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Abstract

The Schwarzschild solution is unique and its metric can be interpreted as the exterior

gravitational field of a spherically symmetric mass. Most of the experimental tests

of general relativity were based on the Schwarzschild geometry in the region r >

2GM
c2

. Some are based on the trajectories of massive particles and others on photons

trajectories.In this thesis we did study this issue theoretically. In our derivations,we

considered the Einstein’s field equations and equations of motion for massive particle

and photons where we did derive the relevant dynamical equations and observable

parameters. Then, we did generate numerical solutions of effective potentials using

MATHEMATICA. As a result ,Schwarzschild solution possesses stable circular orbits

for r > 6GM
c2

and unstable circular orbits for 3GM
c2

< r < 6GM
c2

.

Key words: Stellar black hole,Accretion on to black hole and General Relativity.
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Chapter 1

General Introduction

1.1 Thesis Scheme

In this introductory chapter we discussed about the historical development of black

holes(stellar black holes). We give also the relevant literature review. In chapter

two,we briefly discuss about general relativity and Einstein’s field equation. We begin

this chapter by deriving Einstein’s field equations and also we derive the Schwarzschild

solution to general relativity. In chapter three we review on black holes and their

historical developments. In chapter four we discuss our work. Finally, in chapter five

we discuss the results with graphs and summarize our work in the last chapter.

1.2 Background

The term black hole was introduced by American physicist J.A. Wheeler because of

everything, including the light, that went into that astronomical zone was unable to

get out and consequently it appeared black. In the 18th century Laplace and Michell

hypothesized for the first time the existence of a celestial body provided with a great-

est mass that was able to cause an escape velocity greater than the speed of light for

which neither light was able to resist the strongest gravitational force generated by
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the celestial body. On this account the concept of black hole was abandoned. Some

month after the publication of General Relativity by Einstein (1916) the black hole

was again contemplated because gravitation in General Relativity was considered as

a geometric variation of the space and not a force. In 1919 Eddington on the occa-

sion of a total solar eclipse measured the deflection of light coming from a remote

star when light passed near the sun. He deduced that in place of the sun a greatest

celestial mass should have produced a so great deflection of light that this once gone

into the even horizon was unable to get out any longer. In the same years also Karl

Schwarzschild calculated that the black hole should have possessed a greatest mass

because the calculus implied a smallest radius of the celestial body R = 2GM
c2

and

consequently in order to have an acceptable value of radius a very great mass was

necessary. Lastly a few published papers have denied the existence of black holes.

In the gravitational theory the black hole looks like an astronomical monster that

devours all what passes in the proximity of its even horizon, the relativistic theory

intends also to propose a more explanation of the black hole[1].Also Einstein’s general

theory of relativity predicts the existence of these black holes as astrophysical objects

so dense that even light cannot escape from them. The boundary around the black

hole, where the light cannot escape, is called the event horizon [2].

Black holes have captured the imagination of scientists, as well as the general public.

In addition to their intrinsic appeal, black holes potentially impact on a number of

fundamental problems in physics and astronomy. They are a possible end point of

stellar evolution. They provide a unique laboratory in which to study strong gravity.

Knowledge of the mass and spatial distributions of black holes could also provide

information about stellar evolution, galaxy formation, and dark matter.
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Figure 1.1: Basic structure of black holes

While they are among the most interesting astrophysical objects, black holes, by their

very nature black, are difficult to isolate and study. Since the intrinsic Hawking ra-

diation from black holes (of the mass greater than about a solar mass) is quite weak,

the search for black holes must concentrate on the interaction of the black hole with

the surrounding medium.

As black holes will not themselves be luminous, the key to detecting them is to ob-

serve their effect on their surroundings. Black holes will accrete and radiate some

fraction of the accreting matter into energy [3].

Observation with in our own galaxy, the milky-way galaxy, reveals a plethora of x-ray

radiation from astronomical sources(objects). However in the fittings of the observa-

tions to the existing models are much controversial. But to the current understanding

they are more linked to neutron stars and black holes.

Motivated by this, we are interested to work on the dynamics of particles around

stellar black holes.
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1.3 Literature Review

The general theory of relativity is the geometric theory of gravitation published by

Albert Einstein in 1916. Most of the General relativity are Einsteins predictions which

were subject to interpretation. Mathematicians and Physicists have tried to test and

apply the predictions. At presents five different astronomical tests have verified the

theory. First of all the orbit of a planet is no longer a closed Keplerian ellipse. The

effect is strongest for the innermost planets, whose perihelia should turn little by

little.Most of the motion of the perihelion of Mercury is predicted by Newtonian

mechanics; only a small excess of 43 arc seconds per century remains unexplained.

And it so happens that this is exactly the correction suggested by general relativity

[4].

Most of the experimental tests of general relativity are based on the Schwarzschild

geometry in the region r > 2GM/c2. Some are based on the trajectories of massive

particles and others on photon trajectories.

Information about the geometry produced by compact massive objects or black holes

can be obtained from observations of the orbits of particles in the accretion disc that

often surrounds them [5]

A photon sphere is a spherical region of space where gravity is strong enough that

photons are forced to travel in orbits. The radius of the photon sphere, which is also

the lower bound for any stable orbit, is for a Schwarzschild black hole:

r = 3GM
c2

= 3
2
rs

where G is the gravitational constant, M is the black hole mass, and c is the speed of

light in vacuum and rs is the Schwarzschild radius (the radius of the event horizon).

This equation entails that photon spheres can only exist in the space surrounding an
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extremely compact object (a black hole or mainly an ”ultracompact” neutron star).

General relativity predicts apparent bending of light rays passing through gravita-

tional fields [6]. As photons approach the event horizon of a black hole, those with

Figure 1.2: Bending of light by massive body, in vacuum

the appropriate energy avoid being pulled into the black hole by traveling in a nearly

tangential direction known as an exit cone. A photon on the boundary of this cone

does not possess the energy to escape the gravity well of the black hole. Instead, it

orbits the black hole. These orbits are rarely stable in the long term.

The photon sphere is located farther from the center of a black hole than the event

horizon. For non-rotating black holes, the photon sphere is a sphere of radius 3
2
rs.

There are no stable free fall orbits that exist within or cross the photon sphere. Any

free fall orbit that crosses it from the outside spirals into the black hole. Any orbit

that crosses it from the inside escapes to infinity. Through the 1930s, the applications

of general relativity and quantum mechanics to the studies of the late evolution of

stars predicted that stars with different initial masses, after exhausting their thermal

nuclear energy sources, may eventually collapse to become exotic compact objects,

such as white dwarfs, neutron stars, and black holes. A low-mass star, such as our

Sun, will end up as a white dwarf, in which the degeneracy pressure of the electron

gas balances the gravity of the object. For a more massive star, the formed compact
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object can be more massive than around 1.4 solar masses (M�), the so-called Chan-

drasekhar limit, in which the degeneracy pressure of the electron gas cannot resist the

gravity, as pointed out by Chandrasekhar. In this case, the compact object has to fur-

ther contract to become a neutron star, in which most of the free electrons are pushed

into protons to form neutrons and the degeneracy pressure of neutrons balances the

gravity of the object. Then as Oppenheimer and others noted, if the neutron star is

too massive, for example, more than around 3 M�, the internal pressure in the object

also cannot resist the gravity and the object must undergo catastrophic collapse and

form a black hole [7].

So the basic process of stellar evolution is gravitational contraction at a rate con-

trolled by luminosity. The key parameter is the initial mass. According to its value,

stars evolve through various stages of nuclear burning and finish their lives as white

dwarfs, neutron stars or black holes. Any stellar remnant (cold equilibrium configu-

ration) more massive than about 3M� can not be supported by degeneracy pressure

and is doomed to collapse to a black hole [8]. The formation of stellar BHs is of

topical interest for several areas of astrophysics. Stellar BHs are remnants of massive

stars, possible seeds for the formation of supermassive BHs, and also sources of the

most energetic phenomena in the universe, such as the gravitational waves produced

by fusion of BHs [9]. These black holes form when massive stars run out of fuel at the

end of their life. When the nuclear fuel is exhausted, stars contract inwards under the

influence of their own gravity. Our knowledge about the final stages of this collapse

suggests that sufficiently massive stars inevitably leave black hole remnants, i.e. re-

gions of spacetime in which gravity is so strong that neither matter nor light can ever

escape [3].The formation of the black holes usually involve catastrophic gravitational
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collapse. Stellar mass black holes form in the same way as the neutron stars, namely,

by core collapse [10].

Compact objects gravitationally capture matter in a process known as accretion. It

is the mechanism of matter accumulation of a central mass due to its gravitational

force. During this process angular momentum is transferred from matter of the inner

parts to matter further out in the disc, which enables matter to move inward finally

to fall on to the center [3].

Accretion is the process of growth or enlargement of a gravitating object by infall of

material. It is a widespread process in our Universe, relevant to the formation of ev-

erything from planets to galaxies. Understanding the physics of accretion is therefore

of fundamental importance to many areas of Astrophysics [11].

Accretion disks form whenever a compact object such as a star or a black hole draws

matter from its surroundings. More often than not this matter carries angular mo-

mentum and therefore cannot fall directly on to the compact object but instead settles

in Keplerian motion around it. The accretion could take place via stellar winds as

for example on to a black hole or through the Roche-Lobe filling process as in close

binary stars. A blob of gas would orbit a compact object with the Keplerian speed.

It can spiral inwards only if its energy and angular momentum are removed by some

kind of a dissipative process. With this mechanism, the binding energy of its inner-

most orbit can be extracted. Thus the inflow of the matter could be enhanced by the

outflow of the angular momentum [12].

The matter rotating in circular Keplerian orbits around the compact object loses

angular momentum because of the friction between adjacent layers and spirals in-

wards.In the process gravitational energy is released, the kinetic energy of the plasma
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increases and the disk heats up, emitting thermal energy [13].

1.4 Statement of the Problem

General relativity gives predictions for trajectories of particles different from classi-

cal physics. Most of the experimental tests of general relativity are based on the

Schwarzschild geometry in the region r > 2GM
c2

. Some are based on the trajecto-

ries of massive particles and others on photon trajectories.Most of the classical tests

are in the weak field limit,but the more recent observations have begun on strong

field regime. Considering strong field regime the thesis must answers the following

questions.

Research Question

• How do stellar black holes accrete matter from surrounding astronomical com-

panions?

• What are the relevant parameters responsible in the dynamism of accreting

stellar black holes?

• What are the trajectories of massive and massless particles around stellar black

holes?

1.5 Objectives

1.5.1 General objective

The general objective of this thesis will be to study the dynamics of particles around

stellar black holes with Schwarzschild metric.
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1.5.2 Specific objective

The specific objectives of the study will be the following

• To derive dynamical equations from the General theory of Relativity.

• To derive dynamical observable parameters like angular momentum, and energy

of the particles which are responsible in the dynamism of accreting stellar black

holes.

• To study the trajectories of massive and massless particles around stellar black

holes.

1.6 Methodology

The general method is to derive dynamical equations of accreting stellar black holes

from general relativity where appropriate boundary conditions be set. The analyti-

cally derived equations are used to generate numerical values computationally with

MATHEMATICA. Then, the results will be discussed and summarized.

The steps are:

• Provide preliminary boundary conditions to derive the relevant set of dynamical

equations from Einstein’s field equations of General Relativity.

• Study and examine the effects of the relevant parameters like angular momen-

tum and energy derived from the equations.

• Numerically generate some theoretical data from the formalism using compu-

tation.

• Summary and conclusion

10
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Chapter 2

Introduction to General Relativity
and Einstein’s Field Equations

General theory of relativity is the geometric theory of gravitation published by Al-

bert Einstein in 1916. It is the current description of gravitation in modern physics.

Since 1916 Einsteins general theory of relativity, over a hundred years, has remained

unaltered and is fundamental to astrophysics and cosmology. General relativity and

Einsteins field equations are considered by many as the perfect example of physical law

and general relativity continues to be tested. General Relativity generalizes special

relativity and Newton’s law of universal gravitation, providing a unified description

of gravity as a geometric property of space and time, or spacetime. In particu-

lar, the curvature of spacetime(x, y, z, ct),is directly related to the four-momentum

(mass-energy and linear momentum) of whatever matter and radiation are present,

(p = E
c
, px, py, pz) where E is mass-energy, c is velocity of light and(px, py, pz) are

space linear momentum. The relation is specified by the Einstein field equations

The fundamental physical postulate of General Relativity is that the presence of mat-

ter causes curvature in the spacetime in which it exists. This curvature is taken to

be the gravitational field produced by the matter. Einstein’s field equation gives the
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Mathematical description of how the matter and curvature are related. Moreover,

once this curvature is given, General Relativity describes how other objects(such as

planets and light beams)move in this gravitational field via the geodesic equation [14].

Among the most important predictions of the general theory of relativity one is the

bending of light around a massive object. The orbit described by a photon in the

photon sphere is actually an unstable orbit , and a small perturbation in the orbit can

lead either to the photon escaping the black hole or diving towards the event horizon

[15].

Einsteins equivalence principle was the fundamental basis for the successful develop-

ment of the general theory of relativity and so testing Einstein’s Equivalence Principle

and the strong equivalence principle to the highest order validates General Relativity

and stipulates that gravity must necessarily be curved spacetime

2.1 Einstein’s Field Equation

Having formulated the relativistic, geometric version of the effects of gravity, the

question of gravity’s source remains. In Newtonian gravity, the source is mass. In

special relativity, mass turns out to be part of a more general quantity called the

energy-momentum tensor, which includes both energy and momentum densities as

well as stress (that is, pressure and shear). Using the equivalence principle, this

tensor is readily generalized to curved space-time. Drawing further upon the analogy

with geometric Newtonian gravity, it is natural to assume that the field equation for

gravity relates this tensor and the Ricci tensor, which describes a particular class of

tidal effects: the change in volume for a small cloud of test particles that are initially

at rest, and then fall freely. In special relativity, conservation of energy-momentum

13



corresponds to the statement that the energy-momentum tensor is divergence-free

Tµν = (ρ+
p

c2
)uµuν − pgµν (2.1.1)

where Tµν is the energy momentum tensor, ρ is the mass density. This formula is

readily generalized to curved spacetime by replacing partial derivatives with their

curved-manifold counterparts, covariant derivatives studied in differential geometry.

With this additional condition, the covariant divergence of the energy-momentum

tensor, and hence of whatever is on the other side of the equation, is zero the simplest

set of equations are what are called Einstein’s field equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.1.2)

From equation above the left-hand side is the Einstein tensor, a specific divergence-

free combination of the Ricci tensor and the metric. In particular,

Rµν = Rgµν (2.1.3)

is the curvature scalar. The Ricci tensor itself is related to the more general Riemann

curvature tensor as

Rµν = Rρ
µρν (2.1.4)

On the right-hand side of (2.1.2), Tµν is the energy-momentum tensor. All tensors are

written in abstract index notation. Matching the theory’s prediction to observational

results for planetary orbits ( equivalently, assuring that the weak-gravity, low-speed

limit is Newtonian mechanics), the proportionality constant can be fixed as K = 8πG
c4

, with G the gravitational constant and c the speed of light. When there is no matter

present, so that the energy-momentum tensor vanishes, the result are the vacuum

14



Einstein equations,

Rµν = 0 (2.1.5)

In the Newtonian theory, gravitational field is to be described in terms of a scalar

potential function Φ and the equations that determine Φ are

a.Φ = 0 and when there is no gravitation;

b.∇2Φ = 0 (Laplace equation) in empty space (no matter present and no physical

fields except a gravitational field); and finally

c.∇2Φ = 4πGρ (Poisson’s equation) in regions of space where matter is present

and the material density is ρ. These equations are supplemented by the standard

equations of motion.

2.2 Vacuum Field Equations

This follows the method presented by [14]

We begin with the realization that we would like to find an equation which is super-

sedes the poisson equation for the Newtonian potential.

∇2Φ = 4πGρ (2.2.1)

where ∇2 = ∇ij∂i∂j is the Laplacian in space and ρ is the mass density.The explicit

form of Φ = −GM
r

is one solution of the above equation for the case of a point

like mass distribution. The tensor generalization of the mass density is the energy

momentum tensor Tµν . The gravitational potential, mean while, should get replaced

by the metric tensor. It is thus reasonable to guess that the new equation will have

15



Tµν set proportional to some tensor which is second order in derivatives of the metric.

In fact using the Newtonian limit, for the metric

g00 = −(1 + 2Φ) and T00 = ρ,

We are looking for an equation that predicts

∇2h00 = −8πGT00 (2.2.2)

with h00 = 2Φ We do though need to generalize it to a completely tensorial equation.

The left hand side of Eq. (2.2.2) does not obviously generalize to a tensor.It might

be to act the D’Alembertian � = ∇µ∇µ on the metric gµν ; but this is automatically

zero by metric compatibility (≡ gµν ;λ = 0).

Fortunately, there is an obvious quantity which is constructed from second derivatives

and first derivatives of the metric; the Riemann tensorRρ
µρν . We can contract this to

form the Ricci tensor Rµν ; which does further more, it is symmetric. It is there fore

reasonable to guess that the gravitational field equations are,

Rµν = KTµν (2.2.3)

for some constant K.

According to the principle of equivalence, the statement of energy-momentum con-

servation in curved spacetime should be

∇µTµν = 0 (2.2.4)

which would then imply

∇µRµν = 0 (2.2.5)
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from Bianchi identity we have;

∇µRµν =
1

2
∇νR (2.2.6)

But our proposed field equation implies that, R = KgµνTµν = KT , so taking these

together we have

∇µT = 0 (2.2.7)

The covariant derivative of a scalar is just the partial derivative. By now we already

know of asymmetric tensor constructed from the Ricci tensor which is automatically

conserved:

from the Einstein tensor

Gµν = Rµν −
1

2
Rgµν (2.2.8)

which always obeys ∇µGµν = 0 . we are there fore led to propose

Gµν = KTµν (2.2.9)

2.3 Schwarzschild Solution to Einstein’s General

Theory of Relativity

In 1915, Karl Schwarzschild derived an exact solution to Einsteins General Relativity

field equations, published in 1916. The Schwarzschild solution is used in most tests

of General Relativity. He also derived the Schwarzschild radius, Rs, which is the

radius of a sufficiently massive object where all particles, including photons, which

will inevitably fall into a massive central object.
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Starting from Newton’s gravitational theory,the spherically symmetric solution of

Einstein’s vacuum field equation , the schwarzschild solution is a unique and its

metric can be interpreted as the exterior gravitational field of spherically symmetric

mass [16]

The Schwarzschild metric

Assumptions

1. The schwarzschild metric assumes that the system is spherically symmetric;it

uses spherical coordinates along the metric to achieve this symmetry(it can be

seen with the r2 and r2sin2θ terms of the metric).

2. The solution assumes vacuum conditions(Tµν = 0).So the solutions only to have

to solve Rµν − 1
2
gµνR = 0

3. The solution assumes that the system is static and time invariant.

2.3.1 The Christoffel symbols

This follows the method presented in [13].

Using the spherical parametrization of the metric:

ds2 = gµνdx
µdxν = −dt2 + dr2 + r2dθ2 + r2sin2θdφ2 (2.3.1)

where gµµ = gµµgµµ = 4

Generalizing this with functions on each of the infinitesimals

ds2 = Bdt2 − Adr2 −Wr2dθ2 −Xr2sin2θdφ2 (2.3.2)

However, since it was assumed that the equations are spherically symmetric, W=X=1.

Again since the solution is for a static field, the functions have no dependence on time,
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and since the only mass is located inside a point mass, the stress energy tensor(Tµν)

will vanish.

ds2 = B(r)dt2 − A(r)dr2 −Wr2dθ2 −Xr2sin2θdφ2 (2.3.3)

However, the problem is reduced in complexity to solutions of Rµν − 1
2
gµνR = 0

because Tµν = 0 from the assumptions.

The affine connection can be given as:

Γµνσ = 1
2
gµλ(gλν,σ + gλσ,ν − gνσ,λ) and our non-vanishing metric components are,

g00 = B, g11 = −A , g22 = −r2, g33 = −r2sin2θ

its inverse gµν :

g00 = 1
B

, g11 = −1
A

, g22 = −1
r2

, g33 = −1
r2sin2θ

, Now to find the Ricci scalar and

tensor, the Riemann curvature tensor must be calculated.

It is given by:

Rβ
νρσ = Γβνσ,ρ−Γβνρ,σ +ΓανσΓ

β
αρ − ΓανρΓ

β
ασ (2.3.4)

To simplify the calculation of the christoffel symbols:

1. Any derivatives with respect to t are zero, as the solution is static and does not

depend on time.

2. gµν and gµν both equal to zero when µ 6= ν(the metric is symmetric)

3. Γαµν = Γανµ the Christoffel symbols are symmetric in their lower indices).

Indices µ and ν run from 0-3, while i and jrun from 1-3 in the spatial dimension).

The Christoffel symbols are:

Γ1
00 = 1

2
g11(g10,0 + g10,0 − g00,1) = 0−1

2
g11∂1g00 = 1

2
1
A
∂rB

Γ1
11 = 1

2
g11(g11,1 + g11,1 − g11,1) = 1

2
g11∂1g11 = 1

2
1
A
∂rA
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Γ1
22 = 1

2
g11(g12,2 + g12,2 − g22,1) = −1

2
g11∂1g22 = −r

A

Γ1
33 = 1

2
g11(g13,3 + g13,3 − g33,1) = −1

2
g11∂1g33 = −r

A
sin2θ

Γ2
12 = 1

2
g22(g21,2 + g22,1 − g12,2) = 1

2
g22∂1g22 = 1

r

Γ3
13 = 1

2
g33(g31,3 + g33,1 − g13,3) = 1

2
g33∂1g33 = 1

r

Γ3
23 = 1

2
g33(g32,3 + g33,2 − g23,3) = 1

2
g33∂2g33 = cosθ

sinθ
Any thing not written down

explicitly is mean to be zero.Or it is symmetry.

Now all the non- vanishing terms:

Γ0
01 = Γ0

10 = B′

2B

Γ1
00 = B′

2A

Γ1
11 = A′

2A

Γ1
22 = −r

A

Γ1
33 = −r

A
sin2θ

Γ2
12 = Γ0

21 = 1
r

Γ2
33 = −cosθsinθ

Γ3
31 = Γ3

13 = 1
r

Γ3
23 = Γ3

32 = cosθ
sinθ

2.3.2 The Ricci Tensor

The Ricci tensor is a contruction of the Riemann curvature tensor;

Rµν = Rβ
µνβ = Γβµβ,ν − Γβµν,β + ΓαµβΓ

β
αν − ΓαµνΓ

β
αβ

Using the above relation, we obtain:

R00 = −Γ1
00,1 + Γ0

01Γ
1
00 − Γ1

00Γ
1
11 − Γ1

00Γ
2
12 − Γ1

00Γ
3
13
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= −B”
2A

+ B′

2B
B′

2B
− B′

2A
A′

2A
− B′

2A
1
r
− B′

2A
1
r

R00 =
−B′′

2A
+
B′A′

4A2
+

(B′)2

4BA
− 1

r

B′

A
(2.3.5)

R11 = Γ0
10,1 +Γ0

10Γ
0
01−Γ1

11Γ
0
10 +Γ2

12,1 +Γ2
12 +Γ2

21−Γ1
11 +Γ2

12 +Γ3
13,1 +Γ3

13Γ
3
31−Γ1

11Γ
3
13

= B”
2B
− (B′)2

2B2 + (B′)2

4B2 − B′

2B
A′

2A
− A′

Ar

R11 =
B′′

2A
− (B′)2

4B2
− B′

2B

A′

2A
− A′

Ar
(2.3.6)

R22 = −Γ1
22Γ

0
10 − Γ1

22,1 + Γ2
21Γ

1
22 − Γ1

22Γ
1
11 + Γ3

23,2 + Γ3
23Γ

3
32 − Γ1

22Γ
3
13

= r
A
B′

2B
+ ( 1

A
− rA′

A2 )− 1
A

+ rA′

2A2 + 2θcotθ + cot2θ + 1
A

= rB′

2BA
+ 1

A
− rA′

2A2 + (−1− cot2θ) + cot2θ

R22 =
rB′

2BA
+

1

A
− rA′

2A2
− 1 (2.3.7)

R33 = −Γ1
33Γ

0
10 − Γ1

33,1 + Γ3
31Γ

1
33 − Γ1

33Γ
1
11 − Γ2

33,2 + Γ3
32Γ

2
33 − Γ1

33Γ
2
12

= rB′

2BA
sin2θ+( sin

2θ
A
− rsin2θA′

A2 )− sin2θ
A

+ rA′

2A2 sin
2θ+2θ(cosθsinθ−cosθsinθcotθ+ sin2θ

A
)

= rB′

2BA
sin2θ + sin2θ

A
− rA′

2A2 sin
2θ + (−sin2θ + cos2θ)− cos2θ

= rB′

2BA
sin2θ + sin2θ

A
− rA′

2A2 sin
2θ − sin2θ

R33 = (
rB′

2BA
+

1

A
− rA′

2A2
− 1)sin2θ = sin2θR22 (2.3.8)

2.3.3 The Ricci scalar

The Ricci scalar is obtained from the Ricci tensor, which is as follows

R = Rµ
µ = gµνRµν = g00R00 + g11R11 + g22R22 + g33R33 (2.3.9)

= 1
B
R00 − 1

A
R11 − 1

r2
R22 − ( 1

r2sin2θ
sin2θR22
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= 1
B
R00 − 1

A
R11 − 2

r2
R22

R = − B′′

BA
+
B′

2

A′

BA2
+

(B′)2

2B2A
− 2B′

rBA
+

2A′

rA2
+

2

r2
(1− 1

A
) (2.3.10)

2.3.4 Einstein’s equation for Schwarzschild spacetime

Since the schwarzschild solution concerns with exterior spacetime of a spherically

symmetric body,Einstein’s equation takes a simpler form.

Rµν −
1

2
gµνR = 0 (2.3.11)

This leads us to four equations that must be satisfied.

R00 − 1
2
g00R = 0

R00 − 1
2
AR = 0

−B′′

2A
+ B′A′

4A2 + (B′)2

4BA
− 1

r
B′

A
+ B′′

2A
− B′

4
A′

A2 − (B′)2

4BA
+ 1

r
B′

A
+ 1

r
BA′

A2 + B
r2

(1− 1
A
) = 0

1

r

A′

A2
+

1

r2
(1− 1

A
) = 0 (2.3.12)

R11 − 1
2
g11R = 0

R11 + 1
2
AR = 0

B′′

2B
− B′2

4B2 − B′A′

4BA
− A′

Ar
− B′′

2B
+ B′

4
A′

BA
+ (B′)2

4B2 − 1
r
B′

B
+ 1

r
A′

A
+ A

r2
(1− 1

A
) = 0

−1
r
B′

B
+ A

r2
(1− 1

A
) = 0

−B′

rBA
+

1

r2
(1− 1

A
) = 0 (2.3.13)

R22 − 1
2
g22R = 0

R22 + 1
2
r2R = 0
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−B′

B
+ A′

A
− rB′

B
+ rB′

2
A′

BA
+ r(B′)2

2B2 = 0

The last equation is not independent of the previous.

R33 − 1
2
g33R = 0

sin2θR22 + 1
2
r2sin2θR

R22 + 1
2
r2R = 0

Solving and substituting in to the metric

The first equation R11− 1
2
g11R = 0 is a function of A.Thus we can solve this differential

equation to find A and then use that in the other equations to find B.Now re expressing

the equation we get,

A′

A
+ 1

r
(A− 1) = 0

A′

A(A−1)
+ 1

r
= 0

−dr
r

=
dA

A(A− 1)
(2.3.14)

Integrating this and using the formula,
∫

dx
ax+bx2 = −1

a
ln a+bx

x
,we get

− ln r + C = ln 1
r

+ C

= ln (A−1)
A

C
r

= A−1
A

B − 1 = C
r
A = A(1− C

r
) = 1

A =
1

1− C
r

(2.3.15)

To find A we insert this solution in to equation(4.1.13) and we obtain,

B′

B
(1− C

r
)− 1

r
(1− (1− C

r
)) = 0

B′

B
= C

r2(1−C
r

= C
r2−Cr
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dB
B

= Cdr
r2−Cr

Inserting both sides with the same formula as above;∫
dB
B

= lnB = C
∫

dr
r2−Cr = C

C
ln r−C

r

lnA = ln(1− C
r
) and exponentiating gives,

B = 1− C

r
(2.3.16)

Our final result is the schwarzschild metric.

ds2 = (1− 2GM

c2r
)c2dt2 − dr2

(1− 2GM
c2r

)
− r2dθ2 − r2sin2θdφ2 (2.3.17)

where C = 2GM
c2

This is true for any spherically symmetric vacuum solution to Einstein’s equations.

Finally these equations describes the spacetime manifold around a point mass. This

equation shows that there are singular points when r = 0 and when r = 2GM
c2

;

The first is the center of the black hole-no particle can be exactly the same place as

another.The second singular point represents the event horizon of a black hole, and

the schwarzschild radius- the radius at which a ball of mass M collapses in to a black

hole.
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Chapter 3

Black Holes

3.1 Formation of black holes

A star is held up by a mixture of gas and radiation pressure which is the relative

contributions depending on its mass. The energy to provide this pressure support is

derived from the fusion of light nuclei into heavier ones predominantly hydrogen into

helium, which releases about 26MeV for each atom of He that is formed. When all the

nuclear fuel is used up, the star begins to cool and collapse under its own gravity. For

most stars the collapse ends in a high density stellar remnant known as a white dwarf.

In fact, we expect that in around 5 billion years the Sun will collapse to form a white

dwarf with a radius of about 5000 km and a spectacularly high mean density of about

109kgm−3. Astronomers have known about white dwarfs since as long ago as 1915

(the earliest example being the companion to the bright star Sirius, known as Sirius

B), but nobody at the time knew how to explain them. The physical mechanism

providing the internal pressure to support such a dense object was a mystery. The

answer had to await the development of quantum mechanics and the formulation of

Fermi−Dirac statistics. Fowler realized in 1926 that white dwarfs were held up by

electron degeneracy pressure. The electrons in a white dwarf behave like the free
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electrons in a metal, but the electron states are widely spaced in energy because of

the small size of the star in its white-dwarf form. Because of the Pauli exclusion

principle, the electrons completely fill these states up to a high characteristic Fermi

energy. It is these high electron energies that save the star from collapse. In 1930,

Chandrasekhar realized that the more massive a white dwarf, the denser it must be

and so the stronger the gravitational field. For white dwarfs over a critical mass

of about 1.4M� (now called the Chandrasekhar limit), gravity would overwhelm the

degeneracy pressure and no stable solution would be possible. Thus, the gravitational

collapse of the object must continue. At first it was thought that the white dwarf

must collapse to a point. After the discovery of the neutron, however, it was realized

that at some stage in the collapse the extremely high densities occurring would cause

the electrons to interact with the protons via inverse -decay to form neutrons (and

neutrinos, which simply escape). A new stable configuration a neutron star was

therefore possible in which the pressure support is provided by degenerate neutrons.

A neutron star of one solar mass 260 Schwarzschild black holes would have a radius of

only 30km, with a density of around 1016kgm−3. Since the matter in a neutron star

is at nuclear density, the gravitational forces inside the star are extremely strong. In

fact, it is the first point in the evolution of a stellar object at which general relativistic

effects are expected to be important. Given the extreme densities inside a neutron

star, there remain uncertainties in the equation of state of matter. Nevertheless, it

is believed that as for white dwarfs, there exists a maximum mass above which no

stable neutron star configuration is possible. This maximum mass is believed to be

about 3M� [5]. Thus, we believe that stars more massive than this limit should

collapse to form black holes. Moreover, if the collapse is spherically symmetric then
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it must produce a Schwarzschild black hole. Some theorists were very sceptical about

the formation of black holes. The Schwarzschild solution in particular is very special.

It is exactly spherically symmetric by construction [16].

The basic idea of a black hole is simply an object whose gravity is so strong that

light can not escape from it. It is black because it does not reflect light, nor does

its surface emit any light. These black holes can be organized in groups according to

their mass. Super massive black holes with mass of order 109M� are thought to reside

in the nuclei of galaxies. In addition to their role in the dynamics of galaxies and

galaxy formation, they are believed to be the central engines of energetic phenomenon

associated with active galactic nuclei. Evidence for intermediate mass black holes of

around 102 to 105M� has been found.

Lower mass black holes formed at the endpoint of stellar evolution are known as

remnant black holes. They are expected to have masses from about 3 to 100M�.

These remnant black holes are referred to as stellar black holes [17]. A black hole is a

region of space from which nothing can escape. It is the result of the deformation of

spacetime caused by a very compact mass a lot of mass in a small volume (actually

zero) volume. Around the black hole there is an undetectable surface called the event

horizon, which marks the point of no return. Once inside nothing can escape. A

black hole is called ”black” because it absorbs all the light that hits it and reflecting

nothing, just like a perfect blackbody in thermodynamics [18].
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Chapter 4

Particle Dynamics Around Stellar
Black hole

4.1 Particle motion around stellar black holes

From the Schwarzschild line element given as,

ds2 = c2(1− 2GM

c2r
)dt2 − (1− 2GM

c2r
)−1dr2 − r2dθ2 − r2sin2θdφ2 (4.1.1)

This follows the method presented in [5]

The connection coefficients Γµνρ for this metric could be written the geodesic equations

for the Schwarzschild geometry in the form:

d2xµ

dλ2 + Γµνρ
dxν

dλ
dxρ

dλ
= 0 where λ is some affine parameter along the geodesic xµ(λ).

Let consider the ”Lagrangian”

L = gµν ẋ
µẋν

where

ẋµ = dxµ

dλ
,

28



Using equation (4.1.1), L is given by

L = c2(1− 2GM

c2r
)ṫ2 − (1− 2GM

c2r
)−1ṙ2 − r2(θ̇2 + sin2θφ̇2) (4.1.2)

where L is the Lagrangian

The geodesic equation are then obtained by substituting this form for L in to the

Euler-Lagrange equations.

d
dλ

( ∂L
∂ẋµ )− ∂L

∂xµ = 0 Performing this calculation, we find the four resulting geodesic

equations for (µ = 0, 1, 2, 3) are given by:

(1− 2GM

c2r
)ṫ = k (4.1.3)

(1− 2GM

c2r
)−1r̈ +

GM

r2
ṫ2 − (1− 2GM

c2r
)−2 − r(θ̇2 + sin2θφ̇2) = 0 (4.1.4)

θ̈ +
2

r
ṙθ̇ − sinθcosθφ̇2 = 0 (4.1.5)

r2sin2θφ̇ = h (4.1.6)

In equation (4.1.3) and (4.1.6) respectively, the quantities k and h are constants.

These two equations are derived immediately since L is not an explicit function of t

or φ. B/c of the spherical symmetry of the Schwarzschild metric we can therefore,

without lose of generality, give attention to particles moving in the equatorial plane,

given by θ = π
2
.
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We see that θ = π
2

satisfies the third geodesic equation (4.1.5). Then our set of

geodesic equations reduces to

(1− 2GM

c2r
)ṫ = k (4.1.7)

(1− 2GM

c2r
)−1r̈ +

GM

r2
ṫ2 − (1− 2GM

c2r
)−2GM

c2r2
ṙ2 − rφ̇2 = 0 (4.1.8)

r2φ̇ = h (4.1.9)

These equations are valid for both null and non null affinity parameterized geodesics.

For a non-null geodesic the first integral is simply

gµν ẋµẋν = x2 (4.1.10)

where x is some constant

For a null geodesic it is as follows,

gµν ẋµẋν = 0 (4.1.11)

4.1.1 Massive particles

The trajectory of a massive particle is a timelike geodesic.Considering motion in the

equatorial plane,we replace the geodesic equation (4.1.8) by equation (4.1.10),where

gµν is taken from Eq.(4.1.1) with θ = π
2
. Moreover, since we are considering a timelike

geodesic we can choose our affine parameter λ to be the proper time τ along the path.
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Thus we find that the worldline xµ(τ) of a massive particle moving in the equatorial

plane of the Schwarzschild geometry must satisfy the equations,

(1− 2GM

c2r
)ṫ = k (4.1.12)

c2(1− 2GM

c2r
)ṫ2 − (1− 2GM

c2r
)−1ṙ2 − r2φ̇2 = x2 (4.1.13)

r2φ̇ = h (4.1.14)

Substituting Eq.(4.1.12) and Eq.(4.1.14) in to Eq.(4.1.13), we obtain the combined

”Energy” equation for the r- coordinate.

ṙ2 +
h2

c2
(1− 2GM

c2r
)− 2GM

r
= x2(k2 − 1) (4.1.15)

We use this ”Energy” equation to discuss radial free fall and the stability of orbits.

Note that the right hand side of Eq.(4.1.15) is a constant of the motion. The constant

of proportionality is fixed by requiring that, for a particle at rest at r = ∞, we have

E = m0c
2. Letting r →∞ and ṙ = 0,in Eq.(4.1.15) we get k2 = 1.

Hence we must have k = E
m0c2

,

where E- is the total energy of the particle in its orbit.

A second useful equation which help us to determine the shape of a particle orbit(i.e

r as a function of φ) We found by using h = r2φ̇ to express ṙ in the energy equation

(4.1.15) as,

dr
dτ

= dr
dφ

dφ
dτ

= h
r2

dr
dφ

Thus we obtain

( h
r2

dr
dφ

)2 + h2

r2
= x2(k2 − 1) + 2GM

r
+ 2GMh2

c2r3
Let u = 1

r
, that is usually employed in

Newtonian orbit calculation, we find that:
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(du
dφ

)2 + u2 = x2

h2 (k
2 − 1) + 2GMu

h2 + 2GMu3

c2
By differentiating this equation with

respect to φ finally we get,

d2u

dφ2
+ u =

GM

h2
+

3GM

c2
u2 (4.1.16)

In Newtonian gravity, the equations of motion of a particle of mass m in the equatorial

plane θ = π
2

mainly determined from the Lagrangian as,

L = 1
2
m(ṙ2 + r2φ̇2) + GMm

r

From the Euler-Lagrangian equations we have

r2φ̇ = h,

r̈ = h
r3
− GM

r2

where the integration constant h is the specific angular momentum of the particle.

If we now substitute u = 1
r

and eliminate the time variable the Newtonian equation

of motion for planetary orbit is obtained,

d2u

dφ2
+ u =

GM

h2
(4.1.17)

In this equation u = 1
r

where r is the radial distance from the mass, where as in

eq.(4.1.16) r is a radial coordinate that is related to distance through the metric.

4.1.2 Radial motion of massive particle

For radial motion φ is constant which implies that h = 0. Thus Eq.(4.1.15) reduces

to:

ṙ2 = c2(k2 − 1) +
2GM

r
(4.1.18)

Differentiating this equation with respect to τ and dividing through by ṙ gives:

r̈ =
−GM
r2

(4.1.19)
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Consider a particle dropped from rest at r = R. From Eq.(4.1.18) we see that,

k2 = 1− 2GM
c2R

, so Eq.(4.1.18) can be written as

ṙ2

2
= GM(

1

r
− 1

R
) (4.1.20)

This has the same as the Newtonian formula equating the gain in kinetic energy to

the loss in gravitational potential energy for a particle (of unit mass) falling from rest

at r = R. By considering a particle dropped from rest at infinity, and setting k = 1

in the geodesic equation (4.1.12) and (4.1.18) we get,

dt

dτ
= (1− 2GM

c2r
)−1 (4.1.21)

dr

dτ
= −(

2GM

r
)

1
2 (4.1.22)

where in Eq.(4.1.22) we take the negative square root.This equation form the basis

of our discussion of a radially infalling particle dropped from rest at infinity.

From these we see that the components of the 4-velocity of the particle in the(t,r,θ, φ)

coordinate system are,

[uµ] = [dx
µ

dτ
] = ((1− 2GM

c2r
)−1,−(2GM

r
)

1
2 , 0, 0) Eq.(4.1.22) determines the trajectory

of particle r(τ).Integrating this equation gives

τ = 2
3

√
r30

2GM
− 2

3

√
r3

2GM
, where we have written the integration constant in a form

such that τ and r = r0. Thus τ is the proper time experienced by the particle in

falling from r = r0 to a coordinate radius r. In stead of parametrise the worldline

interms of proper time τ , alternatively we describe the path as r(t). So

dr

dt
=
dr

dτ

dτ

dt
= −(

2GM

r
)

1
2 (1− 2GM

c2r
) (4.1.23)
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Integrating again gives

t = 2
3
(

√
r30

2GM
−

√
r3

2GM
) + 4GM

c3
(
√

r0c2

2GM
−

√
rc2

2GM
) + 2GM

c3
ln |(

√
r2
c

(2GM)
+1√

r2
c

(2GM)
−1

)(

√
r2
c

(2GM)
−1√

r2
c

(2GM)
+1

)|

The choice of the integration constant gives t = 0 at r = r0.

In particular

τ → 2
3

√
r30

2GM
, as r → 0

t→∞, as r → 2GM
c2

Evidently the particle takes a finite proper time to reach r = 0, when the worldline

is expressed in the form r(t), however, we see that asymptotically approaches 2GM
c2

as

t→∞. What velocity a stationary observer at r measures for the infalling particle as

it passes. From the Schwarzschild metrics, (4.1.1), we see that,for stationary observer

at coordinate radius r, a coordinate time interval dt corresponds to a proper time

interval

dt′ = (1 − 2GM
c2r

)
1
2dt Similarly,a radial coordinate separation dr corresponds to a

proper radial distance measured by the observer equal to

dr′ = (1− 2GM
c2r

)
−1
2 dr .

Thus the velocity of the radially infalling particle , as measured by a stationary

observer at r, is given by

dr′

dt′
= (1− 2GM

c2r
)−1dr

dt
= −(

2GM

r
)

1
2 (4.1.24)

Thus as the particle approaches r = 2GM
c2

, a stationary observer at that radius observes

that the particles velocity tends to c.

Equation (4.1.24) valid for r > 2GM
c2

, It is impossible to have a stationary observer at

r ≤ 2GM
c2

.
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4.1.3 Circular motion of massive particles

For circular motion in the equatorial plane, r=constant. and so ṙ = r̈ = 0.

setting u = 1
r

= constant in the ”shape” Eq.(4.1.16) we have the following,

u = GM
h2 + 3GM

c2
u2 .From which

h2 = GMr2

r− 3GM
c2

.

Putting ṙ = 0 in the energy equation (4.1.15) and substituting the above expression

for h2 allows us to identify the constant k,

k = (
1− 2GM

c2r

1− 3GM
c2r

)
1
2 (4.1.25)

The energy of a particle of rest mass mo in a circular of radius r is given by;

E = kmoc
2. We use this result to determine which circular orbits are bound. For

this we require E < moc
2, so the limits on r for the orbit to be bound are given by

k = 1. This gives : (1− 2GM
c2r

)2 = 1− 3GM
c2r

Which is satisfied when r = 4GM
c2

or r =∞.

Thus over the range 4GM
c2

< r <∞, circular orbits are bound.

4.1.4 Stability of massive particle orbits

The above analysis appears to suggest that the closest bound circular orbit around a

massive spherical body is at r = 4GM
c2

. However, we have not yet determine whether

this orbit is stable or not.

In Newtonian dynamics the equation of motion of a particle in a central potential can

be written

1
2
(dr
dt

)2 + Veff (r) = E,

where:

Veff (r)- is the effective potential and
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E- is the total energy of the particle per unit mass. For an orbit around a spherical

mass M, the effective potential is:

Veff (r) =
−GM
r

+
h2

2r2
(4.1.26)

Where h is the specific angular momentum of the particle. In general relativity, the

energy equation (4.1.15) for the motion of a particle around a central mass can be

written as,

1
2
( dr
dτ

)2 + h2

2r2
(1− 2GM

c2r
)− GM

r
= x2

2
(k2 − 1), where the constant k = E

(moc2)
.

Thus in general relativity we identify the effective potential per unit mass as follows;

Veff (r) =
−GM
r

+
h2

2r2
− GMh2

c2r3
(4.1.27)

Differentiating Eq.(4.1.27) gives,

dVeff

dr
= GM

r2
− h2

r3
+ 3GMh2

c2r4
, and so the exterema of the effective potential are located

at the solutions of the quadratic equation.

GMr2 − h2r + 3GMh2

c2
= 0 Which occur at

r = h
2GM

(h±
√
h2 − 12G2M2

c2
). We note that if h =

√
12GM

c
= 2
√

3GM
c

then there

is only one extremum and, there are no turning points in the orbit for lower values of

h.The significance of this result is that the inner most stable circular orbit has

rmin = 6GM
c2

This orbit, with r = 6GM
c2

and hc
(GM)

= h
√

3, is unique in satisfying

both

dVeff

dr
= 0 and

d2Veff

dr2
= 0
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4.2 Massless Particles

The trajectory of a photon and any other particle having zero rest mass is a null

geodesic [19].

From the previous equations (4.1.7),(4.1.8),and (4.1.9) by the condition gµν ẋµẋν , we

have

(1− 2GM

c2r
)ṫ = k (4.2.1)

c2(1− 2GM

c2r
)ṫ2 − (1− 2GM

c2r
)−1ṙ2 − r2φ̇2 = 0 (4.2.2)

r2φ̇ = h (4.2.3)

For photon trajectories, an analogue of the energy equation (4.1.15) can be obtained

by substituting (4.2.1) and (4.2.3) in to (4.2.2) which gives,

ṙ2 +
h2

r2
(1− 2GM

c2r
) = x2k2 (4.2.4)

Similarly, the analogue for photons of the ’shape’equation (4.1.16) is obtained by

substituting h = r2φ̇ in to Eq.(4.2.2) and using the fact that

dr
dλ

= dr
dφ

dφ
dλ

= h
r2

dr
dφ

Using the substitution u = 1
r

and differentiating with respect

to φ we get,

d2u

dφ2
+ u =

3GM

c2
u2, (4.2.5)
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4.2.1 Stability of photon orbits

We can rewrite the ’energy’ equation (4.2.4) for photon orbits as:

ṙ2

h2
+ Veff (r) =

1

b2
(4.2.6)

Where b = h
ck

and the effective potential

Veff (r) =
1

r2
(1− 2GM

c2r
) (4.2.7)

4.3 Orbital Equations and Bound Orbits

This follows the method presented in [2].

In discussing the exact solutions for the orbital motion in the equatorial plane by

considering r as a function of φ instead of τ we get,[20]

(
dr

dφ
)2 = (E2 − 1)

r4

h2
+

2M

h2
r3 − r2 + 2Mr (4.3.1)

If we introduce the variable u = 1
r

, as in the analysis of the Keplerian orbits in the

Newtonian theory.Now by replacing this the fundamental equation becomes;

(
du

dφ
)2 = 2GMu3 − u2 +

2M

h2
u− 1− E2

h2
(4.3.2)

This equation determines the geometry of the geodesics in the invariant plane.Once

it have been solved for u = u(φ).

dτ

dφ
=

1

hu2
(4.3.3)

dt

dφ
=

E

hu2(1− 2Mu)
(4.3.4)
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Bound Orbits

This solutions of Eq.(4.3.2) will depend on E2 < 1 or E2 ≥ 1 This distinction are

between bound orbits and unbound orbits. Bound orbits are governed by an equation:

du

dφ
= f(u) (4.3.5)

where f(u) is given by,

f(u) = 2Mu3 − u2 +
2M

h2
u− 1− E2

h2
(4.3.6)

It is clear that the geometry of geodesics will be determined by the positions of the

roots f(u) = 0. Since f(u) is cubic in u, there are two possibilities: either all roots

are all, or one of them is real and the two remaining are complex conjugate ones. Let

u1, u2, u3 denote the roots of f(u) = 0. Then we have,

u1u2u3 =
(1− E2)

2Mh2
(4.3.7)

and

u1 + u2 + u3 =
1

2
M (4.3.8)

Since 1−E2 > 0,it must allow for one positive real root. From the further facts that

f < 0 for f(u)→ ±∞, for u→ ±∞

Case

⇒ If the three roots are all different,

There exists two distinct orbits confined to the interval u1 < u < u3 and u > u3,

i.e an orbit that oscillates b/n two extreme values for r and an orbit , starting at

a certain aphelion distance given by 1
u3

plunges in to the singularity at r = 0, i.e

u→∞ . These two classes of orbits are called orbits of the first kind and the second
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kinds.Orbits of both kinds are most conveniently parameterized by an eccentricity e

and a latus rectum l,similar to Newtonian orbits.

Orbits of the first kind

For this all three roots are positive, and we can write them as;

u1 =
1

l
(1− e) (4.3.9)

u2 =
1

l
(1 + e) (4.3.10)

u3 =
1

2M
− 2

l
(4.3.11)

The semilatus rectum l is some positive constant and the eccentricity e < 1 for u1 > 0,

as required by the condition E2 < 1.

The conformity with the ordering u1 < u2 < u3 requires

1
2M
− 2

l
≥ 1+e

l

l ≥ 2M(3 + e) (4.3.12)

Let µ ≡ M
l

The inequality becomes,

µ ≤ 1

2(3 + e)
, or, 1− 6µ− 2µe ≥ 0 (4.3.13)

In this parameter now f(u) is written as

f(u) = 2M(u− 1 + e

l
)(u− 1

2M
+

2

l
) (4.3.14)

For a Keplerian ellipse, the semilatus rectum l is the distance measured from a focus

such that;

1

l
=

1

2
(

1

r+
+

1

r−
) (4.3.15)
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where r+ = a(1 + e) and r− = a(1 − e) are the aphelion and perihelion positions of

the orbit respectively. Substituting the values of r+ and r− in to Eq.(4.3.15) for l it

gives:

1

l
=

1

a(1− e2)
(4.3.16)

The values of the two becomes,

r+ =
l

1− e
, and, r− =

l

1 + e
(4.3.17)

This justifies for the roots u1 and u2. This has to agree with the original form of the

function, giving the relations;

M

h2
=

1

l2
[l −M(3 + e2)] (4.3.18)

1− E2

h2
=

1

l3
[(l − 4M)(3− e2)] (4.3.19)

If expressed in terms of µ

1

h2
=

1

lM
[1− µ(3 + e2)] (4.3.20)

1− E2

h2
=

1

h2
[(1− 4µ)(1− e2)] (4.3.21)

From this equation it follows that µ < 1
3+e2

and µ < 1
4

As in the Keplerian problem, we now make [21]

u =
1

l
(1 + ecosθ) (4.3.22)

θ is now a kind of relativistic anomaly.

At aphelion,θ = π, we found u = (1−e)
l

and
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At perihelion, θ = 0, u = (1+e)
l

This substitution leads to the equation;

( dθ
dφ

)2 = 1− 2µ(3 + ecosθ)

= (1− 6µ+ 2µe)− 4µecos2(
θ

2
) (4.3.23)

or,

± dθ
dφ

=
√

1− 6µ+ 2µe
√

1− k2cos2( θ
2
) where

k2 = 4µe
1−6µ+2µe

The solution for φ can be expressed in terms of the Jacobian integral as,

F (ψ, k) =

∫ ψ

0

dγ√
1− k2sin2γ

(4.3.24)

where ψ = 1
2
(π − θ),thus finally written as

φ =
2√

1− 6µ+ 2µe
F (
π

2
,
θ

2
, k) (4.3.25)

where the origin of φ has been chosen at aphelion passage where θ = π.

The perihelion passage occurs at θ = 0, where ψ = π
2
.

The solution can be completed by the expressions for the proper time and the coor-

dinate time as;

τ =
1

h

∫
dφ

u2
=

1

h

∫
dφ

dθ

dθ

u2
(4.3.26)

and

t =
E

h

∫
dφ

dθ

dθ

u2(1− 2Mu)
(4.3.27)

The first-order corrections to the Keplerian orbits of the Newtonian theory can readily

be deduced from Eq.(4.3.23)

Under normal conditions, the parameter µ
h

is a very small quantity. It is essentially
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the ratio of the gravitational radius M to the major axis of a planetary orbit or a

binary star orbit. So expanding Eq.(4.3.23) to the first order in µ to obtain

−dφ = dθ(1 + 3µ+ µecosθ) (4.3.28)

integrating this gives

−φ = (1 + 3µ)θ + µesinθ) (4.3.29)

From this we understand that the change in φ after one complete revolution during

which θ changes by 2π is 2π(1 + 3µ). Therefore,the advance of the perihelion

∆φ, per revolution is,

∆φ =
6πM

l
=

6πGM

a(1− e2)c2
(4.3.30)

where

a- is the semi major axis of the particle’s orbit.

l- is semilatus rectum and

e- is eccentricity of particle’s orbit.

From Eq.(4.3.22) replacing u = 1
r

one can have,

1
r

= 1
l
(1 + ecosθ) from l = r(1 + ecosθ) and

l = a(1− e2) finally this gives

r(θ) =
a(1− e2)

(1 + ecos(θ))
(4.3.31)

4.3.1 Unbound Orbit

Both massless light ray and massive objects(particles)experience trajectory bending

in a gravitational field [22]. A massive object can have a significant effect on the

propagation of photons. Photons can travel in a circular orbit at r = 3GM
c2

. we do
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not expect to observe this effect directly, but a more modest bending of light can be

observed.For investigating the slight deflection of light, we follow an approximation

technique as we use before. The shape equation for photon trajectory in the equatorial

plane of the Schwarzschild geometry is;

d2u

dφ2
+ u =

3GM

c2u2
(4.3.32)

where u = 1
r

In the absence of matter, the right-hand side vanishes and the solution equals

u =
sinφ

b
(4.3.33)

which represents a straight line path with impact parameter b. we treat Eq. (4.3.32)

as the zeroth order solution to the equation of motion.Thus, we write the general

relativistic solution

u =
sinφ

b
+ ∆u (4.3.34)

where ∆u is a perturbation. By substituting this expression in to Eq. (4.3.31) , we

get to the first order in ∆u. which is

d2u

dφ2
+ ∆u =

3GM

c2b2
sin2φ (4.3.35)

Integrating this

∆u =
3GM

2c2b2
(1 +

1

3
cos2φ) (4.3.36)

Adding Eq.(4.3.34) and Eq.(4.3.35) together gives

u =
sinφ

b
+

3GM

2c2b2
(1 +

1

3
cos2φ) (4.3.37)

Now consider the limit r →∞, u→∞ For a slight deflection we take sinφ ≈ φ, and

cos2φ ≈ 1.
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Finally the total deflection is

∆φ =
4GM

c2b
(4.3.38)

where b is the impact parameter.
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Chapter 5

Result and Discussion

Result

VeffN

Veffs

0 5 10 15 20

-0.04

-0.02
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V
e
ff

Figure 5.1: Effective potential as a function of radius ( r
rs

)for various values of the
angular momentum
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For Eq.4.1.27 figure (5.1)we find that:

In Newtonian gravity, the circular orbits appear at rc = h2

GM
, and

In general relativity the situation is different only for r is sufficiently small and the

difference resides in the term −GMh2

r3
, the behaviors of the two graphs are similar.

But as r → 0,the potential goes to ∞, in the Newtonian case.

At r = 2GM
c2

, the potential is always zero; inside this radius is the black hole.

In Newtonian case there is only one stable circular orbit,but in General Relativity

there are two, which are one unstable at the upper and one stable at the lower part.

For Eq.4.2.7

Figure 5.2: Effective potential for photon orbits
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From figure (5.2) we see that the effective potential has a single maximum at r = 3GM
c2

,

where the value of the potential is, c4

27G2M2 . Therefore, the circular orbit at r = 3GM
c2

is unstable. From these ,we conclude that there are no stable circular orbits of photon

in the schwarzschild geometry.It comes from the infinity and then deflects when it

reaches event horizon then goes to infinity.

Figure 5.3: Ellipses with different eccentricities

For Eq.4.3.31,From figure (5.3) for some values of eccentricities(e < 1),i.e (e=0,0.1,0.5,and

0.9) the particles have different elliptical shapes.The particle is closest to the black

hole when θ = 0 and this minimum distance is at r− = l
1+e

and, again the greatest dis-

tance occurs at aphelion when θ = π then r+ = l
1−e . when the particle revolves around
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Figure 5.4: Ellipses with different eccentricities all in one

a black hole, the velocity of the particles becomes slow at the two points,perihelion

and aphelion.For small eccentricity, in the case e = 0 the semi-major and semi-minor

axis are equal, then the orbit is circle.

Discussion

Bound orbits which are not circular will oscillate around the radius of the stable

circular orbit.

For massive particles,

The circular orbits are at;

rc = h2±
√
h4−12G2M2h2

2GM
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For large h,there are two circular orbits, one stable and one unstable.

r =
h2±h2( 1−6G2M2

h2 )

2GM
= ( h2

GM
, 3GM)

In this limit, the stable circular orbit becomes further and further away, while the

unstable one approaches 3GM .

As we decrease h, the two circular orbits come closer together,they coincide when the

discriminant vanishes.i.e h =
√

12GM for which rmin = 3Rs It disappears entirely

for smaller h. Thus 6GM
c2

is the smallest possible radius of a stable circular orbit

in the Schwarzschild metric.There also unbound orbits, which come in from infinity

and turn around, and bound but non circular ones, which oscillate around the stable

circular radius.

Therefore, Schwarzschild solution possesses stable circular orbits for r > 6GM
c2

and

unstable circular orbits for 3GM
c2

< r < 6GM
c2

.

For massless particles there are no circular orbits. Massless particles actually move

in straight line, since the Newtonian gravitational force on a massless particle is zero.

Interms of the effective potential a photon with a given energy will come in from

r = ∞ and gradually slow down, but the speed of light is not changing until it

reaches the turning point,then it will start moving away back to r =∞. The smallest

value of h for which the photon will come closer before it starts moving away, is those

trajectories which are initially aimed closer to the gravitating body.

At last when we come to the particles trajectory of bounded orbits round the black

hole, since the eccentricity we have taken during our work is 0 ≤ e < 1, the trajectory

that happened while the particle rotates round the black hole is ellipse.The points

in the trajectory which are closest to the focus and furthest away from the focus are

called the perihelion and aphelion respectively.
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Chapter 6

Conclusion and summary

When we study about the dynamics of particles around stellar black holes on the basis

of general relativity,we used Einstein’s field equations and we derived the Schwarzschild

metric solutions. Using this metric we did drive different relevant dynamical equa-

tions. Also starting from geodesic equation in connection with Lagrangian equation

we derived equations for the trajectories of both massive and massless particles, like

equation for effective potential of massive and massless particles, polar equations of

ellipse and the behavior of the trajectories have been studied. In our analytical deriva-

tions particles motion would be considered and using these equations we generate the

numerical data by MATHEMATICA and produce different graphs(figures).As a result

during the motion of particles around stellar black holes those particles with weak

gravity (Newtonian)have stable circular orbits while particles with strong gravity have

both stable and unstable orbits. when these particles approach to the Schwarzschild

radius they will trapped in to a black hole. There are also no stable circular photon

orbits in the Schwarzschild geometry. They have only one unstable circular orbits.
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