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Abstract

Density functional theory (DFT) has had a rapidly growing impact not only on fun-

damental but also industrial research. The local density approximation (LDA) and

the generalized gradient approximation (GGA) were used to compute the exchange

correlation energy. The total minimum energy of GaAs is performed as a function

of cutoff energy and Monk horst-pack grid size. The results show that, the total

minimum energy of GaAs decreases with increasing cutoff energy due to variational

principle. However, there is no systematic trend that can be predicted from just in-

creasing the k point sampling. The total minimum force on GaAs is computed by

displacing As atom in the z direction as a function of cutoff energy and k point grid

size by 0.05 Bohr. Moreover, the total minimum force is converged at the cutoff 60

Rydberg and Monk horst-pack mesh of 14× 14× 14 k points. In addition to this, the

equilibrium lattice constant is calculated with different lattice constant.

Keywords: Gallium arsenide, Density functional theory, energy band gap, elec-

tronic structure, total energy, total force.
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Chapter 1

Introduction

1.1 General Background

Semiconductors are a group of materials having conductivities between metals and

insulators [1]. Two general classifications of semiconductors are the elemental semi-

conductor materials, found in group IV of the periodic table and the compound

semiconductor materials. Most of which are formed from special combinations of

group III and group V elements [2, 3]. Gallium arsenide and related group III and

V compounds were first investigated as semiconducting materials over thirty years

ago [4]. The interatomic bonding is largely covalent [5]. GaAs is one of the most

important material used in semiconductor physics. Its electronic properties such as

a direct band gap and high electron mobility held the promise of new and unique

devices such as high efficiency light emitters, light sensors and high speed switching

devices fields where other similar materials don’t compete. The reason behind these

electronic and structural properties in gallium arsenide compound lies in the detailed

nature of their electron energy band structures [6]. It has a direct energy band gap.

That means the minimum in the ε(K) curve in the conduction band lies directly

above the maximum in the valence band in K space. This allows direct interband

3



recombination of electrons and holes, with the emission of light energy of the appro-

priate wavelength to the band gap about 850 nm [7]. Hence, GaAs is said to be a

good optoelectronic material that is used extensively in light-emitting diodes because

of its high electron mobility [8], small dielectric constant and extensively utilized in

high temperature resistance, ultrahigh frequency, low-power devices and circuits. It

crystallizes in zinc-blende structure [9]. The zincblende lattice consists of a fcc Bra-

vais point lattice, which contains two different atoms per lattice point. The distance

b/n the two atoms equals one quarter of the body diagonal of the cube. The diamond

lattice represents the crystal structure of zincblende. the difference is that in diamond

structure there is only one type of atom where as in zincblende there are two types

of atoms (the atoms in the basis are different). The face centered (fcc) cubic lattice

contains 4 lattice points per cell. The nearest distance b/n lattice points is a
√

2
2

and

the maximum packing density is Π
√

2
3

.

1.2 Statement of the Problem

Density Functional Theory (DFT) is a many-body theory based on the idea of using

only the density as the basic variable for describing many electron systems. Since,

its introduction in the 1960s density functional theory has evolved into a powerful

tool that is widely used in condensed matter theory and computational materials for

the calculation of electronic, magnetic, and structural properties of solids. In recent

years, there has been an upsurge of interest in structures and devices made from

combinations of group III and V compounds and alloys [10]. Gallium arsenide is

the most technologically important and studied compound semiconductor material.

A systematic theoretical study of GaAs surface based on accurate, self consistent
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total energy were investigated using density functional theory. Many band structure

parameters for gallium arsenide are known with a greater precision than for any other

compound semiconductors. Particularly the studies were focused on its direct band

gap for photonic applications, nanotubes, its internal carrier transport and higher

mobility for generating microwaves. This semiconducting material is truly many body

system. Eventhough, there were many investigations; the electronic and structural

properties of GaAs is not well studied computationally. So, the main target of this

study is to investigate electronic and structural properties of GaAs with the help of

density functional theory.

1.3 Objectives

1.3.1 General objective

The general objective of this study was to determine the electronic and structural

properties of GaAs with respect to density functional theory.

1.3.2 Specific objective

The Specific objectives of this study were:

• To calculate the total minimum energy of GaAs per cell with respect to cutoff

energy,

• To calculate the total minimum energy of GaAs per cell with respect to k points

sampling,

• To calculate the total minimum force of GaAs per cell with respect to cutoff

energy,
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• To calculate the total minimum force of GaAs per cell with respect to k points

sampling,

• To calculate the lattice constant of GaAs with respect to total energy.

1.4 Significance of the Study

This study would help to understand the electronic and structural properties of GaAs

using a computational technique known as DFT. It also helps to practice new problem

solving method.

1.5 Limitation of the Study

The scope of the study were limited to the calculations of electronic and structural

properties of GaAs with the help of density functional theory. .
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Chapter 2

Literature Review

2.1 Introduction

Gallium Arsenide compound were first investigated as semiconducting materials, it

does not occur naturally, but may be found in zones of active or extinct volcanic

activity. The interatomic bonding is largely covalent [11]. The direct band gap and

high electron mobility of this material held the promise of new and unique devices

such as high efficiency light emitters, light sensors and high speed switching devices

[12]. It has a very high resistivity because of its wide band gap and also have high

temperature performance. Its high electron mobility was the reason for much of

the early research and development of GaAs field effect transistors. The driving

force was to increase the operating frequency of transistor devices. Gallium arsenide

exhibits the transferred electron (TE) effect. This is an electric field-induced transfer

of electrons from one region of the energy band structure to another, which results

in a negative resistance being observed at microwave frequencies. The applications

of the effect are as microwave oscillators, amplifiers, and transferred electron devices

(TEDs)[13]. There has been a great deal of research and development of GaAs devices.

Utilizing the above features, results in the widespread commercial applications of
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TEDs, GaAs FETs, ICs, LEDs and Lasers. The direct band gap of GaAs allows for

emission of photons in LEDs and LASER devices. Transitions between the valance

band and the conduction band require only a change in energy, but not change in

momentum [13]. Semiconductor technology devices based on GaAs circuitry are a

key element of many wireless and wi-fi consumer electronic products. GaAs is also

used in specialized applications in which for example, high speed is required. GaAs-

based solar cells also have many advantages, such as high photoelectric conversion

efficiency, fine radiation resistance and good performance at high temperatures, etc.

Doping other elements is one of the most commonly used methods, and is performed

by replacing a small amount of anion species in GaAs with isovalent impurities, such

as N, P, Sb.

2.1.1 Many Body Problems

Many body problems are very difficult to solve. That is the state of motion can not

be solved analytically for systems in which three or more distinct masses interact.

Atoms are made up of electrons and nuclei. In quantum mechanics, the electron is

considered as wave functions rather than a classical particle. The solid or quantum

system exhibits different electronic, electrical, transport and optical properties [15].

Schrödinger equation is used to solve the electronic structure of any time independent

quantum system. The equation is given by

ĤΨ = EΨ (2.1.1)

where,

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
(i,I)

ZIe
2

|ri −RI |
+

1

2

∑
(i6=j)

e2

|ri − rj|
−

∑
I

~2

2MI

∇2
I +

1

2

∑
(I 6=J)

ZIZJe
2

|RI −RJ |
(2.1.2)
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Here, me and MI represents the electron mass and nuclei mass respectively, ri and RI

are positions of electron and nuclei. ZI is charge of nuclei and e is charge of electron.

The complex system is made-up of electrons and nuclei interacting each other due to

coulomb force. The first and fourth terms represent the kinetic energy of electrons and

nuclei respectively, the second term is the attractive interaction between the electron

and nuclei, the third term is electron-electron repulsion term and the last term is

nuclei-nuclei repulsion. Since, the real Hamiltonian of solids consists of electrons and

nuclei of the order of 1023, the problem is impossible to solve. So, we need new

approximation to solve the many-body problem.

2.1.2 Born-Oppenheimer approximation

Born-Oppenheimer approximation is the early approximation used to solve the Hamil-

tonian by considering the fact that the nuclei can not move as much as electron due

to its heavy mass [16]. Thus, the kinetic energy of nuclei term was omitted from the

Hamiltonian equation and the new Hamiltonian is given by

Ĥ = − ~2

2me

∑
i

∇2
i +

1

2

∑
(i6=j)

e2

|ri − rj|
+ V ext

Rα (ri) (2.1.3)

Even after omitting the nuclei terms in old Hamiltonian, still the electrons are in the

order of 1023 making an exact solution impossible. Therefore, a new approximation

is necessary, to solve the hamiltonian whereby considering number of independent

particles (electrons) or by other variables as input [16, 17].

2.1.3 Density Functional Theory (DFT)

As the name density-functional theory (DFT) suggests, DFT is a many-body theory

based on the idea of using only the density as the basic variable for describing many
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electron systems [17, 18]. Since its introduction in the 1960s density functional theory

has evolved into a powerful tool that is widely used in condensed matter theory and

computational materials for the calculation of electronic, magnetic, and structural

properties of solids. The method has been remarkably successful in predicting, repro-

ducing, and/or explaining a wide variety of materials’ phenomena. Density functional

theory (DFT) is an extremely successful approach used to solve many body problems

and to calculate the first principles of electronic structure. In 1964, Hohenberg and

Kohn made conceptual roots to this theory [19]. It is a phenomenally successful ap-

proach to finding solutions to the fundamental equation for the quantum behavior

of atoms and molecules, the Schrodinger equation, in settings of practical value, for

the description of ground state properties of metals, semiconductors, and insulators.

The success of density functional theory (DFT) not only encompasses standard bulk

materials but also complex materials such as proteins and carbon nanotubes, it is

the most successful method that forms the basis for advanced ab-inito (the fact that

no experimental data is used and computations are based on quantum mechanics)

calculations. By using DFT theory it is possible to calculate the properties of solids

and molecules [20]. The DFT uses as a basic variable the electron density rather

than considering many interacting and non-interacting electron wave functions in the

external potential. DFT was formerly framed on two basic theorems.

2.1.4 The Hohenberg-Kohn Theorems

Theorem 1

The first Hohenberg-Kohn theorem states that if there are N interacting particles

in a system and they are moving in an external field Vext(r), the Vext(r) is uniquely

determined by the ground state particle density no(r) up to a constant; that means
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there are no two potentials existing to give rise to the same ground state. The ground

state expectation value of any observable (Hamiltonaian) is a unique functional of the

exact ground-state electron density ρo(r) [21].

〈Ψ|A|Ψ〉 = A[ρo(r)] (2.1.4)

Theorem 2

The second theorem of HK states that a universal functional for energy can be defined

in terms of density, which is valid for any applied external potenial. The functional

of the exact ground state energy of a system will have lowest energy only when the

input density is the real ground density state [22].

Eo ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃] (2.1.5)

From the above first theorem one can conclude that if we know the ground state

particle density, it is possible to reconstruct the new Hamiltonian. Schrödinger equa-

tion was used to solve the new many-body wave functions for new Ĥ. They are

independent of number of particles and purely dependent on electron density. The

Second theorem states that the exact ground state is the global minimum value of

the functional.

2.1.5 The Kohn-Sham Approximation

Kohn-Sham proposed new approach to solve many electron system based on the H-K

theorems [23]. Total energy functional in an external potential Vext(~r) can be

E[ρ(~r)] = T [ρ(~r)] +

∫
Vext(~r)d

3r + Eee[ρ(~r)] (2.1.6)

Eee[ρ(~r)] =

∫ ∫
ρ(~r)ρ(ŕ)

|r − ŕ|
d3rd3ŕ + Êxc[ρ(~r)] (2.1.7)

11



The first term is the kinetic energy T [ρ(~r)], the second term is electron-electron

potential and the last term contributes for both classical and non-classical exchange

behind the mean field theory [24]. To solve the Kohn and Sham equations, it is

assumed that for an interacting system describing the equation, there is a reference

noninteracting system with ground state density same as interacting system [25]. The

equation for the reference system can be written as

Heff |Ψi〉 = [−
∑

i

∇2
i + Veff [ρ(~r)]|Ψi〉 = εi|Ψi〉 (2.1.8)

Then, the kinetic energy of this system is

Teff [ρ(~r)] =
∑

i

niεi − Veff [ρ(~r)] (2.1.9)

The new pseudo kinetic energy in the form of exchange correlation energy functional

Exc[ρ(~r)] can be wirtten as

Exc[ρ(~r)] = T [ρ(~r)]− Teff [ρ(~r)] + Êxc[ρ(~r)] (2.1.10)

Inserting the new exchange correlation functional into total energy system and de-

riving the new total energy of the non interacting system which is in potential with

respect to ρ(~r), conserving the density,∫
ρ(~r)dr = N (2.1.11)

where N is the total number of electrons. Solving the above 2 equations (2.1.8 and

2.1.9), we will obtain final Kohn-Sham equation. The one-electron Schrödinger like

equation which is moving in a potential Veff is

εiΨi(~r) = [−∇2 + Veff [ρ(~r)]]Ψi(~r) (2.1.12)
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and we get the final ground state energy given by

Eo =
∑

i

niεi −
∫ ∫

2ρ(ŕ)

|r − ŕ|
d3ŕ −

∫
ρExc[ρ]

δρ(~r)
d3r + Exc[ρ(~r)] (2.1.13)

where Exc is the exchange-correlation potential which is unknown. So if we know

the exact functional of Exc, then, we know the exact solution of the many electron

system.

2.1.6 Exchange-Correlation Functional approximations

No analytical solution has been made to solve the Kohn-Sham equations [26]. So we

need more approximations to solve such a difficult and complicated equations. The

new approximations such as Local Density Approximation (LDA) and Generalised

Gradient Approximations are implemented analytically and solve many difficult of

DFT.

Local Density Approximation (LDA)

The Local Density Approximation is an approximation for the exchange-correlation

(xc), which can be defiend as

ELDA
xc =

∫
d3rεxc(no)|no → n(r) (2.1.14)

where εxc(no)|no → n(r) is the exchange-correlation energy in a homogeneous electron

gas with the density no = n(r), i.e, replacing the local density n(r) of an inhomoge-

neous system at each point r by the constant density no of homogeneous electron gas

[27].

Generalized Gradient Approximation (GGA)

LDA approximation fails to predict exact exchange energy when its density undergoes

rapid (quick) changes in molecules. This problem can be solved by considering the

13



gradient of the electron density. The GGA approximation principally made by Perdew

and co-workers [28]. The exchange-correlation energy is defined as,

Exc = Exc[ρ(r),∇ρ(r)] (2.1.15)

Perdew-Burke-Ernzernhof (PBE)

PBE is a new version of GGA. The exchange energy of PBE approximation can be

defined as an integral over the exchange density [29].

EPBE
x =

∫
drρ(r)εPBE

x (ρ(r)), s(r) (2.1.16)

where

s = |∇|/(2kFρ) (2.1.17)

is the reduced gradient with

kF = (3Π2ρ)
1
3 (2.1.18)

The PBE exchange energy density is the product of LDA exchange and enhancement

factor, F PBE
x which depends on s(r), which is defined in explicitly PBE functional.

εPBE
x (ρ(r)), s(r)) = εLDA

x (ρ(r))× F PBE
x s(r)) (2.1.19)

F PBE
x s(r) = −8

9

∫ ∞

0

ydyJPBE(s, y) (2.1.20)

Where, JPBE(s, y) is the PBE exchange hole.

2.1.7 Periodic Supper Cells

For solids the wave function of an electron placed in a periodic potential, i.e, the

effective potential derived in a K-S equation has a periodicity of the crystalline lattice.

14



We can write K-S orbitals ψn
k (r), as a product of a plane wave eik.r and periodic

function, un
k(r) that has a periodicity of a lattice satisfying a fundamental property

called ’Bloch’s theorem’.

Bloch’s Theorem

States that ”in a periodic solid each electronic wave function can be written as the

product of cell- periodic part and wave like part” [30-32].

ψi
k(r) = ei

−→
k .−→r un

k(r) (2.1.21)

where k is vector in first Brillouin zone and n is a band index. Due to its periodicity

un
k(r) can be expanded as a set of plane waves,

ψn
k (r) =

1√
Ωcell

∑
j

cnj (k)ei(k+kj).r (2.1.22)

where kj is the reciprocal lattice vector, Ωcell cell is the volume of the primitive cell.

Transferring the K-S orbitals to plane wave basis set, we obtained

∑
j′

Hjj′(k)cnj′(k) = εn(k)cnj (k) (2.1.23)

where

Hjj′(k) =
~2

2m
|k +Kj|δjj′ + Veff (Kj −Kj′) (2.1.24)

The above term is the matrix element of kinetic energy operator where the plane

waves are orthonormalized once.

Veff (Kj −Kj′) =

∫
Ωcell

Veff (r)e
i(kj−kj′).r (2.1.25)

where k and K are real space wave and reciprocal lattice vectors respectively. The

above term is effective potential. By diagonalization of Hamiltonian, one can get

15



discrete set of eigenvalues and corresponding eigenfunctions for all n band index at

each K point. The energy eigenvalue looks like,

εn(k) = εn(k +K) (2.1.26)

We can choose cut-off vector in reciprocal space, K as

K ≤ Kmax (2.1.27)

where Kmax is the reciprocal space wave vector corresponding to the energy cut-off.

Energy cutoffs

Limit the number of plane wave componenets to those such that,

(
G+K2

2
) ≤ Ecut (2.1.28)

This defines a length scale λ = Π√
Ecut

. The discussion of k space began with Bloch’s

theorem, which tells us that solutions of the Schrödinger equation for a supercell have

the form

ψk(r) = uk(r)e
i
−→
k .−→r (2.1.29)

For uk(r) periodic in space with the same periodicity as a supercell, its periodicity

can be expanded interms of a plane waves.

uk(r) =
∑
G

ci, Ge
iGr (2.1.30)

where the sumation is over all vecors given by

−→
G = n1

−→
b 1 + n2

−→
b 2 + n3

−→
b 3 (2.1.31)
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with integer values for ni, where
−→
G in a reciprocal lattice vector. For any real space

lattice vector li, G.l = 2Πn, The two equations (2.1.28 and 2.1.29) combined to give

ψk(r) =
∑

G

ci, k +Ge[i(k+G).r] (2.1.32)

Then the solutions with kinetic energy

E =
~2

2m
|k +G|2 (2.1.33)

The solutions with lower energies are more physically important than solutions with

very high energies to define the length scale and the condnced matter easily. There-

fore, it is obvious to shorten the infinite sum above to include only solutions with

kinetic energies less than some value:

Ecut =
~2

2m
G2

cut (2.1.34)

Then for the infinite sum it reduces to

ψk(r) =
∑

|G+k|<Gcut

cG+ke
[i(K+G)r] (2.1.35)

The expression above slightly consists of different numbers of terms for different values

of k. The discussion introduced one more parameter that must be defined whenever a

DFT calculation is performed over cutoff energy, Ecut. In many ways, this parameter

is easier to define than the k points.

K points sampling

The most widely used standard method (solution) was developed by Monkhorst and

pack in 1976. Which is a regular grid in k space (an integration grid in the first

BZ) [33, 34]. One can use these methods, and obtain an accurate approximation
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for the electronic potential and the total energy of an insulator or semiconductor by

calculating the electronic states at a very small number of k points. The electronic

potential and total energy are more difficult to calculate if the system is metallic. The

magnitude of any error in the total energy due to inadequacy of the K points sampling

can always be reduced by using a denser set of k points. The computed total energy

will converge as the density of k points increases, and the error due to the k point

sampling approaches zero. In principle, a converged electronic potential and total

energy can always be obtained provided that the computational time is available

to calculate the electronic wave functions at sufficiently dense set of k points.The

computational cost of performing a very dense sampling of k space can be significantly

reduced by using the k points total energy method.

Plane wave basis sets

Bands represented on reciprocal space grid with in cut-off. Blochs theorem states that

”the electronic wave functions at each k points can be expanded in terms of a discrete

plane-wave basis sets”. In principle, an infinite plane wave basis set is required to ex-

pand the electronic wave function. However, the coefficients Ci, K +G, for the plane

waves with small kinetic energy, ~2

2m
|K+G|2 are typically more important than those

with large kinetic energy. Thus, the plane wave basis set can be shorten to include

only plane waves that have kinetic energies less than some particular cutoff energy.

If a continuum of plane wave basis states were required to expand each electronic

wave function, the basis set would be infinitely large no matter how small the cutoff

energy. Application of the Bloch theorem allows the electronic wave functions to be

expanded in terms of a discrete set of plane waves. Introduction of any energy cutoff

to discrete plane wave basis set produces a finite basis set.
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2.1.8 Self-Consistent Kohn-Sham Equation

Here,we disscuss self-consistent Kohn-Sham algorithm to calcaulte ground state den-

sity and its energy from the Kohn-Sham non interacting system of equations. In

first step, we assumed some initial electron density, calculate the effective potential

energies and K-S equations to calculate new electron density. The diagonalization of

Hamiltonian in K-S equations can be done by using different diagonolization meth-

ods. The new electron density from previous step is compared with old density. If

the difference of two electron densities is zero, then, we stop the calculation otherwise

put the new electron density into first step and repeat the above steps until converged

solution is obtained. Converged electron density is used to calculate the eigenvalues,

forces, energies and stresses [33].

Pseudopotentials

The fundamental idea of a pseudopotential is to replace one problem with another.

The concept of a pseudopotential is related to replacing the effects of the core electrons

with an effective balance electrons [33]. The pseudopotential generation procedure

starts with the solution of the atomic problem using the Kohn-Sham approach. Once

the KS orbitals are obtained, we make an arbitrary distinction between valence and

core states. The core states are assumed to change very little due to changes in the

environment so their effect is replaced by a model potential derived in the atomic

configuration and it is assumed to be transferable. The valence states are seen to

oscillate rapidly close to the core regions. With the introduction of the new poten-

tial, the valence states are made smoother. Let’s now work out the pseudopotential

transformation in its most general framework. Assume that we have a Hamiltonian
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Ĥ, core states |xn〉 and core eigenvalues En. We are looking for a single valence state

|Ψ〉. Let’s replace the valence state by the smoother |Φ〉 and expand the remaining

portion in terms of core states[33].

|Ψ〉 = |Φ〉+
core∑
n

an|xn〉 (2.1.36)

Next, we take the inner product of the above equation with one of the core states.

Because the valence state has to be orthogonal to the core states, we have

〈xn|Ψ〉 = 〈xn|Φ〉+
core∑
n

an〈xm|xn〉 = 0 (2.1.37)

where
∑core

n an〈xm|xn〉 = 0 is am the right-hand side of the above equation in terms

of the pseudofunction,|Φ〉

|Ψ〉 = |Φ〉 −
∑

n

〈xn|Φ〉|xn〉 (2.1.38)

Applying the Hamiltonian on the expression above, we get

Ĥ|Φ〉+
core∑
n

(E − En)|xn〉〈xn|Φ〉 = E|Φ〉 (2.1.39)

As a result, the smooth, pseudo wavefunction satisfies an effective equation with the

same eigenenergy of the real valence wave function. In the case of isolated atoms, the

indices n corresponds to the combined index nlml including the principal quantum

number n, the angular momentum quantum number l and the magnetic quantum

number ml [34]. The above equation may then be written as an eigenvalue equation

for the smooth pseudo wave function as

(Ĥ + V̂nl)|Φ〉 = E|Φ〉 (2.1.40)

where the extra potential V̂nl depends on the angular momentum quantum number

l due to spherical symmetry and its effect is localized to the core. Since E > En
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by definition, it is a repulsive potential and it partially cancels the effect of the

attractive Coulombic potential. The resulting potential is then a much weaker one

than the original potential. This shows that the eigenstates of this new potential are

smoother[35].
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Chapter 3

Materials and Methodology

3.1 Materials

An intensive survey of literature from published articles, books, MSc. thesis and

lecture note has been carried out on the project title.

3.2 Methodology

3.2.1 Computational methodology

The calculations would be based on density functional theory (DFT) with the Perdew-

Burke-Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultra soft pseu-

dopotentials [36], and the plane wave basis set would be implemented in the Quantum-

ESPRESSO program package [37]. Quantum ESPRESSO (Quantum opEn-Source

Package for Research in Electronic Structure, Simulation, and Optimization), is an

integrated suite of computer codes for electronic-structure calculations and materials

modeling based on density-functional theory (DFT)[38], plane waves basis sets (PW)

and pseudo potentials(PP)[39]. It is freely available and distributed as open-source

software under the terms of the GNU (name of the free software foundation’s project

to develop a free UNIX-like operating systems, including the legal framework, such as

22



the source code and documentation) General Public License (GPL). The present ap-

plicability of quantum espresso ranges from simple electronic structure calculations to

the most sophisticated theoretical spectroscopy such as nuclear magnetic resonance

(nmr), Electron Paramagnetic Resonance (EPR), Raman and Scanning Tunneling

Microscopy, etc. The most important input parameters in Quantum Espresso are the

atomic geometries (number and types of atoms in the periodic cell, bravais-lattice

index, crystallographic or lattice constants), the kinetic energy cutoff and the type of

pseudopotentials [40].
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Chapter 4

Results and discussions

Introduction

The structural and electronic properties of Gallium arsenide were calculated with

respect to the density functional theory. One of the important aspects in studied

GaAs was the total minimum energy. Results are mainly presented in Tables and

Figures. The first results are the total minimum energy per cell and second results are

force values for bulk Gallium arsenide. Then, the results for the equilibrium lattice

constants with respect to total energy. The output files of the computations were

used to deduce the Tables of energy cutoffs, K points and lattice constants against

the total energies and graphs were plotted to obtain the optimized parameters for

GaAs structure with in both LDA and GGA .
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Table 4.1: The results of total minimum energy computed with energy cutoffs

Energy cutoffs(Ry) Total minimum energy(Ry)
20 -190.69068564
30 -191.02127024
40 -191.02226521
50 -191.02425886
60 -191.02429954
70 -191.02451629
80 -191.02456173
90 -191.02458235
100 -191.02461137
110 -191.02462519
120 -191.02462904
130 -191.02463756
140 -191.02464318
150 -191.02464431

4.1 Total energy of GaAs per unit cell with respect

to energy cutoffs

Here it has given an input 4 × 4 × 4 K points mesh; some of these K points have
nearly the same energy because of the symmetry of the crystal. The calculation was
done using different values of energy cutoffs, starting from 20 to 150 Ry and lattice
constant of 10.6827 Bohr.

4.1.1 Convergence test of total minimum energy of GaAs
with respect to energy cutoffs

We see that, the total minimum energy of GaAs is calculated as a function of energy
cutoff. The increasing value of energy cutoff for wave function is made until the
convergence is achieved. We can see from Fig 4.1 that, the total minimum energy
converge at 50 Ry plane wave cutoff energy and the total minimum energy had its
minimum at -191.02425886 Ry. The total minimum energy is the sum of one electron
contribution, hartree contribution, xc contribution and ewald contribution. Moreover,
the total minimum energy decreases with increasing energy cutoffs for wave function.
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Figure 4.1: Total minimum energy of GaAs with respect to energy cutoffs
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Table 4.2: The results of the total minimum energy computed with K points grid size

kpoints grid Total minimum energy(Ry)
4 -190.66288269
6 -190.66257510
8 -190.66010672
10 -190.66157751
12 -190.66174778
14 -190.66118085
16 -190.66069368
18 -190.66094901
20 -190.66108072

4.2 Total minimum energy of GaAs per unit cell

with respect to K points grid size

In this case, the calculation was done using different K points value from 4 × 4 × 4
to 20× 20× 20 mesh with 2.0 points.

4.2.1 Convergence test of total energy of GaAs with respect
to K points grid size

The total minimum energy of Gallium arsenide is calculated as a function of K
points grid size using PWSCF code. For this calculation, the other variables (lattice
constant, energy cutoff) are kept constant. The total energy of GaAs versus K points
grid size is shown in Fig 4.2. It can be observed that the total minimum energy of
Gallium arsenide converges at 8 × 8 × 8 K points grid and the total ground state
energy has its minimum at -190.66010672 Ry.
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Figure 4.2: Total minimum energy of GaAs with respect to K points mesh
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Table 4.3: The results of total minimum force of GaAs with respect to energy cutoffs

Energy cutoffs(Ry) Total force(Ry/Bohr)
20 0.143301
30 0.140369
40 0.140311
50 0.140363
60 0.140394
70 0.140386
80 0.140383
90 0.140379
100 0.140378
110 0.140391
120 0.140399
130 0.140401
140 0.140420
150 0.140413

4.3 Total minimum force of GaAs with respect to

energy cutoffs

4.3.1 Convergence test of total minimum force of GaAs with
respect to energy cutoffs

It is possible to create forces by displacing Arsenic atom 0.05 Bohr in the z direction
on GaAs compound. Here we calculated total force on GaAs as a function of plane
wave cutoff energy by keeping other parameters fixed. For this calculation, we used
the lattice constants a = 10.6827 Bohr and 4×4×4 K points grid. In this simulation
convergence is achieved when the energy cutoff is equal to 60 Ry. A total force value
at this energy cutoff is 0.140394 Ry/Bohr.
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Figure 4.3: Total minimum force of GaAs with respect to energy cutoffs
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Table 4.4: The results of the total minimum force computed with K points grid size

kpoints grid Total force(Ry/Bohr)
4 0.143317
6 0.143301
8 0.143251
10 0.143273
12 0.143251
14 0.143262
16 0.143261
18 0.143262
20 0.143258

4.4 Total minimum force of GaAs per unit cell

with respect to K points sampling

4.4.1 Convergence test of total minimum force of GaAs with
respect to K points sampling

We have calculated the force on 0.05 Bohr displaced As as a function of K points
grid size, by keeping other parameters (lattice constant, energy cutoff) constant. The
calculated force with respect to K points grid is shown in Table 4.4. Moreover, as it is
observed in Fig 4.4 that, the total force converge at the grid size of 14×14×14 K points
mesh; and its value is 0.143262 Ry/Bohr. Generally, it is clear that different structural
geometries will require different K points meshes in order to reach convergence.
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Figure 4.4: Total minimum force of GaAs with respect to K points sampling
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Table 4.5: The result of total energy of GaAs computed versus lattice constant

Lattice constant(Bohr) Total energy(Ry)
10.1 -190.61174104
10.2 -190.62970838
10.3 -190.63773422
10.4 -190.64264967
10.5 -190.66189009
10.6 -190.65677732
10.7 -190.65977732
10.8 -190.66524938
10.9 -190.67136727
11.0 -190.67131668
11.1 -190.66541121

4.5 Total energy of GaAs computed with respect

to lattice constant

4.5.1 Convergence test of total energy of GaAs computed
versus lattice constant

The equilibrium lattice constant of GaAs were calculated by performing total energy
calculation for a series of plausible parameters. In this case energy cutoff and the K
points were kept constant. The computational calculation shows that the equilibrium
lattice constant is 10.5565 Bohr. This result is approximately in good agreement with
experimental value 10.6827 Bohr.
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Figure 4.5: Total energy of GaAs versus lattice constant
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Chapter 5

Conclusion

The electronic and structural properties of Gallium arsenide (GaAs) were investi-
gated within the frame work of the density functional theory, plane wave basis sets,
and pseudo potentials (ultra-soft). All calculations have been done with the help of
Quantum Espresso package (software). The total minimum energy calculated as a
function of cutoff energy and Monkhorst pack-grid size, respectively keeping the other
parameters constant. The total energy convergence test is achieved, at the energy
cutoff 50 Ry for the first case and at 8× 8× 8 k- points grid size for the second case.
The total minimum energy is -191.02425886 Ry for the first case and -190.66010672
Ry for the second case. The total minimum force on GaAs as a function of cutoff
energy and Monkhorst-Pack grid is calculated by displacing Arsenic atom by 0.05
Bohr in the z direction. Total force convergence test is achieved for the cutoff energy
60 Ry and for Monkhorst-Pack grid at 14×14×14 k- points grid size. The numerical
calculation shows that the equilibrium lattice constant is 10.5565 Bohr. This result
is nearly in good agreement with experimental value 10.6827 Bohr.
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