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Abstract

Probably, one of the earliest outstanding theoretical prediction of General Relativ-

ity is the existence of black holes resulted from stellar collapse on self gravitation.

However, more than a dozen of decades has passed without any plausible observa-

tion. As a result, almost interest was lost except its abstract mathematical existence.

Nevertheless, the 1970’s paradigm shift by the Bekenstein-Hawking black hole quan-

tum mechanical radiation theory has lead to the indirect discovery of the object. In

fact, the direct observation of the black holes, the late noble prize in physics is a

celebrity and an encouraging progress that opens a window to look further about our

universe. This has motivated us to rework on the current issue of the black hole radi-

ation mechanism pertaining to the semi-classical quantum approach. Especially, the

Painleve metric adopted in the present decade for this purpose is re-derived from Ein-

stein field equations to elucidate its intrinsic nature. Then, we detailed the geometry

around the hole considering trip of particles into and out of it where the co-moving

Friedmann-Lemaiter-Robertson and the static Schwarzschild standard metrics be as-

sumed. Finally, we did reproduce the black hole radiation in agreement with the

results of the recent literatures.
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Chapter 1

General Introduction

1.1 Thesis Scheme

In this introductory chapter we provide the background, literature review, statement

of the problem, objectives and methods of the work. In chapter 2 we introduce

Einstein General Relativity (GR) theory . The purpose of this chapter is to provide

the necessary boundary issues contained in Einstein Field Equations (EFEs). In fact

it is the background physics we have used in our work. In Chapter 3, we derive

the appropriate black hole (BH) radiation via quantum tunneling in the Wentzel-

Kramers-Brillouin (WKB) approximation. The detailing of the background physics,

scheme of the method implemented, boundary conditions issues thereof are being

throughways provided. In chapter 4 we discuss the results of our work. In the final

chapter, chapter 5 we give our summary and conclusions.
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1.2 Background of the problem and Literature re-

view

1.2.1 Background

Black holes are the most mysterious and fascinating objects of our universe. They

were predicted by the Einstein’s theory of general relativity and their existence is one

of the triumph of this theory. From the birth of GR, its solutions had already implied

the theoretical existence of such objects. However, their direct observational discov-

ery almost have taken a century ago [1],[2]. Today, this unique objects are revealed by

observation and has given window to the universe for more astronomical discoveries

and progress in science. The detection of gravitational waves has given great hope

to obtain vital information on the nature and properties of black holes [3]. In the

early works, before sophisticated astronomical instrumentations were developed, the

existence of BHs were alarmingly being lost interest, except its mathematical exis-

tence. But, the great extension of astronomical observations began early in the 1960’s

brought a revival of interest in the classical theory of general relativity. Then many of

the new phenomena such as quasars, pulsars and compact X-ray sources were being

discovered which indicates the existence of very strong gravitational fields. These

developments have to do with certain recently discovered quantum effects associated

with black holes that provide a remarkable connection between black holes and the

laws of thermodynamics [4].

During the past 40 years, researches in the physics of black holes has brought strong

hints of a very deep and fundamental relationship between gravitation, thermody-

namics, and quantum theory [5]. The great theoretical efforts are made to predict

in detail the waveforms of gravitational waves emitted by black holes. Mainly, the
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discovery of Hawking radiation and its derivation confirmed indirect the existence of

black hole entropy and led to the formulation of black hole thermodynamics. But

it has led to the infamous information loss problem and makes black hole physics

became a particularly fascinating area of the study [6].

Even today there remain open questions such as the information paradox, the micro-

scopic origin of entropy and the final state of evaporation. A complete understanding

of those problems is only possible within a consistent quantum theory of gravity. In

recent years promising progress in this direction has been made within loop quantum

gravity and string theory. However, at least for very large black holes, quantum effects

can be studied within semi-classical theory as well [7]. A feature of the Schwarzschild

solution is not emphasized in the early days, but given great prominence since the

presence of the Schwarzschild radius, which is the signature for the phenomenon of

black holes [8].
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1.2.2 Literature review

The possibility that stars could collapse to form black holes was first theoretically

discovered in l939 by J. Robert Oppenheimer and H.Snyder, who were manipulating

the equations of the collapse of a homogeneous sphere of pressureless gas in Einstein’s

general relativity [9]. They found that the sphere eventually becomes cut off from all

communication with the rest of the Universe. This was assumed as the first rigorous

calculation demonstrating the formation of a black hole. However, in the late 1950s,

J. A. Wheeler who’s first coincide the name black hole in 1968 and his collaborators

began a serious investigation of the problem of collapse [10]. Moreover if the collapse

is spherically symmetric then it produce the Schwarzschild black hole.

Some written histories of black hole indicate as the black holes were predicted long

before the beginning of the space age and they were perceived as byproducts of math-

ematical theories, existed only in the imagination of a few scientists. Related to this

the idea of dark stars can be traced back to the late 18th century, when John Michell

1768 (English philosopher and geologist) and some years later to Pierre-Simon Laplace

in 1796 (French mathematician and astronomer) speculated that, if a planet or a star

were dense enough, their escape velocity would equal to the speed of light [11]. The

more papers states as investigation of the properties of a black hole and the possibility

of their existence arises from the idea of gravitational collapse [12].

Many researchers states as; the first real black hole solution where light could not

even escape a region of spacetime, was first published 1958 by David Finkelstein.

At this time black holes were only theoretical objects. It wasn’t until the discovery

of a pulsar 1967 that studying of gravitational collapsed compact objects became of

interest. In the early 1970 Jacob Bekenstein and Stephen Hawking formulated black
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hole thermodynamics [13]. The most intriguing aspect of black hole radiation is that

it contains elements from quantum theory, thermodynamics and general relativity.

Thus, one may say that in black hole radiation all the three foundational theories of

physics meet for the first time [14].

Since Hawking proved the existence of black hole radiation, much effort has been de-

voted to the study of the black hole radiation. Several years ago, Parikh and Wilczek

proposed a method to calculate the emission rate of particles tunneling through the

event horizon of black hole. They treat Hawking radiation as a tunneling process

and think that the barrier is created by the outgoing particle itself. Their key insight

is to find a coordinate system, which well behaves at the horizon. They calculated

the corrected emission spectrum of the spherically symmetric black holes, such as

Schwarzschild black holes and Reissner Nordstrom black holes [15].

Still, in principle the black hole could lose all of its mass to Hawking radiation and

shrink to nothing in the process. As a result the radiation itself contains less in-

formation than the information that was originally in the spacetime. But such a

process violates the conservation of information that is implicit in general relativity

and quantum field theory, the two theories that led to the prediction. This paradox is

considered a big deal these days, and there are a number of efforts to understand how

the information can somehow be retrieved. A currently popular explanation relies on

string theory, and basically says that black holes have a lot of hair, in the form of

virtual stringy states living near the event horizon. Generally, it is an area of active

research these time [16].
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1.3 Statement of the problem

Generally, in classical theory black holes can only absorb any objects and not emit

even light. But the quantum mechanical effects cause black holes to create and emit

energy in the form of radiation. Then, debates among the scientific communities come

up whether there is such information loss or not. This issue is still open and unsettled.

Recently, researches are proposing a new model that will compromise the debates,

i.e. a way to reconcile the classical issue and the quantum gravity, a semi-classical

approach model. So in this work we study this issue.

1.3.1 Research questions

• What is the implication of Einstein Field Equation to end product of sufficiently

massive stellar object?

• Is the currently and widely considered Painleve metric in the semi-classical

approach of BH radiation a new and independent metric than the Schwarzschild

metric? And how this metric is connected to the co-moving, Friedman-Lemaiter-

Robertson-Walker (FLRW) metric?

• What are the unique properties of Schwarzschild black hole radiation?

• What is the problem related to Hawking quantum radiation?
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1.4 Objectives

1.4.1 General objective

• To study Schwarzschild Black hole radiation with quantum semi-classical ap-

proach.

1.4.2 Specific objectives

• To study and describe the implication of Einstein Field Equation to end product

of sufficiently massive stellar object.

• To work out the intrinsic implication of the currently and widely considered

Painleve metric in the semi-classical approach of BH radiation with that of the

well established Schwarzschild metric and hence its connection to FLRW metric.

• To explain the unique properties of Schwarzschild black hole radiation.

• To describe the problem related to the Hawking quantum radiation.



9

1.5 Methodology

The ”Dynamic Einstein Field Equation” is used to drive black hole solution. Then

the WKB semi-classical technique is used to drive relevant parameter to study the

contents of black hole radiation. Objectively, we assume the Painleve coordinates that

will bridge the quantum and classical phenomena at black hole horizon. Then, with

appropriate boundary conditions and reasonable approximations we extract numerical

data from the analytically derived equations for discussions and comments. For the

numerical data extraction the latest standard version of MATHEMATICA numerical

software is used.



Chapter 2

Introduction to General Relativity
and its application

General relativity is a relativistic theory of gravitation. The physical interpretation of

general relativity depends on the concept of local inertial frames. Relativity teaches

us that all forms of energy are equivalent to mass, so that a relativistic theory of

gravity would presumably have all forms of energy as sources of the gravitational

field. Also, general relativity describes the force of gravity as the curvature of the

fabric of space-time. This curvature is caused by matter (energy) the two being

equivalent in relativity due to Einstein’s famous equation E = mc2 and is governed

by Einstein’s equations of general relativity, see the next following section.

2.1 Einstein Field Equation

All solar system observations and almost all other observations related to gravity

are perfectly described within Einstein’s General Relativity [17]. The first solution

presented to the Einstein field equations was published by Karl Schwarzschild in

1916, which thought as allowed us to make many physical predictions with increased

precision. It is the unique solution for the field outside a static, spherically symmetric

10
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body [18]. The gravitational field of a simple Einstein model star consists of the

interior and exterior the Schwarzschild solutions. They are joined together at the

surface of the star [19]. The Einstein equations can be put as usually the form:

Gµν = Rµν −
1

2
Rgµν = 8πTµν (2.1.1)

The quantity Gµν is called the Einstein tensor, Tµν is stress-energy tensor and gµν is

metric components . Also the Ricci tensor (Rµν) can be wrrtten as

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
λµ + Γλ

λσΓσ
µν − Γλ

σνΓ
σ
λµ. (2.1.2)

is symmetric. In empty space, it takes the form

Rµν = 0. (2.1.3)

Also the scalar curvature R,

R = gµνRµν (2.1.4)

The Christoffel symbol Γλ
µν is,

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) (2.1.5)

In view of this result it is symmetric with respect to two lower indices.

Einstein’s equations determine the geometry of spacetime based on the matter content

in that spacetime and motion of matter is determined by this geometry. Moreover,

the motion of matter is determined by properties of geometry and is built in the

Einstein equations. Simply put, matter tells geometry how to curve while, geometry

tells matter how to move. In this way geometry ceases to be just the main where

physics happens.
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2.2 Black Holes

In modern cosmology it is believed that black holes forms from the collapse of stars.

These formations are described as follows: that as long as stars emitting heat and

light into space, they are able to support themselves against their own inward gravity

with the outward pressure generated by heat from nuclear reactions in their deep

interiors. As they exhaust nuclear fuel, its unbalanced self gravitational attraction

causes it to collapse. Then, if a burned out star has a mass larger than about twice

the mass of our sun no amount of additional pressure can stave off total gravitational

collapse. For a non rotating collapsed star, the size of the resulting black hole is

proportional to the mass of the parent star [20].

Furthermore, more standard theorems are governs the properties of four dimensional

black hole solutions of general relativity in either a vacuum or coupled to an elec-

tromagnetic field. Some of these solutions are Schwarzschild Black Hole, Reissner-

Nordstrom Black Hole and Kerr Black Hole. In particular, such black holes are either

static and spherically symmetric, or rotating and axisymmetric [21].

2.2.1 Schwarzschild solution and its implication

The Schwarzschild spacetime is one of the unique solutions to the Einstein equations

corresponds to a metric that describes the gravitational field exterior to a static,

spherical and uncharged mass without angular momentum.

Birkhoffs Theorem

The Birkhoffs Theorem is a theorem of general relativity which states that all spheri-

cal gravitational fields whether from a star or from a black hole are indistinguishable
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at large distances. A consequence of this assumed as the purely radial changes in a

spherical star do not affect its external gravitational field. That the Schwarzschild

geometry is relevant to gravitational collapse follows from Birkhoffs theorem. The

geometry of a given region of spacetime be spherically symmetric and done as a so-

lution to the Einstein field equations in vacuum. This geometry is necessarily a piece

of the Schwarzschild geometry. In particular, Birkhoffs theorem described as which

implies, if a spherically symmetric source like a star changes its size, however does so

always remaining spherically symmetric, then it cannot propagate any disturbances

into the surrounding space [22].

Event Horizon

The central, even astonishing property of the Schwarzschild horizon is anything that

crosses it cannot get back outside it. The definition of a general horizon (called

an event horizon) focuses on this property [23]. An event horizon described as the

boundary in spacetime between events that can communicate with distant observers

and events that cannot, see figure (2.1). This definition assumes that distant observers

exist, the spacetime is asymptotically flat. And it permits the communication to take

an arbitrarily long time. An event is considered to be outside the horizon provided it

can emit a photon in even just one special direction that eventually makes it out to

a distant observer. The most important part of the definition to think about is that

the horizon is a boundary in spacetime, not just in the space defined by one moment

of time.

Event horizon is a three dimensional surface that separates the events of spacetime

into two regions: trapped events inside the horizon and untrapped events outside.
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Since no form of communication can go faster than light, the test of whether events

can communicate with distant observers is whether they can send light rays, that

is whether there are null rays that can get arbitrarily far away. As the boundary

between null rays that can escape and null rays that are trapped, the horizon itself

is assumed as composed of null world lines. These are the marginally trapped null

rays, the ones that neither move away to infinity nor fall inwards. By definition these

marginal null rays stay on the horizon forever, because if a ray were to leave it toward

the exterior or interior, then it would not mark the horizon.

This definition fits the Schwarzschild horizon which is static and unchanging, but

when we consider dynamical situations there are some surprises. The formation

of a horizon from a situation where there is initially no black hole illustrates well

the dynamical nature of the horizon. Considering the collapse of a spherical star is

thought to form a black hole. In the end there is a static Schwarzschild horizon, but

before that there is an intermediate period of time in which the horizon is growing

from zero radiuses to its full size.

Singularity theorem

In the early 1960s, Penrose applied global geometrical techniques to prove a famous

series of singularity theorems. These showed that in realistic situations an event hori-

zon (a closed trapped surface) will be formed and that there must exist a singularity

within this surface, i.e. a point at which the curvature diverges and general relativity

ceases to be valid. The singularity theorems were important in convincing people

that black holes must form in nature [24].

Generally horizon and singularity are the identity of black hole which describe most
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Figure 2.1: Black hole horizon and singularity

properties of black hole. The geometry of a spherical symmetric vacuum, i.e. vac-

uum spacetime outside the spherical black hole is the Schwarzschild geometry can be

described in terms of the Schwarzschild metric,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (2.2.1)

which was derived originally as the external field of a static star, with non zero

components of,

gtt = −f(r), grr = f(r)−1, gθθ = r2, and gϕϕ = r2 sin2 θ. (2.2.2)

Where

dΩ2 = dθ2 + sin2 θdϕ2 (2.2.3)

is the metric on the unit two-sphere,

f(r) = (1− 2GM

r
), (2.2.4)
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where G is the gravitational constant, M is the black hole mass, and (c = 1) is the

speed of light in vacuum. The metric equation (2.2.1) is a static solution and the

metric is asymptotically flat.

The Schwarzschild geometry illustrates clearly the highly non-Euclidean character of

spacetime geometry when gravity becomes strong. Furthermore, it illustrates many

of techniques one can use to analyze strong gravitational fields. The Schwarzschild

spacetime, whose metric is given in equation (2.2.1), shows the failure of coordinates

which have an obvious interpretation in one region of the spacetime (the region for

which r > 2GM ), but not in another (the region for which r < 2GM).

Thus the metric coefficients diverge at r = 0 and r = 2GM , f(r) is obviously co-

ordinate dependent. So a metric divergence may just be a coordinate singularity,

originating from the breakdown of the employed coordinate system. The singular-

ity at r = 0 turns out to be a true curvature singularity. A sign of this fact is

that the coordinate-independent scalars can be constructed from the Riemann tensor

diverges. But at r = 2GM is not true singularity. By transforming to the Eddington-

Finkelstein coordinates we can show that at r = 2GM the spacetime is perfectly

regular and overcoming this obstacle. In these coordinates it also becomes that the

hypersurface located at r = 2GM is an event horizon and we will see about this in

the following section.

2.2.2 Other metrics from Schwarzschild metric

Eddington Felkilstein coordinate

As mentioned in section [2.2.1], at first the metric was thought to be singular at the

Schwarzschild radius (Rs)

Rs =
2GM

r
, (2.2.5)
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but the coordinate transformation found by Eddington showed that it is possible to

move the singularity on the Schwarzschild radius. However Eddington shown as which

noted that Rs seems smaller than a radius of any astronomical object and hence plays

no role in nature [25]. By consider a light ray propagating in the radial direction that

with θ and ϕ are constant and ds2 = 0. Then the Schwarzschild metric equation

(2.2.1) can be write in the form

ds2 = 0 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2, (2.2.6)

and on account of this result, one can readily get

dt

dr
= ± (1− 2GM

r
)−1 . (2.2.7)

This equation shows for large r the slope dt
dr

= ±1, as it would be in flat space, while

as r approached to the r = 2GM we get dt
dr

= ±∞. Thus, shows a light ray never

seems to get there, at least in this coordinate system; instead it seems to asymptote

to this radius. This is really an illusion; the light ray (a massive particle) actually has

no trouble reaching r = 2GM . But an observer far away would never be able to tell.

If we stayed outside while an intrepid observational general relativist dove into the

black hole, sending back signals all the time, we would simply see the signals reach

us more and more slowly.

As infilling astronauts approach r = 2GM , any fixed interval 4τ1 of their proper

time corresponds to a longer and longer interval 4τ2 from our point of view. This

continues forever; we would never see the astronauts cross r = 2GM , we would just

see them move more and more slowly (become redder and redder, almost as if they

were embarrassed to have done something as stupid as diving into a black hole).

Indeed, we would never be able to see the in falling astronauts reach r = 2GM . But
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the astronauts will still be there. To show this, the best way is to switch to a different

coordinate system, which is better behaved at r = 2GM . Equation (2.2.7) shows that

the problem with the current coordinates is that dt
dr
→∞ along radial null geodesics

which approach r = 2GM . Thus, progress in the r direction becomes slower and

slower with respect to the coordinate time t. This suggests a way to fix it replace the

t with a coordinate which moves more slowly along null geodesics. The first thing

solving equation (2.2.7), and gives

t = r∗ + C , (2.2.8)

where C is constant, r∗ is known as the tortoise coordinate and it defined as

dr∗ =
dr

1− 2GM
r

, (2.2.9)

where r is the Schwarzschild radial coordinate. Equation (2.2.9) indicates that dr∗ →

dr in the limit of large r. So the tortoise coordinate is approximately equal to the

Schwarzschild radial coordinate at distances far from the black hole. Equation (2.2.9)

also indicates that dr∗ blows up near r = 2GM . Integrating both sides of equation

(2.2.9),

r∗ = r + 2GMln| r

2GM
− 1|+ C . (2.2.10)

Note that the natural logarithm is undefined for r ≤ 2GM , which means that the

tortoise coordinate only describes the spacetime geometry outside of the black hole.

This gives r∗ = r∗(r) which indicate that the tortoise coordinate ranges over r∗ =

(−∞,+∞), the tortoise coordinate is defined non-uniquely. And since r∗ can take on

any value on the real line, It is free to make C, in equation (2.2.9) equal to any real

number that wanted. The best way is to choose C = 0,

r∗ = r + 2GMln[
r

2GM
− 1] . (2.2.11)
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The reason for defining r∗ such that, to satisfies equation (2.2.9), because it can

be used to put the Schwarzschild metric’s time-radial component in a form that is

conformally flat. Squaring both sides of equation (2.2.9) allows us to rewrite the

Schwarzschild metric the radial component as

grr =
dr

1− 2GM
r

= (1− 2Gm

r
)dr∗2 (2.2.12)

Substituting this into the Schwarzschild metric in equation (2.2.1) gives

ds2 = −(1− 2GM

r
)(dt2 − dr∗2) + r2dΩ2 . (2.2.13)

The Eddington-Finkelstein coordinates u and v are lightcone coordinates defined with

respect to Schwarzschild coordinate time t and tortoise coordinate r∗,

u = t− r∗ ⇒ t = u+ r∗ (2.2.14)

and

v = t+ r∗ ⇒ t = v − r∗ , (2.2.15)

with u and v corresponding to outgoing and ingoing radial lightlike geodesics, re-

spectfully. By Squaring both sides, taking differentials of the equation (2.2.16) and

by taking the value of dr∗ from equation (2.2.9),

ds2 = −(1− 2GM

r
)du2 + 2dudr + r2dΩ2, (2.2.16)

is the line element for the outgoing Eddington-Finkelstein coordinates.

Also, by applying the same procedure to equation (2.2.15) for (dt = dv+ dr∗) we can

get,

ds2 = −(1− 2M

r
)dv2 − 2dvdr + r2dΩ2, (2.2.17)
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is the line element for the ingoing Eddington-Finkelstein coordinates.

In both equations (2.2.16 and 2.2.17) of the Eddington-Finkelstein coordinates the

light cones do not fold up at r = 2GM but tilt over, so that for r > 2GM and

r < 2GM only movement in the direction of increasing and decreasing r, towards the

singularity at r = 0 is allowed.

2.2.3 Hawking Radiation and its implication

In classical theory thought as black holes can only absorb and not emit even light.

In 1974 Hawking startled the physics communities by providing that black holes are

not black and they radiate energy continuously [26]. The relation between black hole

entropy and horizon area together with the first law of black hole mechanics described

as indicates that black holes do have a temperature (T ) that should be proportional

to surface gravity (κ). As

T =
~κ

2πkB

, (2.2.18)

where is ~ the reduced Planck constant and kB is the Boltzmann constant. If the black

hole is immersed in black body radiation of lower temperature then the generalized

second law is violated, unless the black hole also emits radiation.

The quantum mechanical effects cause black holes to create and emit particles as if

they were hot bodies with temperature. So, we accepted that the black hole can

radiate with wavelength (λ) and the only length-scale in the problem is the size of

the horizon. Assume for photon with wavelength equal to the radius of the black hole

has (ignoring the curvature of the spacetime) an energy equal to the

E = hv = h
c

λ
= hc

c2

2GM
, (2.2.19)
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where, E, h, v are energy, Planks constant, frequency of photon respectively, and

λ = R = 2GM is Schwarzschild radius, see section [2.2.1], which is approximately to

the wavelength. When black holes are absorbing every that falls on them, then their

temperature (T ) should be at least approximately related to the energy, by setting

E = kBT (2.2.20)

On account of Equation (2.2.19) and (2.2.20) we see that

T =
hc3

2GMkB

(2.2.21)

This thermal emission leads to show a decrease in the mass of the black hole and

to its eventual disappearance [27]. By using the value of κ in equation (2.2.18) the

Hawking temperature (TH) of a black hole is

TH =
~c3

8πGMkB

(2.2.22)

Then, the black hole temperature is straight forward to calculate the black hole

entropy that from the first law of the BH mechanics, which is essentially the energy

conservation relation, related to the change of BH mass (M) with the change of its

entropy (SBH), electric charge (Q), and angular momentum (J) as

dM = ThdSBH + ΦdQ+ ΩdJ, (2.2.23)

Ω is the angular velocity and Φ is the electrostatic potential. So, for nonrotating

uncharged BHs, the entropy (S) has the simple form

dSBH =
dM

Th

= 8πGMdM (2.2.24)

Therefore,

dSBH = 8πGMdM = d(4πGM2), (2.2.25)
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where R = 2GM then

dSBH = d(4πGM2) (2.2.26)

SBH =
πR2

4
=
A

4
(2.2.27)

is known as Bekenstein-Hakwing entropy, where A = πR2 is surface area of black

hole. Thus, shows black hole thermodynamics describes the behavior of a black hole

in terms of the laws of thermodynamics by relating mass to energy, horizon to entropy

and surface gravity to temperature. Hawking radiation would only occur if the black

hole is warmer than the environment surrounding it; because the black hole would

need to radiate away energy in order to reach thermal equilibrium and these black

holes are hence unstable.

It is described in the presence of an event horizon, thought occasionally one member

of a virtual pair will fall into the black hole while its partner escapes to infinity.

The particle that reaches infinity will have a positive energy, but the total energy

is conserved; therefore the black hole has to lose mass. This the escaping particles

assumed as Hawking radiation. It is not a very big effect and the temperature goes

up as the mass goes down [28].

Specifically, Hawking’s calculations indicated that black hole evaporation via Hawking

radiation does not preserve information. Because Hawking assumed a fixed, curved

background spacetime geometry and that the black hole’s mass remains constant as it

radiates. Today, many physicists believe that the holographic principle demonstrates

that Hawking’s conclusion was incorrect, and that information is in fact preserved.

Hawking derivation employed field modes of arbitrarily high frequency near the black

hole horizon, although these do not appear in the final result.



Chapter 3

Black Hole Radiation via Quantum
Semi-Classical Approach

After the discovery of quantum black hole thermal radiance by Hawking it became

pretty clear to concern the interface of gravity, quantum theory and thermodynamics.

This describes as a radiating black hole loses its’ energy and therefore shrinks, evap-

orating away to a fate which is still debated. It is a long debated question how the

thermal nature of Hawking radiation can be reconciled with unitarity (information

loss puzzle), unitarity is a milestone of classical and quantum physics. Also many

new ideas came out from the recognition that quantum field theory implied a ther-

mal spectrum and the principle of black hole complementarity aimed to reconcile the

apparent loss of unitarity implied by the Hawking process with the rest of physics as

seen by external observers.

Nevertheless, in the semi-classical result that the radiation caused by the changing

metric of the collapsing star approaches a steady outgoing flux at large times, im-

plying a drastic violation of energy conservation. Energy conservation requires fixing

the total energy of the space-time before and after particle emission. Since black hole

23
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mass and volume are linked together, a mass reduction due to the emission of a par-

ticle translates into a size contraction; so it is some worry how to deal with quantum

fluctuations of the metric originating from such contraction.

In this case no graviton quantization is involved or, said in other words, passing from

different spherically symmetric configurations does not produce gravitational waves.

As a consequence, the only degree of freedom remained in the problem is the position

of the emitted particle (actually a thin shell). Thus, to keep things as simple as pos-

sible, it adapted restrict to consider uncharged, static, spherically symmetric black

holes emitting neutral matter.

The quantum field theory in curved spacetime is a semiclassical theory, in which used

to study quantum fields on a fixed (i.e. classical) background. The semiclassical

theory of black holes and in particular the Hawking effect is elegant but, it is full of

conceptual problems. Therefore, the study of semiclassical black holes is necessary to

reveals the tension and conflicts between the theories of general relativity and quan-

tum mechanics. Somebody could be briefly understand two of these issues through

black hole radiation [29].
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3.1 Particles trip to the black hole in the FLRW

Background

The method of describing a spherical contraction of a uniformly distributed dust

star is making a physically reasonable junction of the two different spacetimes corre-

sponding to the interior and exterior regions of the collapsing body. The interior and

exterior solutions are given by the Freidmann-Lemaire-Roberttos-Walker (FLRW)

metric and the Schwarzschild metric described in different coordinate systems [30].

3.1.1 Painleve metric

Assume from far distance to the black hole we need background metric that is from

Freidmann-Roberttos-Walker (FRW) metric. Consider a generic FRW space-time,

namely one with constant curvature spatial sections. The FRW line element can be

written as

ds2 = −dt2 + a2(t)[
dr2

1 + kr2
+ r2dΩ2] (3.1.1)

where dΩ2 = dθ2 +sin2 θdϕ2 and r is measured in units of the curvature radius and as

usual, k = 0,−1,+1 labels flat, open and closed three-geometries, respectively. The

important case k = 0 is deserves as special attention in this study with the case of

flat geometry. Then the above FRW metric written as

ds2 = −dt2 + a2(t)[dr2 + r2dΩ2] , (3.1.2)

where a(t) is the scale factor.

Now to study the black hole radiation nobody can stay near the horizon. So at large

distance from the black hole (for any mass) the metric is given approximately by the
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FWR metric and when expansion is ignored one obtain Schwarzschild metric which

is isotropic coordinate (can be used to model spacetime outside a black hole). Here

we have to produce the mix of non-comoving radial coordinate and a comoving radial

coordinate by combining the Schwarzschild metric and FWR metric to get suitable

metric. Let take the wave front velocity whose radius is

R(t, r) = a(t)r , (3.1.3)

where the expansion is ignored a(t) = a(o), one obtain the Schwarzschild metric.

Then,

dR = ȧrdt+ adr, (3.1.4)

from which follows

dR = R(
ȧ

a
)dt+ adr = RHdt+ adr, (3.1.5)

where H = ȧ
a

and known as Hubble constant. It then follows that

dr =
dR−RHdt

a
. (3.1.6)

From this result, one can readily get

dr2 =
1

a2 [dR2 +R2H2dt2 − 2RHdtdr]. (3.1.7)

By substitute the value of r2 and dr2 from (3.1.3) and (3.1.7) in equation (3.1.2) we

get

ds2 = −[1−R2H2]dt2 + [dR2 − 2RHdtdR +R2dΩ2], (3.1.8)

is FRW metric in comoving coordinates. Also from the FLRW model of cosmology

the equation with non cosmological constant their is,

H2 =
8πG

3
ρ (3.1.9)
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where ρ is energy density which is ρ = M
4π
3

R3 and for Schwarzschild black hole that

static and without cosmological constant (Λ = 0). In view of this, we have

H2 =
2GM

c2R3
, (3.1.10)

from which follows

R2H2 =
2GM

c2R
, (3.1.11)

It then follows that

2RH = 2

√
2GM

c2R
(3.1.12)

Now the mixed metric become

ds2 = −(1− 2GM

c2R
)dt2 + dR2 − 2

√
2GM

c2R
dRdt+R2dΩ2 (3.1.13)

is the Painleve metric and it can readily give static metric. This mixed metric is being

used to drive the intended black hole radiation. In fact this metric is further worked

out to be the most spherically static Einstein field equation solution in the absence

of cosmology. In equation (3.1.13) by setting ds2 = 0 to make the geodesics lightlike,

and dΩ = 0 to make the geodesics radial, this equation can be written as,

0 = −(1− 2GM

c2R
)dt2 + dR2 − 2

√
2GM

c2R
dRdt. (3.1.14)

Then by dividing equation (3.1.14) by dt2 gives a function that is quadratic in dR
dt

(
dR

dt
)2 − 2

√
2GM

R

dR

dt
− (1− 2GM

R
) = 0, (3.1.15)

which can be solved using the quadratic formula to give

dR

dt
= ±1 +

√
2GM

R
(3.1.16)

where ± corresponds to outgoing/ingoing radial null geodesics.
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3.1.2 WKB Approximation

The Wentzel, Kramers, and Brillouin (WKB) approximation is used to find approx-

imate general solutions to linear differential equations and allows the step of solving

the differential equation to be skipped. The WKB approximation can be applied

to differential equations that have solutions with either constant, or slowly varying

coefficients. The assumption of slowly varying coefficients in the present derivation

is a result of truncating the action after a first order approximation. So for deriva-

tive of the wavefunction’s one can drop a second or derivative of the wavefunction’s

when approximation is made. This very straightforwardly explains why the coeffi-

cient is assumed to be slowly varying. It is adapted to drop the time-dependence

of the wavefunction because the spacelike contribution to the tunneling event occurs

instantaneously. Therefore the wavefunction is written as

ψ(x) = Ae
i=(x)

~ (3.1.17)

where = is classical action. The general plane wave solutions in equation (3.1.17) can

be inserted into the time-independent Schrodinger equation (TISE),

− ~
2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x) (3.1.18)

which describes the probability distribution of Ψ in the presence of a potential energy

distribution V (x). Solutions to equation (3.1.18) is the form ψ ∼ e
i
~=(x). Differenti-

ating ψ with respect to position,

ψ
′
=
i

~
=′
ψ, ψ

′′
= (

i

~
=′′ − 1

~2
=′2)ψ (3.1.19)

and substituting its derivatives into the TISE (3.1.18) it like,

− ~2

2m
[
i

~
=′′ − i

~2
=′2]− [E − V (x)] = 0. (3.1.20)
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Then, by substituting the E = p2

2m
+ V (x) can be rearranged to obtain p2 = 2m(E −

V (x)), which can then be substituted into equation (3.1.20) to give

− ~2

2m
[
i

~
=′′ − i

~2
=′2]− [

p2

2m
] = 0. (3.1.21)

It then follows that

i~=′′ −=′2 − p2 = 0. (3.1.22)

From this point, the WKB approximation can be derived by Taylor expanding the

classical action =(x) in powers of ~ and then truncating the power series after linear

order. This method of approximation is called semiclassical, because the quantum

mechanical effects are retained only to linear order in ~. It’s worth pointing out

that this is a very reasonable approximation ~ ∼ 10−34, ~2 ∼ 10−64, ~3 ∼ 10−102, ...

by Taylor expanding the classical action in powers of ~ and collecting like-powers

equation 3.1.22, as

−(p2 −=′

0)
2 + (i=′′

0 − 2=′

0=
′

1)~(i=′′

1 −=
′

2 − 2=′

O=
′

2)~
′2 + ... = 0 (3.1.23)

Since the right-hand side of equation (3.1.23) is equal to zero, the coefficient of each

power in ~ on the left-hand side must also be equal to zero. Taking the zeroth order

term in equation (3.1.22), one can readily obtain

p2 = −=′2
0 ⇒ =0(x) = ±

∫ x

x0

p(x)dx. (3.1.24)

The first order term in equation (3.1.23), takes the form

i

2
=′′

0 = =′

0=
′′

1 , (3.1.25)

i

2
p
′
= p=′

1 (3.1.26)
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and

i

2

∫
dp

p
=

∫
dS1 ⇒ =1(x) =

i

2
ln |p|. (3.1.27)

Equations (3.1.24) and (3.1.25) can be used to find a first order semiclassical approx-

imation for ψ(x), that

ψ(x) = exp[
i

~
=(x)] = exp[± i

~

∫ x

x0

p(x)dx− 1

2
ln |p|] (3.1.28)

after taking the second term as a coefficient, gives approximate general solutions to

the time-independent Schrodinger equation, and the WKB approximation for ψ(x),

is found to be

ψ(x) ≈ C±√
|p(x)|

e±
i
h

∫ x
x0 p(x)dx, p(x) ≡

√
2m(E − V (x)) (3.1.29)

where, m,E and p(x) are the mass, total energy, and classical momentum of the

tunneling particle. V (x) is the potential barrier that the particle must tunnel through.

For the case of a particle tunneling across the event horizon, V (x) can be thought of

as being associated with the gravitational potential energy barrier that the particle

must overcome in order to escape to future lightlike infinity. For tunneling model of

Hawking radiation we assume the particle must tunnel against an energy barrier that

is determined by the particle’s own total energy. Note that the momentum p(x) in

equation (3.1.29) implies that both energy and momentum are conserved if V (x) is

made to be equal to the particle’s own self-energy. The integral in the exponent of

ψ(x), from equation (3.1.29), is equal to the classical action

=(x) =

∫ x

x0

p(x
′
)dx

′
(3.1.30)

=(x) is real-valued when the particle is in a classically allowed region, because E >

=(x) implies p(x) is real. =(x) is imaginary when the particle is in a region with
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V (x) > E, since =(x) > E implies p(x) is imaginary. If the particle is massless then

p(x) must be expressed in a way that does not explicitly assume the particle to have

a mass m. This can be done by recalling that quantum mechanics has a Hamiltonian

formalism. This means that p(x) can be viewed under the more general context as

the particle’s canonical momentum

p(x) =
∂L

∂ẋ
, (3.1.31)

where L is the Lagrangian.

3.2 Black Hole Radiation with the WKB approx-

imation

3.2.1 Radial null geodesic method

The quantum description of a black hole (BH), namely the Hawking radiation (HR)

is closely related to the existence of an event horizon to the BH. The derivation of

Hawking that BH evaporates particles was based on quantum field theory. Hartle and

Hawking subsequently derived the BH temperature at the semiclassical level using

the Feynmann path integral. From the other, Hawking radiation is the most reliable

result of quantum gravity derived with semi-classical techniques. The mathemati-

cal complexity forces to develop semi-classical approaches for studying BH radiation.

However, these semi-classical techniques were classified into two approaches [31]

i. the tunneling approach of Parikh and Wilczek, which referred to as the radial null

geodesic method and

ii. the standard Hamilton-Jacobi (HJ) method (known as complex path integral for-

malism) by Padmanabhan et al.

In this study we used the first approach (radial null geodesic method), because the
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second approach is deal with the tunnelling of massless particles beyond the semi-

classical approximation by HamiltonJacobi (HJ) method. In semiclassical tunneling

analysis the radial null geodesic method is a common way of evaluating Hawking

radiation. The energy conservation in tunneling of a thin shell from the hole is the

main ingredient for this approach. The imaginary part of the action from the s-wave

emission is connected to the Boltzmann factor for emission to relate with Hawking

temperature (HT).

As mentioned at the end of section [3.1.2] equation (3.1.31) does not make any as-

sumptions about the particle’s mass. A particle tunneling across the event horizon is

assumed to travel along the radial coordinate axis. Indicating this with the replace-

ment x
′ → r into equation (3.1.30) and relabeling the momentum to be interpreted

as a component of a momentum 4-vector,

= =

∫ rf

ri

p(r)dr (3.2.1)

During radiation a decrease in a black hole’s mass from M → M − ω is necessarily

accompanied by a corresponding decrease in its Schwarzschild radius, from Rs =

2M → 2(M − ω),(here, ω represent the change in mass of BH during radiation).

Consistent with this total change in radius, the present model treats the outgoing

particle as initially occupying the finite and well-defined region of space between

rin = 2GM − ω and rout = 2GM

in an s-wave configuration. The classically forbidden region is taken to be the spher-

ical surface at r = 2(M − ω), thus having an infinitesimal width.

When the outgoing wave is traced back towards the horizon its wavelength as mea-

sured by local fiducial observers is ever-increasingly blue-shifted. Near the horizon
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the radial wavenumber approaches infinity and the point particle or WKB approxi-

mation is justified. The imaginary part of the action for an s-wave outgoing positive

energy particle which crosses the horizon outwards from rin to rout can be expressed

as

Im= = Im

∫ rout

rin

p(r)dr = Im

∫ rout

rin

∫
p
′
(r)dr (3.2.2)

For computational convenience we can treat the particle as a rigid object, which

undergoes an infinitesimal rigid motion (�) during integration. Because, treating the

particle as a rigid object makes sense computationally that when one point on the

particle moves, all of the rest of the points on the particle have to move with it.

Then r = 2G(M −ω)− � is smallest r value occupied by the outgoing particle before

undergoing a rigid motion.

When the particle is treated as a spherical shell of width 2ω this is the largest r

coordinate the particle can be located at while still objectively be contained inside

of the black hole. During integration, this point is treated as the particle’s location,

and the particle is translated via rigid motion from

r = 2G(M − ω)− �, to r = 2G(M − ω)+ � ,

correspond to the radial point along the s-wave’s radial width that has the smallest

r value (i.e. the inner most radial coordinate of the outgoing particle). To change

variable of equation (3.2.2) from momentum to energy, and switch the order of an

other equation we used Hamilton’s equations that,

r
′
=

∂H

∂p(r)
=

∂

∂p(r)
[K(pr) + U(r)] =

∂K

∂p(r)
(3.2.3)

which follows

∂U
∂p(r)

= 0.
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where K and U represents kinetic and potential energy respectively. Then,

p
′
(r) = −∂H

∂r
. (3.2.4)

Since H is conserved, the total differential

dH = 0 , and

dp(r) 6= dH
r′

depend on this, one can define

∂K
∂p(r)

= dK
dp(r)

,

because the potential energy is independent of p(r). This means that equation (3.2.3)

rearranged for

dp(r) =
dT

r′
(3.2.5)

The Hamiltonian can be expressed in terms of the system’s scalar quantities as

H = K + U = ω + (M − ω) (3.2.6)

Using the Dirac-sea-like interpretation of pair creation, the ω in U = M − ω should

be thought of as a correction to the black hole’s mass that is extracted by the positive

energy particle’s creation. Then equation (3.2.6) shows

dp(r) =
dω

r′
(3.2.7)

which can be substituted into equation (3.2.2) to give

= =

∫ rout

rin

∫ ω

0

dω
′

ṙ
dr (3.2.8)
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From equation(3.1.16) of mixed metric r → R and for our case M →M − ω

= =

∫ Rout

Rin

∫ ω

0

dω
′

1 +
√

2G(M−ω)
R

dR . (3.2.9)

By substitute the value of Rin and Rout,

= = lim
�→0+

∫ 2G(M−ω)+�

2G(M−ω)−�

∫ ω

0

dω
′

1 +
√

2G(M−ω)
R

dR (3.2.10)

This integrand is singular at R = 2G(M − ω). Also notice that the bounds of

integration over R are separated by an infinitesimal distance 2ε. The fact that R is

integrated over an infinitesimal distance provides justification for ω to be treated as

a constant with respect to integration over R. This is important because it allows us

to interchange the order of integration in equation (3.2.10) without having to worry

about ω appearance in the bounds of integration over R. Equation (3.2.10) become

= =

∫ ω

0

( lim
�→0+

∫ 2G(M−ω)+�

2G(M−ω)−�

dR

1−
√

2G(M−ω′ )
R

)dω
′

(3.2.11)

Let’

R = u2 → u =
√

2G(M − ω′) (3.2.12)

then,

= =

∫ ω

0

dω
′
( lim
�→0+

∫ 2G(M−ω)+�

2G(M−ω)−�

2u2du

u−
√

2G(M − ω′)
)dω

′
(3.2.13)

Also, let

u−
√

2G(M − ω′) =� eiφ → du = i � eiφdφ (3.2.14)

allows us to make a contour deformation. It can be done either as a contour integral

over an open semicircule deformed into the lower quadrants of the complex plane or

alternatively, we can to deform the contour into a closed and right-handed semicircle



36

extending into the upper quadrants of the complex plane. Taking the open semicircu-

lar contour approach, the integral over u in equation (3.2.13) can now be re-expressed

as ∫ uout

uin

2u2du

u−
√

2G(M − ω′)
= ( lim

�→0+
2

∫ 2π

π

(� eiφ +
√

2G(M − ω′))2

� eiφ
(i � eiφdφ))

(3.2.15)

∫ uout

uin

2u2du

u−
√

2G(M − ω′)
= lim

�→0+
2i

∫ 2π

π

(� eiφ +
√

2G(M − ω′)
2
dφ (3.2.16)

= 2i
∫ 2π

π
(
√

2G(M − ω′)2dφ

= 4iG(M − ω
′
)
∫ 2π

π
dφ

Finally, we arrive at ∫ uout

uin

2u2du

u−
√

2G(M − ω′)
= i4πG(M − ω

′
) (3.2.17)

With this, equation ( 3.2.13) becomes

= =
∫ ω

0
4iG(M − ω

′
)dω

′
.

It then follow that

= = i4πG(Mω − ω2

2
) . (3.2.18)

So the imaginary component of the action is given by

Im= = 4πG(Mω − ω2

2
) . (3.2.19)

A negative energy particle propagating forward in time is equivalent to a positive

energy particle propagating backward in time. The calculation for an ingoing negative

energy particle can be made either way. The bounds of integration over R for an
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ingoing particle are interchanged with respect to the bounds of integration for an

outgoing particle. The ingoing particle starts at Rout = 2GM+ � and tunnels an

infinitesimal distance 2ω, across the classically forbidden surface at R = 2GM , to

Rin = 2GM− �. A quick calculation for the negative energy ingoing particle can

be made as follows. Let p(R)− represent the negative energy particle and p(R)+

represent the positive energy particle. The action is

= =

∫ Rin

Rout

p(R)−dR =

∫ Rout

Rin

p(R)+dR, (3.2.20)

from which follows

= = i4πG(Mω − ω2

2
) . (3.2.21)

Generally, which gives a transmission coefficient ( tunneling rate, Γ)

Γ ' e−2Im= = e−8πG(Mω−ω2

2
) (3.2.22)

First consider for small energy ω, this reduces to

Γ ' e−2Im= = e−8πG(Mω) (3.2.23)

Secondly consider if the emitted particle takes all of the mass of the black hole with

it. This would have a transmission rate of

Γ(ω = M) ∝ e−4GπM2

(3.2.24)

There can only be one of these outgoing states. But there are e∆SBH form equa-

tion (2.2.25), where SBH is the Berkenstein-Hawking entropy, states in total, so the

probability of finding that states is one in that number is

P (ω = M) ∝ e−∆SBH (3.2.25)
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P (ω = M) ∝ e
−A
4 (3.2.26)

P (ω = M) ∝ e−4GπM2

(3.2.27)

where ∆S is the difference of the Bekenstein-Hawking entropy between before and

after the Hawking radiation. Since, the total entropy of a BH is given by

SBH =
1

4
Ah (3.2.28)

where Ah = πR2, is called the area of the BH. Then

SBH = πR2
h = 4πM2 (3.2.29)



Chapter 4

Result and Discussion

As we try to describe in section (2.2.1) the singular possibility of Schwarzschild metric

of equation (2.2.1) the metric coefficients can be diverge at r = 0 and r = 2GM . Now

we checked the true coordinate singularity as follows. The singularity at r = 0 turns

out to be a true curvature singularity. A sign of this fact is that the coordinate-

independent scalars can be constructed from the Riemann tensor diverges. As r → 0,

RµνρσR
µνρσ → ∞, implying a true curvature singularity at r = 0. Also, let check

singularity for r = 2GM : take for photon Equation (2.2.1), the static metric becomes

ds2 = 0 = −f(r)dt2 + f(r)−1dr2 (4.0.1)

in which

f(r)2dt2 = dr2 (4.0.2)

from which follows

dt

dr
= ±f(r)−1 = ±(1− 2GM

r
)−1. (4.0.3)

This equation can be represent the slope of the light cones on a spacetime diagram

of the ( t, r ) plane as figure (4.1)

39
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Figure 4.1: Light cones diagram depends on Schwarzschild radius.

For large r, slope = ±1, flat space and for r = 2GM , slope dt
dr
±∞, light cone

closed up ( the central line of light cone ). But, here the singularity at r = 2GM , is

turns out to be a coordinate singularity. This is failure of the standard coordinate

system of Schwarzschild metric and is one of the most interesting challenges in the

study of general relativity.

Therefore to study the Schwarzschild black radiation first we find the suitable met-

ric depending on black hole event horizon properties. Through this we get Painleve

metric as in Equation (3.1.13) which contains mixed metric of static and co-moving

coordinate. Second in the semi-classical approach the tunneling probability is calcu-

lated directly from the principle of conservation of energy by calculating the imaginary

part of the action in WKB approximation as equation (3.2.22).

Generally, When the factor ω2 is neglected in equation (3.2.22), the tunneling rate

reduces to the black body radiation which is pure thermal that permits the leakage of

the information from the system and expressed by a Boltzmann e−βω factor in which

β = 1
T
. The existence of ω2 is due to the physics of energy conservation. Besides,
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it gives rise to a deflection from the pure thermal radiation of the BH and therefore

leads to a information escaping from the BH. This phenomenon is significant on the

resolution of the information loss problem.

When particles escape, the black hole loses a small amount of its mass and energy are

related by Einstein’s equation E = mc2. The power (P ) emitted by a black hole in

the form of Hawking radiation can easily be estimated to the StefanBoltzmann power

law as

P = AsσT
4
H , (4.0.4)

where P is the power (energy outflow), As is Schwarzschild sphere surface area of

Schwarzschild radius Rs, σ is StefanBoltzmann constant and ~ is the reduced Planck

constant.

Hence, from equation (2.2.22) we have

TH =
~c3

8πGMkB

(4.0.5)

is Hawking radiation temperature. The Hawking temperature is defined to be the

thermal temperature corresponding to the characteristic wavelength of a photon of

Hawking radiation, that is detected by an observer located infinitely far away from

the black hole. Combining the formulas for the Schwarzschild radius of the black hole

with the equations (4.0.4) and (4.0.5)

dE

dt
= −Asσ(

~c3

8πGM(t)kB

)4, (4.0.6)

is Stefan Boltzmann-Schwarzschild-Hawking power law. The negative sign shows the

decrement of black hole mass and dE
dt

is the energy outflow and dE = c2dM .
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Moreover, we have

c2dM

dt
= −Asσ(

~c3

8πGM(t)kB

)4 (4.0.7)

c2dM

dt
= −πR2σ(

~c3

8πGM(t)kB

)4 (4.0.8)

c2dM

dt
= −π(

2GM(t)

c2
)2σ(

~c3

8πGM(t)kB

)4 (4.0.9)

M2(t)
dM

dt
= −σ(

~c4c6

256π3G2k4
B

) (4.0.10)

Let, λ = σ( ~c4c6

256π3G2k4
B
) then equation ( 4.0.10 ) becomes

∫ 2G(M−ω)

2GM

M2(t)dM = −
∫ tH

t

λdt, (4.0.11)

is black hole mass as function of time. Where t and tH is initial and final time of

black hole during radiation. Also by using the value of M(t) from equation (4.0.11)

in equation (4.0.5)

T (t) =
~c3

8πGM(t)kB

, (4.0.12)

is black hole temperature as function of time.

The numerical results of equations (4.0.10) and (4.0.12) are shown as in Fig.(4.2) that

shows the black hole radiation in time with respect to its mass and temperature.
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Figure 4.2: The relation between the mass and temperature of black hole as function
of time. τ is represent full life-time of BH.

The Bold line represents the mass of black hole as function of time and the thin

line represents temperature of the black hole as function of time. In equation (4.0.12)

this thermal emission leads to show a decrease in the mass of the black hole and

to its eventual disappearance. Also, the Fig.(4.2) informs the mass of the black

hole continuously decreases, and at the end of black hole life time completely it

can be disappeared. On other-hand, as the mass of black hole decreases inversely its

temperature goes to infinity. This thermal emissions (energy as the form of radiation)

are indirect not disappeared. It released to the space and increases the hole space

entropy.



Chapter 5

Summary and Conclusion

Einstein field equation is the base one to review the Schwarzschild solution which in-

dicates the static and spherically symmetric of black hole system without charge and

cosmological constant. Objectively the painleve coordinate calculated in new tech-

nique is used to connect the classical and quantum theorem at the black hole horizon.

The tunneling probability can be get directly from the principle of conservation of

energy by calculating the imaginary part of the action in WKB approximation and

solves the conservation problem of black hole radiation that described in Hawking

quantum radiation. This radiation is propagational to the black hole temperature

that black hole releases energy in the form of radiation. This causes the decrease of

black hole mass and increases the black hole temperature. Imposing energy conser-

vation means that the total space-time energy is fixed and one allows the black hole

mass to fluctuate. The conclusion is that as black holes radiate the space energy is

always conserved.
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