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III  

 Abstract 

In this study, accelerated non-standard finite difference method is presented for solving 

singularly perturbed reaction-diffusion boundary value problems. Richardson extrapolation 

technique helps to improve accuracy of the solution and accelerates its rate of convergence 

from second order to fourth order.  Consistency and stability of the present method established 

very well to guarantee the convergence of the method. Model examples were considered to 

illustrate the conformation of theoretical description with experiential results. In a net shell, 

the presented method is formulated for the class of singularly perturbed reaction- diffusion 

boundary value problems which is stable, convergent and gives more accurate solution than 

some methods existing in the literature.   
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    CHAPTER ONE: INTRODUCTION  

1.1 Background of the study  

Numerical analysis is a mathematics, a technique and used to obtain the approximant solution 

of a mathematical problems on computer. Numerical analysis is widely used by applied 

mathematician, scientists, engineers and computer scientists to solve their problems. The 

advantage of the numerical analysis is that it gives numerical solution, even when a problem 

has no analytical solution. It is important to realize that a numerical solution is always 

numerical, but analytical methods usually give a result in terms of mathematical functions that 

can be evaluated for specific instances. However, numerical results can be plotted to show 

some of the behavior of the solution of a problem (Bella, 2014).   

The numerical analysis result is an approximation, but the results can be made as accurate as 

desired. Ultimate aim of the field of numerical analysis is to provide convenient methods for 

obtaining useful solutions to mathematical problems and for extracting useful information from 

available solutions which are not expressed in tractable forms. Such problems may each be 

formulated, for examples internes of algebraic or transcendental equation an ODE or PDE of 

a set of such equations (Akram, 2013).    

Many practical problems, such as the mathematical boundary layer theory or approximation of 

solution of various problems described by differential equations involving large or small 

parameters. A differential equation in which the highest order derivative is multiplied by a 

small positive parameter is called perturbed problem and the parameter is known as the 

perturbation parameter. Singularly perturbed problems occur in a number of areas of applied 

mathematics, sciences, engineering, fluid mechanics, elasticity and quantum mechanics (Lie J, 

2008).   

The mathematical manifestation of boundary layers is due to the presence of small parameters 

multiplying the coefficients of some, or all of the terms with the higher order derivatives in the 

differential equations, and such equations are said to be singularly perturbed. Singular 

perturbation is that the nature of the differential equations changes completely in the limit case, 

when the singular perturbation parameter is equal to zero (Roos et al, 2010).  



 
 
 

 

2 

The concept of an   uniform numerical method is clearly, define where   denotes the singular 

perturbation parameter and the essential idea is that the convergence properties, the accuracy 

and computational cost of the numerical method should be independent of the value of the 

singular perturbation parameter  . Singular perturbation problems we address contain a small 

parameter   that reflects the ratio between the slow and the fast time scale (Sabyasachi et al, 

2017).   

Reaction-diffusion describes the process, in which multiple participating chemicals or agents 

react with each other, while simultaneously diffusing or spreading through a liquid or gaseous 

medium. A reaction diffusion equation comprises a reaction term and a diffusion term 

(Christina, 2011). A reaction-diffusion model is a system of mathematical equations that 

describe how the concentration of one or more substances are affected by reaction and diffusion 

processes. Boundary value problems for system of singularly perturbed differential equation 

often occur, for example, in modeling and analysis of heat and mass transfer processes when 

the thermal conductivity and diffusion coefficients are small and or the rate of reactions is 

large, the processes of mathematical modeling of chemical reactions with point sources taken 

into account, there arises a boundary value problem on an infinite interval for a system of 

reaction diffusion with point source. There is thin translation layer where solution varies 

rapidly with narrow region called boundary layer (Miller et al, 2010). Most of the existing 

classical finite difference methods which have been used in solving different order of 

singularly perturbed problems of reaction diffusion equation give good result only when the 

mesh size h  is much less than the perturbation parameter    (Phaneendra et al, 2015). 

Recently, different scholars proposed different numerical method to solve the singularly 

perturbed boundary value problems of the reaction diffusion problems, for instance,   

Fasika et al, (2016) have proposed fourth order of compact finite difference method for 

singularly perturbed 1D reaction diffusion problems, explains higher accuracy but the reaction 

term is only a constant.   Feyisa et al, (2017) have proposed six order of compact finite 

difference method for singularly perturbed 1D reaction diffusion problems, the authors explain 

the rate of convergence and tries to validate their schemes from examples but the examples of 

their schemes perturbation parameter and mesh size much too close each other and not 

uniformly convergent. Phaneendra et al, (2015) have proposed a fitted arithmetic average 
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three-point finite difference method and even if their scheme validated of maximum absolute 

error applying on some numerical examples that give more accurate numerical solution but, 

there is no detailed explanation of analysis method on uniform convergent and stability. Terefe  

et al, (2016) proposed that forth order stable central difference method for self- adjoint and  

Yitbarek et al, (2017) proposed that six order stable central difference method for self-adjoint  

singularly perturbed 1D reaction diffusion problems, Subburayan, (2013) proposed that an 

initial value technique for singularly perturbed reaction diffusion problems with a negative 

shift, Gracia et al, (2015), proposed that numerical approximation of solution derivatives in 

the case of singularly perturbed time dependent reaction diffusion problems, Clavero et al, 

(2010) proposed that the uniformly convergent of a finite difference schemes for singularly 

perturbed reaction diffusion problems, Zhou et al, (2016) proposed that a variation perturbation 

method for solving singularly perturbed reaction diffusion problems. But, still it is observed 

that there is lack of accuracy and convergence because the treatment of singular perturbation 

problems is not trivial distribution and the solution profile depends on perturbation parameter 

ε and mesh size h (Doolan et al, 1980) and (Roos et al, 1942).   

Thus, from the above investigation, Fasika et al, (2016), presents well accuracy, but, the 

reaction term is only constant. Terefe et al, (2016) and Yitbarek et al, (2017) presents self -

adjoint higher order reaction diffusion boundary value problems with a reaction term is a 

continuous function presents well convergence and stability but not more accurate. Zhou, 

(2016) and Clavero, (2010), have proposed time dependent reaction diffusion problems for 

different methods and presents well accuracy. So, these study have been interested to improve 

the accuracy of reaction-diffusion boundary value problems.  

Therefore, the main objective of this study is to develop a stable, convergent and gives more 

accurate numerical solution than some of the existing methods for solving singularly perturbed 

reaction-diffusion boundary value problems. 
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 1.2 Objective of the study  

 1.2.1 General objective  

The general objective of this study is to develop accelerated non-standard finite difference 

method for solving singularly perturbed reaction-diffusion boundary value problems.  

1.2.2 Specific objectives   

 To formulate second order non-standard finite difference schemes for solving 

singularly perturbed reaction-diffusion boundary value problems.  

  To apply Richardson extrapolation method to accelerate the rate of convergence.   

  To establish the convergence of the proposed method.  

  

1.3. Significance of the study    

The results obtained in this research may:    

 Provide some background information for other researchers who work on this area.  

  Introduce the application of numerical methods in different field of studies.  

  Help the graduate students to acquire research skills and scientific procedures. 
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1.4. Delimitation of the study    

This study was delimited to accelerated non- standard finite difference method for solving 

singularly perturbed reaction-diffusion boundary value problems of the form:  

                             y x b x y x f x     ,          0,1 x                     

subject to the boundary conditions: 

                                 0y   and   1y                                                                

where,   is perturbation parameter that satisfies 0 1,     ,   are given constants and 

the functions  b x , b(x) b 0  , b is a constant and  f x are assumed to be sufficiently 

continuous differentiable functions. 
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      CHAPTER TWO: REVIEW OF RELATED LITERATURES    

 2.1 Singularly perturbed boundary value problems   

Singular perturbation problems containing a small parameter   multiplying to their highest 

derivative term arise in many field, such as fluid mechanics fluid dynamics, chemical reactor 

theory and elasticity, which have received significant attention (Nayfeh, 1981). Singularly 

perturbed problems are differential equations (ODE or PDE) that depend on a small positive 

parameter   and whose solutions (or their derivatives) approach a discontinuous limit as 

approaches to zero, such problems are said to be singularly perturbed, where we regard   as 

perturbation parameter (Roos et al, 1942).   

Singular perturbations appear in various fields of science and engineering. It is known that 

these problems depend on a small positive parameter   in such a way that the solution exhibits 

a multiscale character, i.e, there are thin layers where the solutions changes rapidly, while a 

way from the layers it behaves regularly, and hence numerical solutions of singularly perturbed 

problems usually presents difficulties that we have to be careful when choosing numerical 

methods. There exist a variety of methods for solving singularly perturbed boundary value 

problems, such as methods based on the initial value technique, as to research works on 

numerical solution of singularly perturbed boundary value problems (Phaneendra et al, 2015).  

Science and technology develops many practical problems, such as the mathematical boundary 

layer theory or approximation of solution of various problems described by differential 

equations involving small parameters have become increasingly complex and therefore require 

the use of asymptotic methods. The term singular perturbations were first used by (Friedrichs, 

1946) in a paper presented at a seminar on non-linear vibrations at New York University. 

Singularly perturbed problems arise frequently in applications including geophysical fluid 

dynamics, oceanic and atmospheric circulation, chemical reactions, civil engineering, optimal 

control, etc. The classification of singularly perturbed higher order problems depend on how 

the order of the original equation is affected if one sets, where is a small positive parameter 

multiplying the highest derivative occurring in the differential equation. If the order is reduced 

by one, we say that the problem is of convection-diffusion type and of reaction-diffusion type 
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if the order is reduced by two. It is well known that the solution of singularly perturbed 

boundary value problems is described by slowly and rapidly varying parts. So there are thin 

transition layers where the solution can jump suddenly, while away from the layers the solution 

varies slowly and behaves regularly (Akram and Afia, 2013).  

The order of differential equation is reduced by one the singular perturbation problem is said 

to be convection diffusion equation. But if the order of the differential equation is reduced by 

two, then the singularly perturbed differential equation is said to be reaction diffusion problem 

(Phaneendral et al, 2012). Basically, the problem of ineffectiveness for solving singularly 

perturbed problems has been associated with the perturbation parameter. Accordingly, more 

efficient and simpler numerical methods are required to solve singularly perturbed reaction 

diffusion boundary value problems. In recent years a large number of methods have been 

established to provide accurate result. (Phaneendra et al, 2015; Terefe et al, 2016; Jalilian et 

al, 2015; Fasika et al, 2016 ; Yitbarek et al, 2017; Ghazala and Imran, 2014; Sonali and 

Hradysh, 2015). (O’Malley, 1974, 1991; Nayfeh, 1973, 1981; Cole and Kevorkian, 1979; 

Bender and Orszag, 1978; Eckhaus, 1973; Vandyke, 1975; Bellman, 1964), and have the 

details of numerical and asymptotic solutions in (Doolan et al, 1980; Goering et al, 1983; 

Hemker, 1977; Hemker and Miller, 1979; Miller, 1993; Miller et al, 1996). Those show that a 

considerable amount of work has been done for the development of numerical methods to 

boundary value problems using various methods.   

2.2 Exact scheme of finite difference  

An exact finite difference scheme is one for which the solution to the difference equation has 

the same general solution as the associated differential equation. the solution of the difference 

scheme is exactly equal to the solution of the ODE on the computational grid for fixed, but, 

arbitrary step-size h difference scheme exists. If the solution is known, then the scheme can be 

constructed (Micken, 1999). The situation regarding exact finite difference schemes is more 

problematic for PDEs. as for the case of ODE’s, the question as to whether exact schemes can 

be constructed for PDE is very dependent upon the existence of known solutions to the PDE 

of interest. Another difficulty is the problem of defining precisely what  
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is to be understood as the general solutions of the given PDE (Jean, 2016). A detailed 

examination and analysis of the various exact finite difference schemes of the following 

conclusion:  first   discrete models for the functional dependence on the step size than those 

given by conventional methods, Second, a major characteristics of exact schemes is the discrete 

modeling of non-linear terms by nonlocal representation on the computational grid. a major 

advantage of having exact finite difference schemes for deferential equations is that various 

questions related to the issues of consistency, stability and convergence do not arise (Jean et 

al, 2016).  

2.3 Non-standard finite difference   

Non-standard numerical methods were introduced by Mickens (1994) as a viable tool that 

provides approximate solution to differential equations and retain the qualitative properties of 

the equation. In Mickens (1994, 2000), valuable reasons for numerical instabilities were given 

in some particular investigated cases. The preservation of the qualitative properties of the 

considered differential equation with respect to these schemes is of great interest in finite 

difference methods of solving differential equations. The major consequence of this result is 

that such scheme does not allow numerical instabilities to occur. He proposed a new method 

of construction of discrete models whose solution have the same qualitative properties as that 

of the corresponding differential equations for all step-sizes and thus eliminate the elementary 

numerical instabilities that can arise (Obyomi and Olabode, 2013).  

Non-standard finite difference schemes are generalization of the usual discreet models of 

deferential equations, their most important property is in many cases, the complete absence of 

the elementary numerical instabilities which plague the usual finite difference schemes 

(Mickens, 1999). The non-standard scheme is elementary stable in the limit case of the space 

independent variable. furthermore, the scheme is stable with respect to conservation of energy 

in the stationary case. The scheme is stable with respect to the boundedness and positivity 

property, this scheme is elementary stable in the limit case of the space independent variable 

and it is also stable with respect to the conservation of energy in the stationary case (Jean, 

Lubuma, 2016).  
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Non-standard method is more stable than the standard finite methods and the domain of h for 

stability in the non-standard is larger than those of the standard method, if the denominator 

functions are chosen in appropriate from the non-standard methods produce better results 

(Yoghoubi, 2015). The numerical methods are expected to define discrete dynamical system 

that are required to preserve the essential properties of the exact solution. The short coming of 

the classical numerical methods specifically the theta methods, for being reliable discrete 

dynamical systems is that the step size s subjected to a constraint. The time step size should be 

small enough if the schemes wear to replicate qualitatively properties of the exact solutions. 

the schemes we study are non-standard variants of the theta method, the non-standard finite 

difference method aims at preserving the qualitative properties at no cost with regard to the 

value of time step size. Non-standard finite difference schemes that have no spurious fixed 

points comparing to the dynamical system under consideration, the linear stability/ instability, 

property of the fixed points, being the same for both discrete and continuous system obtains a 

sharper condition for the elementary stability of the schemes (Phumezile Kama, 2009). 

As introduced in the literature, most researchers have been tried to find approximate solution 

for singularly perturbed boundary value reaction-diffusion problems. Some of the researchers 

who have done used to a constant coefficients and some of them who have done used a variable 

coefficient. But, some researchers have not been get more accurate solutions. Owing this, we 

find on more accurate and stable numerical method for solving singularly perturbed reaction-

diffusion boundary value problem by using accelerated non-standard finite difference method.  
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                CHAPTER THREE: METHODOLOGY    

This chapter consists: study area and period, study design, source of information and 

mathematical procedures.   

 3.1. Study area and period     

This study is conducted at Jimma University department of mathematics from January 2019 to 

February 2020 G.C. Conceptually, the study was focused on accelerate non-standard finite 

difference method for solving singularly perturbed reaction-diffusion boundary value problem.                       

 3.2. Study design    

   The study was employed mixed design (i.e. documentary review and numerical experimental 

design).    

3.3. Source of information    

The relevant sources of the information for this study are books, journals and related studies 

from internet. 
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 3.4 Mathematical procedure    

 In order to achieved the stated objectives, the study followed the following procedures:  

 Describing the problem.   

 Discretizing the solution domain/ interval.  

 Formulating non-standard finite difference scheme   

 Apply Richardson extrapolation method.  

 Establish the consistency and stability of the scheme.  

 Writing MATLAB code for the obtained scheme. 

 Illustrate with numerical examples and results to support theoretical 

descriptions.  
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      CHAPTER FOUR: DESCRIPTION OF THE METHOD  

 4.1 Formulation of the method 

Consider the singular perturbed reaction-diffusion boundary value problem of the form: 

                                ,y x b x y x f x                  0,1 x                        1  

subject to the boundary conditions:  

                      0y  and  1y                                                                             2  

where,    is a perturbation parameter that satisfies 0 1,    ,     are given constants and 

the functions  b x , b(x) b 0  , b is a constant and  f x are assumed to be sufficiently 

continuous differentiable functions. 

Now we divide the interval     0,1  in to N equal parts with constant mesh length
1

h
N

 . 

Let 0 10 ....... 1Nx x x    be the mesh points. Then we have   ,ix ih      1,2,..., .i N  

To describe a finite difference scheme for equation (1), we consider the homogeneous 

equation: 

                     0y x b x y x                                                                              3  

where   0,b x b    b is a constant. 

Here equation  3  has two linear independent solutions, namely, 
x

e


and 
x

e


with 
b






We denote the approximate solution to  y x  at the grid points ix by iy . The theory of 

difference given by Jean et al, (2006), shows that the second order linear difference equation 

                                           

1 1

1 1

1

1

0

i i

i i

i i

x x

i

x x

i

x x

i

y

y

y

e e

e e

e e

 

 

 

 

 











       
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 Since 1i ix x h     we have 

 1

h h

iy e e
 

    2 2h h

iy e e
 
   1 0

h h

iy e e
 

          

   Because of the relations     2 2h h h h h h

e e e e e e
       
     and also      

 2cos
h h

h e e
 




   , the above equation can be re-written as 

               1 12cosh 0i i iy h y y                                                                      4  

Now, equation  4   is the exact difference scheme of equation  3 and in the sense that the 

difference equation in equation  4   has the same general solution, which is the form 

1 2

 
 i ix x

iy c ce e as the differential equation given in equation  3  Jean et al, (2006). 

Using the identity  
2

cosh 1 2 sinh ,
2

h
h




  
    

  
 equation  4  can be transformed to 

                  

1 1

2

2

2
0

4
sinh

2

i i i
i

y y y
by

h






  
  

  
  
    

This implies that the exact scheme of the non-homogeneous equation 

                               ( ) ( ) ( ) ( )   y x b x y x f x                                                 5  

 Equation  5  given by 

                     1 1

2

2

2

4
sinh

2






  
  

  
  
  

i i i
i i i

y y y
b y f

h
                                                     6  

 4.2 Non-standard finite difference scheme  

A difference equation to determine approximate solution y
i

 to the solution  y x of the given 

governing equation  is called a non-standard finite difference method if the classical 
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denominator h  or 
2h  of the discrete first order or second order derivative is replaced by a 

non- negative function   such that  

                     2h h O h    or       2 3( )h h O h       as 0 0h   

As Jean et al, (2006), provided the important observation that the complex structure of the 

denominator of the discrete derivative in equation  6  constitutes a general property of these 

schemes, which is useful while designing reliable schemes for such problems. To demonstrate 

the procedure, we consider equation  1 which at a fixed node ix ,  reads as 

                 i i i iy b y f                                                                                       7  

Interested by equation  6 ,we may  approximate by equation  7  by the non-standard scheme 

as 

                1 1

2

2i i i
i i

i

y y y
by f


  

                                                                   8   

       where       2 32
, sinh

2
i i

h
h h O h


  



 
    

 
, and ib




                

The non-standard scheme in equation  8  can be written in three term recurrence relation  

             1 1i i i i i i iE y F y G y H     ,            1, 2,3,..., 1 i N                           9   

where 
2

,i i

i

E G



   

2

2
i i

i

F b



   and  ,i iH f         

Now, the system given in equation  9  can be re- write in matrix form as 

                         MY H                                                                                         10                                                                                

  where M is  the  ( 1) ( 1)N N   coefficient matrix, andY H 
are column matrices  as given 

below  
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1 1 1 0

2 2

2 2

1 1 1

and *

N N

N N N

y H E y

y H

Y H

y H

y H G y

 

 

   
   
   
    
   
   
      

 

 

4.3 Richardson extrapolation  

The basic idea behind extrapolation is that whenever the leading term in the error for an 

approximation formula is known, we can combine two approximations obtained from that 

formula using different values of the parameter mesh sizes h and to obtain a higher-order 

approximation and the technique is known as Richardson extrapolation. This procedure is a 

convergence acceleration technique which consists of considering a linear combination of two 

computed approximations of a solution (on two nested meshes). The linear combination turns 

out to be a better approximation. 

From the definition of non-standard finite difference approximation, the approximate 

differential term is second order that indicates the truncation error of the formulated method is  

.  Hence, we have  

                    11    

2

2

2

2

2

2

2 1 0 0

1 2 1 0

0 1 2 0 0

0 0 1 0

0 1 2 1

0 0 0 1 2

i
i

i
i

i
i

i

i
i

i
i

b

b

b
M

b

b

 
  

 
 

  
 
 

  
  

  


 
 

   
 

 
   

0.5h

2( )hO

 2( )i N hy x Y C 
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where  are exact and approximate solutions respectively, C is constant 

independent of mesh sizes h.  

Let  be the mesh obtained by bisecting each mesh interval in  and denote the 

approximation of the solution on  by . Consider equation  11  works for any , 

which implies: 

                 12  

So that, it works for any  yields: 

                                                13  

   where the remainders,  and  are  . A combination of inequalities in equation  

 12 and  13   leads to 
 
which suggests that 

             14   

is also an approximation of . Using this approximation to evaluate the truncation error, 

we obtain: 

               15  

Now, using these two different solutions which are obtained by the same scheme given by 

equation  9 , we get another third solution in terms of the two by equation  15 . This is 

Richardson extrapolation method for the second order non-standard finite difference scheme 

only to accelerate the rate of convergence to fourth order. 

4.4 Consistency of the method  

Local truncation errors refer to the differences between the original differential equation and 

its finite difference approximations at grid points and measure how well a finite difference 

discretization approximates the differential equation (Zhilin et al, 2018). In the present method, 

the truncation error given in equation (11) written as           

        
2| |TE Ch                                                                      16             

 

( ) andi Ny x Y

2N N

2N 2NY 0h 

 2( ) ,N N
i N ih Ry x Y C x    

0
2

h


2
2 2

2
2

( ) ,N N
i N i

h
Ry x Y C x

 
 

 

 
    

 

NR 2NR 4( )hO

  4
23 ( ) 4 ( ),i N N hy x Y Y O  

   2

1
4

3

ext
N N NY Y Y 

( )iy x

  4( )
ext

i N hy x Y C 
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A finite difference scheme is called consistent if the limit of truncation error TE is equal to 

zero as the mesh size h goes to zero (Siraj et al, 2019).  Now, by this definition the consistency 

of present scheme given in equation (9) with the local truncation error in equations (11) and 

(15) satisfied as: 

                           
2 4

0 0 0
lim lim lim 0
h h h

TE Ch Ch
  

                                   17   

Thus, the proposed method is consistent. 

4.5. Stability of the method         

If we multiply both sides of equation (9) by 2

i  and consider the limit as 2 0i  , because 2

i  

is a function of mesh size h, we get: 

  and 2i i iE G F                        18  

This leads to the coefficient matrix M of the system becomes  

2 0 0

2 0

0 2 0 0

0 0 0

0 2

0 0 0 2

M

  
 
  
 
  

  
 

   
 

  

 

Here, M  is a tri-diagonal matrix. The co-diagonal contains ,i iE G with 0 and 0i iE G  ,

1, 2, , 1i N   . Hence, M  is irreducible. Also, 0 and 0i iE G  and in each row of   M

, the sum of the two off-diagonal elements less than or equal to the modulus of the diagonal 

element. 

                    i i iF E G   

This proves the diagonal dominant of M . Under these conditions the Thomas algorithm is 

stable.  
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As proved by (Smith, 1985), the eigenvalues of a tri-diagonal matrix    1 1N N    of matrix 

M are: 

 

2

2 cos , 1,2, . . . , 1

2 2 cos 2 1 cos

s i i i
s

F E G s N
N

s s

N N


    

  
       

 

    

Moreover, from trigonometric identity, we have: 21 cos 2sin
2

s s

N N

 
  .  

Hence, the eigenvalues of matrix M re-written as: 

2

22 2sin 4 sin 4
2 2

s

s s

N N

    
         

   
              19  

A finite difference method for the boundary value problem is stable if M is invertible and 

  1M C  ,  00 h h                 20  

where C and 0h are two constants that are independent of h,(Zhilin et al, 2018). 

Since, matrix M is symmetric, its inverse 1M  is symmetric and the eigenvalues 1M   is given 

by 
1

s
. Thus, by the definition, we have: 

 1
1 1

4s

M C   
   

where C is independent of h. Hence, the developed scheme in equation (9) is stable. 

A consistent and stable finite difference method is convergent by Lax's equivalence theorem 

(Smith, 1985). Hence, as we have shown above the proposed method is satisfying the criteria 

for both consistency and stability which are equivalents to convergence of the method.  

4.6   Numerical examples and results 

In order to test the validity of the proposed method and to demonstrate their convergence 

computationally, we have taken two model examples. The maximum absolute errors (AE) at 

the nodal points are given by:  

                              . 

 The rate of convergence (R) can be calculated by the formula: 

1 1
| | max | ( ) ( ) |ext

i N
i N

AE y x Y
  

 
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where are exact solution and numerical solution respectively, at the nodal 

point  and for the rate of convergence  and  are the numerical solutions obtained by 

the mesh size  and respectively. 

Example 1: Consider the singularly perturbed problem 

 ,   

subject to the boundary conditions  

 where  

The exact solution is given by: 

 
 

Example 2: Consider the singular perturbation problem: 

  

subject to the boundary conditions .  

The exact solution is given by  
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              Table 1. Comparison of maximum errors in solution for Example 1  

      

Present method     

 2.1232e-05 1.4248e-06 9.0852e-08 5.7354e-09 3.5888e-10 

 5.3610e-05 3.8419e-06 2.5412e-07 1.6026e-08 1.0068e-09 

 1.0810e-04 1.0494e-05 7.0151e-07 4.4962e-08 2.8290e-09 

 1.5101e-04 2.6881e-05 1.9157e-06 1.2574e-07 7.9518e-09 

Terefe et al, (2016)     

 0.1301e-03 0.8424e-05 0.5255e-06 0.3280e-07 0.2053e-08 

 0.5910e-03 0.3704e-04 0.2319e-05 0.1450e-06 0.9072e-08 

 0.1331e-02 0.1444e-03 0.9916e-05 0.6241e-06 0.3905e-07 

 0.1521e-02 0.6190e-03 0.4110e-04 0.2633e-05 0.1640e-06 

                

            Table 2. Computed rate of convergence for Example 1 

     

Present method    

 3.8974 3.9711 3.9856 3.9983 

 3.8026 3.9182 3.9870 3.9926 

 3.3647 3.9030 3.9637 3.9903 

 2.4900 3.8106 3.9294 3.9830 

 

Table 3. Comparison of maximum errors in solution for Example 1 in the case of   

      

With Richardson extrapolation     

 2.6397e-05 4.3155e-05 3.2027e-05 3.4788e-06 2.3521e-07 

 2.6111e-05 1.6143e-06 7.4307e-06 1.8461e-05 5.4223e-06 

 2.6111e-05 2.5972e-14 6.8118e-09 1.8143e-06 9.8950e-07 

Without Richardson extrapolation    

 3.7100e-04 2.7768e-04 1.0266e-04 8.6715e-05 2.4288e-05 

 3.7100e-04 4.3110e-06 9.2615e-05 4.8464e-05 4.0917e-05 

 3.7100e-04 2.5972e-14 1.3795e-08 6.6012e-06 3.7483e-05 
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Table 4. Comparison of maximum errors in solution of Example 2 for small values of  

     

Present method    

 2.5862e-03 2.5391e-04 4.6771e-05 1.1642e-06 

 1.7769e-03 7.8920e-04 1.2666e-04 1.0862e-05 

 1.9739e-04 1.9608e-04 1.5115e-04 4.6997e-05 

Phaneendra et al, (2015)    

 1.23e-2 1.10e-3 7.63e-5 4.90e-6 

 2.35e-2 4.60e-3 5.60e-4 4.47e-5 

 2.52e-2 6.20e-3 
1.40e-3 

 

2.39e-4 

 

 

  

 

 

Figure 1: Physical behavior of the exact and numerical solution for Example 1 at  

                 and  
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Figure 2: Graph to indicate when number of mesh size decreases at a fixed , 

                  accuracy of the numerical solution increases or errors also decreases. 

 

                     

Figure 3: Graph to indicate when number of perturbation decreases at a fixed mesh  

              number , accuracy of the numerical solution decreases. 
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CHAPTER FIVE: DISCUSSION, CONCLUSION AND SCOPE  

 5.1. Discussion and conclusion 

In this work, accelerated non-standard finite difference method described and analyzed for 

solving singularly perturbed reaction-diffusion boundary value problems. Richardson 

extrapolation technique helps to improve accuracy of the solution and accelerate rate of 

convergence from second order to fourth order.  Consistency and stability of the method 

established clearly and shortly to guarantee the convergence of the method. We consider two 

model examples to illustrate its numerical results in terms of maximum absolute errors and rate 

of convergence for different values for the perturbation parameter and mesh sizes (see Tables 

1-4 and Figures 1-3).  Specifically, Tables 1 and 4 used to verify the betterment of present 

method by producing more accurate solution that existing methods in the literature. Table 2 

shows that the confirmation of fourth order of convergence in theoretical analysis with 

experimental results. Table 3, clearly demonstrates the effects of applying Richardson 

extrapolation method and improvement of the accuracy of solution. As the number of intervals 

N increases accuracy of the solution also increases (Table 1, 3 and 4) which implies 

convergence of the present method. Additionally, Figure 1 to illustrate as the problem has two 

(left and right) boundary layers and Figures 2 and 3 shows, the effects of mesh sizes and 

perturbation parameter with occurrence of maximum absolute errors in the two-layer region.   

Generally, accelerated non-standard finite difference method is formulated for the class of 

singularly perturbed reaction- diffusion boundary value problems, which is stable, convergent 

and gives more accurate solution than some of the existing methods in the literature.   

5.2 Scope of the future work 

In this thesis, accelerated non-standard finite difference method is introduced for solving 

singularly perturbed reaction diffusion problems; hence the scheme proposed in this thesis can 

also be extended to fitted mesh or higher order on uniform mesh finite difference method for 

solving singularly perturbed reaction diffusion equations. 
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