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Abstract

The electronic and structural properties of Iron (Fe) were investigated using den-

sity functional theory (QUANTUM ESPRESSO). Iron is the main ingredient used to

make steel and the crystalline structure is body center cubic (BCC) at 300 kelvin.

The unknown exchange correlation energy was computed by model of local density

approximation (LDA) and generalized gradient approximation (GGA). The total min-

imum energy of Iron is calculated as function cutoff energy and k.point grid. The

convergence of total energy is tested and achieved at the energy cutoff 60 Ry for the

first case and at 16×16×16 k.point grid size for the second case. The total magnetiza-

tion and the total stress of Iron is performed as function of degauss. The result shows

that total magnetization of Fe per atom is 1.99 Bohr Mag/cell and the total stress Fe

per atom is -26.50 Ry/Bohr3. In addition to this, equilibrium lattice constant is cal-

culated with lattice constant between 4.80 Bohr and 5.55 Bohr. The computational

value of the equilibrium lattice is 5.10 Bohr and this result is best agreement when

we compare the equilibrium lattice constant with experimental value of 5.217 Bohr.

Finally, the four different smearing schemes:- Marzari-Vanderbilt, Methfessel-Paxton,

Gaussian and Fermi-Dirac are tested for convergence of the total minimum energy.

The result shows that minimum energy converges very fast for Marzari-Vanderbilt,

Methfessel-Paxton.

keywords: Iron, density functional theory, electronic structure, total energy, total

magnetization
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Chapter 1

Introduction

1.1 Background

From the periodic system, Iron (Fe) is a member of the first row transition series

of elements along with Ruthenium and Osmium. From the most abundant elements

of the earth’s curst, Iron is fourth abundant element and second abundant metal

element after aluminium and consisting 6.3% mass of the element [1]. Iron is the

main ingredient used to make steel. There is a lot of Fe in the universe because

it is the end point of the nuclear reactions in large stars. It is the last element to

be produced before the violent collapse of a supernova scatters the Iron into space.

Iron is a grey, silvery metal. Pure Fe is soft, very malleable and is able to stretch

a lot, while steel (Fe mixed with a little carbon) is stronger and does not stretch as

much as Iron [2]. Iron makes chemical compounds with different elements. Usually

the different element oxidizes Fe. Sometimes two electrons are taken and sometimes

three. Compounds where Fe has two electrons taken are called ferrous compounds.

Compounds where Fe has three electrons taken are called ferric compounds. Ferrous

compounds have Fe in its +2 oxidation state. Ferric compounds have Fe in its +3

oxidation state. Iron compounds can be black, brown, yellow, green. Ferric oxides
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and Ferrous sulfates are common compound [3]. Iron is the most used metal of the

earth because it has high strength and is not expensive. It’s application go from

screwdriver to washing machine, from food containers to family car. Some form of

Iron include carbon steel cast Fe, pig Fe and alloy steel [4]. Iron has several vital

functions in the body. It serves as a carrier of oxygen to the tissues from the lungs

by red blood cell haemoglobin, as a transport medium for electrons within cells and

as an integrated part of important enzyme systems in various tissues [5, 6]. Mostly

Fe and its alloys are extensively applicable in modern industry [7]. It is strong direc-

tional bound, ferromagnetic and symmetrical patten as lattice structures. From the

transition series elements Vanadium, Chromium and Iron have the same crystalline

structure with body center cubic at 300 kelvin. This means a cube with atom at the

edges and an atom with center of every cube. The body centered cubic structure

is, low dimension, hexagonal closed packed and low energy [8, 9, 10]. The radius of

Fe atom is 0.124nm with lattice constant of 2.87A0. The nearest neighbor distance

between two atoms in Fe structure is 2.47A0. The atom at the origin has 8 nearest

neighbors in position and 6 second nearest neighbors in position [11, 12]. The metal

has an atomic weight of 55.845 and a specific gravity of 7.87 [13].

Structural properties of bcc Fe have been obtained from total energy electronic struc-

ture calculations performed as a function of lattice constant with the use of Density

functional theory(DFT) [7]. DFT and its local density approximation seemed to have

serious limitations for an accurate description or the prediction of electronic and re-

lated properties of atoms, molecules, semiconductors and calculation of energy gap.

The initial non-relativistic form of DFT was introduced by Hohenberg and Kohn [14].

Calculations of the bulk structure and the bulk elastic properties play an important
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role in the physics of condensed matter. Bulk calculations help us to understand,

characterize, and predict mechanical properties of materials in our surroundings, un-

der extreme conditions, as in geological formations and for industrial applications [15].

Many scholars study density functional theory approach to structural and electronic

properties. So the target of this research is to study the electronic and structural

properties of Fe using density functional theory (quantum ESPRESSO) which is in-

tegrated suite of computer codes for electronic-structures calculation [7, 16].

The outline of this research is organized as follows, In chapter(1) we discuss the back

ground information about Iron structure, the application of Iron in industry and also

discuss the several vital function in the body. Chapter(2) contains a basic and brief

description of the quantum theoretical tools used in this research to compute unknown

exchange-correlation energy. Local density approximation and general gradient ap-

proximation are the two models to approximate the unknown parameters. Chapter

3 contains materials and methodology which is used to calculate the electronic and

structural properties of Fe. Chapter 4 we deals about computational parts, analysis

the out come based on convergence criteria and interpret the figures. Finally, the

important out comes of this work is conclude in chapter 5.

1.2 Statement of the Problem

The electronic and structural properties of single particle is easy to calculate but

it is known that many body problems are difficult to solve. That is, the state of

motion cannot be solved analytically for systems in which three or more distinct

electrons interact [17, 18]. In particular Hatree-Fock theory and its source are based

on the complicated many-electron wave function, where as many-body wave function
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is dependent on 3N variables, three special variables for each of the N electrons

[19]. Now a days, there is more applicability in the fundamental principle of density

functional theory in any properties of a system of many interacting particles can

be viewed as a functional of the ground states of density, no(r), which in principle

determine all information in the many-body wave function for the ground states

and all excited states. Schrödinger equation is setting of practical values and many

applicable rapidly in research in chemistry, physics [20]. Many researchers have been

studying the electronic and structural properties of Fe as function of cohesive energy,

bulk modulus and density of states. However we are interested to study the electronic

and structural properties of Iron per atom as a function of energy cutoff, lattice

constant, k.point sampling and smearing for k.point sampling with the help of density

functional theory.

Research Questions

1. What is the total minimum energy of Fe per atom with respect to energy cutoff

and k.point sampling?

2. what is the total magnetization and total stress of Fe per atom with respect to

degauss?

3. What is the equilibrium lattice constant of Fe by consideration of energy cutoff?

4. Why smearing is need for Fe metal?
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1.3 Objectives

1.3.1 General objective

The general objective of this research was to calculate the electronic and structural

properties of Fe with respect to density functional theory.

1.3.2 Specific objectives

The specific objectives of this study are

1. To calculate the total minimum energy of Fe per atom with respect to cutoff

energy.

2. To calculate the total minimum energy of Fe per atom with respect to k.point

sampling.

3. To calculate the total magnetization of Fe per atom with respect to degauss.

4. To calculate the total stress of Fe per atom with respect to degauss.

5. To calculate the equilibrium lattice constant of Fe with respect to cutoff energy.

6. To calculate the total minimum energy of Fe per atom with respect to different

smearing/degauss for k.point sampling.

1.4 Significance of the Study

The significance of this research is to understand and interpret the electronic and

structural properties of many electron system in transition metals like Fe by using
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new computational technique called density functional theory and it helps to inves-

tigates a new practical problem solving techniques. The computational seeks to gain

understand of electronic and structural properties of electron principally through use

and analysis of mathematical models on high performance computer and to create

new knowledge.

1.5 Scope of the Study

The scope of this research is restricted to calculate the total minimum energy of Fe,

total magnetization, total stress and equilibrium lattice constant of Fe with respect

to different parameter like, energy cutoff, k.point sampling, degauss and smearing for

k.point sampling.

1.6 Limitation of the Study

The limitation of the study was lack of time, financial supporting. So in order to

solve the problems I use my resource effectively and efficiently.

.
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Chapter 2

Literature Review

2.1 Introduction

Solving the electronic structure problem for molecules, materials and interfaces are

fundamental importance to a large number of disciplines including physics, chem-

istry, and materials science. Since the early development of quantum mechanics, it

has been noted, the interactions between atoms and electrons are conduct by the

laws of quantum mechanics [21]. Accurate and efficient techniques for solving the

basic quantum-mechanical equations for complex many-atom, many-electron systems

is develops [22]. DFT reformulates the Schrödinger equation, which describes the

behavior of electrons in a system [23].

2.2 Schrödinger Equation

DFT is a useful topic which is begin with the observation of most profound scientific

advances development of quantum mechanics [24]. All substances are composed of

atomic nuclei and electrons. The macroscopic material properties that we observe

depend on the position of these electrons and ions [25].

Any problem in the electronic structure of matter is covered by Schrödinger equation
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including the position of the nuclei and the number of the electrons. So we focus

on the time-independent Schrödinger equation. For an isolated N-electron atomic or

molecular system the Schrödinger equation is given by [17].

ĤΨ = EΨ (2.2.1)

where E is the electronic energy, Ψ = Ψ(r1, r2, ...rN) is the wave function or eigenstates

of the Hamiltonian and Ĥ is the Hamiltonian operator. In quantum mechanics elec-

tron structure of atom or molecule is concerned, so for single electron wave function

can be calculate from Schrödinger equation with single electron moving in potential

[26].

[− ~2

2m
∇2 + V (r)]Ψ(r) = εΨ(r) (2.2.2)

For the many-body problem of a system containing N electrons and K nuclei with

charge ZI , the Hamiltonian is given by [26, 27].

H = −
N∑

i=1

~2∇2
i

2me

−
K∑

I=1

~2∇2
I

2mI

+
1

4πε0

N∑
i=1

∑
j>i

e2

|ri − rj|
+

1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −Rj|

+
1

4πε0

K∑
I=1

∑
J>I

ZIZJe2

|RI −RJ |

(2.2.3)

The first two terms represent the kinetic energy of the electrons and nucleons, Te and

Tn respectively. The third term represents the electrostatic repulsion between the

electrons, Vee. The fourth term represents the electrostatic attraction between the

electrons and nuclei, Vne and the last term between the nuclei, Vnn. me is the mass

of the electrons, and MI the mass of the cores. ZI is the number of protons in each

core, I. This looks rather complicated. It turns out that the stationary Schrödinger

equation can only be solved analytically for a one-electron system, e.g. the hydrogen
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atom or the ionized helium atom He+. So, to be able to continue, Born-Oppenheimer

approximation have been made [27].

2.3 Born-Oppenheimer Approximation

Born-Oppenheimer approximation plays an essential role in electronic structure cal-

culations. However, as a first approximation which is justified by the fact that the

nuclei (ions) are much heavier than the electrons, MI greater than me. In most cases,

this justifies a time-scale separation by saying that the electrons immediately adapt

to change in the positions of the ions. This means that the electronic and ionic sys-

tem can be treated separately and for the electrons the ions can be regarded as fixed.

Therefore we drop the ionic kinetic energy term and the ion-ion interaction term in

the Hamiltonian and only consider the terms involving electrons [20, 27].

HBO = −
N∑

i=1

~2∇2
i

2me

+
1

4πε0

N∑
i=1

∑
j>i

e2

|ri − rj|
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −Rj|
(2.3.1)

If we denote the interaction of electron i with the ions by Vext and use Hartree atomic

units ~ = me = e = 1
4πε0

=1, we can write the Hamiltonian as the same operators for

any system of particles interacting via the coulomb interaction, just as the kinetics

energy operator and the potential due to nuclei of charge Zi.

H = −1

2

N∑
i

∇2 +
∑

i

∑
j>i

1

|ri − rj|
+

∑
i

Vext(ri) (2.3.2)

The Hamiltonian H = T + V + W is assumed to consist of the kinetic energy,

spin-independent single-particle potential and some spin-independent particle-particle

interaction [28].
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2.4 Density Functional Theory

Density functional theory (DFT) is a quantum mechanical technique used in physics

and chemistry to investigate the structural and electronic properties of many body

systems [29]. It is a successful approach to the fundamental equation that describe the

quantum behavior of atoms and molecules to simple crystals and complex extended

system [29, 30]. It allows one to replace the complicated N-electron wave function

Ψ(r1, r2, ..rN) and associated with Schrödinger equation by the much simpler electron

density n(r) [24]. Density functional theory as a good modeling method has become a

common tool in first-principle calculations aimed at molecular and condensed matter

systems [31]. Traditional methods in electronic structure theory, in particular Hatree-

Fock theory(HFT) and its descendants are based on the complicated many-electron

wave function. The main objective of DFT is to replace the many-body electronic

wave function with the electronic density as the basis quantity, where as many-body

wave function is dependent on 3N variables, three special variables for each of the N

electrons. The density is only a function of three variables and is a simpler quantity

to deal with both conceptually and practically [19]. The modern formulation of

density functional theory originated in a famous paper written by P. Hohenberg and

W. Kohn with their two fundamental theorems. In 1965 the major milestone in the

development of DFT was introduced. They gave the proofs of these theorems by

showing that DFT was an exact theory in same sense as the wave function theory

[17, 27, 32].
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2.5 Hohenberg-Kohn Theory

The entire field of density functional theory rests on two fundamental mathematical

theorems proved by Kohn and Hohenberg and the derivation of a set of equations by

Kohn and Sham [33]. Even though an electronic system described by the Hamiltonian

(Ĥ), both the ground-state energy and ground state wave function are determined

by minimization of the energy function E(Ψ) and Ĥ(Ψ) [17, 34]. External potential

in principle determines all the properties of the system. So the two Hohenberg-kohn

theorems are :-

Theorem I

For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, not including a constant, ground state particle density

n0(r) [22].

Theorem II

The universal functional of energy E[n] defined in terms of the density n(r). The

exact ground state energy is the minimum value of the function and the exact ground

state density n0(r) is the minimum value of the function, n(r).

The Hohenberg-Kohn theorems have the limited purpose to prove that a universal

functional of the electron density exists; they do not derive its actual expression. A

direct minimization of the functional is usually not applicable, because no good ex-

pression for the kinetic energy as a functional of n(r) is known. The Kohn-Sham(KS)

scheme, a reformulation of the theory based on the KS orbitals instead of the mere

density, is the starting-point of most of the actual calculations.
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2.6 Kohn-Sham Theory

From the Hohenberg and Kohn theorem, the ground state energy of a many-electron

system can be obtained as the minimum of the energy function [17]. The Kohn-Sham

formalism, provides a powerful computational scheme, which allows to determine ex-

actly the ground-state properties even of complex systems of interacting particles,

simply solving a single particle like equation. Kohn-Sham density theory is widely

used for self consistent field electronic structure calculations of the ground state prop-

erties of atoms, molecules, and solids [9, 25, 32]. The Kohn and Sham equations can

be written as

[−1

2
∇2 + V (r) + VH(r) + VXC(r)]Ψ(r) = εi(r)Ψ(r) (2.6.1)

Where the external potential of Kohn-Sham are

Vext(r) = V (r) + VH(r) + VXC(r) (2.6.2)

Kohn-Sham density functional theory is the intractable many-body problem of inter-

acting electrons in a static external potential and reduced to a tractable problem of

non -interacting electrons moving in an effective potential. The effective potential

includes the external potential and the effects of the Coulomb interactions between

the electrons, e.g., the exchange and correlation interactions. Modeling the latter

two interactions becomes the difficulty with in Kohn-Sham density functional theory

[17, 28].

2.7 Exchange-Correlation Energy

Kohn-Sham density functional theory is practically established to solve the many-

body problem by separate the problem into a set of single-particle problems [36].

14



The fundamental KS equations represent a practical way of finding the ground-state

electron density for a given external potential and a given number of electrons [37].

Kohn and Sham showed that the ground state is found by minimizing the energy

of an energy functional and achieved by finding a self-consistent solution of single-

particle equations. There is just one critical complication formulation: to solve the

Kohn and Sham equations we must specify DFT depends on the adequate knowledge

of the exchange-correlation energy functional, EXC [n(r)] [20, 24], But the electron

density is constant at all points in space. Solving this uniform electron gas provides a

practical way to actually use of Kohn Sham equations. To do this, we set the exchange

correlation potential at each position to be the known exchange-correlation potential

from the uniform electron gas at the electron density observed at that position and

we need good approximations for EXC [n(r)]. The most common and straightforward

approximation to EXC [n(r)] is the Local Density Approximation (LDA) [32].

ELDA
XC [n(r)] =

∫
εXC(n(r))n(r)dr (2.7.1)

where LDA is the basis of all approximate exchange-correlation functionals and uni-

form electron gas is the central idea of this model. From equation 2.6.1 the εXC(n(r))

and n(r) are the exchange-correlation energy per particle of an uniform electron gas

of density n(r). The term εXC(n(r)) is express by:

εxc(n(~r)) = εx(n(~r)) + εc(n(~r)) (2.7.2)

where εx(n(~r)) and εc(n(~r)) are exchange part and correlation part respectively. LDA

is fail in systems like heavy fermions and where the electron density undergoes rapid

changes. Due to is condition, another form of exchanged-correlation functional has

been developed, that is the Generalized Gradient approximations(GGA) [35, 38].
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GGA is the only moderate accuracy that the local spin density approximation deliv-

ers is certainly insufficient. The first logical step was the suggestion that not only

the information about the density n(r) at a particular point r, but to supplement the

density with information about the gradient of the charge density, ∇n(r). In order

to account for the non-homogeneity of the true electron density and functionals that

include the gradients of the charge density and where the hole constraints have been

restored in the above manner are collectively termed as generalized gradient approx-

imations [38]. The GGA functional focu’s on the local electron density as well as the

space variation of the electron density that is represented by the density gradient [39].

The GGA functional can be written as

EGGA
XC [n(r)α, n(r)β] =

∫
FXC(n(r)α, n(r)β,∇n(r)α,∇n(r)β)d~r (2.7.3)

For the above explicit, the integrand f on the densities and their gradients exist. How-

ever semi empirical functionals are contain parameters that are calibrated against

reference values rather than derived from first principles. In practice, EGGA
XC is

usually split into exchange and correlation contributions. Generally the hybrid ap-

proximations has reduced the LDA errors of atomization energies of standard set of

small molecules, improved accuracy values of total energies and gives better enrgies

[28, 35, 38].

2.8 Periodic Super Cell

The shape of unit cell is define by the repeated periodically in space. In the solid

state and most of materials like to have their atoms arranged in some kind of reg-

ular repeating pattern by lattice vector a1, a2, a3 [40]. In fact, the straightforward

application of the supercell method always generates fictitious images of the original
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system unit cell [41]. The reciprocal lattice plays fundamental role in most analytical

studies of periodic structure with functional periodic of bravais lattice. A perfect

crystal is arranged in a regular periodic array and we led to consider the problem

of an electron in a potential U(r) with the periodicity of the underlying bravais lat-

tice, U(r + R)=U(r) for all bravais lattice vectors R [40]. Different approximation

are choices into methods, namely the size and shape of the supercell are choices the

exchange correlation function and pseudopotential to make a significant difference to

predicted physical properties [42]. The shape of the cell are the periodic boundary

condition which is determines the types of lattice and the contents of the cell de-

termines the lattice basis [43]. When we solve the Schrödinger equation for single

electron by periodic system in Free electron Schrödinger equation in special case of

U(r+R)=U(r) are independent electron are satisfy a fundamentals properties known

as Bloch’s theorem [40].

2.8.1 Bloch’s Theorem

Bloch’s theorem is allows labeling of the one-electron wave function in terms of their

crystal momenta. Where set of momenta is allowed with brillouin zone which is deter-

mined by lattice translational symmetries [44]. Bloch’s theorem is, enables reduction

of the eigenvalue problem of the single-particle Hamiltonian that commutes with the

translational group [45]. The eigen-states Ψ of one electron and periodic potential

are proved the important solution of the Schrödinger equation, so Bloch’s theorem

is, periodic solid for any electronic wave function can be written as the product of a

plane wave expik.r times a function Uk(r) with the periodicity of the crystal lattice.

Ψk(r) = exp(ik.r)Uk(r) (2.8.1)
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where Uk(r) is periodic in space with the same periodicity as the super cell. That is,

uk(r + n1a1 + n2a2+ n3a3) = uk(r) for any integers n1, n2 and n3. Therefor Bloch’s

theorem is possible to try and solve the Schrödinger equation for each value of k

independently [6, 26]. The periodic part of the function can be expanded using a

basis set consisting of a discrete set of plane waves. The wave vectors are reciprocal

lattice vectors of the crystal and the equation is given by.

Uk(r) =
∑

G

CGexpiG.r (2.8.2)

where the reciprocal lattice vectors G are defined by G.ai = 2πn for all ai, ai is a lattice

vector of the crystal and ni is an integer for real number. Then for each electronic

wave function can be written as combination of plane waves and the equation can be

written as.

Ψk(r) =
∑

G

CK + Gexp[i(K+G).r] (2.8.3)

The electronic wave functions at any k.point are now expressed in terms of a discrete

plane wave basis set. Even though the number of plane waves can be restricted by

placing an upper boundary to the kinetic energy of the plane waves, this boundary is

called energy cut-off Ecut [20, 40].

2.8.2 Energy Cutoff

From the principle of fourier basis function eiGr represented a plane wave traveling

in space and perpendicular to the vector G. Our lengthy discussion of k space began

with Bloch’s theorem, which tells us that solutions of the Schrödinger equation for a

supercell have the form.

Ψk(r) = expik.rUk(r) (2.8.4)
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where uk(r) is periodic in space with the same periodicity as the supercell. It is now

time to look at this part of the problem more carefully. The periodicity of uk(r)

means that it can be expanded in terms of a special set of plane waves.

Uk(r) =
∑

G

CGexp[iG.r] (2.8.5)

According to this expression, evaluating the solution at even a single point in k space

involves a summation over an infinite number of possible values of G. This does not

sound too promising for practical calculations. Fortunately, the functions appearing

in equation 2.7.2 have a simple interpretation as solutions of the Schrödinger equation.

Therefor the solutions of kinetic energy is.

E =
~2

2M
|K + G|2 (2.8.6)

It is reasonable to expect that the solution with lower energies are more physically

important than solutions with very high energies. As a result, it is usual to truncate

the infinite sum above to include only solutions with kinetic energies less than some

value:

Ecut =
~2

2M
G2

cut (2.8.7)

the infinite sum is reduces to

ΨK(r) =
∑

|G+K|<Gcut

CG+Ke[i(K+G)r] (2.8.8)

This expression includes slightly different numbers of terms for different values of

~k. The discussion above has introduced one more parameter that must be defined

whenever a DFT calculation is performed the cutoff energy, Ecut. In many ways, this

parameter is easier to define than the k.points, as most packages will apply sensible

default settings if no other information is supplied by the user. Just as with the k.
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points, it is good practice to report the cutoff energy used in your calculations to

allow people to reproduce your results easily [20].

2.8.3 K.point Sampling

The role of k.point sampling was analyzed by Thygesen and Jacobsen. They demon-

strated for, a given supercell size, a poor sampling of k.points direction. Even though

electron momentum k in supercell is calculate the elastic electron transmission and

total energy calculation well understood [47, 48]. To obtain electronic potential and

total energy by making easy difficult calculation. If the system is metallic it is a dense

set of k.points. The magnitude of any error in the total energy due to inadequacy of

the k.points sampling can always be reduced by using a denser set of k.points. The

computation of total energy converge by density of k.points increase and the error

due to the k.point sampling approaches zero. In principle we need to integrate over

all possible k.point when constructing the density. Fortunately the wave functions

change slowly as we vary k, so we can approximate the integral with a summation to

reduced total energy method by using the k.point [49].

n(r) =

∫
|Ψk(r)|2d3k '

∑
k

|Ψk(r)|2 (2.8.9)

2.8.4 Plane wave basis sets

In the plane-wave basis set, the Bloch’s function for an electron in a periodic potential

is associated with a wave vector k and can be written as the product of a plane

wave exp(ik.r) times a function Uk(r) with the periodicity of the crystal lattice [50].

Even though each electronic wave functions are expanded in terms of k.point by

discrete plane-wave basis sets [20]. The exact form of the plane-wave expansion is
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used plane wave codes and control the spacing of the real-spacing grind. Therefore,

the truncation of plane wave expansion is plane wave calculations. Namely, only

the reciprocal lattice vectors whose kinetic energy lower than a predefined maximum

cutoff energy

1

2
|~G|2 < Ecut (2.8.10)

Wave function Cutoff Energy are kept in the expansion, while the rest of the co-

efficients are set to zero. Besides reducing the computational load, this truncation

strategy limits the effects of unit cell orientation on the outcome of the calculation.

DFT calculations rarely use a completely converged plane-wave basis, but that con-

vergence is usually unnecessary. However, incomplete basis set calculations using

different cell sizes require that each calculation use the same Ecut [51].

2.9 PseudoPotential

Plane-wave methods is, the most important approach to reducing the computational

load due to core electrons [49]. Pseudopotentials replace the electron density from

a chosen set of core electrons with a smoothed density. The properties of the core

electrons are fixed in approximate fashion in subsequent calculations; this is the frozen

core approximation and the calculations include a frozen core and they are used much

less widely than frozen core methods. Pseudopotential is developed by considering

an isolated atom of one element, but the result can be used reliably for calculations

that place the atom in any chemical environment without its further adjustment.

It also defines the transferability, a minimum energy cutoff that should be used in

calculations including atoms associated with that pseudopotential and requiring high

cutoff energies are said to be hard. The most widely used method of pseudopotentials
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is work by Vanderbilt, these are the ultrasoft pseudo potentials (USPPs). As their

name suggests, it require essentially lower cutoff energies than alternative approaches

[20]. Valence electrons are reducing the number of states which need for calculation

of Schrödinger equation [20, 49].

(−1∇2

2
+ V ps

eff )Ψ
ps
j = EjΨ

ps
j , (−1∇2

2
+ Veff )Ψj = εjΨj (2.9.1)

2.10 Magnetization

Absolute measurements of magnetization are difficult, so it is normal to calibrate mag-

netization apparatus with the standard sample. At room temperature, the only avail-

able standards are Iron, Nickel and cobalt. So Iron and Nickel are usually used[52].

Magnetization also describe how a material responds to an applied magnetic fields

[53]. Degaussing system is a system that is in use on the metal parts or electronic

device that are at risk of magnetic field. This system is used to prevent the ves-

sel from dangerous equipment. In Self-consistent-field Calculation we can generate

the magnetization for Fe. Since there is single atom per unit cell, the only possible

magnetic structure is ferromagnetic [54].

2.11 Stress Theorem

The stress is a generalized force for which the ideas of the force theorem can be

applied. The key point is that for a system in equilibrium, the stress tensor is given

by.

σαβ = − 1

V

∂E

∂εαβ

(2.11.1)

where α and β are the cartesian indices, and where strain is define to be a scaling of
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space [27]

2.12 Self-consistent-field Calculation

From the theory of Hohenberg and Kohn approximation homogeneous system of inter-

acting electrons are developed. These methods are exact for system of slowly varying

or high density. Electronic structure is obtained in terms of one-particle states that

generally extend throughout the system under consideration. The numerical effort

to compute such extended states scales as N3(N is the number of occupied electronic

states) and self-consistent computing the solutions of Kohn-Sham equation in single

particle [33, 55].

[−1

2
∇2 + Vext(n(r), r)]Ψi(r) = εiΨi(r) (2.12.1)

where Ψi(r) is a wave function of the particle, εi is a Kohn-Sham eigenvalue and

external potential equation are express as

Vext(n(r), r) = Vion(r) + VH(n(r), r) + VXC(n(r), r) (2.12.2)

The above external potential equation includes the ionic potential Vion, the Hartree

potential VH and the exchange-correlation potential VXC . In DFT the external po-

tential depends only on the charge density, n(r). The charge density of a particle is

given by [33].

n(r) = 2
Nocc∑
i=1

|Ψi(r)|2 (2.12.3)

Here, nocc is the number of occupied states, which is equal to one-half the number

of valence electrons in the system. The factor of 2 is comes from spin multiplicity.

Equation 2.12.3 can be easily expanded to situations, where the highest occupied

states have fractional occupancy or when there is an imbalance in the number of
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electrons for each spin component. The most computationally expensive step of DFT

is solving the Kohn-Sham equation 2.9.1. Since Vext(n(r), r) depends on the charge

density n(r), which in turn depends on the wave function Ψi(r). The SCF iteration

is a general technique used to solve nonlinear eigenvalue problem. It starts with an

initial guess of the charge density [56].

2.12.1 Algorithm Self-Consistent Iteration

The SCF method is an computational procedure which yields a self-consistent set

of wave functions and orbital energies [46]. Therefor initial SCF iteration requires

solving an eigenvalue problem in order to prepare a good initial subspace and it

include the following steps [57, 58].

• Starting from estimation of charge density for k=1.

• Evaluate effective potential Veff (r)=Vext(r) + VH [(nk(r)] + VXC [(nk(r)]

• Solve [−1
2
∇2 + Veff [(n

k(r)]Ψi(r)=εiΨi(r), The wave function Ψi(r) i=1,2,3,...

• Evaluate actual density from new wave function,

n(r) = 2
occ∑
i=1

|Ψi(r)|2

• Consistent ||nk(r)− n(r)||2 and

• Computes the energy, magnetization and stress, but if the wave function does

not satisfy the right boundary condition, we return to step one in order to make

another guess for the energy [59].
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Chapter 3

Materials and Methodology

3.1 Materials

The study of this research was included theoretical analysis and computational parts.

The main source of information are published articles, journals, standard books, net-

work connection and different software like Winedit, Ubuntu, Textworks and also

computer is the main instrument to complete this research.

3.2 Computational Methodology

The methodology was based on density functional theory. However in this methodol-

ogy the exchange-correlation functions are unknown. As the result the local density

approximation (LDA) and general gradient approximation (GGA) are used to ap-

proximate this unknown functions. Vanderbilt pseudopotential, electrons and system

control are the mandatory used to implements the quantum ESPRESSO Program

package [16, 20].

To implement the electronic and structure properties of Iron, we use the software of

quantum ESPRESSO which is an integrated suite of computer codes and material

modeling based on density-functional theory.
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The software mentioned above is free, open source software which is General Public

Licence (GPL) and fast methodology innovation in the field of electronic structure

simulation [16]. It is applicable from simple electronic structure calculation to highly

complex theoretical spectroscopy such as K-edge x-ray absorption spectra, ballis-

tic conductance, nuclear magnetic resonance (NMR) and electronic paramagnetic

resonance (EPR). The simulation device implemented in quantum ESPRESSO used

across a world range and the code have been highlighted by research group. Quantum

ESPRESSO uses input parameters like atomic numbers, types of atomic in periodic

cell, lattice constant, kinetic energy cutoff, bravais lattice index, k.point sampling and

atomic position [16, 27].
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Chapter 4

Results and Discussions

Introduction

In this work, the electronic and structural properties of Iron (Fe) were calculated based

on the frame work of the density functional theory. One of the important aspect in

studied Iron is the total minimum energy. Results are mostly presented in Tables and

Figures. The first results are the total minimum energy per atom and second results

are total magnetization and total stress per atom with different degauss values for

bulk Iron. Then comes the results for the equilibrium lattice constants and different

smearing for k.point sampling. The computational output file were use to compare

the tables of energy cutoffs, k.points and lattice constants against the total energies,

total magnetization, total stress and graphs were plotted to interpret parameters for

Fe structure with calculation of SCF for both LDA and GGA.
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4.1 Total energy of Fe per atom with respect to

energy cutoffs

From the input card we used 4 × 4 × 4=64 k.point space; other k.points have the

similarity in each cutoff energy because of the symmetry of the space. The calculation

was done using different cutoff energy values from 25 Ry to 170 Ry and lattice constant

of 5.217 Bohr.

Table 4.1: The results of the total minimum energy computed with energy cutoffs.

Energy coutoff (Ry) Total energy (Ry) Energy coutoff (Ry) Total energy (Ry)
25 -55.54077103 100 -55.541240604
30 -55.54124609 105 -55.541240809
35 -55.54200590 110 -55.541241021
40 -55.54221218 115 -55.541241166
45 -55.54222463 120 -55.541241213
50 -55.54228947 125 -55.541241226
55 -55.54235266 130 -55.541241196
60 -55.54237417 135 -55.541241247
65 -55.54237544 140 -55.541241331
70 -55.54238209 145 -55.541241226
75 -55.54239326 150 -55.541241392
80 -55.54240168 155 -55.541241465
85 -55.55240462 160 -55.541241471
90 -55.54240462 165 -55.541241422
95 -55.54240519 170 -55.541241530
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4.1.1 Convergence test of total minimum energy of Fe with
respect to energy cutoffs

In this part of the calculation, we see that, the total minimum energy of Iron is

calculated as a function of energy cutoff. An increment of energy cutoff for wave

function is made until the the convergence is succeed. From Fig 4.1 we can see

that, the total energy converge at 60 Ry plane wave cutoff energy and the ground

states energy had its minimum at -55.54237417 Ry. Furthermore, the total minimum

energy is monotonically decreasing with increasing energy cutoff for wave function.

The nearest ground state of energy is depend on the number of basis function.
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Figure 4.1: Total minimum energy of Fe with respect to energy cutoffs.
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4.2 Total energy of Fe per atom with respect to

K.point grid sampling

In this case, the calculation was done using different k.point value from 2× 2× 2 to

32×32×32 space with 2.0 point. Then, the other parameter such as lattice constants,

energy cutoff are fixed.

Table 4.2: The results of the total minimum energy computed with K.point grid
sampling

K.point grid sampling Total energy (Ry) K.point grid sampling Total energy (Ry)
2 -55.50906426 18 -55.54574511
4 -55.54221218 20 -55.54574536
6 -55.54879477 22 -55.54574527
8 -55.54520585 24 -55.54574523
10 -55.54582999 26 -55.54574523
12 -55.54575668 28 -55.54574521
14 -55.545728334 30 -55.54574521
16 -55.54574483 32 -55.54574522

4.2.1 Convergence test of total minimum energy of Fe with
respect to K.point grid sampling

As we can see that, the total minimum energy of Fe is calculated as the function

of k.point grid size from 2 × 2 × 2 to 32 × 32 × 32. For this calculation, the other

parameter like lattice constant, energy cutoff are kept constant. The total minimum

energy of Fe versus K.point grid size is shown in Fig 4.2. It can be observed that the

total minimum energy of Fe coverage at 16× 16× 16 and total ground state energy

has its minimum at -55.54574483 Ry. Moreover, in this simulation the total minimum

energy is monotonically decreasing with increasing K.point grid until reach normal

structure of Fe.
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Figure 4.2: Total minimum energy of Fe with respect to K.point grid.
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4.3 Total magnetization of Fe per atom with re-

spect to degauss sampling

In this part, the calculation was done using different degauss value from 0.02 to 0.18

with 0.01 space point. The other parameter is fixed such as lattice constant, cutoff

energy.

Table 4.3: The results of the total magnetization computed with degauss sampling

Degauss magnetization
(Bohr mag/cell)

Degauss magnetization
(Bohr mag/cell)

0.02 1.99 0.11 0.18
0.03 1.98 0.12 -0.02
0.04 1.95 0.13 0.01
0.05 1.89 0.14 -0.01
0.06 1.80 0.15 -0.01
0.07 1.67 0.16 -0.01
0.08 1.50 0.17 0.00
0.09 1.26 0.18 0.01
0.10 0.86 - -

4.3.1 Convergence test of total magnetization of Fe with re-
spect to degauss sampling

Fig 4.3 shows that, the total magnetization of Fe is calculated as the function of

degauss. From the result total magnetization of Fe per atom is 1.99 Bohr Mag/cell

and converge at 0.12 degauss. However the amount of magnetization is decrease with

decreasing of degauss. when the values of degauss is above 0.12 there is negative values

of magnetization. So the negative values shows the response of imposed magnetic field

and the magnetization result is reach to zero. Iron is ferromagnetic materials with

negative susceptibility.
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Figure 4.3: Total Magnetization of Fe with respect to degauss.
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4.4 The total stress of Fe per atom with respect

to degauss sampling

Table 4.4: The results of the total stress computed with degauss sampling

Degauss stress(Ry/Bohr3) Degauss stress(Ry/Bohr3)
0.02 -26.50 0.11 -192.78
0.03 -40.63 0.12 -217.06
0.04 -41.18 0.13 -211.27
0.05 -53.48 0.14 -226.15
0.06 -71.14 0.15 -217.82
0.07 -98.30 0.16 -206.76
0.08 -133.34 0.17 -184.16
0.09 -135.14 0.18 -168.70
0.10 -160.44 - -

4.4.1 Convergence test of total stress of Fe with respect to
degauss sampling

In this part, the total stress of Fe is calculated as the function of degauss sampling,

the other parameter’s like lattice constant, energy cutoff and k.point are fixed. The

result show that, the total stress of Fe per atom is -26.50 Ry/Bohr3 and the stress is

decrease with increasing amount of degauss until reach at 0.14 degauss. However the

total stress of Fe again increase with respect degauss due to the effect of magnetic

field and it is difficult to estimate the converge point. Stress has direct proportional

relation with total energy and the negative stress are shows the corresponding positive

values of strain.
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Figure 4.4: Total Stress of Fe with respect to degauss.
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4.5 The equilibrium lattice constant of Fe with re-

spect to energy cutoff

The procedure to calculate equilibrium lattice constant of Fe was computing lattice

constant between 4.80 Bohr to 5.55 Bohr, in steps of 0.05 Bohr.

Table 4.5: The results of the total minimum energy computed with lattice constant

Lattice con-
stant(Bohr)

Total minimum en-
ergy (Ry)

lattice con-
stant (Bohr)

Total minimum en-
ergy (Ry)

4.80. -55.52140018 5.20 -55.54665816
4.85 -55.53027763 5.25 -55.54413666
4.90 -55.53718939 5.30 -55.54074155
4.95 -55.54232848 5.35 -55.53657026
5.00 -55.54584836 5.40 -55.53167544
5.05 -55.54791760 5.45 -55.52615297
5.10 -55.54865435 5.50 -55.52087173
5.15 -55.54819455 5.55 -55.51349166

4.5.1 Convergence test of total minimum energy of Fe with
versus lattice constant

To find the equilibrium lattice constant of Iron we performed total energy calculation

for a series of arguments parameters. In this calculation the energy cutoff and the

k.point sampling made fixed (60 Ry, 16×16×16 k.point) using the cutoff and k.point

grid criteria for energy convergence. From Fig 4.5 we observe that, total minimum

energy of Fe was increase with increasing lattice constant. Therefore, the numerical

calculation shows that the equilibrium lattice constant is 5.10 Bohr and the result is

best agreement when we compare the equilibrium lattice constant with experimental

value of 5.217 Bohr.
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Figure 4.5: Total energy of Fe versus lattice constant.
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4.6 Total energy of Fe with respect to different

smearing/degauss

Degauss is the electronic temperature; it controls the process of decreasing or elim-

inating remanent magnetic field and broadening of the occupation number around

the Fermi energy. Smearing is used to test unwarranted occupation distribution

which depends on the system of the interest. In metal we use either Fermi energy

or Cold smearing with large broadening including comparison of smearing methods

like Marzazi-Vanderbilt (M-V), Methfessel-Paxton (M-P), Gaussian (Ga) and Fermi-

Dirac (F-D). In this calculation, the plane wave cutoffs for wave functions are fixed

at 25 Ry and k.point integrations have been performed using different smearing from

0.01 up to 0.10 over shifted Monkhorst-Pack meshes of order 4× 4× 4 for the body

center cubic (bcc). From Table 4.6 , we see that the an increment of the smearing

are important to obtain fully converged total minimum energy of Fe and to interpret

the comparison of smearing methods.

4.6.1 Total energy of Fe with respect to smearing for 4×4×4
k.point grid

In this part, the total energy per atom compute with respect to degauss to compare

the smearing in Fe metal.
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Table 4.6: The results of the total minimum energy computed with smearing sampling

Smearing Total energy (Ry)
in (M-V)

Total energy (Ry)
in (M-P)

Total energy (Ry)
in(Ga)

Total energy (Ry)
in (F-D)

0.01 -55.53286299 -55.53296591 -55.53438617 -55.54142434
0.02 -55.53409140 -55.53341971 -55.53858486 -55.55992398
0.03 -55.53593429 -55.53474660 -55.54437002 -55.58472227
0.04 -55.53800464 -55.53607592 -55.55138741 -55.61466625
0.05 -55.54077103 -55.53767723 -55.55957059 -55.64927438
0.06 -55.54410172 -55.53966876 -55.56876254 -55.68813513
0.07 -55.54758602 -55.54199143 -55.57883030 -55.73078277
0.08 -55.55081476 -55.54454355 -55.58969297 -55.77675677
0.09 -55.55351333 -55.54722281 -55.60131108 -55.82565117
0.10 -55.55559749 -55.54994885 -55.61366927 -55.87713044

4.6.2 Convergence test of total minimum energy of Fe with
smearing for 4× 4× 4 k.point sampling

The smearing for 4 × 4 × 4 k.pont sampling is increased until convergence is made.

From Fig 4.6 we can see that, the four different colors describe the smearing types

method with 4× 4× 4 k.point sampling. The convergence of metallic system is very

slow. The total minimum energy of Fe converge very fast using Marzari-Vanderbilt

(M-V) or Methfessel-Paxton (M-P) as compared to Gaussian (Ga) or Fermi-Dirac

(F-D) smearing for the given values of degauss. However Marzari-Vanderbilt (M-V)

and Methfessel-Paxton (M-P) are less dependent on degauss and we have checked the

convergence of the minimum energy of Fe for different values of smearing with the

k.point sampling.

40



Figure 4.6: The plots of smearing for 4× 4× 4 k.point grid.
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Chapter 5

Conclusion

The electronic and structural properties of Iron (Fe) was studied with the framework

of density functional theory, plane wave basis set, energy cutoff, k.point and pseu-

dopotential (vanderbilt). Iron is the main ingredient used to make steel. There is a

lot of Fe in the universe because it is the end point of the nuclear reactions in large

star. All parameters have been obtained with quantum ESPRESSO software package

by calculation of self consistent field (SCF). The total minimum energy calculation

is interpreted as function of energy cutoff and k.point grid, keeping other parameters

constant. The total energy convergence test is achieved at the energy cutoff 60 Ry

for the first case and at 16× 16× 16 k.point grid size for the second case. The total

minimum energy is -55.54237417 Ry and -55.54574483 Ry for the second case. The

total magnetization of Iron (Fe) is calculated as function of degauss. In this case the

total magnetization of Fe per atom is 1.99 Bohr Mag/cell and the magnetization is

decrease with increasing of degauss. However when the values of degauss is above

0.12 there is negative values of magnetization. Therefore the negative values show

the response of imposed magnetic field and the magnetization result is reach to zero.
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The total stress of Fe is calculated as function of degauss sampling. In this calcula-

tion the total stress Fe per atom is -26.50 Ry/Bohr3 and the stress is decrease with

increasing amount of degauss until reach at 0.14 degauss. However the total stress of

Fe again increase with respect to degauss due to the effect of magnetic field. Stress

has direct proportional relation with total energy and the negative stress are shows

the corresponding positive values of strain. The numerical calculation shows that

the equilibrium lattice constant is 5.10 Bohr. This result is best agreement when

we compare the equilibrium lattice constant with experimental value of 5.217 Bohr.

Finally, for Fe metallic system, the choice of cold smearing is used to minimize the

electronic energy in a DFT calculation. The different smearing calculation was per-

formed with Marzari-Vanderbilt, Methfessel-Paxton, Gaussian and Fermi-Dirac for

4 × 4 × 4 k.point sampling. The result shows that the convergence cold smearing is

very fast than Fermi-Dirac smearing. However cold smearing is less dependent on

degauss.
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