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Abstract

In this research, we have studied the squeezing and statistical properties of the cavity

light beams produced by a dynamics of non-degenerate three-level laser in a closed

cavity and coupled with a two-mode vacuum reservoir for single atom via a single-

port mirror. We have carried out our analysis by putting the noise operators associ-

ated with the vacuum reservoir in normal order. Applying the solutions of the equa-

tions of evolution for the expectation values of the atomic operators and the quan-

tum Langevin equations for the cavity mode operators, we have calculated the global

and local mean and variance of the photon number as well as the quadrature squeez-

ing of the cavity light single-mode and two-modes.Furthermore we determined the

photon entanglement as well as the atom-cavity entanglement. It is found to be the

maximum quadrature squeezing for the values of stimulated emission decay con-

stant(i.e γc = 0.4 and 0.2 ). The maximum quadrature squeezing is found to be 43.43%

below the vacuum-state level. Moreover we have found that both the mean photon

number for a two-mode laser light beam is the sum of the mean photon numbers

and the single-mode light beams. On the other hand, the quadrature squeezing is

due to the correlation of the two light beams. In view of this correlations the two

mode cavity light is entangled. The degree of entanglement increases with the in-

crease in stimulated emission decay constant.
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Introduction

The interaction of a three-level laser with a cavity mode has attracted a great deal

of interest in recent years[1-7]. It is believed that atomic coherence is found to be

responsible for various important quantum features of the emitted photons. In gen-

eral, the atomic coherence can be induced in a three-level atom by preparing the

atom initially in a coherent superposition of the top and bottom levels or by cou-

pling these levels by coherent light after it is injected in to the cavity [2,4,5,6, 8,9].

The superposition or the coupling of the top and bottom levels is responsible for the

interesting non classical features of the emitted photons. In a three-level laser the

top, intermediate, and the bottom levels are denoted by |a〉, |b〉 , and |c〉 in which the

transitions between levels |a〉 → |b〉 and |b〉 → |c〉 are assumed to be dipole allowed,

with direct transition between levels |a〉→ |c〉 to be dipole forbidden. When the atom

makes a transition from the top to the intermediate level and then from the interme-

diate to the bottom level, two photons are emitted. If the two photons have different

frequencies, then the three-level atom is called anon-degenerate three-level atom

otherwise it is called degenerate. Some authors have studied the statistical and the

squeezing properties of the light produced by a three-level atom in which the crucial

role is played by the superposition of the top and bottom levels [2,3,4,5,10,11,12,13].

It is found that the cavity modes exhibit squeezing under certain conditions. On the

other hand, a three-level atom in which the top and bottom levels coupled by a co-

herent light have been studied by different authors [3, 5,7,14]. They have predicted

that such a system can generate squeezed light over a large-range of the amplitude

of the coherent light. The squeezing in this case is due to the coupling of the top and

bottom levels[15].

Entanglement is one of the fundamental tools for quantum information process-

ing and communication protocols.The generation and manipulation of entangle-

ment has attracted a great deal of interest with wide applications in quantum tele-

portation, quantum dense coding, quantum computation, quantum error correc-

1
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tion, and quantum cryptography [16]. Recently, much attention is given on the gen-

eration of continuous-variable entanglement to manipulate the discrete counter-

parts, quantum bits, to perform quantum information processing. In general, the

degree of entanglement decreases when it interacts with the environment. But, the

efficiency of quantum information processing highly depends on the degree of en-

tanglement. Therefore, it is necessary to generate strongly entangled states which

can survive from external noise. In general, due to the result of the strong correla-

tion between the cavity modes, a two-mode squeezed state violates certain classical

inequalities and then can be used in preparing Einstein-Podolsky-Rosen (EPR)-type

entanglement [17].

Recently, Tesfa [18] has studied the squeezing property of the cavity modes pro-

duced by a non-degenerate three-level laser applying the solutions of stochastic dif-

ferential equations.

Tamirat [19] has studied the analysis of the quantum properties of cavity light

produced by a coherently driven non-degenerate three-level laser in a closed cavity

and coupled to a two-mode vacuum reservoir. A three-level laser with the top and

bottom levels of the atoms injected into the cavity coupled by a strong coherent light

can also generate light in a squeezed state [20]. The steady state entanglement in a

non-degenerate three-level laser has been studied when the atomic coherence is in-

duced by initially preparing atoms in coherent superposition of the top and bottom

levels [20-24] and when the top and bottom levels of the three-level atoms injected

into a cavity are coupled by coherent light [24-26]. Moreover, Fesseha has studied the

quantum properties of the light emitted by the three level atoms available in a closed

cavity and pumped to the top level at a constant rate by means of electron bombard-

ment [26]. More recently, Eyob [27] has studied continuous-variable entanglement

in non-degenerate three-level laser with a parametric amplifier. In this model the

injected atomic coherence introduced by initially preparing the atoms in a coherent

superposition of the top and bottom levels. In addition, to exhibiting a two-mode

squeezed light, this combined system produces light in an entangled state. In one

model of such a laser, three-level atoms initially in the upper level are injected at a

constant rate into the cavity and removed after they have decayed due to sponta-

neous emission. It appears to be quite difficult to prepare the atoms in a coherent

super position of the top and bottom levels before they are injected into the laser

cavity. Besides, it should certainly be hard to find out that the atoms have decayed

spontaneously before they are removed from the cavity.
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In this thesis, we study the quantum properties of the light generated by a dy-

namics of non-degenerate three-level laser with a closed cavity and coupled to a

two-mode vacuum reservoir via a single-port mirror. In order to carry out our cal-

culation, we put the noise operators associated with the vacuum reservoir in normal

order. Thus, first we obtain the quantum Langevin equations for the cavity mode

operators. Then, employing the large-time approximation scheme, we calculate the

equations of evolution of the expectation values of atomic operators with the aid of

Heisenberg picture. Moreover, we determine the solutions of the equations of evo-

lution of the expectation values of the atomic operators and the quantum Langevin

equations for cavity mode operators. And applying the resulting solutions, we ob-

tain the global as well as the local mean photon number, photon number variance,

and quadrature variances for light mode a and light mode b. Moreover, employing

the resulting solutions of the equations of evolution of the expectation values of the

atomic operators and the quantum Langevin equations for cavity mode operators,

we determine the global mean photon number, photon number variance, photon

number correlations, intensity difference fluctuations, quadrature variance, quadra-

ture squeezing, and photon entanglement of the two-mode cavity light.



2

Operator Dynamics

In this chapter we consider a dynamics of non degenerate three-level laser driven by

coherent light and with the cavity modes coupled to a two-mode vacuum reservoir

via a single-port mirror as shown in Fig.2.1. We first set up the interaction Hamilto-

nian for a dynamics of non-degenerate three-level atom with the cavity modes and

the quantum Langevin equations for the cavity mode operators. In addition, em-

ploying the Hamiltonian and the Heisenberg equation, we drive the equations of

evolution of the expectation values of the atomic operators. Finally, we determine

the steady-state solutions of the resulting equations of evolution. Here we carry out

our calculation by putting the noise operators associated with the two-mode vacuum

reservoir in normal order.

Figure 2.1: Scheme of dynamics of non-degenerate three level laser in a closed cavity and

coupled to two-mode vacuum reservoir.

2.1 The interaction Hamiltonian

We consider here the case in which the dynamics of non-degenerate three-level atom

in cascade configuration are available in a closed cavity. We denote the top, interme-

diate, and bottom levels of the three-level atom by |a〉, |b〉, and |c〉, respectively. As

4



2.2 Quantum Langevin Equations 5

shown in Fig. (2.1) for non-degenerate cascade configuration, when the atom makes

a transition from level |a〉 to |b〉 and from levels |b〉 to |c〉 two photons with different

frequencies are emitted. The emission of light when the atoms makes the transition

from the top level to the intermediate level is light mode a and the emission of light

when the atom makes the transition from the intermediate level to the bottom level

is light mode b. We assume that the cavity mode a is at resonance with transition

|a〉 → |b〉 and the cavity mode b is at resonance with the transition |b〉 → |c〉, with top

and bottom levels of the three-level atom coupled by coherent light. The coupling

of the top and bottom levels of a non-degenerate three-level atom by coherent light

can be described by the Hamiltonian expressed [8]

Ĥ
′
=
iΩ

2

[
σ̂†c − σ̂c

]
, (2.1)

where

σ̂c = |c〉 〈a| (2.2)

is lowering atomic operator and

Ω = 2ελ. (2.3)

Here ε, considered to be real and constant, is the amplitude of the driving coherent

light and λ is the coupling constant between the driving coherent light and the three-

level atom. In addition, the interaction of a three-level atom with the cavity modes

can be described by the Hamiltonian

Ĥ
′′

= ig
[
σ̂†aâ− â†σ̂a + σ̂†b b̂− b̂

†σ̂b
]
, (2.4)

where

σ̂a = |b〉 〈a|, (2.5)

σ̂b = |c〉 〈b|, (2.6)

g is the coupling constant between the atom and cavity mode a or b, and â and b̂ are

the annihilation operators for light modes a and b. Thus up on combining eqs. (2.1)

and (2.4), the interaction of the three-level atom with the driving coherent light and

cavity mode â and b̂ is described by the Hamiltonian as

ĤS(t) = ig
[
σ̂†aâ− â†σ̂a + σ̂†b b̂− b̂

†σ̂b
]

+
iΩ

2

[
σ̂†c − σ̂c

]
(2.7)
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2.2 Quantum Langevin Equations

We recall that the laser cavity is coupled to a two-mode vacuum reservoir via a single-

port mirror. In addition, we carry out our calculation by putting the noise operators

associated with the vacuum reservoir in normal order. Thus the noise operators will

not have any effect on the dynamics of the cavity mode operators [7,8]. We can there-

fore, drop the noise operators and write the quantum Langevin equations for the

operators â and b̂ as

dâ

dt
= −κ

2
â− i[â, Ĥ] (2.8)

db̂

dt
= −κ

2
b̂− i[b̂, Ĥ], (2.9)

where κ is the cavity damping constant. Then in view of Eq. (2.7), the quantum

Langevin equations for cavity mode operators â and b̂ turns out to be

dâ

dt
= −κ

2
â− gσ̂a, (2.10)

db̂

dt
= −κ

2
b̂− gσ̂b. (2.11)

2.3 Equations of evolution of the atomic oprators

Here we seek to derive the equations of evolution of the expectation values of the

atomic operators by applying the Heisenberg equation. Moreover, we find the steady-

state solutions of the equations of evolution of the atomic operators. To this end,

employing the relation

d

dt
〈Â〉 = −i〈[Â, Ĥ]〉 (2.12)

along with the interaction Hamiltonian of the system described by (2.7), one can

readily establish that

d

dt
〈σ̂a〉 = g[〈η̂bâ〉 − 〈η̂aâ〉+ 〈b̂†σ̂c〉] +

Ω

2
〈σ̂†b〉 (2.13)

d

dt
〈σ̂b〉 = g[〈η̂cb̂〉 − 〈â†σ̂c〉 − 〈η̂bb̂〉]−

Ω

2
〈σ̂†a〉 (2.14)

d

dt
〈σ̂c〉 = g[〈σ̂bâ〉 − 〈σ̂ab̂〉] +

Ω

2

[
〈η̂c〉 − 〈η̂a〉

]
(2.15)

where

η̂a = |a〉 〈a| (2.16)

η̂b = |b〉 〈b| (2.17)

η̂c = |c〉 〈c| (2.18)
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Next we seek to calculate the probability for the three-level atom to be in the top,

intermediate, and bottom level by using Heisenberg equation

d

dt
〈|a〉〈a|〉 = −i〈[|a〉〈a|, Ĥ]〉, (2.19)

Since 〈|a〉〈a|〉 = ρaa, this can be rewritten as

d

dt
ρaa = −i〈[|a〉〈a|, Ĥ]〉, (2.20)

so that with the aid of Eq.(2.7), we have

d

dt
ρaa = g[〈σ̂†aâ〉+ 〈â†σ̂a〉] +

Ω

2

[
ρac + ρca

]
(2.21)

d

dt
ρbb = g[〈σ̂†b b̂〉+ 〈b̂†σ̂b〉 − 〈σ̂†aâ〉 − 〈â†σ̂a〉] (2.22)

d

dt
ρcc = −g(〈σ̂†b â〉 − 〈b̂

†σ̂b〉)−
Ω

2

[
ρac + ρca

]
(2.23)

d

dt
ρac = −g(〈â†σ̂†b〉 − 〈b̂

†σ̂†a〉)−
Ω

2

[
ρcc − ρaa

]
. (2.24)

in which

ρaa = 〈a|ρ|a〉, (2.25)

ρbb = 〈b|ρ|b〉, (2.26)

ρcc = 〈c|ρ|c〉, (2.27)

ρac = 〈a|ρ|c〉, (2.28)

with ρaa, ρbb, and ρcc being the probability for the atom to be the top, intermediate,

and bottom levels, respectively. We see that Eqs. (2.13)-(2.15) and (2.21)-(2.24) are

nonlinear and coupled differential equations and hence it is not possible to obtain

exact time-dependent solution of these equations. We intend to overcome this prob-

lem by applying the large-time approximation [15]. Thus applying the large-time ap-

proximation scheme, we obtain from Eqs. (2.10) and (2.11) the approximately valid

relations

â = −2g

κ
σ̂a, (2.29)

b̂ = −2g

κ
σ̂b. (2.30)

Evidently, these turn out to be exact relations at steady-state. Now introducing Eqs.

(2.29) and (2.30) into Eqs. (2.13), (2.14), (2.15), (2.21), (2.22), (2.23), and (2.24), the
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equations of evolution of the atomic operators take the form

d

dt
〈σ̂a〉 = −γc〈σ̂a〉+

Ω

2
〈σ̂†b〉, (2.31)

d

dt
〈σ̂b〉 = −γc

2
〈σ̂b〉 −

Ω

2
〈σ̂†a〉, (2.32)

d

dt
〈σ̂c〉 = −γc

2
〈σ̂c〉+

Ω

2

[
ρcc − ρaa

]
, (2.33)

d

dt
ρaa = −γcρaa +

Ω

2

[
ρac + ρca

]
, (2.34)

d

dt
ρbb = −γc[ρbb − ρaa], (2.35)

d

dt
ρcc = γcρbb −

Ω

2

[
ρca + ρac], (2.36)

d

dt
ρac = −γc

2
ρac +

Ω

2

[
ρcc − ρaa

]
, (2.37)

where

γc =
4g2

κ
(2.38)

is the stimulated emission decay constant. Based on the definition of this decay con-

stant, we infer that an atom in the top level and inside a closed cavity emits photons

due to its interaction with the cavity modes. We certainly identify this process to be

stimulated photon emission. The operators ρaa, ρbb, and ρcc representing the number

of atoms in the top, intermediate, and bottom levels, respectively. We easily find the

steady-state solutions of Eqs. (2.31)-(2.37) to be

〈σ̂a〉 =
Ω

2γc
〈σ̂†b〉, (2.39)

〈σ̂b〉 = −Ω

γc
〈σ̂†a〉, (2.40)

ρaa =
Ω

2γc

[
ρac + ρca

]
, (2.41)

ρbb = ρaa, (2.42)

ρac =
Ω

2γc

[
ρcc − ρaa

]
. (2.43)

With the aid of the identity

ρaa + ρbb + ρcc = 1, (2.44)

along with Eq. (2.43), we obtain

ρac =
Ω

γc
− 3Ω2

2γ2c

[
ρac + ρca

]
. (2.45)

Since ρac is real, we see that ρac = ρca. In view of this, Eq. (2.45) can be put in the form

ρac =
γcΩ

γ2c + 3Ω2
, (2.46)
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In view of this result, we see that

ρaa =
Ω2

γ2c + 3Ω2
, (2.47)

ρbb =
Ω2

γ2c + 3Ω2
, (2.48)

ρcc =
γ2c + Ω2

γ2c + 3Ω2
. (2.49)

These equations represent the steady-state solutions of the equations of evolution of

the atomic operators for a dynamics of non-degenerate three-level atom in a closed

cavity and coupled with two-mode vacuum reservoir. The results described by Eqs.

(2.46)-(2.49) are exactly the same as those obtained by Fesseha [8]. In addition, we

note that for Ω� γc, Eqs. (2.46)-(2.49) reduce to

ρaa =
1

3
, (2.50)

ρbb =
1

3
, (2.51)

ρcc =
1

3
, (2.52)

ρac = 0. (2.53)

Finally, in the absence of the deriving coherent light, when Ω = 0, Eqs. (2.46)-(2.49)

turns out to be

ρaa = 0, (2.54)

ρbb = 0, (2.55)

ρcc = 1, (2.56)

ρac = 0. (2.57)

These results shows initially, when the deriving coherent light (Ω = 0), that all the

atoms to be in bottom level. Expressions (2.47), (2.48), and (2.49) represent the prob-

abilities for the atom to be in the top, intermediate, and bottom levels. Moreover,

from Eq. (2.42), we see that at steady state ρbb = ρaa, which shows that the probability

for the atom to be in the top level is equal to that in the intermediate level. Then

introducing Eqs. (2.40) and (2.41), into Eqs. (2.32) and (2.33) respectively, we get

d

dt
〈σ̂a〉 = −

[
γc +

Ω2

2γc

]
〈σ̂a〉, (2.58)

d

dt
〈σ̂b〉 = −

[
γc
2

+
Ω2

2γc

]
〈σ̂b〉. (2.59)
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At steady state, we have

〈σ̂a〉 = 0, (2.60)

〈σ̂b〉 = 0, (2.61)

From the above results, we note that the atomic operators 〈σ̂a〉 and 〈σ̂b〉 are Gaussian

variables with zero mean. Using the definition

σ̂ = σ̂a + σ̂b, (2.62)

and taking into account Eqs. (2.2), (2.5), (2.6), (2.25)-(2.28) , it can be readily estab-

lished that

σ̂†σ̂ = ρaa + ρbb, (2.63)

σ̂σ̂† = ρbb + ρcc, (2.64)

σ̂2 = ρac. (2.65)

We note that the steady-state solutions of Eqs. (2.10) and (2.11) are

â = −2g

κ
σ̂a, (2.66)

b̂ = −2g

κ
σ̂b. (2.67)

Now employing Eqs. (2.66) and (2.67), the commutation relations for the cavity mode

operators are found to be

[â, â†] =
γc
κ

[
ρbb − ρaa

]
, (2.68)

[b̂, b̂†] =
γc
κ

[
ρcc − ρbb

]
, (2.69)

Now adding Eqs. (2.68) and (2.69), we get

[ĉ, ĉ†] =
γc
κ

[
ρcc − ρaa

]
(2.70)

and the sum of Eqs. (2.10) and (2.11), one can easily established that

dĉ

dt
= −κ

2
ĉ− gσ̂, (2.71)

in which

ĉ = â+ b̂. (2.72)

We next proceed to obtain the expectation value of the cavity mode operators. The

expectation value of the solution of Eq. (2.10) is expressible as

〈â(t)〉 = 〈â(0)〉e−κt/2 + g

∫ t

0

eκt
′/2〈σ̂a(t′)〉dt′. (2.73)
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With the help of Eq. (2.60) and the assumption that the cavity light is initially in a

vacuum state, Eq. (2.73) turns out to be

〈â(t)〉 = 0. (2.74)

In view of the linear equation described by Eq. (2.68) and the result given by Eq.

(2.74), we claim that â(t) is a Gaussian variable with zero mean. Following a similar

procedure, one can readily obtain the expectation value of the solution of Eq. (2.11)

to be

〈b̂(t)〉 = 0. (2.75)

Then on account of the linear equation described by Eq. (2.11) and the result given

by Eq. (2.75), we realize b̂(t) to be a Gaussian variable with zero mean. Now with the

aid of Eqs. (2.74) and (2.75) together with (2.72), we have

〈ĉ(t)〉 = 0. (2.76)

These results shows initially, when the deriving coherent light (Ω = 0), that all the

atoms to be in bottom level.



3

Photon Statistics

In this chapter we seek to study the statistical properties of the light produced by

dynamics of non-degenerate three-level laser in a closed a cavity and coupled with

two-mode vacuum reservoir for single atom via a single-port mirror. Applying the

solutions of the equations of evolution of the expectation values for the atomic oper-

ators and the quantum Langevin equations for the cavity mode operators, we obtain

the global and local photon statistics for light modes a and b. In addition, we deter-

mine the global photon statistics of the two-mode cavity light.

3.1 Single-mode photon statistics

In this section we obtain the global mean and variance of the photon numbers for

light modes a and b. Moreover, we determine the local mean and variance of the

photon numbers for light modes a and b.

3.1.1 Global mean photon number

Here we seek to calculate the global mean photon numbers of light modes a and b,

produced by the dynamics of non-degenerate three-level laser in a closed cavity and

coupled with two-mode vacuum reservoir.

A. Global mean photon number of light mode a

We now proceed to obtain the mean photon number of light mode a in the entire

frequency interval. The mean photon number of light mode a, represented by the

operators â and â†, is defined by

n̄a = 〈â†â〉. (3.1)

We note that the steady-state solution of Eq. (2.10) is

â = − 2g

κ
√
N
σ̂a, (3.2)

12
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so that introducing Eq. (3.2) and its adjoint into (3.1), we see that

n̄a =
γc
κN
〈σ̂†aσ̂a〉. (3.3)

With the help of Eq. (2.46), one can write

σ̂†aσ̂a = η̂a, (3.4)

from which follows

〈σ̂†aσ̂a〉 = 〈η̂a〉 = ρaa. (3.5)

On account of Eq. (3.5), Eq. (3.3) can be expressed as

n̄a =
γc
κ
ρaa. (3.6)

In view of Eq. (2.47), there follows

n̄a =
γc
κ
N

[
Ω2

γ2c + 3Ω2

]
. (3.7)

Figure 3.1: Plot of global mean photon number of light mode a

This is the steady-state mean photon number of light mode a produced by dy-

namics of non-degenerate three-level laser in a closed cavity and coupled with two-

mode vacuum reservoir. In addition, we note that for Ω� γc, Eq. (3.7) reduces to

n̄a =
γc
3κ
. (3.8)

B. Global mean photon number of light mode b
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Here we seek to determine the mean photon number of light mode b in the entire

frequency interval produced by the system under consideration. The mean photon

number of light mode b, represented by the operators b̂ and b̂†, is defined by

n̄b = 〈b̂†b̂〉. (3.9)

We note that the steady-state solution of Eq. (2.11) is

b̂ = −2g

κ
σ̂b, (3.10)

so that introducing Eq. (3.10) and its adjoint into (3.9), we see that

n̄b =
γc
κ
〈σ̂†b σ̂b〉. (3.11)

With the help of Eq. (2.47), one can write

σ̂†b σ̂b = η̂b, (3.12)

from which follows

〈σ̂†b σ̂b〉 = 〈η̂b〉 = ρbb. (3.13)

On account of Eq. (3.13), Eq. (3.11) can be expressed as

n̄b =
γc
κ
Nρbb. (3.14)

Now on substituting Eq. (2.48) into (3.14), the mean photon number of light mode b

takes, at steady-state, the form

n̄b =
γc
κ
N

[
Ω2

γ2c + 3Ω2

]
. (3.15)

Fig 3.2 describes that the global mean photon number increases as decay con-

stant (γc) increases. This is the steady-state mean photon number of light mode b

produced by the dynamics of non-degenerate three-level laser in a closed cavity and

coupled to a two-mode vacuum reservoir. We would like to point out that this result

is exactly the same as that described by Eq. (3.7). In addition, we note that for Ω� γc,

Eq. (3.15) reduces to

n̄b =
γc
3κ
. (3.16)
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Figure 3.2: Plot of global mean photon number of light mode b for the values of κ=0.8,

γc=0.4

3.1.2 Local mean photon number

Here we seek to determine the local mean photon numbers of light modes a and b,

produced by the dynamics of non-degenerate three-level laser in a closed cavity and

coupled with two-mode vacuum reservoir.

A. Local mean photon number of light mode a

We now proceed to obtain the mean photon number of light mode a in a given fre-

quency interval. To determine the local mean photon number of light mode a, we

need to consider the power spectrum of light mode a. The power spectrum of light

mode a with central frequency ω0 is expressible as [8]

Pa(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈â†(t)â(t+ τ)〉ss. (3.17)

Upon integrating both sides of Eq. (3.17) over ω, we readily get∫ ∞
−∞

Pa(ω)dω = n̄a, (3.18)

in which n̄a is the steady-state mean photon number of light mode a. From this re-

sult, we observe that Pa(ω)dω is the steady-state mean photon number of light mode

a in the frequency interval between ω and ω + dω [8].

We now proceed to determine the two-time correlation function that appears in

Eq. (3.17). To this end, we realize that the solution of Eq. (2.10) can be written as

â(t+ τ) = â(t)e−κτ/2 +
g√
1
e−κτ/2

∫ τ

0

eκτ
′/2σ̂a(t+ τ ′)dτ ′. (3.19)
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Applying the large time approximation on Eq. (2.32), we have

〈σ̂†b〉 =
Ω

γc
〈σ̂a〉. (3.20)

Employing this result, Eq. (2.31) takes the form

d

dt
〈σ̂a〉 = −η

2
〈σ̂a〉. (3.21)

On the basis of Eq. (3.21), we see that

d

dt
σ̂a(t) = −η

2
σ̂a(t) + F̂a(t), (3.22)

in which F̂a(t) is a noise operator with a vanishing mean and η is given by

η =

[
Ω2 + 2γ2c

γc

]
. (3.23)

The solution of Eq. (3.22) can be put in the form

σ̂a(t+ τ) = σ̂a(t)e
−ητ/2 + e−ητ/2

∫ τ

0

eητ
′/2F̂a(t+ τ ′)dτ ′, (3.24)

so that on introducing this into Eq. (3.19), there follows

â(t+ τ) = â(t)e−κτ/2 + ge−κτ/2σ̂a(t)

∫ τ

0

e(κ−η)τ
′/2dτ ′

+ ge−κτ/2
∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ
′+ητ ′′]/2F̂a(t+ τ ′′). (3.25)

Thus on carrying out the first integration, we arrive at

â(t+ τ) = â(t)e−κτ/2 +
2gσ̂a(t)

(κ− η)

[
e−ητ/2 − e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ
′+ητ ′′]/2F̂a(t+ τ ′′). (3.26)

Now multiplying on the left by â†(t) and taking the expectation value of the resulting

expression, we have

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉e−κτ/2 +
2g〈â†(t)σ̂a(t)〉

(κ− η)

[
e−ητ/2 − e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ
′+ητ ′′]/2〈â†(t)F̂a(t+ τ ′′)〉. (3.27)

Applying the large-time approximation scheme, one gets from Eq. (2.10)

â(t) =
2g

κ
σ̂a(t), (3.28)

so that in view of this result, we get

σ̂a(t) =
κ

2g
â(t). (3.29)
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Thus substitution of Eq. (3.29) into Eq. (3.27) results in

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ
′+ητ ′′]/2〈â†(t)F̂a(t+ τ ′′)〉. (3.30)

Since a noise operator at a certain time should not affect a light mode operator at an

earlier time [8], we note that

〈â†(t)F̂a(t+ τ ′′)〉 = 0. (3.31)

It then follows that

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
(3.32)

and at steady-state, we have

〈â†(t)â(t+ τ)〉ss = n̄a

[
κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
. (3.33)

Thus on combining Eq. (3.33) with Eq. (3.17), the power spectrum of light mode a

with central frequency ω0 is expressible as

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

∫ ∞
0

dτe−[η/2−i(ω−ω0)]τ − η
∫ ∞
0

dτe−[κ/2−i(ω−ω0)]τ

]
, (3.34)

so that on carrying out the integration, we readily arrive at

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

[η/2− i(ω − ω0)]
− η

[κ/2− i(ω − ω0)]

]
. (3.35)

This can be rewritten as

Pa(ω) =
κn̄a
κ− η

[
η/2π

[η/2]2 + (ω − ω0)2

]
− ηn̄a
κ− η

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.36)

We realize that the mean photon number of light mode a in the interval between

ω′ = −λ and ω′ = λ is expressible as [8]

n̄a±λ =

∫ λ

−λ
Pa(ω

′)dω′, (3.37)

in which ω′ = ω − ω0. Therefore, upon substituting Eq. (3.35) into Eq. (3.37) and

carrying out the integration by employing the relation∫ λ

−λ

dx

x2 + a2
=

2

a
tan−1

(
λ

a

)
, (3.38)
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The local mean photon number of light mode a produced by the dynamics of non-

degenerate three-level laser in a closed cavity and coupled to a two-mode vacuum

reservoir is found to be

n̄a±λ = n̄aza(λ), (3.39)

where za(λ) is given by

za(λ) =
2κ/π

κ− η
tan−1

(
2λ

η

)
− 2η/π

κ− η
tan−1

(
2λ

κ

)
(3.40)

The local mean photon number increases when λ value increases. We see from Eq.

Figure 3.3: Plot of za(λ) that n̄a±λ increases with λ

(3.39) along with the plot of za(λ) that n̄a±λ increases with λ until it reaches the max-

imum value of the local mean photon number. From the plots in Fig. (3.39), we find

the values indicated below:

γc za(0.5) za(1) za(1.5) za(2)

0.2 0.6457 0.8113 0.8886 0.9274

0.4 0.6259 0.7884 0.866 0.9062

Table 3.1: Values of zb(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results za(λ) in the value of stimulated emission (γc = 0.4) is

less than in the value of stimulated emission (γc = 0.2). Moreover, using the above

results of za(λ) and on account of Eq. (3.61), we have

We therefore observe that a large part of the total mean photon number is con-

fined in a relatively small frequency interval.



3.1 Single-mode photon statistics 19

γc n̄a±0.5 n̄a±1 n̄a±2

0.2 0.81 0.97 1.09

0.4 0.79 0.95 1.07

Table 3.2: Values of n̄b±λ for γc = 0.4, κ = 0.6, and Ω = 2.

B. Local mean photon number of light mode b

We now proceed to obtain the mean photon number of a light mode b in a given

frequency interval produced by the system under consideration. To determine the

local mean photon number of light mode b, we need to consider the power spectrum

of light mode b. The power spectrum of light mode b with central frequency ω0 is

expressible as

Pb(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈b̂†(t)b̂(t+ τ)〉ss. (3.41)

Upon integrating both sides of Eq. (3.41) over ω, we readily get∫ ∞
−∞

Pb(ω)dω = n̄b, (3.42)

in which n̄b is the steady-state mean photon number of light mode b. From this result,

we observe that Pb(ω)dω is the steady-state mean photon number of light mode b in

the frequency interval between ω and ω + dω. We now proceed to calculate the two-

time correlation function that appears in Eq. (3.42). To this end, we realize that the

solution of Eq. (2.11) can be written as

b̂(t+ τ) = b̂(t)e−κτ/2 + ge−κτ/2
∫ τ

0

eκτ
′/2σ̂b(t+ τ ′)dτ ′. (3.43)

Applying the large time approximation on Eq. (2.31), we have

〈σ̂a〉 =
Ω

γc
〈σ̂†b〉. (3.44)

Employing this result, Eq. (2.32) takes the form

d

dt
〈σ̂†b〉 = −1

2
µ〈σ̂†b〉. (3.45)

On the basis of Eq. (3.45), we see that

d

dt
σ̂b(t) = −µ

2
σ̂b(t) + F̂b(t), (3.46)

in which F̂b(t) is a noise operator with a vanishing mean and µ is given by

µ =

[
Ω2 + 2γ2c

2γc

]
. (3.47)
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The solution of equation (3.46) can be put in the form

σ̂b(t+ τ ′) = σ̂b(t)e
−µτ ′/2 + e−µτ

′/2

∫ τ ′

0

e−µτ
′′/2F̂b(t+ τ ′′)dτ ′′, (3.48)

so that on introducing this into Eq. (3.43), we have

b̂(t+ τ) = b̂(t)e−κτ/2 + ge−κτ/2σ̂b(t)

∫ µ

0

e(κ−µ)τ
′/2dτ ′

+ ge−κτ/2
∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ
′+µτ ′′]/2F̂b(t+ τ ′′). (3.49)

Thus on carrying out the first integration, we arrive at

b̂(t+ τ) = b̂(t)e−κτ/2 +
2gσ̂b(t)

(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ
′+µτ ′′]/2F̂b(t+ τ ′′). (3.50)

Now multiplying both sides on the left by b̂†(t) and taking the expectation value of

the resulting equation, we have

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉e−κτ/2 +
2g〈b̂†(t)σ̂b(t)〉

(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ
′+µτ ′′]/2〈b̂†(t)F̂b(t+ τ ′′)〉. (3.51)

Applying the large-time approximation scheme, one gets from Eq. (2.11)

b̂(t) =
2g

κ
σ̂b(t). (3.52)

In view of Eq. (3.52), we see that

σ̂b(t) =
κ

2g
b̂(t). (3.53)

With this substituted into Eq. (3.49), there follows

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
+ ge−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ
′+µτ ′′]/2〈b̂†(t)F̂b(t+ τ ′′)〉 (3.54)

and taking into account the fact that

〈b̂†(t)F̂b(t+ τ ′′)〉 = 0, (3.55)

we arrive at

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.56)
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Therefore, at steady-state, Eq. (3.56) takes the form

〈b̂†(t)b̂(t+ τ)〉ss = n̄b

[
κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.57)

Thus on combining Eq. (3.57) with Eq. (3.41), the power spectrum of light mode b

with central frequency ω0 can be put in the form

Pb(ω) =
1

π

[
n̄b

κ− µ

]
Re

[
κ

∫ ∞
0

dτe−[µ/2−i(ω−ω0)]τ − µ
∫ ∞
0

dτe−[κ/2−i(ω−ω0)]τ , (3.58)

so that on carrying out the integration, we readily arrive at

Pb(ω) =
κn̄b
κ− µ

[
µ/2π

[µ/2]2 + (ω − ω0)2

]
− µn̄b
κ− µ

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.59)

We realize that the mean photon number of light mode b in the interval between

ω′ = −λ and ω′ = λ is expressible as

n̄b±λ =

∫ λ

−λ
P (ω′)dω′, (3.60)

in which ω′ = ω − ω0. Therefore, upon substituting Eq. (3.59) into Eq. (3.60), and

performing the integration by using the relation given by Eq. (3.38), we readily get

n̄b±λ = n̄bzb(λ), (3.61)

where zb(λ) is given by

zb(λ) =
2κ/π

κ− µ
tan−1

(
2λ

µ

)
− 2µ/π

κ− µ
tan−1

(
2λ

κ

)
. (3.62)

We see from Eq. (3.61) along with the plot of zb(λ) that n̄b±λ increases with λ until it

reaches the maximum value of the global mean photon number. From the plots in

Fig.3.4, we find the values indicated below:

γc zb(0.5) zb(1) zb(1.5) zb(2)

0.4 0.95 0.9986 0.9996 0.9998

0.2 0.99 0.9986 0.9996 0.9998

Table 3.3: Values of zb(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

We see from these results zb(λ) in the value of stimulated emission (γc = 0.2)

is greater than in the value of stimulated emission (γc = 0.4). Moreover, using the

above results of zb(λ) and on account of Eq. (3.61), we have

From the plots in Fig. 3.4, we therefore observe that a large part of the total mean

photon number is confined in a relatively small frequency interval.
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Figure 3.4: Plot of local mean photon number for light mode b for the values of

κ=0.8,γc=0.4

γc n̄b±0.5 n̄b±1 n̄b±2

0.4 1.114 1.163 1.164

0.2 1.155 1.163 1.164

Table 3.4: Values of n̄b±λ for γc = 0.4, κ = 0.6, and Ω = 2.

3.1.3 Global photon-number variance

Here we seek to obtain the global photon number variance of light modes a and b,

produced by the dynamics of non-degenerate three-level laser with an open cavity

and coupled to a two-mode thermal reservoir.

A. Global photon-number variance of light mode a

We now proceed to calculate the photon number variance of light mode a in the

entire frequency interval. The photon number variance of light mode a is expressible

as

(∆n)2a = 〈â†ââ†â〉 − 〈â†â〉2. (3.63)

Applying the fact that â is a Gaussian variable with zero mean, we arrive at

(∆n)2a = 〈â†â〉〈ââ†〉+ 〈â†2〉〈â2〉. (3.64)
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In view of Eq. (3.2), we see that

〈â2〉 = 0, (3.65)

〈ââ†〉 =
γc
κ
ρbb. (3.66)

Thus on account of Eqs. (3.6), (3.65) and (3.66), the photon number variance (3.62)

turns out to be

(∆n)2a =

(
γc
κ

)2

ρaaρbb. (3.67)

With the aid of Eqs. (2.47) and (2.48), the photon number variance of light mode a

takes, at steady-state, the form

(∆n)2a =

[
γc
κ

]2 [
Ω2

γ2c + 3Ω2

]2
. (3.68)

Figure 3.5: Plot of global photon number variance of light mode a versus Ω for the

values of κ=0.8, γc=0.4

The fig 3.5 shows that the global photon number variance increases from Ω=0 to

Ω =2, This is the global photon number variance of light mode a, produced by the

dynamics of non-degenerate three-level laser with a closed cavity and coupled to a

two-mode vacuum reservoir. Moreover, in view of Eq. (3.7), we have

(∆n)2a = n̄2
a, (3.69)

Which represents the normally-ordered variance of the photon number for chaotic

light.



3.1 Single-mode photon statistics 24

we compare the global mean photon number and photon number variance of

light mode a. Global mean photon number of light mode a is very larger than that of

global photon number variance having the same value of parameters. The figure 3.6

Figure 3.6: Plot of global mean photon number and photon number variance of light mode

a for the values of κ=0.8, γc=0.4

shows that the global mean photon number is much more greater than that of global

photon number variance of the light mode (i.e light mode a).

In addition, we note that for Ω� γc, Eq. (3.68) reduces to

(∆n)2a =

[
γc
3κ

]2
, (3.70)

so that with the aid of Eq. (3.7), we see that

(∆n)2a = n̄2
a. (3.71)

B. Global photon-number variance of light mode b

Here we seek to obtain the photon number variance of light mode b in the entire

frequency interval. The photon number variance of light mode b is defined as

(∆n)2b = 〈b̂†b̂b̂†b̂〉 − 〈b̂†b̂〉2 (3.72)

and using the fact that b̂ is a Gaussian variable with zero mean, we readily get

(∆n)2b = 〈b̂†b̂〉〈b̂b̂†〉+ 〈b̂†2〉〈b̂2〉. (3.73)

In view of Eq. (3.10), we have

〈b̂2〉 = 0, (3.74)

〈b̂b̂†〉 =
γc
κ
ρcc. (3.75)
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Thus on account of Eqs. (3.12), (3.74) and (3.75), the photon number variance (3.79)

turns out to be

(∆n)2b =

(
γc
κ

)2

ρccρbb, (3.76)

from which follows

(∆n)2b = n̄b

[
γc
κ
− 2n̄b

]
. (3.77)

With the aid of Eq. (3.15), the photon number variance of light mode b takes, at

steady-state, the form

(∆n)2b =

(
γc
κ

)2[
Ω2(γ2c + Ω2)

(γ2c + 3Ω2)2

]
. (3.78)

Figure 3.7: Plot of global photon number variance of light mode b for the values of

κ=0.8, and γc=0.4

The fig. 3.7 describes that (∆n)2b increases with increasing in Ω value. This is

the steady-state global photon number variance of of light mode b produced by the

dynamics of non-degenerate three-level laser with a closed cavity and coupled to

a two-mode vacuum reservoir. Furthermore, we note that for Ω � γc, Eq. (3.78)

reduces to

(∆n)2b =

[
γc
3κ

]2
(3.79)

and in view of Eq. (3.16), there follows

(∆n)2b = n̄2
b , (3.80)
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which represents the normally-ordered variance of the photon number for chaotic

light. We readily observe from the plots in Fig. (7) that the photon number variance

of light mode b is (∆n)2b = 0.031 and occurs when the three-level laser is operating at

Ω = 0.40.

3.1.4 Local photon-number variance

Here we seek to study the local photon number variance of light modes a and b, pro-

duced by the coherently driven non degenerate three-level laser with a closed cavity

and coupled to a two-mode vacuum reservoir.

A. Local photon-number variance of light mode a

We now proceed to obtain the photon number variance of light mode a in a given

frequency interval. To determine the local photon number variance of light mode a,

we need to consider the spectrum of photon number fluctuations of light mode a.

The spectrum of photon number fluctuations of light mode a with central frequency

ω0 is expressible as [4]

Sa(ω) =
1

π

∫ ∞
0

dτei(ω−ω0)τ 〈n̂a(t), n̂a(t+ τ)〉ss, (3.81)

where

n̂a(t) = â†(t)â(t) (3.82)

and

n̂a(t+ τ) = â†(t+ τ)â(t+ τ). (3.83)

Upon integrating both sides of Eq. (3.81) over ω, we find∫ ∞
−∞

Sa(ω)dω = (∆n)2a, (3.84)

in which (∆n)2a is the steady-state photon number variance of light mode a. From

this result, we realize that Sa(ω)dω is the photon number variance of light mode a in

the frequency interval between ω and ω + dω [4].

We now proceed to evaluate the two-time correlation function that appears in Eq.

(3.81). Applying the notation [9]

〈Â, B̂〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉, (3.85)

we see that

〈n̂a(t), n̂a(t+ τ)〉 = 〈n̂a(t)n̂a(t+ τ)〉 − 〈n̂a(t)〉〈n̂a(t+ τ)〉. (3.86)
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On account of Eqs. (3.82) and (3.83) and using the fact that a is a Gaussian variable

with zero mean given by Eq. (2.74), we have

〈n̂a(t)n̂a(t+ τ)〉 = 〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉

+ 〈â(t)â(t+ τ)〉〈â†(t)â†(t+ τ)〉

+ 〈â†(t)â(t+ τ)〉〈â(t)â†(t+ τ)〉. (3.87)

Thus substitution of Eq. (3.87) into Eq. (3.86) results in

〈n̂a(t), n̂a(t+ τ)〉 = 〈â†(t)â†(t+ τ)〉〈â(t)â(t+ τ)〉

+ 〈â†(t)â(t+ τ)〉〈â(t)â†(t+ τ)〉. (3.88)

With the help of Eq. (3.26), one can readily establish that

〈â†(t)â†(t+ τ)〉 = 〈â†2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.89)

〈â(t)â(t+ τ)〉 = 〈â2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.90)

〈â(t)â†(t+ τ)〉 = 〈â(t)â†(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
. (3.91)

Now employing Eqs. (3.32), (3.89), (3.90), and (3.91), we obtain

〈n̂a(t)n̂a(t+ τ)〉 =

[
〈â†(t)â(t)〉〈â(t)â†(t)〉+ 〈â2(t)〉〈â†2(t)〉

]
×

[(
η

κ− η

)2

e−κτ +

(
κ

κ− η

)2

e−ητ − 2κη

(κ− η)2
e−(κ+η)τ/2

]
.(3.92)

This can be rewritten as

〈n̂a(t)n̂a(t+ τ)〉ss =
(∆n)2a

(κ− η)2

[
η2e−κτ + κ2e−ητ − 2κηe−(κ+η)τ/2

]
, (3.93)

in which (∆n)2a is the steady-state photon number variance of light mode a given by

Eq. (3.68). Therefore, in view of Eq. (3.93), the spectrum of photon number fluctua-

tions can be put in the form

Sa(ω) =
(∆n)2a

π(κ− η)2
Re

[
η2
∫ ∞
0

dτe−[κ−i(ω−ω0)]τ

+ κ2
∫ ∞
0

dτe−[η−i(ω−ω0)]τ − 2kη

∫ ∞
0

dτe−[
(κ+η)

2
−i(ω−ω0)]τ

]
. (3.94)

Thus on carrying out the integration, the spectrum of photon number fluctuations

of light mode a turns out to be

Sa(ω) =
(∆n)2a

(κ− η)2

[
η2κ/π

κ2 + (ω − ω0)2
+

κ2η/π

η2 + (ω − ω0)2
− 2κη(κ+ η)/2π

(κ+η
2

)2 + (ω − ω0)2

]
. (3.95)
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Now we realize that the photon number variance in the frequency interval be-

tween ω′ = −λ and ω′ = λ is expressible as [4]

(∆n)2a±λ =

∫ λ

−λ
Sa(ω

′)dω′, (3.96)

in which ω′ = ω − ω0. Therefore, substituting Eq. (3.93) into Eq. (3.94) leads to

(∆n)2a±λ =
(∆n)2a

π(κ− η)2

[ ∫ λ

−λ

η2κdω′

κ2 + ω′2
−
∫ λ

−λ

2κη(κ+ η)dω′

(κ+η
2

)2 + ω′2
+

∫ λ

−λ

ηκ2dω′

η2 + ω′2

]
. (3.97)

Employing the relation given by Eq. (3.38), the local photon number variance of light

mode a produced by the dynamics of non-degenerate three-level laser in a closed

cavity and coupled with a two-mode vacuum reservoir is found to be

(∆n)2a±λ = (∆n)2az
′

a(λ), (3.98)

where z
′
a(λ) is given by

z
′

a(λ) =
2η2/π

(η − κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− η)2
tan−1

(
λ

η

)
− 4κη/π

(κ− η)2
tan−1

(
2λ

κ+ η

)
. (3.99)

We see from Eq. (3.98) along with the plot z
′
a(λ) that (∆n)2a±λ increases with λ until it

Figure 3.8: Plot of Local photon number variance for light mode a for the values of

κ=0.8 and γc=0.4 and 0.2

reaches the maximum value of the global photon number variance. From the plots

in Fig.3.8 we find the values indicated below:

We see from these results that z
′
a(λ) the stimulated emission decay constant (γc =

0.4) is less than the stimulated emission decay constant (γc = 0.2). Moreover, using

the above results of z
′
a(λ) and on account of Eq. (3.99), we have We therefore observe
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γc z
′
a(0.5) z

′
a(1) z

′
a(2)

0.2 3.403 3.418 3.413

0.4 4.567 4.901 4.98

Table 3.5: Values of z
′
a(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

γc (∆n)2a±0.5 (∆n)2a±1 (∆n)2a±2

0.2 3.43 3.445 3.440

0.4 4.594 4.928 5.007

Table 3.6: Values of (∆n)2a±λ for γc = 0.4, κ = 0.8, and Ω = 2.

that a large part of the total variance of photon number is confined in a relatively

small frequency interval.

B. Local photon-number variance for light mode b

We now proceed to obtain the photon number variance of light mode b in a given

frequency interval produced by the system under consideration. To determine the

local photon number variance of light mode b, we need to consider the spectrum

of photon number fluctuations of light mode b. We define the spectrum of photon

number fluctuations of light mode b with central frequency ω0 by

Sb(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈n̂b(t), n̂b(t+ τ)〉ss, (3.100)

where

n̂b(t) = b̂†(t)b̂(t), (3.101)

n̂b(t+ τ) = b̂†(t+ τ)b̂(t+ τ). (3.102)

Upon integrating both sides of Eq. (3.100) over ω, we easily find∫ ∞
−∞

Sb(ω)dω = (∆n)2b , (3.103)

in which (∆n)2b is the steady-state photon number variance of the light mode b. We

can then assert that Sb(ω)dω is the steady-state photon number variance of light

mode b in the frequency interval between ω and ω + dω.

We now proceed to evaluate the two-time correlation function that appears in Eq.

(3.103). Applying the relation given by Eq. (3.85), we see that

〈n̂b(t), n̂b(t+ τ)〉 = 〈n̂b(t)n̂b(t+ τ)〉 − 〈n̂b(t)〉〈n̂b(t+ τ)〉. (3.104)
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On account of Eqs. (3.101) and (3.102), we have

〈n̂b(t)n̂b(t+ τ)〉 = 〈b̂†(t)b̂(t)〉〈b̂†(t+ τ)b̂(t+ τ)〉

+ 〈b̂(t)b̂(t+ τ)〉〈b̂†(t)b̂†(t+ τ)〉

+ 〈b̂†(t)b̂(t+ τ)〉〈b̂(t)b̂†(t+ τ)〉. (3.105)

Thus substitution of Eq. (3.104) into Eq. (3.105) results in

〈n̂b(t), n̂b(t+ τ)〉 = 〈b̂†(t)b̂†(t+ τ)〉〈b̂(t)b̂(t+ τ)〉

+ 〈b̂†(t)b̂(t+ τ)〉〈b̂(t)b̂†(t+ τ)〉. (3.106)

With the help of Eq. (3.50), one can readily obtain the following equations

〈b̂†(t)b̂†(t+ τ)〉 = 〈b̂†2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.107)

〈b̂(t)b̂(t+ τ)〉 = 〈b̂2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.108)

〈b̂(t)b̂†(t+ τ)〉 = 〈b̂(t)b̂†(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.109)

Hence on account of Eqs. (3.56), (3.107), (3.108), and (3.109), Eq. (3.106) can be put

in the form

〈n̂b(t)n̂b(t+ τ)〉 =

[
〈b̂†(t)b̂(t)〉〈b̂(t)b̂†(t)〉+ 〈b̂2(t)〉〈b̂†2(t)〉

]
×

[(
µ

κ− µ

)2

e−κτ +

(
κ

κ− µ

)2

e−µτ − 2κµ

(κ− µ)2
e−(κ+µ)τ/2

]
. (3.110)

This can be rewritten as

〈n̂b(t)n̂b(t+ τ)〉ss =
(∆n)2b

(κ− µ)2

[
µ2e−κτ + κ2e−µτ − 2κµe−(κ+µ)τ/2

]
, (3.111)

in which (∆n)2b is the steady-state photon number variance of light mode b given by

Eq. (3.78). With the help of Eq. (3.111), the spectrum of photon number fluctuations

can be put in the form

Sb(ω) =
(∆n)2b

π(κ− µ)2
Re

[
µ2

∫ ∞
0

dτe−[κ−i(ω−ω0)]τ

+ κ2
∫ ∞
0

dτe−[µ−i(ω−ω0)]τ

− 2κµ

∫ ∞
0

dτe−[
(κ+µ)

2
−i(ω−ω0)]τ

]
(3.112)

and carrying out the integration, we obtain

Sb(ω) =
(∆n)2b

(κ− µ)2

[
µ2κ/π

κ2 + (ω − ω0)2
− 2κµ(κ+ µ)/2π

(κ+µ
2

)2 + (ω − ω0)2
+

κ2µ/π

µ2 + (ω − ω0)2

]
. (3.113)
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Now we realize that the photon number variance in the frequency interval be-

tween ω′ = −λ and ω′ = λ is expressible as

(∆n)2b±λ =

∫ λ

−λ
Sb(ω

′)dω′, (3.114)

in which ω′ = ω − ω0. Therefore, substitution of Eq. (3.113) into Eq. (3.114) leads to

(∆n)2b±λ =
(∆n)2b

π(κ− µ)2

[ ∫ λ

−λ

µ2κdω′

κ2 + ω′2
−
∫ λ

−λ

2κµ(κ+ µ/2)dω′

(κ+µ
2

)2 + ω′2
+

∫ λ

−λ

κ2µdω′

µ2 + ω′2

]
. (3.115)

Employing the relation given by Eq. (3.38), the local photon number variance of light

mode b produced by the dynamics of non-degenerate three-level laser in a closed

cavity and coupled to a two-mode vacuum reservoir is found to be

(∆n)2b±λ = (∆n)2bz
′

b(λ), (3.116)

where z
′

b(λ) is given by

z
′

b(λ) =
2µ2/π

(µ− κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− µ)2
tan−1

(
λ

µ

)
− 4κµ/π

(κ− µ)2
tan−1

(
2λ

κ+ µ

)
. (3.117)

We see from Eq. (3.116) along with the plot z
′

b(λ) that (∆n)2b±λ increases with λ until

Figure 3.9: Plot of Local photon number variance of light mode b for the values of

κ=0.8, and γc=0.4 and 0.2

it reaches the maximum value of the local photon number variance. From the plots

in Fig. 3.9, we find the values indicated below:

We see from these results, z
′

b(λ) in the stimulated emission decay constant (γc = 0.4)

is greater than in the stimulated emission decay constant (γc = 0.2). Moreover, using

the above results of z
′

b(λ) and on account of Eq. (3.116), we have We therefore observe

that a large part of the total variance of photon number is confined in a relatively

small frequency interval.
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γc z
′

b(0.5) z
′

b(1) z
′

b(2)

0.2 1.5 2.4 2.9

0.4 - - −

Table 3.7: Values of z
′

b(λ) for γc = 0.4, κ = 0.8, and Ω = 2.

γc (∆n)2b±0.5 (∆n)2b±1 (∆n)2b±2

0.2 1.58 2.48 2.98

0.4 − − −

Table 3.8: Values of (∆n)2b±λ for γc = 0.4, κ = 0.8, and Ω = 2.

3.2 Two-mode photon statistics

In this section, applying the steady-state solutions of the equations of evolution of

the expectation values of the atomic operators and the quantum Langevin equations

for the cavity mode operators, we seek to obtain the mean and variance of the photon

numbers for the two-mode light beam.

3.2.1 Two-mode mean photon number

Here we seek to calculate the steady-state mean photon number of the two-mode

cavity light beam. The mean photon number of the two-mode light beam, repre-

sented by the operators ĉ and ĉ†, is defined by

n̄ = 〈ĉ†ĉ〉. (3.118)

The steady-state solution of Eq. (2.71) is found to be

ĉ =
2g

κ
σ. (3.119)

Hence at steady state the mean photon number goes over into

n̄ =
γc
κ

[ρaa + ρbb] . (3.120)

We see from Eq. (3.120) that the mean photon number of the two-mode light beam is

the sum of the mean photon numbers of the separate single-mode light beams given

by Eqs. (3.6) and (3.14). Therefore, on account of Eqs. (2.47) and (2.48), Eq. (3.120)

turns out to be

n̄ =
γc
κ

[
2Ω2

γ2c + 3Ω2

]
. (3.121)



3.2 Two-mode photon statistics 33

Figure 3.10: plot of mean photon number versus Ω in 2D and 3D

Figure 3.10 describes the mean photon number increases when the value of decay

constant increases. This is the steady-state mean photon number of a two-mode

cavity light produced by the dynamics of non-degenerate three-level laser in a closed

cavity and coupled to a two-mode vacuum reservoir. The result described by Eq.

(3.121) is exactly the same as the one obtained by Fesseha [8]. Furthermore, we note

that for Ω� γc, Eq. (3.121) reduces to

n̄ =
2γc
3κ

. (3.122)

We observe from the plots in Fig. 3.10 that the mean photon number of the two-

mode light beam is greater when than when γc=0.4, κ =0.8 and Ω=2.

3.2.2 Two-mode photon-number variance

Here we proceed to study the steady-state photon number variance of the two-mode

light beam, produced by the dynamics of non-degenerate three-level laser in a closed

cavity and coupled to a two-mode vacuum reservoir. The photon number variance
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for the two-mode cavity light is expressible as

(∆n)2 = 〈ĉ†ĉĉ†ĉ〉 − 〈ĉ†ĉ〉2. (3.123)

Since ĉ is Gaussian variable with zero mean, the variance of the photon number can

be written as

(∆n)2 = 〈ĉ†ĉ〉〈ĉĉ†〉+ 〈ĉ†2〉〈ĉ2〉. (3.124)

With the aid of Eq. (3.119), one can easily establish that

〈ĉĉ†〉 =
γc
κ

[
ρbb + ρcc

]
, (3.125)

〈ĉ2〉 =
γc
κ
ρac. (3.126)

Since 〈σ̂c〉 is real, then 〈ĉ2〉 = 〈ĉ†2〉. Therefore, with the aid of Eqs. (3.120), (3.125) and

(3.126), the variance of the photon number for the two-mode cavity light turns out

to be

(∆n)2 =

(
γc
κ

)2 [(
ρaa + ρbb

)(
ρbb + ρcc

)
+ ρ2ac

]
. (3.127)

We observe from Eq. (3.127) that the photon number variance of the two-mode light

beam does not happen to be the sum of the photon number variance of the separate

single-mode light beams given by Eqs. (3.69) and (3.76). Furthermore, upon substi-

tuting of Eqs. (2.46)-(2.49) into Eq. (3.127), the steady-state variance of the photon

number goes over into

(∆n)2 =

(
γc
κ

)2 [
4Ω4 + 3Ω2γ2c
(γ2c + 3Ω2)2

]
. (3.128)

Fig.3.11 shows that the photon number variance of two mode light versus Ω.

This is the steady-state photon number variance of the two-mode light beam,

produced by the dynamics of non-degenerate three-level laser in a closed cavity and

coupled to a two-mode vacuum reservoir. Furthermore, we note that for Ω� γc, Eq.

(3.128) reduces to

(∆n)2 =

[
2γc
3κ

]2
(3.129)

and in view of Eq. (3.124), we have

(∆n)2 = n̄2, (3.130)

which represents the normally-ordered variance of the photon number for chaotic

light.
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Figure 3.11: Plot of photon number variance of two mode light for the values of κ=0.8,

γc=0.4 and 0.2

3.3 The normalized Photon number Correlation

In order to determine whether the photon numbers of mode a and mode b are cor-

related or not, we must examine the normalized photon numbers correlation. Thus

the photon numbers correlation for light mode a and light mode b can be defined as

g
(2)
(a,b)(t) =

〈n̂an̂b〉
〈n̂a〉〈n̂b〉

, (3.131)

in which

〈n̂a〉 = 〈â†â〉, (3.132)

〈n̂b〉 = 〈b̂†b̂〉, (3.133)

〈n̂an̂b〉 = 〈â†âb̂†b̂〉 = 〈â†â〉〈b̂†b̂〉+ 〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉. (3.134)

It then follows that

g
(2)
(a,b)(t) = 1 +

〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉
〈â†â〉〈b̂†b̂〉

. (3.135)

In view of Eqs. (3.2) and (3.10) along with their conjugates, we have

〈n̂a〉 =
γc
κ
ρaa, (3.136)

〈n̂b〉 =
γc
κ
ρbb, (3.137)

〈n̂an̂b〉 =
(γc
κ

)2[
ρaaρbb + ρ2ac

]
. (3.138)

Since â and b̂ are Gaussian variables of zero mean, one can verify that

g
(2)
(a,b)(t) = 1 +

〈â†b̂†〉〈âb̂〉+ 〈â†b̂〉〈âb̂†〉
〈â†â〉〈b̂†b̂〉

. (3.139)
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We realize that the operators in Eqs. (3.136)-(3.138) are in the normal order. There-

fore, Eq. (3.139) can be expressed as

g
(2)
(a,b)(0) = 1 +

ρ2ac
ρaaρbb

. (3.140)

It then follows that

g
(2)
(a,b)(0) = 1 +

γ2c
Ω2
. (3.141)

Figure 3.12: Plot of second order photon number correlation for the values of κ=0.8,

γc=0.4 and 0.2

Fig. 3.12 indicates that the photon numbers correlation is different from one.

Thus the photon numbers of mode a and mode b of a pair of a two-mode laser light

beams are correlated. It can be that from this result the second-order correlation

function of the two-mode light does not depend on the number of atoms. Moreover,

we can see from Eq. (3.140) that the expectation value of the product of number

operators, 〈n̂an̂b〉 is different from 〈n̂a〉〈n̂b〉. This implies that there is an intermode

correlation. Thus this intermode correlation must be due to the atomic coherence

induced by the atoms in coherent coupling of the top and bottom levels. One can

see from this figure that g(2)(a,b)(0) decreses when Ω increases. It can be observed from

the same figure that the second-order correlation function vanishes for Ω < 0.05.

Now it is essential to calculate the second-order correlation function for the indi-

vidual mode to have an insight for the previous result. To this end, the second order

correlation function for mode a is given by

g
(2)
(a,a)(0) =

〈: n̂an̂a :〉
〈n̂a〉2

, (3.142)
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where :: represent normal ordering and n̂a = â†â is the photon number operator for

mode a. Since â is a Gaussian variable with vanishing mean, one can easily verify

that

g
(2)
(a,a)(0) = 2. (3.143)

Similarly, the second-order correlation function for mode b is found to be

g
(2)
(b,b)(0) = 2. (3.144)

From the expressions 3.143 and (3.144), we note that the second-order correlation

function for light in a vacuum state. So, the cavity modes a and b are separately in a

vacuum state.

Furthermore, in order to quantify the correlation between the two modes, we in-

troduce the linear correlation coefficient in terms of a covariance as [15]

J(n̂a,n̂b) =
cov(n̂a, n̂b)√
∆n̂2

a

√
∆n̂2

b

, (3.145)

where ∆n̂2
a and ∆n̂2

b are the variances of the photon number for modes a and b, re-

spectively. So, the covariance of the photon numbers is defined by

cov(n̂a, n̂b) = 〈n̂an̂b〉 − 〈n̂a〉〈n̂b〉. (3.146)

One can easily verify, using the fact that â and b̂ are Gaussian variables, in the steady

state that

cov(n̂a, n̂b) = 〈b̂â〉ss〈â†b̂†〉ss. (3.147)

Since the cavity modes are separately in a chaotic state the variances of the photon

numbers obey the relation for a chaotic state,

∆n̂2
a = 〈n̂a〉+ 〈n̂a〉2, (3.148)

∆n̂2
b = 〈n̂b〉+ 〈n̂b〉2. (3.149)

On account of this fact and (3.147), the correlation function can be rewritten as

J(n̂a,n̂b) =
〈b̂â〉ss〈â†b̂†〉ss√

〈n̂a〉ss + 〈n̂a〉2ss
√
〈n̂b〉ss + 〈n̂b〉2ss

. (3.150)

It then follows that

J(n̂a,n̂b) =

(
γc
κ

)[
Ω2γ2c

Ω2γ2c + 3Ω4 + γc
κ

Ω4

]
. (3.151)
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Figure 3.13: photon number correlation for the values of κ=0.8 and γc=0.4 and 0.2

In Figure 3.13, the linear correlation coefficient versus the amplitude of the driv-

ing coherent light, Ω is plotted. It is also found from this figure that for Ω very close

to 0 the inter-mode correlation would be significantly large, since the mean pho-

ton numbers of the light in modes b is very close to zero when initially almost single

atom is exists in the lower level. Moreover, similar to the second-order correlation

function, the plots of Figure 3.13 show that the linear correlation coefficient vanishes

when Ω < 0.05.

3.4 Intensity difference Fluctuations

On the other hand, the variance of the intensity difference can be defined as

∆I2D = 〈Î2D〉 − 〈ÎD〉2, (3.152)

where the difference of intensity is

ÎD = â†â− b̂†b̂. (3.153)

Hence making use of Eq. (3.153), it is possible to express

〈I2D〉 = 〈â†â〉[1 + 2〈â†â〉] + 〈b̂†b̂〉[1 + 2〈b̂†b̂〉]− 2〈â†â〉〈b̂†b̂〉 − 2〈âb̂〉2, (3.154)

〈ID〉2 = 〈â†â〉2 + 〈b̂†b̂〉2 − 2〈â†â〉〈b̂†b̂〉, (3.155)

as a result the variance of the intensity difference can finally take the form

∆I2D = 〈â†â〉[1 + 〈â†â〉] + 〈b̂†b̂〉[1 + 〈b̂†b̂〉]− 2〈âb̂〉2. (3.156)

In view of Eqs. (3.2) and (3.11) along with their conjugates, we have

∆I2D =
γc
κ

[
ρaa + ρbb + 2ρaaρbb − 2ρ2ac

]
. (3.157)
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Since ρaa = ρbb, we see that

∆I2D =
2γc
κ

[
ρaa + ρ2aa − ρ2ac

]
. (3.158)

On account of Eqs. (2.46) and (2.47), Eq. (3.159) can be rewritten as

∆I2D =
2γc
κ

[
Ω4 − 2Ω2γ2c[
γ2c + 3Ω2

]2]. (3.159)

This is the steady-state variance of the intensity difference produced by the dynamics

of non-degenerate three-level laser with a closed cavity and coupled to a two-mode

vacuum reservoir. In addition, we note that for Ω� γc, Eq. (3.159) reduces to

∆I2D =
2γc
κ

[
Ω2 +

1

9

]
. (3.160)

From the fig. 3.14 we understand that the variance of intensity increases when Ω

Figure 3.14: Plot of intensity difference fluctuation for the values of κ=0.8 and γc=0.4

and 0.2

increases. From these equation we understand that the variance of the intensity dif-

ference increases as Ω increases. On the other hand, we determined the Plots of vari-

ance of the intensity difference (∆I2D) of the two-mode cavity light at steady-state

versus Ω for γc = 0.4, κ = 0.8. From these plots we see that variance of the inten-

sity difference decreases as the initially seeded coherent light increases. And also the

variance of the intensity difference increase with increasing the value of Ω.
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Quadrature Squeezing

In this chapter we seek to study the quadrature variance and the quadrature squeez-

ing of the light produced by the dynamics of non degenerate three-level laser in a

closed cavity and coupled with a two-mode vacuum reservoir for single atom via a

single-port mirror. Applying the steady-state solutions of the equations of evolution

of the expectation values of the atomic operators and the quantum Langevin equa-

tions for the cavity mode operators, we obtain the global quadrature variances for

light modes a and b. In addition, we determine the global quadrature squeezing of

the two-mode cavity light.

4.1 Single-mode quadrature variance

The squeezing properties of a cavity mode a are described by two quadrature opera-

tors defined by

â+ = â+ â† (4.1)

And

â− = i(â† − â) (4.2)

The operators â− and â+ represents physical quantities called the plus and minus

quadrature. Using Eqs. (4.1) and (4.2), one can write

[â−, â+] = [i(â† − â), â+ â†], (4.3)

with the aid of the identity

[Â+ B̂; Ĉ + D̂] = [Â; Ĉ] + [Â; D̂] + [B̂; Ĉ] + [B̂; D̂] (4.4)

[â−, â+] = i(〈|â†, â|〉+ 〈[|â†, â†|]〉 − 〈[â, â]〉 − 〈[â, â†]〉), (4.5)

so that in view of equation.(3.1) one can express this commutation relation in the

form

[â−, â+] = i
γc
κ

(〈[σ̂†a, σ̂a]〉+ 〈[σ̂†a, σ̂†a]〉 − 〈[σ̂a, σ̂a]〉 − 〈[σ̂a, 〈σ̂†a]〉), (4.6)

40
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using the commutation relation

[σ̂a, σ̂†a] = [|b〉〈b|, |a〉〈a|] (4.7)

And

[σ̂a, σ̂a] = 0, (4.8)

along with equation 4.6, we obtain

[â−, â+] = 2i
γc
κ

[ρaa − ρbb] (4.9)

And taking in to account 2.43 one easily gets

[â−, â+] = 0 (4.10)

Furthermore, we recall that if

[Â, B̂] = iĈ (4.11)

Then

∆Â∆B̂ >
1

2
|〈Ĉ〉| (4.12)

Thus on account of equation (4.10) and (4.12), the uncertainty relation for cavity

mode a can be expressed as

∆â−∆â+ > 0 (4.13)

The quadrature variance for mode a is defined by

(∆a±)2 = 〈â2±〉 − 〈â〉2 (4.14)

In view of (4.1) and (4.2), the quadrature variance can be put in the form

(∆a±)2 = ±(〈â†2〉) + 〈â〉2 ± 〈â†â〉 ± 〈ââ†〉 ± 2〈â†2〉â〉) (4.15)

we now proceed to determine the various expectation values involved in equation

(4.15) then using eq. (3.2), we find

〈â〉 = −2
g

k
〈σ̂a〉 (4.16)

using the steady state solution of (2.58), we have

〈σ̂a〉 = 0 (4.17)

And

〈â〉 = 0 (4.18)
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we observe on the basis of equation (2.9) and (4.18) that â is a Gaussian variable with

zero mean. in addition one can also write

〈â†〉〈â〉 = 〈â〉〈â†〉 = 0 (4.19)

With the help of (3.23), we also find

〈ââ†〉 =
γc
k
〈σ̂aσ̂a†〉 (4.20)

hence on account of the fact that

σ̂aσ̂a
† = |b〉〈b| (4.21)

we easily get

〈ââ†〉 =
γc
k
ρbb (4.22)

using equation (3.11) one can also write

〈â2〉 =
γc
k
〈σ̂bσ̂b〉 (4.23)

Now with the help of identity

σ̂aσ̂a = 0 (4.24)

We have

〈â2〉 = 0 (4.25)

Applying equation (4.18), (4.19) and (4.25), we arrive at

(∆a±)2 = n̄a +
γc
κ
ρbb (4.26)

so that in view (3.14), the quadrature variance can be rewritten as

(∆a±)2 = n̄a + n̄b (4.27)

Finally with the help of eq.(3.11), the quadrature variance can be put in the form

(∆a+)2 = (∆a−)2 = 2n̄a (4.28)

where n̄a is given by equation (3.9).We then see that cavity mode a is in chaotic

state.the squeezing property of cavity mode b are described by two quadrature oper-

ators defined by

b̂+ = b̂+ b̂† (4.29)

And

b̂− = i(b̂− b̂†) (4.30)
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these operators are Hermitian and satisfy the common relation

[b̂−, b̂+] = 2i
γc
κ

(ρbb − ρcc) (4.31)

it then follows that

∆b+∆b− >
γc
κ

(ρbb − ρaa) (4.32)

the quadrature variance for mode b is defined by

(∆b±)2 = 〈(b2±)〉 − 〈(b±)2〉 (4.33)

with the help of (4.29), the quadrature variance can be put in the form

(∆b±)2 = ±(〈b̂†2〉+ 〈b̂2〉 ± 〈b̂b̂†〉)∓ (〈b̂†〉2 + 〈b̂〉2 ± 2〈b̂†〉〈b̂〉) (4.34)

Then, we find the variance expectation values involved in equation (3.34). using eq.

(3.8), we have

〈b̂〉 = −2
g

κ
〈σb〉 (4.35)

now introducing eq.(2.54) in to eq. (4.35), we get

〈b̂〉 = 0 (4.36)

On the basis of equation (2.10) and (4.36), we also note that b̂ is a Gaussian variable

with zero mean. then we see that

〈b̂†〉〈b̂〉 = 0 (4.37)

Applying eq. (3.8),one obtains

〈b̂b̂†〉 =
γc
κ
〈σ̂bσ̂†b〉 (4.38)

with the aid of the identity

σ̂bσ̂
†
b = |c〉〈c| (4.39)

We have

〈b̂b̂†〉 =
γc
κ
ρcc (4.40)

on account of (2.30), one can also find

〈b̂2〉 = 0 (4.41)

thus in view of equations (4.36),(4.37), (4.40) and (4.41) the quadrature variance can

be written as

(∆b2+) = (∆b−)2 = n̄b +
γc
κ
ρcc (4.42)
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In which

ρcc =
γ2c + Ω2

γ2c + 3Ω2
(4.43)

And we note that for γc� Ω, this result can be put as

ρcc =
1

3
(4.44)

on account of this, eq. (4.42) takes the form

(∆b+)2 = (∆b−)2 = 2(n̄b) (4.45)

where

n̄b =
γc
3κ

(4.46)

We note that cavity mode b is in a chaotic state for γc << Ω, In addition, for γc >> Ω

we have

(∆b+)2 = (∆b−)2 =
γc
κ

(4.47)

And

∆b+∆b− >
γc
κ

(4.48)

Hence on the basis of this result,we conclude that cavity mode b is in a coherent state

4.2 Two-mode quadrature variance

In the previous section, we have considered the squeezing properties of modes a

and b. We now extend our analysis to the superposed cavity modes. The squeezing

properties of the superposed cavity modes is described by the quadrature operators

defined by

Ĉ+ = â+ + b̂+ (4.49)

And

Ĉ− = â− + b̂− (4.50)

Where â± and b̂± are defined by 4.1,4.2, 4.29 and 4.30.the operators ĉ+ and ĉ− are

Hermitian. using eq. 4.49 and 4.50, one can write

[Ĉ−, Ĉ+] = 〈[â− + b̂−, â+ + b̂+]〉 (4.51)

In view of 4.4 this can be rewritten as

[Ĉ−, Ĉ+] = 〈[â−, â+]〉+ 〈[â−, b̂+]〉+ 〈[b̂−, â+]〉+ 〈[b̂−, b̂+]〉 (4.52)

Thus with the aid of 4.10 and 4.31 we arrive at

[Ĉ−, Ĉ+] = 2i
γc
κ

(ρbb − ρcc) (4.53)
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it then follows that

∆c+∆c− >
γc
κ

γ2c
γ2c + 3Ω2

(4.54)

We note that for γc >> Ω. eq.4.54 reduce to

∆c+∆c− >
γc
κ

(4.55)

The variance of quadrature operators is defined by

(∆C±)2 = 〈ĉ2±〉 − 〈ĉ2±〉2 (4.56)

Now with the help of eq. 4.50 one can write eq. 4.56 as

(∆C±)2 = 〈â2±〉+ 〈b̂2±〉+ 〈â±b̂±〉 − 〈â±〉2 − 〈b̂±〉2 − 2〈b̂±〉〈â±〉 (4.57)

then we determine the various expectation values involved in eq. 4.57. using eq. 4.1,

4.2, 4.29 and 4.30, we find

〈b̂±â±〉 = ±〈b̂†â†〉+ 〈b̂â†〉+ 〈b̂†â〉 ± 〈b̂â〉 (4.58)

So that in view of (3.2) and (3.10), this can be rewritten as

〈b̂±â±〉 = ±γc
κ
〈σ̂†b σ̂

†
a〉+

γc
κ
〈σ̂bσ̂†a〉+

γc
κ
〈σ̂†b σ̂a〉 ±

γc
κ
〈σ̂bσ̂a〉 (4.59)

And on account of the fact that

σ̂†b σ̂
†
a = 0 (4.60)

σ̂bσ̂
†
a = 0 (4.61)

σ̂†b σ̂a = 0 (4.62)

σ̂bσ̂a = 0 (4.63)

along with eq.(4.12), we have

〈b̂±â±〉 = ±γc
κ
ρac (4.64)

In which

ρac =
γcΩ

γ2c + 3Ω2

(4.65)

Similarly

〈â±b̂±〉 = ±γc
κ
ρca (4.66)

So that on account of the fact that ρac = ρca this can be rewritten as

〈â±b̂±〉 = ±γc
κ
ρca (4.67)
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Now with the aid of equation (4.18) and (4.19) in to eq. (4.67) there follows

〈â±〉2 = 0 (4.68)

on the other hand,with the aid of (4.29) and (4.30), we get

〈b̂±〉2 = ±〈b̂†〉2 + 2〈b̂†〉〈b̂†〉 (4.69)

hence on account of (4.36) and (4.37),we have

〈b̂±〉2 = 0 (4.70)

Then, we can also see that

〈â±〉〈b̂±〉 = 〈b̂±〉〈â±〉 = 0 (4.71)

using eq.(4.1) and (4.2), we find

〈â2±〉 = ±〈â†2〉 ± 〈â2〉+ 〈â†â〉+ 〈ââ†〉 (4.72)

We recall that

〈â2〉 = 0 (4.73)

〈ââ†〉 =
γc
κ
ρbb (4.74)

and

〈â†â〉 =
γc
κ
ρaa (4.75)

so that in view of this result eq.(4.26),takes the form

〈â2±〉 =
γc
κ
ρaa +

γc
κ
ρbb (4.76)

Applying eq.(3.6) and (3.14), one get

〈â2±〉 = n̄a + n̄b (4.77)

since n̄a = n̄b ,then equation (4.77) reduces to

〈â2±〉 = 2n̄a (4.78)

on the other hand, with the aid of (4.29) and (4.30),we arrive at

〈b̂2±〉 = ±〈b̂†2〉 ± 〈b̂2〉+ 〈b̂†b̂〉+ 〈b̂b̂†〉 (4.79)

Hence in view of (3.7), (4.36), and (4.40),(4.79) takes the form

〈b̂2±〉 = n̄b +
γc
κ
ρcc (4.80)
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And for γc << Ω,this result can be rewritten as

〈b̂2±〉 = 2n̄b (4.81)

With n̄b is given by eq,(4.46). Finally applying eq.(4.65),(4.68),(4.70),(4.72),(4.73),(4.78)

and (4.80) in to eq.(4.58) the quadrature variance for the superposed cavity modes

can be expressed as

(∆C±)2 = 2n̄a + n̄b +
γc
κ
ρcc ± 2

γc
κ
ρac (4.82)

so that employing eq.(4.8) in to eq. (4.82). We readily obtained the quadrature vari-

ance for the superposed cavity modes

(∆C±)2 = 3n̄a +
γc
κ
ρcc ± 2

γc
κ
ρac (4.83)

And taking in to account of eq. (4.7) we get

(∆C±)2 = 3
γc
κ
ρaa +

γc
κ
± 2

γc
κ
ρac (4.84)

therefore, the quadrature variance of the superposed cavity modes can be put into

the form

(∆C+)2 = 3
γc
κ
ρaa +

γc
κ
ρcc + 2

γc
κ
ρac (4.85)

And

(∆C−)2 = 3
γc
κ
ρaa +

γc
κ
ρcc − 2

γc
κ
ρac (4.86)

Now substitution of equations (2.47),(4.43) and (4.66) in to equations (4.85) and (4.86),

yields

(∆C+)2 =
γc
κ

(
4Ω2 + γ2c + 2γcΩ

γ2c + 3Ω2
) (4.87)

And

(∆C−)2 =
γc
κ

(
4Ω2 + γ2c − 2γcΩ

γ2c + 3Ω2
) (4.88)

Then dividing both the numerator and denominator by γ2c , one can easily obtains

(∆C+)2 =
γc
κ

(
1 + 4η2 + 2η

1 + 3η2
) (4.89)

(∆C−)2 =
γc
κ

(
1 + 4η2 − 2η

1 + 3η2
) (4.90)

Where

η =
Ω

γc
(4.91)
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Figure 4.1: Plot of minus quadrature in 2D and 3D for the values of κ=0.8 and γc=0.4,

0.2

The above graph shows that minus quadrature has the minimum value at η =0.4343

which is 0.2829 for η�1 equation (4.89) and (4.90) reduce to

(∆C+)2 = (∆C−)2 =
γc
κ

(4.92)

On the basis of this result and equation (4.56) the superposed cavity modes are in

a coherent state. the two cavity modes are said to be in a squeezed state if either

∆c+ <
γc
κ

or ∆c− <
γc
κ

such that the uncertainty relation ∆C+∆C− > γc
κ

is not violated.

Fig 4.1 clearly indicates that the superposed cavity modes are in squeezed state for

all values of η between 0 and 1 and the squeezing occurs in the minus quadrature.

We next proceed to obtain the quadrature squeezing of the superposed cavity modes

relative to the quadrature variance of the superposed coherent light. We define the
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quadrature squeezing of the superposed modes by

S =
(
γc
κ
−∆C−

2)

γc
κ

(4.93)

Now employing eq. 4.90, one can express eq.4.93 in the form

Figure 4.2: plot of quadrature squeezing in 2D and 3D for the values of κ=0.8 and

γc=0.4, 0.2

S = 1− (
1 + 4η2 + 2η

1 + 3η2
) (4.94)

Then

S =
2η − η2

1 + 3η2
(4.95)

We clearly see from Figure 4.2: Plot of the quadrature squeezing s(η) versus η .The

maximum quadrature squeezing is found to be 43.43% when γc = 0.4 and γc = 0.2

at η=0.2829 and η=0.1414 respectively below the vacuum-state level. Hence we ob-

serve that the degree of squeezing for the superposed cavity modes increases in the

interval between 0 and 0.2829 and it decreases in the intervals between 0.2829 and 1.
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Entanglement properties of the two-mode light

Quantum entanglement is the term given to the phenomena, whereby particles can

be generated or interact in ways such that the quantum state of each particle cannot

be described independently. In such cases, the system of particles is said to be entan-

gled, and itis not proper to consider any of the individual particles in isolation from

the others, but only as a single entangled state. Moreover, the entanglement is one of

the most counter-intuitive aspects of the quantum world and an enigmatic power-

ful property. The generation and manipulation of the entanglement have attracted a

great interest owing to their wide applications in quantum teleportation [28], quan-

tum dense coding [29], quantum computation [30], quantum error correction [31],

and quantum cryptography [32].

In this chapter we seek to study the photon entanglement as well as atom en-

tanglement of a two-mode laser light beams produced by the dynamics of driven

non-degenerate three-level lasers with in a closed cavities and coupled to the two-

mode vacuum reservoirs via single-port mirrors. Applying the solutions of the equa-

tions of evolution of the expectation values of the atomic operators and the quantum

Langevin equations for the cavity mode operators, we obtain the entanglement of the

two-mode light beams.

5.1 Photon Entanglement

Here, we prefer to analyze the entanglement of photon-states in the laser cavity.

Quantum entanglement is a physical phenomenon that occurs when pairs or groups

of particles cannot be described independently instead, a quantum state may be

given for the system as a whole. Measurements of physical properties such as po-

sition, momentum, spin, polarization, etc. performed on entangled particles are

found to be appropriately correlated. A pair of particles is taken to be entangled in

quantum theory, if its states cannot be expressed as a product of the states of its in-

dividual constituents. The preparation and manipulation of these entangled states
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that have non-classical and non-local properties lead to a better understanding of

the basic quantum principles. It is in this spirit that this section is devoted to the

analysis of the entanglement of the two-mode photon states. In other words, it is a

well-known fact that a quantum system is said to be entangled, if it is not separa-

ble. That is, if the density operator for the combined state cannot be described as a

combination of the product density operators of the constituents,

ρ̂ 6=
∑
k

pkρ̂
(1)
k ⊗ ρ̂

(2)
k , (5.1)

in which pk � 0 and
∑

k pk = 1 to verify the normalization of the combined density

states. On the other hand, a maximally entangled CV state can be expressed as a

coeigen state of a pair of EPR-type operators[33] such as x̂a− x̂b and P̂a− P̂b.The total

variance of these two operators reduces to zero for maximally entangled CV states.

According to the inseparable criteria given by Duan et al [34], cavity photon-states of

a system are entangled, if the sum of the variance of a pair of EPR-like operators,

ŝ = x̂a − x̂b, (5.2)

t̂ = p̂a + p̂b, (5.3)

where

x̂a =
1√
2

(
â+ â†

)
, (5.4)

x̂b =
1√
2

(
b̂+ b̂†

)
, (5.5)

p̂a =
i√
2

(
â† − â

)
, (5.6)

p̂b =
i√
2

(
b̂† − b̂

)
, (5.7)

are quadrature operators for modes a and b, satisfy

∆s2 + ∆t2 < 2 (5.8)

and recalling the cavity mode operators σ̂a and σ̂b are Gaussian variables with zero

mean, we readily get

∆s2 + ∆t2 =

[
〈â†â〉+ 〈ââ†〉+ 〈b̂†b̂〉+ 〈b̂b̂†〉

]
−
[
〈âb̂〉+ 〈â†b̂†〉+ 〈b̂â〉+ 〈b̂†â†〉

]
. (5.9)

Thus with the aid of Eqs. (3.2) and (3.11), we see that

∆s2 + ∆t2 =
2γc
κ

[
N + 〈ρ̂b〉 − 2〈σ̂c〉

]
. (5.10)
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It then follows that

∆s2 + ∆t2 = 2∆c2−. (5.11)

where ∆c2− is given by (4.90). One can readily see from this result that the degree of

entanglement is directly proportional to the degree of squeezing of the two-mode

light. This direct relationship shows that whenever there is a two-mode squeezing

in the system there will be entanglement in the system as well. It is noted that the

entanglement disappears when the squeezing vanishes. This is due to the fact that

the entanglement is directly related to the squeezing as given by (4.95). It also follows

that like the mean photon number and quadrature variance the degree of entangle-

ment depends on the number of atom. With the help of the criterion (5.8) that a

significant entanglement between the states of the light generated in the cavity. This

is due to the strong correlation between the radiation emitted when the atoms decay

from the upper energy level to the lower via the intermediate level.

On account of Eqs. (4.86) and (4.88), the photon entanglement of the two-mode

cavity light takes, at steady-state, the form

∆s2 + ∆t2 =

(
2γc
κ
N

)[
γ2c + 4Ω2 − 2Ωγc

γ2c + 3Ω2

]
. (5.12)

Figure 5.1: Plot of photon entanglement for the values of κ=0.8 and γc=0.4, 0.2

Fig. 5.1 Describes the steady-state photon entanglement of a two-mode cavity

light produced by the dynamics of non-degenerate three-level laser with in a closed

cavity and coupled to a two-mode vacuum reservoir.

In addition, we note that for Ω� γc, Eq. (5.12) reduces to

∆s2 + ∆t2 =
8γc
3κ

N. (5.13)
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This can be rewritten as

∆s2 + ∆t2 = 4n̄, (5.14)

where n̄ is given by Eq. (3.121). From the plots of Fig. (5.1) along with Eq. (5.12), we

have

γc ∆s2 + ∆t2 Ω

0.2 0.2832 0.09091

0.2 0.598 1

0.4 0.5658 0.1717

0.4 1.061 1

Table 5.1: Values of ∆s2 + ∆t2 for γc = 0.4,and γc = 0.2 κ = 0.8, and N = 1.

When we see the plots on Fig. (5.1) that as the stimulated emission decay constant

increases the photon entanglement also increases. Similarly, as we observe from the

data on Table 5.1, the photon entanglement is increases with increasing of the stim-

ulated emission decay constant. From these plots and values of κ = 0.8, γc = 0.4,

γc = 0.2, and N = 1, we determined the maximum photon entanglement is 72% and

it occurs at Ω = 0.1717, Ω = 1, and for γc = 0.4.

5.2 Cavity Atomic-States Entanglement

The quantum entanglement between the two cavity modes a and b proposed by

Duan-Giedke-Cirac-Zoller (DGCZ) [35], which is a sufficient condition for entangled

quantum states. According to DGCZ, a quantum state of a system is said to be entan-

gled if the sum of the variances of the EPR-like quadrature operators, û and v̂, satisfy

the inequality

∆u2 + ∆v2 < 2. (5.15)

On the other hand, cavity atomic-states of a system are entangled, if the sum of the

variance of a pair of EPR-like operators,

û = x̂′a − x̂′b, (5.16)

v̂ = p̂′a + p̂′b, (5.17)
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where

x̂′a =
1√
2

(
σ̂a + σ̂†a

)
, (5.18)

x̂′b =
1√
2

(
σ̂b + σ̂†b

)
, (5.19)

p̂′a =
i√
2

(
σ̂†a − σ̂a

)
, (5.20)

p̂′b =
i√
2

(
σ̂†b − σ̂b

)
, (5.21)

Since σ̂a and σ̂b are Gaussian variables with zero means, so one can easily verify that

∆u2 + ∆v2 =

[
〈σ̂†aσ̂a〉+ 〈σ̂aσ̂†a〉+ 〈σ̂†b σ̂b〉+ 〈σ̂bσ̂†b〉 − 〈σ̂

†
b σ̂
†
a〉 − 〈σ̂aσ̂b〉

]
. (5.22)

Now with the aid of (2.70) and (2.71), Eq. (5.22) takes the form

∆u2 + ∆v2 = N
[
N + 〈ρ̂a〉 − 2〈σ̂c〉

]
. (5.23)

On account of Eqs. (4.86) and (4.88), the cavity atomic-states entanglement of the

two-mode cavity light takes, at steady-state, the form

∆u2 + ∆v2 =

[
γ2c + 4Ω2 − 2Ωγc

γ2c + 3Ω2

]
N2. (5.24)

This is the steady-state the cavity atomic-states entanglement of a two-mode cavity

light produced by the dynamics of non-degenerate three-level laser with in a closed

cavity and coupled to a two-mode vacuum reservoir.

Figure 5.2: Plot of atom entanglement

From this plot and values of κ = 0.8, γc = 0.4, γc = 0.2, and N = 1, we determined

the maximum atom entanglement is 72% and it occurs at Ω = 0.1818, Ω = 1, and for

γc = 0.2. From the plots of Fig. (5.2) along with Eq. (5.24), we have
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γc ∆u2 + ∆v2 Ω

0.2 0.5672 0.0808

0.2 1.197 1

0.4 0.5658 0.1818

0.4 1.063 1

Table 5.2: Values of ∆u2 + ∆v2 for γc = 0.4, γc = 0.2 κ = 0.8, and N = 1.

When we see the stimulated emission decay constant increases the atom entan-

glement decreases. Similarly, as we observe from the data on Table 5.2, the atom en-

tanglement increased with decreasing of the stimulated emission decay constant(γc).

We note that for Ω� γc, Eq. (5.24) reduces to

∆u2 + ∆v2 =
4

3
N2. (5.25)

Furthermore, when Ω = 0, Eq. (5.24) also turns out to be

∆u2 + ∆v2 = N2. (5.26)

On the basis of the criteria (5.8) and (5.15), we clearly see that the two states of the

generated light are strongly entangled at steady-state. Moreover, the system is closed

vacuum reservoir the generated light leads to an increase in the degree of entangle-

ment.
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Conclusion

In this thesis we have studied the squeezing and statistical properties of the light

produced by the dynamics of non-degenerate three-level laser in a closed cavity and

coupled with two-mode vacuum reservoir for single atom via a single-port mirror.

We have carried out our calculation by putting the noise operators associated with

the vacuum reservoir in normal order. Applying the solutions of the equations of evo-

lution for the expectation values of the atomic operators and the quantum Langevin

equations for the cavity mode operators,we have found that mean and variance of

photon number as well as quadrature squeezing.

We have found that the global mean photon number of light mode a and b are

equal. We have seen that the mean and variance of the photon numbers of light

modes a and b in the interval between ω = ω0−λ and ω = ω0 +λ increase with λ until

it reach the maximum values of the global mean and variance of the photon num-

bers of light modes a and b. Our results show that a large part of the total mean and

variance of the photon numbers are confined in a relatively small frequency inter-

val. Moreover, we have shown that the mean photon number of the two-mode light

beam is the sum of mean photon numbers of the separate single-mode light beam.

However, we have observed that the photon number variance of the two-mode light

beam does not happen to be the sum of the photon number variance of the sepa-

rate single-mode light beam. And also the light generated by the three-level laser is

in a squeezed state and the squeezing occurs in the minus quadrature. It is found

to be 43.43% when γc = 0.4 and γc = 0.2 at η=0.2829 and η=0.1414 respectively be-

low the vacuum-state level. Unlike the mean photon number and the quadrature

variance, the quadrature squeezing does not depend on the number of atoms. This

implies that the quadrature squeezing of the two-mode light beam is independent

of the number of photons. It is found that the photon entanglement of a two-mode

light cavity increases with increasing in stimulated emission.
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