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Abstract

In this thesis, we present non-polynomial septic spline method for solving third order type singularly
perturbed boundary value problems. First, the given system is discretized. Then, the spline
coefficients are derived and the consistency relation is obtained by using continuity of second, fourth
and fifth derivatives. Further, we reduce the obtained fifteen different systems of equations to a
system of equations and develop boundary equation in order to equate system of linear equations.
The convergence analysis of the obtained hepta-diagonal scheme is investigated. To validate the
applicability of the method, two model examples have been considered for different values of
perturbation parameter ¢and different mesh size h. The numerical results are presented in Tables
and Figures and compared with some existing numerical method in the literature. Further, the
proposed method approximate the exact solution very well when &<<h, for which most of the

existing methods reported in the literature fail to give good result.
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Chapter One
Introduction

1.1 Background of the Study

Numerical analysis is a branch of mathematics concerned with theoretical foundations of
numerical algorithms for the solution of problems arising in scientific applications. It does
not strive for exactness; instead he/she attempts to devise a method, which will give an
approximation differing from exactness by less than a specified tolerance. The ultimate aim
of the field of numerical analysis is to provide convenient methods for obtaining useful
solutions to mathematical problems and for extracting useful information from available
solutions which are not expressed in tractable forms. Such problems may each be
formulated, for example, in terms of algebraic or transcendental equation, an ordinary or

partial differential equation, or in terms of a set of such equations.

In the intensive development of science and technology, many practical problems, such as
the mathematical boundary layer theory or approximation of solution of various problems
described by differential equations involving large or small parameters, become more
complex, Priyadharshini and Ramanujam (2009). Any differential equation in which the
highest order derivative is multiplied by a small positive parameter is called perturbed
problem and the parameter is known as the perturbation parameter. Singularly perturbed
problems occur in a number of areas of applied mathematics, science and engineering
among them fluid mechanics, elasticity and quantum mechanics. This perturbation
parameter prevents to obtaining satisfactory numerical solutions, and the treatment of
singularly perturbed problems is not trivial because the solution depends on perturbation
parameter and mesh size h, Doolan et al. (1980). Accordingly, more efficient and simpler
numerical methods are required to solve singularly perturbed two-point boundary value

problems.

Bawa and Natesan, (2005), Rashidinia et al. (2010), and Fasika et al. (2017) presented one
dimensional singularly perturbed reaction-diffusion of the form:
—&y"(xX) + a(x)y(x) = f(x), 0<x<1



with the boundary conditions y(0) = «, y(@) = B, where ¢ is a small positive parameter
such that 0O<eg<<1, aand B are constants, and a(x)and f(x) are assumed to be

continuously differential functions.

Most of the researchers have studied the numerical solutions of second order singular
perturbation problems (Kadalbajoo and Patidar, 2002; Reddy and Chakravarthy, 2004).
Recently, Ramadan et al. (2008) used a non-polynomial septic spline function for the
numerical solution of sixth-order two point boundary value problems. The authors, Sun and
Stynes (1995), and EIl-Zahar (2013) considered numerical methods for higher order
singularly perturbed problems. In recent years, many authors namely, Chen and Huang
(2010), and Jalilian et al. (2015) developed different numerical methods for solving such
differential equations. It is well known that many methods for solving singularly
perturbation problems are unstable and fail to give accurate results when the perturbation

parameter ¢ is small.

Rashidinia et al. (2010) developed a class of methods based on non-polynomial quintic
spline for the numerical solution of singularly perturbed boundary value problems. Quartic
non-polynomial spline solution of a third order singularly perturbed boundary value
problem is provided by (Akram and Talib, 2014). Christy and Tamilselvan (2014) presents
a numerical method for singularly perturbed third order ordinary differential equations of
convection diffusion type. In, Christy and Tamilselvan (2017) a numerical method for
singularly perturbed third order ordinary differential equations of reaction-diffusion type is
described. Yohannis et al. (2018) developed a quintic non-polynomial spline method for
third order singularly perturbed boundary value problems. But, still the accuracy and
convergence of the numerical methods needs attention. Do to this, numerical treatment of
singularly perturbed boundary value problems need improvement. Thus, this study presents
an accurate and convergent numerical method for solving third order type singularly
perturbed boundary value problems.



1.2. Statement of the Problem

The numerical treatment of singularly perturbed problems yield major computational
difficulties and the usual numerical methods fail to produce accurate results for all

independent values of x when ¢ is very small related to the mesh size h (i.e. € < h) for

the solution of singularly perturbation two point boundary value problems (Khan and
Khandelwal, 2013). That is, there are thin transition layers, where the solution varies
rapidly. Howers (1976), Kelevedjiev (2002) and Roos et al. (1996) discussed the existence
and uniqueness of singularly perturbed boundary value problems. Lie (2008) constructed a
computational method for singularly perturbed two point boundary value problems in the
form of series in reproducing Kernel space. Akram (2012) presented a quartic spline
solution for third order singularly perturbed boundary value problems and the method is
second order of convergence. Akram and Amin (2012) proposed a quintic spline technique
to solve fourth order singularly perturbed boundary value problems. Shanthi and
Ramanujam (2002) solved singularly perturbed fourth-order ordinary differential equations
of convection-diffusion type using asymptotic numerical methods. So, the treatment of
singularly perturbed problem presents severe difficulties that have to be addressed to ensure
accurate numerical solutions (Doolan et al. 1980). Therefore, it is important to develop more
accurate and convergent numerical method for solving third order type singularly perturbed

boundary value problems.

As results, this study answers the following research questions:
v How does the non-polynomial septic spline method be described for solving third
order type singularly perturbed boundary value problems?
v To what extent the method approximate the exact solution?

To what extent the method converges?

<

v What is the advantage of the present method over the other numerical methods

reported in literatures?



1.3. Objectives of the Study
1.3.1. General Objective
The general objective of this study is to develop a non-polynomial septic spline method for

solving third order type singularly perturbed boundary value problems.
1.3.2. Specific Objectives

The specific objectives of the study are:
» To describe non polynomial septic spline method for solving third order type
singularly perturbed boundary value problems.
» To investigate the accuracy of the proposed method.

A\

To establish the convergence of the present method.
» To describe the advantage of the present method over the other numerical methods

reported in literatures.

1.4. Significance of the Study
The results obtained in this research may:
v Provide some background information for other researchers who work on this
area.

v"Introduce the application of numerical methods in different field of studies.

1.5. Delimitation of the Study

Singularly perturbed problems of the highest order derivative arise in many branches of
applied mathematics and engineering and may be solved by different numerical methods.
This study delimited to non-polynomial fourth order septic spline method for solving third

order type singularly perturbed boundary value problems of the form:
—ey"(x)+u(x)y(x)=f(x), 0<x<1 (1.1)
subject to the boundary conditions,
y(0)=¢, y(1)=¢, Y=y (1.2)
where ¢, ¢, and y are constants, ¢ is a perturbation parameter 0<e<<1, u(x) and f(x) are

continuous functions.



Chapter Two

Review of Related Literatures

2.1. Singularly Perturbed Problems

Science and technology develops many practical problems, such as the mathematical
boundary layer theory or approximation of solution of various problems described by
differential equations involving small parameters have become increasingly complex and
therefore require the use of asymptotic methods. The term ‘singular perturbations’ was first
used by Friedrichs and Wasow (1946) in a paper presented at a seminar on non-linear
vibrations at New York University. Singularly perturbed problems arise frequently in
applications including geophysical fluid dynamics, oceanic and atmospheric circulation,
chemical reactions, civil engineering, optimal control, etc. The classification of singularly
perturbed higher order problems depend on how the order of the original equation is
affected if one sets € = 0, where ¢ is a small positive parameter multiplying the highest
derivative occurring in the differential equation. If the order is reduced by one, we say that
the problem is of convection-diffusion type and of reaction-diffusion type if the order is
reduced by two.

It is well known that the solution of singularly perturbed boundary value problems is
described by slowly and rapidly varying parts. So there are thin transition layers where the
solution can jump suddenly, while away from the layers the solution varies slowly and
behaves regularly (Akram and Afia, 2013). Many scholars have studied the analytical and
numerical solutions of these problems. Abrahamsson et al. (1974) solved singularly
perturbed ordinary differential equations using difference approximations. Numerical
treatment of singularly perturbed boundary value problems for higher-order non-linear

ordinary differential equations has a great role in fluid dynamics.

The development of numerical methods for solving singularly perturbed problems started
with methods aimed at solving ordinary differential equations, an account of which can be
found in the first monograph on this subject by Doolan et al. (1980). llicasu and Schultz
(2004) introduced three finite-difference techniques for second-order singularly perturbed

linear boundary value problems using convergent tension spline and on uniform tension



spline methods. Valaramathi and Ramanujam (2002) solved singularly perturbed two-point

boundary value problems for third-order ordinary differential equations.

2.2. Spline Method

In spline based methods, the differential equation is discretized by using approximate
methods based on spline. The end conditions are derived for the definition of spline. The
algorithm developed not only approximates the solutions, but their higher order derivatives
as well. The theory of spline function and their applications is relatively recent
development. The rapid development of spline functions is primarily due to their great
usefulness in applications. Splines have many applications in the numerical solution of a
variety of problems in applied mathematics and engineering; some of them are, data fitting,
function approximation, integro-differential equations, optimal control problems, computer-
aided geometric design, wavelets and so on. Programs based on spline functions have found

their way in most of computer applications.

Splines are types of curves, originally developed for ship building in the days before
computer modeling. Naval architects needed a way to draw a smooth curve through a set of
points. The solution was to place metal weights (called knots) at the control points, and
bends a thin metal or wooden beam (called a spline) through the weights. The physics of the
bending spline meant that the influence of each weight was greatest at the point of contact
and decreased smoothly further along the spline. To get more control over a certain region
of the spline, the drafts man simply added more weights. This scheme had obvious problems
with data exchange. There was a need for mathematical way to describe the shape of the
curve. Univariate splines were studied intensely in the 60s, and by the mid-70s they were
sufficiently well understood to permit a fairly comprehensive treatment in books form.

The application of splines for the numerical solution of singularly perturbed boundary-value
problems has been described in many authors (Rashidinia, 1990). The numerical techniques
for a class of singularly perturbed two point singular boundary value problems on a non-

uniform mesh using spline in compression are reported by Mohanty and Jha (2005).



2.2.1. Polynomial Spline Functions

Polynomials have long been the functions most widely used to approximate other functions
mainly because of their simple mathematical properties. However, it is well-known that
polynomials of high degree tend to oscillate strongly and in many cases they are liable to
produce very poor approximations. Spline functions can be integrated and differentiated due
to being piecewise polynomials and can be easily stored and implemented on digital
computers. Cubic polynomials splines are the mathematical equivalent of the draftsman's
wooden beam. Through the advent of computers, splines have gained more importance.
They were first used as a replacement for polynomials in interpolation and then as a tool to

construct smooth and flexible shapes in computer graphics.

Thus, spline functions are adapted to numerical methods to get the solution of the
differential equations. Numerical methods with spline functions in getting the approximate
solution of the differential equations lead to a matrices which are solvable easily with
algorithms having low cost of computation. Siddigi and Twizell, (1996) presented a second-
order method using a polynomial spline for solving an eighth-order boundary value
problem. Ramadan et al. (2007) have solved second-order two-point boundary value

problems using polynomial and non-polynomial spline functions.

2.2.2. Non-Polynomial Spline Functions

Ordinary and partial differential equations are useful in describing mathematical models for
various physical processes. Non-polynomial spline method has turned out to be an effective
tool for solving ordinary and partial differential equations. Most of non-polynomial spline
functions are consists of a polynomial and trigonometric parts. In many papers various
techniques using quadratic, cubic, quartic, quintic, sextic, septic and higher degree non-
polynomial splines have been discussed for the numerical solution of linear and nonlinear
boundary value problems. Islam (2005) established the numerical solutions of a system of
third-order boundary value problems using a non-polynomial spline.

In particular the non-polynomial septic spline function has the form:

T, = span{1,x,x?,x3,x* x>, sinkx, cos kx};
where Kk is the frequency of the trigonometric part of the spline functions which can be real

or pure imaginary.



2.3. Numerical versus Analytical Methods

The analytical and numerical methods to solve singular perturbation problems have been
widely used in many fields of fluid dynamics, reaction-diffusion processes, particle physics,
and combustion processes. These types of problems are represented by differential equations
including & which is assumed to be a small parameter and solutions of the problems have
non-uniform behavior when the parameter e— 0. Analytical solution is exact solution to a
problem that can be calculated symbolically by manipulating equations. But for higher order
or non-linear differential equations with complex co-efficient, it becomes very difficult to
find exact solution. Therefore, we need numerical method for solving these equations.
Numerical methods give an approximate solution to any equations. It is important to realize
that a numerical solution is always numeric but analytical methods usually give a result in
terms of mathematical functions that can be evaluated for specific instances. However,
numerical results can be plotted to show some of the behavior of the solution. A variety of
numerical methods to solve singularly perturbed boundary value problem for ordinary

differential equations are available.

One of the important subjects in applied mathematics is the theory of singular perturbation
problem. The mathematical model for this kind of problem usually is in the form of either
ordinary differential equations or partial differential equations in which the highest
derivative is multiplied by positive small parameter. The purpose of the theory of singularly
perturbations is to solve a differential equation with some initial or boundary conditions
with small parameter. A spline is a numeric function defined piecewise by polynomials or
non-polynomials. The numerical solution of two point boundary value problems using
spline methods has been considered by many authors. However, this study focuses on non-
polynomial spline method for solving third order singularly perturbed boundary value

problems.



Chapter Three
Methodology

This chapter consists; study area and period, study design, source of information and

mathematical procedures.

3.1. Study Area and Period
This study will be conducted at Jimma university department of mathematics from
September 2017 to June 2018 G.C. Conceptually, the study focus on non-polynomial septic

spline method for third order type singularly perturbed boundary value problems.

3.2. Study Design
This study will be employed mixed design (i.e. documentary review and experimental

design).

3.3. Source of Information
The sources of the information are books, journals and internet, and the experimental result
will be obtained by MATLAB version R2013a software.

3.4. Mathematical Procedures
To achieve the stated objectives, the study followed the next steps:
1. Defining the problem.
2. Discretizing the given interval.
3. Replacing the differential equation by spline approximation.
4. Developing the end conditions for the definition of spline.
5. Reducing the obtained schemes into hepta-diagonal system and solved by using
Gauss elimination method.
Establishing the convergence of the obtained scheme.
Writing MATLAB code for the hepta-diagonal system obtained,

Validating the scheme by using numerical examples.

© ®© N o

Compare the obtained result with the result of previous numerical methods.



Chapter Four

Description of the Method, Analysis and Results
4.1. Description of the Method

In order to develop the septic spline approximation for the third-order type boundary value problem

in Egs. (1.1) and (1.2), the interval [0,1] is divided into N equal sub-intervals. For this, we introduce

the set of grid points x, =x,+ih, 1=0,1,2,...,N, so that,

0=X, <X < - <Xy, <X, =1, where h= XN’\_IXO =%.

Let y(x) be the exact solution of the Egs. (1.1) and (1.2) and y, be an approximation to y(x;),
obtained by the segment S,(x) of the spline function passing through the points (x;,y,) and
(%1, Y.,) - For each i™ segment, the non-polynomial septic spline function S,(x) in subinterval
[%, X..], 1=0,1,2,---,N -1 has the form:

S, (x)=a cos(k(x—x))+b sin(k(x—x))+c,(x—x)° +d. (x—x)*

(4.1)
+e(Xx=%)°+ f(x=x) +g;(x=x)+r,, for i=0,1---,N

where, a, b, c, d, e, f, g, and r, are constants and k =0 is the frequency of the trigonometric

part of the spline functions which can be real or pure imaginary, and which will be used to raise the
accuracy of the method.

To derive expression for the coefficients, we first denote:

Si (Xi) =Y Si (Xi+1) = Yia
S/(x)=M,, S/(X%.,)=M.
|m( |) i f’ l) 1 (42)
Si (Xi) :Ti’ Si (Xi+1) :Ti+1’
Si(6) (Xi) = Fiv Si(ﬁ)(xm) = Fi+l'
Now, by successively differentiating Eq. (4.1) with respect to x, we obtain:
S/ (x) = —ka, sin(k (x—x.)) + kb. cos(k(x —x,)) +5¢,(x —x.)* +4d. (x —x,)° 43)

+3e (x—x)*+2f (x—x)+g,

10



S1(x) = —k’a, cos(k(x —x.)) — kb, sin(k (x — x.)) +20c, (x — x,)* +12d, (X — x,)?

+66,(x—%)+2f, (44)

S (x) =k%a sin(k(x—x,)) —k%0. cos(k(x—x.)) +60c, (X —x,)* +24d.(x—x,) + 66,  (4.5)

S (x) =k*a cos(k(x — X)) +k“b. sin(k (x— x)) +120c, (x —x ) + 24d, (4.6)
S® (x) = —k®a, sin(k(x - x,)) +k®b. cos(k (x— x.)) +120c, 4.7)
S©® (x) = —k®a, cos(k(x—x)) kb sin(k(x—x.)) (4.8)

Evaluating Egs. (4.3) — (4.8) at x, and using the relation in Eq. (4.2), and h=X,,, — X, we have:

Yi=a -+, (4.9)

Yo =& cos(kh) +b sin(kh) + ¢;h° +d;h* +eh® + f;h* + gh+r, (4.10)
M, =Kb, +g, (4.12)
M,,, = —ka, sin(kh) + kb, cos(kh) +5¢,h* +4d,h® +3g,h* + 2f h+g, (4.12)
T, =—k’b, +6e, (4.13)
T.., =k%a sin(kh) —k°b, cos(kh) +60c,h* +24d.h + 6¢, (4.14)
S®(x)=k%n +120c, (4.15)
SO (x.,,) =—k®a sin(kh) + kb, cos(kh) +120c, (4.16)
F =—k‘a (4.17)
F.., =—k°a, cos(kh) —k°b, sin(kh) (4.18)

11



From Eqgs. (4.17), (4.18), (4.13), (4.11), (4.9) in order and letting & =kh , we get:

a=——{ (4.19)

_h°(Rcosé-F,,)

b. 4.20
' 6°sin@ (4.20)
3 —
o -1, W(Fc0s0-F,) 4.21)
6 60°sin@
5 J—
gi — Mi _kbl — Mi + h (|:i+15 -I:i COSQ) (422)
@’sin@
6

From Eq. (4.14), we get: 60h’c, =T, —k’a sin@+k’p cosd—24d,h—6e, and then, using Egs.
(4.19), (4.20) and (4.21), we obtain:

T

i+l

' 60n?  606°

. hF sin@ +(hFi cosH—hFMJCOSe 24d. T hF (4.24)

_ i i i+1 hFl cosé
606°sin 60h 60h? 606°sin

Again, using Egs. (4.19) - (4.24) in order into Egs. (4.12) and (4.10), we get:

». h'Fsing (h'F_—h'F cosé h*sindF. h*F., cos@—hF cos’ @
f.=-hd, - —+ s cos@ — Tt — T
20 260°sin@ 240 246°sin g (4.25)
N 5h*F.,, —56°F, cos & N h*F cos@-h*F , _hT,,, 5hT, . M., —M,
2460°sin @ 20°sin@ 24 24 2h
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= - — +120F,,, —120F, +36°sin OF, +36° cos & cot OF,
4860 h h

—36°cotOF,, —76° csc OF

—h? {39%”1 LT,

+76° cot OF, +600sin OF,

h® h® h® h®

i+1 426
— 608 cot 9F,,, + 606 cot & cot OF, — 606 csc OF,,, + 606 cot OF, (4.26)
600°M, +6060°M,,, 1206°y, ,—1206°y,
} h? " h?
Substituting the values of Eq. (4.26) into Eq. (4.25), we obtain:
4 6 6
i: 4296 {9 hTal - 3i3Ti +120F, , —120F +6°sin 6F, +36° cos Ocot OF
— 0% cot OF,,, —36° cscOF, +36° cot OF, +366sin OF, 4.27)
—366 cot OF,,, + 366 cotdcot OF, -840 cscOF,,, +840 cot OF, '
360°M,,, 846°M, 1200°y,, 1206°y,
R s
Substituting the values of Eq. (4.26) into Eq. (4.24), we obtain:
6 6
C = h - >0 I‘*l + 5631-‘ +120F,,, —120F, +56° sin 9F, +56° cos & cot OF,
1206 h h
—56° cot OF.,, —560° csc OF,,, +56° cot OF, + 606 sin OF, (4.28)
— 608 cot 9F,,, + 608 cot @ cot OF, — 600 csc OF,,, + 606 cot OF, '
_606°M; 600°M,,, N 1200°y,,, 1206°%, }

Using the continuity condition of the fifth derivatives, that is S (x) = S®,(x), we have:

—k®a sink(x — X)) + k°b, cos(k(x, —%;)) +120c; = —k°a,_, sink (X, — X, ,))
+k°0,_, cos(k(x, —x._,))+120c, ,

= k°b, +120c, =-a,_k’sin@+b_k°cosd+120c,_, (4.29)
since, h=x—x_, and &=kh.
Reducing the indices of Egs. (4.19), (4.20) and (4.28), substituting into Eq. (4.29), and simplifying,

we obtain:

13



h®(eyF , + BF +a,F., ) =h*(5T,,, ~T,,)+h(60M,,, —60M, ,)

(4.30)
—120( Vi, + yH) + 240y,

where,

a, = %(—05 cscd —56° cot @ —56° csc & — 600 cot @ — 600 csc 9 +120),

B = % (10493 cscd+120csch + (26 +106% +120)8 cot & — 240)

Using the continuity condition of the fourth derivatives, that is S (x) =S (x), we have:

k'a, +24d. =a_k*cos@+b_k*sin@+120hc._, +24d. (4.31)
a“I i a“I 1 -1 i-1 i-1

Reducing the indices of Egs. (4.19), (4.20), (4.24) and (4.26), substituting into Eq. (4.31), and

simplifying, we obtain:

h°(e,F.., —a,F ) =h*(=3T,, —14T, —3T, )+ h(60M,, +120M, + 60M, , )

S (4.32)
+120( Yiat yi—l)

where,

a, =%(—3@3 cot 6 —76° csc 0 — 600 cot 6 — 600 csc O +120)

Again, from the continuity condition of the second derivatives, thatis Sy (x) =S} (), we have:

—k*a, +2f, =—a,_k’cosd—b_k*sin@+20h’%,_, +12h*d, , + 66 h+2f, (4.33)
Reducing the indices of Eqgs. (4.19), (4.20), (4.24), (4.26), (4.23) and (4.27), substituting into Eq.
(4.33), and simplifying, we obtain:

h® (a,F;

i+1

_120( Yin— yi—l)

—a,F ,)=h*(-T,,+6T,+T,,)+h(-36M,,, +168M, +36M, ,)

i+1

(4.34)

where,

;= %(—93 cot 0+ 36° csc 6 — 366 cot 0 —840csc +120)
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In order to eliminate F's and M,'s from Egs. (4.30), (4.32), and (4.34), let’s replace i by
i+2, i+1, i—landi-2,inEqg. (4.30), and obtain:

—60hM i T 60hM i1t h? (5Ti+l _STH) +h? (a1Fi+1 + ﬂlFi - alFi—l) (4 35)
+120y,,, — 240y, +120y, , =0 '
—60hM,, + 60hM; + h3(5Ti+2 —5T)+ h6(“1|:i+2 +pF.—aF) (4.36)
+120y,,, — 240y,,, +120y, =0 '
—60hM, ; +60hM,,, + h3(5Ti+3 =T )+ h® (4R + AR, —aF.) (4.37)
+120y,,; — 240y, , +120y;,, =0 |
—60hM, +60hM,_, +h*(5T, 5T, ,) + h®(a,F + BF_, —F_,) (4.38)
+120y, — 240y, , +120y, , =0 '
—60hM iat 60hM ist h3(5Ti—1 _5Ti73) + h6(0‘1Fi4 + ﬂlFi—Z - alFi—3) (4 39)
+120y, , — 240y, , +120y, , =0 '
Replacing i by i+2, i+1, i—landi-2,inEq. (4.32), we obtain:

~60hM, , ~120hM, —60hM, , + h*(3T,,, +14T, +3T, ) + h®(e,F., — 1, F ) (4.40)
+120y,,, —120y, , =0

—60hM_ _, —120hM_ , —60hM, +h*(3T,, +14T, , +3T.) +h®(a,F ., —a,F) (4.41)
+120y,,, —120y, =0 '
—60hM i+3 —120hM i+2 60hM it h3(3Ti+3 +:]-A’-I-nz + 3Ti+1) + he(az Fi+3 ) Fi+1) (4 42)
+120y;,; -120y;,, =0 .
—60hM; —120hM,_, —60hM_, + h*(3T, +14T,_, +3T._,) +h®(a,F —,F._,) (4.43)
+120y, 120y, , =0 '
~60hM, , ~120hM, , —60hM. , +h3(3T., +14T, , +3T. ,) +h®(a,F., — a,F. ;) (8.44)

+120y. , —120y, , =0
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Replacing i by i+2, i+1, i—landi-2,inEq. (4.34), and obtain:
~36hM,, ~168hM; —36hM , +h*(T,,; —6T, +T,,) +h°(aF, —F )

' (4.45)
+120y,,, —120y, , =0
-36hM,,, —168hM,, —36hM, +h*(T,,, 6T, +T,) +h°(a,F., — ;F) (4.46)
+120y,,, —120y, =0 '
~36hM,,, —168hM, , —36hM,, +h*(T,, — 6T, +T,,) +h’(esF,s — R ,) (4.47)
+120y;,, -120y;,, =0 .
—36hM, —168hM__, —36hM._, +h*(T, —=6T _, +T ) +h®(a,F —,F ) (4.48)
+120y, —120y, , =0 '
-36hM,_, —168hM, , —36hM,_, +h*(T,_, 6T, +T ) +h®(a,F_, —F ) (4.49)

+120y, , —120y, , =0

Simultaneous solution of Eqgs. (4.35)—(4.39), with the help of symbolic toolbox by Matlab 2013a,
eliminates F's and M, 's terms gives the following important relations in terms of Yy, and third
order derivative T,, as:

1 (Vs = Yica) + 1o (Yo = Yico) + 25 (Yi = Yid) + 4V,

2
= § h® (771(Ti+3 +Tig) + 1, (T + T) + (T + Ty +77,T, )

(4.50)

where,
m=XZ,=Z Xy, 1, =X Zy—L Xy, m3=XZ,-LX,, 1n,=XZs—-ZX,,
=Xy —Zy Xy py = XgZy =L Xy, py =X 2y =2 Xy, py =X 2y, =2, Xy,

X,'s and Z,'s for i =1(1)12 are described in Appendix.
Now, evaluating Eq. (1.1) at the nodal points x;, and using the relation in Eq. (4.2), we get:
-l +uy, =T, (4.52)
where, T.=y®(x) , y, =y(x), u=u(x)and f =f(x), fori=0,12,..,N.

Substituting the values of Eq. (4.51) in to Eq. (4.50) and simplifying, we get:
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(Bety, — 21U, 5h°)Yi.s + (Bt = 27,0, ,0%) Y, + (<Bs, —2730,,,0%) Y,
+(3su, — 217,u,0%)y, + (Bsu, — 21730, ,h°) Yi L+ (SBa, —2nu, .00y,
+ (—3e, — 2771ui—3h3) Yis= —2h’ {771( fiat fis)

+1,(f,+ f)+m(f, + ) +nm, 1, for i=3(1)N -3.

(4.52)

when k — 0, that is @ — 0, since @ =kh, then

(al’%,asyﬁl)_)(—zs ~11 -13 —59J od

168 °'168°' 840" 84

1 120 1191 2416
18190, — =0 1292 24O
(£ 1, 1, s 1T M1 71) = ( 30’ 140" 140 140]

and the relation in Eq. (4.50) reduces into septic polynomial spline (Akram and Siddiqi, 2005). The
relation in Eq. (4.52) gives N —5 equations in N —1 unknowns y;, j=1()N —1. We require four

more equations, two at each end of the nodal points.

4.2. Development of the Boundary Equations

For the discretization of the boundary conditions, we define:

4
. D&y +fh?yg+h Zg yP 4t =0, for i=1
j=0

5
i, Zh:yj +f h2y”+h3Zm yP +t,=0, fori=2 (4.53)

j=1

N
i D ¢y, +h’ Z diy +ty,=0,  for i=N-2

j=N-5 j=N-6
N
iv. ajy. +h‘°’Zby§3)+tN1 0, for i=N-1
j=N-4 j=N-5
where e gj, £, f, ,hl, i J,dj, i - and b; are arbitrary parameters to be determined by employing

Taylor series expansion.

From Eq. (4.53), we have:
&Y, +e Y, +6Y, +e,y, +e,y, + f h’yl +

m m m 14

3 " " - (454)
h® (GaYe+ 0 Yi+ G,Y5+ 0aYa+ 0,Yy+0y2) =0, for i=1

Expanding each terms of Eq. (4.54) about X,, we obtain:
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Wy, P Rty ey Ry Ty
2 6 24 120 720 5040

e;yl :eILyo"'hyo"" +0(h8)J

" 3y®
ah’yy Bhy;”  16h'y,®  32h°y,®  64h°y,®
6 24 120 720

&Y, = eé{yo +2hy, +

. 128h"y,"

soa0 o )}

oh’y,  27hy”  8in‘y, @  243n°y,®

& Ys =e§{yo +3hyg +

6 24 120
6., (6) 7y (M)
L 729n°y,®  2187h'y, +o(h®)
720 5040

" 3,3
16h%y; N 64h°y. . 256h*y, N 1024h°y,® N 4096h°y,®

ey, = ei{yo +4hy; +

2 6 24 120 720
7y (0
1638407y
5040
X N h2y © h3y(6) hty @
9,y =g, | y& +hy,® + éo + 60 + gz +o(h®)
02y = 2| yo + ony@ 4 AW BTV BT o
272 2 0 yO 2 6 24
g*y(3) B g* y(3) +3hy " N 9h2y0(5) N 27h3y§6) s 81h4y0(7) +0(h8)
373 3 0 0 2 6 24
. . 16h?y,® 64h°y® 25ppty O
9.y =g, | y& +4hy,? + 2y0 t— o4 24y0 +o(h?)
\ . 25h%y,® 1250’y ga5pty
gsyé3’=95(yé3’+5hyo(“)+ 2y° et 24y° +o(h’)

Substituting these values in Eq. (4.54) and collecting coefficients of the same order, we obtain:
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* * * * * * * * * - 4 N Y l - *
(e0+el+e2+e3+e4)y0+(el+2e2+3e3+4e4)hy(;+[e1+ & +29e3+ 664+fljh2yg
e, +8e, +27e, +64e,

6

e, +16e, +81le, + 256€,
24

+

+gS+gI+gZ+9§+gi+g§]h3y§)

+g:+zg;+Sg;+4g:+59;jh4yé“

120 2

e, +64e, + 729, +4096e, g, +89, +279, +649, +1250; |, & (5
720 " 6 Yo

. e, +32e, +243e; +1024e, . g, +4g, +99, +16g, + 259, J ey

e, +128e, +2187e; +16384e, gl +169, +81g, + 2569, + 6259, 7y
5040 24

s e, +256€, +6561e; +65536€, . g, +32g, + 2439, +1024g, +3125g; hy® + o(h?)
40320 120

Equating each coefficients of orders with zero, we obtain the parameters:

(5. epe5.€0 1,y 90, 91, 0, 05, 05, 05)
22 344 20 -184 2 120 124 332

_fe o7 es z ,0,0,0,0 |, fori=1
3 3311 33 '3 11 3333

By similar fashion, we obtain the values of the parametersat i=2,i=N -2 and N —1.
(1 b, G, By, )

_ 811’—2377’2445,—1003’1’ _45,_949,1243,0,0,0,0 fori=2
124" 124 124 124 31 248 248

(CN—S’CN—4’CN—3’CN—2’CN—1’CN’dN—G’dN—S’dN—4’dN—3’dN—2’dN—1'dN )

(—1§_—294—92100000 115 2—12j fori=N-2

1111 11 11 11

and

* * * * * * * * * *

(aN—4’ Ay_z:8y_p: 8y, 8y 7bN—57bN—4'bN—31bN—2’bN—l7bN )

(0 -1, 3,-3,10,0,0, 21 leJ for i=N-1
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Hence, by rearranging the coefficients of the end conditions and using Eq. (1.1), we obtain:
(e&; + 0, h°) Y, + (g€, + oU,N°) Y, + (s€; + goush®)y; + (e, + g,u h?)y,

ol - ) . . . . . e s . . (4.55)
=h (gofo"'glf1+92f2+93f3+94f4+95f5)_(5eo+gouoh ) —efy, fori=1

(ehy +muh®)y, + (eh, +myu,n)y, + (ehy +myush®)y; + (ehy +m,u,h?)y, +(ehg

+MeUsh®) s +MeUsh®y = h® {m; £, +m; £, +m; £, +m, f, +m; £, +m £} — 2 £,h?y, fori=2

(4.56)

(dﬁerNfehg)nye + (SC:I—S + d;75UN75h3)YN75 + (8C;74 +d;—4uN—4h3)yN—4

+(Cy_5 +dy_qUy_3n°) Yy s +(£Cy_, +dyy Uy ,h7) Yy, +(eCy +dy Uy ,h7) Yy,

3 ( g* . . . . . . (4.57)
= h {dN—G fN—6 + dN—5 fN—5 +dN—4 fN—4 +dN—3 fN—3 + dN—Z fN—Z + dN—l fN—l + dN fN}
—(ecy, +duh®)y,, fori=N-2
b;\rl—SuN—Sh3yN—5 + (ga:l—4 + b;—4uN—4h3)yN—4 (ga;—3 + b;—3uN—3h3)yN—3
+(‘9a*r:|72 +b:l—2uN—2h3)yN—2 +{ga;71 +b;—1uN—1h3} Yna = h® {bafs fu_s +b’r:|74 fua (4.58)

+by 5 fys by, o, + 0y Fyos by fN}—(ga; +byuh®)g,, for i=N-1

By expanding Eq. (4.50) in Taylor’s series about X, we obtain the following local truncation error

t. as:

t =w,y, +w hy, +W;h’y® +w,h°y® +wh'y" +o(h®) (4.59)
where,

w, =34,

W, =184 +1241, — 644,

W, =162 + 4811, — 61, — 241, — 241, — 241, 127, (4.60)

W, =1458, +192 1, — 611, — 2160m, — 96017, — 2407,
W, =131224, + 768 11, — 6 11, — 680407, — 1344077, — 8407,

and g4, iy, 4y 14,,70,,77,, 77, @nd 77, are arbitrary parameter’s.

By using Eg. (4.54) and eliminating the coefficients of the powers of h for different choices of

the parameters we obtain class of methods. In order to obtain the boundary equations of fourth

order method the coefficients of h°, h, h®andh®equal to zero. (ie., W, =0=w, =w, =w,).
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So, for (44, 4y, s tys My 10 1 774)=(1, 8,19,0

(4.59) is reduced to:

2365
t =22 ¢h’y’ +0(h?).
' =904 % y (h%)

1

1 632 604

'120°3' 89 ' 35

j the truncation error in Eq.

Hence, Eqgs. (4.52) and (4.55) — (4.58) gives hepta-diagonal system for i=1,2,---,N -1 and can

easily be solved using Gauss-Elimination method.

4.3. Convergence Analysis

We investigate the convergence analysis for the developed method. The non-polynomial spline

solution of Eq. (1.1) with the boundary conditions of Eq. (1.2) is based on the linear system of

Eqgs. (4.52) and (4.55) — (4.58). For this, let Y=y, Y =y(x), T=t, and E=¢ =Y -, for

i=12,..,N—1 be column vectors, where Y,Y ,T, Eare approximate solution, exact solution,

local truncation error and discretization error respectively. These equations can be written in the

following matrix-vector form:

(A+W3yw+WDF:c

* * *

ge,  ge,  &e,
eh,  &ghy  eh;
—3eu, 3eu, ey,
=gy, 36, 3l

g€,

gh,  &h
—3ep; ey,
3ep,  —3eu,
—3eu, =3¢,

EC\ 5

21

ety
3eu,

31,

(4.61)




O;Uy 92U, OsUs 94U,

mu, o omu, MU, mu, MsUs
=2l —2mu,  —2m,U;  —2m,U, —217,Us
=2mU; —2mU,  —2mU; 21U, —2173Us

=2y —2mUy 5

dN75uN75

9% 9, 9 0,

C=[c, s Cyyl'

where,
¢, =—&fy — (g8 + goUs*)g; + g, Toh°
c,=—¢yf,h?
Co= —2hn, T+ (Bewy + 2muoh*)g,
c, =0, for i=4(1)N-4
Cy_s =—(3&1y — 2mu, hs)yN - 2h3771 fiy
Cu_o =—(&Cy +dyuyh®) g, +hdy £,

Cys = —(£ay +byuyh®)g, +hy £y

Y :[yl’ yz’---nyl]T and F:[fll fz’---’ fN71]T

22

—2n,Ug

—217,Uq —2mu,

—2n3Uy

bN —aUn_4 bN _aUn_s

2n, 21,

*

dys Oy Oy dy, dig
bN4 bN—3 bN—Z bN—l

—2n,Uy 3

dN—4uN—4 dN—SUN—S

—2n3Uy
dy_,Uy

bN—2uN—2

—2m,Uy 4
dy Uy

bN —lu N-1




Now considering the above system with the exact solution Y =[y(x,), Y(X,), ..., Y(X\4)]" » We have:

(A+h°B)Y +h°DF =T (h)+C (4.62)

where, T(h) =[t,(h), t,(h), ..., t,_,(h)]" defined as:

t=sh’ (330)3/ (&), X <&<x, for i=1

h7(2g$j VY&, X <& <X, for i=2

( 2365
994

t =¢gh’

j "E), Xa<E<x.  for i=3ON-3
277 .
ty, =¢h’ (2640) "(Sna)y %<&, <Xy for i=N-2

ty, =gh7( 20 J "(Eya) s X <& <X, for i=N-1
Subtracting Eg. (4.61) from Eq. (4.62), we obtain the error equation,
(A+Bh*)(Y =Y)=T(h) = AE=T(h) (4.63)
where, A, =A+h°B and E=Y-Y =(g,e,,...e,,)".

To determine the error bounds the row sums s, s,,...,S,_, of the matrix A, are calculated as

follows:

n-1 . . . . . . . .

s,=D & =¢c(e +&,+e +8&,)+ (0, U, +g,U, + JgsU; + g,u,)h®, for i=1
j=1
n-1 . . . . . . . . . .

s, =) a,; =¢(h +h, +hy +h, +h))+(mu, +m,u, + myu, + m,u, +mug)h®, for i=2
j=1
n-1

S, = > &, =3 —2{nU; +1,(U, +u,) + 7, (U, +Ug) +pug ph® . fori=3
j=1
n-1

S =29 = 2h’ {_771(Ui-3 +U5) =77, (Ui, +U;,,) =775 (U; +ui+1)_774ui}’ fori=4(1)N -4
j=1

N-1 3 .
Snoz = 2.8 :_35:%_2{’74“1\1—3 +175(Uy 4 T Uy ) +77,(Uy 5 +UN_1)+771UN—6}h ,fori=N-3

—
Il
iN
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N-1
Snog = Zan—zj =¢&(Cy_5+Cy_g +Cy 53 +Cy_, +Cyy)

j=1

+(dy_gUy s +dy Uy, +dy Uy +dy Uy, +dy uy ) for i=N-2
N_l * * * *
Sno1 = Zan—lj =gy ,+ay s +ay ,+ay,)
=1

+(Dy Uy + by sUy g +by LUy, +by Uy, )h®, fori=N-1

Since O0<e<<1, we choose h sufficiently small so that the matrix A, is irreducible and

monotone, according to Mohanty and Jha, (2005). Then, it follows that A;* exists and its elements

are non-negative.
Hence, from Eqg. (4.63), we have:

E=A'T =EI<IAIITOI (4.64)

— . - =\th H -1 H .
Let & ; isthe (i, )" element of the matrix A;", we define:

N-1
&, ll=max> a; and [T~ max |t (4.65)
i1 I<i<N-1
N-1
Also, from the theory of matrices, we have Zéi]jsj =1, i=12,..,N-1
j=1

That is,

gl,l(all + a12 +a13’ e ai,N—l) +§1,2(a21 + a22+’ e +a‘2,Nfl)+’ e +gi,N—l(aNfl,l + aNfl,2+’ e +aNfl,Nfl)
= 511(51) + a1,2(32)"' st ai,N—l(SN—l) =1 (4.66)
Defining s,. =Krr!krllsi >0, then from Eq. (4.66), we have Sk*(gl,l +a, t,, t élval)Sl.

1 1

, 4.67
S h°M,. (4.67)

N-1
It follows that: > & <
j=1
where, M. =217, (U 5 +Uy,3) +77, (U, +Ug5) + 77Uy +Ugg) +77,U,
And also Eq. (4.64) can be written as:
N-1
e;=>a,T,(h i=12.,N-1
j=1
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N-1
=llell <|>a,||T").
i=1

From Eqgs. (4.65) and (4.67), we get:

el < max Il eI
. 7 «
=gl < 3N £h’ 2365 < 2365N h* =wh*, since 0<e<<1
h*M,. 994 994M,.
« ; 2365N" S
where, N = m?x Iy (&)l and l//:994M which is independent of h. It follows that
X156 <Xy *

| E || =0O(h*) and hence the present method is of fourth order convergence.

4.4. Numerical Examples and Results

In order to test the validity of the proposed method and to demonstrate their convergence

computationally, we have taken two model examples of singularly perturbed boundary value

problems with exact solutions. The maximum absolute errors at the nodal points, Lma&lxll y(x) -V, |

are tabulated in Tables (4.1) - (4.4). The model examples have been solved by taking different
values of mesh size, and perturbation parameters. Computed solutions are compared with the exact
solutions at nodal points and compared with the methods in (Mustafa and Ejaz, 2017; Akram and
Talib, 2014 and Akram, 2012).

Remark: All numerical results of Examples 4.1 and 4.2 are obtained for different values of

1 1 632 604
=1, =38, =19, =0, =—, n,==, n,=— and n, =——. Because, these
My H, s H, m 120 7, 3 75 89 7, 35

values satisfies Eq. (4.60) and they are near to the values of polynomial septic spline but gives an

accurate solution.
Example 4.1: Consider the third order singularly perturbed boundary value problem:

—£y"(X) + y(x) = 62x°*(1—X)° =67 {6(1—X)° —90x(1—X)* +180x*(1—x)° —60x°(1—X)*}
subjectto, y(0)=0, y@®) =0, y"(0)=0.

The analytical solution of this problem is y(x) = 6x>(1—X)°.
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Table 4.1: Maximum absolute errors for Example 4.1 with different values of h and «.

ed N =10 N =20 N =40
Present Method
}/ 2.8930e-04 5.3006e-06 2.6033e-08
16
}/ 1.0962e-04 1.9394e-06 1.3221e-08
32
}/ 3.8007e-05 6.8026e-07 6.2298e-09
64
Mustafa and Ejaz, (2017)
}/ 6.2854e-03 - -
16
}/ 1.9707e-03 - -
32
}/ 3.9065¢e-04 - -
64
Akram, (2012)
}/ 1.3e-02 1.1e-03 7.8e-05
16
}/ 3.2e-03 2.7e-04 1.8e-05
32
}/ 3.4e-04 2.2e-05 1.1e-06
64
Table 4.2: Maximum absolute errors for Example 4.1 when € « h.
P N =10 N =50 N =100 N =150 N =200
Present Method
107t 5.3363e-04 5.9813e-08 9.1841e-09 2.1617e-09 7.3808e-10
1072 1.8773e-05 2.2337e-09 2.5972e-10 6.0042e-11 2.0403e-11
1073 1.5441e-06 5.5630e-11  3.8697e-12 8.5417e-13 2.8902e-13
107 1.8248e-08 3.2291e-12 5.6471e-14 1.0585e-14 3.3903e-15
10°° 1.1853e-10 3.3754e-13 3.6503e-15 2.7729e-16 4.4615e-17
1078 1.1362e-12 4.5181e-15 2.9874e-16 1.8873e-17 3.6840e-18
1077 1.1314e-14 2.598%e-17 2.5748e-18 2.4307e-18 2.7110e-19
1078 1.1309e-16 2.4638e-19 1.6575e-20 3.7102e-21 1.4808e-21
107° 1.1309e-18 2.4508e-21 1.5883e-22 3.2062e-23 1.0424e-23
1070 1.1309e-20 2.4495e-23 1.5815e-24 3.1605e-25 1.0074e-25
10°¢ 1.1309e-22 2.4490e-25 1.5805e-26 3.1550e-27 1.0035e-27
107* 1.1307e-24 2.4469e-27 1.5764e-28 3.1729e-29 3.6037e-29




Mustafa and Ejaz, (2017)

10t 1.6190e-02
1072 5.4777e-04
1073 4.3814e-05
10 7.5623e-06

7.3371e-04
3.5302e-05
2.4150e-06
2.4329e-07

6.4463e-04
3.2708e-05
1.3966e-06
1.1223e-07

6.3671e-04 6.3496e-04
3.3005e-05 3.3331e-05
1.1544¢-06 1.2348e-06
7.6323e-08 6.1521e-08

Example 4.2: Consider the third order singularly perturbed boundary value problem:

—&y"(X) + y(X) =81s” cos(3x) +3esin(3x), x<[0,1],

subject to, y(0) =0, y(1) =3esin(3), y"(0)=0.

The analytical solution of this problem is y(x) = 3¢sin(3x).

Table 4.3: Maximum absolute errors for Example 4.2 with different values of h and «.

P N =10 N =20 N =40
Present Method
1/16 9.4405¢-06 5.4886e-07 2.5658e-08
1/32 3.1645¢-06 1.9215e-07 9.1282¢-09
1/64 9.9920e-07 6.1969¢-08 2.9364e-09
Akram and Talib, (2014)
1 /16 1.02e-02 1.40e-03 1.73e-04
1 /3 5 3.80e-03 4.84e-04 6.15e-05
1 /64 1.40e-03 1.00e-04 2.00e-05
Akram, (2012)
1/16 2.5e-03 1.9¢-04 1.4e-05
1/32 6.8¢-04 5.7e-05 5.0e-06
1/64 1.2e-04 1.3e-05 1.6e-06
Table 4.4: Maximum absolute errors for Example 4.2 when € «< h.
ed N =10 N =50 N =100 N =150 N =200
Present Method
1073 4.5809e-08 8.2990e-12 4.1392e-13 7.3211e-14 2.6225e-14
10 9.3573e-10 4.6893e-14 5.1063e-15 9.5009e-16 3.4922¢-16
1075 6.1195e-12 1.5171e-14 9.3190e-17 6.0495e-18 7.5145¢e-18




5.8655e-14
5.8409¢e-16
5.8386e-18
5.8398e-20
5.8564e-22
6.0132e-24
7.2701e-26

Mustafa and Ejaz, (2017)

1073
107
10°°

2.5276e-03
1.9938e-03

2.0745e-16
1.1931e-18
1.1336e-20
1.1575e-22
1.5574e-24
4.8872e-26
3.2817e-27

1.7508e-04
2.5243e-05
2.0415e-05

1.3348e-17
1.1543e-19
7.5708e-22
8.7888e-24
4.1359e-25
2.9081e-26
3.2312e-27

7.0100e-05
1.1440e-05
1.3333e-06

8.2310e-19
1.0764e-19
1.7702e-22
3.3087e-24
3.6189e-25
3.8774e-26
2.8273e-27

3.6747e-05
7.3469e-06
8.3294e-07

1.5064e-19
1.1465e-20
7.8479e-23
3.3087e-24
1.6529e-25
3.8774e-26
2.8273e-27

2.0355e-05
5.3722e-06
6.0941e-07

The following Figures (4.1) and (4.2) shows the comparison numerical solution and exact solution

and Figures (4.3) - (4.5) shows the absolute errors for different values of mesh size h and

perturbation parameter &.

Figure 4.1: Numerical solution versus exact solution of Example 4.1 for N = 30 and ¢ = 107°.
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Figure 4.2: Numerical solution versus exact solution of Example 4.2 for N = 30 and e = 107>,
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Figure 4.3: Absolute errors of Example 4.1 for different values of h and e = 107°.
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Figure 4.4: Absolute errors of Example 4.2 for different values of eandh = 1071,
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Figure 4.5: Absolute errors of Example 4.1 for different values of ¢ and h.
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4.5. Discussion

In this thesis, the non-polynomial septic spline method has been presented for solving third order
type singularly perturbed boundary value problems. First, the given system is discretized. Then, the
spline coefficients are derived and the consistency relation is obtained by using continuity of
second, fourth and fifth derivatives. Further, we reduce the obtained fifteen different systems of
equations to a system of equations and develop boundary equation in order to equate the equal
system of linear equations. The convergence analysis of the obtained hepta-diagonal scheme is
investigated.

To validate the applicability of the proposed method two model examples have been considered for
different values perturbation parameter and different mesh sizes. The numerical results are
presented in Tables and figures. The result obtained by the present method has been compared with
the numerical results developed by Mustafa and Ejaz, (2017), Akram and Talib, (2014) and Akram,
(2012), and it is observed that the present method gives better result. Further, the proposed method
approximate the exact solution very well when ¢ <<h, for which most of the existing methods fail

to give good result. Moreover, the maximum absolute error decreases rapidly as N increases.
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Chapter Five
Conclusion and Future Work

5.1. Conclusion

The septic non-polynomial spline method is developed for the approximate solution of a third order
type singularly perturbed boundary value problems. The convergence analysis is investigated and
shows that the present method is of fourth order convergent. Two examples are considered for
numerical illustration of the method. As a result, from Tables (4.1) — (4.4) and Figures (4.3)- (4.5),
one can see that the maximum absolute error decreases as a mesh size h and also perturbation
parameter decreases, which in turn shows the convergence of the computed solution. Furthermore,
the result of the present method is compared with current findings and shows that it is more
accurate than some existing numerical methods reported in the literature. Figures (4.1) and (4.2),

shows that the present method approximates the exact solution very well.

Moreover, the study has been analyzed by taking large number of mesh size and sufficiently small
parameter ¢, good accuracy result is obtained. So, this study developed a better method for solving
singularly perturbed boundary value problems for most numerical schemes fail to give good result

at small mesh size h and for sufficiently small perturbation parameter & <<h.

Generally, the present method is convergent and more accurate for solving third order type

singularly perturbed boundary value problems.
5.2. Scope for Future Work

In this thesis, the numerical method based on septic non-polynomial scheme has presented for
solving third order type singularly perturbed boundary value problems. Hence, the scheme proposed
in this thesis can also be extended to sixth and higher order non-polynomial septic spline method

for third order type singularly perturbed boundary value problems.
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Appendix (Relation for reducing fifteen equations to one equation)

X, =R,S
Z,=S,T,

i+1

i1~ SR

-T,5

i+1 !

AiDi+l - D1A+1’
AiDi+l - DlAi J
AD ,

i AiDi - DlAi—Z’
- DlA J

- DIA )
AD.,

G, =E,M;-M,E
G,=EM,-M,E,
G,=-M,E,
G,=E,M,

G, =E,M, -6E,

G, = E,M, +18E,

G, =E,M, -18E,

G, = 6F,

G =M., i=9(1)12

O =H,F,-FH,,
O =H,F,-FH,,
Oi =Hi+1F4_FiHi—2’
O =H.F .

=11
=18
=5

36

J16i+1 _Gl‘]i+1 J
J16i+1 _Gl‘]i )
i =1(1)15, i#2 S RACTECR/y
i =2()15, i =1 -6, ,
-G, ,
G
i =1(1)4
i =6(1)10 |, =B,C.-C,B,,
1=12,13
1 =14(1)17 C,F-FC.,
Ji=1CF.,-FC,
CiF
E =UW -WU,
E,=UW, -WU,
E,=UW -WU,
E, =110W, —42U,
E, = —1650W, +126U, R =
E, = —990W, —126U,
E, =-110W, + 42U,
E, =2640W,, E,=-7920W,
E, =7920W,, E , =-2640W,
i =1(1)3 J10i+1 - Ol‘]i+l '
i — 5(1)10 J10i+1 _Ol‘]i ’
. T,=1930.,-0J;,,
i =13(1)17 10
i=4,11,12 T
_Ol‘]i+1 ’

i=12
i = 4(1)7
i=12,13

1=14,15,16
=89
i=310,11

i =1(1)14

i =1(1)3
i =5(1)14
i=4

i1~ GG

~G,l,, i=3
Gl ,-G.C,

G,

i+l
Gyl
Gl

-Gy,

_Gi—lll’

i=12

i = 4(1)9

i =12(1)16
i =10, 11
i=3

- Gi—lcl )

1=12

1=5,6,7
1=12,13
=89
=4
1=10,11



D, =WK,,—KW,, i=21)3 K,=-89,+56a, +55a,
D, =KW, D, =KW, K, = 40a, + 563,
De = 68VVl —42 Kl K3 = 890!2 + 560(1 —55a3 Fi — AiM - M1A1+1 i= 1(1)3
D, = -1536W, +126K K, = -12¢, — 21a, - 25a, F, =AM
4 1
D8:—732VV1—126K1 K5:—12ﬂ1 F5:6A1—AEM1
Dg = _68VV1 + 42K1 K6 = 21&2 —120{1 —1503 F _ _18/AI _ A7M
6 1
D,, =-384W,, D, =12W,, N, = —3M, F —18A - AM,
D,, = 2640W,, D,, =—8640W,, N, =-94 —9, —15a, F ——6A —AM
8 1
D,, =10800W,, N, = —9a, — 9, +40a, -9, F = M.A = 0115
D,, =—6960W, N, =—89¢, — 65, + 70c, ' o
D,, = 2880W,, N, = —40a, — 56,
D,, = —720W, N, =89, — 56, — 55,
= N.P, _ C.=-QL
A =Nk . B, =QP,-PQ,, i=1(1)4 AN .
A =RN;-N¢R, i=2(1)5 C=L.Q-QL,,i=2(1)4
B, = —4P, +8Q,
A 18P, B, ~128P, — 20Q Cs =4L.
A, =66P, +8N, 56 :1325 ° C, =-110Q, —128L,
= 202P. — 20N T > C, =-990
A o 6 B, = —128P, +124Q, " N
A, =-T02P, +132N, B — 4R 40 C, =—1650Q, +128L,
=—1536P. +124N 9T TSNS C, =1100. —4L
AiO 5 6 Bl0 — _240 P5 9 Q5 4

A, =68P.—4N,, A, =-720P,,
A, = 4800P, — 240N,

A, =—10080P, + 720N,

A, =8640P, — 720N,

A, = —2640P, + 240N,

B,, = 960P, — 240Q,
B,, = —1440P, + 720Q,
B,, = 960P, — 720Q,
B,, = —240P, + 240Q,

M, =-3a, +3¢,
M, =3a, +3a, + 35,

U, =-110a, + 77, +55a,
U, =33, +55a, + 77,

M, =M, U, =110a, + 77a, —55a; + 33,
M, =M, U, =33, — 550,

W, =7M, L =-U,

W, =7M, L,=-U,

W; =W, L, =-U,

W, =W, L, =-U,
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C,, = 240L,

C,, = 2640Q, —960L,
C,, =—7920Q, +1440L,
C,, =7920Q, —960L,
C,, = —2640Q; + 240L,

P =4a,-4a,
P,=-7a,-4a, +50, -4,
P, =-1la, —-8a, +5a, -4,
P,=7a,-4a, —5a,-4p
P,=7a,-4a, -5a,

Q=FK

Q,=—4p

Q, =-14a, -8, +10c,
Q=Q,

Q5=F,



