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Abstract

Nickel is a metal which is widely distributed in nature; and it is found in animals,

plants, and soil. The density functional theory (DFT) simulation tools were employed

to investigate energies, magnetization and geometrical structure of nickel (Ni) using

quantum ESPRESSO package. A number of convergence test were performed, to es-

tablish the optimal value of various parameters in the numerical calculations. Firstly,

the total minimum energy of nickel per atom is calculated as a function of cut-off en-

ergy, and k-points. Secondly, the optimal lattice constant and the magnetic ordering

were calculated for bulk nickel. Here to find the equilibrium lattice constant of nickel,

the total energy calculation with a series possible parameters of lattice constant have

been performed. Moreover, the total magnetization of an atom is computed as a

function of smearing(Marzari-Vanderbilt). In addition to these, Fermi-Dirac func-

tion was employed to describe the probability of electronic state occupations. Also

the calculations were repeated with Gaussian, Marzari-Vanderbilt and Methfessel-

Paxton functions. The total minimum energy per atom is monotonically decreasing

with increasing cutoff energy due to variational principle. However, this trend can not

be predicted from increasing the k-point sampling. The computational value of the

equilibrium lattice constant is 6.47 Bohr. This result is in good agreement with ex-

perimental value. Furthermore, the negative magnetization observed in low fields has

been ascribed to two oppositely ordered ferromagnetic super exchange interactions.

Moreover, the convergence in cold smearing is very fast than Fermi-Dirac smearing.

keywords: Nickel, Density Functional Theory, Total Minimum Energy, Electronic

Structure and Total Magnetization.
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Chapter 1

Introduction

1.1 General Background

Swedish mineralogist Axel Fredrik Cronstedt was first identified nickel as an element

in 1751, but he did not name it until 1754. The name comes from the German

word kupfernickel, meaning ”Old Nick′s Copper”. For the first time pure nickel was

obtained apparently by Richter. Nickel is widely distributed in nature and is found in

animals, plants, and soil. It is the 24th most abundant element, forming about 0.008%

of the earth’s crust and 6% of the earth’s core. Nickel is a metal which is belongs to

group 10/VIIIB of the periodic table. It has (atomic number, 28; atomic weight, 58.69

and density, 8.9 g/cm3). The electronic configuration of the nickel (Ni) is represented

by [Ar]3d84s2. Nickel has five types of isotopes such as: 58Ni, 60Ni, 61Ni, 62Ni, and

64Ni; the 58Ni is the most abundant. The most important oxidation state of nickel is

+2, although the +3 and +4 oxidation states are known. Pure nickel has properties

that make it very desirable for combining with other metals to form alloys. Such as:

hard-ness, silvery-white and shiny surfaces, high melting point, ductility, malleability,

some what ferromagnetic behavior, fair conductor of heat and electricity and etc.

Some of the metals that can be alloyed with nickel are: iron, copper, chromium,

1
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molybdenum and zinc. Mostly, nickel is used to make stainless steel. Nickel alloys

have a number of unique properties, or combinations of properties, that allow them

to be used in variety of specialized industrial and commercial applications depending

on the primary metal which they are alloyed with and their nickel content. For

example, the high resistivity and heat resistance of nickel chromium alloys lead their

use to electric resistance of heating elements. The magnetic properties of nickel-iron

alloys are used in electronic devises and for electromagnetic shielding of computers

and communication equipments. Nickel is a relatively un reactive element. At room

temperature, it does not combine with oxygen or water or dissolve in most acids. At

higher temperatures it becomes more active. Nickel is emitted to the atmosphere from

both natural and anthropogenic sources. Environmental exposure to nickel occurs

through inhalation, ingestion, etc. The general population is exposed to low levels of

nickel because it is widely present in air, water, food, and consumer products. Nickel

is one of the three naturally occurring elements that is strongly magnetic. The other

two elements are iron and cobalt. But nickel is less magnetic than iron and cobalt.

Nickel crystallizes with the face-centered cubic arrangement atom. This means that

the atoms form the corners of a cube, with one atom in the center of each face [1-2].

The total energy of face centered cubic nickel can be calculated by a plane-wave

basis set as a function of volume. Density functional theory (DFT) or ab-initio com-

putations would be applied to the nickel atom; to examine its different properties.

Density Functional Theory is the most widely applied ”ab-initio”method used for real

materials in: physics, chemistry, and material science. It is the model of choice for

understanding condensed matter at low energy. Its success derives from the ability

to produce accurate results [3-4].
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1.2 Statements of the problem

It is clear that many body problems are complicated and difficult to solve. The state

of motion can not be solved analytically for systems in which three or more masses

are interact. In recent years, solved by the application of density functional theory

techniques of many body systems, such as molecular and solid state systems and

problems of chemical interest. The basic purpose of density functional theory is that

any property of the systems of many interacting particles can be viewed as a functional

of the ground state density no(r); in principle determines all the information in the

many body wave functions for the ground state. Nickel metal is more active at higher

temperature. If it is heated above Tc, the spontaneous magnetic ordering breaks down

in a second order phase transition, leaving the metal in paramagnetic state. The

changes in the electronic structure and the amount of short range magnetic order

above Tc of nickel atom are subjects of a long and still debate. The electronic and

structural properties of nickel based on Density Functional Theory is not well studied.

Therefore, decided to study the electronic and structural properties of nickel. So the

aim of this study is to investigate the electronic and structural properties of nickel

with the help of density functional theory using quantum ESPRESSO package.

1.3 Objectives

1.3.1 General Objective

IThe general objective of this study is to investigate the electronic and structural

properties of nickel using density functional theory (QUANTUM ESPRESSO).
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1.3.2 Specific Objectives

The specific objectives of this study were:

ITo calculate the total minimum energy of nickel per atom with respect to cut-off

energy;

ITo calculate the total minimum energy of nickel per atom with respect to K-

points sampling;

ITo calculate the lattice constant of nickel with respect to cut-off energy and

K-points sampling;

ITo calculate the total magnetization of nickel per atom with respect to smearing

(Marzari-Vanderbilt);

ITo calculate the total minimum energy of nickel per atom with respect to dif-

ferent smearing occupational functions.

1.4 Significance of the study

The significance (purpose) of this study is to investigate the electronic and structural

properties of nickel (Ni) or many electron-system using computational methods, ab-

initio or density functional theory techniques. This study also used to identify the

applications of metallic nickel and nickel compounds. Metallic nickel and nickel com-

pounds have many industrial and commercial applications, including, use in stainless

steel and other nickel alloys. These alloys are used in making metal coins and jewelry

and in industry for making items such as valves, heat exchangers, catalysts, batteries,

pigments, ceramics, etc.
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1.5 Scope of the study

The scope of this study is limited to the calculation of the total minimum energy

of nickel, with respect to cut-off energy, k-points, lattice constants, and smearing

for different functions and total magnetization of nickel per atom with respect to

smearing (Marzari-Vanderbilt).

1.6 Abbreviations, Units and Words

1.6.1 Abbreviations

Some abbreviations that used in this study are:

Ry-Rydberg(used in the implementation of the DFT)

DFT-Density Functional Theory

LDA-Local Density Approximation

GGA-Generalized Gradient Approximation

1BZ-First Brillouin Zone

FCC-Face Centered Cubic

Ni-Nickel

PWscf -plane-wave self-consistent-field

GGA-PBE-generalized gradient approximations of Perdew-Burke-Ernzerhof

ESPRESSO-OPEN SOURCE PACKAGE FOR RESEARCH IN ELECTRONIC

STRUCTURE, SIMULATION, AND OPTIMIZATION

Exc -The exchange-correlation energy

KS-Kohn-Sham

HF-Hartree-Fock
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1.6.2 Units

In this study the following units are used:

1Ry-length unit=0.52917725Å

1RY-energy unit=13.60569253ev

1.6.3 Words

In this study the following words are used:

K-points: The number of points in the reciprocal space that the program is

supposed to sample, i.e. the points in which the actual self consistent minimization

of the energy would be performed.

Energy-cutoff : Limits the amount of plane waves that the program would used

during the minimization procedure.

Atomic Species: Specified the symbols of the atoms with their corresponding

masses (as written on the periodic table).

Atomic Positions: Specified the atomic coordinates of the atoms.

.



Chapter 2

Literature Review

2.1 Introduction

DFT is used to study the electronic and structural properties of atoms, molecules or

bulk materials. The DFT provides a frame work to obtain the electronic structural

and the total energy using the concepts of quantum mechanics. The DFT is used to

study the electronic and structural properties of atoms, total minimum energy, cut-off

energy, k-points, total minimum force on the atoms, etc. The DFT can be used to

address a vast variety of systems and problems in physics, chemistry, biology, and

material science [5].

2.2 Density Functional Theory

DFT is a successful approach (a reliable tool) for studying or finding solutions to

the fundamental equation of the quantum behavior of atoms and molecules at low

energies. DFT in principle, is an ab initio method, meaning that it does not use any

experimental results on chemical bonding. It works with the electron density. There

are significant advantages to a computational theory based on electron densities. The

first is in relation to computational efficiency; the electron density depends on three

7
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spatial variables in contrast to the 4N variables that wave function theory depends on

(three spatial and one spin per electron). Therefore, large system can theoretically be

modeled. In addition, electron correlation is conceptually easier to include in DFT.

It is a simpler quantity to deal with. It has achieved a certain status as a standard

first principle method. First-principles calculations based on DFT have achieved great

success in studying the equilibrium properties of matter, although there are still many

challenges to DFT. One of the most famous issues is how we solve the problems when

encountering electronic degeneracies. Such an issue usually does not pose a problem

to the equilibrium conditions. It is well known that electronic degeneracies cannot

exist in the ground state of a nonlinear atomic geometry. In DFT we only need to find

the charge distribution through out our system. Then we can describe single electrons

moving in a crystal mean field of all ions and other electrons. In this way, we can

calculate solids up to a few thousand atoms . DFT is a formally exact representation

of the N electrons Schrödinger equation. The extent to which DFT has contributed

to the chemical, physical and biological sciences is reflected by the 1998 Nobel prize

in chemistry, which was awarded to Walter Kohn for the development of DFT, along

with John Pople for the development of quantum chemistry [6-7].

2.3 The Schrödinger Equation

The ultimate goal of most approaches in solid state physics and quantum chemistry

is the solution of the time independent, non-relativistic Schrödinger equation. The

electronic Schrödinger equation of a system of N electrons reads:

ĤΨ(r1, ..., rN) = EΨ(r1, ..., rN) (2.3.1)
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where Ĥ is the Hamiltonian of the system , E is energy, rN is coordinate of the

electron with index N and Ψ(r1, ..., rN) is the many particle wave function.

Ĥ = T̂e + V̂ne + V̂ee + T̂n + ˆVnn (2.3.2)

T̂e =

Nelec∑
i

−1

2
∇2

i (2.3.3)

V̂ne =
Nnuc∑

a

Nelec∑
i

Za

|Ra − ri|
(2.3.4)

V̂ee =

Nelec∑
i

Nelec∑
j>i

1

|ri − rj|
(2.3.5)

T̂n =
Nnuc∑

a

−1

2
∇2

i (2.3.6)

ˆVnn =
Nnuc∑

a

Nnuc∑
b>a

ZaZb

|Ra −Rb|
(2.3.7)

in atomic units.

2.4 Born-Oppenheimer approximation

By Born-Oppenheimer approximation the nuclear kinetic energy is zero (nuclei much

slower than the electrons) and their potential energy is merely a constant (nuclear

positions are fixed). Then the Hamiltonian reduces to:

Ĥ = T̂e + V̂ne + V̂ee (2.4.1)

where,
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T̂e is the kinetic energy of the electrons,

V̂ne is the electron-nuclei coulomb potential

V̂ee is the electron-electron coulomb potential

T̂n is kinetic energy of the nuclei

ˆVnn is nuclei-nuclei coulomb potential

Za is the atomic number of nucleus a,

R is nuclear coordinates

r is electronic coordinates

∇2
i is the laplace operator of particle i,[8-11].

2.5 Hartree-Fock method

The HF method is a well defined starting point for the theoretical formulation of many

body systems. It is an alternative to DFT approaches. It is the simplest ab-initio

calculation. In this method exchange energy is exact. The major disadvantage of HF

calculation is the electron correlation effect is not taken into consideration, i.e.non

classical electron-electron interactions beyond the coulomb and exchange interactions.

A many electron wave function must be antisymmetric with respect to the interchange

of the coordinate (both space and spin) of any two electrons. In general, the periodic

HF method is best suited for the study of highly ionic and large band gap crystals,

because such systems are the least sensitive to the lack of electron correlation [12].

2.6 Theorems of Hohenberg and Kohn

The foundation of the DFT method is the Hohenberg-kohn theorem, which states

that for each given electronic density n(r), there is one and only one corresponding
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potential. All properties of the many body system are determined by the ground

state density.

2.6.1 First theorem of Hohenberg and Kohn

The ground-state energy of a many-body system is a unique functional of the particle

density. In principle, all properties of the ground state can be expressed as functionals

of the ground state spin density matrix ρo. Therefore, the ground state wave function

Ψo (which can be determined by density functional theory) minimizing the energy

functional:

E[Ψ] = 〈Ψ|Ĥ|Ψ〉 (2.6.1)

Using Ψo[ρo] one can determine all properties by calculating:

〈Ô〉[ρo] = 〈Ψo[ρo]|Ô|Ψo[ρo]〉 (2.6.2)

where Ô is an arbitrary operator. This is in particular true for the ground state energy

E[ρo] or the expectation value of the kinetic energy 〈T̂ 〉[ρo] or for the interaction

energy of the electrons 〈Û〉[ρo].

2.6.2 Second theorem of Hohenberg and Kohn

The functional of E[(~r)] has its minimum relative to variations δn(~r) of the particle

density at the equilibrium density no(~r). The Raleigh-Ritz variational principle is

used to minimize the energy and find the ground state energy and density.

Eo = E[no(~r)] = minE[n(~r)] (2.6.3)

δE[n(~r)]

δn(~r)
|n(~r)= no(~r) = 0 (2.6.4)
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this theorem defines the following functional of the spin density matrix ρ

F [ρ] = min〈Ψ|T̂ [ρ] + Û [ρ]|Ψ〉. (2.6.5)

The minimum is with respect to the wave function Ψ but for a given spin density

matrix ρ only those wave functions are valid which build Ψ. The functional of the

total energy is

E[ρ] = F [ρ] +

∫
tr(ρrW [ρ(r)])d3r (2.6.6)

For a given potential matrix W , minimizing the above equation, yields the ground

state energy Eo and the ground state spin density matrix ρo. If F [ρ] (universal

functional) is known, the problem is a minimization problem for ρ [13,14].

2.7 Kohn-Sham Equations

The Kohn-Sham approach of DFT is the most used quantum mechanical method for

the calculation of the geometrical and electronic properties of molecules, surfaces,

and solids. It is an approach for approximating the functional by mapping the in-

teracting many electron system of non-interacting electrons. Replace original many

body problem with an independent electron problem. Calculations on very large sys-

tems (up to several thousands of atoms) are possible, since DFT has a relatively low

cost which is due to the mapping of a system of interacting electrons to a system

of fictitious non-interacting electrons with same electron density. The price to pay

for this computational efficiency is the need to choose an approximate functional to

represent the exchange correlation energy. Therefore the accuracy of the results of

a good calculation (i.e. use of a soft ware with an accurate implementation of the

KS equations) relies only on the chosen exchange-correlation functional. Only the
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ground state density and energy are required to be the same as in the original many

body system. In the theory of Kohn and Sham the problem of calculating the ground

state properties of the system of interacting electrons is reduced to the problem of

calculating these properties via a hypothetical system of non-interacting electrons in

an effective potential with the respective single-electron wave functions.

Ψi(r) =

(
Ψ↑

i (r)

Ψ↓
i (r)

)
(2.7.1)

the spin-density matrix ρ is:

ρα,α′ =
N∑

i=1

Ψα
i (r)

(
Ψα′

i (r)
)∗

(2.7.2)

with α =↑, ↓ can be defined. It is useful to introduce the particle density as well

n(r) =
N∑

i=1

(|Ψ↑
i (r)|2 + |Ψ↓

i (r)|2) (2.7.3)

Kohn and Sham use a model system (subscript s) where N mutually non-interacting

particles are in an effective potential (matrix). The effective Schrödinger equation

reads in atomic units:

[
−1

2
∇2 + [Weff [ρ](r)]]Ψi(r) = EiΨi(r) (2.7.4)

In order to calculate the DFT, quantities accurately molecular Kohn-Sham (KS)

solutions have been obtained from ab-initio wave functions [15,16].

2.8 The exchange-correlation energy

The exchange-correlation energy Exc of a many-electron system is the key quantity

of DFT. With in the Kohn-Sham theory Exc is defined as afunctional of the electron

density ρ in the KS expression for the total electronic energy E[ρ],

E[ρ] = Ts[ρ] + V [ρ] + WH [ρ] + Exc (2.8.1)
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where Ts is the kinetic energy of a non-interacting particle system with density ρ. V

is the energy of electron-nuclear attraction and WH is the coulomb or Hartree energy.

Exc can be further subdivided into the exchange Ex and correlation Ec energies.

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.8.2)

Accurate values of the exchange and correlation energies obtained for chemically in-

trusting systems are essential for analysis of the effect of electron correlation with

in Kohn-Sham theory and in order to test and calibrate various DFT approxima-

tions (Local Density Approximation (LDA) and Generalized Gradient Approximation

(GGA)).

2.8.1 The Local Density Approximation (LDA)

A first family of exchange-correlation functionals is the LDA functionals. The idea of

these functionals is the first look at the case of a homogeneous electron gas. In such a

system, one considers electrons moving in, a uniform external potential. In DFT,the

electronic density rather than the wave function is the basic variable.

ELDA
xc [n] =

∫
n(r)εxc[n(r)]d~r (2.8.3)

There is no known formula to calculate from the density the total energy of many

electrons moving in an external potential. Hohenberg and Kohn proved that there

exists a universal functional of the density, called G[ρ], such that the expression:

E[ρr] =

∫
Vext(r)ρrd

3r +
1

2

∫
ρrρr′

|r − r′|
d3rd3r′ + G[ρ] (2.8.4)

has its minimum value that correct ground-state energy associated with Vext(r).Here,

the first term on the right-hand side represents the energy due to an external potential,
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including the electron-nuclear potential, while the second term is the classical coulomb

energy of the electronic system. The functional G[ρ] is valid for any number of

electrons and any external potential, but it is unknown and further steps are necessary

to approximate it. Another disadvantages of the LDA is that the Hartree coulomb

potential includes interactions of each electron with it self, and the spurious term is

not canceled exactly by the LDA self-exchange energy, in contrast to the Hartree-Fock

method where the self-interaction is canceled exactly.

2.8.2 The Generalized Gradient Approximation (GGA)

The GGA functional depends on the local electron density as well as the spatial

variation of the electron density that is represented by the density gradient. The idea

behind these functionals was to improve the approximation of LDA by considering

not only the electron density, but also the local gradient of the density. The GGA

functional can be written as

EGGA
xc [n] =

∫
n(r)εxc[n(r),∇n]d~r (2.8.5)

The EGGA
xc [n] is the exchange correlation energy per particle of an electron gas. The

GGA method gives better total energies[17-19].

2.9 The Pseudopotential

A smooth effective potential that reproduces the effect of the nucleus plus core elec-

trons on valence electrons. Many of the physical and chemical properties of molecules

and solids are derived due to the interactions between the valence electrons. The

pseudopotential approximation is motivated by the fact that the behavior of the va-

lence electrons in the bonding region primarily determines the electronic structure and
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the structural properties of many materials. In a pseudopotential formulation, the

effect of the core electrons and that of the nuclear potential are combined to form an

effective ionic pseudopotential. The pseudopotentials are commonly constructed, so

that outside of a core region the valance pseudowave functions match the correspond-

ing states derived from an all-electron calculation, inside the region they are smooth

functions. This formulation makes pseudopotential calculations quite efficient, since

the core orbital do not need to be recomputed. The relaxation corrections takes into

account the relaxation of the electronic system up on the excitation of an electron

[20,21].

2.10 Periodic super cells

We would define the shape of the cell that is repeated periodically in space, the super

cell, by lattice vectors ~a1, ~a2, and ~a3. If we solve the Schrödinger equation for this

periodic system, the solution must satisfy a fundamental property known as Bloch’s

theorem [22,23].

2.10.1 Bloch’s theorem

A Bloch’s function is the generalization of a plane wave for an electron in periodic

potential. Bloch’s theorem states that in a periodic solid each electronic wave function

can be written as the product of cell-periodic part and wave like part.

Ψk(r) = e
~i ~G.~ruk(r) (2.10.1)

where uk(r) is periodic in space with the same periodicity as the super cell. That is,

uk(~r + n1 ~a1 + n2 ~a2 + n3 ~a3) = uk(r) (2.10.2)
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for any integers n1, n2, and n3. This theorem is means that it is possible to try and

solve the Schrödinger equation for each value of k independently. The cell-periodic

part of the wave function can be expanded using a basis set consisting of a discrete

set of plane waves whose wave vectors are reciprocal lattice vectors of the crystal,

uk(r) =
∑

G

Ci,Gei ~G.~r (2.10.3)

where Ci,G are expansion coefficients, the reciprocal lattice vectors G are defined by:

~G.~a = 2πn (2.10.4)

for all ~a ,where ~a is a lattice vector of the crystal and n is an integer. Therefore each

electronic wave function can be written as a sum of plane waves,

Ψk(r) =
∑

G

Ci,k+Gei(~k+ ~G).~r (2.10.5)

The electronic wave functions at each k-point can be expressed in terms of a discrete

plane wave basis set. In principle the Fourier series is infinite. However, in practice

we can not work with an infinite basis set, it has to be truncated. The number of

plane waves can be restricted by placing an upper boundary to the kinetic energy of

the plane waves. This boundary is called energy cut-off (Ecut)[24,25].

2.10.2 Energy cutoffs

Energy cutoff limit the number of plane wave components. The minimum length

scale depends on the elements in the system. Energy monotonically decreases to the

ground state energy as Ecut increases. Our discussion of k-space would begin with

Bloch’s theorem, which tells us the solutions of the Schrödinger equations for a super

cell that have the form

Ψk(r) = ei~k.~ruk(r) (2.10.6)
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where uk(r) is periodic in space with the same periodicity as the super cell. It is

now time to look at this part of the problem more carefully. The periodicity of uk(r)

means that it can be expanded in terms of a special set of plane waves:

uk(r) =
∑

G

Ci,Ge[i( ~K+ ~G).~r] (2.10.7)

where the summation is over all vectors defined by:

~G = n1
~b1 + n2

~b2 + n3
~b3 (2.10.8)

with integer values ni. The set of vectors defined by ~G in reciprocal space are defined.

so that for any real space lattice vector, combining the two equations above gives:

Ψk(r) =
∑

G

Ci,k+Ge[i(~k+ ~G).~r] (2.10.9)

According to this expression, evaluating the solution at even a single point in k-space

involves a summation over an infinite number of possible values of G. This does not

use for practical calculations. they are solutions with kinetic energy:

E =
~2

2m
|~k + ~G|2 (2.10.10)

It is reasonable to expect that the solutions with lower energies are more physically

important than solutions with very high energies. As a result, it is usual to truncate

the infinite sum above to include only solutions with kinetic energies less than some

value:

Ecut =
~2

2m
G2

cut (2.10.11)

The infinite sum then reduces to:

Ψk(r) =
∑

|G+k|<Gcut

cG+ke
[i( ~K+ ~G).~r] (2.10.12)
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This expression includes slightly different numbers of terms for different values of

k. The discussion above has introduced one more parameter that must be defined

whenever a DFT calculation is performed the cutoff energy (Ecut) [26,27].

2.10.3 K-points sampling

The solution that is used most widely was developed by Monk-horst pack in 1976. A

regular grid in k-space. The symmetry of the cell may be used to reduce the number

of k-points which are needed. Using these methods, one can obtain an accurate

approximation for the electronic potential and the total energy of an insulators or

semiconductor by calculating the electronic states at a very small number of k-points.

The electronic potential and total energy are more difficult to calculate if the system

is metallic because a dense set of k-points is required to define the Fermi surface

precisely. The magnitude of any error in the total energy due to inadequacy of

the k-points sampling can always be reduced by using a denser set of k-points. The

computational cost of performing a very dense sampling of k-space can be significantly

reduced by using the k-point total energy method [28,29].

2.10.4 Plane wave basis

The plane wave method originates from calculations of extended bulk surface systems.

Systematic convergence with respect to single parameter Ecut. The obvious choice for

periodic and works well for a periodic systems. Non-local, cover all space equally. In

principle , an infinite plane wave basis set is required to expand the electronic wave

function. However, the coefficients, ~K + ~G for the plane waves with small kinetic

energy, ~2

2m
| ~K + ~G|2 are typically more important than those with large kinetic energy.

Thus the plane wave basis set can be truncated to include only plane waves that have
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kinetic energies less than some particular cutoff energy. Application of the Bloch’s

theorem allows the electronic wave functions to expanded in terms of a discrete set

of plane waves. Introduction of any energy cutoff to discrete plane wave basis set

produces a finite basis set. The structural and magnetic properties of ferromagnetic

nickel is computed by using a plane wave basis set [30,31].

2.11 Magnetic System

When a magnetic field is applied, the electrons acquire extra energy term due to inter-

action of their spins with the field. Molecules and materials processing a net magnetic

moment are at the core of many modern technology logical devices, such as electri-

cal power generators and transformers, computers, telephones, etc. The measurable

imbalance of electron spins align with and against the field is weak effect known as

Pauli paramagnetism. There different magnetic systems, such as ferromagnetic and

anti-ferromagnetic systems.

2.11.1 Ferromagnetic system

If the spins align parallel to the field, then its magnetic energy is negative (electrons

are a lower energy then they were in the absence of a field). Ferromagnetism arises

from parallel orientation of the magnetic moments of atoms in the absence of an

external field. This can lead the large and permanent magnetization. Iron, nickel and

some of the rare earths (gadolinium,and dysprosium) exhibit ferromagnetic properties.

Usefulness of a particular ferromagnetic substances depends on factors such as: size

of magnetization produced, how easily it can be magnetized and demagnetized, how

readily it responds to an applied field.
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2.11.2 Anti-ferromagnetic system

Another phenomenon of magnetism is anti-ferromagnetic ordering. If the spins align

anti-parallel (opposite direction) to the field, it may go to a higher energy state and

change spin, as long as the promotion energy is not more than the gain in magnetic

energy [32-35].



Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical. The main source of information were the published

articles, books, the published thesis and manuscripts and dissertation carried out

based on the project title. Softwares and computers are additional instruments, which

will be used to accomplish the study.

3.2 Methodology

DFT calculations were performed with the generalized gradient approximations of

Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation functional, Vanderbilt ul-

tra soft pseudo potentials and the plane wave basis sets are implemented in the Quan-

tum ESPRESSO program package. Quantum ESPRESSO is an integrated module

of computer codes for electronic and structural calculations and materials modeling

depending on the frame work of the DFT, plane wave basis sets (PW) and pseudo

potentials to represent the electron-ion interactions. It is free, open-source software

distributed under the terms of the GNU General Public Licence (GPL). The most

important input parameters in Quantum Espresso are: number of atoms in unit cell,

22
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types of atoms in the periodic cell, bravais-lattice index, lattice parametirs, the ki-

netic energy cutoff, k-points, atomic positions and atomic species. The structure of

the normal phase of Ni was optimized until the total energy has been converged.

Also several sets of Monkhorst-pack k-point grid samplings were tested. Plane waves

are easy lattice-periodic basis functions but in general not possible to expand the

crystal wave function in plane waves because of the strong oscillation near the cores

(almost infinitely many plane waves) would be required. The pseudopotential method

avoids the problem. A very famous one is the ultrasoft pseudopotential. The ultra-

soft pseudopotential is constructed to be smoother, which has the advantage that an

even smaller amount of plane waves are needed for the expansion. A popular im-

plementation of the ultrasoft pseudopotential method is the open source plane-wave

self-consistent-field (PWscf). The PWscf or the iterative approach to self consistency

using different techniques in the frame work of the plane wave pseudopotential method

with regards to the ultrasoft pseudopotentials are implemented. PWscf can use the

LDA or the GGA exchange correlation functionals, including spin polarization. 1BZ

integration in metallic systems is performed by smearing techniques,such as the Fermi-

Dirac, Gaussian, Methfessel-Paxton, and Marzari-Vanderbilt cold smearing.[36-41].



Chapter 4

Results and Discussion

Introduction

DFT calculations are used to study the electronic and structural properties of

nickel. One of the important aspects in studying nickel is the total minimum energy.

The results are mainly presented in tables and figures. The first result is the total

energy of Ni per atom with respect to energy cutoffs. Then, with different k-point

sampling, lattice constants and different smearing occupational functions. Further-

more, the computations were used to calculate the total magnetization against the

smearing (Marzari-Vanderbilt).

4.1 Total minimum energy of Ni per atom with

respect to energy cutoffs

Here the input was 4×4×4 k-points (64 atoms); some of these k-points have the same

energy due to the symmetry of the crystal. The calculation was done using different

energy cutoff values, from 20 Ry to 250 Ry and lattice constant of 6.48 Bohr. See

Table 4.1.

24
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Table 4.1: The results of the total minimum energy computed with energy cutoffs

Energy cutoffs(Ry) Total energy(Ry)
20 -85.72192242
30 -85.72386001
40 -85.72407458
50 -85.72411497
60 -85.72414280
70 -85.72414685
80 -85.72415325
90 -85.72415452
100 -85.72415624
110 -85.72415733
120 -85.72415759
130 -85.72415823
140 -85.72415848
150 -85.72415859
160 -85.72415883
170 -85.72415896
180 -85.72415900
190 -85.72415909
200 -85.72415918
210 -85.72415921
220 -85.72415924
230 -85.72415928
240 -85.72415930
250 -85.72415932
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4.1.1 Convergence test of total minimum energy of Ni per
atom with respect to energy cutoffs

The convergence of the total energy of Ni with respect to the plane wave cutoff energy

was investigated. An increment of energy cutoff for wave function is made until the

convergence is achieved. The total minimum energy converge at 100 Ry plane wave

cutoff energy and the total ground state energy had its minimum at -85.72415624

Ry. Moreover, the total minimum energy is monotonically decreasing with increasing

energy cutoffs for wave function as shown in Fig.4.1. The accuracy of the ground

state energy depends on the number of basis functions. Moreover, when the number

of basis functions approaches infinity, energy is close to the ground state energy.

Figure 4.1: Total minimum energy of Ni per atom with respect to energy cutoffs
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4.2 Total minimum energy of Ni per atom with

respect to K-point grid sampling

In this case, the calculation was done using different k- point’s values from 2× 2× 2

to 20×20×20 mesh with 2.0 points. Here the other variables such as lattice constant

and energy cutoff are kept fixed. The results are described in Table 4.2.

Table 4.2: The results of the total minimum energy of Ni per atom computed with
K-points grid

k-points grid Total energy(Ry)
2× 2× 2 -85.73903574
4× 4× 4 -85.72339901
6× 6× 6 -85.72236471
8× 8× 8 -85.72256755
10× 10× 10 -85.72240765
12× 12× 12 -85.72242470
14× 14× 14 -85.72241243
16× 16× 16 -85.72241022
18× 18× 18 -85.72241031
20× 20× 20 -85.72240921

4.2.1 Convergence test of total minimum energy of Ni per
atom with respect to K-point grid sampling

A convergence test of total energy for k-point sampling was performed on Ni. The

total energy of the Ni atom was calculated using various sets of k-points ranging from

2× 2× 2 to 20× 20× 20. In each of these cases the plane wave kinetic energy cutoff

of 24 Ry was used. The total minimum energy of Nickel is calculated as a function

of k-points grid size using PWscf code. For this calculations, the other variables

(lattice constant, energy cutoff) are kept constant . Convergence of the total energy
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with respect to the discrete Brillouin zone sampling was achieved for 10 × 10 × 10

Monkhorst-Pack grid. This corresponds 110 irreducible k-points. The Brillouin zone

integration has been performed with the smearing technique of Marzari-Vanderbilt.

The total ground state energy has its minimum at -85.72240765 Ry as given in Fig.4.2.

Figure 4.2: Total minimum energy of Ni per atom with respect to k-point grid size

4.3 The equilibrium lattice constant of nickel (Ni)

atom

The optimal lattice constant was calculated for Ni atom. The face centered cubic

(fcc) crystal structures were used. For the calculation of the crystal, a plane wave

kinetic energy cutoff of 100 Ry and a Monkhorst-Pack grid of 10× 10× 10 were used.

The results are clearly shown in Table 4.3.
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Table 4.3: Total minimum energy of Ni per atom with respect to lattice constant

Lattice constant(Bohr) Total energy(Ry)
6.41 -85.72277342
6.42 -85.72290751
6.43 -85.72301423
6.44 -85.72309465
6.45 -85.72314920
6.46 -85.72317869
6.47 -85.72318290
6.48 -85.72316575
6.49 -85.72312571
6.50 -85.72306186
6.51 -85.72297070
6.52 -85.72285664
6.53 -85.72272064
6.54 -85.72256427
6.55 -85.72238402

4.3.1 Convergence test of total energy of Ni per atom with
respect lattice constant

To find the equilibrium lattice constant of Nickel the total energy calculation was

performed for a series of possible parameters. In this calculation the energy cutoff and

the k-point sampling are made fixed (100 Ry, 10× 10× 10 k-point) using the energy

cutoff and k-point grid criteria for energy convergence. The numerical calculation

shows that the equilibrium lattice constant is 6.47 Bohr. This result is in a good

agreement with the experimental value (the experimental value is 6.48). See Fig.4.3.
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Figure 4.3: Total minimum energy of Ni per atom with respect to lattice constant

4.4 The Total Magnetization Of Ni Per Atom

With Respect To Smearing (Marzari-Vanderbilt)

The fcc crystal structures of nickel were used. It is an itinerant ferromagnetic, which

means that its magnetic moments are carried by the conduction band electrons. Mag-

netization is defined as the magnetic moment per unit volume; or when placing mag-

netic materials in magnetic fields, that material will generate magnetic changes. This

is called magnetization. To calculate the magnetization, the kinetic energy cutoff of

24 Ry, lattice constant of 6.48 Bohr, and a Monkhorst-pack grid of dimensions 4×4×4

super cells (64 atoms) are kept constant. The results are shown in Table 4.4.
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Table 4.4: Total magnetization of nickel with respect to smearing (Marzari-
Vanderbilt)

Smearing Total magnetization(Bohr mag/cell)
0.01 0.69
0.02 0.73
0.03 0.79
0.04 0.81
0.05 0.78
0.06 0.71
0.07 0.54
0.08 0.18
0.09 -0.03
0.10 -0.05
0.11 0.04
0.12 0.03
0.13 0.01
0.14 0.01
0.15 0.02

4.4.1 Convergence test of total magnetization of Ni per atom
with respect to smearing (Marzari-Vanderbilt)

The total magnetization convergence test was achieved, at smearing/degauss=0.11.

The magnetization is negative at 0.09 and 0.10 smearing values as shown in Fig.4.4.

Electrons near the Fermi level are responsible for the magnetic properties of Ni. Fara-

day induction generates an induced magnetization, which points in the opposite rather

than in the same direction as the applied external field for the appearance of negative

magnetization. A heating-induced demagnetization of the nickel, implying a gradual

rise of the spin temperature. Ferromagnetism disappears at the curie temperature.

If nickel metal is heated above Tc, the spontaneous magnetic ordering breaks down

in a second-order phase transition, leaving the metal in a paramagnetic state. As
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the ferromagnetic phase approaches the curie point, the electrical resistance rises as

thermal energy starts to over come the double exchange. A strong magnetic field

realigns the spin, restoring the metallic state and thus decreasing the resistivity. A

sufficiently large magnetic field in the reverse direction must be applied before the

magnetization process can be reversed. After the re magnetization, the system is

again in the ground state.

Figure 4.4: Total minimum magnetization of Ni per atom with respect to
smearing(Marzari-Vanderbilt)
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4.5 Total minimum energy of Ni per atom with

respect to degauss/smearing

Here the total minimum energy of Ni is calculated as a function of smearing using

PWscf. In this calculation, the plane wave cutoff energy for wave functions is fixed,

and is 24 Ry and Brillouin Zone integrations have been performed using different

smearing from 0.01 to 0.15 over Monkhorst-Pack meshes of order 4 × 4 × 4 for the

fcc nickel. Degauss is the electronic temperature; it controls the broadening of the

occupation numbers around the Fermi energy and smearing used to select occupa-

tion distribution. In this context, Fermi-Dirac function was employed to describe

the probability of electronic state occupations. The calculations were repeated with

Gaushian, Marzari-Vanderbilt, and Methfessel-Paxton functions. See Table 4.5.



34

Table 4.5: Total minimum energy of Ni with respect to smearing for different smear-
ing functions

smearing T.Ener(Ry)in M.V T.Ener(Ry)in F.D T.Ener(Ry)in M.P T.Ener(Ry)in G
0.01 -85.72342197 -85.72661662 -85.72353732 -85.72393918
0.02 -85.72339901 -85.73731589 -85.72335423 -85.72531828
0.03 -85.72300555 -85.75329361 -85.72336610 -85.72786061
0.04 -85.72179269 -85.77246524 -85.72336703 -85.73171065
0.05 -85.72024865 -85.79495111 -85.72341974 -85.73692166
0.06 -85.71856145 -85.82058635 -85.72369023 -85.74262758
0.07 -85.71674934 -85.84910627 -85.72425217 -85.74873308
0.08 -85.71481267 -85.88025345 -85.72502245 -85.75528686
0.09 -85.71254522 -85.91380611 -85.72563492 -85.76233564
0.10 -85.70983078 -85.94960551 -85.72609730 -85.76989808
0.11 -85.70675294 -85.98752553 -85.72646126 -85.77798406
0.12 -85.70338557 -86.02747017 -85.72677094 -85.78657991
0.13 -85.69979627 -86.06936639 -85.72705877 -85.79566930
0.14 -85.69603853 -86.11315816 -85.72735761 -85.80523419
0.15 -85.69217105 -86.15880180 -85.72768414 -85.81525649

4.5.1 Convergence test of the total minimum energy of Ni
with respect to smearing for different smearing func-
tions

When applied in conjunction with the Fermi-Dirac distribution, the smearing factor

actually takes on a physical meaning, namely to directly reflect the electronic temper-

ature of the system, and thus describes the occupational probability of the electronic

state. An increment of smearing for different functions is made until the convergence

is achieved. The total minimum energy converges very fast using Marzari-Vanderbilt

or Methefessel-Paxton smearing relative to Gaussian or Fermi-Dirac smearing for the

given values of degauss. An increment of the smearing is necessary to obtain fully

converged total minimum energy of Ni. The convergence in cold smearing is very
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fast than Fermi-Dirac smearing. To describe total minimum energy of nickel versus

smearing for different functions, four different colors are used as shown in the Fig.4.5.

Figure 4.5: the total minimum energy of Ni with respect to smearing for different
smearing functions



Chapter 5

Conclusion

The electronic and structural properties of Ni was investigated within the frame work

of the DFT , plane wave basis sets , and pseudopotentials (ultra-soft). All calcula-

tions have been carried out with Quantum Espresso package ( software). The total

minimum energy calculation is performed as a function of cutoff energy, Monkhorst

pack-grid size, lattice constant and smearing for different occupational function re-

spectively fixing the other parameters constant. The total energy convergence test was

achieved, at the energy cutoff 100 Ry and at 10× 10× 10 k-point grid size. The total

minimum energy is -85.72415624 Ry with respect to energy cutoff and -85.72240765

Ry with respect to k-point grid size. The results show that the total minimum energy

per atom is monotonically decreasing with increasing cutoff energy due to variational

principle. However, this trend can not be predicted from increasing the k-point sam-

pling. Our numerical calculation shows that the equilibrium lattice constant is 6.47

Bohr . This result is in good agreement with experimental value. The total mag-

netization calculation was performed as a function of smearing (Marzari-Vanderbilt).

The total magnetization convergence test was achieved, at smearing/degauss=0.11.

Furthermore,the negative magnetization observed in low fields has been ascribed to

36
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two oppositely ordered ferromagnetic super exchange interactions. Finally, for Ni

metallic systems, the choice of smearing function is also a major consideration to

minimizing the electronic energy in a DFT calculation. First Brillouin zone integra-

tion in metallic nickel (system) have been performed by smearing techniques, such as

the Fermi-Dirac (F-D), Gaussian, Methfessel-Paxton (M-P), and Marzari-Vanderbilt

(M-V) cold smearing. The results show that the convergence in cold smearing is very

fast than Fermi-Dirac smearing.
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