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Abstract 

In this thesis, stability and bifurcation analysis of Maxwell-Bloch equations were considered. By 

the aid of divergence test, it was proved that the system is dissipative. Steady state points of the 

equations were determined. The equations were linearized using Jacobian matrix about each 

equilibrium points. The local stability condition of each critical point was proved by using 

Routh- Huwertiz stability criteria. By the aid of Lyapunov theorem, equilibrium point one was 

proved to be globally asymptotically stable with some specific condition on pumping energy 

parameter. It is impossible to speak global stability property of the two remaining equilibrium 

points in the sense of Lyapunov due to the fact that one of the criteria to apply the theorem is not 

satisfied. Furthermore, the result of Hopf bifurcation revealed that the system doesn’t undergo 

Hopf bifurcation at equilibrium point one by any choice of pumping energy parameter and with 

some specific conditions the system undergoes Hopf bifurcation about the two remaining 

equilibrium points for a certain value of pumping energy parameter. Finally, in order to verify 

the applicability of the result two numerical examples were solved and MATLAB simulation was 

implemented to support the findings of the study. 

Key words: Maxwell -Bloch equation, Local stability, global stability, Routh- Huwertiz stability 

criteria, Lyapunov theorem, Hopf bifurcation. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of Study 

Mathematical model is a description of a system using mathematical concepts and language. 

Mathematical modeling is the application of mathematics to describe real-world problems and 

investigate important questions that arise from it. Mathematical models are used in Physics, 

Chemistry, Biology, Engineering disciplines, Medicine, Ecology as well as in the social sciences. 

Mathematical model is a powerful tool for understanding historical, practical and the 

fundamental phenomena of physics which cannot be understood by verbal reasoning alone                           

(Alder, 2001). 

Maxwell-Bloch equations are set of coupled ordinary differential equations, which form the 

foundation of classical electromagnetism, classical optics and electric circuits together with the 

Lorenz force law. The equations also provide mathematical model for electric, optical and radio 

technologies, such as power generation, electric motors, wireless communication, etc 

(Maxwell, 1892).  

The Maxwell-Bloch equations also called the optical Bloch equations which were first derived 

by Tito Arecchi and Rodolfo Bonifacio of Milan (Arecchi and Bonifacio, 1965).They described 

the dynamics of a two-state quantum system interacting with the electromagnetic mode of an 

optical resonator. The Maxwell- Bloch equations first appeared in quantum optics in the context 

of the phenomenon called self-induced transparency (SIT). In particular, the Maxwell-Bloch 

equations describe the interaction between a two-level quantum mechanical system and an 

electromagnetic wave.  

The Maxwell-Bloch equations widely used in non-linear optics in general and to model quantum 

cascade lasers (QCL) (Jirauschek and Kubis, 2014). These model equations are a system of non-

linear ordinary differential equations which plays a prominent role in the field of non-linear 

optics. This system models the resonant interaction between light and optically active medium 
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consisting of two-level atoms. Non-linear evolution equations have attracted a lot of attentions 

since they are able to describe the non-linear phenomena in many fields of sciences and 

Engineering (Ablowity and Clarkson, 2004). The Self-induced transparency (SIT) phenomenon 

plays a role in overcoming the attenuation in the optical communication systems. 

Therefore, scholars or researchers have pointed out the reduced Maxwell-Bloch equations can be 

applied to get for the phenomenon of self-induced transparency (Hao and Zhang, 2015).  

In general, mathematical models of Maxwell-Bloch equations are used in Physics, Chemistry, 

Biology, Engineering disciplines and others related sciences. In 1965, Tito Arecchi and Rodolfo 

Bonifacio of Milan discovered the Maxwell-Bloch equations which is a system of non-linear 

ordinary differential equations of the form: 

 

 

 

1

2

(1.1)

1

dx
k y x

dt

dy
r xz y

dt

dz
r z xy

dt
 

 

 

   

Where the parameter   may be positive, negative or zero, 1,k r and 2r are positive parameters. 

is a pumping energy parameter, k  is the decay rate in the laser cavity due to beam transmission, 

1r  is the decay rate of the atomic polarization, 2r  is the decay rate of the  population inversion, x

is the dynamics of the  electric field, y is Atomic polarization  and z  is the population inversion.  

Non-linear mathematical models of real-world phenomena that are formulated in terms of 

ordinary differential  equations as in Eq. (1.1)  are not easy to directly solve for their solution and  

hence it is necessary to use qualitative approaches, such as stability and bifurcation analysis,  to 

investigate their solution behaviors. Stability theory plays a central role in system engineering, 

especially in the field of control systems and automation with regard to both dynamics and 

control. Bifurcation occurs when a small change made to the parameter values (the bifurcation 

parameters) of a system causes a sudden „qualitative‟ or topological change in its behavior 

(Blanchard et al., 2006). In scientific fields as diverse as fluid mechanics, electronics, chemistry 

and  theoretical ecology, there is the application of what is referred to as bifurcation analysis; the 

analysis of a system of non-linear ordinary differential equations  under  parameter variation. 
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Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system loses 

stability as a pair of complex eigenvalues of linearized system crosses the imaginary axis of the 

complex plane.   

A dissipative system is defined as a system whose phase space volumes shrink whereas in a 

conservative system phase space volume is conserved. Conservative systems have constant 

entities (usually, energy). Physically, we mean systems with no influx and no production of 

energy/matter.  

Dissipative systems lose energy with time. In order to maintain persistent behaviors the 

dissipative system must have influx of energy/matter. If a dissipative system starts at its stable 

equilibrium point, it stays there for arbitrarily long and one cannot see the basin of attraction and 

compression of the volume (Strogatz, 1994). 

Hassardet al. (1981). studied the direction of Hopf bifurcation and the stability of the bifurcating 

periodic solutions by applying the normal form theory and the center manifold theorem. In 2019, 

Makwataet al. investigated stability and bifurcation analysis of fishery model with allee effects 

and they obtained the three different equilibrium solutions as one being stable and with two 

being saddles. Pijushet al.(2018). investigated the stability and bifurcation analysis of three-

species food chain model with fear and they concluded that chaotic dynamics can be controlled 

by the fear factors. Yang et al.(2017). described chamostat model which involve control strategy 

with threshold window are analyzed. They investigated the qualitative analysis such as existence 

and stability of equilibrium points of the system and proved that pseudo-equilibrium cannot 

coexist.  In 2017, Algabaet al. studied the local bifurcations of equilibrium in the Lorenz system, 

when the parameters are allowed to take any real value has been successfully completed in the 

case of the pitchfork and Hopf bifurcations.  

Tee and Salleh.(2016). Investigated Hopf bifurcation of non-linear modified Lorenz system 

using normal form theory that was the technique used in Hassardet al.(1981). In 2015, 

Nijamuddin Ali and Santabrata Chakravarty proposed the stability and bifurcation analysis of 

three species competitive food chain model system incorporating prey-refuge and this study 

showed that competition among predators could be beneficial for predators.  
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However, Stability and Bifurcation analysis of Maxwell-Bloch equations is not yet investigated 

in the existing literature. Therefore, the main objective of this study is to analysis Stability and   

Bifurcation of Maxwell-Bloch equations given by equation (1.1). 
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1.2 Statement of the Problem 

This study focuses on the following problems. 

 System property in relation to dissipative, conservative or neither. 

 Local stability conditions of Maxwell- Bloch equations. 

 Global stability conditions of Maxwell- Bloch equations. 

 Hopf bifurcation conditions of Maxwell -Bloch equations. 

1.3 Objectives of the Study 

1.3.1 General Objective of the Study 

The general objective of this study is to analysis Stability and Bifurcation of Maxwell-Bloch 

equations given by Eq. (1.1).  

1. 3.2 Specific Objectives of the Study 

The specific objectives of the study are: 

 To check whether the system is dissipative, conservative or neither. 

 To determine local stability conditions of Maxwell- Bloch equations. 

 To determine global stability conditions of Maxwell- Bloch equations. 

 To determine Hopf bifurcation conditions of Maxwell -Bloch equations. 

1.4 Significance of the Study 

This study helps others professionals working on the area of electricity and magnetism by 

providing them appropriate conditions for well transfer of message   in electric circuit, optics and 

radio technologies, such as power generation, electric motors and wireless communication. 

1.5 Delimitation of the Study 

This study is delimited to Stability and Bifurcation analysis of Maxwell-Bloch equations given 

by Eq. (1.1). 
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CHAPTER TWO 

2. LITERATURE REVIEW 

Mathematical physics refers to the development of mathematical methods for the application of 

mathematics to solve the problems in physics. Mathematical physics is the application of 

mathematical modeling to solve problems in physics and physics phenomena. It is one of the 

fastest growing research areas in mathematics and it contributing significantly to our 

understanding of the real-world and also, mathematical physics is an interdisciplinary subject 

where theoretical physics and mathematics intersect (Jan Philip, 1960). 

The Maxwell-Bloch equations represent one of the most elegant and concise ways to state the 

fundamentals of electricity and magnetism and from them one can develop most of the working 

relationships in the field. Because of their concise statement, they embody a high level of 

mathematical sophistication and therefore not generally introduced in an introductory treatment 

of the subject (Maxwell, 1892).The quantum Maxwell-Bloch equations for spatially in 

homogeneous semi-conductor lasers are derived from fully quantum mechanical operator 

dynamics described the interaction of the light field with the quantum states of the electrons and 

the holes near the band gap (Holger and Hess, 1999). 

Maxwell-Bloch equations and the light field equations correspond exactly to the classical 

Maxwell‟s equations it is possible to focus only on the local light-matter interaction (Hess and 

Kuhn, 1996).The Maxwell-Bloch equations have more parameters than the Lorenz system; this 

justifies a more detailed parameter study and Chaotic behavior has been experimentally observed 

in laser systems and also, studying the range of parameters for which this can occur is important 

for controlling chaos in possible applications (Haken, 1985). 

The theory of non-linear dynamics systems or non-linear control systems if control inputs are 

involved has been greatly advanced since the 19
th

 century. Today, non-linear control systems are 

used to describe a great variety of scientific and engineering phenomena ranging from social, life 

and physical sciences to engineering and technology. Stability of a dynamical system, with or 

without control and disturbance inputs is a fundamental requirement for its practical value, 

particular in most real- world (Merkin, 1997).  
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Narducci and Squicciarini.(1986). investigated the exact linear stability analysis of the plane-

wave Maxwell-Bloch equations for a ring laser, then they obtained the linearized Maxwell-Bloch 

equations and show how one can derive and exact characteristic equation that holds for arbitrary 

values. The Linear stability analysis and investigation of the periodic and chaotic self-pulsing 

behavior are presented for the Maxwell-Bloch equations of a bi stable model in contact with 

asqueezed vacuum field (Hassan et al, 2000). 

Puta, M.(2000). studied the stability problem of the Maxwell-Bloch equations from laser- matter 

dynamics with one control applied on the 1OX axis of the closed-Loop system. In 2003, 

Hacinliyan and Aybar investigated the non-linear stability and Hopf bifurcation of Maxwell-

Bloch equations and determined the full parameters space for chaotic behavior in laser models. 

In 2008, Thair and Azzawi studied the stability of the non-linear ordinary differential systems 

and they concluded that the stability conditions of Lorenz non-linear ordinary differential 

equations at its critical points by depending on the parameters.  

In 2009, Arnold investigated the discretization of Maxwell-Bloch dynamical systems and he 

determined  the stationary states of the cavity field which are subjected to stability analysis. The 

Maxwell-Bloch equations dynamical system consists of the Maxwell‟s equation for an 

electromagnetic field coupled to a quantum electronic system to represent a resonant or near 

resonant polarization induced in the propagation medium. Hacinliyan et al.(2010). studied the 

stability and Chaotic behavior of the approximate solutions of Maxwell-Bloch equations based 

on the LotkaVolterra system. In 2012, Nurul Huda Gazi studied the stability analysis and Hopf 

bifurcation of dynamical behavior of fish and mussel population in a fish farm. In 2015, Robert 

studied the linearization and stability analysis of non-linear ordinary differential equations and he 

analyzed the theory of non-linear ordinary differential equations. 
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CHAPTER THREE 

3. METHODOLOGY 

3.1 Study Period 

This study was conducted from September, 2018 to February, 2020. 

3.2 Study Design 

The study employed mixed design (analytical and experimental approaches). 

3.3 Source of Information 

The sources of information for the study were journals, published article and related information 

from internet. 

3.4 Mathematical Procedures 

This study was conducted based on the following procedures:- 

1. Checking whether the system is dissipative, conservative or neither; 

2. Determining the equilibrium point of the system; 

3. Linearizing Maxwell- Bloch equations about equilibrium points; 

4. Determining the local stability conditions of the system; 

5. Analyzing the global stability of the system; 

6. Determining Hopf bifurcation conditions of the system; 

7. Verifying the result using numerical simulation. 
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CHAPTER FOUR 

4. RESULT AND DISCUSSIONS 

4.1 Preliminaries 

Definition 1: Let f be any vector field of the system, then .
dD

fdD
dt

    

Where  . , ,f x y z is divergence of the vector field f . If D is decreasing exponentially, then the 

system is dissipative. If D is increasing exponentially, then the system is expansive and if D is 

constant, then the system is conservative (Strogatz, 1994). 

Definition 2: Consider non-linear system  
dx

f x
dt

 , where : n nf R R . A point 
nx R is an  

          equilibrium  point if      0
dx

x f x
dt

   (Khalil, 2003).  

Definition 3: A linear system of ordinary differential equation is given in the form 

        
, ( ) ndx

AX X t R
dt

  where the constant coefficient matrix A  or the Jacobian matrix is  nxn  

Square matrix and

i

n

dx

dt
dx

dt
dx

dt

 
 
 

  
 
  
 

  where 1,2,3,4,.....,i n  

Definition 4: For a linear system .
dx

AX
dt

 The stability of the system at equilibrium point can  

be determined by location of eigenvalues of Jacobian matrix A. This is expressed as follows; 

I. If the all eigenvalues of the Jacobian matrix have real parts less than zero, then the linear 

system is asymptotically stable and 

II. If at least one of the eigenvalue of Jacobian matrix has real part greater than zero, then 

the system is unstable (Khalil, 2003). 

Definition 5: Routh-Hurwitz Stability Criterion (Katsuhiko, 1970) 

The local stability of the equilibrium points of the system is applying the Routh‟s stability  

criterion for the given characteristic polynomial of the form  1

0 1 0n n

na m a m a  
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Where 0 0a  and 0na   , then the Routh-Hurwitz array or table is given as follows.
 

2

0 2 4 6

1
1 3 5 7

2
1 2 3 4

3
1 2 3 4

4
1 3 4

2

1 2

1

1

0

0

n

n

n

n

n

a a a am

a a a am

b b b bm

c c c cm

d d d dm

m e e

m f

m g



















   

 

Where 

1 2 0 3
1

1

1 4 0 5
2

1

1 6 0 7
3

1

a a a a
b

a

a a a a
b

a

a a a a
b

a










,  

1 3 1 2
1

1

1 5 1 3
2

1

1 7 1 4
3

1

b a a b
c

b

b a a b
c

b

b a a b
c

b










,    

1 2 1 2
1

1

1 3 1 3
2

1

c b b c
d

c

c b b c
d

c







 

The equilibrium point is stable if there is no sign change in the first column and the equilibrium 

point is unstable if there is sign change in the first column of the Routh  table above 

(Khalil, 2003). 

Definition 6: Let x
is an equilibrium point and a scalar function :v D R  is said to be: 

1. Positive definite function if   0v x   and   0v x   for all  x D x   

2. Negative definite function if   0v x   and   0v x   for all  x D x   

Definition 7: Leading Principal Minors of Matrix (Michalis, 2017) 

The leading principal minor of a matrix A of order k is the minor of order k obtained by deleting 

the last n-k rows and columns. 

Consider  3  3x matrix A  

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a
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All leading principal minors are: 

11 12

1 11 2

21 22

,
a a

D a D
a a

  and

11 12 13

3 21 22 23

31 32 33

a a a

D a a a

a a a

  

Definition 8: Let A be asymmetric nxn  matrix. Then A is positive definite matrix if and only if  

0kD   for all leading principal minors and A is negative definite matrix if and only if   

 1 0
k

kD   for all leading principal minors. Where 1 k n  (Michalis, 2017) 

Definition 9: Hessian Matrix (Michalis, 2017) 

Let  f x  be a scalar function in n  variables, then the Hessian Matrix of f is the matrix  

consisting  of all the second order partial derivatives of f . 

The Hessian matrix of f  at the point x  is the nxn  matrix such that 

 

2 2 2

2

1 1 2 1

2 2 2

2

2 1 2 2

2 2 2

2

1 2

n

n

n n n

f f f

x x x x x

f f f

H f x x x x x

f f f

x x x x x

   
 
     

   
 

      
 
 
   
 
     





   

 

Hessian matrix is used to determine whether a point on a surface of image is local maximum or 

local minimum. If Hessian matrix is a positive definite at the equilibrium point, then the function 

f  has local minimum at the equilibrium point.  

Theorem 4.1 Lyapunov Stability Theorem (Khalil, 2003) 

Let x x be an equilibrium point of non-linear system of   
dx

f x
dt

 , : nf D R . 

Suppose :v D R  be continuously differentiable function such that:- 

I.   0v x   

II.   0v x   for  all  x D x   

III. 
 

0
dv x

dt
  for all  x D x   (Domain D excluding  x

).Then x x is stable. 
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Theorem 4.2 (Globally asymptotically stable) 

Let x x be an equilibrium point of non-linear system of  
dx

f x
dt

  , : nf D R .  

Let :v D R  be continuously differentiable function such that:- 

1.   0v x   

2.   0v x   for all  x D x   (Domain D excluding  x
) 

3. 
 

0
dv x

dt
  for all  x D x   (Domain D excluding  x

) 

4. ( )v x is radially unbounded. Then x x is  globally  asymptotically stable. 

Theorem 4.3 Hopf Bifurcation 

Let 0J be a Jacobian matrix of a continuous parametric dynamical system evaluated at 

equilibrium point. Suppose that all eigenvalues of 0J  have a negative real parts except one 

conjugate non-zero purely imaginary pair i . A Hopf bifurcation arises when these two 

eigenvalues  cross the imaginary axis because of a variation of the system.   

4.2 Dissipative or Conservative of the System 

 Consider system (1.1) given by 

 

 

 

1

2 1

dx
k y x

dt

dy
r xz y

dt

dz
r z xy

dt
 

 

 

   

 

Let 

1

2 1

3 2

( )

( ) (4.1)

( 1 )

f k y x

f r xz y

f r z xy 

 

 

   

 

From the system  4.1 , 
     1 2 3

1 2

, , , , , ,
, ,

f x y z f x y z f x y z
k r r

x y z

  
     

     

 
     

 

1 2 3

1 2

, , , , , ,
. , ,

f x y z f x y z f x y z
f x y z

x y z

k r r
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1 2

1 2

. ( )

( )

dD
fdD k r r dD

dt

dD
k r r D

dt

     

   

 
 

 1 2

1
dD k r r dt

D
     

 

 
 

 

1 2

1 2

1 2

1 2

ln

1

ln

k r rD t c

k r r t c

dD k r r dt
D

D k r r t c

e e

D e

   

   

   

    





 

 

   

1 2

1 2

( )

0 0

k r r t c

k r r t c

D e xe

D D e D e

  

  



 
 

D is decreasing exponentially 

Therefore, the system  1.1   is dissipative. 

4.3 Equilibrium Points of System 

The dynamic of the system is characterized by the existence and number of equilibrium points as 

well as their types of stability. The mathematical model under consideration from system (1.1)

 

 

 

 

1

2 1

dx
k y x

dt

dy
r xz y

dt

dz
r z xy

dt
 

 

 

   

 

To find the equilibrium point, equate the system  1.1  with zero 

 

 

 

1

2

( ) 0 4.2

( ) 0 4.3

( 1 ) 0 4.4

k y x

r xz y

r z xy 

 

 

   

From equation  4.2

  0 0y x k      
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 4.5x y

From equation  4.3  

 10 0xz y r  

 
 0 4.6y xz 

From equation  4.4  

 21 0 0z xy r     
 

 1 4.7z xy    

Plugging equation  4.5 into equation  4.6  

 1 0x z  , 0x  or 1z  , 

If 0x  , then 0y  , substituting 0x   or 0y   into equation  4.7 it gives 1z   , then the 

first equilibrium point is  1 0,0, 1E    

If 1z  , then solve for x  and y  from equation  4.7
 

 0 1 , 0 1xy or xy       

 1 4.8xy 

 

Plugging equation  4.5 into equation  4.8  

2 1

1, 1

x

x y x y



    
 

Then the second equilibrium  point is  2 1, 1,1E     and the third equilibrium point is  

3 (1,1,1).E   

Therefore, we end up with three equilibrium points of the system as follows:- 

    1 20,0, 1 , 1, 1,1E E       and
  

 3 1,1,1E 
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4.4 Local Stability Analysis 

4.4.1 Linearizing Maxwell-Bloch Equations 

Linearize the system  1.1
 
at each equilibrium points and state the local stability conditions of  

the system. From system  4.1  

 

1

1

1

4.9

0

f
k

x

f
k

y

f

z


 













 

 

2
1

2
1

2
1

4.10

f
r z

x

f
r

y

f
r x

z







 








 

 

3
2

3
2

3
2

4.11

f
r y

x

f
r x

y

f
r

z






 




 




 



 

1 1 1

2 2 2

3 3 3

4.12

f f f

x y z

f f f
A

x y z

f f f

x y z

   
 
   

   
  

   
   
 
   

 



16 
 

Subsisting equations (4.9), (4.10) and (4.11) into equation (4.12)

 
1 1 1

2 2 2

0k k

A r z r r x

r y r x r 

 
 

  
    

 

The Jacobian matrix evaluated at the first equilibrium point 

 1 0,0, 1E  
 
is  1 0,0, 1J A E   

 

   1 1

2

0

1 0 4.13

0 0

k k

J r r

r



 
 

   
  

The characteristic equation for equation (4.13) is 0J mI 

 

 1 1

2

0

1 0 0

0 0

k m k

J mI r r m

r m



 

     

 

 

 
   11 1 1

2 2

1 00 1
0 0

0 0 0 0

rr m r r m
k m k

r m r m

     
    

   

   

3 2 2 2

1 2 2 1 2 1 1 2

3 2

1 2 2 1 2 1 1 2

0

0

m km rm r m kr m rr m kr m krr

m k r r m kr rr kr m krr

 

 

        

       

 3 2

1 2 3 0 4.14m a m a m a   

Where  
1 1 2

2 2 1 2 1

3 1 2

4.15

a k r r

a kr rr kr

a krr





  

  

 
 

The Routh array or Routh-Hurwitz table is 

 

23

1 32

1 2 31

10

3

1 0

0

0

a
m

a a
m

a a a
m

a
m

a



 

Applying Routh-Hurwitz stability criterion for characteristic equation  4.14  

1 0  

1 1 2 0a k r r    , since, 1 2, ,k r r  are positive parameters 
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     1 2 3 2 1 2 1 2 1 2 1 12 0a a a kr k r r rr r r k r k r          

3 1 2 0a krr     if  0 4.16   

As a result, the system  1.1 is locally asymptotically stable at the equilibrium point   

 1 0,0, 1E  
 
provided that condition  4.16 is satisfied. 

The Jacobian matrix evaluated at the second equilibrium point  2 1, 1,1E     is 

 2 1, 1,1J A E   
 

 1 1 1

2 2 2

0

4.17

k k

J r r r

r r r 

 
 

   
  

 

The characteristic equation for equation  4.17  is 0J mI   

 

1 1 1

2 2 2

0

0

k m k

J mI r r m r

r r r m 

 

     

 

 

 

  1 1 1 1 1 1

2 2 2 2 2 2

0 0
r m r r r r r m

k m k
r r m r r m r r   

     
    

   
 

   

3 2 2 2

1 2 2 1 2 1 2 1 2

3 2

1 2 2 1 2 1 2 1 2

2 0

2 0

m km rm r m kr m rr m rr m krr

m k r r m kr rr rr m krr

 

 

        

       

 3 2

1 2 3 0 4.18m b m b m b   

Where   
1 1 2

2 2 1 2 1 2

3 1 2

4.19

2

b k r r

b kr rr rr

b krr





  

  



The Routh array or Routh-Hurwitz table is  

 

23

1 32

1 2 31

10

3

1 0

0

0

b
m

b b
m

b b b
m

b
m

b
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Applying Routh-Hurwitz stability criterion for characteristic equation (4.18) 

 

1 0

 1 1 2 0b k r r    , since, 1 2, ,k r r  are positive parameters

    1 2 3 2 1 2 1 2 1 2 1 2 1 22 0bb b kr k r r rr r r r r krr             

    3 1 22 0b krr    if  0 4.20   

Therefore, the system  1.1 is locally asymptotically stable at the equilibrium point  

 2 1, 1,1E     provided that condition  4.20  is satisfied. 

The Jacobian matrix evaluated at the third equilibrium point  3 1,1,1E   is   3 1,1,1J A E 
 

 

 1 1 1

2 2 2

0

4.21

k k

J r r r

r r r 

 
 

  
    

The characteristic equation for equation  4.21  is 0J mI 

 

1 1 1

2 2 2

0

0

k m k

J mI r r m r

r r r m 

 

    

   

 

  1 1 1 1 1 1

2 2 2 2 2 2

0 0
r m r r r r r m

k m k
r r m r r m r r   

   
    

       
 

   

3 2 2 2

1 2 2 1 2 1 2 1 2

3 2

1 2 2 1 2 1 2 1 2

2 0

2 0

m km rm r m kr m rr m rr m krr

m k r r m kr rr rr m krr

 

 

        

       
 

 3 2

1 2 3 0 4.22m c m c m c   

Where  
1 1 2

2 2 1 2 1 2

3 1 2

4.23

2

c k r r

c kr rr rr

c krr





  

  


 

The Routh array or Routh-Hurwitz table is

 

 

23

1 32

1 2 31

10

3

1 0

0

0

c
m

c c
m

c c c
m

c
m

c
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 Applying Routh-Hurwitz stability criterion for characteristic equation (4.22) 

 1 0  

1 1 2 0c k r r    , since, 1 2, ,k r r  are positive parameters 

   1 2 3 2 1 2 1 2 1 2 1 2 1 22 0c c c kr k r r rr r r r r krr             

3 1 22 0c krr    if  0 4.24 
 

As a result, the system  1.1  is locally asymptotically stable at the equilibrium point  3 1,1,1E    

provided that condition  4.24  is satisfied. 

4.5 Global Stability Analysis of the System 

To analyze the global asymptotic stability of non-linear system  1.1
 

Let    
22 2

1

1 2

1 1 1
, , 1v x y z x y z

k r r
      be candidate Lyapunov function at equilibrium point 

 

 1 0,0, 1E   , then:-
 

1.    1 1, , 0,0, 1 0v x y z v        

2.  1 , ,v x y z >0 for all     , , , ,x y z D x y z     

Hence,  1 , ,v x y z is positive definite function. 

3.        1 1 1 1, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

 

      

 

1 2

2 2 2 2 2

2 2 2 2 2

2 12 2

2 2 2 1 1

2 2 2 2 2 2 2 2 2 4 4 4 2

2 2 2 2 1

zx dx y dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xy xyz xyz xy xy z z

x y z xy xyz xyz xy xy z z



  

     

     

 
  

         

             

            

   1 , , 2 , ,
dv

x y z g x y z
dt

   

Where   2 2 2 2 2, , 2 2 2 1g x y z x y z xy xyz xyz xy xy z z                   
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2

2

2

1

2

x

xy

xz

xx

g x y yz yz y y

g z z

g y y

g

  

  



     

     

 

   

2

2

2

1

2

y

yx

yz

yy

g y x xz xz x x

g z z

g x x

g

  

  



     

     

 

   

2 2

2

z

zx

zy

zz

g z xy xy

g y y

g x x

g

 





    

 

 


 

Construct Hessian matrix for  , ,g x y z  at the first equilibrium point  1 0,0, 1E    to check  

whether Hessian matrix is positive definite. 

xx xy xz

yx yy yz

zx zy zz

g g g

H g g g

g g g

 
 

  
 
 

 

2

2

2 1

1 2

2

z z y y

z z x x

y y x x

   

   

 

      
 

       
   

 

 1

2 2 0

2 2 0

0 0 2 0,0, 1E







  
 

   
    

 

All leading principal minors of Hessian matrix at  1 0,0, 1E    are :- 

1 2D  ,  2

2 2
4

2 2
D


 



 
   
 

 and  3

2 2 0

2 2 0 2 4

0 0 2

D



  

 

     

The leading principal minors are:  

 
 

1

2

2 0,

4 0,

D

D  

 

     
 

 3 2 4 0D       if    4,0 4.25    

The Hessian matrix is positive definite if condition  4.25 is satisfied. 

So that  1 , ,
dv

x y z
dt

 is negative definite function when condition  4.25  is satisfied. 
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2 2
2

1
, , , ,

1 2

1
4. lim , , lim 1

x y z x y z

x y
v x y z z

k r r


 

 
       

 
 

 1 , ,v x y z is radially unbounded. 

As a result, the equilibrium point  1 0,0, 1E  
 
is globally asymptotically stable by Lyapunov  

Stability theorem if condition  4.25   is satisfied. 

Suppose         
2 2 2

2

1 2

1 1 1
, , 1 1 1v x y z x y z

k r r
       be appropriate Lyapunov function at the  

Second equilibrium point  2 1, 1,1E    , then:- 

1.    2 2, , 1, 1,1 0v x y z v        

2.  2 , ,v x y z >0 for all     , , , ,x y z D x y z     

     
Hence,  2 , ,v x y z is positive definite function. 

3.        2 2 2 2, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

  

     

        

 

1 2

2 2 2

2 2 2

2 1 2 1 2 1

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 2 1

x y zdx dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xyz xy xy xz z x z

 

   

   

  
  

          

             

            

 

   2 , , 2 , ,
dv

x y z f x y z
dt

 

 

Where    2 2 2, , 2 1f x y z x y z xyz xyz xy xy xz z x z                 

2 1

1

1

2

x

xy

xz

xx

f x yz yz y z

f z z

f y y

f



 



     

   

  


 

2

1

2

y

yx

yz

yy

f y xz xz x x

f z z

f x x

f

 

 



    

   

 


 

2 2

1

2

z

zx

zy

zz

f z xy xy x

f y y

f x x

f
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Construct Hessian matrix for  , ,f x y z  at the second equilibrium point  2 1, 1,1E     to check  

whether Hessian matrix is positive definite. 

xx xy xz

yx yy yz

zx zy zz

f f f

H f f f

f f f

 
 

  
 
 

 

2 1 1

1 2

1 2

z z y y

z z x x

y y x x

  

  

 

     
 

     
           

 2

2 2

2 2 1

1 2 1, 1,1E





 

  
 

   
        

All leading principal minors of Hessian matrix at  2 1, 1,1E     are :- 

1 2D  ,  2

2 2
0

2 2
D


 


 and   
2

3

2 2

2 2 1 2 2 1

1 2

D



 

 

 

     

 

 

Since the leading principal minors 1 22 0, 0D D  
 
and   

2

3 2 2 1 0D     , then the  

Hessian matrix is neither positive nor negative definite or Hessian matrix is indefinite.  

So that it is impossible to identify the algebraic sign of  2 , ,
dv

x y z
dt

. 

 Therefore, It is impossible to deal with global stability condition of the equilibrium point  

 2 1, 1,1E     in the sense of  Lyapunov stability theorem. 

Let        
2 2 2

3

1 2

1 1 1
, , 1 1 1v x y z x y z

k r r
      be appropriate Lyapunov function at the third  

equilibrium point  3 1,1,1E  , then:- 

1.    3 3, , 1,1,1 0v x y z v      

2.  3 , ,v x y z >0 for all     , , , ,x y z D x y z     

             Hence,  3 , ,v x y z is positive definite function. 
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3.        3 3 3 3, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

     

1 2

2 1 2 1 2 1x y zdx dy dz

k dt r dt r dt

  
    

        

 

2 2 2

2 2 2

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 2 1

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xyz xy xy xz z x z

 

   

   

          

             

            

 

   3 , , 2 , ,
dv

x y z h x y z
dt

   

Where   2 2 2, , 2 1h x y z x y z xyz xyz xy xy xz z x z               
 

 

2 1

1

1

2

x

xy

xz

xx

h x yz yz y z

h z z

h y y

h

 

 



     

   

  



2

1

2

y

yx

yz

yy

h y xz xz x x

h z z

h x x

h

 

 



    

   

 



2 2

1

2

z

zx

zy

zz

h z xy xy x

h y y

h x x

h

 





     

  

 



Construct Hessian matrix for  , ,h x y z  at the third equilibrium point  3 1,1,1E   to check  

whether Hessian matrix is positive definite. 

xx xy xz

yx yy yz

zx zy zz

h h h

H h h h

h h h

 
 

  
 
 

 

2 1 1

1 2

1 2

z z y y

z z x x

y y x x

  

  

 

     
 

     
      

 3

2 2

2 2 1

1 2 1,1,1E
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All the leading principal minors of Hessian matrix at  3 1,1,1E  are:

 
1 2D  , 2

2 2
0

2 2
D


 


 and  
2

3

2 2

2 2 1 2 2 1

1 2

D



 

 



     



 

Since the leading principal minors 1 22 0, 0D D    and  
2

3 2 2 1 0D    
 
, then the  

Hessian matrix is indefinite. 
 

So that it impossible to identify the algebraic sign of   3 , ,
dv

x y z
dt

.  

As a result, it is impossible to deal with global stability condition of the equilibrium point 

 3 1,1,1E    in the sense of Lyapunov stability theorem.  

4.6  Hopf Bifurcation Analysis of the System 

Suppose that the system  1.1  has critical point for some parameter 0   has a simple pair of  

pure imaginary  eigenvalues and no other eigenvalues with zero real part. Furthermore, Let

Re 0
d

dm

 
 

 
, then the Hopf bifurcation occurs at 0  . 

Let the characteristic equation  4.14 has pure imaginary eigenvalues  0m i     at 0   

     

 

3 2

1 2 3

3 2

1 2 3

3 2

2 1 3

0

0

0

m a m a m a

i a i a i a

a i a a

  

  

   

   

    

 

Equating the real and imaginary parts with zeros yields. 

 

 

3

2

2

1 3

0 4.26

0 4.27

a

a a

 



  

  

From equation  4.26 Since 0 
 

 2

2 4.28a 

From equation  4.27  

 2 3

1

4.29
a

a
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Equating equations  4.28 and  4.29  

 1 2 3 0 4.30a a a 

Substituting equation  4.15 into equation  4.30 to compute for parameter   yield
 

  1 2 2 1 2 1 1 2 0k r r kr rr kr krr      
 

   2 2 2 2 2 2

1 1 2 1 2 2 1 2 1 22k r kr k r krr r r kr rr       

 
 2 1 2

1

4.31
r k r r

kr


 


 

Plugging equation  4.31 into equation  4.15

 

 

 

 

1 1 2

2

2 2

2 1 2

3 1 2

1

2

2 1 2

4.32

a k r r

a r

r k r r
a krr

kr

r k r r

  

 

  
   

 

   

 From equation  4.28    

2 2

2

2 ,

r

ir





 

 
 

Which contradicts the fact that 0. 

 
Substituting  equation  4.32 into equation  4.14 yields. 

   

   

    

3 2 2 2

1 2 2 2 1 2

2 2

1 2 2

1 2 2 2

0

0

0

m k r r m r m r k r r

m k r r m r

m k r r m r m r

       

      

       

 

 1 1 2m k r r    or 2 2

2m r  

2,3 2m r   

Since 2,3m  are not pure imaginary eigenvalues, then one of Hopf bifurcation condition is not  

satisfied. 

As a result, the system  1.1  does not undergo Hopf bifurcation at 
 2 1 2

1

r k r r

kr


 
 .  
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Let the characteristic equation  4.18  has pure imaginary eigenvalues  0m i     at 0   

3 2

1 2 3 0m b m b m b   
 

     

 

3 2

1 2 3

3 2

2 1 3

0

0

i b i b i b

b i b b

  

  

   

    
 

Equating the real and imaginary parts with zeros yields. 

 

 

3

2

2

1 3

0 4.33

0 4.34

b

b b

 



  

  

From equation  4.33 Since 0 
 

 2

2 4.35b 

From equation  4.34  

 2 3

1

4.36
b

b
 

 Equating equations  4.35  and   4.36  

 1 2 3 0 4.37bb b 

Plugging equation  4.19 into equation  4.37  to calculate for   

  1 2 2 1 2 1 2 1 22 0k r r kr rr rr krr        

    

2 2 2 2 2 2

2 1 2 2 2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 1 2

2 2 0

0

k r krr kr r r rr krr r r rr krr

r k r k r r rr r r k

   



        

      
 

  
 

 1 1 2

1 1 2

4.38
k r k r r

r r r k


   


 

  

Substituting equation  4.38 into equation  4.19

 

 
 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

2
4.39

2

b k r r

kr k r
b

r r k

kr k r k r r
b

r r k
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From equation  4.35

 
 2 2 1

1 2

2kr k r

r r k


 


 

 
 

 
 

2 1

1 2

2kr k r

k r r



 

 
 if  1 2 4.40k r r 

 

Substituting equation  4.39  into equation  4.18  

         3 2

1 2 1 2 1 2 2 1 2 1 1 22 2 0r r k m r r k k r r m kr k r m kr k r k r r             

 

     2

1 2 1 2 2 12 0m k r r r r k m kr k r              

 
 1 1 2m k r r   

 
 or 

 2 2 1

1 2

2kr k r
m

r r k




 
 

 
 2 1

2,3

1 2

2kr k r
m

r r k


 

 
 

Since 1 2k r r   

 
 

 
 

2 1

2,3

1 2

2 1

1 2

2

2

kr k r
m

k r r

kr k r
i

k r r

 
 

 




 

 

Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is satisfied if  

condition  4.40  is satisfied. 

Next compute the
dm

d
 from the characteristic equation of the Jacobian matrix  

for equation  4.18  

 2 21 2 3
1 23 2 0

dm db db db
m b m b m m

d d d d   

 
      

 
 

 

21 2 3

2

1 2

4.41
3 2

db db db
m m

dm d d d

d m b m b

  



 
   
 

 

 



28 
 

Determine the derivatives of equation  4.19  with respect to 

 

 

1

2
1 2

3
1 2

0

4.42

2

db

d

db
rr

d

db
krr

d













Plugging equation   4.42 into equation   4.41  yield.

 

 

   
 

1 2 1 2

2

1 2

1 2

1 2

1 2 1 2

2

1 2

1 2 1 2

2

3 2

3 2

2

3 2

2

dm rr m krr

d m b m b

d dm m b m b

dm d krr rr m

i b i b

krr r r i







 





 
  

  

   
    

   

  
  
 
 

 

 

 
 

 
 

2

2 1 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2

2 1 2 1

2 2 2 2

1 2 1 2

3 2 2

2 2

2 3 3 4

4 4

b b i krr rr i

krr rr i krr rr i

k b k b b b k i

r r k rr k

  

 

   

 

   
  

  

   
 

 

 

 
 

 

 

2 2

2 1 2 1

2 2 2

1 2 1 2 2

2 3 4 2
Re 0

4 4

k b k b b k bd

dm rr k rr k b

 



   
   

  

 

Since Re 0
d

dm

 
 

 
, then second condition of Hopf bifurcation is satisfied if condition  

 4.40 is satisfied. 

As a result, the system  1.1 under goes Hopf bifurcation at
  

 
1 1 2

1 1 2

k r k r r

r r r k


   


 
 

when condition  4.40  is satisfied. 
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Suppose the characteristic equation  4.22 has pure imaginary eigenvalues   0m i     at  

 0   

3 2

1 2 3 0m c m c m c     

 

     

 

3 2

1 2 3

3 2

2 1 3

0

0

i c i c i c

c i c c

  

  

   

    
 

Equating the real and imaginary parts with zeros yields. 

 

 

3

2

2

1 3

0 4.43

0 4.44

c

c c

 



  

  

From equation  4.43
 
Since 0   

 2

2 4.45c 

From equation  4.44  

 2 3

1

4.46
c

c
 

 

Equating equations  4.45  and  4.46

 
 1 2 3 0 4.47c c c 

Plugging equation  4.23
 
into equation  4.47  to compute for 

   1 2 2 1 2 1 2 1 22 0k r r kr rr rr krr      

 
    

2 2 2 2 2 2

2 1 2 2 2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 1 2

2 2 0

0

k r krr kr r r rr krr r r rr krr

r k r k r r rr r r k

   



        

      
 

  
 

 1 1 2

1 1 2

4.48
k r k r r

r r r k


   


 

Substituting equation  4.48 into equation  4.23  

 
 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

2
4.49

2

c k r r

kr k r
c

r r k

kr k r k r r
c

r r k
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From equation  4.44  

 2 2 1

1 2

2kr k r

r r k


 


 

 

 
 

2 1

1 2

2kr k r

k r r



 

 
if  1 2 4.50k r r   

Substituting equation  4.49  into equation  4.22  

         3 2

1 2 1 2 1 2 2 1 2 1 1 22 2 0r r k m r r k k r r m kr k r m kr k r k r r             

 

     2

1 2 1 2 2 12 0m k r r r r k m kr k r              

 1 1 2m k r r    or
 2 2 1

1 2

2kr k r
m

r r k




 
 

 2 1

2,3

1 2

2kr k r
m

r r k


 

   

Since 1 2k r r   

 
 

 
 

2 1

2,3

1 2

2 1

1 2

2

2

kr k r
m

k r r

kr k r
i

k r r

 
 

 




 

 

Since 2,3m  are pure imaginary eigenvalues, then one of  Hopf bifurcation condition is satisfied if  

condition  4.50  is satisfied. 

Next compute the
dm

d
 from the characteristic equation of the Jacobian matrix 

for equation  4.22  

 2 21 2 3
1 23 2 0

dm dc dc dc
m c m c m m

d d d d   

 
      

 
 

 

21 2 3

2

1 2

4.51
3 2

dc dc dc
m m

dm d d d

d m c m c
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Determine the derivatives of equation  4.23  with respect to 

 

 

1

2
1 2

3
1 2

0

4.52

2

dc

d

dc
rr

d

dc
krr

d













Substituting  equation  4.52 into equation  4.51  yield.

 

   
 

1 2 1 2

2

1 2

1 2

1 2

1 2 1 2

2

1 2

1 2 1 2

2

3 2

3 2

2

3 2

2

dm rr m krr

d m c m c

d dm m c m c

dm d krr rr m

i c i c

krr r r i







 





 
  

  

   
    

   

  
  
 
 

 

 
 

 
 

2

2 1 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2

2 1 2 1

2 2 2 2

1 2 1 2

3 2 2

2 2

2 3 3 4

4 4

c c i krr rr i

krr rr i krr rr i

k c k c c c k i

r r k rr k

  

 

   

 

   
  

  

   
 

 

 

 
 

 

 

2 2

2 1 2 1

2 2 2

1 2 1 2 2

2 3 4 2
Re 0

4 4

k c k c c k cd

dm rr k rr k c

 



   
   

  

 

Since Re 0
d

dm

 
 

 
, then it provided that second condition of Hopf bifurcation is satisfied if  

condition  4.50  is satisfied.  

Therefore, the system  1.1 undergoes Hopf bifurcation at
  

 
1 1 2

1 1 2

k r k r r

r r r k


   


 
 

when condition  4.50  is satisfied. 

 

 



32 
 

4.7 Numerical Examples 

Example 1. Consider the parameters values with 1 2 1, 4, 2r r k     , then the system  1.1   

becomes   

 

4( )

( )

(3 2 )

dx
y x

dt

dy
xz y

dt

dz
z xy

dt

 

 

  

 

Dissipative or Conservative of the System   

Let 

1

2

3

4( )

( )

(3 )

f y x

f xz y

f z xy

 

 

  

 

1 2 34 , 1 , 1
f f f

x y z

  
     

  
 

The divergence of the vector field   1 2 3
1 2. , , ( ) 6

f f f
f x y z k r r

x y z

  
         

  
 

1 2. ( )

6

dD
fdD k r r dD

dt

dD
D

dt

     

 

 

 

1
6dD dt

D
   

1
6dD dt

D
    

ln 6

6

ln 6

D t c

t c

D t c

e e

D e

 

 

  



  

 

6

6

0 0

t c

t c

D e xe

D D e D e







 
 

D is decreasing exponentially  

Therefore, the system  1.1   is dissipative.  
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Equilibrium Points of System 

 We end up with three equilibrium points of the system as follows:- 

   

   

   

1

2

3

0,0, 1 0,0,3

1, 1,1 1, 1,1

1,1,1 1,1,1

E

E

E

  

     

 

 

Local Stability Analysis 

 Linearizing Maxwell-Bloch Equations  

Linearize the system  1.1  at each equilibrium points and state the local stability conditions of  

the system. Consider the above system  

1

1

1

4

4

0

f

x

f

y

f

z


 











          

2

2

2

1

f
z

x

f

y

f
x

z







 






             

3

3

3

2

2

1

f
y

x

f
x

y

f

z


 




 




 



 

Jacobian matrix 

1 1 1

2 2 2

3 3 3

f f f

x y z

f f f
A

x y z

f f f

x y z

   
 
   

   
  

   
   
 
   

4 4 0

1

2 2 1

z x

y x

 
 

  
    

 

I.  The Jacobian matrix evaluated at the first equilibrium point

 

 1 0,0,3E   is  1 0,0,3J A E 

 

4 4 0

3 1 0

0 0 1

J
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The characteristic equation of the Jacobian  matrix at  1 0,0,3E   is 0J mI   

4 4 0

3 1 0 0

0 0 1

m

J mI m

m

 

    

 

 

 
1 0 3 0 3 1

4 4 0 0
0 1 0 1 0 0

m m
m

m m

   
    

   
 

3 26 3 8 0m m m      where    1 2 36, 3, 8a a a      

Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at 

 1 0,0,3E   

  

3

2

1

0

1 3 0

6 8 0

5
0

3

8

m

m

m

m









 

From the above table, Since there is sign changes in the first column of Routh- Hurwitz table,   

equilibrium point one is unstable. 

II. The Jacobian matrix evaluated at the second equilibrium point  

   2 1, 1,1E   
 
is  2 1, 1,1J A E     

4 4 0

1 1 1

2 2 1

J

 
 

   
    

The characteristic equation of the Jacobian matrix at  2 1, 1,1E      is  0J mI   

4 4 0

1 1 1 0

2 2 1

m

J mI m

m

 

     

 

 

 
1 1 1 1 1 1

4 4 0 0
2 1 2 1 2 2

m m
m

m m

     
    

   
 

3 26 7 16 0m m m     where 1 2 36, 7, 16b b b    
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Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at

 2 1, 1,1E     

  

3

2

1

0

1 7 0

6 16 0

13
0

3

16

m

m

m

m

 

From RH table, Since there is no sign changes in the first column of Routh- Hurwitz table,   

equilibrium point two is locally asymptotically stable . 

III. The Jacobian matrix evaluated at the third equilibrium point  3 1,1,1E   is  3 1,1,1J A E 

 

4 4 0

1 1 1

2 2 1

J

 
 

  
    

 

The characteristic equation of the Jacobian matrix at  3 1,1,1E   is 0J mI   

4 4 0

1 1 1 0

2 2 1

m

J mI m

m

 

    

   

 

 

 
1 1 1 1 1 1

4 4 0 0
2 1 2 1 2 2

m m
m

m m

   
    

       
 

3 26 7 16 0m m m    where 1 2 36, 7, 16c c c  
 

Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at

 
 3 1,1,1E 

 
3

2

1

0

1 7 0

6 16 0

13
0

3

16

m

m

m

m  

From the above table, Since there is no sign changes in the first column of Routh -Hurwitz table, 

an equilibrium point three is locally asymptotically stable.  
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MATLAB Simulation 

The following diagrams indicate MATLAB simulation that shows stability of the equilibrium 

point. 

 

Figure 1: The graph of system versus time about equilibrium point. 

 

Figure 2: Phase Portrait of the system about the equilibrium point. 
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m
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z(t)
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Discussion: Figure 1 indicates that the graph of the system versus time converges to the 

equilibrium point. Figure 2 also revealed this fact because the trajectory of the system converges 

to equilibrium point which in one ways shows the stability of the equilibrium point.  

Global Stability Analysis of the System 

Let    
22 2

1

1
, , 3

4
v x y z x y z      be candidate Lyapunov function at equilibrium point    

 1 0,0,3E  , then:-  

1.    1 1, , 0,0,3 0v x y z v      

2.  1 , , 0v x y z   for all     , , , ,x y z D x y z     

Hence,  1 , ,v x y z is positive definite function. 

3.        1 1 1 1, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

 

      

 

1 2

2 2 2

2 12 2

2 2 2 1 1

2 7 6 9

zx dx y dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xyz xy z



  

 
  

         

      

 

   1 , , 2 , ,
dv

x y z g x y z
dt

   

Where   2 2 2, , 7 6 9g x y z x y z xyz xy z        

2 7

7

2

x

xy

xz

xx

g x yz y

g z

g y

g

  

 




         

2 7

7

2

y

yx

yz

yy

g y xz x

g z

g x

g

  

 




      

2 6

2

z

zx

zy

zz

g z xy

g y

g x

g

  






 

Construct Hessian matrix for  , ,g x y z  at the first equilibrium point  1 0,0,3E   to check  

whether Hessian matrix is positive definite. 

xx xy xz

yx yy yz

zx zy zz

g g g

H g g g

g g g
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2 7

7 2

2

z y

z x

y x

 
 

  
 
   

 1

2 4 0

4 2 0

0 0 2 0,0,3E

 
 

  
     

All the leading principal minors of Hessian matrix at  1 0,0,3E  are:-

  1 2D  ,  2

2 4
12

4 2
D


  


 and  
3

2 4 0

4 2 0 24

0 0 2

D



     

Since the leading principal minors 1 22 0, 12 0D D    
 
and  3 24 0D    , then the Hessian 

matrix is indefinite. So that it is impossible to identify the algebraic sign of  1 , ,
dv

x y z
dt

.  

As a result, It is impossible to deal with global stability condition of the equilibrium point  

 1 0,0,3E    in the sense of Lyapunov stability theorem.  

Suppose        
2 2 2

2

1
, , 1 1 1

4
v x y z x y z       be appropriate lyapunov function at the  

second equilibrium  point  2 1, 1,1E    , then:- 

1.    2 2, , 1, 1,1 0v x y z v        

2.  2 , ,v x y z >0 for all     , , , ,x y z D x y z     

 Hence,  2 , ,v x y z is positive definite function. 

3.        2 2 2 2, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

  

     

        

 

1 2

2 2 2

2 2 2

2 1 2 1 2 1

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 3 4 3

x y zdx dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xy xz x z
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   2 , , 2 , ,
dv

x y z f x y z
dt

   

Where    2 2 2, , 3 4 3f x y z x y z xyz xy xz x z          

2 3 1

3

1

2

x

xy

xz

xx

f x yz y z

f z

f y

f

    

 

 


             

2 3

3

2

y

yx

yz

yy

f y xz x

f z

f x

f

  

 




                

2 4

1

2

z

zx

zy

zz

f z xy x

f y

f x

f

   

 





 

Construct Hessian matrix for  , ,f x y z  at the second equilibrium point  2 1, 1,1E     to check  

whether Hessian matrix is positive definite. 

 

xx xy xz

yx yy yz

zx zy zz

f f f

H f f f

f f f

 
 

  
 
 

 

2 3 1

3 2

1 2

z y

z x

y x

  
 

  
    

 2

2 2 2

2 2 1

2 1 2 1, 1,1E

  
 

   
      

 

All leading principal minors of Hessian matrix at  2 1, 1,1E    are:- 

1 2D  ,  2

2 2
0

2 2
D


 


 and 
3

2 2 2

2 2 1 18

2 2

D

 

   

 

 

Since the leading principal minors 1 22 0, 0D D  
 
and 3 18 0D    , then the Hessian matrix 

is  neither positive nor negative definite or Hessian matrix is indefinite.  

So that it is impossible to identify the algebraic sign of  2 , ,
dv

x y z
dt

.  

Therefore, It is impossible to deal with global stability condition of the equilibrium point 

 2 1, 1,1E      in the sense of Lyapunov stability theorem.  
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Let        
2 2 2

3

1
, , 1 1 1

4
v x y z x y z       be appropriate Lyapunov function at the third  

equilibrium point  3 1,1,1E  , then:- 

1.    3 3, , 1,1,1 0v x y z v      

2.  3 , ,v x y z >0  for all     , , , ,x y z D x y z     

Hence,  3 , ,v x y z is positive definite function. 

3.        3 3 3 3, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

     

1 2

2 1 2 1 2 1x y zdx dy dz

k dt r dt r dt

  
    

        

 

2 2 2

2 2 2

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 3 4 3

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xy xz x z

 

   

          

             

        

   3 , , 2 , ,
dv

x y z h x y z
dt

   

Where    2 2 2, , 3 4 3h x y z x y z xyz xy xz x z        
 

 

2 3 1

3

1

2

x

xy

xz

xx

h x yz y z

h z

h y

h

    

 

 


          

2 3

3

2

y

yx

yz

yy

h y xz x

h z

h x

h

  

 




            

2 4

1

2

z

zx

zy

zz

h z xy x

h y

h x

h

   

 




 

Construct Hessian matrix for  , ,h x y z  at the third equilibrium point  3 1,1,1E   to check  

whether Hessian matrix is positive definite or indefinite. 

xx xy xz

yx yy yz

zx zy zz

h h h

H h h h

h h h

 
 

  
 
 

 

2 3 1

3 2

1 2

z y

z x

y x

  
 

  
    



41 
 

 3

2 2 2

2 2 1

2 1 2 1,1,1E

 
 

  
   

 

All the leading principal minors of Hessian matrix  at  3 1,1,1E  are:- 

1 2D  ,  2

2 2
0

2 2
D


 


 and   
3

2 2 2

2 2 1 18

2 1 2

D



    

Since the leading principal minors 1 22 0, 0D D    and  3 18 0D    , then the Hessian  

matrix is indefinite.  

So that it impossible to identify the algebraic sign of  3 , ,
dv

x y z
dt

.  

Therefore, It is impossible to deal with global stability condition of the equilibrium point 

 3 1,1,1E    in the sense of Lyapunov stability theorem.  

Hopf Bifurcation Analysis of the System 

I. Suppose the characteristic equation at  1 0,0,3E   has pure imaginary  

eigenvalues   0m i     at 0  , then 3 2

1 2 3 0m a m a m a     

Where 
 2 1 2

1

3

2

r k r r

kr


 
   

 

 

1 1 2

2

2 2

2

3 2 1 2

6

1

6

a k r r

a r

a r k r r

   

   

     

 
 

2 2

2

1

r

i





 

 
 

Which contradicts the fact that 0   

 

  

3 2

2

6 6 0

6 1 0

m m m

m m

   

  

 1 6m    or  2,3 1m    
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Since 2,3m  are not pure imaginary  eigenvalues, then one of  Hopf bifurcation condition is not   

satisfied.  

As a result, the system  1.1  does not undergo Hopf bifurcation at 
3

2
  .  

II. Suppose the characteristic equation of the Jacobian  matrix at  2 1, 1,1E     has pure  

imaginary eigenvalues  0m i     at 0  , then 3 2

1 2 3 0m b m b m b     

Where  

  
 

1 1 2

1 1 2

15
k r k r r

r r r k


   
 

   

 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

6

2
20

2
120

b k r r

kr k r
b

r r k

kr k r k r r
b

r r k

   

 
 

 

   
 

 
 

 

 2 2 1

1 2

2
20

20

kr k r

r r k




 
 

 

 

 

   

3 2

2

1 2,3

6 20 120 0

6 20 0

6 , 20

m m m

m m

m m i

   

  

   

 

Since 2,3m  are pure imaginary eigenvalues, then  one of Hopf bifurcation condition is satisfied at 

15  . 

Next compute the Re
d

dm

 
 
 

from the characteristic equation of the Jacobian matrix at  

 2 1, 1,1E     

 

 
2 1

2

1 2 2

4 2 20
Re 0

214

b k bd

dm rr k b

  
   

 

 

Since Re 0
d

dm

 
 

 
, then second condition  of  Hopf bifurcation is satisfied .  

As a result, the system  1.1 under goes Hopf bifurcation  at 15  .
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III. Let the characteristic equation of the Jacobian matrix at  3 1,1,1E   has pure imaginary 

 
 eigenvalues   0m i     at 0  , then 3 2

1 2 3 0m c m c m c   

 

Where  

  
 

1 1 2

1 1 2

15
k r k r r

r r r k


   
 

   

 

 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

6

2
20

2
120

c k r r

kr k r
c

r r k

kr k r k r r
c

r r k

   

 
 

 

   
 

 
 

 

 2 2 1

1 2

2
20

20

kr k r

r r k




 
 

 

 

 

  

3 2

2

1 2,3

6 20 120 0

6 20 0

6 , 20

m m m

m m

m m i

   

  

   

 

Since 2,3m  are pure imaginary eigenvalues, then the condition one of the Hopf bifurcation is  

satisfied at 15  . 

Next compute the Re
d

dm

 
 
 

from the characteristic equation of the Jacobian matrix at    

 3 1,1,1E   

 

 
2 1

2

1 2 2

4 2 20
Re 0

214

c k cd

dm rr k c

  
   

 

 

Since Re 0
d

dm

 
 

 
, then second  condition of Hopf bifurcation is satisfied .  

Therefore, the system  1.1 undergoes Hopf bifurcation at 15  .
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Example 2. Consider parameters values with 1 20.4, 0.2 , 0.1, 0.1k r r       , then the 

system  1.1  becomes  

0.4( )

0.2( )

0.1(0.9 0.1 )

dx
y x

dt

dy
xz y

dt

dz
z xy

dt

 

 

  
 

Dissipative or Conservative of the System

 
Let 

1

2

3

0.4( )

0.2( )

0.1(0.9 0.1 )

f y x

f xz y

f z xy

 

 

  

 

1 2 30.4 , 0.2 , 0.1
f f f

x y z

  
     

  
 

The divergence of the vector field   1 2 3. , , 0.7
f f f

f x y z
x y z

  
     

  
 

. 0.7

0.7

0.7

dD
fdD dD

dt

dD
D

dt

dD
dt

D

   

 

 

 

 

0.7

1
0.7

ln 0.7

t c

dD dt
D

D t c

D e 

 

  



 
 

 0.7

0 0

t cD D e D e   

D is decreasing exponentially  

Therefore, the system  1.1   is dissipative. 
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Equilibrium Points of System 

 We end up with three equilibrium points of the system as follows:- 

   

   

   

1

2

3

0,0, 1 0,0,0.9

1, 1,1 1, 1,1

1,1,1 1,1,1

E

E

E

  

     

 

 

Local Stability Analysis 

Linearize the system  1.1 at each equilibrium points and state the local stability conditions of the 

system. Consider the above system 

1

1

1

0.4

0.4

0

f

x

f

y

f

z


 













2

2

2

0.2

0.2

0.2

f
z

x

f

y

f
x

z







 








3

3

3

0.01

0.01

0.1

f
y

x

f
x

y

f

z












 



 

Jacobian matrix 

1 1 1

2 2 2

3 3 3

f f f

x y z

f f f
A

x y z

f f f

x y z

   
 
   

   
  

   
   
 
   

0.4 0.4 0

0.2 0.2 0.2

0.01 0.01 0.1

z x

y x

 
 

  
  

 

I.The Jacobian matrix evaluated at the first equilibrium point 

 1 0,0,0.9E  is  1 0,0,0.9J A E 
 

 

0.4 0.4 0

0.18 0.2 0

0 0 0.1

J

 
 

  
    

The characteristic equation of the Jacobian matrix at equilibrium point 1E  is 0J mI 

 0.4 0.4 0

0.18 0.2 0 0

0 0 0.1

m

J mI m

m

 

    

 

 

3 20.7 0.068 0.0008 0m m m     where 1 2 30.7, 0.068, 0.0008a a a    
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Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at 

 1 0,0,0.9E   

  

3

2

1

0

1 0.068 0

0.7 0.0008 0

0.0468
0

0.7

0.0008

m

m

m

m

 

From the above table, Since there is no sign changes in the first column of Routh- Hurwitz table,  

equilibrium point one is locally asymptotically stable.  

II. The Jacobian matrix evaluated at the second equilibrium point  

 
 2 1, 1,1E      is  2 1, 1,1J A E     

0.4 0.4 0

0.2 0.2 0.2

0.01 0.01 0.1

J

 
 

   
    

 

The characteristic equation of the Jacobian matrix at equilibrium point 2E  is 0J mI 

 0.4 0.4 0

0.2 0.2 0.2 0

0.01 0.01 0.1

m

J mI m

m

 

     

   
 

3 20.7 0.058 0.0016 0m m m     where 1 2 30.7, 0.058, 0.0016b b b   

 Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at 

 2 1, 1,1E     

  

3

2

1

0

1 0.058 0

0.7 0.0016 0

0.0422
0

0.7

0.0016

m

m

m

m





 

From RH table, Since there is sign changes in the first column of Routh- Hurwitz table,  

equilibrium point two is unstable. 
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III. The Jacobian matrix evaluated at the third equilibrium point  3 1,1,1E 
 
is  3 1,1,1J A E   

0.4 0.4 0

0.2 0.2 0.2

0.01 0.01 0.1

J

 
 

  
  

 

The characteristic equation of the Jacobian matrix at equilibrium point 3E  is 0J mI   

 

0.4 0.4 0

0.2 0.2 0.2 0

0.01 0.01 0.1

m

J mI m

m

 

    

 
 

3 20.7 0.058 0.0016 0m m m     where 1 2 30.7, 0.058, 0.0016c c c     

Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix at

 3 1,1,1E   

  

3

2

1

0

1 0.058 0

0.7 0.0016 0

0.0422
0

0.7

0.0016

m

m

m

m





 

From the above table, Since there is sign changes in the first column of Routh- Hurwitz table,  

equilibrium point three is unstable. 

Global Stability Analysis of the System 

Let  
 

22 2

1

0.9
, ,

0.4 0.2 0.1

zx y
v x y z


    be candidate lyapunov function at equilibrium point      

 1 0,0,0.9E  , then:-  

1.    1 1, , 0,0,0.9 0v x y z v      

2.  1 , , 0v x y z 
 
for all     , , , ,x y z D x y z     

Hence,  1 , ,v x y z is positive definite function. 
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3.        1 1 1 1, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

 

      

 

1 2

2 2 2

2 12 2

2 2 2 1 1

2 1.1 0.91 1.8 0.81

zx dx y dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xyz xy z



  

 
  

         

      

 

   1 , , 2 , ,
dv

x y z g x y z
dt

   

Where   2 2 2, , 1.1 0.91 1.8 0.81g x y z x y z xyz xy z        

2 1.1 0.91

1.1 0.91

1.1

2

x

xy

xz

xx

g x yz y

g z

g y

g

  

  

 


 

2 1.1 0.91

1.1 0.91

1.1

2

y

yx

yz

yy

g y xz x

g z

g x

g

  

  

 


 

2 1.1 1.8

1.1

1.1

2

z

zx

zy

zz

g z xy

g y

g x

g

  

 

 



 

Construct Hessian matrix for  , ,g x y z  at the first equilibrium point  1 0,0,0.9E   to check   

whether Hessian matrix is positive definite. 

xx xy xz

yx yy yz

zx zy zz

g g g

H g g g

g g g

 
 

  
 
 

       

 

 1

2 1.1 0.91 1.1

1.1 0.91 2 1.1

1.1 1.1 2

2 1.9 0

1.9 2 0

0 0 2 0,0,0.9

z y

z x

y x

E

   
 

    
   

 
 

  
   

 

All leading principal minors of Hessian matrix at  1 0,0,0.9E  are:- 

1 2D   ,  2

2 1.9
0.39

1.9 2
D


 


 and 
3

2 1.9 0

1.9 2 0 0.78

0 0 2

D



    

Since the leading principal minors 1 22 0, 0.39 0D D   
 
and 3 0.78 0D   , then the Hessian 

matrix is positive definite.  
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If the Hessian matrix is positive definite, then  1 , ,
dv

x y z
dt

 is negative definite function.  

 
 

 

 
22 2

1
, , , ,

0.9
4. lim , , lim

0.4 0.2 0.1x y z x y z

zx y
v x y z

 

 
     

  

 

 1 , ,v x y z is radially unbounded.  

As a result, the equilibrium point  1 0,0,0.9E   is globally asymptotically stable by Lyapunov 

stability theorem. 

Let  
     

2 2 2

2

1 1 1
, ,

0.4 0.2 0.1

x y z
v x y z

  
   be appropriate Lyapunov function at the second  

equilibrium  point  2 1, 1,1E    , then:- 

1.    2 2, , 1, 1,1 0v x y z v        

2.  2 , , 0v x y z   for all     , , , ,x y z D x y z     

Hence,  2 , ,v x y z is positive definite function. 

3.        2 2 2 2, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

  

     

        

 

1 2

2 2 2

2 2 2

2 1 2 1 2 1

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 1.1 0.9 1.9 0.9

x y zdx dy dz

k dt r dt r dt

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xy xz x z

 

   

  
  

          

             

        

 

   2 , , 2 , ,
dv

x y z f x y z
dt

 

 

Where   2 2 2, , 1.1 0.9 1.9 0.9f x y z x y z xyz xy xz x z          

2 1.1 0.9 1

1.1 0.9

1.1 1

2

x

xy

xz

xx

f x yz y z

f z

f y

f

    

  

  


   

2 1.1 0.9

1.1 0.9

1.1

2

y

yx

yz

yy

f y xz x

f z

f x

f

  

  

 


 

2 1.1 1.9

1.1 1

1.1

2

z

zx

zy

zz

f z xy x

f y

f x

f
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Construct Hessian matrix for  , ,f x y z  at the second equilibrium point  2 1, 1,1E     to check  

whether Hessian matrix is positive definite or negative definite. 

xx xy xz

yx yy yz

zx zy zz

f f f

H f f f

f f f

 
 

  
 
 

 

2 1.1 0.9 1.1 1

1.1 0.9 2 1.1

1.1 1 1.1 2

z y

z x

y x

    
 

    
      

 2

2 2 0.1

2 2 1.1

0.1 1.1 2 1, 1,1E

 
 

  
     

 

All leading principal minors of Hessian matrix at  2 1, 1,1E    are:- 

1 2D   , 2

2 2
0

2 2
D


 


 and 
3

2 2 0.1

2 2 1.1 2.88

0.1 1.1 2

D



     

Since the leading principal minors 1 22 0, 0D D  
 
and 3 2.88 0D    , then the Hessian  

matrix is neither positive nor negative definite. 

 As a result, It is impossible to deal with global stability condition of the equilibrium point 

 2 1, 1,1E      in the sense of Lyapunov stability theorem.  

Suppose  
     

2 2 2

3

1 1 1
, ,

0.4 0.2 0.1

x y z
v x y z

  
    be appropriate Lyapunov function at the third  

equilibrium point  3 1,1,1E  , then:- 

1.    3 3, , 1,1,1 0v x y z v      

2.  3 , , 0v x y z   for all     , , , ,x y z D x y z     

Hence,  3 , ,v x y z is positive definite function. 
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3.        3 3 3 3, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

     

1 2

2 1 2 1 2 1x y zdx dy dz

k dt r dt r dt

  
    

        

 

2 2 2

2 2 2

2 2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 4 2 2

2 1.1 0.9 1.9 0.9

x y x y xz y z z xy

x y z xyz xyz xy xy xz z x z

x y z xyz xy xz x z

 

   

          

             

        

   3 , , 2 , ,
dv

x y z h x y z
dt

   

Where    2 2 2, , 1.1 0.9 1.9 0.9h x y z x y z xyz xy xz x z          

2 1.1 0.9 1

1.1 0.9

1.1 1

2

x

xy

xz

xx

h x yz y z

h z

h y

h

    

  

  


        

2 1.1 0.9

1.1 0.9

1.1

2

y

yx

yz

yy

h y xz x

h z

h x

h

  

  

 


        

2 1.1 1.9

1.1 1

1.1

2

z

zx

zy

zz

h z xy x

h y

h x

h

   

  

 



 

Construct Hessian matrix  for  , ,h x y z  at the third equilibrium point  3 1,1,1E   to check 

whether Hessian matrix is definite or indefinite. 

xx xy xz

yx yy yz

zx zy zz

h h h

H h h h

h h h

 
 

  
 
 

 

2 1.1 0.9 1.1 1

1.1 0.9 2 1.1

1.1 1 1.1 2

z y

z x

y x

    
 

    
      

 3

2 2 0.1

2 2 1.1

0.1 1.1 2 1,1,1E
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All leading principal minors of Hessian matrix at  3 1,1,1E  are:- 

1 2D 
   , 2

2 2
0

2 2
D


 


 and  
3

2 2 0.1

2 2 1.1 2.88

0.1 1.1 2

D

 

    

 

 

Since the leading principal minors 1 22 0, 0D D   and 3 2.88 0D    , then Hessian matrix is  

indefinite.  

Therefore, It is impossible to deal with global stability condition of the equilibrium point 

 3 1,1,1E    in the sense of Lyapunov stability theorem.  

  Hopf Bifurcation Analysis of the System 

Let the characteristic equation of the Jacobian matrix at
 

 1 0,0,0.9E  has pure imaginary 

eigenvalues  0m i     at 0  ,then 3 2

1 2 3 0m a m a m a     

Where 
 2 1 2

1

0.875
r k r r

kr


 
   

 

1 1 2

2

2 2

2

3 2 1 2

0.7

0.01

0.007

a k r r

a r

a r k r r

   

   

     

 

2 0.01

0.01i





 

 
 

Which contradicts the fact that 0   

  

3 2

2

0.7 0.01 0.007 0

0.7 0.01 0

m m m

m m

   

  
 

1 0.7m   or 2,3 0.01 0.1m      

Since 2,3m  are not pure imaginary  eigenvalues, then one of  Hopf bifurcation condition is not   

satisfied.  

As a result, the system  1.1  does not undergo Hopf bifurcation at 0.875  .  

 

 



53 
 

Suppose the characteristic equation of the Jacobian matrix at  2 1, 1,1E     has pure imaginary  

eigenvalues  0m i     at 0  ,then 3 2

1 2 3 0m b m b m b   
 

Where    

  
 

1 1 2

1 1 2

21
k r k r r

r r r k


   
 

   

 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

0.7

2
0.48

2
0.336

b k r r

kr k r
b

r r k

kr k r k r r
b

r r k

   

 
 

 

   
 

 

 

2 0.48

0.48







   

  

3 2

2

0.7 0.48 0.336 0

0.7 0.48 0

m m m

m m

   

  
 

1 0.7m   or 2,3 0.48m i   

Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is satisfied at 

21   . 

Next compute the Re
d

dm

 
 
 

 from the characteristic equation of the Jacobian matrix at    

 2 1, 1,1E     

 

 

 
2 1

2

1 2 2

4 2 0.096
Re 0

0.02244

b k bd

dm rr k b

  
   

 

 

Since Re 0
d

dm

 
 

 
, then second condition  of Hopf bifurcation is satisfied .  

As a result, the system  1.1 under goes Hopf  bifurcation at 21  .
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Assume that the characteristic equation of the Jacobian matrix at  3 1,1,1E   has pure imaginary 

 
eigenvalues  0m i     at 0  ,then 3 2

1 2 3 0m c m c m c   
 

Where  

  
 

1 1 2

1 1 2

21
k r k r r

r r r k


   
 

   

 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

0.7

2
0.48

2
0.336

c k r r

kr k r
c

r r k

kr k r k r r
c

r r k

   

 
 

 

   
 

 
 

2 0.48

0.48







 

   

3 2

2

0.7 0.48 0.336 0

0.7 0.48 0

m m m

m m

   

  
 

1 0.7m    or  2,3 0.48m i   

Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is satisfied at 

21  . 

Next compute the Re
d

dm

 
 
 

 from the characteristic equation of the Jacobian matrix at  

 3 1,1,1E   

 

 
2 1

2

1 2 2

4 2 0.096
Re 0

0.02244

c k cd

dm rr k c

  
   

 

 

Since Re 0
d

dm

 
 

 
, then second condition of Hopf bifurcation is satisfied .  

As a result, the system  1.1 under goes Hopf bifurcation  at 21  . 
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CHAPTER FIVE 

5. CONCLUSION AND FUTURE SCOPE 

5.1 Conclusions 

In this study, the Stability and Bifurcation analysis of Maxwell-Bloch equations were considered. 

Firstly, some basic definitions and theorems were discussed in the preliminary parts. The system 

is proved to be dissipative by the aid of divergence test. The result of the study revealed that 

equilibrium point one is stable and unstable for negative and positive value of pumping energy 

parameter respectively. The remaining two equilibrium points are stable and unstable for positive 

and negative value of pumping energy parameter respectively. By the aid of Lyapunov theorem, 

equilibrium point one was proved to be globally asymptotically stable with some specific 

interval of pumping energy parameter. For the remaining two equilibrium points, it is impossible 

to give generalization about its global asymptotical stability in the sense of Lyapunov as one of 

the criteria of the theorem is not satisfied. Furthermore, the result of Hopf bifurcation indicates 

that the system doesn‟t undergo Hopf bifurcation at equilibrium point one by any choice of 

pumping energy parameter. With some specific conditions, the system undergoes Hopf 

bifurcation about the two remaining equilibrium points for a certain value of pumping energy 

parameter. Finally, in order to verify the applicability of the result two numerical examples were 

solved. MATLAB simulation was also implemented to support the findings of the study. 
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5.2 Future Scope  

One can investigate stability and Bifurcation analysis of Maxwell- Bloch equations by 

considering other factors like time delay and diffusion effects. Furthermore, direction and 

stability of Hopf bifurcation of the system is another area of future work. Moreover, qualitative 

analysis with regard to limit cycle, periodic solution and chaotic behavior are further area of 

future work.  
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