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Abstract 

In this thesis, Extrapolated Refinement of Generalized Gauss-Seidel scheme for solving system of 

linear equations has been developed. In order to accelerate the rate of convergence of the 

scheme, the one-parameter family of splitting procedure has been introduced in order to attain 

the largest rate of convergence. To validate the proposed method, two numerical examples were 

considered. Comparisons were made among Refinement of Generalized Jacobi, Generalized 

Gauss-Seidel, Refinement of Generalized Gauss-Seidel and Extrapolated Refinement of 

Generalized Gauss-Seidel schemes with respect to the number of iterations to converge, 

computational running time and storage capacity. Finally, the results showed that the 

Extrapolated Refinement of Generalized Gauss-Seidel scheme is more efficient than the other 

three schemes considered.   
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CHAPTER ONE 

INTRODUCTION 

1.1.Background of the Study 

Numerical linear algebra is an exciting field of research and much of this research has been 

triggered by a problem of getting the solution vector(s)     of the equation      

where      and     . Many scientific problems lead to the requirement to solve linear 

systems of equations as part of the computations. From a pure mathematical point of view, this 

problem can be considered as being solved in the sense that we explicitly know its solution in 

terms of determinants. The actual computation of the solution(s) may, however, lead to several 

complications when carried out in infinite precision and when each basic arithmetic operation 

takes finite time. Even the simple case when n m and A is non-singular which is a trivial 

problem from a mathematical point of view and may even turn out to be impossible (Yousef S., 

1996). 

The major factors to be considered in comparing different numerical methods are the accuracy of 

the numerical solutions, iteration number and its computational time (Bedet et al., 1985). It is 

important to note that the comparison of numerical methods is not simple because their 

performance may depend on the characteristic of the problem at hand. It should also be noted 

that there are other factors to be considered such as stability, versatility, and proof against run- 

time error and so on which are being considered in most of the MATLAB built – in routines 

(Atkinson, 1978). 

As it is discussed by (Saeed, 2008) different methods are being used for the solution of system of 

linear equations that is for all solution. However, one method is not the best at all because any 

method is to be determined according to its speed and accuracy. 

System of linear equations of the form AX B  plays greater role in finance, economics, 

industry, engineering, physics, chemistry and computer science (Javad, 2012). 

The numerical method for the solution of AX B is classified into two categories by considering 

the criteria: convergence rate, number of iterations required, memory requirements and accuracy. 
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These methods are direct methods (Gauss elimination, Gauss Jordan, matrix inversion, etc.) and 

indirect or iterative methods. The direct methods produce the exact solution after a finite number 

of steps (disregarding the round-off errors).As it is discussed by (Turner, 1989) the direct 

methods for solving linear equations have some difficulties. For example, the problem of 

Gaussian elimination method lies in control of the accumulation of rounding errors. Besides, the 

solution is obtained directly when the system of equation has some special forms like (diagonal 

system of equations or upper triangular system of equation).  

The iterative method is a technique that starts with an initial guess and attempts to solve the 

problem or a solution of linear system of equations by finding successive approximations to the 

solution and is very efficient when applied to large and sparse system of equations that arise in 

the practical problems (Javad, 2012).  

These crucial methods at the first instance of iteration method for solving system of linear 

equations appeared in the work of Gauss, Jacobi, Seidel and Nekrasovi during the 19
th

 century.  

At this time, stationary iterated methods such as Successive over relaxation (SOR) and its 

variants were perfected and widely applied to the solution of large linear systems arising from 

the discretization of PDEs of elliptic type.  

1.2. Statement of the Problem 

 System of linear equations has a wide application in science and engineering researches, but 

those applications may face with the problem of solving large and sparse linear system of the 

form AX B . The iterative methods are also suitable for solving linear equations when the 

number of equations in a system is very large and are very effective concerning computer storage 

and time requirements. One of the advantages of using iterative methods is that they require 

fewer multiplications for large systems and are fast and simple to use when the coefficient matrix 

is sparse. 

Many iterative methods have been developed in an attempt to come up with efficient schemes. It 

is under this consideration this research is conducted in order to develop efficient iterative 

method for solving system of linear equations which requires less number of iterations, less 

storage capacity, less computational time and the convergence of the approximate solution is 

guaranteed.  
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To this end, the intention of this paper was to answer the following basic research questions: 

1. What are the procedures and techniques that can be followed to modify Refinement of 

Generalized Gauss- Seidel scheme by using Extrapolation technique? 

2. To what degree of accuracy does the proposed scheme converge? 

3. What is the advantage of the proposed scheme over the existing schemes namely, RGJ, 

     GGS and RGGS?   

1.3 Objective of the Study  

1.3.1. General Objective 

The general objective of this thesis is to modify the Refinement of Generalized Gauss- Seidel 

scheme for solving system of linear equations by using Extrapolation technique.. 

1.3.2. Specific Objectives 

 To describe the procedures(or techniques) that could be implemented to develop 

Extrapolated Refinement of Generalized Gauss- Seidel scheme; 

 To establish condition for convergence of the modified Refinement of Generalized 

Gauss- Seidel scheme; 

 To compare the efficiency of Extrapolated Refinement of Generalized Gauss- Seidel 

scheme with RGJ, GGS, and RGGS in terms of number of iterations, computational 

running time and storage capacity. 

1.4. Significance of the Study 

The results, conclusions and comments of this paper is crucial because it 

 Can be used as spring board for other researchers who want to conduct  research on 

similar and/or related areas; 

 Enhanced the ability of the researcher in conducting scientific research; 

 Serves as an input to the scientific community. 

1.5 Delimitation of the study 

This study was delimited to Extrapolated Refinement of Generalized Gauss-Seidel scheme for 

solving system of linear equations of the form AX B where,  ijA a  is known n n non-

singular  real coefficient matrix, B  is n dimensional  real column vector and X is the solution 

vector to be determined.   
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CHAPTER TWO 

LITERATURE REVIEW 

The limitation of analytical method in practical application is led mathematicians and other 

scientists to evolve numerical methods. It is clear that exact method often fail in drawing 

reasonable inference from a given set of tabulated data or in finding solution for different 

equation. There are many situations where analytical methods are unable to produce desirable 

results. Even if analytical solutions are not amenable to direct numerical interpretations (Goyal, 

2007). 

Consistent linear systems in real life are solved in one of the ways: by direct calculation (using a 

matrix factorization, for example) or by iterative procedure that generates sequence of vectors 

that approach the exact solution. When the coefficient matrix is large and sparse, iterative 

algorithms can be more rapid than direct methods and can require less computer memory. Also 

an iterative process may be stopped as soon as an approximate solution is sufficiently accurate 

for practical work. However, iterative methods can also fail or be extremely slow for some 

problems. 

Stationary iterations suffer from serious limitations such as lack of sufficient generality and 

dependency on convergence parameters that might be difficult to estimate without prior 

information, for example on the spectrum of the coefficient matrix for many problems of 

practical interest. Stationary iterations diverge or converge very slowly (Michael, 2002). Much 

work has been done to overcome this limitation. Adoptive parameter estimation procedures 

together with acceleration techniques based on several emerging krylov sub-space methods are 

covered in the monograph by Hegemony and Young (Hegeman and Young, 1981). 

Yousef et al., (2000) states iterative methods have traditionally been used for the solution of 

large linear systems with diagonally dominant sparse matrices. For such systems the method of 

Gauss Jacobi and Gauss-Seidel could be used with some success, not so much because of the 

reduction in computational work, but mainly because of the limited amount of memory that is 

required. Of course, reduction of the computation also a serious concern, and this led Jacobi 

(1846) to apply plane rotations to the matrix in order to force stronger diagonal dominance 
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giving up sparsely.  Jacobi had to solve much similar system in the context of eigenvalue 

computations; his linear systems were rather small of order seven. 

Iterative methods were also predominantly applied for solving discretized elliptic self-ad joint 

partial differential equations together with a local parameter for accelerating the iterative 

process. The first and simplest of this method is Richardson’s method (David, 1954). 

The major factors to be considered in evaluating (comparing) different numerical methods are 

the accuracy of the numerical solution and its computational time (Bedet and Hall, 1985). 

Performance actually depends on several factors: the computation time taken for one iteration of 

the algorithm, the time step for one iteration which represents the time discretization required to 

reach a given accuracy or numerical stability for a given method, the desired accuracy of the 

method, the numerical stability of the method which also limits the time step for a given method 

(Volino and Magnenat, 2000). 

The approximate methods for solving system of linear equations make it possible to obtain the 

values of the roots system with the specified accuracy as the limit of the sequence of some 

vector.  The process of constructing such a sequence is known as iteration. Unlike the direct 

methods, it attempts to calculate an exact solution in a finite number of operations, and starts 

with an initial approximation and generates successively improved approximations in an infinite 

sequence whose limit is the exact solution. In practical terms, this has more advantage because 

the direct solution will be subject to rounding off errors. 

As discussed by Turner (1989), the direct methods for solving linear equations have some 

difficulties. He faced difficulty with gauss-elimination approach because of round off errors and 

slow convergence for large systems of equations. To get rid of these problems many authors like 

Kalambi (1998) and Turner (1989) were encouraged to investigate solutions of linear equations 

by iterative methods.  

As it is discussed by Salkuyeh (2007), the Gauss- Seidel method is more efficient if it combined 

with other methods. It has also been proved that if the given coefficient matrix is strictly 

diagonally dominant or irreducible diagonally dominant or symmetric positive definite matrix 

the Gauss–Seidel method converges for any initial approximation.  
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On the other hand,(Davod,2007) developed the method called Generalized Gauss- Seidel method 

and the result shows that the method is more efficient than conventional Gauss-Seidel method 

and he also introduced Generalized Jacobi method which is more efficient than conventional 

Jacobi method. Further, Genanew Gofe (2016) developed the method called Refinement of 

Generalized Gauss-Seidel method and states that the method is more efficient than the other 

methods like Refinement of Generalized Jacobi (RGJ) and successive over relation (SOR). 
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period 

The study was being conducted in Jimma University under the supervision of Department of 

Mathematics in 2017/2018 academic year.   

3.2. Study Design 

The study employed mixed design (documentary review and experimental results). 

3.3. Source of Information 

Relevant books, published articles, journals, and experimental results obtained from numerical 

test examples were used as the source of information. 

3.4. Mathematical procedures 

The following procedures were performed in orderly manner so as to attain the predefined 

objectives of the paper: 

1. Splitting the coefficient matrix A  as             , where    is a banded matrix 

with band length  2 1m ,      and      are strictly lower and strictly upper triangular 

parts of       , respectively; 

2. modifying  the algorithm for the proposed scheme; 

3. proving whether the modified scheme is completely consistent with     or not; 

4. establishing the convergence of the proposed scheme; 

5. Validating the proposed scheme by using numerical examples using MATLAB software. 
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CHAPTER FOUR 

PRELIMINARIES AND DESCRIPTION OF THE METHOD 

4.1. Preliminaries 

Consider a system of linear equations  

               ,AX B                                                                                                              (1) 

where   is a given nonsingular real     matrix with non-vanishing diagonal entries,   is a given 

real column vector and   is a solution-vector to be determined.  

According to Salkuyeh (2011), let  ij
A a  be an n n  matrix and   m ijT t  be a banded 

matrix with band length       defined as 

                     

,
.

0,

ij

ij

a j i m
t

otherwise

  
 
   

We consider the decomposition 

                                    ,                                                                                          (2) 

mE
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are strictly lower and  upper triangular parts of mA T respectively and are defined 

as follows: 
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  =          

[
 
 
 
 
        

      

  
       

]
 
 
 
 
 

. 

Then the Generalized Gauss-Seidel (GGS), Refinement of Generalized Jacobi (RGJ), and 

Refinement of Generalized Gauss-Seidel (RGGS) schemes for solving Eq. (1) in line with the 

decomposition given in Eq. (2) are, respectively, defined by 
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       
1 1

1k k

m
Bm m m mX T E F X T E

 

  

                                                                (3)
 

       
2

1 1 11 ,
k k

m m m m
I Bm m mX T F E X T F E T

       
 

                                           
(4) 

         
2

1 1
1 1

;
k k

m
I Bm m m m m m mX T E F X T E F T E

 
   
    
   
   

       
1 1

1 mk k

mRGGS
I Bm m m mX X T E F T EB

 
  
    

 
                                            (5) 

, where I is an identity matrix of order n . 

For the derivation and proof of Eq. (3), (4) and (5), see (Salkuyeh, 2007 and Genanew, 2016). 

Note that if 0m  , then  Eq. (3) results in Gauss-Seidel method which is given by  

       
1 1

1
,

k k
F BT E T EX X

 

  

 
where   is  the diagonal , E  and F  are strictly 

lower and  upper parts of the matrix A .   

Definition1. (Gananew, 2016).  

A banded matrix is a square matrix with zeros after “m” elements above and below the main 

diagonal. “m” is usually significantly less than  . 

Definition2.A square matrix  ij
A a  is said to be strictly diagonally dominant (SDD) if 

 

 

Definition 3. (Nicoly and Anton, 2013).  

A matrix A is an   matrix (   matrix) if   0
iia 

 
for   1,2,3,...,  i n ,  0

ija   for i j , A is 

nonsingular and  1 1
O OA A

 
  , where O is the n n  zero matrix. 

Definition 4. (Salkuyeh, 2011).   

Let n nA R  . The splitting A M N   is called:  

a. Weak regular if 1M O    and 1M N O  ; 

b. Regular if 1M O  and N O . 

,  1,2,3, , .
n

ii ij

j i

a a i n


  
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Definition5. Let  ij
A a  and  ij

B b  be n n  matrices. Then  A B A B  if  

 ij ij ij ija b a b 
 
for  1 i , j n . 

Theorem 1. (Saad, 1995).  

Let         and   (   ) be two matrices such that     and       for all    . Then, if 

  is an M-matrix, so is the matrix  . 

Theorem 2. (Saad, 1995).  

Let A M N    be the regular splitting of the matrix A . Then  1
1NM


  if and only if A  is 

nonsingular and
1

OA

 . 

4.2. Description of the Method 

In this section, we develop Extrapolated Refinement of Generalized Gauss-Seidel scheme. 

Suppose     is an initial approximation to Eq. (1) and  

                        ̅        ̅                                                                                                  (6) 

In the sequel, we extrapolate the Refinement of Generalized Gauss-Seidel Iterative method in 

order to increase its rate of convergence in such a way that the proposed method will be 

completely consistent with the original system in Eq.(1). 

Given any iteration procedure it may be possible to improve its rate of convergence by a simple 

modifications (which we call it acceleration) are frequently termed “Extrapolation,” 

“Overreaction,” or various other names based on the problem to which they are applied (Eugene, 

I. and Herbert, B. K., 1966). 

Let the definite splitting given in Eq. (2) be   

     
,

oo
A J K 

                                                                                                                      
(7) 

  where
m moJ T E   and 

o mK F   are fixed matrices with  det 0.
oJ   
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Let the eigenvalues of 

1

o ooJL K



      

be     ,
i   

1,2,..., .i n                                                                                   (7a) 

Then we introduce the one-parameter family of splitting 

 
o

J J  and    1
oo o

K A J J K                                                              (8) 

We only require 0   in order that    det 0.J    

Using of Eq. (8) and the clue given in (Yeyios, 1981), the extrapolation scheme for solving Eq. 

(1) is defined as: 

 
 

 1
1 ,

n n
I T DX X  


                                                                                               

(9) 

Where      
2

1 11
,

m
T D I Bm m m m m m mT E F T E F T E

   
    
   
 

 

The scheme in Eq. (9) is called Extrapolated Refinement of Generalized Gauss-Seidel (ERGGS) 

and is a nonzero constant called the extrapolation parameter. 

If 1  , then Eq. (9) reduces to RGGS. 

Let us now show the consistency of the method. 

 
 

 1
1

n n
I T DX X  


       

However,  
1 1

1B I T B DA A  
 

      .Thus,      

 
1

I T B DA 


 
                                                                                                                 

(10) 

Similarly, 

 
 

 

 

1

1 1

n n
T D

B T B D

X X

A A

 

 



 

 

 
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  
1

I T B DA 


  
                                                                                                         (11)

 

The comparison of Eq. (10) and Eq. (11) gives 

    
1 1

I T B I T B DA A  
 

   
 

Hence,         det det det 0
n

I T I T I T       
 

Thus, the ERGGS scheme is completely consistent with Eq. (1).  

4.3 Convergence of the Scheme 

The extrapolation parameter   must be chosen so as to have    T T      with

  1T     , where  T  and  T    are the spectral radii of the matrices T and  T  , 

respectively. 

Here, we find the theoretical optimum for , say
opt , such that    

     minOpt
T T T



         
 
and   1

Opt
T   
 

.  

If the eigenvalues of 
1

o ooJL K


 and      
1

L KJ  


  are denoted by ,
i and 

  , 1,2,..., ,
i

i n 
 
respectively, then 

                                                                                                 (12) 

Moreover, using Eq. (7a) and Eq. (8), we obtain  

        
1 1

0

1
1

oo
L KJ J J K   



 
      

 

 

Therefore, if   is any eigenvector of    corresponding to  , then         That is, 

 
0

1 1
.I L



 


 
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 
 11

.L u u u u
  


  

 
    

This shows that   must also be an eigenvector of  L  corresponding to   1 1.    On the 

other hand, if  L t t  ,we have  

 
1 1

.
o

t L t t tL


 
 


    

That is,  
0

1 .t tL       Hence, every eigenvector of  L  is an eigenvector of 
oL and  

Eq. (12) is established for 0.   

Most importantly, if a value of    can be determined such that 

    1max i
i

L        , then 

the scheme converges. Besides, since the rate of convergence is  

 log ,R L       

the convergence is best for the value Opt
   such that 

   minOpt
L L



        
 

To determine convergent schemes of the form of the family of splitting in Eq. (8), we should 

study the relation in Eq. (7a). 

Lemma 1: Let T has real Eigenvalues 
j  such that 

         1
1

j n     .                                                                                                             (13) 

Then, the scheme in Eq. (8) will converge for any   such that 
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     1

2
0 .

1



 


                                                                                                                      (14) 

Besides, such a scheme attains the maximum rate of convergence at
 

     
 1

2
.

2
opt

n

 
 

 
 

                                                                                                    (15) 

for which  

     
 

1

1
1

1.
2

maxmin min
n

n

Opt i
i

n

T T
 

     
 

             
                         (16)

 

Proof:  Obviously, the scheme of the form Eq. (8) converges if   1, 1,2,..., .
i

i n   

For the sake of simplicity, let us introduce 

              1,      i= 1, 2,…, n.                                                                                (17) 

Then Eq. (12) can be re-written as 

                                                                                                    (18) 

All      
 
by Eq.(13) and Eq. (17).The equations in Eq. (18) represent   straight lines with 

negative slopes. Again, by Eq. (17),  

we have  

   1 2
... 0,

nm m m   
                                                                                                         

(19) 



15 
 

 

Based on x , whether it is positive or negative, we have the following relations. 

11
0: 1 1 ;

ni n
x x xm m          

                                                                                                                                                    (20) 

1 1
0: 1 1 ,

nn i
x x xm m        

    
1,2,..., .i n  

Hence, all the lines are bounded by 1
 , and n

  .   

Eq. (19) clearly shows that all 1
i

  if and only if 0x   and all 1
i

   if and only if 
1

1   ; 

that is, 

1

2
x

m


 .  

Hence, 1
i

   if and only if 
2

0
1

x
m


  . 

Substituting the values of  x  and 
1m from Eq. (17) in to the inequality    

2
0

1
x

m


   , we get  

Eq. (14). 

From Eq. (20), we have 

 1

1

max 1 , 1 ; 0max
n

n

i

x x x
i m m 



     . 
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From Figure 1, for 0x  , we clearly see that the equation of 
1

  is given by  
11

1xm     

and that of 
n

 is given by 1
nn
xm   . However, at *x x , 

* *

1
1 1

n
x xm m    which gives 

*

1

2

n

x
m m





. 

   
*

1 1 1

2 2 2

2 2
Opt

n n n

x
m m


   

 
   

    
 

Moreover,  

 
   

* * 1 1 1

1
0 1 1 1

1 1 1.
2 2

min
n n n

Opt n
x n n n

T x x m m
m m

m m
     


   

  
          
      

 

This completes the proof of Lemma 1.              

Lemma 2: LetT  has real Eigenvalues
j such that   

       1
1

j n     .                                                                                                               (21) 

Then the scheme in Eq. (11) will converge for any     such that 

      

2
0

1
n




 


.                                                                                                                 (22) 

Further, such schemes attain the maximum rate of convergence at             
 

      
 1

2
,

2
Opt

n

 
 


 


                                                                                                 (23) 

for which        
 

1

1

1.
2

n

Opt

n

T  


 


   
   

                                                                       (24)  

Proof:A similar proof procedures can be used as that of Lemma 1.    

To study the extrapolation scheme in Eq. (9) to find the ranges for  in which convergence is 

guaranteed in the general case (when the eigenvalues of ( )T   are complex) one can follow 

similar procedures discussed in (Yeyios, 1981). 
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4.4. Condition on the Convergence of the Scheme 

In this section, we study the convergence of the scheme for special classes of matrices, namely 

strictly diagonally dominant and M-matrices (MP-matrices).   

Theorem3. Let A be a SDD matrix. Then for any natural number m n  the ERGGS scheme is 

convergent for any initial guess
 0

X . 

Proof: Let  ij
M M  and  ij

N N  be an n n  matrices with M being SDD. Then (see Jin X 

Q, et al., 2005) 

 1
,max i

i

NM  


 

                         
1,

n

ij
j i

ni

ii ij
j j i

N

M M
 

 







  

Now, let us choose 
m m mM T E   and 

mmN F  in the ERGGS scheme. Since A  is SDD, 

it can be easily shown that 1
i

  .  As a result,  1
1.NM 


  Since

1
NM


is squared in 

ERGGS,  
2

1 1 1N NM M 
    

 
  

. 

Thus, ERGGS converges for arbitrary initial vectors. 

Theorem4. Let A  be an M  matrix. Then for a given natural number m n , the ERGGS 

method converges for any initial guess     . 

Proof: Let 
m m mM T E   and 

mmN F in the ERGGS. Clearly, 
m

A M .  As a result of 

Theorem 1, we assert that the matrix 
mM is an M matrix. Besides, 

m
ON  . Thus, according 

to Definition 4b, 
m m

A NM  is a regular splitting of the matrix A . From Theorem 2 and the 

fact that 
1

OA

 , we conclude that    

2
1 1 1N NM M 
     

 

 
 

.  

Thus,         1
m

ERGGSB  .    

Hence, the ERGGS scheme converges faster than the RGGS. 
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4.5. Numerical Experiments 

Though the comparison of different numerical methods is not simple because their performance 

may rely on the characteristic of the problems, the major parameters to be taken into account are 

the accuracy of the numerical solution, storage capacity and its computational time (Bedet,R. A. 

1975). 

The numerical examples presented in this section were computed with some MATLAB codes on 

a personal computer Intel® Core™ i3-3120CPU@2.50GHZwith4.00GB memory(RAM) and 32 

bits operating system(window 7 home premium). The stopping criteria used is

    61
5 10

k k

i iX X


   , where 
 1k

iX


 and  
 k

iX  are the approximate solutions at the 

 1k th  , and kth iteration, respectively. 

Example 1. Solve the system of linear equations, which was considered by (Jain, et al. 1994) by    

GGS, RGJ, RGGS and ERGGS. 

(

      
      
  
 

 
  

 
  

  
 

)(

  

  
  

  

)  

(

 
 
 

  
 ⁄

  
 ⁄

  
 ⁄

  
 ⁄ )

 
 
 

 

Example 2. Solve the system of linear equations, which was considered by (Jain, et al. 1994), by 

GGS, RGJ, RGGS and ERGGS. 

                                             

(

  
 

       
         
 
 
 
 

  
 
  
 

 
 
 
  

 
 
  
 

 
  
 
  

  
 
  
 )

  
 

(

  
 

  

  
  

  
  

  )

  
 

 

(

 
 
 
 
 
 

  
 ⁄

 
 ⁄

 
  

 ⁄

  
 ⁄

 
 ⁄ )

 
 
 
 
 
 

                                                     

Obviously, the coefficient matrix of the system in example 1 is diagonally dominant and that of 

in Example 2 is an M-matrix. Thus, the solution produced by the aforementioned methods 

converges to the exact solution for any initial guess. 

 

mailto:i3-3120CPU@2.50GHZ
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Table 1. Numerical solution of Example 1 by GGS, RGJ, RGGS and ERGGS when 1m   

Numerical 

Method 

Spectral 

Radius 

Number of 

Iterations 

CPU 

Running 

Time 

Maximum 

Absolute Error 

RGJ 0.299119 11 0.004745 7
5.06479 10


  

GGS 0.299119 11 0.004745 7
5.06479 10


  

RGGS 0.089472 6 0.002771 7
1.95871 10


  

ERGGS 0.046831 4 0.002512 7
1.19108 10


  

 

Table 2. Numerical solution of Example 1 by GGS, RGJ, RGGS and ERGGS when  2m   

Numerical 

Method 

Spectral 

Radius 

Number of 

Iterations 

CPU  

Running 

Time 

Maximum 

Absolute Error 

RGJ 0.00000000 2 0.002035 0.000000 

GGS 0.00000000 2 0.002035 0.000000 

RGGS 0.00000000 2 0.001941 0.000000 

ERGGS 0.00000000 2 0.001829 0.000000 

 

Table 3. Numerical solution of Example 2 by GGS, RGJ, RGGS and ERGGS when  1m   

Numerical 

Method 

Spectral 

Radius 

Number of 

Iterations 

CPU  

Running 

Time 

Maximum 

Absolute Error 

RGJ 0.25000000 10 0.004529 7
9.53674 10


  

GGS 0.25000000 10 0.004529 7
7.62939 10


  

RGGS 0.06250000 6 0.003550 8
4.76837 10


  

ERGGS 0.03225800 4 0.003175 8
4.65397 10


  

 

Table 4. Numerical solution of Example 2 by GGS, RGJ, RGGS and ERGGS when  3m   

Numerical 

Method 

Spectral 

Radius 

Number of 

Iterations 

CPU 

Running Time 

Maximum  

Absolute Error 

RGJ 0.000000 2 0.002399 0.000000 

GGS 0.000000 2 0.002399 0.000000 

RGGS 0.000000 2 0.002130 0.000000 

ERGGS 0.000000 2 0.002050 0.000000 
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4.6. Discussion of Results and Conclusion 

In this thesis, the Extrapolated Refinement of Generalized Gauss-Seidel scheme for solving 

system of linear equations has been presented. Two numerical test examples were considered and 

studied by making use of MATLAB software codes Version R2013a. The results obtained by 

RGS, GGS, RGGS and ERGGS were presented in Tables 1 through 4 for comparison. The 

analysis of the results indicated that the ERGGS elapses shorter time (0.002512 and 0.003175 

seconds for Example 1 and Example 2, respectively, when m=1 and 0.001829 and 0.002050 

seconds for Example 1 when m=2 and Example 2 when m=3, respectively) to converge to the 

exact solution as compared to the other methods used for comparison. In terms of the number of 

iterations required to converge to the exact solution with the predefined error of tolerance, the 

ERGGS iterative method took 4 iterations for example 1 and example 2 as compared to RGJ 

(took 11 and 10 iterations for example 1 and example 2, respectively), GGS (also took 11 and 10 

iterations for example 1 and example 2, respectively), and the RGGS (took 6 iterations for 

example 1 and example 2, respectively) when 1.m  Ibrahim B.K., (2008) states that numerical 

methods that register small number of iterations requires less computer storage to store its data; 

consequently, the ERGGS requires less computer storage compared to GGS, RGJ, and RGGS. 

Salkuyeh D.K.,(2007) witnesses that large m (for instance, as in the splitting in Eq. (2) of this 

paper) results in smaller spectral radius of the iteration matrix of the iterative methods. Vatti V. 

B.and Genanew Gofe, (2011) further indicates that any reasonable modification of the iterative 

method that will reduce the spectral radius increase the rate of convergence of the method. On 

top of this, all the iterative methods, GGS, RGJ, RGGS and ERGGS took only 2 iterations to 

converge to the exact solution for example 1(when m=2) and example 2(when m= 3) and 

approximate the exact solution exactly up to 15 places of decimals. The rates of convergence, R, 

of ERGGS for example 1and example 2 are 3.0612 and 3.4398, respectively. This implies the 

rate of convergence of the ERGGS scheme is 3.  

In conclusion, in all the parameters (computational running time, number of iterations and 

storage capacity) used for comparison, in this particular paper, the ERGGS iterative method is 

more efficient than the other methods considered for comparison. 
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4.7. Open Problem 

It is recommended that the rate of convergence of the method that has been developed in this 

paper can be further enhanced by using preconditioned Conjugate Gradient method so that 

higher order systems can also be accommodated.  
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