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Abstract

This thesis concerned with second-order undamped three point boundary value
problem. It also focused on constructing Green’s function for correspond-
ing homogeneous equation by using its properties. Under the suitable condi-
tions, we established the existence of two positive solution by applying Avery-
Henderson fixed point theorem. We provided an example to demonstrate for
the applicability of our main result. This study was mostly dependent on sec-
ondary source of data such as journals and books which related to our study
area.
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Chapter 1

Introduction

1.1 Background of the study

Boundary value problems for ordinary differential equations play a very im-
portant role in both theory and applications. Boundary value problems arise
in applications where some physical process involves knowledge of information
at the edges. For example, it may be possible to measure the electric potential
around the edge of a semi-conductor and then use this information to infer the
potential distribution near the middle HELM .(2008).

Some theories such as the Krasnoselskii’s fixed point theorem, the Leggett-
Williams fixed point theorem, Avery’s generalization of the Leggett-Williams
fixed point theorem and Avery-Henderson fixed point theorem have given a
decisive impetus for the development of the modern theory of differential equa-
tions. The advantage of these techniques lies in that they do not demand the
knowledge of solution, but have great power in application, in finding positive
solutions, multiple positive solutions, and eigenvalue intervals for which there
exists one or more positive solutions.

In this vast field of research, we focused on the second-order undamped
three point boundary value problem. Most results so far have been obtained
mainly by using the fixed-point theorems in cone, such as the Guo-Krasnoselkii’s
fixed point theorem (Krasnoselskii,M.A.(1964)), the Legget-Williams theorem
(1979), Avery and Henderson’s theorem(2001), and so on.
In the field of differential equations, a boundary value problem (BVP) is a
differential equation together with a set of additional constraints, called the
boundary conditions. A solution to a boundary value problem is a solution to
the differential equation which also satisfies the boundary conditions .

A second-order ordinary differential equation with three boundary condi-

1



tions is called second-order three point boundary value problems. Gupta(1992),
Studied three point boundary value problems for nonlinear ordinary differ-
ential equations. Since,then nonlinear three point boundary value problems
have been studied by many authors using the fixed point index theory,Leray-
Schauder continuation theorem, coincidence degree theory, and fixed point
theorem in cones.The existence of positive solutions of boundary value prob-
lems was studied by many researchers. We list down few of them which are
related to our particular problem.

Liu in 2004 [Liu2014], established the existence, multiplicity, and nonexis-
tence of positive solutions for

u′′(t) + β2u(t) + λq(t)f(t, u(t)) = 0, 0 < t < 1

u(0) = 0, u(t) = σu(η)

where, β ∈ (0,
π

2
), η ∈ (0, 1)

λ is a positive constant, using by the fixed point index theorem, degree theory,
and fixed point theorem in cones.

Neito in 2013 [Nieto 2013], established the existence of a solution for a
three-point boundary value problem for a second order differential equation at
resonance

−u′′(t) = f(t, u(t)), 0 ≤ t ≤ T

u(0) = 0, αu(η) = u(T ),

where T > 0, f : [0, T ]×R→ R is continuous function α ∈ R and η ∈ (0, T ).
Motivated by the above mentioned results, in this thesis, we established

the existence of two positive solutions for second-order undamped three point
boundary value problems of the form

−u′′(t) + k2u(t) = f(t, u(t)), 0 ≤ t ≤ 1 (1.1)

u(0) = 0, u(1) = αu(η), 0 < η < 1, k > 0 (1.2)

By applying Avery-Henderson fixed point theorems in cone Banach space. And
some examples has been demonstrated for the applicability of our main result.

By a positive solution of (1.1), (1.2), we understand a function u(t) which is
positive on 0 ≤ t ≤ 1 and satisfies the differential equation (1.1) for 0 ≤ t ≤ 1
and three-point boundary conditions (1.2).

The rest of this thesis was organized as follows:-We first present some defini-
tions which are needed throughout in this work and construct Green’s function
by using its properties for corresponding homogeneous boundary value prob-
lems and state fixed point result by applying the Avery-Henderson fixed point
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theorem in a cone Banach space. Finally, we investigate the existence of at
least two positive solutions for second-order undamped three point boundary
value problems (1.1),(1.2) and as an application, example included to verify
the main result.

1.2 Statement of the problem

In this study we focused on establishing the existence of two positive solutions
for second-order undamped three point boundary value problems.

1.3 Objectives of the study

1.3.1 General objective

The main objective of this thesis was to establish the existence of at least
two positive solutions for second-order undamped three point boundary value
problems by applying Avery-Henderson fixed point theorem (1.1),(1.2).

1.3.2 Specific objectives

The study has the following specific objectives:-

• To construct the Green’s function of the corresponding homogeneous
equation.

• To formulate the problem in the form of equivalent integral equation.

• To prove the existence of at least two positive solutions by using Avery-
Henderson fixed point theorem.

• To verify the main result by providing an illustrative example.
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1.4 Significance of the study

The outcome of this thesis may have the following importance:-

1. It may build the research skill and scientific communication skill of the
researcher.

2. It may be used to solve some problems in applied sciences.

3. It may provide some background information for other researchers who
want to conduct a research on related topics.

1.5 Delimitation of the Study

This study was delimited to show the existence of at least two positive solutions
for second-order undamped three point boundary value problems.
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Chapter 2

Review of Related literatures

2.1 Over view of Positive solutions

Positive solution is very important in diverse disciplines of mathematics since
it can be applied for solving various problems and it is one of the most dynamic
research subjects in nonlinear analysis. In this area the first important result
the existence of positive solution was proved by Erbe and Wang in 1994.
The existence of positive solutions for three- point boundary value problem
has been studied by many researchers. We list down few of them which are
related to our particular problem.

Ma in 1999 [Ma 1999], established the existence of positive solutions to the
boundary-value problem

u′′ + α(t)f(u) = 0, 0 < t < 1

u(0) = 0, αu(η) = u(1),

where 0 < η < 1, 0 < α < 1
η

by applying the fixed point theorem in cones.
Zima in 2004 [Zima2004], established the existence of positive solution of
second-order three point boundary value problem

x′′(t) + f(t, x(t)) = 0, 0 ≤ t ≤ 1

x(0) = 0, αx(η) = x(1)

0 < η < 1, α ≥ 0

by establishing a norm-type cone expansion and compression fixed point the-
orem for completely continuous operator.
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Sveikate et al. in 2016[Sveikate 2016], established the existence of positive
solutions of the boundary value problem

x′′ + k2x = f(t, x, x′)

x(0) = 0, x(1) = αx(η), 0 < η < 1, α > 0

by using the quasilinearization approach.

2.2 Preliminaries

In this section we recall some known definitions, theorems and basic concepts
on Green’s function that will be used in the proof of our main results.

Definition 2.2.1. A differential equation together with its boundary conditions
is referred to as boundary value problem.

Definition 2.2.2. A differential equation together with three point boundary
conditions is referred to as three point boundary value problem.

Definition 2.2.3. Let X be a non-empty set. A map T : X → X is said to be
a self-map with domain of T = D(T ) = X and range of T = R(T ) ⊂ X

Definition 2.2.4. Let X be a non-empty set and a map T : X → X be self-
map. A point x in X is called a fixed point of T if Tx = x.

Definition 2.2.5 (Agarwal 2008). We consider the second-order linear DE.

p0(x)y′′ + p1(x)y′ + p2(x)y = r(x), x ∈ J = [α, β], (2.1)

where the functions p0(x), p1(x), p2(x) and r(x) are continuous in J and bound-
ary conditions of the form

l1[y] = a0y(α) + a1y
′(α) + b0y(β) + b1y

′(β) = A

l2[y] = c0y(α) + c1y
′(α) + d0y(β) + d1y

′(β) = B
(2.2)

where ai, bi, ci, di, i = 0, 1 and A & B are given constants and l is differential
operator.
The boundary value problems (2.1), (2.2) are called nonhomogeneous two-point
linear boundary value problems, where as the homogeneous DE

p0(x)y′′ + p1(x)y′ + p2(x)y = 0 (2.3)
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together with the homogeneous boundary conditions

l1[y] = 0, l2[y] = 0 (2.4)

be called a homogeneous two-point linear boundary value problem.

The function called a Green’s function G(x, t) for the homogeneous bound-
ary value problems (2.3)-(2.4) and the solution of the non homogeneous bound-
ary value problem (2.1)-(2.2) can be explicitly expressed in terms of G(x, t).
Obviously, for the homogeneous problem (2.3)-(2.4) the trivial solution always
exists. Green’s function for the boundary value problem (2.3)-(2.4) is defined
in the square [α, β]× [α, β] and possesses the following fundamental properties:

i. G(x, t) is continuous [α, β]× [α, β].

ii. ∂G(x,t)
∂x

is continuous in each of the triangles α ≤ x ≤ t ≤ β and α ≤ t ≤
x ≤ β.

Moreover, ∂G(t+,t)
∂x

− ∂G(t−,t)
∂x

= − 1
p0(t)

where, ∂G(t+,t)
∂x

= limx→t,x>t
∂G(x,t)
∂x

, ∂G(t−,t)
∂x

= limx→t,x<t
∂G(x,t)
∂x

.

iii. for every t ∈ [α, β], z(x) = G(x, t) is a solution of the differential equation(2.3)
in each of the intervals [α, t) and (t, β].

iv. for every t ∈ [α, β], z(x) = G(x, t) satisfies the boundary conditions (2.4).

These properties completely characterize Green’s function G(x, t).

Definition 2.2.6. Let −∞ < a < b <∞ be collection of real valued functions
A = fi : fi : [a, b]→ R is said to be

(i) Uniformly bounded, if there exists a constant M > 0 with |fi(t)| ≤ M,
for all t ∈ [a, b] and for all fi ∈ A, and

(ii) Equi continuous, if for every ε > 0 there exists δ = δ(ε) > 0 such that
|t1− t2| < δ implies |fi(t1)−fi(t2)| < ε, for all t1, t2 ∈ [a, b] and for every
fi ∈ A.

Definition 2.2.7. A normed linear space is a linear space X in which for each
vector x,there corresponds a real number, denoted by ||x|| called the norm of x
and has the following properties:

i. ‖x‖ ≥ 0, for all x ∈ X and ||x|| = 0 if and only if x = 0,

ii. ||x+ y|| ≤ ||x||+ ||y||for all x, y ∈ X,
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iii. ||αx|| = |α|||x||, for all x ∈ X and α be a scalar.

Definition 2.2.8. Let E be a real Banach space. A nonempty closed convex
set P is called a cone, if it satisfies the following two conditions:

(i) u ∈ P, α ≥ 0 implies αu ∈ P , and

(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.2.9. Let X and Y be two metric spaces. A map T : X → Y
is said to be completely continuous, if it is continuous and maps bounded sets
into precompact sets.

Definition 2.2.10. A Banach space is a real normed linear space that is a
complete metric space in the metric defined by its norm. A complex Banach
space is a complex normed linear space that is, as a real normed linear space,
a Banach space.

Definition 2.2.11. Let X and Y be Banach Spaces and T : X → Y . An
operator T is said to be completely continuous, if T is continuous and for each
bounded sequence {xn} ⊂ X, {Txn} has a convergent subsequence.

Definition 2.2.12. Let X and Y be two metric spaces and a map T : X → Y
is said to be

(a) compact, if its range is relatively compact of Y and

(b) completely continuous , if it maps each bounded subset of X into a rela-
tively compact subset in Y .

Definition 2.2.13. Let E be a real Banach space with cone P . A map f :
P → [0,∞) is said to be a nonnegative continuous convex functional on P , if
f is continuous and f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all x, y ∈ P
and λ ∈ [0, 1].

Definition 2.2.14. Let E be a real Banach space with cone P . A map f :
P → [0,∞) is said to be a nonnegative continuous concave functional on P if
f is continuous and f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y),for all x, y ∈ P
and λ ∈ [0, 1].

The function u(t) ∈ C2[0, 1] is a positive solution of the boundary value
problem,

−u′′(t) + k2u(t) = f(t, u(t))

u(0) = 0, u(1) = αu(η) , 0 < η < 1, k > 0
(2.5)

8



if u(t) is positive on the given interval and satisfies both the differential equa-
tion and the boundary conditions.
Let ψ be a nonnegative continuous functional on a cone P of the real Banach
space E. Then for a positive real number c, we define the sets P (ψ, c) = {y ∈
P : ψ(u) < c} and Pa = {y ∈ P : ‖u‖ < c}.
In obtaining multiple positive solutions of the boundary value problem (1.1)-
(1.2), the following Avery-Henderson functional fixed point theorem will be
the fundamental tool.

Theorem 2.2.15. [Avery and Henderson 2001] Let P be cone in the real Ba-
nach space E. Suppose γ and ψ are increasing,nonnegative continuous func-
tionals on P and θ is nonnegative continuous functional on P with θ(0) = 0
such that, for some positive numbers c and M , γ(u) ≤ θ(u) ≤ ψ(u) and
||u|| ≤ Mγ(u) for all u ∈ P (γ, c). Suppose that there exist positive numbers
a and b with a < b < c such that θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and
u ∈ ∂P (θ, b). Further, T : P (γ, c) → P be a completely continuous operator
such that

(B1) γ(Tu) > c for all u ∈ ∂P (γ, c),

(B1) θ(Tu) < b for all u ∈ ∂P (θ, b),

(B1) ψ(Tu) > a and P (ψ, a) 6= ∅ for all u ∈ ∂P (ψ, a).

Then T has at least two fixed points u1, u2 ∈ P (γ, c) such that a < ψ(u1) with
θ(u1) < b and b < θ(u2) with γ(u2) < c .

2.3 Green’s Functions and Bounds

In this section, we construct Green’s function for the corresponding homoge-
neous boundary value problem to (1.1).
Before formulation of Green’s function for three point boundary value prob-
lems, first we construct Green’s function for two point homogeneous boundary
value problems,

−u′′ + k2u = 0 (2.6)

u(0) = 0, u(1) = 0 (2.7)

For equation (2.6) two linearly independent solution are u1(t) = − sinh kt +
cosh kt and u2(t) = sinh kt + cosh kt. Hence, the problem (2.6)-(2.7) has only
trivial solution if and only if

∆ =

∣∣∣∣u1(0) u2(0)
u1(1) u2(1)

∣∣∣∣ =

∣∣∣∣ 1 1
− sinh k + cosh k sinh k + cosh k

∣∣∣∣ = 2 sinh k 6= 0, k > 0
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To show this u1(t) and u2(t) be two linearly independent solution if the differ-
ential equation (2.6).
Green’s function for second - order two point boundary value problems can be
written in the form of

H(t, s) =

{
u1(t)λ1(s) + u2(t)λ2(s), if 0 ≤ t ≤ s ≤ 1
u1(t)µ1(s) + u2(t)µ2(s), if 0 ≤ s ≤ t ≤ 1

(2.8)

Where, λ1(s), λ2(s), µ1(s), and µ2(s) are functions. By applying properties of
(i) and (ii) ,we obtain{

u1(t)(µ1(s)− λ1(s)) + u2(t)(µ2(s)− λ2(s)) = 0,
u′1(t)(µ1(s)− λ1(s)) + u′2(t)(µ2(s)− λ2(s)) = −1.

(2.9)

Let v1(s) = µ1(s)− λ1(s) and v2(s) = µ2(s)− λ2(s) —————-(*)
Then {

u1(s)V1(s) + u2(s)v2(s) = 0,
u′1(s)V1(s) + u′2(s)v2(s) = −1.

From this we get

v1(s) =
1

2k(− sinh ks+ cosh ks)
and v2(s) =

−1

2k(sinh ks+ cosh ks)

Frome (∗), we have µ1(s) = v1(s) + λ1(s) and µ2(s) = v2(s) + λ2(s)
By using the boundary condition of (2.8) , we obtain{

u1(0)λ1(s) + u2(0)λ2(s) = 0,
u1(1)(V1(s) + λ1(s)) + u2(1)(v2(s) + λ2(s)) = 0.
λ1(s) + λ2(s) = 0,
(− sinh k + cosh k)(λ1(s) + 1

2k(− sinh ks+cosh ks)
)

+(sinh k + cosh k)(λ2(s) + 1
2k(sinh ks+cosh ks)

) = 0.

By applying Cramer’s rule ,we find the value of λ1(s) and λ2(s).
For λ1(s) ,

λ1(s) =

∣∣∣∣ 0 1
cosh ks. sinh k−sinh ks. cosh k

k
sinh k + cosh k

∣∣∣∣ =
cosh k. sinh ks− sinh k. cosh ks

2k sinh k

For λ2(s) ,

λ2(s) =

∣∣∣∣ 1 0
− sinh k + cosh k cosh ks. sinh k−sinh ks. cosh k

k

∣∣∣∣ =
cosh ks. sinh k − sinh ks. cosh k

2k sinh k
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Hence ,

u1(t)µ1(s) + u2(t)µ2(s) = u1(t)(λ1(s) + v1(s)) + u2(t)(λ2(s) + v2(s))

= (− sinh kt+ cosh kt)(
cosh k. sinh ks− sinh k. cosh ks

2k sinh k
+

1

2k(− sinh ks+ cosh ks)
)

+(sinh kt+ cosh kt)(
cosh ks. sinh k − sinh ks. cosh k

2k sinh k
− 1

2k(sinh ks+ cosh ks)
)

=
sinh kt sinh k(1− t)

k sinh k
, 0 ≤ t ≤ s ≤ 1

Therefore,

H(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
, 0 ≤ t ≤ s ≤ 1

sinh ks sinh k(1−t)
k sinh k

, 0 ≤ s ≤ t ≤ 1
(2.10)

And the solution of (2.7) is given by

w(t) =

∫ 1

0

H(t, s)f(s)ds (2.11)

and

w(0) = 0, w(1) = 0, w(η) =

∫ 1

0

H(η, s)f(s)ds
(2.12)

Lemma 2.3.1. The Green’s function H(t, s) has the following properties:

(i) H(t, s) ≤ H(s, s), for all t, s ∈ [0, 1];

(ii) H(t, s) ≥ NH(s, s), for all t ∈ [δ, 1− δ], s ∈ [0, 1], N = sinh kδ
sinh k

Proof. i. H(t, s) is positive for all t, s ∈ [0, 1] .
For 0 ≤ s ≤ t ≤ 1, we have

H(t, s)

H(s, s)
=

sinh ks. sinh k(1− t)
sinh ks. sinh k(1− s)

=
sinh k(1− t)
sinh k(1− s)

≤ 1.

=⇒ H(t, s) ≤ H(s, s), t, s ∈ [0, 1]
For 0 ≤ t ≤ s ≤ 1, we have

H(t, s)

H(s, s)
=

sinh kt. sinh k(1− s)
sinh ks. sinh k(1− s)

=
sinh kt

sinh ks
≤ 1.

=⇒ H(t, s) ≤ H(s, s), t, s ∈ [0, 1]
Therefore, H(t, s) ≤ H(s, s), for all t, s ∈ [0, 1].
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ii. If s ≤ t for t ∈ [δ, 1− δ], s ∈ [0, 1], we have

H(t, s)

H(s, s)
=

sinh ks sinh k(1− t)
sinh ks sinh k(1− s)

≥ sinh kδ

sinh k
.

=⇒ H(t, s) ≥ NH(s, s)

If t ≤ s for t ∈ [δ, 1− δ], s ∈ [0, 1], we have

H(t, s)

H(s, s)
=

sinh kt sinh k(1− s)
sinh ks sinh k(1− s)

≥ sinh kδ

sinh k
.

=⇒ H(t, s) ≥ NH(s, s)

Thus, the Lemma follows.

The three-point boundary value problems (1.1),(1.2) can be obtained by
replacing u(1) = 0 for u(1) = αu(η) in (2.7), thus we suppose the solution of
the three point boundary value problems (1.1),(1.2) can be expressed by

u(t) = w(t) + A1 sinh kt+ A2 sinh k(1− t) (2.13)

Where A1 and A2 are constants that will be determined . From (2.12), we
know that 

u(0) = w(0) + A1 sinh k(0) + A2 sinh k(1− 0)
u(1) = w(1) + A1 sinh k(1) + A2 sinh k(1− 1)
u(η) = w(η) + A1 sinh k(η) + A2 sinh k(1− η)

⇒


0 = 0 + A1.0 + A2 sinh k(1)
u(1) = 0 + A1 sinh k(1) + A2 sinh k(0)
u(η) = w(η) + A1 sinh k(η) + A2 sinh k(1− η)

⇒ A2 = 0.

u(1) = αu(η) ,we have A1 sinh k = α(w(η) + A1 sinh k(η))

A1 =
αw(η)

sinh k − α sinh k(η)
,

sinh k

sinh kη
> α. (2.14)

Therefore,

u(t) = w(t) + A1 sinh kt+ A2 sinh k(1− t)

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh k(η)
H(η, s)
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Where, H(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
, 0 ≤ t ≤ s ≤ 1

sinh ks sinh k(1−t)
k sinh k

, 0 ≤ s ≤ t ≤ 1

H(η, s) =

{
sinh kη sinh k(1−s)

k sinh k
, 0 ≤ η ≤ s ≤ 1

sinh ks sinh k(1−η)
k sinh k

, 0 ≤ s ≤ η ≤ 1

G(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
sinh ks sinh k(1−t)

k sinh k

+
α sinh kt

sinh k − α sinh k(η)

{
sinh kη sinh k(1−s)

k sinh k
sinh s sinh k(1−η)

k sinh k

(2.15)

G(t, s) =
1

k(sinh k − α sinh k(η))


[sinh k(1− s) + α sinh k(s− η)](sinh kt), t ≤ s ≤ η,
[sinh k(1− t) + α sinh k(t− η)](sinh ks), s ≤ t, s ≤ η
sinh kt sinh k(1− s), t ≤ s, η ≤ s,
sinh ks. sinh k(1− t) + α sinh kη sinh k(t− s), η ≤ s ≤ t ≤ 1.

(2.16)

Lemma 2.3.2. The Green’s function G(t, s) satisfies the following inequalities

i. G(t, s) ≥ 0, ∀t, s ∈ [0, 1];

ii. G(t, s) ≤ DH(s, s),∀t, s ∈ [0, 1] ,

iii. G(t, s) ≥MH(s, s),∀t,∈ [δ, 1− δ], s ∈ [0, 1]

where, D = 1 +
α. sinh k

sinh k − α sinh kη

M =
sinh kδ

sinh k
[1 +

α. sinh kδ

sinh k − α sinh kη
].

Proof. (i) It is obvious that G(t, s) is nonnegative. Since H(t, s) ≥ 0 and
sinh k − α sinh kη > 0.

(ii) consider the following case
Case (i) if t ≤ s, η ≤ s

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh ks

sinh k − sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D1H(s, s)

(2.17)
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Case(ii) If t ≤ s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D2H(s, s).

(2.18)

Case(iii) if s ≤ t, s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D3H(s, s)

(2.19)

Case(iv) if η ≤ s ≤ t ≤ 1

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh k

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D4H(s, s)

(2.20)

Therefore, G(t, s) ≤ DH(s, s),where D = D1 = D2 = D3 = D4

(iii) To prove (iii) we consider the following cases:
Case(i) If s ≤ t, s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
H(s, s) ≥ NH(s, s)[1 +

α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M1H(s, s).

(2.21)
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Case(ii) If t ≤ s, η ≤ s

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M2H(s, s).

(2.22)

Case(iii) If t ≤ s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
NH(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M3H(s, s).

(2.23)

Case(iv) If η ≤ s ≤ t ≤ 1

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
NH(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M4H(s, s).

(2.24)

Therefore, G(t, s) ≥MH(s, s), where M = M1 = M2 = M3 = M4

15



Chapter 3

Research Design and
Methodology

This chapter contains:- study area and period, study design, source of infor-
mation and mathematical procedures.

3.1 Study period and site

The study was conducted from September 2018 G.C to February 2020 G.C in
Jimma University under the department of Mathematics.

3.2 Study Design

In order to achieve the objective of the study we employed analytical method
of design.

3.3 Source of Information

The relevant sources of for this study were different mathematics books, pub-
lished articles, journals and related studies from internet services.
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3.4 Mathematical Procedures

This study we followed the following procedures:-

1. Defining second-order undamped three point boundary value problems.

2. Constructing Green’s function by following its properties for the corre-
sponding homogeneous equation.

3. Formulating equivalent integral equation for the boundary value prob-
lems (1.1)-(1.2).

4. Determining existence of fixed point of the integral equation by applying
Avery-Henderson fixed point theorem.

5. Verifying main result by providing an illustrative example.

17



Chapter 4

Result And Discussion

4.1 Main Result

In this section, we discuss the existence of at least two positive solutions for
second order undamped three point boundary value problems (1.1)-(1.2) by
applying Avery-Henderson fixed point theorem [Theorem 2.2.15].
Obviously, u(t) ∈ C2([0, 1],R+) is solution of (1.1)-(1.2) if and only if u(t) is
a solution of the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (4.1)

Let E = C([0, 1]) be a real Banach space with the norm ||u|| = max0≤t≤1 |u(t)|
and define a cone P ,

P = {u ∈ E;u(t) ≥ 0 and min
δ≤t≤1−δ

u(t) ≥ ω||u||}

where ω = M
D

, then P is anon empty closed subset of E.
Define an operator T : P → E as

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds (4.2)

We assume the following conditions hold through out this research:

H1. f ∈ C([0, 1]× [0,∞), [0,∞)), k ∈ (0,∞),

H2. 0 ≤ G(t, s) <∞,∀t, s ∈ [0, 1],

H3. α < sinh k
sinh kη

.

18



For the notational convenience, we denote R and S by

R =
1∫ 1

0
H(s, s)ds

> 0, S =
1∫ 1

0
ωH(s, s)ds

> 0. (4.3)

By applying fixed point theorem on T and establishing suitable conditions on
f we determined the existence of at least two fixed points in a cone P .

Lemma 4.1.1. Let H1, H2and H3 hold the operator T : P −→ P is completely
continuous.

Proof. First we prove the following

1. The operator T is self map on P . Now (1.1)-(1.2) has a solution u = u(t)
if and only if u is the fixed point of the operator T defined in equation 4.2.

Now G(t, s) is the Green’s function for the boundary value problem, by
Lemma 2.3.1 and Lemma 2.3.2 we have G(t, s) ≤ DH(s, s), for all t, s ∈
[0, 1] and Tu ∈ E, for each u ∈ P . We have

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

DH(s, s)f(s, u(s))ds (4.4)

and we have Tu(t) ≤
∫ 1

0
DH(s, s)f(s, u(s))ds which implies that

||Tu|| ≤
∫ 1

0

DH(s, s)f(s, u(s))ds

then,

min
t∈[δ,1−δ]

(Tu)(t) = min
t∈[δ,1−δ]

∫ 1

0

G(t, s)f(s, u(s))ds

≥M
∫ 1

0

H(s, s)f(s, u(s))ds =
M
D

∫ 1

0

DH(s, s)f(s, u(s))ds

≥ M
D
||T (u)||

≥ ω||T (u)||.

TP ⊂ P . Therefore, T is a self map on P .

2. The operator T is uniformly bounded on P . Let u ∈ P , in view of the
positivity and continuity of G(t, s), H(t, s) and f , we have T : P −→ P is
continuous .
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Let {uk} be a bounded sequence in P , say ||uk|| ≤ M for all k .Since f is
continuous, there exist N > 0 such that |f(t, u(t))| ≤ N for all u ∈ [0,∞)
with 0 ≤ u ≤M then, for each t ∈ [0, 1] and for each k,

|Tuk(t)| = |
∫ 1

0

G(t, s)f(s, uk)ds|

≤
∫ 1

0

G(t, s)(N)ds

≤ N

∫ 1

0

G(t, s)ds < +∞.

That is for each t ∈ [0, 1] , uk is abounded sequence of real numbers. By
choosing successive subsequences, for each t, there exists a subsequence {uk}
which converges uniformly for t ∈ [0, 1]. Hence, T is uniformly bounded.

3. The operator T is equicontinuous on P . To prove T is equicontinuous. Let
u ∈ P and ε > 0 be given. By the continuity of G(t, s), for t ∈ [0, 1],
there exist a δ > 0 such that
|G(t2, s)−G(t1, s)| < ε

N
whenever |t1 − t2| < δ, for t1 ,t2 ∈ [0, 1].

|Tu(t1)− Tu(t2)| = |
∫ 1

0

(G(t1, s)−G(t2, s))f(s, u(s))ds|

≤
∫ 1

0

|G(t2, s)−G(t1, s)|Nds,

≤ N

∫ 1

0

|G(t1, s)−G(t2, s)|ds,

< ε.

Therefore, by a standard application of the Arzela-Ascoli theorem [Royden,
2010] and the result from 1,2 and 3, T is completely continuous.

From the above arguments, we know that the existence of at least two
positive solutions of (1.1), (1.2) can be equivalent to the existence of at least
two fixed points of the operator of T .

Define the nonnegative, increasing, continuous functionals γ, θ, and ψ on
the cone P by:- γ(u) = minδ≤t≤1−δ u(t)
θ(u) = maxδ≤t≤1−δu(t), ψ(u) = max0≤t≤1u(t)
We observe that for any u ∈ P ,

γ(u) ≤ θ(u) ≤ ψ(u), (4.5)
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And

||u|| = γ(u)

ω
≤ θ(u)

ω
≤ ψ(u)

ω
. (4.6)

Theorem 4.1.2. Under the conditions (H1), (H2) and (H3) there exist real
numbers 0 < a < b < c such that f(t, u(t)) satisfies the following:

(A1) f(t, u(t)) > cS
D
, t ∈ (δ, 1− δ) and u ∈ (c, c

ω
),

(A2) f(t, u(t)) < bR
D
, t ∈ [0, 1] and u ∈ [0, b

ω
],

(A3) f(t, u(t)) > aS
D
, t ∈ (δ, 1− δ) and u ∈ [a

,
a
ω

].

Then the three point BVP (1.1)-(1.2) has at least two positive solutions u1 and
u2 such that a < ψ(u1) with ψ(u1) < b and b < θ(u2) with γ(u2) < c .

Proof. Consider the operator T : P → E, where T as defined (4.2). We seek
two fixed points u1, u2 ∈ P of T . For each u ∈ P , from (4.5), (4.6)

γ(u) ≤ θ(u) ≤ ψ(u)

and

||u|| ≤ γ(u)

ω
.

Also, for any u ∈ P, Tu ∈ P by first part of Lemma 4.1.1. Also, for any 0 ≤
λ ≤ 1 and u ∈ P, θ(λu) = λθ(u) = maxδ≤t≤1−δ(λu)(t) = λmaxδ≤t≤1−δ u(t) =
λθ(u). It is clear that θ(0) = 0. We now show that the remaining conditions
of Theorem 2.2.15, are satisfied. Firstly, we shall verify that condition(B1) of
Theorem 2.2.15 is satisfied. Since

u ∈ ∂P (γ, c),

from (4.6) we have that
c = minδ≤t≤1−δu(t) ≤ ||u|| ≤ c

ω
. Then

γ(Tu) = min
δ≤t≤1−δ

∫ 1

0

G(t, s)f(s, u(s))ds

≥
∫ 1

0

MH(s, s)
cS

D
ds

> cS

∫ 1

0

ωH(s, s)ds = c,

(4.7)

using condition (A1) of Theorem 4.1.2.
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Now we shall show that condition (B2) of Theorem 2.2.15 is satisfied. Since
u ∈ ∂P (θ, b), from (4.6) we have that 0 ≤ u(t) ≤ ||u|| ≤ b

ω
, for t ∈ [0, 1]. Thus

θ(Tu) = max
δ≤t≤1−δ

∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

DH(s, s)f(s, u(s))ds

≤
∫ 1

0

H(s, s)D
bR

D
ds = bR

∫ 1

0

H(s, s)ds = b,

(4.8)

by the condition(A2) of Theorem 4.1.2. Finally, using condition (A3) of 4.1.2,
to settle criteria (B3) of Theorem 2.2.15. Since 0 ∈ P and a > 0, P ∈ (ψ, a) 6=
∅. Since,u ∈ ∂P (ψ, a), a = max0≤t≤1u(t) ≤ ||u|| ≤ a

ω
, for t ∈ (δ, 1 − δ).

Therefore,

ψ(Tu) = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds

≥
∫ 1

0

MH(s, s)f(s, u(s))ds

>

∫ 1

0

H(s, s)MaS

D
ds = aS

∫ 1

0

ωH(s, s)ds = a.

(4.9)

Thus, all the conditions of Theorem 2.2.15 are satisfied. Therefore, the bound-
ary value problem (1.1),(1.2) has at least two positive solutions (u1), (u2) in
cone P . This completes the proof of the theorem.

4.2 Example

Example 4.2.1. Consider the boundary value problem:

−u′′(t) +
1

9
u(t) = f(t, u(t)), 0 ≤ t ≤ 1 (4.10)

u(0) = 0, u(1) = 2u(
1

5
) (4.11)

where k = 1
3
, α = 2, η = 1

5

By the help of Equation (2.15) and (2.16) the Green’s function for the
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corresponding homogeneous BVP of (4.10)-(4.11) is

G(t, s) =
1

1
3
(sinh 1

3
− 2 sinh 1

15
)



[sinh
1

3
(1− s) + 2 sinh

1

3
(s− 1

5
)](sinh

1

3
t), t ≤ s ≤ 1

5
,

[sinh
1

3
(1− t) + 2 sinh

1

3
(t− 1

5
)](sinh

1

3
s), s ≤ t, s ≤ 1

5

sinh
1

3
t sinh

1

3
(1− s), t ≤ s,

1

5
≤ s,

sinh
1

3
s sinh

1

3
(1− t) + 2 sinh

1

15
sinh

1

3
(t− s), 1

5
≤ s ≤ t ≤ 1.

Clearly, the Green’s function G(t,s) is positive. There is a continuous function
f(t, u(t)) which satisfies all the conditions of Theorem(4.1.2).Therefore, by
theorem (4.1.2) the given BVP (4.10)-(4.11)has two solutions.
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Chapter 5

Conclusion and Future Scope

5.1 Conclusion

Based on the obtained result the following conclusion can be derived:- In this
study, we defined second-order undamped three point boundary value prob-
lems and used the properties of Green’s function to construct it for correspond-
ing homogeneous equation.
We established the existence of two positive solutions for second-order un-
damped three point boundary value problems by applying Avery-Henderson
fixed point theorem.
Finally, It was established that, there exists at least two positive solutions for
second-order undamped three point boundary value problems.

5.2 Future Scope

This study focused on existence of two positive solutions for second-order
undamped three point boundary value problems. Any interested researcher
may conduct the research on:-

• Existence of two positive solutions for nth-order three point boundary
value problems.

• Recently there are a number of published research papers related to this
area of study. So, the researchers recommends the upcoming Post Grad-
uate students of the department and any other interested researchers to
do their research work in area of study.
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