressed as a co-eigenstate of a pair of Einstein- Podolsky-Rosen

EPR-type operators (34) such as x̂a − x̂band p̂a + p̂b. Thus the sum of the variances

of these operators is reduced to zero for the maximally entangled continuous variable

state .According to Duan et al. [29] criterion, a quantum state of a system is said to be

entangled if the sum of the variances of the two EPR-like operators of the two modes

û = x̂a − x̂b (5.2)

ν̂ = p̂a + p̂blabel3d (5.3)

where

x̂a =
1√
2
(â+ â†), (5.4)

x̂b =
1√
2
(b̂+ b̂†), (5.5)

48
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p̂a =
i√
2
(â† − â), (5.6)

p̂b =
i√
2
(b̂† − b̂), (5.7)

are quadrature operators for mode a and mode b,satisfy

∆ν2 + ∆u2 < 2 (5.8)

Furthermore,the variance of these quadrature operators can be put,in terms of the c

number variables associated with the normal ordering,in the form

∆ν2 = ∆u2 = 1 + 〈α∗(t)α(t)〉ss + 〈β∗(t)β(t)〉ss − 2(〈α(t)β(t)〉ss. (5.9)

Thus in view of Eq. (5.8) together with (3.37),the sum of the variances of û and ν̂ can be

expressed as

∆ν2 + ∆u2 = 2∆c2− (5.10)

Now making use of Eqs.(3.38)together with (5.10),we see that

∆ν2 + ∆u2 = 2

[
A2(1− η2)(2N + 1)− 2A2(M +N)(

√
(1− η2))

2(2k + Aη)(k + Aη)

+
2(N −M)(2k + Aη)2 − 2MA2

2(2k + Aη)(k + Aη)

+
(2k + A(1 + η))(2k + Aη − A

√
1− η2)

2(2k + Aη)(k + Aη)

]
(5.11)

We immediately note that this particular entanglement measure is directly related to

the two-mode squeezing. This direct relationship shows that, whenever there is a two-

mode squeezing in the system, there will be entanglement in the system as well.This

is attributed to the fact that the coherent fields do not introduce an additional atomic

coherence to the system, and the same is true in the case of squeezing.Using criterion

(5.8) that a significant entanglement between the states of the light generated in the

cavity of anondegenerate three-level cascade laser can be manifested due to the strong
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correlation between the light emitted, when the atoms decay from the upper energy

level to the lower via the intermediate energy level. Based on criterion (5.8), we clearly

see from Fig.5.1 that the two states of the generated light are strongly entangled in the

steady state.

The entanglement disappears,when there is no atomic coherence, and it would be

stronger for certain values of the atomic coherence for every value of the linear gain co-

efficient. It can easily be seen that the degree of entanglement increases with the rate,

at which the atoms are injected into the cavity, A is less than 2 for all values of except for

η = 1, hence the entanglement criterion is satisfied.This indicates that the state of the

system is entangled at steady state provided that there is injected atomic coherence.

Moreover, the degree of entanglement increases with the linear gain coefficient. On

the other hand comparison of Fig 5.1 and 5.2 shows that there is a strong entanglement

of the two modes in the cavity when there is a substantial degree of squeezing. This

strong entanglement is observed for relatively small values of η , that is, when slightly

more atoms are in the lower level at the initial time.It is also easy to see that the en-

tanglement disappears when the squeezing vanishes. This is due to the fact that the

squeezing and entanglement are directly related as given in Eq.(5.7).
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Figure 5.1: Plots of ∆ν2 + ∆u2 of the two-mode cavity light at steady state[Eq.(5.11)] vs

η for κ = 0.8, r = 0.5, and for different values of the linear gain coefficient.

Table 5.1: Maximum Entanglement occurs for r = 0.5, κ = 0.8 and different values of A.

η Maximum Entanglement Maximum Entanglement occurs for

0.25 45.5% A = 5

0.15 67% A = 50

0.1 70.3% A = 100

From Fig.5.1 we note that a relatively better Entanglement can be achieved for large

values of the linear gain coefficient A.
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Figure 5.2: Plots of the entanglement of the two-mode cavity light at steady state [Eq.

(5.11)]vs η for A = 100,κ = 0.8 and for different values of the squeeze parameterr.

Table 5.2: Maximum Entanglement occurs for A = 100,κ = 0.8,and different values of r.

η Maximum Entanglement Maximum Entanglement occurs for

0.15 30.7% r = 0

0.12 58.5% r = 0.3

0.09 74.8% r = 0.6

Fig.5.2 indicates that the degree of squeezing increases with the squeeze parameter

r.
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5.1 Photon Number Correlations

The photon number correlation for two mode light can be defined as

g(na, nb) =
〈n̂an̂b〉
〈n̂a〉〈n̂b〉

(5.12)

〈α∗(t)β∗(t)〉 = 〈α(t)β(t)〉 (5.13)

and

〈n̂an̂b〉 = 〈â†(t)â(t)b̂†(t)b̂(t)〉. (5.14)

We realize that the operators in Eq.(4.38)-(4.41) are in the normal order. There-

fore,Eq.(5.14),The correlation of the photon number at steady state can be expressed

in terms of the c number variables associated with the normal ordering as

g(na,nb) = 1 +
〈α(t)β(t)〉2

〈α†(t)α(t)〉〈β∗(t)β(t)〉
. (5.15)

We realize that the operators in Eq.(4.38)-(4.41) are in the normal order. Therefore,

Eq.(5.15),The correlation of the photon number at steady state can be expressed in

terms of the c number variables associated with the normal ordering as
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g(na,nb) = 1 +
k(A

√
1− η2)2[2k + Aη + A]

(k(A
√

1− η2) + (A
√

1− η2)[2k + A−]2kM)

+
k(A

√
1− η2)2[2k + Aη + A]

[A2(1− η)]2kN [A
√

1− η2](2k + Aη + A)2kM

+
(2k + A2

−)2kM

(k(A
√

1− η2) + (A
√

1− η2)[2k + Aη − A]2kM + [A2(1− η)]2kN)

+
(2k + A2

−)2kM

[−A
√

1− η2](2k + Aη + A)2kM

× k(A
√

1− η2)22k + Aη + A

k(A
√

1− η2) + (A
√

1− η2)[2k + Aη − A]2kM

+
k(A

√
1− η2)22k + Aη + A

[A2(1− η)]2kN + [A2
√

1− η2]2kN

× [2k + Aη + A2]2kM

k(A
√

1− η2) + (A
√

1− η2)[2k + Aη − A]2kM + [A2(1− η)]2kN + [A2
√

1− η2]2kN

(5.16)

This represent the photon number correlation for a two mode cavity light for a nonde-

generate threelevel laser coupled to a two-mode squeezed vacuum reservoir at steady

state.

We see from Fig.5.3 shows that the correlation of the photon number decreases with

increasing injected atomic coherence.Moreover, as shown in Fig.5.3 shows that the

squeezing is maximum at vicinity of η = 0.15 for A = 10, where the correlation of the

photon number is a little above 2. We also found that for η very close to 1 the correlation

of the photon number would be significantly large, since the mean photon number of

the light in mode b is very close to zero when initially almost all atoms are populated in

the lower level.

Furthermore, Fig.5.1 clearly shows that the correlation of the photon number increse.

However, we have found out that the degree of squeezing increases with the linear gain

coefficient. We hence infer from these results that the correlation between the pho-

ton numbers tend to be minimum in regions where the squeezing is maximum and the

presence of squeezed vacuum reservoir
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Figure 5.3: Plots of photon number correlation of the two-mode cavity light at steady

state versus [Eq. (5.17)] η for A = 100,κ = 0.8 and for different values of the squeeze

parameter r.

5.1.1 Normalized Second-order Correlation Functions

In this section we analyze the second-order correlation function for the separate mode

as well as for the superposition of the two modes. Moreover, we calculate the linear

correlation coefficient between the cavity modes. The normalized second-order corre-

lation function for the two-mode cavity light can be expressed as

g2
(na,nb)

(0) =
〈α∗(t)α(t)〉〈β∗(t)β(t)〉
〈α∗(t)α(t)〉〈β∗(t)〉

(5.17)

Since Eqs.(2.90)and (2.93) are linear differential equations, we see that â and b̂ are Gaus-

sian variables. Moreover, on account of Eq.(2.101),â and b̂are Gaussian variables with

vanishing mean. One can then express Eq.(5.17)in the form

g2
(na,nb)

(0) = 1 +
〈α(t)β(t)α∗(t)β∗(t)〉+ 〈α(t)β∗(t)〉〈α(t)β(t)〉

〈α∗(t)α(t)〉〈β∗(t)β(t)〉
. (5.18)
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This represent the normalized second-order correlation functions for a two mode cav-

ity light for a nondegenerate threelevel laser coupled to a two-mode squeezed vacuum

reservoir at steady state.

5.1.2 Fluctuations of Intensity Difference

In this section we wish to calculate the variance of the intensity difference and compare

with that of a coherent light. The variance of the intensity difference defined by.

ÎD = n̂a − n̂b (5.19)

then

ÎD = â†(t)â(t)− b̂†(t)b̂(t) (5.20)

The fluctuations of intensity difference can be

∆I2
D = 〈α∗2(t)〉〈α2(t)〉+ 2〈α∗(t)α(t)〉2 + 〈β∗2(t)β2(t)〉+ 2〈β∗(t)β(t)〉2

−2〈α(t)β∗(t)〉2 − 2〈α∗(t)α(t)〉 × 〈β∗(t)β(t)〉

−2〈α∗(t)β(t)〉2 + 〈α∗(t)α(t)〉+ 〈β∗(t)β(t)〉, (5.21)

We note that â and b̂ are gaussian variables with vanishing mean.For such types of vari-

ables, we can express Eq.(5.21)Since the cavity mode operator and are a Gaussian vari-

ables.On account of Eq.(5.21)the steady state variance of the intensity difference be-

comes.

∆I2
D = 〈α∗(t)α(t)〉[1 + 〈α∗(t)α(t)〉] + 〈β∗(t)β(t)〉 × [1 + 〈β∗(t)β(t)〉]− 2〈α(t)β(t)〉2

(5.22)

In Fig. 5.4,we observe that even though the nature of the fluctuations are different,
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Figure 5.4: Plots of the variance of the intensity difference of the two-mode cavity light

at steady state [Eq.5.22] versus η for κ = 0.8,r = 0.5 and for different values of the linear

gain coefficient.

they show qualitatively similar behavior. That is, when the intensity difference fluctu-

ations is less than one, the two-mode light exhibits both squeezing and entanglement.

However, when the intensity difference fluctuations increases to the coherent level, the

squeezing and entanglement decreases and even disappears for values of η close to one.
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conclusion

In this thesis we have studied the squeezing and entanglement properties of the cavity

modes produced by a nondegenerate three-level laser whose cavity mode coupled to a

two-mode squeezed vacuum reservoir.

First We have derived the master equation in the linear and adiabatic approxima-

tion.Then we have obtained stochastic differential equations associated with the nor-

mal ordering and noise force correlations.

Applying the solutions of the resulting differential equations, we have calculated the

quadrature variances,photon entanglement,photon number correlations,normalized

second order functions and intensity difference of the two mode cavity light at steady

state.

We have found for a linear gain coefficient of 100 for a cavity damping constant (κ) of

0.8 and squeezed parameter r of 0.5 the maximum squeezing at a steady state and at

threshold 85%. We have also seen that the squeezed parameter of r = 0.6 for a cavity

damping constant of 0.8, for linear gain coefficient of 100 and for η of 0.13 the maximum

entanglement at a steady state 87.4%.

It is found that the squeezed parametric and the squeezed vacuum reservoir increase

the degree of squeezing as well as entanglement.We have also seen that the degree of

squeezing increases with the linear gain coefficient for small values of η and almost

perfect squeezing can be obtained for large values of the linear gain coefficient and

squeezed parameter.We have determined employing the Q function the mean photon

58
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number sum and difference and the variance of the photon number sum and difference

for the cavity modes.

The mean photon number increases considerably due to the squeezed vacuum reser-

voir, and squeezed parameter.

Our analysis showed that the quadrature squeezing is enhanced due to the injected

atomic coherence for certain initial conditions.

Almost perfect squeezing can be achieved for relatively large squeeze parameter and

linear gain coefficient. We have established that the squeezing and entanglement in

the two-mode cavity light is directly related. As a result, an increase in the degree of

squeezing directly implies an increase in the degree of entanglement and vise versa.

In addition,our calculation of the photon number correlation shows that when corre-

lation between the states of the emitted light is stronger, the correlation between the

photon number tends to be smaller. Contrary to this fact the variance of the intensity

difference is found to be relatively larger in a region where the squeezing and entangle-

ment are significant.
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