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Abstract

This thesis is concerned with second-order three-point undamped non-linear
boundary value problems. It also focused on constructing Green’s function for
corresponding homogeneous boundary value problems by using Green’s func-
tion properties. Under the suitable conditions, we established the existence of
three positive solution by applying Avery and Peterson fixed point theorem.
To illustrate the result examples are provided. This study was mostly depen-
dent on secondary source of data such as journals and books which related to
our study area.
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Chapter 1

Introduction

1.1 Background of the study

Boundary value problems associated with linear as well as non-linear ordinary
differential equations have created a great deal of interest and play an im-
portant role in many fields of applied mathematics such as engineering design
and manufacturing. Major industries like automobile, aerospace, chemical,
pharmaceutical, petroleum, electronics and communications as well as emerg-
ing technologies like biotechnology and nanotechnology rely on the boundary
value problems to simulate complex phenomena at different scales for designing
and manufacturing of high-technological products. In these applied setting,
positive solutions are meaningful.

In the field of differential equations, a boundary value problem is a differen-
tial equation together with a set of additional constraints, called the boundary
conditions. A boundary condition is a condition that is required to be satisfied
at all or part of the boundary of a region in which a set of differential condi-
tion is to be solved. A solution to a boundary value problem is a solution to
the differential equation which also satisfies the boundary conditions [Zhang
2017].

Boundary value problems for ordinary differential equations play a very
important role in both theory and applications. Boundary value problems arise
in applications where some physical process involves knowledge of information
at the edges. For example, it may be possible to measure the electric potential
around the edge of a semi-conductor and then use this information to infer the
potential distribution near the middle HELM(2008).

Some theories such as the Krasnoselskii’s fixed point theorem, the Leggett-
Williams fixed point theorem, Avery’s generalization, of the Leggett-Williams
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fixed point theorem and Avery-Henderson fixed point theorem have given a
decisive impetus for the development of the modern theory of differential equa-
tions. The advantage of these techniques lies in that they do not demand the
knowledge of solution, but have great power in application, in finding positive
solutions, multiple positive solutions, and eigenvalue intervals for which there
exists one or more positive solutions.

In analyzing nonlinear phenomena many mathematical models give rise to
problems for which only positive solutions make sense. Therefore, since the
publication of the monograph positive solutions of Operator Equations in the
year 1964 by academician M.A. Krasnoselskii, hundreds of research articles on
the theory of positive solutions of nonlinear problems have appeared. In this
vast field of research, we are focused on the second order un damped three
point boundary value problem. Most results so far have been obtained mainly
by using the fixed-point theorems in cones, such as the Guo-Krasnoselskii’s
fixed point theorem [Krasnoselskii 1964, Leggett 1979, Ma 2001], and so on.

The existence of positive solutions for BVPs is very important, especially
in ecological and population biology models. Some existence theorems give
explicit formulas for solutions (e.g., Cramer’s rule). Some theorems construct
computational solutions (e.g., Bolzano-Weierstrass theorem). Other theorems
are settled by no constructive proofs which simply deduce the necessity of solu-
tions without indicating any method for determining them (e.g., the Brouwer
fixed point theorem shows that the non existence would lead to a contradic-
tion) [Yanlei Zhang ,2017].

The existence of positive solutions of boundary value problems was studied
by many researchers. We list down few of them which are related to our
particular problem. In the past few years, there has been increasing interest
in studying certain three-point boundary value problems for nonlinear ordinary
differential equations; to identify a few.

He, in 2002 [He 2002], established the existence of at least three positive
solutions to the second order three point boundary value problems.

u′′ + f(t, u) = 0, 0 < t < 1

u(0) = 0, αu(η) = u(1)

α > 0, 0 < η < 1.

Using the Leggett-Williams fixed-point theorem.

Liu,in 2014 [Liu, 2014], established the existence, multiplicity, and nonex-
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istence of positive solutions,

u′′(t) + β2u(t) + λq(t)f(t, u(t)) = 0, 0 < t < 1

u(0) = 0, u(t) = σu(η)

where, β ∈ (0,
π

2
), η ∈ (0, 1)

λ is a posetive constant, by using the fixed point index theorem, degree theory,
and fixed point theorem in cones.

Neito, in 2013 [Nieto 2013], established the existence of a solution for a
three-point boundary value problem for a second order differential equation at
resonance

−u′′(t) = f(t, u(t)), 0 ≤ t ≤ T

u(0) = 0, αu(η) = u(T )

where T > 0, f : [u, T ]× R→ R is continuous function

α ∈ R, η ∈ (0, T ).

Li, in 2017 [Li 2017], investigated the existence of nontrivial solutions for
some super linear second order three-point boundary value problems.

−u′′(t) = f(t, u(t)), 0 ≤ t ≤ 1

u′(0) = 0, u(1) = αu(η)

where 0 < α < 1, 0 < η < 1.

by applying new fixed point theorems in ordered Banach spaces with the lattice
structure derived by Sun and Liu.

Motivated by the above mentioned results, we established the existence
of three positive solutions for second order undamped three point boundary
value problems

−u′′(t) + k2u(t) = f(t, u(t)) (1.1)

u(0) = 0, u(1) = αu(η), 0 < η < 1, k > 0. (1.2)

by applying Avery and Peterson fixed point theorems in cone Banach space
and some examples will be demonstrated for the applicability of our main
result.

By a positive solution of (1.1)-(1.2) we mean a function u(t) which is posi-
tive on 0 ≤ t ≤ 1 and satisfies the differential equation (1.1) for 0 ≤ t ≤ 1 and
three-point boundary conditions (1.2).
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The rest of this thesis was organized as follows: We first presented some defi-
nitions and theorem which are needed throughout this work and construct the
Green’s function for the corresponding homogeneous boundary value problem
and state fixed point result by using the Avery and peterson fixed point the-
orem in a cone Banach space. We investigating the existence of three positive
solution for second order un- damped three point boundary value problem
(1.1), (1.2). Finally as an application, examples will be included to verify the
illustrative result.

1.2 Statement of the problem

In this study we focused on establishing the existence of three positive so-
lutions for second-order undamped three-point boundary value problems by
using Avery and peterson fixed point theorem (1.1), (1.2).

1.3 Objectives of the study

1.3.1 General objective

General Objective of this research is to investigate the existence of three pos-
itive solutions by applying Avery and Peterson fixed point theorem.

1.3.2 Specific objectives

The specific objectives of the present study are:

1. To construct Green’s function of the boundary value problem (1.1), (1.2).

2. To formulate the equivalent operator equations of the given boundary
value problems.

3. To determine the fixed point of the operator equations.

4. To illustrate the result by using particular examples.
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1.4 Significance of the study

The outcomes of this study have the following importance:

• The outcome of this study may contribute to research activities on study
area.

• It may provide basic research skill to researcher.

• May have application in studying the existence of positive solution to
second order undamped three point boundary value problem.

1.5 Delimitation of the Study

This study was delimited to finding the existence of three positive solution of
second order undamped three point boundary value problem.
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Chapter 2

Review of Related literatures

2.1 Over view of the Study

The existence of positive solution for second order three point boundary value
problems has been studied extensively, which can be seen by the work of many
researchers. In this section we list down few of them which are related to our
particular problem.

Ma, in 1999[Ma, 1999], established the existence of positive solutions to
the boundary-value problem

u′′ + α(t)f(u) = 0, 0 < t < 1

u(0) = 0, αu(η) = u(1)

where 0 < η < 1, 0 < α < 1
η
, by applying the fixed point theorem in cones.

Zima, in 2004 [Zima 2004], established the existence of positive solution of
second order three-point boundary value problem

x′′(t) + f(t, x(t)) = 0, 0 ≤ t ≤ 1

x(0) = 0, αx(η) = x(1)

0 < η < 1, α ≥ 0

By establishing a norm-type cone expansion and compression fixed point the-
orem for completely continuous operator.

Naceri, in 2013 [Naceri 2013], establish the existence of at least three pos-
itive solutions of the boundary value problems for systems of second-order

6



ordinary differential equations of the form .

−u′′(t) + k2u(t) = f(t, u(t), v(t)),0 < t < 1

−v′′(t) + ω2v(t) = g(t, u(t), v(t)),0 < t < 1

u(0) = 0,v(0) = 0

u(1) = βu(η),v(1) = λv(η)

where f : [0, 1]× [0,∞)× [0,+∞)→ [0,+∞), g : [0, 1]× [0,∞)× [0,+∞)→
[0,+∞) k, ω are posetive constant 0 < η < 1, 0 < β < β0, 0 < λ < λ0, by
applying the Leggett-Williams fixed point theorems.

Sveikate, in 2016 [Sveikate 2016], established the existence of solutions.

x′′ + k2x = f(t, x)

x(0) = 0, x(1) = αx(η)

0 < η < 1, α > 0

by using the quasilinearization approach.

We, in 2019[We, 2019], established existence of positive solutions of second
order three-point boundary value problem with dependence on the first-order
derivative

x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1

x(0) = 0, x(1) = µx(η)

where f:[0, 1]× [0,∞)×R→ [0,∞) is continuous and η > 0, η ∈ (0, 1), µη < 1
by using fixed point theorem in a cone and some inequalities of the Green’s
functions.

2.2 Preliminaries

In this section we recall some known definitions, theorems and basic concepts
on Green’s function that will be used in the proof of our main results.

Definition 2.2.1. A differential equation together with its boundary conditions
is referred to as boundary value problem.

Definition 2.2.2. A differential equation together with three point boundary
conditions is referred to as three point boundary value problem.
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Definition 2.2.3. Let X be a non-empty set. A map said to be a self-map
with domain of T = D(T ) = X and range of T = R(T ) ⊂ X

Definition 2.2.4. Let X is a non-empty set and T : X → X be self-map. A
point x in X is called a fixed point of T if Tx = x.

Definition 2.2.5 (Agarwal 2008). We consider the second-order linear DE.

p0(x)y′′ + p1(x)y′ + p2(x)y = r(x), x ∈ J = [α, β], (2.1)

where the functions p0(x), p1(x), p2(x) and r(x) are continuous in J and bound-
ary conditions of the form

l1[y] = a0y(α) + a1y
′(α) + b0y(β) + b1y

′(β) = A

l2[y] = c0y(α) + c1y
′(α) + d0y(β) + d1y

′(β) = B
(2.2)

where ai, bi, ci, di, i = 0, 1 and A and B are given constants and l is differential
operator.
The boundary value problems (2.1), (2.2) are called nonhomogeneous two-point
linear boundary value problems, where as the homogeneous DE

p0(x)y′′ + p1(x)y′ + p2(x)y = 0 (2.3)

together with the homogeneous boundary conditions

l1[y] = 0, l2[y] = 0 (2.4)

be called a homogeneous two-point linear boundary value problem.

The function called a Green’s function G(x, t) for the homogeneous bound-
ary value problems (2.3)-(2.4) and the solution of the non homogeneous bound-
ary value problem (2.1)-(2.2) can be explicitly expressed in terms of G(x, t).
Obviously, for the homogeneous problem (2.3)-(2.4) the trivial solution always
exists. Green’s function for the boundary value problem (2.3)-(2.4) is defined
in the square [α, β]× [α, β] and possesses the following fundamental properties:

i. G(x, t) is continuous [α, β]× [α, β].

ii. ∂G(x,t)
∂x

is continuous in each of the triangles α ≤ x ≤ t ≤ β and α ≤ t ≤
x ≤ β.

Moreover, ∂G(t+,t)
∂x

− ∂G(t−,t)
∂x

= − 1
p0(t)

where, ∂G(t+,t)
∂x

= limx→t,x>t
∂G(x,t)
∂x

, ∂G(t−,t)
∂x

= limx→t,x<t
∂G(x,t)
∂x

.
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iii. for every t ∈ [α, β], z(x) = G(x, t) is a solution of the differential equation(2.3)
in each of the intervals [α, t) and (t, β].

iv. for every t ∈ [α, β], z(x) = G(x, t) satisfies the boundary conditions (2.4).

These properties completely characterize Green’s function G(x, t).

Definition 2.2.6. Let −∞ < a < b <∞ a collection of real valued functions
A = fi : [a, b]→ R is said to be

(i) Uniformly bounded, if there exists a constant M > 0 with |fi(t)| ≤ M,
for all t ∈ [a, b] and for all fi ∈ A, and

(ii) Equi continuous, if for every ε > 0 there exists δ = δ(ε) > 0 such that
|t1− t2| < δ implies |fi(t1)−fi(t2)| < ε, for all t1, t2 ∈ [a, b] and for every
fi ∈ A.

Definition 2.2.7. A normed linear space is a linear space X in which for each
vector x,there corresponds a real number, denoted by ||x|| called the norm of x
and has the following properties:

i. ‖x‖ ≥ 0, for all x ∈ X and ||x|| = 0 if and only if x = 0,

ii. ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ X,

iii. ||αx|| = |α|||x||, for all x ∈ X and α be a scalar.

Definition 2.2.8. A Banach space is a complete normed space

Definition 2.2.9. Let E be a real Banach space. A nonempty closed convex
set P is called a cone, if it satisfies the following two conditions:

(i) u ∈ P, α ≥ 0 implies αu ∈ P , and

(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.2.10. Let X and Y be two metric spaces. A map T : X → Y
is said to be completely continuous, if it is continuous and maps bounded sets
into precompact sets.

Definition 2.2.11. Let X and Y be Banach Spaces and T : X → Y . An
operator T is said to be completely continuous, if T is continuous and for each
bounded sequence {xn} ⊂ X, {Txn} has a convergent subsequence.
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Definition 2.2.12. Let E be a real Banach space with cone P . A map f :
P → [0,∞) is said to be a nonnegative continuous convex functional on P , if
f is continuous and f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all x, y ∈ P
and λ ∈ [0, 1].

Definition 2.2.13. Let E be a real Banach space with cone P . A map f :
P → [0,∞) is said to be a nonnegative continuous concave functional on P if
f is continuous and f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y),for all x, y ∈ P
and λ ∈ [0, 1].

The function u(t) ∈ C2[0, 1] is a positive solution of the boundary value
problem,

−u′′(t) + k2u(t) = f(t, u(t))

u(0) = 0, u(1) = αu(η), 0 < η < 1, k > 0.
(2.5)

If u(t) is positive on the given interval and satisfies both the differential equa-
tion and the boundary conditions.

Let α, γ, θ, ψ be maps on P with α a nonnegative continuous concave
functional ;γ, θ nonnegative continuous convex functional , and ψ a nonneg-
ative continuous functional.Then for positive real numbers a, b, c and d we
define the following subset of p.

p(γ, d) = {u ∈ p|γ(u) ≤ d}
P (α, γ, b, d) = {u ∈ P (γ, d)|α(u) ≥ b},

P (α, θ, γ, b, c, d) = {u ∈ P (γ, d)|α(u) ≥ b, θ(u) ≤ c},
P (ψ, γ, a, d) = {u ∈ P (γ, d)|ψ(u) ≥ a},
R(γ, ψ, a, d) = {u ∈ P (γ, d)|a ≤ ψ(u), γ(u) ≤ d}.

Theorem 2.2.14 (Avery and Peterson, 2001). Let P be a cone in a real Ba-
nach space E. Let γ and θ be nonnegative continuous convex functional on
P . Let α be a nonnegative continuous concave functional on P , and let ψ be
a nonnegative continuous functional on P satisfying
ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers MP (γ, d), d, α(x) ≤
ψ(x) and ‖x‖ ≤Mγ(x) for x ∈ P (γ, d) . Suppose that T : P (γ, d)→ (P (γ, d)
is completely continuous operator and there exist positive numbers a, b and c
with a < b such that

C1. {x ∈ P (γ, θ, α, b, c, d) : α(x) > b} 6= 0 and α(Tx) > b for x ∈ P (α, b; θ; c; γ, d)
;
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C2. α(Tx) > b for x ∈ P (α, b; γ, d) with θ(Tx) > c ;

C3. 0 /∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a .

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that γ(xi) ≤ d
for i = 1, 2, 3; b ≤ α(x1); a ≤ ψ(x2) with α(x2) ≤ b; a ≤ ψ(x3) ≤ a.

2.3 Green’s Functions and Bounds

In this section, we construct Green’s function for the corresponding homoge-
neous boundary value problem to (1.1). Before formulation of Green’s function
for three-point boundary value problem, first we construct Green’s function
for two point homogeneous boundary value problem,

−u′′ + k2u = 0 (2.6)

u(0) = 0, u(1) = 0 (2.7)

For equation (2.6) two linearly independent solution are u1(t) = − sinh kt +
cosh kt and u2(t) = sinh kt + cosh kt. Hence, the problem (2.6)-(2.7) has only
trivial solution if and only if

∆ =

∣∣∣∣u1(0) u2(0)
u1(1) u2(1)

∣∣∣∣ =

∣∣∣∣ 1 1
− sinh k + cosh k sinh k + cosh k

∣∣∣∣ = 2 sinh k 6= 0, k > 0

To show this u1(t) and u2(t) be two linearly independent solution if the differ-
ential equation (2.6). Green’s function for second- order two- point boundary
value can be written in the form of

H(t, s) =

{
u1(t)λ1(s) + u2(t)λ2(s), if 0 ≤ t ≤ s ≤ 1
u1(t)µ1(s) + u2(t)µ2(s), if 0 ≤ s ≤ t ≤ 1

(2.8)

Where, λ1(s), λ2(s), µ1(s), and µ2(s) are functions. By applying properties of
(i) and (ii) ,we obtain{

u1(t)(µ1(s)− λ1(s)) + u2(t)(µ2(s)− λ2(s)) = 0,
u′1(t)(µ1(s)− λ1(s)) + u′2(t)(µ2(s)− λ2(s)) = −1.

(2.9)

Let v1(s) = µ1(s)− λ1(s) and v2(s) = µ2(s)− λ2(s) —————-(*)
Then {

u1(s)V1(s) + u2(s)v2(s) = 0,
u′1(s)V1(s) + u′2(s)v2(s) = −1.
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From this we get

v1(s) =
1

2k(− sinh ks+ cosh ks)
and v2(s) =

−1

2k(sinh ks+ cosh ks)

Frome (∗), we have µ1(s) = v1(s) + λ1(s) and µ2(s) = v2(s) + λ2(s)
By using the boundary condition of (4.2) , we obtain{

u1(0)λ1(s) + u2(0)λ2(s) = 0,
u1(1)(V1(s) + λ1(s)) + u2(1)(v2(s) + λ2(s)) = 0.
λ1(s) + λ2(s) = 0,
(− sinh k + cosh k)(λ1(s) + 1

2k(− sinh ks+cosh ks)
)

+(sinh k + cosh k)(λ2(s) + 1
2k(sinh ks+cosh ks)

) = 0.

By applying Cramer’s rule ,we find the value of λ1(s) and λ2(s).
For λ1(s) ,

λ1(s) =

∣∣∣∣ 0 1
cosh ks. sinh k−sinh ks. cosh k

k
sinh k + cosh k

∣∣∣∣ =
cosh k. sinh ks− sinh k. cosh ks

2k sinh k

For λ2(s) ,

λ2(s) =

∣∣∣∣ 1 0
− sinh k + cosh k cosh ks. sinh k−sinh ks. cosh k

k

∣∣∣∣ =
cosh ks. sinh k − sinh ks. cosh k

2k sinh k

Hence ,

u1(t)µ1(s) + u2(t)µ2(s) = u1(t)(λ1(s) + v1(s)) + u2(t)(λ2(s) + v2(s))

= (− sinh kt+ cosh kt)(
cosh k. sinh ks− sinh k. cosh ks

2k sinh k
+

1

2k(− sinh ks+ cosh ks)
)

+(sinh kt+ cosh kt)(
cosh ks. sinh k − sinh ks. cosh k

2k sinh k
− 1

2k(sinh ks+ cosh ks)
)

=
sinh kt sinh k(1− t)

k sinh k
, 0 ≤ t ≤ s ≤ 1

Therefore,

H(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
, 0 ≤ t ≤ s ≤ 1

sinh ks sinh k(1−t)
k sinh k

, 0 ≤ s ≤ t ≤ 1
(2.10)

And the solution of (4.1) is given by

w(t) =

∫ 1

0

H(t, s)f(s)ds (2.11)
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And

w(0) = 0, w(1) = 0,w(η) =

∫ 1

0

H(η, s)f(s)ds
(2.12)

Lemma 2.3.1. H(t, s) has the following properties:

(i) H(t, s) ≤ H(s, s), for all t, s ∈ [0, 1];

(ii) H(t, s) ≥ NH(s, s), for all t ∈ [δ, 1− δ], s ∈ [0, 1], N = sinh kδ
sinh k

Proof. i. H(t, s) is positive for all t, s ∈ [0, 1] .
For 0 ≤ s ≤ t ≤ 1, we have

H(t, s)

H(s, s)
=

sinh ks. sinh k(1− t)
sinh ks. sinh k(1− s)

=
sinh k(1− t)
sinh k(1− s)

≤ 1.

=⇒ H(t, s) ≤ H(s, s), t, s ∈ [0, 1]
For 0 ≤ t ≤ s ≤ 1, we have

H(t, s)

H(s, s)
=

sinh kt. sinh k(1− s)
sinh ks. sinh k(1− s)

=
sinh kt

sinh ks
≤ 1.

=⇒ H(t, s) ≤ H(s, s), t, s ∈ [0, 1]
Therefore, H(t, s) ≤ H(s, s), for all t, s ∈ [0, 1].

ii. If s ≤ t for t ∈ [δ, 1− δ], s ∈ [0, 1], we have

H(t, s)

H(s, s)
=

sinh ks sinh k(1− t)
sinh ks sinh k(1− s)

≥ sinh kδ

sinh k
.

=⇒ H(t, s) ≥ NH(s, s)

If t ≤ s for t ∈ [δ, 1− δ], s ∈ [0, 1], we have

H(t, s)

H(s, s)
=

sinh kt sinh k(1− s)
sinh ks sinh k(1− s)

≥ sinh kδ

sinh k
.

=⇒ H(t, s) ≥ NH(s, s)

Thus, the Lemma follows.

The three point boundary value problem (1.1),(1.2) can be obtained by
replacing u(1) = 0 for u(1) = αu(η) in (2.7), thus we suppose the solution of
the three-point boundary value problem (1.1),(1.2) can be expressed by

u(t) = w(t) +B1 sinh kt+B2 sinh k(1− t) (2.13)
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Where B1 and B2 are constants that will be determined . From (2.11), (2.12),
we know that

u(0) = w(0) +B1 sinh k(0) +B2 sinh k(1− 0)
u(1) = w(1) +B1 sinh k(1) +B2 sinh k(1− 1)
u(η) = w(η) +B1 sinh k(η) +B2 sinh k(1− η)

⇒


0 = 0 +B1.0 +B2 sinh k(1)
u(1) = 0 +B1 sinh k(1) +B2 sinh k(0)
u(η) = w(η) +B1 sinh k(η) +B2 sinh k(1− η)

⇒ B2 = 0

u(1) = αu(η) we have B1 sinh k = α(w(η) +B1 sinh k(η))

B1 =
αw(η)

sinh k − α sinh k(η)
,

sinh k

sinh kη
> α. (2.14)

Therefore,

u(t) = w(t) +B1 sinh kt+B2 sinh k(1− t)

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh k(η)
H(η, s)

Where, H(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
, 0 ≤ t ≤ s ≤ 1

sinh st sinh k(1−t)
k sinh k

, 0 ≤ s ≤ t ≤ 1

H(η, s) =

{
sinh kη sinh k(1−s)

k sinh k
, 0 ≤ η ≤ s ≤ 1

sinh s sinh k(1−η)
k sinh k

, 0 ≤ s ≤ η ≤ 1

G(t, s) =

{
sinh kt sinh k(1−s)

k sinh k
sinh ks sinh k(1−t)

k sinh k

+
α sinh kt

sinh k − α sinh k(η)

{
sinh kη sinh k(1−s)

k sinh k
sinh s sinh k(1−η)

k sinh k

(2.15)

G(t, s) =
1

k(sinh k − α sinh k(η))


[sinh k(1− s) + α sinh k(s− η)](sinh kt), t ≤ s ≤ η,
[sinh k(1− t) + α sinh k(t− η)](sinh ks), s ≤ t, s ≤ η
sinh kt sinh k(1− s) , t ≤ s, η ≤ s,
sinh ks. sinh k(1− t) + α sinh kη sinh k(t− s), η ≤ s ≤ t ≤ 1.

(2.16)

Lemma 2.3.2. The Green’s function G(t, s) satisfies the following properties:

i. G(t, s) ≥ 0, ∀t, s ∈ [0, 1];

ii. G(t, s) ≤ DH(s, s),∀t, s ∈ [0, 1] ,
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iii. G(t, s) ≥MH(s, s),∀t,∈ [δ, 1− δ], s ∈ [0, 1]

where

D = 1 +
α. sinh k

sinh k − α sinh kη

M =
sinh kδ

sinh k
[1 +

α. sinh kδ

sinh k − α sinh kη
].

(2.17)

Proof. (i) It is obvious that G(t, s) is a nonnegative since H(t, s) ≥ 0 and
sinh k − α sinh kη > 0

(ii) consider the following case
Case (i) if t ≤ s, η ≤ s

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh ks

sinh k − sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D1H(s, s)

(2.18)

Case(ii) If t ≤ s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D2H(s, s).

(2.19)

Case(iii) if s ≤ t, s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D3H(s, s)

(2.20)
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Case(iv) if η ≤ s ≤ t ≤ 1

G(t, s) = H(t, s) +
α sinh kt

sinh k − sinh kη
H(η, s)

≤ H(s, s) +
α sinh k

sinh k − α sinh kη
H(s, s)

≤ H(s, s)[1 +
α sinh k

sinh k − α sinh kη
]

≤ D4H(s, s)

(2.21)

Therefore, G(t, s) ≤ DH(s, s),where D = D1 = D2 = D3 = D4

(iii) To prove (iii) we consider the following cases:
Case(i) If s ≤ t, s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
H(s, s) ≥ NH(s, s)[1 +

α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M1H(s, s).

(2.22)

Case(ii) If t ≤ s, η ≤ s

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kη

sinh k − α sinh kη
H(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M2H(s, s).

(2.23)
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Case(iii) If t ≤ s ≤ η

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
NH(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M3H(s, s).

(2.24)

Case(iv) If η ≤ s ≤ t ≤ 1

G(t, s) = H(t, s) +
α sinh kt

sinh k − α sinh kη
H(η, s)

≥ NH(s, s) +
α sinh kt

sinh k − α sinh kη
NH(s, s)

≥ NH(s, s)[1 +
α sinh kδ

sinh k − α sinh kη
]

≥ H(s, s)
sinh kδ

sinh k
[1 +

α sinh kδ

sinh k − α sinh kη
]

≥M4H(s, s).

(2.25)

Therefore, G(t, s) ≥MH(s, s), where M = M1 = M2 = M3 = M4
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Chapter 3

Methodology

3.1 Study period and site

The study was conducted in Jimma University under the department of Math-
ematics from September 2018 to February 2020 G.C.

3.2 Study Design

In this study employed analytical method of design.

3.3 Source of Information

The relevant sources of information for this study are books, published articles,
journals and related studies from Internet.

3.4 Mathematical Procedure of the Study

The study followed the following steps:

1. Defining second order three-point boundary value problem.

2. Constructing the Green’s function for the corresponding homogeneous
equation.

3. Formulating the equivalent operator equation for the boundary value
problems.

18



4. Determining the fixed point of the operator equation by using Avery and
Peterson fixed point theorem.

5. Finally as an application, example is included to verify the theoretical
result.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Main Result

In this section, we discuss the existence of at least three positive solutions for
second-order undamped three point boundary value problems (1.1), (1.2) by
applying Avery-Peterson fixed point theorem.
Obviously, u(t) ∈ C2([0, 1],R+) is solution of (1.1)-(1.2) if and only if u(t) is
a solution of the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (4.1)

Let E = C([0, 1]) be a real Banach space with the norm ‖u‖ = max0≤t≤1 |u(t)|
and define the cone P ,

P = {u ∈ E;u(t) ≥ 0 and min0≤t≤ηu(t) ≥ σ||u||}

where σ = M
D

, then P is anon empty closed subset of E. It is obvious that E
is a real Banach space and P is a cone in E. Define an operator T : P → E as

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds (4.2)

By (4.1) u(t) is a solution of boundary value problem (1.1)-(1.2) iff u(t) is
a fixed point of T . In this research the following condition have been assumed
through out :

H1. f ∈ C([0, 1]× [0,∞), [0,∞)), k ∈ (0,∞)

H2. 0 ≤ G(t, s) <∞,∀t, s ∈ [0, 1]
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H3. α < sinh k
sinh kη

By applying fixed point theorem on T and putting suitable conditions on f
we proved the existence of at least three fixed points in a cone.

Lemma 4.1.1. Let H1 − H3 hold the operator T : P → P is completely
continuous.

Proof. First we prove the following

1. The operator T is self map on P . Now (1.1), (1.2) has a solution u = u(t)
if and only if u solve the operator equation,

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds = Tu(t). (4.3)

Now G(t, s) is the Green’s function for the boundary value problem, by
lemma 2.3.1 and 2.3.2 we have G(t, s) ≤ DH(s, s), for t, s ∈ [0, 1] and
Tu ∈ E, for each u ∈ P . We have

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤
∫ 1

0

DH(s, s)f(s, u(s))ds (4.4)

and we have Tu(t) ≤
∫ 1

0
DH(s, s)f(s, u(s))ds which implies that

||Tu|| ≤
∫ 1

0

DH(s, s)f(s, u(s))ds

then,

min
t∈[δ,1−δ]

(Tu)(t) = min
t∈[δ,1−δ]

∫ 1

0

G(t, s)f(s, u(s))ds

≥M
∫ 1

0

H(s, s)f(s, u(s))ds =
M
D

∫ 1

0

DH(s, s)f(s, u(s))ds

≥ M
D
||T (u)|| ≥ M

D
||T (u)||

≥ σ||T (u)||.

TP ⊂ P . Therefor, T is a self map on P .
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2. The operator T is uniformly bounded on P . Let u ∈ P , in view of the
positivity and continuity of G(t, s), H(t, s) and f , we have T : P −→ P is
continuous .
Let {uk} be a bounded sequence in P , say ||uk|| ≤ M for all k since f is
continuous, there exist N > 0 such that |f(t, u(t))| ≤ N for all u ∈ [0,∞)
with 0 ≤ u ≤M then for each t ∈ [0, 1] and for each k,

|Tuk(t)| = |
∫ 1

0

G(t, s)f(s, uk)ds|

≤
∫ 1

0

G(t, s)(N)ds

≤ N

∫ 1

0

G(t, s)ds < +∞

that is for each t ∈ [0, 1], uk is abounded sequence of real numbers. By
choosing successive subsequences for each t, there exist a subsequence {uk}
which converges uniformly for t ∈ [0, 1].
Hence, T is uniformly bounded.

3. The operator T is equicontinuous on P. To prove T is equicontinuous. Let
u ∈ P , and ε > 0 be given. By the continuity of G(t, s), for t ∈ [0, 1],
there exist δ > 0 such that |G(t2, s)−G(t1, s)| < ε

N
whenever |t1 − t2| < δ,

for t1 ,t2 ∈ [0, 1]

‖Tu(t1)− Tu(t2)| = |
∫ 1

0

(G(t1, s)−G(t2, s))f(s, u(s))ds|

≤
∫ 1

0

|G(t2, s)−G(t1, s)|Nds,

≤ N

∫ 1

0

|G(t1, s)−G(t2, s)|ds,

< ε.

Therefore, by a standard application of the Arzela-Ascoli theorem [Royden,
2010] and the result from 1,2 and 3, T is completely continuous.

From above arguments, we know that the existence of at least three posi-
tive solutions of (1.1), (1.2) can be equivalent to the existence of at least three
fixed points of the operator of T .
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Let γ(u) = ||u|| = max0≤t≤1(u(t)), t ∈ [0, 1]. θ(u) = ψ(u) = max0≤t≤1 |u(t)|
α(u) = minη≤t≤1(u(t), where γ and θ are non-negative continuous convex func-
tional, ψ is a nonnegative continuous functional α is a nonnegative continuous
concave functional on the cone P.

Theorem 4.1.2. Let the condition (H1)− (H3) hold and there exist positive
numbers a, b, d, with 0 < a < b < d, such that
(A1)f(t, u) ≤ d

L
, t ∈ [0, 1], u ∈ [0, d],

(A2)f(t, u) > b
L , t ∈ [δ, 1− δ], u ∈ [b, b

σ
],

(A3)f(t, u) < a
L
, t ∈ [0, 1], u ∈ [0, a],

L =M
∫ 1−δ

δ

H(s, s)ds and L = D

∫ 1

0

H(s, s)ds (4.5)

Then boundary value problem (1.1)-(1.2) has at least three positive solution
u1, u2 and u3 ∈ P (γ, d) satisfies γ(ui < d) for i=1,2,3 and minδ≤t≤1−δ u1(t) >
b,max0≤t≤1 u2(t) > a with minδ≤t≤1−δ u2(t) < b and max0≤t≤1 u3(t) < a.

Proof. We prove to satisfies all the condition of theorem which lead as the
existence of at least three fixed points of T in a cone p.

γ(u) = max
0≤t≤1

u(t)

Let u ∈ P (γ, d), then γ(u) ≤ d.

γ(Tu)(t) = max
0≤t≤1

(Tu)(t) = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds

≤ D

∫ 1

0

H(s, s)
d

L
ds ≤ dD

L

∫ 1

0

H(s, s)ds

≤ d.

Hence, Tu(t) ∈ P (γ, d)

Then T : P (γ, d)→ P (γ, d).
Assume u(t) = d

σ
, 0 ≤ t ≤ 1, α(u) = minδ≤t≤1−δ u(t) = b

σ
> b,

θ(u) = d
σ

= max0≤t≤1 u(t) = ψ(u), γ(u) < d.
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By definition of α

α(Tu)(t) = min
δ≤t≤1−δ

(Tu(t))

= min
δ≤t≤1−δ

∫ 1

0

G(t, s)f(t, u(s))ds

≥M
∫ 1

0

H(s, s)f(s, u(s))ds

≥M
∫ 1−δ

δ

H(s, s)
b

L
ds

= b
M
L

∫ 1−δ

δ

H(s, s)ds

> b.

This show that condition (C1) of Theorem 2.2.14 satisfied. From the second
conditions of Theorem 4.1.2 f(t, u(t)) ≥ b

L , t ∈ [δ, 1− δ], u ∈ [b, b
σ
]

If u ∈ p(γ, α, b, d) and θ(Tu) > b
σ
, then

α(Tu)(t) = min
δ≤t≤1−δ

(Tu(t)) = min
t∈[δ,1−δ]

∫ 1

0

G(t, s)f(s, u(s))ds

≥ M
D

∫ 1

0

DH(s, s)f(t, u(s))ds

≥ σ max
0≤t≤1

Tu(t) = σθ(Tu) >
σb

σ

> b

since θ(Tu) > b
σ

= c. This show that C2 of Theorem 2.2.14 satisfied. To verify
C3 of Theorem 2.2.14. Obviously ψ(0) = 0 < a, so 0 /∈ R(γ, ψ, a, d)
Suppose that u ∈ R(γ, ψ, a, d) with ψ(u) = a, then 0 ≤ u(t) ≤ a, t ∈ [0, 1].
By (A3) we get

ψ(Tu)(t) = max
0≤t≤1

Tu(t)

= max
0≤t≤1

[

∫ 1

0

G(t, s)f(s, u(s))ds]

≤ D

∫ 1

0

H(s, s)f(s, u(s))ds

≤ D

∫ 1

0

H(s, s)
a

L
ds

≤ a
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Condition C3 of Theorem 2.2.14 also related. By Theorem 2.2.14 T has at
least three fixed points u1, u2, u3 such that minδ≤t≤1−δ u1 > b,max0≤t≤1 u2 >
a,minδ≤t≤1−δ u2 < b,max0≤t≤1 u3 < a.

4.2 Example

In this section we provide example to illustrate our main result

Example 4.2.1.

−u′′(t) + u(t) = f(t, u(t)), 0 ≤ t ≤ 1,

u(0) = 0, u(1) = 3u(
1

7
),

(4.6)

where k = 1, α = 3, η = 1
7

f(t, u(t)) =


u2t, t ∈ [0, 1], u ∈ [0, 1],
u2t+ (u− 1), t ∈ [δ, 1− δ], u ∈ [1, 1100],
1.21× 106t+ 1099, t ∈ [0, 1], u ∈ [1100,∞].

By the help of Equation (2.15) and (2.16) the Green’s function for the corre-
sponding homogeneous BVP of (4.6) is

G(t, s) =
1

(sinh 1− 3 sinh(1
7
))



[sinh(1− s) + 3 sinh(s− 1

7
)](sinh t), t ≤ s ≤ 1

7
,

[sinh(1− t) + 3 sinh(t− 1

7
)](sinh s), s ≤ t, s ≤ 1

7

sinh t sinh(1− s), t ≤ s,
1

7
≤ s,

sinh s sinh(1− t) + 3 sinh
1

7
sinh(t− s), 1

7
≤ s ≤ t ≤ 1.

From Equation (2.17) and (4.5) by direct calculation we get

L = 0.8969 and L = 0.0461 M = 0.433, D = 5.731

f is continuous and increasing on [0,∞]. If we choose a = 1, b = 83 and
d = 1100, then all the conditions of Theorem 4.1.2 are satisfied. Hence by
Theorem 4.1.2, the boundary value problem (4.6) has at least three positive
solutions.
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Chapter 5

Conclusion

Based on the obtained result the following conclusion can be derived:- In this
study, we defined second-order undamped three point boundary value prob-
lems and used the properties of Green’s function for constructing Green’s func-
tion for homogeneous boundary value problem.

After these we formulated equivalent integral equation for the boundary
value problem (1.1), (1.2) in the given interval and determine the existence
of fixed point of the integral equation by applying Avery and Peterson fixed
point theorem. Finally, example was provided to illustrate the result.

5.1 Future Scope

This study focused on existence of three positive solutions for second-order
undamped three point boundary value problems. Any interested researcher
may conduct the research on:-

• Existence of three positive solutions for nth-order three point boundary
value problems.

• Recently there are a number of published research papers related to this
area of study .So, the researchers recommends the upcoming Post Grad-
uate Students of the department and any other interested researchers to
do their research work in area of study.
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