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Abstract

The effects of particle shape on the polarizability, absorption coefficient, and ab-

sorption cross sections of randomly oriented particles as the function of distribution

function are studied in the Rayleigh limit. In particular, the validity of the so-called

statistical approach are investigated. In this approach it is assumed that the scat-

tering and absorption properties of irregularly shaped particles can be simulated by

the average properties of a distribution of simple shapes. Polarizability, absorption

coefficient, and the absorption cross sections as functions of distribution function of

ellipsoidal metallic particles are compared one another. Moreover, the imaginary part

of polarizability, absorption coefficient and absorption cross-section as the function

of distribution function are derived analytically. As the result, the imaginary part

of polarizability, absorption cross-section and absorption coefficient versus frequency

curve of different shapes of nano-ellipsoidal metallic dielectric host materials by vary-

ing distribution function parameter (δ) with the constant value of relative phonon

damping constant (Γ) are explained. And also by varying relative phonon damping

constant (Γ) with the constant value of distribution function parameter (δ) are de-

scribed. The polarizability, absorption coefficient and absorption cross-section; versus

frequency curve with the variation of distribution parameter delta (δ) and damping

constant(Γ)are studied graphically. In general, the effect of distribution function pa-

rameter (δ) and relative phonon damping constant (Γ) on polarizability, absorption

coefficient and absorption cross-section of ellipsoidal metallic particles are discussed

briefly by using graphs.
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Chapter 1

General Background

With recent developments of nanoscience and nanotechnology, the correlation of com-

posite properties with nanostructure has become a subject of great interest. As a re-

sult, much of work has been focused on nanocomposite materials[1]. Nanocomposite

materials have attracted tremendous attention due to their potential applications in

photonics, biochemistry, medicine, capacitors, micro fabrications, resonant coupling

devices, fuel cells, and so on.

In many astrophysical environments dust is an important component. Radiation

interacting with the dust particles can be absorbed, scattered and re-emitted. For the

interpretation of infrared spectra of dusty objects it is, therefore, needed to realize the

way small particles interact with light. This strongly depends on the size, structure,

shape and composition of the dust grains. In this thesis we consider the limiting case

of particles very small compared to the wavelength of radiation inside and outside the

particle (the Rayleigh limit) and concentrate on how the absorption and scattering

properties depend on the shape of the particles. In this thesis all particles are in

random orientation.

Calculations of scattering and absorption properties of homogeneous spherical
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particles can be done very precisely using the so called Mie theory [2]. Because of this,

in most applications of light scattering the particles are considered to be spherical and

homogeneous. However, if we observe, for example, pictures of interplanetary dust

particles, we see that these particles are not at all spherical and in most cases are

inhomogeneous in structure and composition [3]. Also, when we compare the positions

of features in the spectra of the mass absorption coefficients of homogeneous spherical

particles with the positions of features derived from the spectral energy distributions

of different astronomical dusty environments, we find that there is often no satisfactory

agreement see example [4, 5],. As a result, it is important to study the absorption

and scattering properties of particles that are not homogeneous and not spherical.

For the reason that the solid particles in astrophysical environments are expected

to be very irregular in shape, it is very difficult (if not impossible) to characterize

the shape of the particles in an appropriate way. Therefore, we employ the idea of

a statistical approach as suggested by Bohren and Huffman [6]. In this approach

one simulates the scattering and absorption characteristics of irregularly shaped par-

ticles by those of a shape distribution of particles with various simple shapes, such

as ellipsoids or spheroids. Important tests of this idea have been done by for ex-

ample [7, 8, 9]. The statistical approach has been extensively applied for ellipsoids

in the Rayleigh limit (see [6, 10]). However, it is difficult to calculate scattering by

randomly oriented ellipsoids outside the Rayleigh limit. However, for ellipsoids of rev-

olution (spheroids) with moderate aspect ratios calculations of scattering by shape

distributions of randomly oriented spheroids of arbitrary size can be performed very

well and with sufficient accuracy using the so-called T-matrix method in combination

with appropriate approximate methods (see [11]).
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One of the main assumptions in the statistical approach is that when we average

over a wide range of shapes, the typical characteristics of the separate shapes blend

together into something which is independent of the choice of the separate shapes we

used for the averaging. If this is true we can indeed simulate a shape distribution of

irregular particles by using a distribution of simple shapes.

The outline of this research is organized as follow:

The general background of polarizability, absorption coefficient and absorption

cross-section as the function of distribution function for different shapes of ellipsoidal

metallic particles are described in chapter one.

Electromagnetic radiation in vacuum as well as in material medium, lorentz model,

Drude model, basic mixing rule, statistical approach, Mie theory, T-matrices approach

and optimality of spherical shape are reviewed in chapter two.

Material and methodology are described in chapter three. Analytic results for

polarizabilty, absorption coefficient, and absorption cross-section as the function of

distribution function for different shapes of ellipsoidal metallic particles described in

chapter four.

In chapter five we discuss how the results obtained from chapter four can be

employed, together with other constraints, to capture the general idea of polarizabil-

ity, absorption coefficient and absorption cross-section as the function of distribution

function for different shapes of ellipsoidal metallic particles.

1.1 Statement of the Problem

The problem of finding the optical cross section of the absorption by small particles are

practical importance. It arises in many cases involving interpretation of the results of
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optical measurements. In this study we deal with ellipsoidal particles. In an excellent

book [6] it was suggested that spectra of particles of any complicated form may be

approximated by the appropriately averaged spectra of ellipsoidal particles. Having no

intention to discuss this idea here, we would like to note that the case of ellipsoidal

particles enables one to consider a broad spectrum of objects, from sharp needles

to flat disks. It is also important that an analytical expression for polarizability,

absorption coefficient and absorption cross-section of nano-ellipsoids are represented

through its distribution funtion parameter and damping constant. Such an expression

is convenient for various calculations.

One of the main issues in this study is, therefore, to investigate the polarizabil-

ity, absorption coefficient and absorption cross-section as the function of distribu-

tion function and concentration for such materials. Even though different researches

were conducted on this area; the polarizability, absorption coefficient and absorption

cross-section of electromagnetic waves as a function of distribution function and con-

centration were not well realized. So the main focus of this project is to describe

the polarizability, absorption coefficient and absorption cross-section of electromag-

netic waves in different shapes of nano-ellipsoidal metal in transparent dielectric host

material as the function of distribution function.

1.2 Objectives

1.2.1 General objective

The main objective of this study is to understand the polarizability, absorption coef-

ficient and absorption cross-section of metalic ellipsoids as a function of distribution

function.
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1.2.2 Specific objective

• To determine the imaginary part of polarizablity of an ensemble of ellipsoidal

particles as a function of distribution function.

• To determine the absorption coefficient of an ensemble of ellipsoidal particles as

a function of distribution function.

• To determine the absorption cross-section of an ellipsoidal particles as a function

of distribution function.

1.3 Significance of the Study

The physics of metal-dielectric composites has recently gained attention because of

their unique linear and nonlinear optical properties and high application potential as

nonlinear media and media for optical data storage. These properties find their appli-

cation in optics, electronics, optoelectronics and material science. Thus understanding

the optical properties such as ellipsoidal metallic nano-particles as a function of dis-

tribution function is helpful for characterization of the composite system. Moreover,

knowledge of the features of interaction of electromagnetic radiation with composite

or disperse materials is crucial for further advances in technology.

1.4 Scope of the study

The scope of the study is limited to the polarizability, absorption coefficient and

absorption cross-section of metallic ellipsoids as a function of distribution function in

dielectric host media.

.
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Chapter 2

Literature Review

2.1 Electromagnetic Radiation in Vacuum

The electric and magnetic fields are in phase and mutually perpendicular as a con-

sequence of Maxwell’s equations [12]. Physically, Electric field results from electric

charges or from time dependent magnetic fields, while magnetic fields result from

electric currents or time - dependent electric field. Maxwell’s equations can be ma-

nipulated to give classical wave equations from the time and space dependence of the

electric and magnetic field. A significant achievement of this picture was the relation

derived between the speed of light c and the product of the electric permittivity ε0

and magnetic permeability µ0 of free space:

c2µ0ε0 = 1 (2.1.1)

Maxwell’s equations are postulates that predict about the physical property of light.

In vacuum, they are:

~∇. ~E = 0 (2.1.2)

~∇. ~B = 0 (2.1.3)
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~∇× ~E = −∂ ~B

∂t
(2.1.4)

~∇× ~B = µ0ε0
∂ ~E

∂t
(2.1.5)

where, ε0 = 8.854× 10−12C2m−1J−1, and µ0 = 4Π× 10−7 N
A2

After some manipulation Maxwell’s equations can be recast in the following form

to give classical wave equation:

∇2 ~E = ε0µ0
∂2 ~E

∂t2
(2.1.6)

∇2 ~B = ε0µ0
∂2 ~B

∂t2
(2.1.7)

From the symmetrical relationship between the magnetic and electric field, there

are two quantities, the scalar potential φ and the vector potential ~A, from which ~E

and ~B can be derived:

~E = −∇φ− ∂ ~A

∂t
(2.1.8)

~B = ∇× ~A (2.1.9)

Hence the vector potential also obeys the classical wave equation,

∇2 ~A = µ0ε0
∂2 ~A

∂t2
(2.1.10)

2.2 Electromagnetic Radiation in Material Media

All macroscopic aspects of the static and dynamics of the electromagnetic field of the

material media described by Maxwell’s equation:

∇. ~D = ρf (2.2.1)

9



∇. ~B = 0 (2.2.2)

∇× ~E = −∂ ~B

∂t
(2.2.3)

∇× ~H = ~J +
∂ ~D

∂t
(2.2.4)

where the electromagnetic properties of material media may be taken in to account

through relations, ~D = ε ~E, ~B = µH and ~J = σ ~E known as constitutive relations.

When an external electric field is applied to an insulator, the matter responds

with an induced polarization that partially cancels the field due to out side charges.

Although the charges in an insulator are not mobile as they are in conductor, an

external field has the ability to displace the charges in length of polar bonds [12].

The resulting net dipole moment per unit volume is called the polarization, and in

linear electric materials it is proportional to the electric field. If there are N such

molecules per unit volume the macroscopic polarization ~P is given by:

~P = N~p (2.2.5)

~P = ε0χe
~E (2.2.6)

~D = ε0(1 + χe) ~E (2.2.7)

Similarly, when ordinary matter is placed in an external magnetic field, induced

magnetization, ~M , the magnetic dipole moment per unit volume, results. Unlike the
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polarization ~P , the magnetization can either reinforce or oppose the applied field.

The bound and free charges in electric polarization are analogous to the bound and

free currents in magnetic polarization. The magnetic field ~H is given by:

~H =
~B

µ0

− ~M (2.2.8)

The bound currents are those due to the induced magnetic moments and the

alignment of permanent moments, possessed by the atoms molecules that comprise

the sample.

~M = χm
~E (2.2.9)

~B = µ0(1 + χm) ~E (2.2.10)

Applying the curl operation to both sides of Equation (2.2.3), we obtain

∇× (∇× ~E) = −∇× ∂ ~B

∂t
=

∂

∂t
(∇× ~B) (2.2.11)

∇× (∇× ~E) = ∇(∇. ~E)−∇2 ~E (2.2.12)

∇(∇. ~E)−∇2 ~E = −µ0
∂2

∂t2
(ε0

~E + ~P ) (2.2.13)

∇2 ~E −∇(∇. ~E)− 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
(2.2.14)

for transverse fields (some times called solenoidal or radiation fields) satisfy,

∇. ~E = 0 (2.2.15)
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Transverse equations therefore satisfy the inhomogeneous wave equation,

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
(2.2.16)

In classical physics Newton’s second law describes the motion of particle. For

charged particles in electromagnetic field the force referred to in Newton’s second law

is the Lorentz force [13],

~F = e( ~E +∇× ~B) (2.2.17)

In equation (2.2.17), the magnetic contribution to the Lorentz force is dropped.

Because optical phenomena do not normally involve relativistic particle velocities,

we can safely disregard the magnetic force. Under the influence of electromagnetic

field the electron experiences a Lorentz force, and the equation of the force without

considering the damping force consequently, the equation of motion is,

m
d2~x

dt2
= e ~E(~r, t)−Ks~x (2.2.18)

When a field is applied, each atoms electron is displaced by some ~x from its original

position. Thus each atom has a dipole moment,

~p = e~x (2.2.19)

If the density of atoms is denoted by N, then the density of dipole moment is,

~P = N~p = Ne~x (2.2.20)

The Maxwell’s equations (2.2.16) tell us how the electric field ~E depends up on

the dipole moment density ~P of the medium. Newton’s equation (2.2.17) tells us how

the electron displacement ~x depends upon the ~E. Equation (2.2.20) connects these

basic equations by relating ~P to ~x. The electron oscillator model thus ties together
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the Maxwell’s equations with Newton’s law of motion. Solutions of these coupled

equations will provide the model’s predictions about the mutual interaction of light

and matter. For linearly polarized wave the electric field at the position of the atom

has the form,

~E(z, t) = ε̂E0 cos(ωt− kz) (2.2.21)

where, E0 is the amplitude and ε̂ is a unit vector in x-direction. If the electric

field in equation (2.2.21) is to be a solution of coupled Maxwell-Newton equations, it

must be the driving field in the Newton equation (2.2.18),

d2~x

dt2
+ ω2

0~x = ε̂
e

m
E0 cos(ωt− kz) (2.2.22)

This equation has the solution,

~x = ε̂(
e
m

E0

ω2
0 − ω2

) cos(ωt− kz) (2.2.23)

The dipole moment can also be described by polarizablity,

~p = e~x = α(ω) ~E (2.2.24)

Relating equations (2.2.22), (2.2.23) and (2.2.24) the polarizablity is given by,

α(ω) =
e2

m

1

ω2
0 − ω2

(2.2.25)

Thus the dipole moment density is,

~P = ε̂(
Ne2

m

ω2
0 − ω2

)E0 cos(ωt− kz) (2.2.26)

This solution for the polarization provides the source term on the right hand side

of the Maxwell equation (2.2.16),

(−k2 +
ω2

c2
)ε̂E0 cos(ωt− kz) = −Nα(ω)ω2

ε0c2
ε̂E0 cos(ωt− kz) (2.2.27)

13



To satisfy this equation k must satisfy a more general dispersion relation

k2 =
ω2

c2
(1 +

Nα

ε0

) =
ω2

c2
n2(ω) (2.2.28)

n(ω) = (1 +
Ne2

mε0

ω2
0 − ω2

)1/2 (2.2.29)

In the presence of damping force equation (2.2.22) can be modified as,

d2~x

dt2
− γ

dx

dt
+ ω2~x = ε̂

e

m
E0[cos(ωt− kz)− i sin(ωt− kz)] (2.2.30)

where γ in equation (2.2.30) is the damping constant.

~x(t) = <ε̂
e
m

E0e
−i(ωt−kz)

ω2
0 − ω2 − iγω

(2.2.31)

The polarizablity in damping case is complex and given by,

α(ω) =
e2

m

ω2
0 − ω2 − iγω

(2.2.32)

The complex nature of polarizablity leads to the complexity of the index of re-

fraction.

n2(ω) = 1 +
Ne2

mε0

ω2
0 − ω2 − iγω

= [n<(ω) + in=(ω)]2 (2.2.33)

The electric field is given by,

~E = ε̂E0e
−i(ωt−kz) (2.2.34)

But the wave vector is,

k =
w

c
[n=(ω)− in=(ω)] (2.2.35)

Then,

~E = ε̂E0e
−w
c

n=(ω)ze−i[ωt−ωz
c

n=(ω)] (2.2.36)
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The intensity is proportional to the square of the amplitude of the electric field

and given by

I(ω) = I0e
−σ(ω)z (2.2.37)

σ(ω)is the absorption coefficient or extinction coefficient, and is given by,

σ(ω) = 2[n=(ω)]
w

c
=

Ne2

ε0mc

γω2

(ω2
0 − ω2)2 + γ2ω2

(2.2.38)

2.3 The Lorentz model

Near the beginning of this century H. A. Lorentz developed a classical theory of optical

properties in which the electrons and ions of matter were treated as simple harmonic

oscillators (i.e., ”springs”) subject to the driving force of applied electromagnetic fields.

The results obtained therefrom are formally identical to those of quantum-mechanical

treatments, although various quantities are interpreted differently in the classical

and quantum-mechanical theories. As most of us are more comfortable thinking

in classical terms, it is fortunate that we may do so without doing violence to the

correct results. This undoubtedly explains why the Lorentz model remains so useful,

not only in guiding our intuition, but also in quantitatively analyzing experimental

data. Following Lorentz, we take as our microscopic model of polarizable matter

a collection of identical, independent, isotropic harmonic oscillators. We shall later

generalize to more than one kind of oscillator and to anisotropic oscillators. An

oscillator with mass m and charge e is acted upon by a linear restoring force Kx,

where K is the spring constant (stiffness) and x is the displacement from equilibrium;

a damping force bẋ, where b is the damping constant and ẋ is the first derivative of

displacement with respect to time; and a driving force produced by the local electric

field E1ocal (magnetic forces may usually be neglected compared with electrical forces).
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We neglect radiation reaction in which the equation of motion of such an oscillator is

mẍ + bẋ + kx = eElocal (2.3.1)

The local field Elocal ”seen” by a single oscillator and the macroscopic field E,

which is an average over a region containing many oscillators, are different in general.

However, we shall ignore this difference because it does not affect our simple model of

optical constants, and proper treatment of the local field would be a fruitless digression

at this point. A good elementary discussion of the local field is given in Kittel (1971,

pp. 454-458). The electric field is taken to be time harmonic with frequency ω. As

in previous chapters, we shall deal with the complex representations of the real time-

harmonic quantities. The solution to (2.3.1) is composed of a transient part, which

dies away because of damping, and an oscillatory part with the same frequency as

the driving field. We shall be interested only in the oscillatory part

x =
(e/m)E

ω2
0 − ω2 − iγω

(2.3.2)

where ω0 = k/m and γ = b/m. If γ 6= 0, the proportionality factor between x and

E is complex; therefore, the displacement and field are not, in general, in phase. In

order to discuss the consequences of this phase difference, we write the displacement

as AeiΘ(eE/m), where the amplitude A and phase angle Θ are

A =
1

[(ω2
0 − ω2)2 + γ2ω2]1/2

Θ = tan−1 γω

ω2
0 − ω2

(2.3.3)
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Given the response of a single oscillator to a time-harmonic electric field, the

optical constants appropriate to a collection of such oscillators readily follow. The

induced dipole moment p of an oscillator is ex. If < is the number of oscillators per

unit volume, the polarization P (dipole moment per unit volume) is <p= <ex, and

from (2.3.2) we have

p =
ω2

p

ω2
o − ω2 − iγω

ε0E (2.3.4)

where the plasma frequency is defined by ω2
p = <e2/mε0. Equation (2.3.4) is a

particular example of the constitutive relation [6]. Therefore, the dielectric function

for our system of simple harmonic oscillators is

ε = 1 + χ = 1 +
ω2

p

ω2
o − ω2 − iγω

(2.3.5)

with real and imaginary parts are respectively,

ε
′
= 1 + χ

′
= 1 +

ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

(2.3.6)

ε
′′

= χ
′′

=
ω2

pγω

(ω2
0 − ω2)2 + γ2ω2

(2.3.7)

The proof is lengthy, although straightforward, and will be omitted here, but it can

be shown by direct substitution and integration that χ
′
and χ

′′
satisfy the Kramers-

Kronig relation.

The region of high absorption at frequencies around ω0 gives rise to an associated

region of high reflectance provided, of course, that the oscillator parameters are such

that k >> 1 in this region. The high reflectance allows little light to get past the

bounding surface of the material, and that which does is rapidly attenuated.

On both sides of the resonance region n increases with increasing frequency, which

is called normal dispersion. Only in the immediate vicinity of the resonance frequency
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does n decrease with frequency, so-called anomalous dispersion. Such a reversal of

dispersion, if it occurred in transparent regions, would provide a much-needed material

for designing color-corrected lenses. Unfortunately, anomalous dispersion occurs only

in regions of high absorption where no appreciable light is transmitted.

The maximum value of ε
′′

occurs approximately at ω0 provided that γ << ω0. For

frequencies in the neighborhood of ω0 the dielectric functions (2.3.6) and (2.3.7) may

be approximated by with real and the imaginary parts are respectively

ε
′ ' 1 +

ω2
p(ω0 − ω)/2ω0

(ω0 − ω)2 + (γ/2)2
(2.3.8)

ε
′′ '

γω2
p/4ω0

(ω0 − ω)2 + (γ/2)2
(2.3.9)

It is obvious from (2.3.9) that the maximum value of ε
′′

is approximately ω2
p/γω0

and the width of the bell-shaped curve ε
′′
(ω) is γ (i.e., ε

′′
falls to one-half its maximum

value when ω0 − ω = ±γ/2). If we set the derivative of (2.3.8) with respect to the

variable ω0−ω equal to zero, it follows that the extreme values of ε
′
, ε

′
max = 1+ε

′′
max/2

and ε
′
min = 1− ε

′′
max/2, occur at ω = ω0 − γ/2 and ω = ω0 + γ/2, respectively. These

properties of a narrow Lorentzian line are very helpful in quickly visualizing the shape

of ε(ω) from the parameters of (2.3.5).

For solid materials, the Lorentz model describes the resonant frequencies and

damping for characteristic frequencies of the molecules of the medium. Around the

resonance, a very strong dispersion takes place [6].
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2.4 Drude Model

For metals, there is no spring to connect free electrons to ions, so ω0=0. From the

Lorentz model, we get

εr = 1−
ω2

p

ω2 + iγω
(2.4.1)

The real and the imaginary parts are respectively,

ε′r = 1−
ω2

p

ω2 + γ2
(2.4.2)

and

ε′′r =
ω2

pγ

ω(ω2 + γ2)
(2.4.3)

These results are called Drude model. Generally, ωp > γ. If ω > ωp, we can see that

ε′′r > 0, which means that k > 0. At high frequency, there is no absorption. A metal

becomes transparent! The reason is that at this frequency, the electrons in the metal

cannot react fast to the incident electrical field. For metals, the Drude model can be

used to model their free-electron type behavior [6].

2.5 Basic Mixing and Maxwell Garnett Formula

This section presents the basic principle how the simplest mixing formula, so-called

Maxwell Garnett rule, can be derived. The mixture to be analyzed consists of the

background medium where spherical inclusions are embedded. The two components

composing the mixture are often called phases. The environment phase can also be

termed matrix or host, and the inclusion phase as guest.

• Polarizability of a Dielectric Sphere
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Figure 2.1: A simple mixture: spherical inclusions in a homogeneous background
medium. The permittivity of the inclusions is εi and that of the environment εe.

The polarizability of an inclusion is a measure for its response to an incident electric

field. The polarizability of a particle α is the relation between the dipole moment p

that is induced in the inclusion by the polarization, and the external electric field Ee:

p = αEe (2.5.1)

For a sphere the polarizability is easy to calculate. It is proportional to the internal

field within the inclusion, its volume, and the dielectric contrast between the inclusion

and the environment. Since the electric field Ei induced in a sphere in a uniform and

static external field Ee is also uniform, static, and parallel to the external field [14],

Ei =
3εe

εi + 2εe

Ee (2.5.2)

the polarizability can be written immediately:

α = V (εi − εe)
3εe

εi + 2εe

(2.5.3)

where the permittivities of the inclusion and its environment are denoted by εi

and εe, respectively. The volume of the sphere is V. Note that the polarizability is
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a scalar quantity. This is because the inclusion material is isotropic and its shape is

spherically symmetric.

• Clausius-Mossotti Formula

Now that the polarizability of a single sphere is known, the effective permittivity of

a mixture can be calculated as a function of the number density of the spheres in the

background medium with permittivity εe. The effective permittivity is the relation

between the external field and the average electric flux density < D >:

< D >= εeffEe = εeEe+ < P > (2.5.4)

where the average polarization < P > is connected to the dipole moment density

in the mixture:

< P >= np (2.5.5)

and here n is the number density of dipole moments p in the mixture.

In a mixture, especially when it is dense, one cannot assume the field exciting one

inclusion to be the external field Ee. The surrounding polarization increases the field

effect and has to be taken into account [15]. The field that excites one inclusion EL

is often called as the local field or Lorentzian field. It is dependent on the shape of

the inclusion [16], and for a sphere it is

El = Ee +
1

3εe

P (2.5.6)

where 1
3

is the depolarization factor of the sphere. Combining this equation with

p = αEL leaves us with the average polarization, and then the effective permittivity

can be written see equation (2.5.4):

εeff = εe +
nα

1− nα/(3εe)
(2.5.7)
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The equation can often be seen in the form

εeff − εe

εeff + 2εe

=
nα

3εe

(2.5.8)

This relation carries the name Clausius−Mossotti formula, although it deserves

the label Lorenz − Lorentz formula as well [17]. The dilute mixture approximation

can be written by taking the limit of small n:

εeff ≈ εe + nα (2.5.9)

• Maxwell Garnett Mixing Rule

The mixing process can affect strongly the dispersive characteristics of materials.

For example, if metal spheres are mixed in non-dispersive environment, the mixture

becomes a Lorentz-medium with resonant behavior.

In practical applications quantities like polarizabilities and scatterer densities are

not always those most convenient to use. Rather, one prefers to play with the permit-

tivities of the components of the mixture. When this is the case, it is advantageous to

combine Clausius-Mossotti formula with the polarizability expression equation (2.5.3).

Then we can write

εeff − εe

εeff − 2εe

= f
εi − εe

εi − 2εe

(2.5.10)

where f = nV is a dimensionless quantity called the volume fraction of the in-

clusions in the mixture. This formula is called Rayleigh mixing formula. Note that

because only the volume fraction and the permittivities appear in the mixture rule,

the spheres need not be of the same size if only all of them are small compared to the

wavelength.

22



Perhaps the most common mixing rule is the Maxwell Garnett formula which is

the Rayleigh rule (2.5.10) written explicitly for the effective permittivity:

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)
(2.5.11)

This formula is in wide use in very diverse fields of application. The beauty of

the Maxwell Garnett formula is in its simple appearance combined with its broad

applicability. It satisfies the limiting processes for vanishing inclusion phase

f → 0 ⇒ εeff → εe (2.5.12)

and vanishing background

f → 1 ⇒ εeff → εi (2.5.13)

The perturbation expansion of the Maxwell Garnett rule gives the mixing equation

for dilute mixtures (f << 1):

εeff = εe + 3fεe
εi − εe

εi + 2εe

(2.5.14)

• Random Mixture

If, on the other hand, all the ellipsoids in the mixture are randomly oriented, there is

no longer any macroscopically preferred direction. The mixture is isotropic and the

effective permittivity εeff is a scalar:

εeff = εe + εe

f
3

∑
j=x,y,z

εi−εe

εe+Nj

1− f
3

∑
j=x,y,z εe + Nj

εi−εe

εe+Nj

(2.5.15)
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2.6 T-matrix approach

Waterman’s T-matrix method [18, 19, 20] is one of the most widely used method

for calculating electromagnetic scattering properties of nonspherical particles. It is

specially suitable for axisymmetric homogeneous particles [21] and can be efficiently

applied to ensembles of randomly oriented particle systems [22, 23].

In Waterman’s T-matrix approach [18], both the incident and the scattered time-

independent electric fields Einc(r), Esca(r) are expanded in vector spherical harmonics

[24] Mmn, Nmn:

Einc(r) =
∞∑

n=1

n∑
m=−n

[amnRgMmn(kr) + bmnRgNnm(kr)] (2.6.1)

Einc(r) =
∞∑

n=1

n∑
m=−n

[pmnRgMmn(kr) + qmnRgNnm(kr)] (2.6.2)

The linearity of Maxwell’s equations enables us to relate the scattered (pmn, qmn)

and incident (amn, bmn) field coefficients by means of a transition (T) matrix:

pmn =
∞∑

n=1

n∑
m=−n

[T 11
mnm′n′am′n′ + T 12

mnm′n′bm′n′ ] (2.6.3)

qmn =
∞∑

n=1

n∑
m=−n

[T 21
mnm′n′am′n′ + T 22

mnm′n′bm′n′ ] (2.6.4)

The T matrix elements depend on the particle (size, shape, composition, and

orientation) but not on the nature of the incident and scattered fields, so they need to

be calculated only once and then averaged for all directions of incidence and scattering,

which equals to averaging on particle orientation. It is usually calculated for the so-

called natural reference frame of the particle, and can be written in compact notation
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as

T = −B ∗ A−1 =

(
T 11 T 12

T 21 T 22

)
(2.6.5)

For a two-layered axisymmetric object (characterized by refractive indices m1 for

core and m2 for shell), the T matrix is given by [25]

T = −[B2 + BB2 ∗ T1] ∗ [A2 + AA2 ∗ T1]
−1 (2.6.6)

where T1 is the transition matrix for the inner layer, as derived in the homogeneous

case [25, 26], with relative refractive indices m1/m2, (inner), 1 (outer) and incident

radiation wave number k0m2. The matrices B2, A2 are such that −B2 ∗ (A2)
−1 is

the T-matrix for the outer layer, with inner and outer indices (m2, 1). Finally, the

matrix BB2 is the same as B2, except that the Bessel functions of the first kind with

argument kr are replaced by Hankel functions with the same argument; the same

applies to the AA2 and A2 matrices.

Once the T matrix is calculated for the particle in its natural reference frame

(with the z-axis along the axis of symmetry), cross sections can be computed. For

an axisymmetric particle, the T matrix divides itself into m smaller, independent

sub-matrices. The expressions for extinction and scattering cross sections are [22]

Cext =
2π

k2
Re

∞∑
n=1

n∑
m=−n

(T 11
mnn + T 22

mnn) (2.6.7)

Csca =
2π

k2

2∑
i,j=1

∞∑
n=1

∞∑
n′=1

min(n,n′)∑
m=0

(2− δmo)|T ij
mnn′|

2 (2.6.8)
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2.7 The statistical approach

The method described in this thesis provides a strong argument in favor of the main

assumption of the statistical approach, namely that the optical properties of an en-

semble of irregularly shaped particles can be represented in a statistical sense by the

average properties of an ensemble of particles with the same composition, but with

simple shapes. We have proved that for the absorption properties of particles in

the Rayleigh domain, the statistical approach has an analytical basis given by the

form-factor distribution. This implies that the average absorption cross section of an

ensemble of arbitrarily shaped and arbitrarily oriented particles can be represented

by a shape distribution of spheroidal particles with the same composition and in a

fixed orientation.

We note that the form-factor distribution only provides the absorption cross sec-

tions, and not the scattering properties of small particles. It is in general not possible

to find a distribution of spheroidal particles that gives both the absorption and the

scattering cross section of an ensemble of arbitrarily shaped particles for every value

of the refractive index. For an ensemble of ellipsoidal particles there is a relation

between the scattering and the absorption cross section which is independent of the

shape of the ellipsoids and is given by ([27])

Csca =
k3V |m2 − 1|2

6πIm(m2)
Cabs (2.7.1)

2.8 Mie theory and the quasi-static approximation

The first description of the optical properties of spherical entities was provided by

Mie [28]. In the frame of electrodynamics, an exact solution of Maxwell’s equations
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was given in spherical coordinates. The resulting scattering and extinction efficiencies

are given by

Qsca =
2

x2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2) (2.8.1)

Qext =
2

x2

∞∑
n=1

(2n + 1)Re(an|+ |bn) (2.8.2)

where an and bn are the Mie coefficients in terms of spherical Bessel functions. The

size parameter x = ka is a function of the sphere radius ’a’ and the wave vector

k =
2π
√

εm

λ
, with λ√

εm
the wavelength in the medium surrounding the particles. The

efficiencies Q are equal to the cross sections C, normalised to the (effective) particle

cross section πa2. Energy conservation provides the absorption efficiency through

Qext = Qabs + Qsca, or Cest = Cabs + Csca (2.8.3)

For the calculation of the Mie coefficients and efficiencies in equations (2.8.1) and

(2.8.2), the Matlab functions by Mätzler [29, 30] are used. For the smallest particles,

the extinction is fully determined by absorption; scattering is negligible. For larger

spheres, the overall extinction increases while scattering becomes considerably more

important.

For particles much smaller than the wavelength of the light, the optical properties

can be described within the quasi-static approximation. In fact, this dipole approx-

imation is equal to the first order Mie calculation, obtained by only considering the

n = 1 term in equations (2.8.1) and (2.8.2). The absorption and scattering cross

sections in the quasi-static regime are given by

Cabs = kIm(α) (2.8.4)
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Csca =
k4

6π
|α|2 (2.8.5)

where α is the single particle polarisability. Energy conservation (2.8.3) yields the

extinction cross section Cext. For a spherical gold particle with radius a, the polar-

isability αsph in equations (2.8.4) and (2.8.5) is given by the Claussius −Mossotti

equation, taking into account only dipolar contributions

αsph = 4πa3 εAu − εm

εAu + 2εm

(2.8.6)

with εm the dielectric function of the host medium. For spheres much smaller than

the wavelength there is indeed a one-to-one correspondence with the Mie theory.

However, for larger spheres the quasi-static approximation is no longer valid; it does

not accurately represent the optical properties of the particle.

With the exception of a few limiting cases, such as that of an infinitely long cylin-

der, Mie theory can not be employed to calculate light scattering and absorption

for non-spherical particles. However, within the quasi-static approximation, valid

for small particles, introduction of a geometrical factor enables determination of op-

tical properties of prolate and oblate ellipsoidal particles. In many papers, metallic

nanorods are treated as prolate ellipsoids, for which the polarisability can be described

by introducing depolarisation factors Lx in equation (2.8.6):

αx =
4π

3
ab2 εAu − εm

εm − Lx(εAu − εm)
(2.8.7)

The long and short radii of the ellipsoid are represented by a and b, respectively,

with the aspect ratio defined as Z = a
b
. For incident light with the polarisation

direction parallel and perpendicular to the long axis of the nanorod, x=a or x=b,
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respectively. Inserting a=b and Lx = 1
3

for a sphere, equation (2.8.7) is equal to

equation (2.8.6).

The depolarisation factor for a prolate ellipsoid along the long axis is given by

La =
1− e2

e2
(

1

2e
ln(

1− e

1 + e
)− 1) (2.8.8)

with the eccentricity e =
√

1− η2. Since the sum rule
∑

Lx = 1 holds, the de-

polarization factor perpendicular to the ellipsoid axis is found to be Lb = (1−La)
2

.

In the present work we are considering randomly oriented nanorods, for which the

overall polarizability is equal to the average over the three principal orientations:

〈α〉 = 1
3
αa + 2

3
αb, where αa and αb are the longitudinal and transverse polarisabilities,

respectively.

Finally, to obtain the efficiency factors Q from the cross sections C for ellipsoidal

particles, C is normalised by the effective particle cross section πa2
eff with the effective

radius given by aeff = (ab2)
1
3 .

2.9 The Absorption Coefficient

Measurement of the absorption of light is one of the most important techniques for

optical measurements in solids. In the absorption measurements, we are concerned

with the light intensity I(z) after traversal of a thickness z of material as compared

with the incident intensity I0, thereby defining the absorption coefficient αabs(ω):

I(z) = I0e
−αabs(ω)z (2.9.1)

Since the intensity I(z) depends on the square of the field variables, it immediately

follows that

αabs(ω) = 2
ωκ̃(ω)

c
(2.9.2)
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where the factor of 2 results from the definition of αabs(ω) in terms of the light

intensity, which is proportional to the square of the fields. This expression tells us

that the absorption coefficient is proportional to κ̃(ω), the imaginary part of the

complex index of refraction (extinction coefficient), so that κ̃ is usually associated

with power loss. We note that equation (2.9.2) applies to free carrier absorption in

semiconductors in the limit ωτ � 1, and ω � ωp

We will now show that the frequency dependence of the absorption coefficient is

quite different for the various physical processes which occur in the optical properties

of solids [15]. We will consider here the frequency dependence of the absorption

coefficient for:

1. Free carrier absorption

(a) typical semiconductor αabs(ω) ∼ ω−2

(b) metals at low frequencies αabs(ω) ∼ ω
1
2

1. Direct interband transitions

(a) form of absorption coefficient αabs(ω) ∼ (~ω−Eg)
1
2

~ω

(b) conservation of crystal momentum αabs(ω) ∼ ω
1
2

(c) relation between m* and momentum matrix element

(d) form of αabs(ω) for direct forbidden transition αabs(ω) ∼ (~ω−Eg)
3
2

~ω

1. Indirect interband transitions

(a) form of absorption coefficient αabs(ω) ∼ (~ω − Eg ± ~ωq)
2

(b) phonon absorption and emission processes αabs(ω) ∼ ω
1
2
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2.10 Optimality of the spherical shape

Within the framework of electrostatics, what is the particle shape that attains minimal

orientation-averaged magnitude of the induced dipole moment, while keeping volume

(mass) and the dielectric function fixed? To that end, let us consider ellipsoidal

particles. Let the three principal axes of a dielectric ellipsoid be along x, y and z

directions. We shall use an analytic solution in the notation as given in Bohren and

Huffman [6] but “renormalized” so that the vacuum permittivity is set to unity (see

also [31, 32]). When the ellipsoid is placed in external electric field ~E = E1x̂ + E2ŷ +

E3ẑ, components of the induced dipole moment of the ellipsoid are given as follows

(εr= relative permittivity):

pi = 4πabc
εr − 1

3 + 3Li(εr − 1)
Ei (2.10.1)

where a, b and c are the principal semi-axes, and Lis are the associated depolarization

coefficients of the dielectric ellipsoids [6, 31].

For the special cases of prolate and oblate spheroids, the depolarization factors

are given by

L1 = L2 =
g(e)

2e2

[
π
2
− arctan g(e)

]
− g2(e)

2

L3 = 1− 2L1 (2.10.2)

Where g(e) =
√

1−e2

e2

L =
1− e2

e2

(
−1 + 1

2e
log 1+e

1−e

)

L2 = L3 =
1− L1

2
(2.10.3)
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Then, the associated polarizabilities are given by [6]:

αi = 4πabc
εr − 1

3 + 3Li(er − 1)
(2.10.4)

and the orientation-averaged polarizability is

α =
4πabc

3(εr − 1)

1

3

3∑
i=1

1

1 + Li(εr − 1)
(2.10.5)

while the orientation-averaged polarizability, normalized per volume (an), is

αn = (εr − 1)
1

3

3∑
i=1

1

1 + Li(εr − 1)
(2.10.6)

The coefficient of 1
3
, arising from orientation averaging, merits an explanation.

Polarizability is a 2nd rank tensor, linking the external electric field and the induced

dipole moment vectors. Equation (2.10.1) above is a special (diagonal) case, written

in the principal axes of the ellipsoid. Orientation-averaged tensor is an isotropic one

so its components do not change with coordinate rotations (there are rank 0 and 2

isotropic tensors but not rank 1). But 2nd rank isotropic tensor has the form αI where

I ≡ diag(1, 1, 1) is the identity matrix and α is the orientation-averaged polarizability.

One can find a by observing that the only scalar invariant at one’s disposal is the tensor

trace(Tr). As Tr(I)= 3, (1/3) delivers normalization. The question of tensor isotropy

is rather subtle in this context, as it yields scalar polarizabilities not only for a sphere

but also for any 2nd rank isotropic tensor shapes such as Platonic polyhedra(see also

some what cryptic remarks at the very conclusion of [33]. However,this is not so for

spheroids until orientation-averaging is performed.

To gain physical insight for the respective roles of geometry and electrostatics,

we examine the transparent (Rayleigh–Gans) limit. To that end, define dielectric

contrast as

δ ≡ εr − 1 (2.10.7)
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We can rewrite the average polarizability per volume of dielectric ellipsoid interms

of δ. Then, upon expanding in Taylor series for δ << O(δ3), equation (2.10.6) yields

the orientation-averaged polarizability per volume

αn
∼=

δ

3

[
3− δ(L1 + L2 + L3) + δ(L2

1 + L2
2 + L2

3)
]

(2.10.8)

Using the constraint

g
(

L1, L2, L3

)
= L1 + L2 + L3 = 1 (2.10.9)

which holds for ellipsoids at all aspect ratios,we obtain

αn
∼=

δ

3

[
3− δ + δ2(L1 + L2 + L3)

]
(2.10.10)

which, for the sphere, reduces to αn,sphere
∼= ( δ

3
)
[

3− δ + δ2

3

]
. We now introduce

the spheroidal access as αn ≡ αn,spheroid

αn,sphere
. Adding and subtracting δ

3
in the numerator

of αr then yield the following equation: αr = 1 +
δ2(L2

1+L2
2+L2

3−
1
3
)

3−δ+ δ2

3

≈ 1 +
δ2(L2

1 + L2
2 + L2

3 − 1
3
)

3
(2.10.11)

The separation of the geometrical (L2
1 +L2

2 +L2
3− 1

3
) and the electrical δ2 effects is

now evident and appears to be a new insight. What shape attains minimal αn? The

question reduces to finding the minimum of L2
1 + L2

2 + L2
3, subject to the constraint

(2.10.9). A general proof is given below, but an appealing geometrical argument can

now be given for spherical optimality, based on an isoperimetric inequality. Interpret

the constraint (2.10.9) as afixed perimeter of a rectangular solid, whose surface area,

which is twice the quantity L2
1 + L2

2 + L2
3, is the one to optimize. As the minimal

surface area of all rectangular blocks of a given perimeteris that of acube,i.e., L1 =
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L2 = L3 = 13 in the space of depolarization factors, in real space the sphere delivers

optimal shape.

For the special case of a conducting ellipsoid, components of the dipole moment

are given by

Pi =
EiV

4πLi

(2.10.12)

where i=1,2 and 3, V is volume of the ellipsoid and Li is the depolarization coef-

ficient of the conducting ellipsoid. Then, the polarizability is αi = V/4πLi and the

orientation-averaged polarizability per volume is

αn =
1

12π
(

1

L1

+
1

L2

+
1

L3

) (2.10.13)

Coated particles are ubiquitous in applications, example, [34, 35]. Next, we pose

the optimal shape question about coated spheroids, apparently for the first time. Is

the concentric spherical configuration still the optimal one? To that end, using the

coated ellipsoid analytic solution, [6], we write the components of polarizability of a

coated confocal ellipsoid as

αi =
V
(

(ε2 − 1)
[

ε2 + (ε1 − ε2)(L
(1)
i − fL

(2)
i )

]
+ fε2(ε1 − ε2)

)
[

ε2 + (ε1 − ε2)(L
(1)
i − fL

(2)
i )

] [
1 + (ε2 − 1)L

(2)
i

]
+ fL

(2)
i ε2(ε1 − ε2)

(2.10.14)

where V is total volume of the ellipsoid, f is the ratio of volume of inner ellipsoid

per total volume, ε1 and ε2 is the relative permittivity of the inner and outer ellipsoids,

superscript(1) and (2) denotes inner and outer, respectively. Then, the orientation-

averaged polarizability per volume of the coated ellipsoid is

αn =
1

3

3∑
i=1

(
(ε2 − 1)

[
ε2 + (ε1 − ε2)(L

(1)
i − fL

(2)
i )

]
+ fε2(ε1 − ε2)

)
[

ε2 + (ε1 − ε2)(L
(1)
i − fL

(2)
i )

] [
1 + (ε2 − 1)L

(2)
i

]
+ fL

(2)
i ε2(ε1 − ε2)

(2.10.15)
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Along with the evident spherical optimality ,they also include the monotonic de-

pendence on the aspect ratio. Also shown, for comparison, is the relative spheroidal

surface area. It can now be readily understood why the geometric case is the interme-

diate one between the conducting and the dielectric one: as the relative permittivity

approaches unity, spheroidal excess disappears at all aspect ratios. Note that the

results hold for confocal coated spheroids, regardless of the sign of δε = ε2 − ε1.

In passing, we note that the minimum at the spherical value of ρ = 1 is smooth for

all curves so that in the near- spherical expansion, the first non-zero term in the aspect

ratio is quadratic. Also, note that no qualitative change in the plot would occur, if one

were to move from ρ to δρ, defined by ρ = 1+δρ and subtract off unity from all abscissa

values. Now, quadratic dependence in δρ implies 4th order dependence in eccentricity

as % ≈ [2(ρ − 1)]1/2 (we used the prolate expression as an example). Calculations

show that this is, indeed, the case, e.g., eccentricity expansions of the relative surface

area of oblate and prolate spheroids, respectively, are O(%4) and contain even powers

as follows:

Sr
∼= 1 +

2e4

45
+

136e6

2835
+

131e8

2835
+

12224e10

280665
+ ... (2.10.16)

1 +
2e4

45
+

116e6

2835
+

101e8

2835
+

8764e10

280665
+ ... (2.10.17)

We now proceed to the scattering cross-sections. As the orientation-averaged

absorption cross-sections scale with the product of the imaginary part of relative

permittivity and the arithmetic average of principal polarizabilities (example, see

equaation (2.10.1) [6, 36], respectively), shape optimization proceeds exactly as for
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polarizabilities. Therefore, we next consider the orientation-averaged scattering cross-

section, given by [6]

< Csca >=
k4

18π
(|α1|2 + |α2|2 + |α3|2) (2.10.18)

Substituting for the polarizability from equation (2.10.4) into the above equation, we

obtain

< Csca >=
k4(4πabc)2(εr − 1)2

18π

3∑
i=1

[(
1

1 + Li(εr − 1)
)2] (2.10.19)

Similarly, substituting the polarizability of a conducting ellipsoid in equation

(2.10.18), for the scattering cross section of conducting ellipsoid we obtain

< Csca >=
k4V 2

228π2
(

1

L2
1

+
1

L2
2

+
1

L2
3

) (2.10.20)

For the coated ellipsoid case, the average scattering cross section is

< Csca >=
k4V 2

18π

3∑
i=1

(
((ε2 − 1)[ε2 + (ε1 − ε2)(L

(1)
i − fL

(2)
i )] + fε2(ε1 − ε2))

[ε2 + (ε1 − ε2)(L
(1)
i − fL

(2)
i )][1 + (ε2 − 1)L

(2)
i ] + fL

(2)
i ε2(ε1 − ε2)

)2

(2.10.21)

We have been able to prove spherical optimality of polarizabilities and cross-

sections for the conducting and dielectric spheroids. We use dielectric ellipsoid family

to illustrate the proof by employing the method of Lagrange multipliers.

Consider the space of depolarization factors, spanned by L1, L2 and L3. While

varying ellipsoidal shapes, the relative permittivity is held constant and the objective

function is

F (L1, L2, L3) =
3∑
1

1

1 + Li(εr − 1)
(2.10.22)

with the constraint in (2.10.9). Following the method of Lagrange multipliers, we

write

~∇F (L1, L2, L3) = λ~∇g(L1, L2, L3) (2.10.23)
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Then, we get

∂

∂Li

1

1 + Li(εr − 1)
(2.10.24)

for i=1, 2, 3. In so far as this Equation is invariant w.r.t. interchange of labels, that

is, completely symmetric in L1, L2, and L3, it follows that L1 = L2 = L3, delivers

the minimum and Li = 1/3 is obtained from the constraint 2.10.9. This represents

spherical depolarization factors. We used the same method to establish spherical

optimality for equations (2.10.13), (2.10.19) and (2.10.20).
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Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical. An intensive survey of literature from published

articles, books, thesis and dissertation will be carried out based on the project title.

MATLAB and MATHEMATICA software’s and computers are additional instruments

used to accomplish this project.

3.2 Methodology

3.2.1 Analytical

In this thesis one of the method or approach used to solve the problem is analyti-

cal method i.e, polarizability, absorption coefficient and absorption cross-section of

different shape ellipsoidal metallic particles as the function of distribution function.

3.2.2 Computational (graphical)

To interpret the result and to observe the effect of distribution function for different

shapes nano ellipsoidal metals of polarizability, absorption cross-section and absorp-

tion coefficient are employed computational and graphical methods.

38



Chapter 4

Absorption Coefficient, scattering
and absorption cross-section of an
ensemble of ellipsoidal particles

4.1 Introduction

The absorption and scattering properties of small particles are very important in

both astronomical and atmospheric remote sensing applications. The interaction of

light with particles much smaller than the wavelength of radiation has been studied

first by Lord Rayleigh [37] who described from basic physical rules the color and

polarization of the light from the sky. When studying the detailed spectral properties

of the interaction of particles with light, we have to consider the effects of particle size,

shape and composition. In this thesis we discuss the effects of shape and composition

of homogeneous particles, while taking the particle sizes to be in the Rayleigh domain,

i.e. much smaller than the wavelength both inside and outside the particle.

When considering the possibilities for computing the optical (i.e. the absorption

and scattering) properties of small particles there are two extreme approaches one can

take. The first approach is to assume the particles are homogeneous in composition
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and spherical in shape, which allows us to perform fast and simple computations of

its interaction with light using Mie theory [38]. The second extreme is to make a

model of the particle in an exact way, and perform numerical calculations to obtain

its optical properties. This can be done using, for example, the T-matrix method

[39, 40]. The first approach is fast, and provides insight into the physics and effects

that play a role in the interaction of light with small particles [41]. However, due

to the perfect symmetry of homogeneous spheres, resonance effects may occur, for

example, at particular values of the refractive index, that are not seen in realisti-

cally shaped natural particles. This limits the applicability of this approach. The

second approach allows us to reproduce details in the observed properties of irreg-

ular particles. The main drawback is, however, that the computational demand of

most numerical techniques available to compute the optical properties of realistically

shaped particles, is high. If we wish to consider a large collection of various particle

compositions, sizes or wavelengths, one can resort to a third method, the statistical

approach. In the statistical approach one simulates the average optical properties of

an ensemble of irregularly shaped particles by the average properties of an ensemble

of particles with simple shapes. These simple shapes guarantee computations of the

optical properties to be relatively fast. In addition, by choosing a broad distribution

of simple shapes, we can get rid of the resonance effects which can occur when us-

ing homogeneous spheres. The statistical approach is proven useful for, for example,

computing absorption spectra of small forsterite grains [42], and for calculating the

degree of linear polarization for small quartz particles [43].
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4.2 Absorption coefficient and scattering cross-section

For an assembly of particles having different ellipsoidal shapes the absorption coeffi-

cient can be described as

β = N〈Cabs〉 = Nk〈V 〉Im〈α〉 (4.2.1)

with k, the wave vector, N, is the number of particle concentration, 〈V 〉 the ensemble

average volume and Im〈α〉 is the imaginary part of an ensemble of shape distribution

ellipsoid.

For ellipsoids of different shapes the effective absorption cross-section is

〈Cabs〉 =

∫ ∫
C

(n)
absf(l1, l2)dl1dl2 (4.2.2)

where

〈C(n)
abs〉 =

1

3
kV Im

[ ∑3
i=1

ε−1
1+li(ε−1)

]
, f(l1, l2) is the particle shape distribution.

That is f(l′1, l
′
2)dl′1dl′2 sets a polarizability sampled ellipsoid from an ensemble have

the depolarization factors l1 from l′1 + dl′1 and l2 from l′2 + dl′2 and the third dipolar-

ization factor can simply determined the distribution function f must be normalized

to unity[44]: ∫ ∫
f(l1, l2)dl1dl2 = 1 (4.2.3)

The departure of ellipsoids from strictly spherical shape are equiprobable. However,

narrowing the range of deviations considered seems quite natural for a very wide

class of actual particle ensembles. As the result the domain of integration in equation

(4.2.3) is an isosceles right angled triangle in the l1 − l2 co-ordinates. The ellipsoid

depolarization factor li vary with in the domain of integration from 1
3
− 1

3
δ to 1

3
+ 2

3
δ
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with δ is the legs of triangle. According to this assumption, the ellipsoid shape

distribution function takes the form:

f(l1, l2) = fδ =
2

δ2
χ

(
l1 −

1

3
+

1

3δ

)
χ

(
l2 −

1

3
+

1

3δ

)
χ

(
−l1 +

1

3
+

2

3δ

)
χ(−l2+

1

3
+

2

3δ
)

(4.2.4)

Where χ is Heaviside unit function. It should be noted here that passage to the

limit δ → 0 corresponds to degeneration of ellipsoids into spheres; in this case the

distribution function f(l1, l2) becomes the Dirac delta function: f(l1, l2) = δ(l1 −

1/3, l2 − 1/3). With the above assumptions made, the effective absorption cross-

section 〈Cabs〉 for an ensemble of ellipsoid is

〈Cabs〉 =
2

3δ2
k〈V 〉Im

∫ 1
3
(1+2δ)

1
3
(1−δ)

dl1

∫ 1
3
(2+δ)−l1

1
3
(1−δ)

dl2

[ ∑2
i=1

ε−1
1+li(ε−1)

+ ε−1
1+(1−l1−l2)(ε−1)

]
(4.2.5)

The solution of double integral is

〈α〉 =
2

3δ2
k〈V 〉Im

[
( 1

ε−1
+ 1

3
+ 2

3δ
) ln(

1
ε−1

+ 1
3
+ 2

3δ
1

ε−1
+ 1

3
− 1

3δ

)− δ
]

(4.2.6)

From equation (4.2.6); effective absorption cross-section becoms,

〈Cabs〉 =
2

3δ2
k〈V 〉Im

[
( 1

ε−1
+ 1

3
+ 2

3δ
) ln(

1
ε−1

+ 1
3
+ 2

3δ
1

ε−1
+ 1

3
− 1

3δ

)
]

(4.2.7)

for δ = 1,

〈Cabs〉 = k〈V 〉Im
(

2ε
ε−1

ln ε
)

is uniform distribution of ellipsoidal shape.

Taking the imaginary part of equation (4.2.5) we get

Im〈α〉 =
2

δ2

{
1
2

ε′−1
(ε′−1)2+ε′′2

ln
(

y2
1 + y2

2

)
+
(

ε′−1
(ε′−1)2+ε′′2

+ 1
3

+ 2
3δ

) [
πχ(−y2

y1
) + arctan(y2

y1
)
] }

(4.2.8)
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where

y1 =

(
ε′−1

(ε′−1)2+ε′′2
+ 1

3
+ 2

3δ

)(
ε′−1

(ε′−1)2+ε′′2
+ 1

3
− 1

3δ

)
+ ε′′2

((ε′−1)2+ε′′2)2(
ε′−1

(ε′−1)2+ε′′2
+ 1

3
− 1

3δ

)2

+
(

ε′′

(ε′−1)2+ε′′2

)2

y2 =

(
ε′′

(ε′−1)2+ε′′2

)(
1
δ

)
(

ε′−1
(ε′−1)2+ε′′2

+ 1
3
− 1

3δ

)2

+
(

ε′′

(ε′−1)2+ε′′2

)2

In equation (4.2.8) imaginary part of logarithmic function is not uniquely defined.

However, the average value of polarizability 〈α〉 being a definite integral and uniquely

defined. To resolve this contradiction if in necessary to take the principal value of

logarithmic function. Accordingly the phase of logarithmic function changes by π

when its argument pass over zero. As the result equation (4.2.8) becomes

Im〈α〉 =
1

δ

[
πχ(−y2

y1
) + arctan(y2

y1
)
]

(4.2.9)

For an ensemble of shape distributed ellipsoids, the Lorentz type of dielectric

function

ε(ω) =
ε∞(ω2

LT − ω̃2 − ıω̃Γ̃)

(1− ω̃2 − ıω̃Γ̃)
(4.2.10)

where ε∞ is the high-frequency (background) permittivity; ωLT = ωL

ωT
, where ωL and

ωT are the frequencies of the longitudinal and transverse optical phonons, respectively;

ω̃ = ω
ωT

is the relative frequency; and Γ̃ = Γ
ωT

is the relative phonon damping constant.

Taking the equation of (4.2.10), the real and imaginary parts are respectively

ε′(ω) =
ε∞

[ (
ω2

LT − ω̃2
)(

1− ω̃2
)

+ ω̃2Γ̃2
]

(
1− ω̃2

)2

+ ω̃2Γ2

(4.2.11)

ε′′(ω) =
ε∞

[
ω̃Γ̃
(

ω2
LT − 1

) ]
(

1− ω̃2
)2

+ ω̃2Γ2

(4.2.12)
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Let

A =
1

ε− 1

〈α〉 =
2

δ2

[ (
A + 1

3
+ 2

3δ

)
ln
(

A+ 1
3
+ 2

3δ

A+ 1
3
− 1

3δ

)
− δ

]
(4.2.13)

Similarly with equation (4.2.5) the absorption cross-section is given by

〈Cabs〉 = k〈V 〉Im
[ ∫ 1

3
(1+2δ)

1
3
(1−δ)

dl1
∫ 1

3
(2+δ)−l1

1
3
(1−δ)

dl2

[ ∑3
i=1

ε−1
1+li(ε−1)

+
∑

ε−1
1+(1−l1−l2)(ε−1)

] ]
(4.2.14)

From equation (4.2.1) and (4.2.13)

〈Cabs〉 =
2

δ2
k〈V 〉Im

[
(A + 1

3
+ 2

3δ
) ln(

A+ 1
3
+ 2

3δ

A+ 1
3
− 1

3δ

)
]

(4.2.15)

Also let A1 = ε′−1
(ε′−1)2+ε′′2

and A2 = −ε′′

(ε′−1)2+ε′′2

Im〈α〉 =
1

δ

[
πχ(−z2

z1
) + arctan( z2

z1
)
]

(4.2.16)

where

z1 =
(

(A1+ 1
3
+ 2

3δ
)(A1+ 1

3
− 1

3δ
)+A2

2

(A1+ 1
3
− 1

3δ
)2+A2

2

)
and

z2 =
( A2

δ

(A1+ 1
3
− 1

3δ
)2+A2

2

)
The results of Im(〈α〉) calculations for the ellipsoids having typical oscillator parame-

ters of ZnO is (ε∞ = 8.5, ωLT = 1.1, and Γ̃ = 0.002). From Fig. (4.1-4.6) for different

values of distribution function parameter (δ) and the relative phonon damping con-

stant (Γ) are labeled. One can see that this parameter affects both the half-width

and the symmetry (i.e., the form of polarizability, absorption coefficient and absorp-

tion cross section versus frequency curve), as well as the position of polarizability,
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absorption coefficient and absorption cross-section values at this peak. Usually, the

reststrahlen spectral region is rather narrow. For minimum values of distribution

function parameter (δ) and the relative phonon damping constant (Γ), polarizability,

absorption coefficient and absorption cross section versus frequency curve values are

maximum and vice versa. So one has to allow for possible considerable distortion

of the absorption spectra that is due to the spectral characteristic of the instrument

used. We place special emphasis on the effect of distribution function parameter

(δ) and the relative phonon damping constant (Γ) on the polarizability, absorption

coefficient, and absorption cross-section.

Figure 4.1: Imaginary part of the nondimensional effective polarizability Im〈α〉 versus
relative frequency (ω̃). The parameter (δ) of the ellipsoidal-shape distribution is 0.2,
0,3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

From the Fig. (4.1) is polarizability (α) versus relative frequency curve with dif-

ferent values of distribution function parameter delta (δ). If the polarizability (α) of

different shapes of nano ellipsoidal metallic particles are increased, the distribution

function parameter delta (δ) of those different shapes of nano ellipsoidal metallic par-

ticles are decreased. From this idea one can conclude that polarizability (α) versus
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frequency curve with different values distribution function parameter delta (δ); po-

larizability (α) is inversely proportional to the distribution function parameter delta

(δ).

Figure 4.2: Absorption cross-section (Cabs) versus relative frequency (ω̃). The param-
eter (δ) of the ellipsoidal-shape distribution is 0.2, 0,3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0.

From the Fig. (4.2) is absorption cross-section (Cabs) versus relative frequency

curve with different vales of distribution function parameter delta (δ). If the absorp-

tion cross-section (Cabs) of different shapes of nano-ellipsoidal metallic particles are

increased, the distribution function parameter delta (δ) of those different shapes of

nano ellipsoidal metallic particles are decreased. From this idea one can conclude that

absorption cross-section (Cabs) versus relative frequency curve with different values of

distribution function parameter delta (δ); absorption cross-section (Cabs) is inversely

proportional to the distribution function parameter delta (δ).
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Figure 4.3: Absorption coefficient (β) versus relative frequency (ω̃). The parameter
(δ) of the ellipsoidal-shape distribution is 0.2, 0,3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

From the Fig. (4.3) is absorption coefficient (β) versus relative frequency curve

with different values of distribution function parameter delta (δ). If the absorption co-

efficient (β) of different shapes of nano ellipsoidal metallic particles are increased, the

distribution function parameter delta (δ) of those different shapes of nano ellipsoidal

metallic particles are decreased. From this idea; one can conclude that absorption

coefficient (β) versus relative frequency curve with different values of distribution

function parameter delta (δ), absorption coefficient (β) is inversely proportional to

the distribution function parameter delta (δ).
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Figure 4.4: Imaginary part of the nondimensional effective polarizability Im〈α〉 versus
relative frequency (ω̃). The parameter of relative phonon damping constant (Γ) of
the ellipsoidal-shape distribution is 0.002, 0.004, 0.006, and 0.008.

From the Fig. (4.4) is polarizability (α) versus relative frequency curve with

different values of relative phonon damping constant (Γ). If the polarizability (α)

of different shapes of nano ellipsoidal metallic particles are increased, the relative

phonon damping constant (Γ) of those different shapes of nano ellipsoidal metallic

particles are decreased. From this idea; one can conclude that polarizability (α) versus

relative frequency curve with different values of relative phonon damping constant (Γ);

polarizability (α) is inversely proportional to relative phonon damping constant (Γ).
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Figure 4.5: Absorption cross-section (Cabs) versus relative frequency (ω̃). The param-
eter of relative phonon damping constant (Γ) of the ellipsoidal-shape distribution is
0.002, 0.004, 0.006, and 0.008.

From the Fig. (4.5) is absorption cross-section (Cabs) versus relative frequency

curve with different values of relative phonon damping constant (Γ). If the absorp-

tion cross-section (Cabs) of different shapes of nano ellipsoidal metallic particles are

increased, the relative phonon damping constant (Γ) of those different shapes of nano

ellipsoidal metallic particles are decreased. From this idea; one can conclude that

absorption cross-section (Cabs) versus relative frequency curve with different values

of relative phonon damping constant (Γ), absorption cross-section (Cabs) is inversely

proportional to relative phonon damping constant (Γ).
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Figure 4.6: Absorption coefficient (β) versus relative frequency (ω̃). The parameter
of relative phonon damping constant (Γ) of the ellipsoidal-shape distribution is 0.002,
0.004, 0.006, and 0.008.

From the Fig. (4.6) is the absorption coefficient (β) versus relative frequency

curve with different values of relative phonon damping constant (Γ). If the absorption

coefficient (β) of different shapes of nano ellipsoidal metallic particles are increased,

relative phonon damping constant (Γ) of those different shapes of nano ellipsoidal

metallic particles are decreased. From this idea; one can conclude that the absorption

coefficient (β) versus relative frequency curve with different values of relative phonon

damping constant (Γ), absorption coefficient (β) is inversely proportional to relative

phonon damping constant (Γ)
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Chapter 5

Conclusion

In this study; polarizability, absorption coefficient and absorption cross-section of

an ensemble of different shapes of nano-ellipsoidal metallic particles in the dielectric

host media are focused. Shape effects in scattering and absorption cross-section as

the function of distribution function by randomly oriented particles small compared

to the wavelength have been investigated. First; imaginary part of polarizability as

the function of distribution function for different shapes of nano-ellipsoidal metallic

particles in the dielectric host media are derived analytically. Depending on analytic

expression of polarizibility; the absorption cross-section and absorption coefficients

are calculated. Using those relations; polarizability, absorption cross-section and ab-

sorption coefficient versus relative frequency curve; either by varying distribution

function parameter (δ) with constant value of relative phonon damping constant (Γ)

or by varying reative phonon damping constant (Γ) with constant value of distribu-

tion function parameter (δ) are described. From this idea one can conclude that,

it is possible to calculate the average polarizability, absorption coefficient and ab-

sorption cross section for different shapes of nano-ellipsoidal metal as the function of

distribution function.
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The variation of polarizability, absorption coefficient and absorption cross-section

for different shapes of nano-ellipsoidal dielectric composite media are due to the

changes in distribution function parameter (δ) and relative phonon damping con-

stant (Γ). As the result; polarizability, absorption coefficient and absorption cross

section versus relative frequency curve , as well as the position of their peak value

are analyzed. If the distribution function parameter and relative phonon damping

constant decreased; polarizability, absorption coefficient and absorption cross section

are increased and the reststrahlen spectral region is rather narrowed.

In general, polarizability, absorption coefficient and absorption cross section of

nono-ellipsoida metals are affected by distribution function parameter and relative

phonon damping constant.
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Ann Phys. 25 (1908) 377–445.

[39] M. I. Mishchenko, L. D. Travis, D. W. Mackowski, T-matrix computations of light

scattering by nonspherical particles: a review, J. Quant. Spec. Radiat. Transf. 55

(5) (1996) 535–575.

[40] T. Wriedt, Using the T-matrix method for light scattering computations by non-

axisymmetric particles: superellipsoids and realistically shaped particles, Part.

Part. Syst. Charact. 19 (2002) 256–268.

[41] H. C. van de Hulst, Light Scattering by Small Particles, Wiley, New York, 1957.

[42] M. Min, J. W. Hovenier, A. de Koter, Shape effects in scattering and absorption

by randomly oriented particles small compared to the wavelength, A and A 404

(2003) 35– 46.

[43] M.Min, J.W.Hovenier, A. de Koter,Modeling optical properties of cosmic dust

grains using a distribution of hollow spheres, A and A 432 (2005) 909–920.

57



BIBLIOGRAPHY BIBLIOGRAPHY

[44] R. V. Churchill, Complex Variables and Applications (McGraw-Hill, New York,

1960).

58


	Table of Contents
	Abstract
	Acknowledgements
	General Background
	Statement of the Problem
	Objectives
	General objective
	Specific objective

	Significance of the Study
	Scope of the study

	Literature Review
	Electromagnetic Radiation in Vacuum
	Electromagnetic Radiation in Material Media
	The Lorentz model
	Drude Model
	Basic Mixing and Maxwell Garnett Formula
	T-matrix approach
	The statistical approach
	Mie theory and the quasi-static approximation
	The Absorption Coefficient
	Optimality of the spherical shape

	Materials and Methodology
	Materials
	Methodology
	Analytical
	Computational (graphical)


	Absorption Coefficient, scattering and absorption cross-section of an ensemble of ellipsoidal particles
	Introduction
	Absorption coefficient and scattering cross-section

	Conclusion
	Bibliography

