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Abstract 

In this thesis, stability and bifurcation analysis of Rikitake model was considered. By the aid of 

divergence, the system is proved to be dissipative.  Two Steady state points of the equations were 

determined. The equations were linearized using Jacobian matrix about each equilibrium points 

and yield the same characteristic equation. The local stability condition of each critical point 

was proved by using Routh Huwertiz stability criteria. It is impossible to generalize the global 

stability property of the two equilibrium point in sense of Lyapunov as one of the condtion is 

failed to be satisfied. Furthermore, the result of Hopf bifurcation revealed that the system 

undergoes Hopf bifurcation at the two equilibrium points. Finally, in order to verify the 

applicability of the result two numerical examples were solved and MATLAB simulation was 

implemented to support the findings of the study. 

 

Key words: Rikitake model, Local stability, global stability, Routh Huwertiz stability criteria, 

Lyapunov theorem, Hopf bifurcation. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

Mathematical modeling is the application of mathematics to describe real world problems and 

investigating important questions that arise from it. Using mathematical tools, the real-world 

problem is translated to a mathematical problem, which mimics the real-world problem. A 

solution to the mathematical problem is obtained, which is interpreted in the language of real-

world problem to make predictions about the real world. Mathematical modeling can be 

described as an activity which allows a mathematician to be biologist, chemist, ecologist, 

economist depending on the problem under consideration. The primary aim of a modeler is to 

undertake experiments on the mathematical representation of a real-world problem, instead of 

undertaking experiments in the real world (Sandip, 2008). Models describe our beliefs about how 

the world functions. In mathematical modeling, we translate those beliefs into the language of 

mathematics (Abramowitz and Stwgum, 1968). 

The Rikitake system is simplified dynamic model which attempts to explain the irregular polarity 

switching of the earth's geomagnetic field. The physics of the Rikitake system has been studied 

by various authors like Japanese geophysicist Rikitake (Rikitake, 1958) and (Llibre and Messias, 

2009). The Rikitake system is a mathematical model obtained from a simple mechanical system 

used to study the reversals of the Earth’s magnetic field in a two-disc dynamo model (Denis et 

al., 2010). The system has a 3-dimentional Lorenz type chaotic attractor around its two singular 

points. However, this attractor is not bounded by any ellipsoidal surface as in the Lorenz 

attractor. The model consists of two identical single Faraday-disk dynamos of the Bullard type 

coupled together. The Rikitake dynamo is composed of two conducting rotating disks which are 

connected to two coils so that the current in each coil feeds the magnetic field of the other. The 

Rikitake dynamo consists of two coupled disc dynamos of Bullard type, each disc dynamo is 

made up of an axis of rotation, a disc and a wire, all made from the same conductive materials.  
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The earth’s magnetic field generates the magnetosphere which shields the earth from the stream 

of charged particles in solar wind. The geomagnetic field has reversed repeatedly during the 

Earth’s history. The mechanism behind the reversal and the wide variation in reversal interval is 

not completely understood. The reversal of the Earth  s magnetic field is the  ikitake system 

(Rikitake, 1958) which is given by system of nonlinear first order differential equation given as: 

 ( ) , (1.1)

1

dx
vx zy

dt

dy
vy z a x

dt

dz
xy

dt

  

   

 

 

where a  and v  are control parameters which is assumed to be positive. v  represent the resistive 

dissipation and a  represents the difference in the angular velocities of the two disks. yx, and z

represents the electric current flowing in disk 1, the electric current flowing in disk 2 and the 

corresponding angular velocity respectively.

 
Nonlinear Mathematical models of real-world phenomena that are formulated in terms of ODEs 

as in Eq. (1.1) are not easy to directly solve for their solution and hence it is necessary to use 

qualitative approaches, such as stability and bifurcation analysis, to investigate their solution 

behaviors. Stability analysis of a system is important in control theory. The asymptotical stability 

is based on the inhibition and the coexistence factors between the two competing species. 

Bifurcation analysis is the analysis of a system of ordinary differential equations (ODE’s) under 

parameter variation. Performing a local bifurcation analysis is often a powerful way to analysis 

the properties of such systems, since it predicts what kind of behavior occurs in the system when 

there is change in parameter. 

A dissipative system is defined as a system whose phase space volumes shrink where as in a 

conservative system phase space volume is conserved. Conservative systems have constant 

entities (usually, energy). Physically, we mean systems with no influx and no production of 

energy/matter. Dissipative systems lose energy with time. In order to maintain persistent 

behaviours the dissipative system must have influx of energy/matter.  
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If a dissipative system starts at its stable equilibrium point, it stays there for arbitrarily long and 

one cannot see the basin of attraction and compression of the volume (Strogatz, 1994).  

In 2008, Liu et al. analyzed the dynamics of Rikitake two disk dynamos to explain the reversals 

of the Earth’s magnetic field. They concluded that the chaotic behavior of the system can be used 

to simulate the reversals of the geomagnetic field. The Rikitake chaotic attractor was studied by 

several authors (Millen, 1999 and Mohammad et al., 2013).In 2009, Llibre and Messias used the 

Poincare compactification to study the dynamics of the Rikitake system at infinity, showing that 

there are orbits which escape to or come from infinity, instead of going towards the attractor. 

Wanga et al. (2015) investigated about the stability analysis of susceptible-vaccines-exposed-

infectious-recovered model with continuous age structure in the exposed and infectious classes. 

They investigate the global dynamics of this model in the sense of basic reproduction number via 

constructing Lyapunov functions. Gideon et al. (2014) investigated the stability analysis of 

model of cooperative and competitive species and they obtained the cooperative system was 

found to be stable at one of the two equilibrium points presents and unstable (Saddle) at the 

other. Four equilibrium points existed for the competitive species model for which the system is 

stable at one point and locally asymptotically stable at the other three points.  

In (2019) Jinming et al. investigated stability and bifurcation analysis of a predator-prey system 

with the week allee effect. They analyzed the direction of the Hopf bifurcation and the stability 

of the bifurcating periodic solutions. In 2018, another paper regarding chemostat model is 

presented a 4-dimensional food chain in a chemistat with removal rates (Sheikh, 2004 and 

Mahrouf, 2005). They studied local and global stability of equilibria along with elementary 

properties including boundedness of solutions, invariance of non-negativity, dissipativity and 

persistence analysis. In 2017, Xiao et al. investigated stability analysis of the system equilibria 

and existence of Hopf bifurcation by using the Hopf bifurcation conditions. In 2016, Wang et al. 

investigated stability and Hopf bifurcation analysis of an epidemic model by using the method of 

multiple scales. Then, the amplitude of bifurcating periodic solution and the conditions which 

determine the stability of the bifurcating periodic solution are obtained. The validity of analytical 

results is shown by their consistency with numerical simulations. 
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In 2015, Nijamudin Ali and Santabrata Chakrravarty investigated the stability analysis of three 

species competitive food chain model incorporate prey refuge and they analyzed local and global 

stability of the equilibria in order to examine the behavior of the system. In 2014, Mandal et al. 

investigated stability and bifurcation of switched dynamical systems and verified using several 

hybrid dynamics system. 

However, stability and bifurcation analysis of Rikitake model given by Eq. (1.1) is not yet 

investigated in the existing literature. Consequently, the main goal of this study is to investigate 

stability and bifurcation analysis of Rikitake model represented by Eq. (1.1).  
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1.2 Statement of the Problem 

This Study focuses on the following problems 

 System property in relation to dissipative, conservative or neither. 

 Local stability conditions of Rikitake system. 

 Global stability conditions of Rikitake system . 

 Hopf bifurcation conditions of Rikitake system. 

1.3 Objective of the Study 

1.3.1 General objective  

The general objective of this study is to investigate stability and bifurcation analysis of Rikitake 

model given by Eq. (1.1). 

1.3.2 Specific objectives of the study 

The specific objectives of the study are: 

 To check whether the system is dissipative, conservative or neither. 

 To determine local stability conditions of Rikitake system. 

 To determine global stability conditions of Rikitake system. 

 To determine Hopf  bifurcation conditions of Rikitake system. 

1.4 Significance of the Study  

This study helps Geophysicists to keep track of appropriate conditions for the reversals of earth’s 

magnetic field polarity so that the mechanism behind the reversal and the wide variation in 

reversal interval can be understood. 

1.5 Delimitation of the Study 

This study is delimited to stability and bifurcation analysis of Rikitake system given by Eq. (1.1). 
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CHAPTER TWO 

LITERATURE REVIEW 

In physics, a dynamical system is described as a particle whose state varies over time and thus 

obeys differential equations involving time derivatives. The study of dynamical systems is the 

focus of dynamical systems theory, which has applications to a wide variety of fields such as 

mathematics, physics, biology, chemistry, engineering, economics, and medicine. Dynamical 

systems are a fundamental part of chaos theory, logistic map dynamics, bifurcation theory, 

the self-assembly and self-organization processes, and the chaos concept. Nonlinear dynamical 

systems, describing changes in variables over time, may appear chaotic, unpredictable, or 

counterintuitive, contrasting with much simpler linear systems (Boeing, 2016).  

Mathematical physics refers to the development of mathematical methods for the application of 

mathematics to problems in physics. The term mathematical physics is used to denote research 

aimed at studying and solving problems inspired by physics or thought experiments within a 

mathematically rigorous framework. Mathematical physics covers a very broad academic realm 

distinguished only by the blending of pure mathematics and physics. Although related to 

theoretical physics, mathematical physics in this sense emphasizes the mathematical rigour of the 

same type as found in mathematics (Frenkel and Fillippov,2000). 

Mathematical models can take many forms, including dynamical systems, statistical models, 

differential equations, or game theoretic models. Mathematical models are usually composed of 

relationships and variables. Relationships can be described by operators, such as algebraic 

operators, functions, differential operators, etc. Variables are abstractions of system parameters 

of interest that can be quantified. A dynamic model accounts for time-dependent changes in the 

state of the system. Mathematical models are of great importance in the natural sciences, 

particularly in physics. Physical theories are almost invariably expressed using mathematical 

models (Aris and Rutherford, 1994). 

Among the studied topics related with the Rikitake system, the stability of the equilibrium points, 

the chaotic behavior, integrals and invariant manifolds, Hamiltonian dynamics and many 

others(Valls,2005).  

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Dynamical_systems_theory
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Self-assembly
https://en.wikipedia.org/wiki/Self-organization
https://en.wikipedia.org/wiki/Edge_of_chaos
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Linear_system
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It is known by geophysicists that the Earth’s magnetic field has reversed its polarity many times 

along geological history (Glatzmaiers and Roberts, 1995).Ahmad Harb and Nabil Ayoub, 2014 

analyzed the dynamics of the Rikitake two disk dynamo system and they showed that under 

certain value of control parameter, the system experiences a chaotic behavior. The study showed 

that the designed controller was so effective in controlling the unstable chaotic oscillations. 

The concepts of equilibrium and stability come from Classical Mechanics (Arrowsmith and 

Place, 1992). A state where a system is in balance with the external forcing so that it does not 

change in time is called an equilibrium position. However, any equilibrium position may be 

either stable or unstable. If released near a stable equilibrium position, the system will evolve 

towards such a position. On the contrary, if released near an unstable equilibrium position, it will 

go far away from this position. The stability problem of nonlinear systems has been extensively 

studied.  

Most dynamical systems are described by ordinary differential equations or difference equations. 

In general, these systems are nonlinear and include many parameters. Small changes in the 

values of their parameters may have large effects on the behaviors of the system. Determining a 

way to analyze such a dynamical system is an important problem. So far, a large number of 

methods of analyzing nonlinear dynamical systems have been proposed. It is well known that the 

solution to most nonlinear dynamical systems cannot be obtained analytically. This means we 

must conduct numerous simulations using the different fixed sets of parameter values and initial 

conditions. However, such simulations only give information about one stable solution at a time, 

and they tend to take a long time to reach a solution. The topological properties of the solutions 

to a dynamical system may change when a parameter of the system changes slightly. This 

phenomenon is called bifurcation. Bifurcation analysis, which is the investigation of bifurcations 

depending on the system parameters, is a way to gain deep insights into the fundamental 

properties of dynamical systems. Furthermore, bifurcation analysis enables us to identify the 

range of a parameter over which a system behaves stably, the total behavior of the solution in the 

large and the transition mechanisms of the dynamic responses (Yoshinaga and Kawakami,1995). 
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CHAPTER THREE 

3. METHODOLOGY 

3.1 Study Period 

This study was conducted from September, 2018 to January, 2020. 

3.2 Study Design  

The study employed mixed design (analytical and experimental approaches). 

3.3 Source of Information 

The sources of information for the study were journals, published article and related information 

from internet. 

3.4 Mathematical Procedures 

This study was conducted based on the following procedures 

1. Checking whether the system is dissipative, conservative or neither; 

2. Determining the equilibrium point of the system; 

3. Linearizing Rikitake system about positive equilibrium point; 

4. Determining the local stability conditions of the system; 

5. Analyzing the global stability of the system; 

6. Determining Hopf bifurcation conditions of the system; 

7. Verifying the result using numerical simulation. 
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CHAPTER FOUR 

4. RESULT AND DISCUSSION 

4.1 Preliminaries 

Definition 1: For any three dimensional system:  'x f x , the volume involves ' .D fdD   

where  is divergence operator and D  is volume in phase space. If D  decreasing exponentially, 

then the system is dissipative. If D  increasing exponentially, then the system is expansive. If D

is constant, then the system is conservative. 

Definition 2: Equilibrium point 

 Consider non-linear system  
dx

f x
dt

 , where : n nf R R . A point 
nx R  is an equilibrium 

point if     0
dx

x f x
dt

  
 

Definition 3: For a linear system 
dx

AX
dt

 the stability of equilibrium point 0
dx

dt
  can be 

completely determined by location of eigenvalues of A. This is expressed as follows; 

I.If all the eigenvalues of the Jacobian matrix have real parts less than zero, then the linear 

system is asymptotically stable and, 

II.If at least one of the eigenvalue of Jacobian matrix has real part greater than zero, then the 

system is unstable. (Khalil, 1996).
 

Definition 4: Routh-Hurwitz Stability Criterion (RH-Criterion) (Katsuhiko, 1970) 

The local stability of the equilibrium points of the system can be determined by applying the 

 outh’s  stability criterion for the given characteristic polynomial of the form:                                             

1

0 1 0n n

na a a     
 

where 0 0a  and 0na   , then the Routh-Hurwitz array or table is given as follows. 
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2

0 2 4 6

1
1 3 5 7

2
1 2 3 4

3
1 2 3 4

4
1 3 4

2

1 2

1

1

0

0

n

n

n

n

n

a a a a

a a a a

b b b b

c c c c

d d d d

e e

f

g

























 

            Where  

1 2 0 3
1

1

1 4 0 5
2

1

1 6 0 7
3

1

,

a a a a
b

a

a a a a
b

a

a a a a
b

a










 

1 3 1 2
1

1

1 5 1 3
2

1

1 7 1 4
3

1

b a a b
c

b

b a a b
c

b

b a a b
c

b










,    

1 2 1 2
1

1

1 3 1 3
2

1

c b b c
d

c

c b b c
d

c







 

The equilibrium point is stable if there is no sign change in the first column of the Routh table 

above. 

Dealing with zero row 

Routh Hurwitz procedure provides an “auxiliary polynomial”,  a  , that contains the roots of 

interest as factors. The auxiliary polynomial is a factor of the original polynomial. The 

coefficients of the auxiliary polynomial appear in the row above the zero row. Finally, we 

replace the zero row by the coefficients of the derivative of the auxiliary polynomial. 

Definition 5: Leading Principal Minors of Matrix (Eriksen, 2010) 

The leading principal minor of a matrix A of order k is the minor of order k obtained by deleting 

the last n-k rows and columns. 

Consider  3  3x matrix A 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 

  
 
 

 

First order leading principal minors is: 1 11D a  
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Second order leading principal minor is:
11 12

2

21 22

a a
D

a a
  

Third order leading principal minor is:

11 12 13

3 21 22 23

31 32 33

a a a

D a a a

a a a

  

 

Definition 6: Let A be a symmetric nxn  matrix. Then A is positive definite matrix if and only if 

0kD   for all leading principal minors and A is negative definite matrix if and only if 

 1 0
k

kD   for all leading principal minors, where1 k n   

Theorem 4.1 Lyapunov Stability Theorem (Strogatz,1994) 

Let x x be an equilibrium point of non-linear system of  
dx

f x
dt

 , : nf D R .  

Suppose :V D R  be continuously differentiable function such that:- 

I.  * 0V x   

II.   0V x   for  all  x D x   

III. 
 

0
dV x

dt


 
for all  x D x   (Domain D excluding  x ).Then x x is stable. 

Theorem 4.2 Globally asymptotically stable 

Let x x be an equilibrium point of non-linear system of  
dx

f x
dt

  , : nf D R .  

Let :V D R  be continuously differentiable function such that:- 

1.   0V x   

2.   0V x   for all  x D x   (Domain D excluding  x )  

3. 
 

0
dV x

dt
  for all  x D x   (Domain D excluding  x ) 

4.  V x
 
is radially unbounded. Then x x is  globally asymptotically stable 

 

 



12 
 

Definition 7: Hessian Matrix 

Let  f x  be a scalar function in n variables, then the Hessian Matrix of f is the matrix 

consisting of all the second order partial derivatives of f . 

The Hessian Matrix of f  at the point x   is the nxn  matrix such that  

 

2 2 2

2

1 1 2 1

2 2 2

2

2 1 2 2

2 2 2

2

1 2

n

n

n n n

f f f

x x x x x

f f f

H f x x x x x

f f f

x x x x x

   
 
     

   
 

      
 
 
   
 
     

 

Hessian matrix is used to determine the points of global maximum and minimum. If Hessian 

Matrix is a positive definite at the equilibrium point, then the function f  has global minimum at 

the equilibrium point. 

Hopf Bifurcation  

Theorem 4.3: Le 0J
 
be a Jacobian matrix of a continuous parametric dynamical system 

evaluated at equilibrium point. Suppose that all eigenvalues of 0J
 
have a negative real parts 

except one conjugate nonzero purely imaginary pair i . Hopf Bifurcation arises when these two 

eigenvalues cross the imaginary axis because of a variation of the system. 

4.2 Dissipative or conservativeness of the system 

Consider the system (1.1) under consideration; 

( ) , (1.1)

1

dx
vx zy

dt

dy
vy z a x

dt

dz
xy

dt

  

   

 
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Let  

1

2

3

( )

1

f vx zy

f vy z a x

f xy

  

   

 

 

Divergence of the system  

∇. f = 31 2 ff f

x y z

 
 

  
 

 = ( ) ( ( ) ) (1 )vx zy vy z a x xy
x y z

  
       

  
 

= 0v v    

  = 2v < 0  

' .D fdD   

D′=∫ 2vdD = 2vD  

2
dD

vD
dt

   

1
2dD vdt

D
   

Integrating both sides, we get  

ln 2D vt c     , where c  is constant value 

2vt c
D e

 
  2

0

vtD e

, 
where 

0

cD e  

Hence, D is decreasing exponentially ,then the system is dissipative. 

4.3 Equilibrium point 

To find the equilibrium point of system  1.1 , equate the right hand side with zero. 

 0 4.1vx zy  
 

   0 4.2vy z a x   
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 1 0 4.3xy 
 

From Eq. (4.1) ;
 4.4

vx
z

y


 

From Eq. (4,3) ,  
1

4.5y
x

  

Plugging equations (4.4) and (4.5) in to equation (4.2) becomes 

( ) 0vy z a x     

1
( ) ( ) 0

vx
v a x

x y
     

2( ) 0
v

vx a x
x

     

4 2 0vx ax v    

Let    
2x w  

2 0vw aw v   it’s form of quadratic equation. We can solve using quadratic formula. 

w 

2 4( )( )

2

a a v v

v

  


2 24

2

a a v

v

 
 

w 

2 24

2

a a v

v

 
or w 

2 24

2

a a v

v

 
 

Since 
2x w , then 

1x 
2 24

2

a a v

v

 
or 2x 

2 24

2

a a v

v

 
  

Since, y 
1

x
 , then 

1y 
2 2

2

4

v

a a v   

or 2y
2 2

2

4

v

a a v
 

 
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Again, z 
2vx

vx
y
  

z  v

2 2
24

( )
2

a a v

v

 
 

1z 
2 24

2

a a v 

 
or 2z 

2 24

2

a a v 
 

Therefore, the equilibrium points of the system are  

1E  (
2 2 2 2

2 2

4 2 4
, , )

2 24

a a v v a a v

v a a v

   

 
 

2E 
2 2 2 2

2 2

4 2 4
( , , )

2 24

a a v v a a v

v a a v

   
 

 
 

4.4 Local Stability Analysis 

Linearization 

Let

1

2

3

( )

1

dx
f vx zy

dt

dy
f vy z a x

dt

dz
f xy

dt

   

    

  

 

Let

1 1 1

2 2 2

3 3 3

f f f

x y z

f f f
A

x y z

f f f

x y z

   
 
   

   
  

   
   
 
   



0

v z y

z a v x

y x

 
 

  
   

 

 

 

Let 1J  be Jacobian matrix evaluated at equilibrium point 1E  
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1

1

0
E

v z y

J z a v x

y x

 
 

   
   

=

2 2

2 2

2 2 2 2

2 2

2 2

4 2

2 4

4 4

2 2

2 4
0

24

a a v v
v

a a v

a a v a a v
a v

v

v a a v

va a v

  
 

  
 
    

  
 
 

   
  
   

(4,7)  

For the sake of simplicity, let

2 2
2 4

2

a a v
k

v

 
 then 1J becomes 

 

2

2

1

1

4.8

1
0

v vk
k

J vk a v k

k
k

 
 

 
   
 
   
 

 

 

To find the characteristics equation of equation (4,7) , we use  1det 0J I   

2

2

1

0

1

v vk
k

vk a v k

k
k







 

   

  

 

2

2

1

0

1

v vk
k

vk a v k

k
k







  

       

3 2 2 2 2 4 2 2

2 2

1
2 ( ) 3 0

v
v v k v k vk a vk a

k k
             

By substituting value of ,k and   simplifying leads to: 
2 2

3 2 2 24
2 2 4 0

a v
v a v

v
  


     is the characteristics equation 

To solve the values of is very difficult. So, by applying RH – criterion we can determine the 

stability of 1E . 
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2 2
3

2 2 2

1

1

0

1

4
1 0

2 2 4 0

0 0

0 0

a v

v

v a v

b

c













  

To find 1 2 0 3
1

1

a a a a
b

a




 
2 2

2 24
2 1 2 4

2

a v
v a v

v

v

 
  

 
  0  

RH-criterion table becomes 

2 2
3

2 2 2

1

0

1

4
1 0

2 2 4 0

0 0 0

0 0

a v

v

v a v

c













 

The auxiliary polynomial: 

  2 2 22 2 4a v a v     

The derivative of this auxiliary polynomial with respect to becomes 

 
4 0

da
v

d





   

 

 

 

 

 

 

 



18 
 

The   RH-criterion table becomes  

2 2
3

2 2 2

1

0

1

4
1 0

2 2 4 0

4 0 0

0 0

a v

v

v a v

v

c













  

1 3 2 2
1

1

b a a b
c

b




 

where, 1 4 0 5
2

1

a a a a
b

a




   2 0 1 0
0

2

v

v


   

 1 3 2

1 3

1

0b a a
c a

b


   

2 22 4a v   

Finally RH-criterion table becomes 

2 2
3

2 2 2

1

0 2 2

4
1 0

2 2 4 0

4 0 0

2 4 0 0

a v

v

v a v

v

a v















 

As a result the positive equilibrium point of the system (1,1) is locally asymptotically stable by 

Routh Hurwitz criterion.  

Let 2J  be Jacobian matrix evaluated at equilibrium point 2E  

2

2

0
E

v z y

J z a v x

y x

 
 

   
   

2 2

2 2

2 2 2 2

2 2

2 2

4 2

2 4

4 4

2 2

2 4
0

24

a a v v
v

a a v

a a v a a v
a v

v

v a a v

va a v

  
  

  
 
    

    
 
 

  
  
 
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Again let 

2 2
2 4

2

a a v
k

v

 
  then 2J  becomes 

 

2

2

2

1

1
0

v vk
k

J vk a v k

k
k

 
  

 
    
 
 
 

 

Then find the characteristic equation of 2J ,  2det 0J I   

2

2

1

0

1

v vk
k

vk a v k

k
k







  

    



 

 

2

2

1

0

1

v vk
k

vk a v k

k
k







 

    

 

 

3 2 2 2 2 4 2 2

2 2

1
2 ( ) 3 0

v
v v k v k vk a vk a

k k
             

 

Substitute the value of 2k  and simplifying leads to: 

 
2 2

3 2 2 24
2 2 4 0

a v
v a v

v
  


      

Which is the same characteristics equation with that of characteristics equation at equilibrium 

point 1E . 

By the same analysis equilibrium point 2E of the system (1,1) is locally asymptotically stable by 

Rourth-Hurwitz criterion. 

4.5 Global stability analysis 

Let V  be appropriate candidate Lyapunov function such that: 

  * 2 * 2 * 21 1 1
, , ( ) ( ) ( )

2 2 2
V x y z x x y y z z        ,    where  * * *, ,x y z  equilibrium point 1E  
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i . * * *( , , ) 0V x y z   

The function V  at equilibrium point 1E  is zero 

ii .  , ,V x y z o  

The function V is positive definite 

iii .  
( , , )

lim , ,
x y z

V x y z


  

The function V  is radially unbounded  

iv .The derivative of V with respect to t : 

dV V dx V dy V dz

dt x dt y dt z dt

  
  
    

= *( )x x
dx

dt
+ *( )y y

dy

dt
+ *( )z z

dz

dt
 

= *( )x x  vx zy  +
*( )y y  ( )vy z a x   + *( )z z  1 xy   

 

=         * * *( ) 1x x vx zy y y vy z a x z z xy            
 

 

 = * * 2 * * * 2 * *vxx zyx vx vyy zxy axy vy xyz axy z xyz z                

Let   * * 2 * * * 2 * *, ,g x y z vxx zyx vx vyy zxy axy vy xyz axy z xyz z              

* * * *2xg vx vx zy ay yz ay yz         

2x xg v  

*

xy yxg z a z g      

*

xz zxg y y g    
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* * *2yg zx vy vy xz ax xz       

2y yg v  

*

yz zyg x x g    

* * 1zg yx xy xy     

0zzg   

Let H be Hessian matrix evaluated at equilibrium point 1E  

* * *
1 ( , , )

x x xy xz

yx y y yz

zx zy zz E x y z

g g g

H g g g

g g g

 
 

  
 
 

=

* * *
1

* *

* *

* *

( , , )

2

2

0
E x y z

v z a z y y

z a z v x x

y y x x

    
 
    
   

 

 =

* * * *

* * * *

* * * *

2

2

0

v z a z y y

z a z v x x

y y x x

    
 
    
   

=

*

*

2 2 0

2 2 0

0 0 0

v z a

z a v

  
 
  
 
 

 

So, first order leading principal minor   

1 2 0D v 
 
since v >0 

Second order principal minor  

 
2

2 *

2 4 2D v z a    , formed by deleting third row and third column 

  =
2 * 2 * 24 4( ) 4v z az a    

  =

2
2 2 2 2

2 24 4
4 4 4

2 2

a a v a a v
v a a

      
     

   
   

 

   =
2 2 2 2 2 2 2 2 2 24 2 4 4 2 2 4v a a a v a v a a a v a          

   = 2a 0  

Third ordered principal minor 

 3 0D  , because the third row and column are zero 
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The Hessian matrix is indefinite. 

As a result, it is impossible to deal with global stability of the equilibrium point 1E  in the sense 

of Lyapunov as one of the conditions is failed to be satisfied. 

*Let V  be appropriate candidate Lyapunov function such that:  

  * 2 * 2 * 21 1 1
, , ( ) ( ) ( )

2 2 2
V x y z x x y y z z      ,where  * * *, ,x y z equilibrium point 2E ,which 

is the same Lyapunov function with equilibrium point 1E . By the same analysis, it is impossible 

to deal with global stability of the equilibrium point 2E  in the sense of Lyapunov as one of the 

condition is failed to be satisfied. 

4.6 Hopf Bifurcation analysis
 

1. Suppose i   is a pure imaginary eigenvalue of the characteristic equation > 0 ; 

2 2
3 2 2 24

2 2 4 0
a v

v a v
v

  


      

Substitute i  in the above equation, we get; 

     
2 2

3 2 2 24
2 2 4 0

a v
i v i i a v

v
  


      

2 2
3 2 2 24

2 2 4 0 (4.9)
a v

i v a v
v

  
 
      
 
   

From Eq. (4.9) , we have; 

2 2
3 4

0 (4.10)
a v

v
 


    

2 2 22 2 4 0 (4.11)v a v     

From Eq. (4.10) ,

2 2
2 4

( ) 0
a v

v
 


    

 
2 2

2 4
4.12

a v

v



  

From Eq. (4.11) ,  
2 2

2 4
4.13

a v

v



  

Equating equations  4.12 and  4.13  , leads to: 
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2 2 2 24 4a v a v

v v

 
  

0 0  , which is always true  

Hence, it is possible to take any value of v  in terms of a  as a bifurcation parameter. 

Let 
2

a
v   be a bifurcation parameter 

Substitute 
2

a
v   into the characteristic equation and solving for   

2
2

2
3 2 2

4
4

2( ) 2 4 0
2 4

2

a
a

a a
a

a
  



      

2
3 2 22 2

2 2 0
a

a a
a

       

3 2 2 2 2 2 0a a       

  2 2 2 0a     

0a    and
2 2 2    

2 2    

2 2i    

i    

    Hence condition  1  is satisfied. 

2. Let  p   be the characteristic equation of the Jacobian matrix of the equilibrium points 

  
2 2

3 2 2 24
: 2 2 4 0

a v
p v a v

v
   


      

Differentiate both sides with respect to v : 

2 2 2
2 2

2 2 2 2 2

4 8
3 4 2 0

4 4

d d a v d a v
v

dv dv v dv v a v a v

  
  


     

 
 

2 2 2
2 2

2 2 2 2 2

4 8
3 4 2

4 4

a v d a v
v

v dv v a v a v


  

 
      

    
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2 2 2 2 2 2 2 2 2 3

2 2 2

3 4 4 2 4 8

4

v v a v d v a v a v

v dv v a v

          
 

     

2 2 2 2 2 3

2 2 2 2 2 2 2

2 4 8

4 3 4 4

d v a v a v v

dv v a v v v a v

 

 

   
 

     

2 2 2 2 2 3

2 2 2 2 3 2 2 2 3

2 4 8

3 4 4 4 4

d v a v a v

dv v a v v a v va v

 

 

   


    
 

1 2 2 2 2 3 2 2 2 3

2 2 2 2 2 3

3 4 4 4 4

2 4 8

d v a v v a v va v

dv v a v a v

  




     

 
     

 

 

Evaluate 

1
d

dv




 
 
 

at pure imaginary eigenvalue i   

   

 

21 2 2 2 3 2 2 2 3

22 2 2 2 3

3 4 4 4 4

2 4 8

v i a v v i a v va vd

dv v i a v a v

 




     

 
     

 

 1 2 2 2 2 3 2 2 2 3

2 2 2 2 2 3

3 4 4 4 4

2 4 8

v a v v i a v va vd

dv v a v a v

 




      

 
      

1 2 2 2 2 2 3

2 2 2 2 2 3

3 4 4
Re

2 4 8

d v a v va v

dv v a v a v

 




    

 
    

 

Evaluate 

1

Re
d

dv




 
 
 

at 
2

a
v   

2 2 3
2 2 2

1

2 2 3
2 2 2

3 4 4
4 4 2 8Re

2 4 8
4 4 8

a a a a
a a

d

dv a a a
a a






    
 

 
 

  

 

3 2 3
1

3 2 2 3

3 2

4Re
2

2

a a
d

dv
a a a










 

 
 

 
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1 3 3

3 2 3

3
Re

2

d a a

dv a a a




  
 

  

3

3 2

2a

a a





 

Hence  

1 3

3 2

2 2
Re 0

1

d a a

dv a a a




  
   

  
 

1

Re 1
d

sign
dv


  

   
   

 

 

Condition (2) is satisfied. 

As the result the system (1.1) undergoes Hopf Bifurcation at 
2

a
v 
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4.7 Numerical Examples 

Example 1.Consider parameter values of a  and v  given to be: 

2a   and 1v   

The system  1.1  becomes: 

 

1

2

3

2

1

dx
f x zy

dt

dy
f y z x

dt

dz
f xy

dt

   

    

  

 

Dissipative or conservativeness of the system 

31 2.
ff f

f
x y z

 
   

  
 

. 1 1 2f      < 0   

Then   ' . 2 2D fdD dD D        

'

2
D

D
   

1
2

dD

D dt
   

1
2dD dt

D
   

Integrate both sides 

ln 2D t c    

2t cD e   

2

0

tD D e ,  
0

cD e  is constant 

Hence, D is decreasing exponentially. Therefore, the system is dissipative. 

Equilibrium point  

To find the equilibrium point, equate the right hand side equal to zero 

 0 4.14x zy    

   2 0 4.15y z x     
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 1 0 4.16xy   

From Eq.(4.14),  4.17
x

z
y

  

From Eq.(4.16)  
1

4.18y
x

  

Plugging equations  4.17 and  4.18  into  4.15  

31
2 0x x

x
     

4 22 1 0x x    

Let
2x w , then the equation becomes 

2 2 1 0w w    

1 2w    

Since  
2 1 2x    

2 1 2x    

1 1 2x  
 
and 2 1 2x     

From Eq.  4.18 : 
1

y
x

  

1

1

1 2
y 

   

and
2

1

1 2
y  


 

From Eq.  4.17 : 
x

z
y

  

1 2z    

The equilibrium points are: 

1

2

1
1 2 , ,1 2

1 2

1
1 2 , ,1 2

1 2

E

E

 
     

 
       
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Local stability  

Linearization  

1 1 1

2 2 2

3 3 3

1

2 1

0

f f f

x y z
z y

f f f
A z x

x y z
y x

f f f

x y z

   
 
     

     
                 
 
   

 

Let 1J  be Jacobian matrix evaluated at 1E  

1

1
1 1 2

1 2

1 2 1 1 2

1
1 2 0

1 2

J

 
  

 
 

     
 
   
 
 

  

To find characteristic equation;  1det 0J I   

  1
1 1 2

1 2

1 2 1 1 2 0

1
1 2

1 2







   


    




 

3 22 2 2 4 2 0       

To determine local stability of equilibrium point 1E  by applying RH-criterion
 

3

2

1

1

0

1

1 2 2 0

2 4 2 0

0 0

0 0

b

c









  

To find , 1 2 0 3
1

1

0
a a a a

b
a


    
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RH-criterion table becomes 

3

2

1

0

1

1 2 2 0

2 4 2 0

0 0 0

0 0c









 

The auxiliary polynomial:   22 4 2a     

  4 0
d

a
d

 


   

The RH-criterion table becomes 

3

2

1

0

1

1 2 2 0

2 4 2 0

4 0 0

0 0c









 

To find 1 3 2 2
1

1

b a a b
c

b


  

1 3c a  

1 4 2c  ,where  2 0b   

Finally RH-criterion table becomes 

3

2

1

0

1 2 2 0

2 4 2 0

4 0 0

4 2 0 0









 

As a result the equilibrium point 1E is locally asymptotically stable. 

Let 2J  be Jacobian matrix evaluated at 2E  

2

1
1 1 2

1 2

1 2 1 1 2

1
1 2 0

1 2

J

 
   

 
 

      
 
 
 
 

 



30 
 

To find characteristic equation,  2det 0J I   

1
1 (1 2)

1 2

1 2 1 1 2 0

1
1 2

1 2







  


   

  


 

3 22 2 2 4 2 0      , which is the same characteristic equation as equilibrium 

point 1E . 

By the same analysis, equilibrium point 2E  is locally asymptotically stable. 
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MATLAB Simulation 

The following diagrams indicate MATLAB simulation that shows stability of the equilibrium 

point. 

 
Figure 1: The graph of system versus time about equilibrium point. 

 
Figure 2: Phase Portrait of the system about the equilibrium point. 
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 Figure 1 indicates that the graph of the system versus time converges to the equilibrium point. 

Figure 2 also revealed this fact because the trajectory of the system converges to equilibrium 

point which in one ways shows the stability of the equilibrium point.  

Global stability Analysis 

The candidate Lyapunov functionV ; 

      
2

2 21 1 1 1
, , 1 2 1 2

2 2 21 2
V x y z x y z

 
          

 

.i
1

1 2 , ,1 2 0
1 2

V
 

     
 

.ii  , ,V x y z > 0  

.iii
 

 
, ,
lim , ,

x y z
V x y z


  

.iv  The derivative of V  with respect to t : 

       
1

1 2 ( 2) (1 2) 1
1 2

dV
x x zy y y z x z xy

dt

 
                

2 21 1 1
1 2 1 2 2 2 1 2 2

1 2 1 2 1 2

dV
x zy x y zx x y xyz xy xy xy z

dt

 
                  

     

Let

  2 21 1 1
, , 1 2 1 2 2 2 1 2 2

1 2 1 2 1 2
g x y z x zy x y zx x y xyz xy xy xy z                

  

1 1
1 2 2 2 2 2

1 2 1 2
xg x z yz y y y         

 
 

2xxg 

 
1 2xy yxg z g      

1

1 2
xz zxg y g  


 

1
1 2 2 2 2

1 2
yg z y xz x x x       


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2yyg   

1 2yz zyg x g     

1
1 2 1

1 2
zg y x xy    


 

0zzg   

Let H  be Hessian matrix evaluated at 1E  

2 2 2 0

2 2 2 0

0 0 0

H

 
 

  
 
 
 

 

1 2D  > 0  

 2 4 4 2 4D      < 0  

3 0D   

Thus the Hessian matrix is indefinite 

As a result, it is impossible to deal with global stability of the equilibrium point 1E  in the sense 

of Lyapunov as one of the condition is failed to be satisfied. 

Hopf Bifurcation  

1. Suppose i   be pure imaginary eigenvalue of the characteristic equation provided that 

 > 0  

3 22 2 2 4 2 0       

     
3 2

2 2 2 4 2 0i i i       

3 22 2 2 4 2 0i i        

From the above equations 

 3 2 2 0 4.19     

 22 4 2 0 4.20    

From Eq.  4.19 ,  2 2 2 0     

   > 0 and
2 2 2   
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From Eq.  4.20 ,
2 2 2   

  2 2   

The characteristic equation is: 

3 22 2 2 4 2 0       

  22 2 2 0     

1 2   < 0 and 
2,3 i    

Therefore, condition  1 is satisfied. 

2. since 

1 3

3 2

2
Re

d a

dv a a




 
 

 
 

 
31

3 2

2 2 4
Re

2 2 3

d

dv




  
  

 
 

1

Re 0
d

dv




 
 

 
 

Therefore , condition (2) is satisfied. 

As a result, the system undergoes Hopf Bifurcation at 1
2

a
v    

Example 2.Consider parameter values given to be: 0.1v a   

The system  1.1 becomes: 

1 0.1
dx

f x zy
dt

     

 2 0.1 0.1
dy

f y z x
dt

      

3 1
dz

f xy
dt

    

Dissipative or conservativeness of the system 

31 2.
ff f

f
x y z

 
   

  
 

   . 0.1 0.1 0 0.2f        < 0  
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Then ' . 0.2 0.2D fdD dD D        

1
0.2dD dt

D
  , integrate both sides 

ln 0.2D t c    

0.2

0

tD D e , where 
0

cD e  is constant 

Hence, D  is decreasing exponentially, then the system is dissipative. 

Equilibrium point 

The equilibrium points are: 

1

1 5 2 1 5
, ,

2 201 5
E

  
 
 
 

 

2

1 5 2 1 5
, ,

2 201 5
E

  
   
 
 

 

Local stability 

Linearization  

Let 

0.1

0.1 0.1

0

z y

A z x

y x

 
 

   
   

 

Let 1J be Jacobian matrix evaluated at 1E  

1

1 5 2
0.1

20 1 5

1 5 1 5
0.1

20 2

2 1 5
0

21 5

J

 
 

 
 
    

 
 
 
    

 

To find characteristic equation:  1det 0J I   
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1 5 2
0.1

20 1 5

1 5 1 5
0.1 0

20 2

2 1 5

21 5








 



  
  


  



 

3 21 5
5 0

5 5
       

To determine local stability condition of the system, applying RH-criterion. 

3

2

1

1

0

1

1 5 0

1 5
0

5 5

0 0

0 0

b

c









 

1 2 0 3
1

1

0
a a a a

b
a


   

RH-table becomes: 

3

2

1

0

1

1 5 0

1 5
0

5 5

0 0 0

0 0c









 

Dealing with zero row: 

Find the auxiliary equation:   21 5

5 5
a     

Differentiate with respect to : 
  2

0
5

d a

d





  , 1

2

5
b   
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RH-table becomes 

3

2

1

0

1

1 5 0

1 5
0

5 5

2
0 0

5

0 0c









 

1 3 2 2
1

1

b a a b
c

b


 , where 1 4 0 5

2

1

0
a a a a

b
a


   

1 3

5

5
c a   

RH- table becomes 

3

2

1

0

1 5 0

1 5
0

5 5

2
0 0

5

5
0 0

5









 

As a result the equilibrium point 1E is locally asymptotically stable. 

Let 2J  be Jacobian matrix evaluated at 2E  

2

1 5 2
0.1

20 1 5

1 5 1 5
0.1

20 2

2 1 5
0

21 5

J

 
  

 
 
     

 
 
 
   

 

To find characteristic equation:  2det 0J I   
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2

1 5 2
0.1

20 1 5

1 5 1 5
0.1

20 2

2 1 5

21 5

J







 
   

 
 
      

 
 
 

   

 

3 21 5
5 0

5 5
       , which is the same characteristic equation as equilibrium point

1E .By the same analysis, equilibrium point 2E  is locally asymptotically stable. 

Global stability
 

The candidate Lyapunov function: 

 

2 2 2

1 1 5 1 2 1 1 5
, , ( )

2 2 2 2 201 5
V x y z x y z

      
                  

 

.i
1 5 2 1 5

, , 0
2 201 5

V
  
  
 
 

 

.ii  , ,V x y z > 0  

.iii
 

 
, ,
lim , ,

x y z
V x y z


  

.iv The derivative of V with respect to t  

     
1 5 2 1 5

0.1 0.1 ( 0.1) ( ) 1
2 201 5

dV
x x zy y y z x z xy

dt

      
                        

 

2 21 5 1 5 1 5 2 2 1 1 5 5
0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 20 20 20 201 5 1 5

dV
x zy x y zx x y xyz xy xy xy z

dt

   
                

   

let

  2 21 5 1 5 1 5 2 2 1 1 5 5
, , 0.1 0.1 0.1 0.1 0.1 0.1

2 2 2 20 20 20 201 5 1 5
g x y z x zy x y zx x y xyz xy xy xy z

  
              

 

 
1 5 2 2 1 5

0.1 0.2 0.1 0.1
2 20 201 5 1 5

xg x z yz y y y


        
 

 

0.2xxg   
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1 5
0.1

20 20
xy yxg z g       

2

1 5
xz zxg y g  


 

1 5 2 1 5
0.1 0.2 0.1

2 20 201 5
yg z y xz x x x


      


 

0.2yyg   

1 5

2
yz zyg x g


    

1 5 2
1

2 1 5
zg y x xy


   


 

0xxz   

Let H be Hessian matrix evaluated at 1E  

2 5
0.2 0

20

2 5
0.2 0

20

0 0 0

H

 
 
 
 

  
 
 
  
 

 

1 0.2D  > 0  

 

2

2

2

2 5
0.2 0.04 1 0.96

20
D

 
        

 
<0 

3 0D   

Hence, the Hessian matrix is indefinite.  

As the result, it is impossible to deal with global stability of equilibrium point 1E  in the sense of 

Lyapunov as one of the conditions is failed to be satisfied. 

Hopf Bifurcation 

1. Suppose i   be pure imaginary eigenvalue of the characteristic equation provided that

 >0 
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3 21 5
5 0

5 5
       

3 21 5
5 0

5 5
i i        

From the above equation we have: 

  3 5 0 4.21     

  21 5
0 4.22

5 5
    

From Eq.  4.21 :  2 5 0     

   >0 and 
2 5   

From Eq.  4.22 :
21 5

0
5 5
    

  
2 5  ,  5   

The characteristic equation is: 

3 21 5
5 0

5 5
       

  21 5
5 1 0

5 5
 

 
    

 
 

1

1

5
   and 2,3 5i    

1

1

5
   <0 and 2,3 i    

Therefore, condition (1) is satisfied. 

2. Since 

1
2

Re
1

d a

dv a




 
 

 
 

1
2(0.1)

Re 0.18
0.1 1

d

dv




 
   

  ,     

1

Re 0
d

dt




 
 

   

Condition (2) is satisfied. As a result, the system undergoes Hopf  Bifurcation at 

 0.1v a 
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CHAPTER FIVE 

CONCLUSION AND FUTURE SCOPE 

5.1. Conclusions 

In this study, stability and bifurcation analysis of Rikitake model was considered. The result of 

the study revealed that equilibrium points of the system are locally asymptotically stable by 

Routh Huwrtiz stability criteria. By the aid of divergence test, the system is proved to be 

dissipative. It is impossible to deal with the global stability of the two equilibrium points in the 

sense of Lyapunov. Furthermore, the result of Hopf bifurcation dictates that the system 

undergoes Hopf bifurcation about the two equilibrium points. Finally, in order to verify the 

applicability of the result two numerical examples were solved. MATLAB simulation was also 

implemented to support the findings of the study. 
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5.2. Future Scope  

One can investigate stability and bifurcation analysis of Rikitake model by considering other 

factors like time delay and diffusion effects. Furthermore, direction and stability of Hopf 

bifurcation of the system is another area of future work. Moreover, qualitative analysis with 

regard to limit cycle, periodic solution and chaotic behavior are further area of future work.  

 

 

 

 

 

 

 

 

 

 

 

 

  



43 
 

References

 
Abramowitz,M.,and Stegun, I.A.(1968). Handbook of Mathematical functions, Dover, New 

York. ISBN 0-486-61272-4  

Ahmad,H.,and Nabil,A.(2014). On Slide Mode Control of Chaotic Rikitake Two-Disk Dynamo, 

International Journal of Modern Nonlinear Theory and Application.3, 136-143.  

Aris and Rutherford.( 1994 ). Mathematical Modelling Techniques, New York: Dover. ISBN 

0-486-68131-9 

Arrowsmith,D.K., and Place,C.M.(1992). Dynamical Systems,Chapman and 

Hall/CRC.72(12):691-692. 

Boeing, G. (2016). Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-

Similarity and the Limits of Prediction, Journal of Systems, 4 (4):37-54, USA.  

Denis, D.C.B., Fabio, S.D. and Luis, F. M.(2010). On the stability of the Equilibria of the 

Rikitake system, Journal of Physics, 374: 4316-4320. 

Eriksen,E.(2010). Principal Minors and Hessian Matrix,BI Norwegian school of management; 

5:1-15. 

Frenkel,Y and Filippov,A.T.(2000). The Versatile Soliton, Mathematical association of 

America,109(4):400-402. Birkhauser. 

Gideon,K.G.,Justice,K.,Appati1 and Gabriel,O.F2.(2014). A Stability Analysis on Models of 

Cooperative and Competitive Species , Research Journal of Mathematical and Statistical 

Sciences,2(7):17-22. 

Glatzmaiers,G.A.,and Roberts,P.H.(1995). A three-dimensional self consistent computer 

simulation of a geomagnetic field reversal, A Journal of Nature,377:203–209. 

Jinming,Z.,Lijun,Z.and Yuzhen,B.(2019). Stability and bifurcation analysis on a predator-prey 

system with the weak Allee effect. Mathematics, 7(432):1-15.China 

Katsuhiko,O.(1997). Modern Control Engineering, Third Edition, Prentice Hall, New Jersey. 



44 
 

Khalil,H.K.(1996). Non-linear system, second edition prentice Hall,Inc.32:1323-1327. 

Liu ,X.J.,LiXian,F,.Chang ,Y.X.and Zhang ,J.G.(2008). Chaos and Chaos Synchronism of the 

RikitakeTwo-Disk Dynamo,Fourth International Conference on Natural Computation, 

IEEE computer Society,706:613-617. 

Llibre,J.,and Messias,M.(2009). Global dynamics of the Rikitake system, Physica D: Nonlinear 

Phenomena, 238(3):241–252. 

Mandal,K.,Abusorrah,A.,Hindawi,A.M.M,Turki,A.Y.and Banerejee,S.(2014). A new software 

for stability and bifurcation analysis of switched dynamical systems. International 

Symposium on Nonlinear Theory and its Applications. Luzern,108-111, Switzerland 

McMillen,T.(1999). The shape and dynamics of the Rikitakeattractor, The Nonlinear Journal, 

1:1-10. 

Mohammad Javidi, and Nemat Nyamorad.(2013). Numerical Chaotic Behavior of the Fractional 

Rikitake System, World Journal of Modelling and Simulation, 9 (2); 120-129. 

Nijamuddin,A.and Santabrata,C.(2015). Stability and bifurcation analysis of a three species 

competitive food chain model system incorporating prey refuge, International Journal of 

Ecological Economics and Statistics;36(2):13-39.   

Rikitake,T.(1958). Oscillations of a system of disk dynamos, Mathematical Proceedings of the 

Cambridge Philosophical Society,54(1): 89–105. 

Sandip,B.(2008). Immunotherapy with Interleukin - 2: A study based on mathematical modeling. 

International Journal of Applied Mathematics and Computer Science, 18(3):1–10,USA. 

Sheikh,E.MMA.(2004) and Mahrouf,SAA.(2005). Stability and bifurcation of a simple food 

chain in a chemostat with removal rates,Chaos, Solitons& Fractals;23:1475-1489. 

Strogatz,H.(1994). Nonlinear Dynamics and Chaos: With Applications Physics, 

Biology,Chemistry and Engineering, Canada. 

Valls,C.(2005). Rikitake system: analytic and Darbouxian integrals, proceeding of the Royal 

society of Edinburgh section of mathematics,135(06):1309-1326. 



45 
 

Wanga,J.,Ran,Z.and Toshikazu,K.(2015). The stability analysis of an SVEIR model with 

continuous age-structure in the exposed and infectious classes Journal of Biological 

Dynamics,9(1); 73–101 

Wanyong,Wang and Lijuan,C.(2016). Stability and Hopf Bifurcation Analysis of an Epidemic 

Model by Using the Method of Multiple Scales, mathematical problems in 

Engineering,1-8,China 

Xiao,M.,Jiang,G., Cao,J.and Zheng,W.(2017). Local bifurcation analysis of a delayed fractional-

order dynamic model of dual congestion control algorithms. IEEE/CAA J. Autom.Sin. 

4(2):1–9  

Yoshinaga,T.,and Kawakami, H.(1995). Bifurcation and chaotic state in forced oscillatory 

circuits containing saturable inductors, in Nonlinear Dynamics in Circuits, World 

Scientfic, 89–119, Singapore 

 


