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Abstract  

In this thesis, we present non-polynomial septic spline method for solving third order type singularly 

perturbed boundary value problems. First, the given system is discretized. Then, the spline 

coefficients are derived and the consistency relation is obtained by using continuity of second, fourth 

and fifth derivatives. Further, we reduce the obtained fifteen different systems of equations to a 

system of equations and develop boundary equation in order to equate system of linear equations. 

The convergence analysis of the obtained hepta-diagonal scheme is investigated. To validate the 

applicability of the method, two model examples have been considered for different values of 

perturbation parameter  and different mesh size h. The numerical results are presented in Tables 

and Figures and compared with some existing numerical method in the literature. Further, the 

proposed method approximate the exact solution very well when h  , for which most of the 

existing methods reported in the literature fail to give good result. 
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     Chapter One 

Introduction 

1.1 Background of the Study 

Numerical analysis is a branch of mathematics concerned with theoretical foundations of 

numerical algorithms for the solution of problems arising in scientific applications. It does 

not strive for exactness; instead he/she attempts to devise a method, which will give an 

approximation differing from exactness by less than a specified tolerance. The ultimate aim 

of the field of numerical analysis is to provide convenient methods for obtaining useful 

solutions to mathematical problems and for extracting useful information from available 

solutions which are not expressed in tractable forms. Such problems may each be 

formulated, for example, in terms of algebraic or transcendental equation, an ordinary or 

partial differential equation, or in terms of a set of such equations. 

In the intensive development of science and technology, many practical problems, such as 

the mathematical boundary layer theory or approximation of solution of various problems 

described by differential equations involving large or small parameters, become more 

complex, Priyadharshini and Ramanujam (2009). Any differential equation in which the 

highest order derivative is multiplied by a small positive parameter is called perturbed 

problem and the parameter is known as the perturbation parameter. Singularly perturbed 

problems occur in a number of areas of applied mathematics, science and engineering 

among them fluid mechanics, elasticity and quantum mechanics. This perturbation 

parameter prevents to obtaining satisfactory numerical solutions, and the treatment of 

singularly perturbed problems is not trivial because the solution depends on perturbation 

parameter and mesh size h, Doolan et al. (1980). Accordingly, more efficient and simpler 

numerical methods are required to solve singularly perturbed two-point boundary value 

problems. 

Bawa and Natesan, (2005), Rashidinia et al. (2010), and Fasika et al. (2017) presented one 

dimensional singularly perturbed reaction-diffusion of the form: 

 ( ) ( ) ( ) ( ), 0 1y x a x y x f x x       
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with the boundary conditions (0) , (1)y y   , where   is a small positive parameter 

such that  0 1  , and   are constants, and  ( ) and ( )f x  are assumed to be  

continuously differential functions. 

Most of the researchers have studied the numerical solutions of second order singular 

perturbation problems (Kadalbajoo and Patidar, 2002; Reddy and Chakravarthy, 2004). 

Recently, Ramadan et al. (2008) used a non-polynomial septic spline function for the 

numerical solution of sixth-order two point boundary value problems. The authors, Sun and 

Stynes (1995), and El-Zahar (2013) considered numerical methods for higher order 

singularly perturbed problems. In recent years, many authors namely, Chen and Huang 

(2010), and Jalilian et al. (2015) developed different numerical methods for solving such 

differential equations. It is well known that many methods for solving singularly 

perturbation problems are unstable and fail to give accurate results when the perturbation 

parameter ε is small.  

Rashidinia et al. (2010) developed a class of methods based on non-polynomial quintic 

spline for the numerical solution of singularly perturbed boundary value problems. Quartic 

non-polynomial spline solution of a third order singularly perturbed boundary value 

problem is provided by (Akram and Talib, 2014).  Christy and Tamilselvan (2014) presents 

a numerical method for singularly perturbed third order ordinary differential equations of 

convection diffusion type. In, Christy and Tamilselvan (2017) a numerical method for 

singularly perturbed third order ordinary differential equations of reaction-diffusion type is 

described. Yohannis et al. (2018) developed a quintic non-polynomial spline method for 

third order singularly perturbed boundary value problems. But, still the accuracy and 

convergence of the numerical methods needs attention. Do to this, numerical treatment of 

singularly perturbed boundary value problems need improvement. Thus, this study presents 

an accurate and convergent numerical method for solving third order type singularly 

perturbed boundary value problems.  
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1.2. Statement of the Problem 

The numerical treatment of singularly perturbed problems yield major computational 

difficulties and the usual numerical methods fail to produce accurate results for all 

independent values of  x  when   is very small related to the mesh size h (i.e.    ) for  

the solution of singularly perturbation two point boundary value  problems (Khan and  

Khandelwal, 2013). That is, there are thin transition layers, where the solution varies 

rapidly. Howers (1976), Kelevedjiev (2002) and Roos et al. (1996) discussed the existence 

and uniqueness of singularly perturbed boundary value problems. Lie (2008) constructed a 

computational method for singularly perturbed two point boundary value problems in the 

form of series in reproducing Kernel space. Akram (2012) presented a quartic spline 

solution for third order singularly perturbed boundary value problems and the method is 

second order of convergence. Akram and Amin (2012) proposed a quintic spline technique 

to solve fourth order singularly perturbed boundary value problems. Shanthi and 

Ramanujam (2002) solved singularly perturbed fourth-order ordinary differential equations 

of convection-diffusion type using asymptotic numerical methods. So, the treatment of 

singularly perturbed problem presents severe difficulties that have to be addressed to ensure 

accurate numerical solutions (Doolan et al. 1980). Therefore, it is important to develop more 

accurate and convergent numerical method for solving third order type singularly perturbed 

boundary value problems. 

As results, this study answers the following research questions: 

 How does the non-polynomial septic spline method be described for solving third 

order type singularly perturbed boundary value problems? 

 To what extent the method approximate the exact solution? 

 To what extent the method converges? 

 What is the advantage of the present method over the other numerical methods 

reported in literatures? 
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1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this study is to develop a non-polynomial septic spline method for 

solving third order type singularly perturbed boundary value problems. 

1.3.2. Specific Objectives 

The specific objectives of the study are: 

 To describe non polynomial septic spline method for solving third order type 

singularly perturbed boundary value problems. 

 To investigate the accuracy of the proposed method. 

 To establish the convergence of the present method. 

 To describe the advantage of the present method over the other numerical methods 

reported in literatures. 

1.4. Significance of the Study 

The results obtained in this research may: 

 Provide some background information for other researchers who work on this 

area. 

 Introduce the application of numerical methods in different field of studies.  

1.5. Delimitation of the Study 

Singularly perturbed problems of the highest order derivative arise in many branches of 

applied mathematics and engineering and may be solved by different numerical methods. 

This study delimited to non-polynomial fourth order septic spline method for solving third 

order type singularly perturbed boundary value problems of the form: 

      ( ) 0 1,y x u x y x x xf                                                               (1.1) 

subject to the boundary conditions, 

    1 20 ,   1 , (0)y y y    
                                                               

(1.2)
 

where 
1 2,   and       constants,   is a perturbation parameter 0 1,   ( ) and  ( ) are 

continuous functions.  
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Chapter Two 

Review of Related Literatures 

2.1. Singularly Perturbed Problems 

Science and technology develops many practical problems, such as the mathematical 

boundary layer theory or approximation of solution of various problems described by 

differential equations involving small parameters have become increasingly complex and 

therefore require the use of asymptotic methods. The term „singular perturbations‟ was first 

used by Friedrichs and Wasow (1946) in a paper presented at a seminar on non-linear 

vibrations at New York University. Singularly perturbed problems arise frequently in 

applications including geophysical fluid dynamics, oceanic and atmospheric circulation, 

chemical reactions, civil engineering, optimal control, etc. The classification of singularly 

perturbed higher order problems depend on how the order of the original equation is 

affected if one sets      where   is a small positive parameter multiplying the highest 

derivative occurring in the differential equation. If the order is reduced by one, we say that 

the problem is of convection-diffusion type and of reaction-diffusion type if the order is 

reduced by two. 

It is well known that the solution of singularly perturbed boundary value problems is 

described by slowly and rapidly varying parts. So there are thin transition layers where the 

solution can jump suddenly, while away from the layers the solution varies slowly and 

behaves regularly (Akram and Afia, 2013). Many scholars have studied the analytical and 

numerical solutions of these problems. Abrahamsson et al. (1974) solved singularly 

perturbed ordinary differential equations using difference approximations. Numerical 

treatment of singularly perturbed boundary value problems for higher-order non-linear 

ordinary differential equations has a great role in fluid dynamics. 

The development of numerical methods for solving singularly perturbed problems started 

with methods aimed at solving ordinary differential equations, an account of which can be 

found in the first monograph on this subject by Doolan et al. (1980). Ilicasu and Schultz 

(2004) introduced three finite-difference techniques for second-order singularly perturbed 

linear boundary value problems using convergent tension spline and on uniform tension 
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spline methods. Valaramathi and Ramanujam (2002) solved singularly perturbed two-point 

boundary value problems for third-order ordinary differential equations.  

 2.2. Spline Method 

In spline based methods, the differential equation is discretized by using approximate 

methods based on spline. The end conditions are derived for the definition of spline. The 

algorithm developed not only approximates the solutions, but their higher order derivatives 

as well. The theory of spline function and their applications is relatively recent 

development. The rapid development of spline functions is primarily due to their great 

usefulness in applications. Splines have many applications in the numerical solution of a 

variety of problems in applied mathematics and engineering; some of them are, data fitting, 

function approximation, integro-differential equations, optimal control problems, computer-

aided geometric design, wavelets and so on. Programs based on spline functions have found 

their way in most of computer applications. 

Splines are types of curves, originally developed for ship building in the days before 

computer modeling. Naval architects needed a way to draw a smooth curve through a set of 

points. The solution was to place metal weights (called knots) at the control points, and 

bends a thin metal or wooden beam (called a spline) through the weights. The physics of the 

bending spline meant that the influence of each weight was greatest at the point of contact 

and decreased smoothly further along the spline. To get more control over a certain region 

of the spline, the drafts man simply added more weights. This scheme had obvious problems 

with data exchange. There was a need for mathematical way to describe the shape of the 

curve. Univariate splines were studied intensely in the 60s, and by the mid-70s they were 

sufficiently well understood to permit a fairly comprehensive treatment in books form. 

The application of splines for the numerical solution of singularly perturbed boundary-value 

problems has been described in many authors (Rashidinia, 1990). The numerical techniques 

for a class of singularly perturbed two point singular boundary value problems on a non-

uniform mesh using spline in compression are reported by Mohanty and Jha (2005). 
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2.2.1. Polynomial Spline Functions 

Polynomials have long been the functions most widely used to approximate other functions 

mainly because of their simple mathematical properties. However, it is well-known that 

polynomials of high degree tend to oscillate strongly and in many cases they are liable to 

produce very poor approximations. Spline functions can be integrated and differentiated due 

to being piecewise polynomials and can be easily stored and implemented on digital 

computers. Cubic polynomials splines are the mathematical equivalent of the draftsman's 

wooden beam. Through the advent of computers, splines have gained more importance. 

They were first used as a replacement for polynomials in interpolation and then as a tool to 

construct smooth and flexible shapes in computer graphics. 

Thus, spline functions are adapted to numerical methods to get the solution of the 

differential equations. Numerical methods  with spline functions in getting the approximate 

solution of the differential equations lead to a matrices which are solvable easily with 

algorithms having low cost of computation. Siddiqi and Twizell, (1996) presented a second-

order method using a polynomial spline for solving an eighth-order boundary value 

problem.  Ramadan et al. (2007) have solved second-order two-point boundary value 

problems using polynomial and non-polynomial spline functions. 

2.2.2. Non-Polynomial Spline Functions 

Ordinary and partial differential equations are useful in describing mathematical models for 

various physical processes. Non-polynomial spline method has turned out to be an effective 

tool for solving ordinary and partial differential equations. Most of non-polynomial spline 

functions are consists of a polynomial and trigonometric parts. In many papers various 

techniques using quadratic, cubic, quartic, quintic, sextic, septic and higher degree non-

polynomial splines have been discussed for the numerical solution of linear and nonlinear 

boundary value problems. Islam (2005) established the numerical solutions of a system of 

third-order boundary value problems using a non-polynomial spline. 

In particular the non-polynomial septic spline function has the form: 

        *     
                      +  

where  k is the frequency of the trigonometric part of the spline functions which can be real 

or pure imaginary.  
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2.3. Numerical versus Analytical Methods 

The analytical and numerical methods to solve singular perturbation problems have been 

widely used in many fields of fluid dynamics, reaction-diffusion processes, particle physics, 

and combustion processes. These types of problems are represented by differential equations 

including   which is assumed to be a small parameter and solutions of the problems have 

non-uniform behavior when the parameter  → 0. Analytical solution is exact solution to a 

problem that can be calculated symbolically by manipulating equations. But for higher order 

or non-linear differential equations with complex co-efficient, it becomes very difficult to 

find exact solution. Therefore, we need numerical method for solving these equations. 

Numerical methods give an approximate solution to any equations. It is important to realize 

that a numerical solution is always numeric but analytical methods usually give a result in 

terms of mathematical functions that can be evaluated for specific instances. However, 

numerical results can be plotted to show some of the behavior of the solution. A variety of 

numerical methods to solve singularly perturbed boundary value problem for ordinary 

differential equations are available.  

One of the important subjects in applied mathematics is the theory of singular perturbation 

problem. The mathematical model for this kind of problem usually is in the form of either 

ordinary differential equations or partial differential equations in which the highest 

derivative is multiplied by positive small parameter. The purpose of the theory of singularly 

perturbations is to solve a differential equation with some initial or boundary conditions 

with small parameter. A spline is a numeric function defined piecewise by polynomials or 

non-polynomials. The numerical solution of two point boundary value problems using 

spline methods has been considered by many authors. However, this study focuses on non-

polynomial spline method for solving third order singularly perturbed boundary value 

problems. 
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Chapter Three 

Methodology 

This chapter consists; study area and period, study design, source of information and  

mathematical procedures. 

3.1. Study Area and Period  

This study will be conducted at Jimma university department of mathematics from 

September 2017 to June 2018 G.C. Conceptually, the study focus on non-polynomial septic 

spline method for third order type singularly perturbed boundary value problems. 

3.2. Study Design 

This study will be employed mixed design (i.e. documentary review and experimental 

design). 

3.3. Source of Information 

The sources of the information are books, journals and internet, and the experimental result 

will be obtained by MATLAB version R2013a software. 

3.4. Mathematical Procedures 

To achieve the stated objectives, the study followed the next steps:  

1. Defining the problem. 

2. Discretizing the given interval. 

3. Replacing the differential equation by spline approximation. 

4. Developing the end conditions for the definition of spline.  

5. Reducing the obtained schemes into hepta-diagonal system and solved by using 

Gauss elimination method.  

6. Establishing the convergence of the obtained scheme.  

7. Writing MATLAB code for the hepta-diagonal system obtained, 

8. Validating the scheme by using numerical examples. 

9. Compare the obtained result with the result of previous numerical methods. 
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Chapter Four 

Description of the Method, Analysis and Results 

4.1. Description of the Method 

In order to develop the septic spline approximation for the third-order type boundary value problem 

in Eqs. (1.1) and (1.2), the interval [0,1]  is divided into N equal sub-intervals. For this, we introduce 

the set of grid points 0 , 0,1,2,...,ix x ih i N   , so that,  

0 1 10 1N Nx x x x      ,  where 0 1Nx x
h

N N


  .  

Let ( )y x  be the exact solution of the Eqs. (1.1) and (1.2) and iy  be an approximation to ( )iy x , 

obtained by the segment ( )S x  of the  spline function passing through the points ( , )i ix y  and 

1 1( , )i ix y  . For each thi  segment, the non-polynomial septic spline function ( )S x  in subinterval 

 1, , 0,1,2, , 1i ix x i N    has the form:  

5 4

3 2

( ) cos( ( )) sin( ( )) ( ) ( )

( ) ( ) ( ) , for 0,1, ,

i i i i i i i i

i i i i i i i

S x a k x x b k x x c x x d x x

e x x f x x g x x r i N

        

       
  (4.1) 

where, , , , , , ,i i i i i i ia b c d e f g  and ir  are constants and 0k   is the frequency of the trigonometric 

part of the spline functions which can be real or pure imaginary, and which will be used to raise the 

accuracy of the method.  

To derive expression for the coefficients, we first denote:  

1 1

1 1

1 1

(6) (6)

1 1

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) .

i i i i i i

i i i i i i

i i i i i i

i i i i i i

S x y S x y

S x M S x M

S x T S x T

S x F S x F

 

 

 

 

  
   


   
  

       (4.2) 

Now, by successively differentiating Eq. (4.1) with respect to x, we obtain:  

4 3

2

( ) sin( ( )) cos( ( )) 5 ( ) 4 ( )

3 ( ) 2 ( )

i i i i i i i i

i i i i i

S x ka k x x kb k x x c x x d x x

e x x f x x g


         

    
  (4.3) 
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2 2 3 2( ) cos( ( )) sin( ( )) 20 ( ) 12 ( )

6 ( ) 2

i i i i i i i i

i i i

S x k a k x x k b k x x c x x d x x

e x x f


         

  
 (4.4)

 3 3 2( ) sin( ( )) cos( ( )) 60 ( ) 24 ( ) 6i i i i i i i i iS x k a k x x k b k x x c x x d x x e
           (4.5)

 (4) 4 4( ) cos( ( )) sin( ( )) 120 ( ) 24i i i i i i iS x k a k x x k b k x x c x x d          (4.6)

 (5) 5 5( ) sin( ( )) cos( ( )) 120i i i i iS x k a k x x k b k x x c           (4.7)

 (6) 6 5( ) cos( ( )) sin( ( ))i i i iS x k a k x x k b k x x           (4.8) 

Evaluating  Eqs. (4.3) – (4.8) at ix and using the relation in Eq. (4.2), and 1i ih x x  , we have:  

i i iy a r            (4.9) 

5 4 3 2

1 cos( ) sin( )i i i i i i i i iy a kh b kh c h d h e h f h g h r            (4.10) 

i i iM kb g            (4.11) 

4 3 2

1 sin( ) cos( ) 5 4 3 2i i i i i i i iM ka kh kb kh c h d h e h f h g           (4.12) 

3 6i i iT k b e            (4.13) 

3 3 2

1 sin( ) cos( ) 60 24 6i i i i i iT k a kh k b kh c h d h e          (4.14) 

(5) 5( ) 120i i iS x k b c            (4.15) 

(5) 5 5

1( ) sin( ) cos( ) 120i i i iS x k a kh k b kh c           (4.16) 

6

i iF k a            (4.17) 

6 6

1 cos( ) sin( )i i iF k a kh k b kh           (4.18) 
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From Eqs. (4.17), (4.18), (4.13), (4.11), (4.9) in order and letting kh   , we get:  

6

6

i
i

h F
a


            (4.19) 

6

1

6

( cos )

sin

i i
i

h F F
b



 


         (4.20)
  

3

1

3

( cos )

6 6 sin

i i i
i

T h F F
e



 


          (4.21) 

5

1

5

( cos )

sin

i i
i i i i

h F F
g M kb M



 
 

          (4.22) 

6

6

i
i i i i

h F
r y a y


             (4.23) 

From Eq. (4.14), we get: 2 3 3

160 sin cos 24 6i i i i i ih c T k a k b d h e       and then, using Eqs. 

(4.19), (4.20) and (4.21), we obtain:    

1 1 1

2 3 3 2 3

sin cos 24 cos
cos

60 60 60 sin 60 60 60 sin

i i i i i i i i
i

T hF hF hF d T hF hF
c

h h h

  


    
    

      
   

(4.24) 

Again, using Eqs. (4.19) - (4.24) in order into Eqs. (4.12) and (4.10), we get: 

    

4 4 4 4 4 4 2
2 1 1

5 5 3 3

4 3 4 4

1 1 1 1

3 5

sin cos sin cos cos
cos

2 2 sin 24 24 sin

5 5 cos cos 5

24 sin 2 sin 24 24 2

i i i i i i
i i

i i i i i i i i

h F h F h F h F h F h F
f h d

h F F h F h F hT hT M M

h

    


     

  

   

 

   

  
      

 

  
    

(4.25)  
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6 62
3 31

16 3 3

3 3 3

1 1

1 1

6 6 6 6

1 1

5 6

3 7
120 120 3 sin 3 cos cot

48

3 cot 7 csc 7 cot 60 sin

60 cot 60 cot cot 60 csc 60 cot

60 60 120 120

i i
i i i i i

i i i i

i i i i

i i i i

T Th
d F F F F

h h

F F F F

F F F F

M M y y

h h

 
    



       

        

   




 

 

 


     



   

   

 
  


 

(4.26) 

Substituting the values of Eq. (4.26) into Eq. (4.25), we obtain: 

6 64
3 31

16 3 3

3 3 3

1 1

1 1

6 6 6 6

1 1

5 5 6 6

3
120 120 sin 3 cos cot

48

cot 3 csc 3 cot 36 sin

36 cot 36 cot cot 84 csc 84 cot

36 84 120 120

i i
i i i i i

i i i i

i i i i

i i i i

T Th
f F F F F

h h

F F F F

F F F F

M M y y

h h h h

 
    



       

        

   




 

 

 


     



   

   


    


  

(4.27)
 

Substituting the values of Eq. (4.26) into Eq. (4.24), we obtain: 

          

6 6
3 31

16 3 3

3 3 3

1 1

1 1

6 6 6 6

1 1

5 5 6

5 5
120 120 5 sin 5 cos cot

120

5 cot 5 csc 5 cot 60 sin

60 cot 60 cot cot 60 csc 60 cot

60 60 120 120

i i
i i i i i

i i i i

i i i i

i i i i

T Th
c F F F F

h h

F F F F

F F F F

M M y y

h h h h

 
    



       

        

   




 

 

 


     



   

   

   
6





  

(4.28)
 

Using the continuity condition of the fifth derivatives, that is (5) (5)

1( ) ( )i iS x S x  , we have: 

    

5 5 5

1 1

5

1 1 1

sin ( )) cos( ( )) 120 sin ( ))

cos( ( )) 120

i i i i i i i i i i

i i i i

k a k x x k b k x x c k a k x x

k b k x x c

 

  

       

  
  

5 5 5

1 1 1120 sin cos 120i i i i ik b c a k b k c        
     

(4.29)
 

since, 
 

1 andi ih x x kh   .
  

 

Reducing the indices of Eqs. (4.19), (4.20) and (4.28), substituting into Eq. (4.29), and simplifying, 

we obtain:  
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6 3

1 1 1 1 1 1 1 1 1

1 1

5 60 60

120 240

i i i i i i i

i i i

h F F F h T T h M M

y y y

       

 

     

      
(4.30)

 

where,  

 

 

5 3 3

1 6

3 4 2

1 6

1
csc 5 cot 5 csc 60 cot 60 csc 120 ,

1
10 csc 120csc (2 10 120) cot 240

          


       


      

     
 

Using the continuity condition of the fourth derivatives, that is (4) (4)

1( ) ( )i iS x S x  , we have:  

4 4 4

1 1 1 124 cos sin 120 24i i i i i ik a d a k b k hc d        
    

(4.31) 

Reducing the indices of Eqs. (4.19), (4.20), (4.24) and (4.26), substituting into Eq. (4.31), and 

simplifying, we obtain:  

   

     

 

6 3

2 1 2 1 1 1 1 1

1 1

3 14 3 60 120 60

120

i i i i i i i i

i i

h F F h T T T h M M M

y y

      

 

       

   
(4.32) 

where,   

 3 3

2 6

1
3 cot 7 csc 60 cot 60 csc 120        


     

 

Again, from the continuity condition of the second derivatives, that is 1( ) ( )i iS x S x 
  , we have:  

2 2 2 3 2

1 1 1 1 1 12 cos sin 20 12 6 2i i i i i i i ik a f a k b k h c h d e h f              
  

(4.33) 

Reducing the indices of Eqs. (4.19), (4.20), (4.24), (4.26), (4.23) and (4.27), substituting into Eq. 

(4.33), and simplifying, we obtain:  

 

     

 

6 3

3 1 3 1 1 1 1 1

1 1

6 36 168 36

120

i i i i i i i i

i i

h F F h T T T h M M M

y y

      

 

        

    
(4.34) 

where,   

 3 3

3 6

1
cot 3 csc 36 cot 84 csc 120        
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In order to eliminate 'iF s  and 'iM s  from  Eqs. 4.30 ,    4.32 ,  and 4.34 , let‟s  replace i  by 

2, 1, 1 and 2i i i i    , in Eq. (4.30), and obtain:  

 

3 6

1 1 1 1 1 1 1 1 1

1 1

60 60 (5 5 ) ( )

120 240 120 0

i i i i i i i

i i i

hM hM h T T h F F F

y y y

       

 

      

   
    (4.35) 

       

3 6

2 2 1 2 1 1 1

2 1

60 60 (5 5 ) ( )

120 240 120 0

i i i i i i i

i i i

hM hM h T T h F F F

y y y

     

 

      

   
           (4.36) 

        

3 6

3 1 3 1 1 3 1 2 1 1

3 2 1

60 60 (5 5 ) ( )

120 240 120 0

i i i i i i i

i i i

hM hM h T T h F F F

y y y

        

  

      

   
            (4.37) 

      

3 6

2 2 1 1 1 1 2

1 2

60 60 (5 5 ) ( )

120 240 120 0

i i i i i i i

i i i

hM hM h T T h F F F

y y y

     

 

      

   
   (4.38) 

3 6

1 3 1 3 1 1 1 2 1 3

1 2 3

60 60 (5 5 ) ( )

120 240 120 0

i i i i i i i

i i i

hM hM h T T h F F F

y y y

        

  

      

   
   

 (4.39) 

Replacing i  by 2, 1, 1 and 2i i i i    , in Eq. (4.32), we obtain:  

3 6

1 1 1 1 2 1 2 1

1 1

60 120 60 (3 14 3 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

      

 

       

  
  (4.40) 

3 6

2 1 2 1 2 2 2

2

60 120 60 (3 14 3 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

     



       

  
  (4.41) 

3 6

3 2 1 3 2 1 2 3 2 1

3 1

60 120 60 (3 14 3 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

        

 

       

  
 (4.42) 

3 6

1 2 1 2 2 2 2

2

60 120 60 (3 14 3 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

     



       

  
  (4.43)

3 6

1 2 3 1 2 3 2 1 2 3

1 3

60 120 60 (3 14 3 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

        

 

       

  
 

 (4.44) 
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Replacing i  by 2, 1, 1 and 2i i i i    , in Eq. (4.34), and obtain:  

3 6

1 1 1 1 3 1 3 1

1 1

36 168 36 ( 6 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

      

 

       

  
       (4.45) 

 

3 6

2 1 2 1 3 2 3

2

36 168 36 ( 6 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

     



       

  
       (4.46) 

 

3 6

3 2 1 3 2 1 3 3 3 1

3 1

36 168 36 ( 6 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

        

 

       

  
 

(4.47)

 

3 6

1 2 1 2 3 3 2

2

36 168 36 ( 6 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

     



       

  
  

(4.48) 

3 6

1 2 3 1 2 3 3 1 3 3

1 3

36 168 36 ( 6 ) ( )

120 120 0

i i i i i i i i

i i

hM hM hM h T T T h F F

y y

        

 

       

  
  

(4.49) 

Simultaneous solution of    Eqs. 4.35 4.39 , with the help of symbolic toolbox by Matlab 2013a, 

eliminates ' and 'i iF s M s
 
terms gives the following  important  relations in terms of iy  and third 

order derivative iT , as: 

 

1 3 3 2 2 2 3 1 1 4

3

1 3 3 2 2 2 3 1 1 4

( ) ( ) ( )

2
( ) ( ) ( )

3

i i i i i i i

i i i i i i i

y y y y y y y

h T T T T T T T

   

   

     

     

     

      
    

(4.50) 

where,  

1 1 2 1 2 2 1 3 1 3 3 1 4 1 4 4 1 5 1 5

1 9 1 9 1 2 10 1 10 1 3 1 11 1 11 4 1 12 1 12

, , , ,

, , , ,

X Z Z X X Z Z X X Z Z X X Z Z X

X Z Z X X Z Z X X Z Z X X Z Z X

   

   

       

       
 

' and 'i iX s Z s  for 1(1)12i   are described in Appendix.  

Now, evaluating Eq. (1.1) at the nodal points ix , and using the relation in Eq. (4.2), we get: 

 i i i iT u y f             (4.51) 

where, 
(3) ( ) , ( ), ( ) and ( )i i i i i i i iT y x y y x u u x f f x    , for 0,1,2,...,i N . 

Substituting the values of Eq. (4.51) in to Eq. (4.50) and simplifying, we get: 
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3 3 3

1 1 3 3 2 2 2 2 3 3 1 1

3 3 3

4 4 3 3 1 1 2 2 2 2

3 3

1 1 3 3 1 3 3

2 2 2 3 1 1 4

(3 2 ) (3 2 ) ( 3 2 )

(3 2 ) (3 2 ) ( 3 2 )

( 3 2 ) 2 ( )

( ) ( ) , for

i i i i i i

i i i i i i

i i i i

i i i i i

u h y u h y u h y

u h y u h y u h y

u h y h f f

f f f f f

     

     

  

  

     

   

   

   

     

      

     

     3(1) 3.i N    

(4.52) 

when 0,k  that is 0,  since kh  , then 

  1 2 3 1

25 11 13 59
, , , , , ,

168 168 840 84
   

    
  

   
and  

 1 2 3 4 1 2 3 4

1 120 1191 2416
, , , , , , , 1,8,19,0, , , ,

140 140 140 140
       

 
  

 
,  

and the relation in Eq. (4.50)  reduces into septic polynomial spline (Akram and Siddiqi, 2005). The 

relation in Eq. (4.52) gives 5N   equations in 1N    unknowns , 1(1) 1jy j N  . We require four 

more equations, two at each end of the nodal points.  

4.2. Development of the Boundary Equations 

For the discretization of the boundary conditions, we define: 

i. 

4 5
* * 2 3 * (3)

0 1

0 0

0, for 1
jj j j k

j j

e y f h y h g y t i
 

       

ii. 

5 6
* * 2 3 * (3)

2 0 2

1 1

0, for 2
jj j k

j j

h y f h y h m y t i
 

     
    

(4.53)

 

 

iii. 
* 3 * (3)

2

5 6

0, for 2
j

N N

j j k N

j N j N

c y h d y t i N

   

       

iv. 
* 3 * (3)

1

4 5

0, for 1
j

N N

j j k N

j N j N

a y h b y t i N

   

       

where 
* * * * * * * * * *

1 2, , , , , , , , andj j j j j j j je g f f h m c d a b
 
are arbitrary parameters to be determined by employing 

Taylor series expansion.  

 From Eq. (4.53), we have:  

 

* * * * * * 2

0 0 1 1 2 2 3 3 4 4 1 0

3 * * * * * *

0 0 1 1 2 2 3 3 4 4 5 5 0, for 1

e y e y e y e y e y f h y

h g y g y g y g y g y g y i

     

           
    (4.54) 

Expanding each terms of Eq. (4.54) about 0x , we obtain: 



 

18 

 

0

3 (3)2 4 (4) 5 (5) 6 (6) 7 (7)
* * 80 0 0 0 0
1 1 1 0 0 ( )

2 6 24 120 720 5040

h yh y h y h y h y h y
e y e y hy o h

 
         

 
 

 

0

3 (3)2 4 (4) 5 (5) 6 (6)
* * 0 0 0 0
2 2 2 0 0

7 (7)
80

84 16 32 64
2

2 6 24 120 720

128
( )

5040

h yh y h y h y h y
e y e y hy

h y
o h

 
      




  



 

0

3 (3)2 4 (4) 5 (5)
* * 0 0 0
3 3 3 0 0

6 (6) 7 (7)
80 0

279 81 243
3

2 6 24 120

729 2187
( )

720 5040

h yh y h y h y
e y e y hy

h y h y
o h

 
     




   



 

0

3 (3)2 4 (4) 5 (5) 6 (6)
* * 0 0 0 0
4 4 4 0 0

7 (7)
80

6416 256 1024 4096
4

2 6 24 120 720

16384
( )

5040

h yh y h y h y h y
e y e y hy

h y
o h

 
      




  

  

0

0

3 (6)2 (5) 4 (7)
* (3) * (3) (4) 80 0
1 1 1 0 0

3 (6)2 (5) 4 (7)
* (3) * (3) (4) 80 0
2 2 2 0 0

( )
2 6 24

84 16
2 ( )

2 6 24

h yh y h y
g y g y hy o h

h yh y h y
g y g y hy o h

 
      

 
 

 
      

 
 

 

0

0

3 (6)2 (5) 4 (7)
* (3) * (3) (4) 80 0
3 3 3 0 0

3 (6)2 (5) 4 (7)
* (3) * (3) (4) 80 0
4 4 4 0 0

279 81
3 ( )

2 6 24

6416 256
4 ( )

2 6 24

h yh y h y
g y g y hy o h

h yh y h y
g y g y hy o h

 
      

 
 

 
      

 
 

 

0

3 (6)2 (5) 4 (7)
* (3) * (3) (4) 80 0
5 5 5 0 0

12525 625
5 ( )

2 6 24

h yh y h y
g y g y hy o h

 
      

 
 

 

Substituting these values in Eq. (4.54) and collecting coefficients of the same order, we obtain: 
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* * * *
* * * * * * * * * * 21 2 3 4
0 1 2 3 4 0 1 2 3 4 0 1 0

* * * *
* * * * * * 3 (3)1 2 3 4
0 1 2 3 4 5 0

* * * *
* * * * *1 2 3 4
1 2 3 4 5

4 9 16
( ) ( 2 3 4 )

2

8 27 64

6

16 81 256
2 3 4 5

24

e e e e
e e e e e y e e e e hy f h y

e e e e
g g g g g g h y

e e e e
g g g g g h

   
           

 

   
       
 

   
      
 

4 (4)

0

* * * * * * * * *
5 (5)1 2 3 4 1 2 3 4 5

0

* * * * * * * * *
6 (6)1 2 3 4 1 2 3 4 5

0

32 243 1024 4 9 16 25

120 2

64 729 4096 8 27 64 125

720 6

y

e e e e g g g g g
h y

e e e e g g g g g
h y

       
  
 

       
  
 

 

* * * * * * * * *
7 (7)1 2 3 4 1 2 3 4 5

0

* * * * * * * * *
8 (8) 91 2 3 4 1 2 3 4 5

0

128 2187 16384 16 81 256 625

5040 24

256 6561 65536 32 243 1024 3125
( )

40320 120

e e e e g g g g g
h y

e e e e g g g g g
h y o h

       
  
 

       
   
 

 

Equating each coefficients of orders with zero, we obtain the parameters:  

 * * * * * * * * * * * *

0 1 2 3 4 1 0 1 2 3 4 5, , , , , , , , , , ,

22 344 20 184 2 120 124 332
, , , , , , , ,0,0,0,0 , for 1

3 33 11 33 3 11 33 33

e e e e e f g g g g g g

i
  

  
 

 

By similar fashion, we obtain the values of the parameters at 2, 2 and 1.i i N N     

 * * * * * * * * * * * *

1 2 3 4 5 2 1 2 3 4 5 6, , , , , , , , , , ,

811 2377 2445 1003 45 949 1243
, , , , 1, , , ,0,0,0,0 , for 2

124 124 124 124 31 248 248

h h h h h f m m m m m m

i
    

  
 

   

 * * * * * * * * * * * * *

5 4 3 2 1 6 5 4 3 2 1, , , , , , , , , , , ,

1 8 29 49 38 15 1
, , , , ,1,0,0,0,0,0, , , for 2

11 11 11 11 11 11 22

N N N N N N N N N N N N Nc c c c c c d d d d d d d

i N

          

    
   
 

  

and 

 * * * * * * * * * * *

4 3 2 1 5 4 3 2 1, , , , , , , , , ,

1 1
0, 1, 3, 3, 1,0,0,0, , ,0 , for 1

2 2

N N N N N N N N N N Na a a a a b b b b b b

i N
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Hence, by rearranging the coefficients of the end conditions and using Eq. (1.1), we obtain: 

      
 

* * 3 * * 3 * * 3 * * 3

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

3 * * * * * * * * 3 *

0 0 1 1 2 2 3 3 4 4 5 5 0 0 0 1 1

( ) ( ) ( ) ( )

( ) , for 1

e g u h y e g u h y e g u h y e g u h y

h g f g f g f g f g f g f e g u h f i

   

   

      

         
       (4.55) 

     
 

* * 3 * * 3 * * 3 * * 3 *

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5

* 3 * 3 3 * * * * * * * 2

5 5 5 6 6 6 1 1 2 2 3 3 4 4 5 5 6 6 2

( ) ( ) ( ) ( ) (

) , for 2

h m u h y h m u h y h m u h y h m u h y h

m u h y m u h y h m f m f m f m f m f m f f h i

    

 

       

         
(4.56)

 

      



* 3 * * 3 * * 3

6 6 6 5 5 5 5 4 4 4 4

* * 3 * * 3 * * 3

3 3 3 3 2 2 2 2 1 1 1 1

3 * * * * * *

6 6 5 5 4 4 3 3 2 2 1

( ) ( ) ( )

( ) ( ) ( )

N N N N N N N N N N N

N N N N N N N N N N N N

N N N N N N N N N N N

d u h y c d u h y c d u h y

c d u h y c d u h y c d u h y

h d f d f d f d f d f d

 

  

          

           

          

   

     

      *

1

* * 3( ) , for 2

N N N

N N N N

f d f

c d u h y i N

 

        

(4.57) 

       

  



* 3 * * 3 * * 3

5 5 5 4 4 4 4 3 3 3 3

* * 3 * * 3 3 * *

2 2 2 2 1 1 1 1 5 5 4 4

* * * * * * 3

3 3 2 2 1 1 2

( ) ( )

( )

( ) , for 1

N N N N N N N N N N N

N N N N N N N N N N N N

N N N N N N N N N N N

b u h y a b u h y a b u h y

a b u h y a b u h y h b f b f

b f b f b f b f a b u h i N

 

 

 

          

           

     

  

     

          

(4.58) 

By expanding Eq. (4.50) in Taylor‟s series about 0x , we obtain the following local truncation error 

it  as: 

* * * 3 (3) * 5 (5) * 7 (7) 8

0 1 3 5 7 ( )i i i i i it w y w hy w h y w h y w h y o h     
    

(4.59) 

where,  

      

*

0 4

*

1 1 2 3

*

3 1 2 3 1 2 3 4

*

5 1 2 3 1 2 3

*

7 1 2 3 1 2 3

3

18 12 6

162 48 6 24 24 24 12

1458 192 6 2160 960 240

13122 768 6 68040 13440 840

w

w

w

w

w



  

      

     

     



  

      

     

          

(4.60) 

and 1 2 3, 4 1 2 3 4, , , , , and         are arbitrary parameter‟s.  

By using  Eq. (4.54)  and  eliminating the coefficients of the powers of h  for different choices of 

the parameters we obtain class of methods.  In order to obtain the boundary equations of fourth 

order method the coefficients of 
0 3 5, , andh h h h equal to zero. * * * *

0 1 3 5( . ., 0 ).i e w w w w     
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So, for  1 2 3 4 1 2 3 4

1 1 632 604
, , , , , , , 1, 8, 19, 0, , , ,

120 3 89 35
       

 
  
 

 the truncation error in Eq. 

(4.59) is reduced to: 

7 7 82365
( )

994
it h y O h  . 

Hence, Eqs. (4.52) and (4.55) – (4.58) gives hepta-diagonal system for 1,2, , 1i N   and can 

easily be solved using Gauss-Elimination method.   

4.3. Convergence Analysis 

We investigate the convergence analysis for the developed method. The non-polynomial spline 

solution of Eq. (1.1) with the boundary conditions of Eq. (1.2) is based on the linear system of  

Eqs. (4.52) and (4.55) – (4.58). For this, let , ( ),i iY y Y y x   ,iT t  and ,iE e Y Y   for 

1,2,..., 1i N   be column vectors, where , , ,Y Y T E are approximate solution, exact solution, 

local truncation error and discretization error respectively.  These equations can be written in the 

following matrix-vector form:  

 3 3A h B Y h DF C                                                    (4.61) 

* * * *

1 2 3 4

* * * * *

1 2 3 4 5

2 3 4 3 2 1

1 2 3 4 3 2 1

1 2 3 4 3 2

* * * * *

5 4 3 2 1

* * * *

4 3 2 1

3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3

N N N N N

N N N N

e e e e

h h h h h

A

c c c c c

a a a a
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* * * *

1 1 2 2 3 3 4 4

* * * * *

1 1 2 2 3 3 4 4 5 5

2 1 3 2 4 3 3 4 2 5 1 6

1 1 2 2 3 3 4 4 3 5 2 6 1 7

1 6 2 5 3 4 4 3 3 2 2 1

* *

5 5 4 4 3

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2N N N N N N

N N N N N

g u g u g u g u

m u m u m u m u m u

u u u u u u

u u u u u u u

B

u u u u u u

d u d u d

     

      

          

    

     

      



     
* * *

3 2 2 1 1

* * * *

4 4 3 3 2 2 1 1

N N N N N

N N N N N N N N

u d u d u

b u b u b u b u

    

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

* * * *

1 2 3 4

* * * * *

1 2 3 4 5

2 3 4 3 2 1

1 2 3 4 3 2 1

1 2 3 4 3 2

* * * * *

5 4 3 2 1

* * * *

4 3 2 1

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

N N N N N

N N N N

g g g g

m m m m m

D

d d d d d

b b b b

     

      

     

    

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

1 2 1[ , , ..., ]T

NC c c c 
  

where, 
 

 

 

* * * 3 * 3

1 1 0 0 0 1 0 0

* 2

2 2

3 3

3 1 0 1 1 0 1

3 3

3 1 1 1

* * 3 3 *

2 2

* * 3 3 *

1 2

( )

2 (3 2 )

0, for 4(1) 4

(3 2 ) 2

i

N N N N

N N N N N N

N N N N N N

c f e g u h g f h

c f h

c h f u h

c i N

c u h y h f

c c d u h h d f

c a b u h h b f

   



   

  

 

 







    

 

   

  

   

  

   

 

1 2 1 1 2 1[ , ,... ] and [ , ,..., ]T T

N NY y y y F f f f  
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Now considering the above system with the exact solution 1 2 1[ ( ), ( ),..., ( )]T

NY y x y x y x  , we  have:      

  3 3 ( )A h B Y h DF T h C           (4.62) 

   

where, 1 2 1( ) [ ( ), ( ), ..., ( )]T

NT h t h t h t h defined as:  

   

7 7

1 1 0 1 1

7 7

2 2 1 2 2

7 7

1 1

7 7

2 2 2 1

7

1

71
( ) , , for 1

330

306
( ) , , for 2

667

2365
( ) , , for 3(1) 3

994

277
( ) , , for 2

2640

57

80

i i i i i

N N i N i

N

t h y x x i

t h y x x i

t h y x x i N

t h y x x i N

t h

  

  

  

  



 

   



 
    

 

 
    

 

 
     

 

 
     

 

 
 

 

7

1 1 1( ) , , for 1N i N iy x x i N      
 

Subtracting  Eq. (4.61) from Eq. (4.62), we obtain the error equation,  

3

0( )( ) ( ) ( )A Bh Y Y T h A E T h           (4.63) 

where, 
3

0A A h B 
   and  1 2 1( , ,..., ) .T

NE Y Y e e e     

To determine the error bounds the row sums 1 2 1, ,..., Ns s s  of the matrix 0A
 are calculated as 

follows: 

 

1
* * * * * * * * 3

1 1 1 2 3 4 1 1 2 2 3 3 4 4

1

1
* * * * * * * * * * 3

2 2 1 2 3 4 5 1 1 2 2 3 3 4 4 5 5

1

1
3

3 1 4 3 3 2 4 2 1 5 1 6

1

( ) ( ) , for 1

( ) ( ) , for 2

3 2 ( ) ( ) , for

n

j

j

n

j

j

n

ij

j

s a e e e e g u g u g u g u h i

s a h h h h h m u m u m u m u m u h i

s a u u u u u u h i





    













         

           

       







 
1

3

1 3 3 2 2 2 3 1 1 4

1

3

2 ( ) ( ) ( ) , for 4(1) 4
n

i ij i i i i i i i

j

s a h u u u u u u u i N   


     





          
 

 
1

3

3 1 4 3 3 4 2 2 5 1 1 6

1

3 2 ( ) ( ) , for 3
N

N ij N N N N N N

j

s a u u u u u u h i N    
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1
* * * * *

2 2 5 4 3 2 1

1

* * * * * 3

5 5 4 4 3 3 2 2 1 1

1
* * * *

1 1 4 3 2 1

1

* * * *

4 4 3 3 2 2 1 1

( )

( ) , for 2

( )

( )

N

N n j N N N N N

j

N N N N N N N N N N

N

N n j N N N N

j

N N N N N N N N

s a c c c c c

d u d u d u d u d u h i N

s a a a a a

b u b u b u b u h







      



         



     



       

     

      

    

   





3, for 1i N 
 

Since 0 1  , we choose h  sufficiently small so that the matrix 0A  is irreducible and 

monotone, according to Mohanty and Jha, (2005). Then, it follows that 
1

0A
 exists and its elements 

are non-negative.  

Hence, from Eq. (4.63), we have: 

 
1

0E A T
   

1

0 . ( )E A T h        (4.64) 

Let ,i ja  is the ( , )thi j  element of the matrix 
1

0A
, we define:    

1

, ,

1

max
N

i j i j

j

a a




     and    
1 1
max i

i N
T t

  
        (4.65) 

Also, from the theory of matrices, we have   
1

,

1

1, 1,2,..., 1
N

i j j

j

a s i N




  
       

 

That is, 

        1,1 11 12 13 1, 1 1,2 21 22 2, 1 1, 1 1,1 1,2 1, 1( ,..., ) ( ,..., ) ,..., ( ,..., )N N N N N N Na a a a a a a a a a a a a                
 

1,1 1 1,2 2 1, 1 1( ) ( ) ,... , ( ) 1N Na s a s a s      .     (4.66)
 

Defining 
*

1 1
min 0k i
i N

s s
  

  , then from Eq. (4.66), we have  * 1,1 1,2 1, 1,... , 1k Ns a a a     . 

It follows that:      
1

, 3
1 * *

1 1
,

N

i j

j k k

a
s h M





 
       

(4.67)

 

  

where,  * 1 3 3 2 2 2 3 1 1 42 ( ) ( ) ( )k k k k k k k kM u u u u u u u               . 

And also Eq. (4.64) can be written as: 

               
1

,

1

( ) 1,2,..., 1
N

j i j j

j

e a T h i N
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1

,

1

( )
N

i i j

i

e a T h




   .       

From Eqs. (4.65) and (4.67), we get:  

    
3

1 1
*

1
maxi i

i N
k

e T
h M  



 

* 7 *
4 4

3

* *

2365 2365

994 994
i

k k

N h N
e h h

h M M




  
     

   
,  since 0 1 

 

where, 
1 1

* 7max ( )
i i i

i
x x

N y



  


 

and 
*

*

2365

994 k

N

M
 

 

which is independent of h. It follows that 

4( )E O h  and hence the present method is of fourth order convergence.  

4.4. Numerical Examples and Results  

In order to test the validity of the proposed method and to demonstrate their convergence 

computationally, we have taken two model examples of singularly perturbed boundary value 

problems with exact solutions. The maximum absolute errors at the nodal points, 
1 1
max | ( ) |i i

i N
y x y

  


are tabulated in Tables (4.1) - (4.4). The model examples have been solved by taking different 

values of mesh size, and perturbation parameters. Computed solutions are compared with the exact 

solutions at nodal points and compared with the methods in (Mustafa and Ejaz, 2017; Akram and 

Talib, 2014 and Akram, 2012). 

Remark: All numerical results of Examples 4.1 and 4.2 are obtained for different values of     

1 2 3 41, 8, 19, 0,        1 2 3 4

1 1 632 604
, , and

120 3 89 35
       . Because, these 

values satisfies Eq. (4.60) and they are near to the values of polynomial septic spline but gives an 

accurate solution.   

Example 4.1: Consider the third order singularly perturbed boundary value problem: 

 3 5 2 5 4 2 3 3 2( ) ( ) 6 (1 ) 6 6(1 ) 90 (1 ) 180 (1 ) 60 (1 )y x y x x x x x x x x x x               

subject to,  (0) 0, (1) 0, (0) 0.y y y    

The analytical solution of this problem is 
3 5( ) 6 (1 ) .y x x x   
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Table 4.1: Maximum absolute errors for Example 4.1 with different values of   and  . 

   10N   20N   40N   

Present Method 

1
16

 2.8930e-04 5.3006e-06 2.6033e-08 

1
32

 1.0962e-04 1.9394e-06 1.3221e-08 

1
64

 3.8007e-05 6.8026e-07 6.2298e-09 

Mustafa and Ejaz, (2017) 

1
16

 6.2854e-03 - - 

1
32

 1.9707e-03 - - 

1
64

 3.9065e-04 - - 

Akram, (2012) 

1
16

 1.3e-02 1.1e-03 7.8e-05 

1
32

 3.2e-03 2.7e-04 1.8e-05 

1
64

 3.4e-04 2.2e-05 1.1e-06 

Table 4.2: Maximum absolute errors for Example 4.1 when    . 

   10N   50N   100N   150N   200N   

Present Method 

110
 5.3363e-04 5.9813e-08 9.1841e-09 2.1617e-09 7.3808e-10 

210
 1.8773e-05 2.2337e-09 2.5972e-10 6.0042e-11 2.0403e-11 

310
 1.5441e-06 5.5630e-11 3.8697e-12 8.5417e-13 2.8902e-13 

410
 1.8248e-08 3.2291e-12 5.6471e-14 1.0585e-14 3.3903e-15 

510
 1.1853e-10 3.3754e-13 3.6503e-15 2.7729e-16 4.4615e-17 

610
 1.1362e-12 4.5181e-15 2.9874e-16 1.8873e-17 3.6840e-18 

710
 1.1314e-14 2.5989e-17 2.5748e-18 2.4307e-18 2.7110e-19 

810
 1.1309e-16 2.4638e-19 1.6575e-20 3.7102e-21 1.4808e-21 

910
 1.1309e-18 2.4508e-21 1.5883e-22 3.2062e-23 1.0424e-23 

1010
 1.1309e-20 2.4495e-23 1.5815e-24 3.1605e-25 1.0074e-25 

1110
 1.1309e-22 2.4490e-25 1.5805e-26 3.1550e-27 1.0035e-27 

1210
 1.1307e-24 2.4469e-27 1.5764e-28 3.1729e-29 3.6037e-29 
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Mustafa and Ejaz, (2017) 

110
 1.6190e-02 7.3371e-04 6.4463e-04 6.3671e-04 6.3496e-04 

210
 5.4777e-04 3.5302e-05 3.2708e-05 3.3005e-05 3.3331e-05 

310
 4.3814e-05 2.4150e-06 1.3966e-06 1.1544e-06 1.2348e-06 

410
 7.5623e-06 2.4329e-07 1.1223e-07 7.6323e-08 6.1521e-08 

Example 4.2: Consider the third order singularly perturbed boundary value problem: 

2( ) ( ) 81 cos(3 ) 3 sin(3 ), [0,1]y x y x x x x       , 

subject to,  (0) 0, (1) 3 sin(3), (0) 0.y y y     

The analytical solution of this problem is ( ) 3 sin(3 ).y x x  

Table 4.3: Maximum absolute errors for Example 4.2 with different values of        . 
   10N   20N   40N   

Present Method 

 
  ⁄  9.4405e-06 5.4886e-07 2.5658e-08 

 
  ⁄  3.1645e-06 1.9215e-07 9.1282e-09 

 
  ⁄  9.9920e-07 6.1969e-08 2.9364e-09 

Akram and Talib, (2014) 

 
  ⁄  1.02e-02 1.40e-03

  

 1.73e-04
  

 

 
  ⁄  3.80e-03 4.84e-04

  

 6.15e-05
  

 

 
  ⁄  1.40e-03

 

 1.00e-04 2.00e-05
  

 

Akram, (2012) 

 
  ⁄  2.5e-03 1.9e-04 1.4e-05 

 
  ⁄  6.8e-04 5.7e-05 5.0e-06 

 
  ⁄  1.2e-04 1.3e-05 1.6e-06

 

 

 

Table 4.4: Maximum absolute errors for Example 4.2 when    . 

   10N   50N   100N   150N   200N   

Present Method 

310
 4.5809e-08 8.2990e-12 4.1392e-13 7.3211e-14 2.6225e-14 

410
 9.3573e-10 4.6893e-14 5.1063e-15 9.5009e-16 3.4922e-16 

510
 6.1195e-12 1.5171e-14 9.3190e-17 6.0495e-18 7.5145e-18 
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610
 5.8655e-14 2.0745e-16 1.3348e-17 8.2310e-19 1.5064e-19 

710
 5.8409e-16 1.1931e-18 1.1543e-19 1.0764e-19 1.1465e-20 

810
 5.8386e-18 1.1336e-20 7.5708e-22 1.7702e-22 7.8479e-23 

910
 5.8398e-20 1.1575e-22 8.7888e-24 3.3087e-24 3.3087e-24 

1010
 5.8564e-22 1.5574e-24 4.1359e-25 3.6189e-25 1.6529e-25 

1110
 6.0132e-24 4.8872e-26 2.9081e-26 3.8774e-26 3.8774e-26 

1210
 7.2701e-26 3.2817e-27 3.2312e-27 2.8273e-27 2.8273e-27 

Mustafa and Ejaz, (2017) 

310
 2.5276e-03 1.7508e-04 7.0100e-05   3.6747e-05 2.0355e-05 

410
 1.9938e-03 2.5243e-05 1.1440e-05 7.3469e-06 5.3722e-06 

510
 … 2.0415e-05 1.3333e-06 8.3294e-07 6.0941e-07 

The following Figures (4.1) and (4.2) shows the comparison numerical solution and exact solution 

and Figures (4.3) - (4.5) shows the absolute errors for different values of mesh size h and 

perturbation parameter .  

 

    Figure 4.1: Numerical solution versus exact solution of Example 4.1 for      and        . 
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    Figure 4.2: Numerical solution versus exact solution of Example 4.2 for      and          

 

Figure 4.3: Absolute errors of Example 4.1 for different values of               . 
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Figure 4.4: Absolute errors of Example 4.2 for different values of               . 

 

Figure 4.5: Absolute errors of Example 4.1 for different values of         . 
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 = 1/16, h = 0.0625

 = 1/32, h = 0.05

 = 1/64, h = 0.0333
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4.5. Discussion 

In this thesis, the non-polynomial septic spline method has been presented for solving third order 

type singularly perturbed boundary value problems. First, the given system is discretized. Then, the 

spline coefficients are derived and the consistency relation is obtained by using continuity of 

second, fourth and fifth derivatives. Further, we reduce the obtained fifteen different systems of 

equations to a system of equations and develop boundary equation in order to equate the equal 

system of linear equations. The convergence analysis of the obtained hepta-diagonal scheme is 

investigated.  

To validate the applicability of the proposed method two model examples have been considered for 

different values perturbation parameter and different mesh sizes. The numerical results are 

presented in Tables and figures. The result obtained by the present method has been compared with 

the numerical results developed by Mustafa and Ejaz, (2017), Akram and Talib, (2014) and Akram, 

(2012), and it is observed that the present method gives better result. Further, the proposed method 

approximate the exact solution very well when h  , for which most of the existing methods fail 

to give good result. Moreover, the maximum absolute error decreases rapidly as N  increases.  
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Chapter Five 

Conclusion and Future Work 

5.1. Conclusion 

The septic non-polynomial spline method is developed for the approximate solution of a third order 

type singularly perturbed boundary value problems. The convergence analysis is investigated and 

shows that the present method is of fourth order convergent. Two examples are considered for 

numerical illustration of the method. As a result, from Tables (4.1) – (4.4) and Figures (4.3)- (4.5), 

one can see that the maximum absolute error decreases as a mesh size h and also perturbation 

parameter decreases, which in turn shows the convergence of the computed solution. Furthermore, 

the result of the present method is compared with current findings and shows that it is more 

accurate than some existing numerical methods reported in the literature. Figures (4.1) and (4.2), 

shows that the present method approximates the exact solution very well.  

Moreover, the study has been analyzed by taking large number of mesh size and sufficiently small 

parameter  , good accuracy result is obtained.  So, this study developed a better method for solving 

singularly perturbed boundary value problems for most numerical schemes fail to give good result 

at small mesh size h  and for sufficiently small perturbation parameter h  . 

Generally, the present method is convergent and more accurate for solving third order type 

singularly perturbed boundary value problems. 

5.2. Scope for Future Work 

In this thesis, the numerical method based on septic non-polynomial scheme has presented for 

solving third order type singularly perturbed boundary value problems. Hence, the scheme proposed 

in this thesis can also be extended to sixth and higher order non-polynomial septic spline method 

for third order type singularly perturbed boundary value problems.  
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Appendix (Relation for reducing fifteen equations to one equation) 
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