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Abstract

In this thesis, eighth order predictor-corrector method is presented for solving

quadratic Riccati differential equations. The solution domain is discretized and

the stability and convergence of the method have been investigated. To validate

the applicability of the proposed method, five model examples with exact solutions

have been considered and numerically solved by using MATLAB software. The

numerical results are presented in tables and figures for different values of mesh

size h. Maximum absolute errors are also presented. Concisely, the present method

gives better result than existing numerical methods reported in the literature. .
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Chapter 1

Introduction

1.1 Background of the study

Numerical analysis plays a significant role and helps us to find an approximate
solution for problems which are difficult to solve analytically. In the field of com-
putational mathematics, numerical methods are most widely utilized to solve equa-
tions arising in the field of physics, engineering and other sciences. The design and
computation of the numerical algorithm is one of the mathematical challenges that
researchers are facing to, but Scientists in the field of computational mathematics
are trying to develop numerical methods by using computers for further application
(Burden and Faires, 2011).

The attempt to solve physical problems led gradually to mathematical models in-
volving an equation in which a function and its derivatives play important roles.
However, the theoretical development of this new branch of mathematics - Ordi-
nary Differential Equations has its origins rooted in a small number of mathemati-
cal problems. These problems and their solutions led to an independent discipline
with the solution of such equations an end in itself.

The Riccati equation named after the Italian mathematician Jacopo Francesco Ric-
cati (O’Connor and Robertson, 1996), is a basic first-order nonlinear ordinary dif-
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ferential equation. It has the form

dy
dx

= p(x)+q(x)y+ r(x)y2 (1.1)

which can be considered as the derivative of a function in terms of the function
itself. It is assumed that y(x), p(x), q(x) and r(x) are real functions of the real
argument x . It is well known that solutions to the general Riccati equation are
not available and only special cases can be treated (Ince 1956). Even though the
equation is nonlinear, similar to the second order inhomogeneous linear ordinary
differential equations one needs only a particular solution to find the general solu-
tion (Anas et.al. 2010).

Riccati equation naturally arises in many fields of quantum mechanics; in partic-
ular, in quantum chemistry, the Wentzel-Kramers-Brillouin approximation and su-
persymmetry theories. Recently, methods for solving the Gross-Pitaevskii equation
arising in Bose-Einstein condensates based on Riccati equation were introduced
(Anas et.al. 2010). The book of Reid (1972) contains the fundamental theories of
Riccati equation, with applications to random processes, optimal control, and dif-
fusion problems. Important in engineering and science applications that today are
known as the classical proved, such as stochastic realization theory, optimal control,
robust stabilization, and network synthesis, the newer applications include such ar-
eas as financial mathematics (Biazar and Islami, 2010). Nonlinear differential equa-
tions are essential tools for modeling many physical situations, for instance, spring
mass systems, resistor-capacitor-induction circuits, bending of beams, chemical re-
action, pendulums, the motion of rotating mass around body and so on.

Due to the nonlinear structure of the Riccati equation, the general solution of the
Riccati equation cannot be easily found. Therefore, one has to use numerical tech-
niques or approximate method for obtaining its solutions. Recently, Gemechis
File and Tesfaye Aga (2016) used fourth order Runge-Kutta method for solving
quadratic Riccati differential equations. Vinod and Dimple (2016) presented Newton-
Raphson based modified Laplace Adomian decomposition method for solving quadratic
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Riccati differential equations. Gemadi et.al. (2017) presented fifth order predictor
corrector method for solving quadratic Riccati differential equation. The multi-
stage variational iteration method is applied as a new efficient method for solv-
ing quadratic Riccati differential equation by Batiha (2015). Tan and Abbasbandy
(2008) employed the analytic technique called Homotopy Analysis Method (HAM)
to solve a quadratic Riccati equation. The solution of Riccati equation with variable
co-efcient by differential transformation method is presented by Mukherje and Roy
(2012). Very recently, Fateme and Esmaile (2017) presented approximate solution
for quadratic Riccati differential equations by Bezier curves method.

There are many continuous attempts to get a method that yields more accurate re-
sults. The purpose of this study is to formulate a more accurate and stable method
for solving quadratic Riccati differential equation than some existing methods in
the literature.

1.2 Objectives of the study

1.2.1 General objective

The general objective of this study is to develop eighth order predictor-corrector
method for solving quadratic Riccati differential equation.

1.2.2 Specific objectives

The specific objectives of the present study are:

• To formulate eighth order Adams-Bashforth-Moulton predictor-corrector method
for solving quadratic Riccati differential equation.

• To establish the stability and convergence of the proposed method.

• To compare the accuracy of the present method with some existing method
in the literature.
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1.3 Significance of the study

The outcomes of this study may have the following importance:

• Provide some background information for other researchers who work on this
area.

• Help the graduate students to acquire research skills and scientific procedures.

1.4 Delimitation of the Study

This study is delimited to eighth order predictor-corrector method for solving quadratic
Riccati differential equation of the form:

dy
dx

= p(x)+q(x)y+ r(x)y2, y(x0) = α, x0 ≤ x≤ x f

where p(x), q(x) and r(x) are continuous with r(x) 6= 0 and x0, x f , α are arbitrary
constants for y(x), which is unknown function.
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Chapter 2

Literature Review

2.1 Predictor Corrector Methods

In numerical analysis, predictor-corrector methods belong to a class of algorithms
designed to integrate ordinary differential equations to find an unknown function
that satisfies a given differential equation. All such algorithms proceed in two steps.
First the initial, “prediction” step, starts from a function fitted to the function-values
and derivative-values at a preceding set of points to extrapolate this function’s value
at a subsequent, new point. Then next, ”corrector” step refines the initial approxi-
mation by using the predicted value of the function and another method to interpo-
late that unknown function’s value at the same subsequent point (Bucher, 2003).

The methods of Euler, Heun, Taylor and Runge-Kutta are called single-step meth-
ods because they use only the information from one previous point to compute the
values at the successive points, that is, only the initial point (x0,y0) is used to com-
pute (x1,y1) and in general yk is needed to compute yk+1 . After several points have
been found it is feasible to use several prior points in the calculation. The eighth
order predictor corrector method uses yk−7, yk−6, yk−5, yk−4, yk−3, yk−2, yk−1

and yk in the calculation of yk+1 . This method is not self-starting; eight initial
points, (x0,y0), (x1,y1), (x2,y2), (x3,y4), (x5,y5), (x6,y6) and (x7,y7) must be
given in advance in order to generate the points (xk,yk) for k≥ 8 (Johan and Kurtis,
2004)and we apply the eighth order Runge-Kutta method using the first seven nodal
points.
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A desirable feature of a multistep method is that the local truncation error (LTE)
can be determined and a correction term can be included, which improves the ac-
curacy of the answer at each step. Also, it is possible to determine if the step size
is small enough to obtain an accurate value for (yk+1) , yet large enough so that
unnecessary and time-consuming calculations are eliminated. If the code for the
subroutine is fine-tuned, then the combination of a predictor and corrector requires
only two function evaluations of f (x,y) per step (Johan and Kurtis, 2004).

2.2 Higher order Runge-Kutta method

One of the most celebrated methods for the numerical solution of differential equa-
tions is the one originated by Runge and elaborated by Heun, Kutta, Nystrom, and
others. This method is usually given considerable prominence in texts where nu-
merical methods are discussed. In contrast to step-by-step procedures based on
formulas for numerical quadrature the Runge-Kutta method (as it is usually called)
enjoys two conspicuous advantage :

1. No special devices are required for starting the computation.

2. The length of the step can be modified at any time in the course of the com-
putation without additional labor.

On the other hand it is open to two major objections:

1. The process does not contain in itself any simple means for estimating the
error or for detecting computation mistakes. It is true that Bieberbach 6
ha found an expression which provides an upper bound for the error at a
given step of the Runge-Kutta process (or more accurately, the Kutta process).
However this estimate depends on quantities which do not appear directly in
the computation, and therefore requires some additional separate calculation.

2. Each step requires from substitutions into the differential equation. For the
case of complicated equations tIllS may demand an excessive amount of labor
per step.
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By accident or design it happens that examples usually chosen in textbooks to illus-
trate the Runge-Kutta method are such that the method appears in a very favorable
light.

Higher order methods are capable of achieving highly accurate approximations of
differential equations solutions at lower computational cost than lower order meth-
ods. The fact that there is no automatic construction method for (explicit) Runge-
Kutta methods of a give order with a minimum number of stages makes the search
for methods of higher and higher order an interesting challenge. For given orderp

it is not known in general how large the number of stages s must be to achieve this
order. For orders 1, 2, 3 and 4, the lowest possible number of stages is s = p. How-
ever, for p = 5 and p = 6 the lowest possibility is s = p+ 1 . For, p = 7 , s = 9
stages are necessary whereas for p = 8 , the minimum number of stages is s = 11 .
Above this, very little is known.

Table 2.1: show some detail of the chronology of attempts to obtain increasingly
high orders (Butcher,1996).

p s author year
2 2 Runge 1895
3 3 Heun 1900
4 4 kutta 1901
5 6 kutta 1901
5 6 Nystrom 1925
6 8 Huta 1956
6 7 Butcher 1964
7 9 Butcher 1968
8 11 Curtis 1970
8 11 Cooper and Verner 1972

10 18 Curtis 1975
10 17 Hairer 1978

Runge-Kutta method in use is of order eight in difference-equation form, is
given by the following (Curtis,1970).
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wi+1 = wi +h/840(41k1 +27k4 +272k5 +27k6 +216k7 +216k9 +41k10)

where
k1 = f (ti,wi)

k2 = f (ti +h(4/27),wi +(h4/27)k1)

k3 = f (ti +h(2/9),wi +(h/18)(k1 +3k2))

k4 = f (ti +h(1/3),wi +(h/12)(k1 +3k3))

k5 = f (ti +h(1/2),wi +(h/8)(k1 +3k4))

k6 = f (ti +h(2/3),wi +(h/54)(13k1−27k3 +42k4 +8k5))

k7 = f (ti +h(1/6),wi +(h/4320)(389k1−54k3 +966k4−824k5 +243k6))

k8 = f (ti +h,wi +(h/20)(−234k1 +81k3−1164k4 +656k5−122k6 +800k7))

k9 = f (ti +h(5/6),wi +(h/288)(−127k1 +18k3−678k4 +456k5−9k6 +576k7

+4k8))

k10 = f (ti +h,wi +(h/820)(1481k1−81k3 +7104k4−3376k5 +72k6−5040k7

−60k8 +720k9))

for each i = 0,1, ...,N−1.

2.3 Recent Development

Opanuga et.al. (2015), proposed a novel approach for solving quadratic Riccati
differential equations. Here, the authors considered a numerical technique called
differential transform method for the solution of Riccati differential equations.

Khalid et.al. (2015) offered, an effective perturbation iteration algorithm for solv-
ing Riccati differential equations . Their iteration algorithm is tactfully employed
to obtain the approximate solution of some nonlinear Riccati differential equations.
The competence and accuracy of the method presented is demonstrated with the
help of three examples, inclusive of the quadratic Riccati Equation.

Biazar and Eslami (2010) used differential transform method for solving quadratic
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Riccati differential equation. Here, the authors consider differential transform method
to solve quadratic Riccati differential equation. The results derived by differential
transform method are compared with the results of homotopy analysis method and
Adomian decomposition method and It is shown that this method used for quadratic
Riccati differential equation is more effective and promising than homotopy analy-
sis method and Adomain decomposition method.

Gemechis and Tesfaye (2016), used classical RK4 method for solving the nonlinear
Riccati quadratic differential equation. The stability of the method for the problem
under consideration has also been investigated. The approximate solution obtained
by the proposed method versus the exact solution for different values of mesh size
on some nodal points has been given and validated the efciency of the method using
four model examples.

Fateme and Esmaile (2017), introduce an approximate solution for quadratic Ric-
cati differential equation. In their technique, the Bezier curves method is considered
as an algorithm to find the approximate solution of the nonlinear Riccati equation.
Some numerical examples are given to demonstrate the computational efficiency of
their method.
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Chapter 3

Methodology
3.1 Study period and site

The study was conducted at Jimma University under the department of Mathematics
from August 2018 to February 2020 G.C.

3.2 Study Design

This study employs mixed-design (documentary review design and experimental
design) on quadratic Riccati differential equation

3.3 Source of Information

The relevant sources of information for this study are books, published articles and
related studies from internet and the experimental result will be obtained by writing
MATLAB code for the present numerical methods

3.4 Mathematical Procedure of the Study

In order to achieve the stated objectives, the study follow the following procedures:

1. Define the problem.

2. Discretize the solution domain.
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3. Use 8th order Runge kutta method as starter.

4. Develop the Eighth order Adams-Bashforth Predictor scheme for the prob-
lem.

5. Develop the Eighth order Adams-Moulton Corrector scheme for the problem.

6. Establish the stability and convergence of the proposed scheme.

7. Write MATLAB code for the proposed scheme.

8. Validate using numerical examples.
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Chapter 4

Description of the Method, Results
and Discussion

4.1 Description of the Method

Consider the quadratic Riccati differential equation of the form:

dy
dx

= p(x)+q(x)y+ r(x)y2, y(x0) = α, x0 ≤ x≤ x f

where p(x), q(x) and r(x) are continuous with r(x) 6= 0 and x0, x f , α are arbitrary
constants for y(x), which is unknown function.To describe the scheme, we denote
the problem in Eq.(1.1) as:

dy
dx

= f (x,y) (4.1)

And divide the interval [x0,x f ] into N equal sub intervals of mesh length h and the
mesh points given by xi = x0 + ih, i=1, 2, ..., N. Then h =

x f−X0
N , where N is

positive integer. Integrating Eq. (4.1) on interval [xi,xi+1] we obtain:

∫ xi+1

xi

dy
dx

dx =
∫ xi+1

xi

f (x,y)dx

y(xi+1)− y(xi) =
∫ xi+1

xi

f (x,y)dx

y(xi+1) = y(xi)+
∫ xi+1

xi

f (x,y)dx (4.2)
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To derive the method, we approximate f (x,y) by Newton’s backward difference
interpolation polynomials.

4.1.1 Description of Adams-Bashforth Predictor Method

Let us take N data values (xi, fi), (xi−1, fi−1), (xi−2, fi−2),..., (xi−N+1, fi−N+1), .
For this data, we fit the Newton’s backward difference interpolating polynomial of
degree N−1 and we get: (Erwin et.al. 2011)

PN−1(x) = f (xi + kh) = fi + k∇ fi +
k(k+1)

2!
∇

2 fi + ...

+
k(k+1(k+2)...(k+N−2))

(N−1)!
∇

N−1 fi +T p
N (4.3)

where k = x−xi
h and T p

N = k(k+1(k+2)...(k+N−1))
N! hN f (N)(ζ ) is the error term, where ζ

lies in the same interval containing the points xi, xi−1, . . . ,xi−N+1 and N the
limit of integration in Eq.(4.2) becomes: x = xi =⇒ k = 0, x = xi+1 =⇒ k = 1,
and dx = hdk. Replacing f (x,y) by PN−1(x) in Eq.(4.2) and using Eq.(4.3) we get:

y(xi+1) = y(xi)+
∫ 1

0
{ fi + k∇ fi +

k(k+1)
2!

∇
2 fi + ...}dx (4.4)

By choosing different values for N, we get different methods. But for this particu-
lar study, we choose the value for N = 8 which is of order eighth method. Now, on
integrating term by term in Eq. (4.4) with respect to k , we obtain:∫ 1

0 kdk = 1
2 ,∫ 1

0 k(k+1)dk = 5
6 ,∫ 1

0 k(k+1)(k+2)dk = 9
4 ,∫ 1

0 k(k+1)(k+2)(k+3)dk = 251
30 ,∫ 1

0 k(k+1)(k+2)(k+3)(k+4)dk = 475
12 ,∫ 1

0 k(k+1)(k+2)(k+3)(k+4)(k+5)dk = 19087
84 ,∫ 1

0 k(k+1)(k+2)(k+3)(k+4)(k+5)(k+6)dk = 36799
24 ,∫ 1

0 k(k+1)(k+2)(k+3)(k+4)(k+5)(k+6)(k+7)dk = 1070017
90 ,

Thus, we get:
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y(xi+1) = y(xi)+h[ fi +
1
2

∇ fi +
5

12
∇

2 fi +
3
8

∇
3 fi +

251
720

∇
4 fi +

475
144

∇
5 fi +

19087
60480

∇
6 fi

+
5257

17280
∇

7 fi]+T8

= yi +h[ fi +
1
2
( fi− fi−1)+

5
12

( fi−2 fi−1 + fi−2)+
3
8
( fi−3 fi−1 +3 fi−2− fi−3)

+
251
720

( fi−4 fi−1 +6 fi−2−4 fi−3 + fi−4)+
475
144

( fi−5 fi−1 +10 fi−2−10 fi−3 +

5 fi−4− fi−5)+
19087
60480

( fi−6 fi−1 +15 fi−2−20 fi−3 +15 fi−4−6 fi−5 + fi−6)

+
5257

17280
( fi−7 fi−1 +21 fi−2−35 fi−3 +35 fi−4−21 fi−5 +7 fi−6 + fi−7)]+T8

= yi +
h

120960
[434241 fi−1152169 fi−1 +2183877 fi−2−2664477 fi−3 +2102243 fi−4

−1041723 fi−5 +295767 fi−6−36799 fi−7]+T8

(4.5)

where T P
8 = 1070017

3628800 h8 f (8)(ζ ) is the local truncation error. Hence, Eq. (4.5) is called
eight order predictor method.

4.1.2 Description of Adams-Moulton Corrector Method

Let us take N+1 data values (xi+1, fi+1), (xi, fi), (xi−1, fi−1), (xi−2, fi−2),..., (xi−N+1, fi−N+1),.
For this data, we fit the Newton’s backward difference interpolating polynomial of
degree N and we get: (Erwin et.al. 2011)

PN(x) = f (xi + kh) = fi+1 +(k−1)∇ fi+1 +
k(k−1)

2!
∇

2 fi+1 + ...+

(k−1)k(k+1)...(k+N−1))
N!

∇
N fi+1 +T c

N

(4.6)

where k = x−xi
h , x− xi+1 = (x− xi)− (xi+1− xi) = kh−h = h(k+1) and

T c
N =

k(k+1)(k+2)...(k+N−1))
(N +1)!

hN+1 fN+1(ζ )

14



is the error term, when ζ lies in some interval containing the points xi+1, xi, xi−1,
xi−2,..., xi−N+1 and x .
The limits of integration in Eq. (4.2) becomes:
x = xi =⇒ k = 0,x = xi+1 =⇒ k = 1 and dx = hdk.
Replacing f (x,y) by PN−1(x) in Eq. (4.2) and using Eq. (4.6) we get:

y(xi+1) = y(xi)+
∫ 1

0
{ fi+1 +(k−1)∇ fi+1 +

k(k−1)
2!

∇
2 fi+1 + ...}dx (4.7)

By choosing different values for N, we get different methods. But for this particular
study, we choose the value for N = 7 which is of order eighth method.

Now, on integrating term by term in Eq. (4.7) with respect to k , we obtain:

∫ 1
0 (k−1)dk =−1

2 ,∫ 1
0 (k−1)kdk =−1

6 ,∫ 1
0 (k−1)k(k+1)dk =−1

4 ,∫ 1
0 (k−1)k(k+1)(k+2)dk =−19

30 ,∫ 1
0 (k−1)k(k+1)(k+2)(k+3)dk =−9

4 ,∫ 1
0 (k−1)k(k+1)(k+2)(k+3)(k+4)dk =−863

84 ,∫ 1
0 (k−1)k(k+1)(k+2)(k+3)(k+4)(k+5)dk =−1375

24 ,∫ 1
0 (k−1)k(k+1)(k+2)(k+3)(k+4)(k+5)(k+6)dk =−33953

90 ,

15



Thus, we get:

y(xi+1) = y(xi)+h[ fi+1−
1
2

∇ fi+1
1

12
∇

2 fi+1−
1

24
∇

3 fi+1−
19

720
∇

4 fi+1−
3

160
∇

5 fi+1

− 863
60480

∇
6 fi+1−

275
17280

∇
7 fi+1]+T7

= yi +h[ fi+1−
1
2
( fi+1− fi)−

1
12

( fi+1−2 fi + fi−1)−
1

24
( fi+1−3 fi +3 fi−1− fi−2)

− 19
720

( fi+1−4 fi +6 fi−1−4 fi−2 + fi−3)−
3

160
( fi+1−5 fi +10 fi−1−10 fi−2

+5 fi−3− fi−4)−
863

60480
( fi+1−6 fi +15 fi−1−20 fi−2 +15 fi−3−6 fi−4 + fi−5)

− 275
24192

( fi+1−7 fi +21 fi−1−35 fi−2 +35 fi−3−21 fi−4 +7 fi−5 + fi−6)]+T7

= yi +
h

120960
[36799 fi+1 +139849 fi−121797 fi−1 +123133 fi−2−88547 fi−3

+41499 fi−4−11351 fi−5 +1375 fi−7]+T7 (4.8)

Where, TC
7 =− 33953

3628800h9 f (8)(ζ ) is local truncation error.
Hence, Eq.(4.8) is called eight order corrector method.

Remark 4.1 The eighth order predictor corrector method uses yk−7, yk−6, yk−5,

yk−4, yk−3, yk−2,yk−1 and yk, in the calculation of yk+1. This method is not self-

starting; eight points,(x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5), (x6,y6)

and (x7,y7) must be known in advance in order to generate the points (xk,yk) for

k ≥ 8 and we apply the eighth order Runge-Kutta method (Curtis,1970) using the

first seven nodal points

4.2 Stability and Convergence Analysis

For multi-step methods, the problems involved with consistency, convergence, and
stability are compounded because of the number of approximations involved at each
step.In the one step methods,the approximation yi+1 depends directly only on the
previous approximation yi, where as the multi-step methods use at least two of the
previous approximations, and the usual methods that are employed involve more.
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The general multi-step method for approximating the solution to the initial-value
problem (Burden and Faires,2011)

dy
dx

= f (x,y), y(x0) = α, x0 ≤ x≤ x f

has the form

yi+1 = αk−1yi +αk−2yi−1 +α0yi+1−k +hF(xi,yi+1,yi, ...,yi+1−k) (4.9)

where y0 =α0,y1 =α1, · · · ,yk−1 =αk−1, for each i= k−1,k, · · · ,N−1 and α0,α1,α2, ...,αk+1

are constants.
Throughout the analysis, two assumptions will be made concerning the function F:

• If f ≡ 0 (that is, if the differential equation is homogeneous), then F ≡ 0 also.

• F satisfies a Lipschitz condition with respect to {y j},in the sense that a con-
stant L exists and, for every pair of sequences {Vj}N

j=0 and {V̄j}N
j=0 and for

i = m−1,m, ...,N−1, we have

|F(ti,h,Vi+1, ...,V i+1−m)−F(ti,h,V̄i+1, ...,V̄ i+1−m) |≤L
m

∑
j=0
|Vi+1− j−V̄i+1− j |

The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both
of these conditions, provided f satisfies a Lipschitz condition

Definition 4.1 (Root condition): Let λ1 , λ2, . . . ,λN are the (not necessarily

distinct) roots of the characteristic equation given by:

P(λ ) = λ
N−αk−1λ

N−1− ...−α1λ −α0 (4.10)

If |λi| ≤ 1 for i = 1,2,3, · · · ,k and all roots with absolute value 1 are simple

roots, then the difference method is said to satisfy the root condition.

Definition 4.2 (Stability)(David, 2008):

i. Methods that satisfy the roots condition in which |λi| = 1 is the only root of the

characteristic equation with magnitude one is called strongly stable.
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ii. Methods that satisfy the root condition and have more than one distinct root with

magnitude one is called weakly stable.

iii. Methods that do not satisfy the root condition are called unstable.

Theorem 4.1 The eighth-order predictor method in Eq. (4.5) is strongly stable.

Proof: The eighth order predictor method in Eq. (4.5) can be expressed as:

yi+1 = yi +hF(xi,yi+1,yi, ...,yi−7) (4.11)

where

hF(xi,yi+1,yi, ...,yi−7) =
h

120960
[434241 fi−1152169 fi−1 +2183877 fi−2−2664477 fi−3

+2102243 fi−4−1041723 fi−5 +295767 fi−6−36799 fi−7]

In this case, we have: k = 8, α0 = α1 = α2 = α3 = α4 = α5 = α6 = 0 and α7 = 1 .
The characteristic equation for the method becomes:

P(λ ) = λ
8−λ

7 = λ
7(λ −1) = 0

λ1 = 1,λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = 0

are the roots of the polynomial.
Therefore, it satisfies the root condition and is strongly stable by Definition 4.2 (i).

Theorem 4.2 The eight-order corrector method in Eq. (4.8) is also strongly stable.

Proof: The eight-order corrector method in Eq. (4.8) can be expressed as:

yi+1 = yi +hF(xi,yi+1,yi, ...,yi−6) (4.12)

where

hF(xi,yi+1,yi, ...,yi−6) =
h

120960
[36799 fi+1 +139849 fi−121797 fi−1 +123133 fi−2

−88547 fi−3 +41499 fi−4−11351 fi−5 +1375 fi−6]
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In this case, we have: k = 7, α0 = α1 = α2 = α3 = α4 = α5 =0 and α6 = 1
The characteristic equation for the method becomes:

P(λ ) = λ
7−λ

6 = λ
6(λ −1) = 0

λ1 = 1,λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = 0

are the roots of the polynomial.
Therefore, it satisfies the root condition and is strongly stable by Definition 4.2 (i).

Definition 4.3 (Consistency) Any linear multi-step method is said to be consistent,

if the local truncation error Tk(h)→ 0 as h→ 0. (David, 2008)

From Eq. (4.5) and Eq. (4.8), we get:

T P
8 =

1070017
3628800

h8 f (8)(ζ ) and TC
7 =− 33953

3628800
h7 f (7)(ζ ).

Hence Tk(h)→ 0 as h→ 0.
Therefore, the methods in Eq. (4.5) and Eq. (4.8) are consistent by Definition 4.3.

Consistency and zero stability are the necessary and sufficient conditions for the
convergence of any multi-step method. Hence, the methods are convergent since
they are both consistent and stable (Burden and Faires,2011).

4.3 Numerical Examples

In order to test the validity of the proposed method, four quadratic Riccati differ-
ential equations have been considered. Since all predictor corrector methods are
not a self-starter, we take the eight order Runge-Kutta method for the first seven
nodal points. For each N, the point wise absolute errors are approximated by the
formula, ||E||= |y(xi)−yi| for i = 0,1,2, ...,N and where, y(xi) and yi are the exact
and computed approximate solution of the given problem respectively, at the nodal
point xi .

Example 4.1 Consider the following quadratic Riccati differential equation.
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dy
dx = ex− e3x +2e2xy− exy2, y(0) = 1, 0≤ x≤ 1

The exact solution is y(x) = ex.

Table 4.1: Comparison of absolute errors for example 4.1

x N=10 N=40 N=70 N=100 N=200
present method

0.1 1.6209e−14 0.0000e+00 0.0000e+00 2.2204e−16 0.0000e+00
0.2 5.0404e−14 0.0000e+00 2.2204e−16 0.0000e+00 0.0000e+00
0.3 1.2235e−13 0.0000e+00 6.6613e−16 0.0000e+00 0.0000e+00
0.4 2.7200e−13 4.4409e−16 4.4409e−16 4.4409e−16 0.0000e+00
0.5 5.8176e−13 6.6613e−16 4.4409e−16 4.4409e−16 0.0000e+00
0.6 1.2188e−12 4.4409e−16 0.0000e−16 6.6613e−16 0.0000e+00
0.7 2.5251e−12 8.8818e−16 8.8818e−16 8.8818e−16 0.0000e+00
0.8 1.2705e−11 1.3323e−15 8.8818e−16 1.7764e−15 4.4409e−16
0.9 2.9535e−11 1.3323e−15 2.2204e−15 2.2204e−15 0.0000e+00
1 4.8137e−11 1.7764e−15 2.6645e−15 2.6645e−15 4.4409e−16

Gemechis and Tesfaye (2016)
0.1 1.1153e−07 4.5427e−10 4.8711e−11 1.1722e−11 7.3475e−13
0.2 2.6297e−07 1.0710e−09 1.1484e−10 2.7633e−11 1.7317e−12
0.3 4.6838e−07 1.9073e−09 2.0451−10 4.9211e−11 3.0835e−12
0.4 7.4674e−07 3.0404e−09 3.2600e−10 7.8447e−11 4.9163e−12
0.5 1.1637e−06 4.5748e−09 4.9051e−10 1.1803e−10 7.3965e−12
0.6 1.6338e−06 6.6511e−09 7.1312e−10 1.7160e−10 1.0753e−11
0.7 2.3239e−06 9.4596e−09 1.0142e−09 2.4406e−10 1.5293e−11
0.8 3.2569e−06 1.3257e−08 1.4214e−09 3.4203e−10 2.1432e−11
0.9 4.5182e−06 1.8390e−08 1.9717e−09 4.7445e−10 2.9703e−11
1 6.2225e−06 2.5327e−08 2.7154e−09 6.5340e−10 4.0941e−11

Table 4.2: The maximum absolute errors for Examples 4.1 with different values of
N.

N=10 N=50 N=100 N=150 N=200
4.8137e−11 1.3323e−15 2.6645e−15 3.5527e−15 4.4409e−16
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Figure 4.1: The graph of numerical and exact solution of example 4.1 for N=15

Example 4.2 Consider the following quadratic Riccati differential equation.

dy
dx =−sinx+(cos2 x)y(x)+(cosx)y2(x), y(0) = 1, 0≤ x≤ 1

The exact solution is y(x) = cosx.

Table 4.3: Comparison of absolute errors for example 4.2

x N=10 N=40 N=70 N=100 N=200 N=400
present method

0.1 1.9151e−13 4.2077e−12 9.0683e−13 1.5854e−13 5.2180e−15 3.3307e−16
0.2 4.7656e−10 1.1793e−11 8.2212e−13 1.4400e−13 4.7740e−15 1.1102e−16
0.3 9.0813e−10 1.0744e−11 7.4840e−13 1.3112e−13 4.3299e−15 1.1102e−16
0.4 8.8986e−10 9.8378e−12 6.8534e−13 1.2002e−13 3.8858e−15 1.1102e−16
0.5 2.1039e−10 9.0720e−12 6.3194e−13 1.1069e−13 3.4417e−15 2.2204e−16
0.6 1.1254e−09 8.4365e−12 5.8775e−13 1.0270e−13 2.8866e−15 9.9920e−16
0.7 2.9308e−09 7.9186e−12 5.5200e−13 9.6256e−14 2.7756e−15 1.9984e−15
0.8 2.7489e−09 7.5059e−12 5.2336e−13 9.1260e−14 2.7756e−15 3.5527e−15
0.9 2.6555e−09 7.1858e−12 5.0115e−13 8.7264e−14 2.4425e−15 5.1070e−15
1 2.5273e−09 6.9467e−12 4.8461e−13 8.4599e−14 2.2204e−15 6.7724e−15
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Table 4.4: The maximum absolute error for Examples 4.2 with different values of
N.

N=10 N=50 N=100 150 200
2.5273e−09 2.4388e−12 8.4599e−14 9.9920e−15 2.2204e−15

Figure 4.2: The graph of numerical and exact solution of example 4.2 for N=15

Example 4.3 Consider the following quadratic Riccati differential equation

dy
dx =−

1
1+x + y(x)− y2(x), y(0) = 1, 0≤ x≤ 1

The exact solution is y(x) = 1
1+x .
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Table 4.5: Comparison of absolute errors for example 4.3

x N=10 N=40 N=70 N=100 N=200 N=400
present method

0.1 7.2927e−09 1.1063e−10 2.0551e−11 5.1508e−12 3.4039e−13 2.1982e−14
0.2 1.1505e−08 1.5498e−10 1.8855e−11 4.7724e−12 3.1597e−13 2.0539e−14
0.3 1.3882e−08 1.3455e−10 1.7661e−11 4.4893e−12 2.9743e−13 1.9318e−14
0.4 1.5170e−08 1.2330e−10 1.6788e−11 4.2758e−12 2.8333e−13 1.8541e−14
0.5 1.5819e−08 1.1644e−10 1.6142e−11 4.1155e−12 2.7267e−13 1.8097e−14
0.6 1.6102e−08 1.1201e−10 1.5670e−11 3.9970e−12 2.6490e−13 1.6542e−14
0.7 1.6187e−08 1.0909e−10 1.5335e−11 3.9126e−12 2.5924e−13 1.5432e−14
0.8 7.5180e−08 1.0724e−10 1.5114e−11 3.8570e−12 2.5546e−13 1.4433e−14
0.9 1.1630e−07 1.0621e−10 1.4990e−11 3.8256e−12 2.5357e−13 1.3767e−14
1 1.3724e−07 1.0584e−10 1.4990e−11 3.8157e−12 2.5291e−13 1.3101e−14

Gemechis and Tesfaye (2016)
0.1 3.8296e−07 1.2712e−09 1.3226e−10 3.1445e−11 1.9426e−12 1.2057e−13
0.2 5.7951e−07 1.9396e−09 2.0206e−10 4.8062e−11 2.9710e−12 1.8452e−13
0.3 6.8133e−07 2.2939e−09 2.3918e−10 5.6914e−11 3.5196e−12 2.1860e−13
0.4 7.3394e−07 2.4816e−09 2.5893e−10 6.1630e−11 3.8125e−12 1.8452e−13
0.5 7.6091e−07 2.5808e−09 2.6941e−10 6.4137e−11 3.9686e−12 2.4647e−13
0.6 7.7483e−07 2.6340e−09 2.7506e−10 6.5490e−11 4.0530e−12 2.5280e−13
0.7 7.8257e−07 2.6648e−09 2.7834e−10 6.6278e−11 4.1022e−12 2.5668e−13
0.8 7.8799e−06 2.6865e−09 2.8066e−10 6.6837e−11 4.1374e−12 2.5946e−13
0.9 7.9326e−06 2.7069e−09 2.8284e−10 6.7358e−11 4.1697e−12 2.6190e−13
1 7.9961e−06 2.7304e−09 2.8533e−10 6.7954e−11 4.2070e−12 2.6240e−13

Table 4.6: The maximum absolute errors for Examples 4.3 with different values of
N.

N=10 N=50 N=100 N=150 N=200
1.3724e−07 5.1045e−11 3.8157e−12 7.8493e−13 2.5291e−13
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Figure 4.3: The graph of numerical and exact solution of example 4.3 for N=15

Example 4.4 Consider the following quadratic Riccati differential equation.

dy
dx =−y(x)+ y2(x), y(0) = 1

2 , 0≤ x≤ 1

The exact solution is y(x) = e−x

1+e−x .
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Table 4.7: Comparison of absolute errors for example 4.4

x N=10 N=40 N=70 N=100 N=200
present method

0.1 5.1668e−11 5.2819e−13 9.0983e−14 1.5321e−14 5.5511e−16
0.2 1.5901e−10 1.4886e−12 9.0372e−14 1.5321e−14 4.4409e−16
0.3 3.2072e−10 1.4712e−12 8.9208e−14 1.5044e−14 5.5511e−16
0.4 5.3435e−10 1.4466e−12 8.7708e−14 1.4710e−14 5.5511e−16
0.5 7.9628e−10 1.4154e−12 8.5820e−14 1.4433e−14 4.4409e−16
0.6 1.1017e−09 1.3779e−12 8.3711e−14 1.4100e−14 4.4409e−16
0.7 1.4450e−09 1.3350e−12 8.1046e−14 1.3600e−14 4.4409e−16
0.8 7.4020e−09 1.2875e−12 7.8271e−14 1.3156e−14 3.3307e−16
0.9 1.3352e−09 1.2362e−12 7.5218e−14 1.2657e−14 2.2204e−16
1 1.2376e−09 1.1820e−12 7.2109e−14 1.2101e−14 3.3307e−16

Gemechis and Tesfaye (2016)
0.1 1.3034e−09 5.1104e−12 5.4512e−13 1.3090e−13 7.7716e−15
0.2 2.6416e−09 1.0386e−11 1.1082e−12 2.6618e−13 1.6209e−14
0.3 4.0592e−09 1.5994e−11 1.7074e−12 4.1006e−13 2.5036e−14
0.4 5.5965e−09 2.2081e−11 2.3574e−12 5.6632e−13 3.4917e−14
0.5 7.2871e−09 2.8762e−11 3.0709e−12 7.3769e−13 4.5575e−14
0.6 9.1554e−09 3.6115e−11 3.8556e−12 9.2620e−13 5.7176e−14
0.7 1.1215e−08 4.4178e−11 4.7156e−12 1.1327e−12 7.0222e−14
0.8 1.3467e−08 5.2940e−11 5.6490e−12 1.3568e−12 8.4266e−14
0.9 1.5900e−08 6.2346e−11 6.6502e−12 1.5970e−12 9.9254e−14
1 1.8492e−08 7.2299e−11 7.7088e−12 1.8510e−12 1.1591e−13

Table 4.8: The maximum absolute errors for Examples 4.4 with different values of
N.

N=10 N=50 N=100 N=150 N=200
1.2376e09 3.8669e−13 1.2101e−14 9.9920e−16 3.3307e−16
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Figure 4.4: The graph of numerical and exact solution of example 4.4 for N=15

Example 4.5 Consider the following quadratic Riccati differential equation.

dy
dx =

(
1

2(1+x) −
√

x+1
)

y(x)+ y2(x), y(0) = 1, 0≤ x≤ 1

The exact solution is y(x) =
√

x+1.

Table 4.9: Comparison of absolute errors for example 4.5

x N=10 N=40 N=70 N=100 N=200 N=400
present method

0.1 1.4651e−08 2.4095e−10 4.5286e−11 1.1260e−11 7.2786e−13 4.6407e−14
0.2 3.0951e−08 4.5548e−10 5.2663e−11 1.3088e−11 8.4577e−13 5.3957e−14
0.3 4.9486e−08 5.2983e−10 6.1297e−11 1.5234e−11 9.8410e−13 6.2839e−14
0.4 7.0879e−08 6.1749e−10 7.1448e−11 1.7756e−11 1.1471e−12 7.4163e−14
0.5 9.5829e−08 7.1749e−10 8.3418e−11 2.0731e−11 1.3392e−12 8.6819e−14
0.6 1.2515e−07 8.4327e−10 9.7576e−11 2.4250e−11 1.5667e−12 1.0081e−13
0.7 1.5979e−07 9.8835e−10 1.1436e−10 2.8422e−11 1.8361e−12 1.1680e−13
0.8 1.9052e−07 1.1608e−09 1.3432e−10 3.3383e−11 2.1563e−12 1.3656e−13
0.9 2.2509e−07 1.3664e−09 1.5811e−10 3.9295e−11 2.5380e−12 1.6076e−13
1 2.6702e−07 1.6120e−09 1.8653e−10 4.6357e−11 3.0183e−12 1.9007e−13
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Table 4.10: The maximum absolute errors for Examples 4.5 with different values
of N.

N=10 N=50 N=100 N=150 N=200
1.2376e−07 6.8547e−10 4.6357e−11 9.4127e−12 3.0183e−12

Figure 4.5: The graph of numerical and exact solution of example 4.5 for N=15
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4.4 Discussion and Conclusion

In this thesis, eight order predictor-corrector method is presented for solving quadratic
Riccati differential equations.To further collaborate the applicability of the pro-
posed method; tables of point wise absolute error and graphs have been plotted for
examples 1-5 for exact solution versus the numerical solutions at different values of
mesh size h. The stability and convergence of the method have been investigated.
The computational results are presented in the Tables. The results obtained by
the present method are compared with the results of Gemechis and Tesfaye(2016).
Furthermore, from the Tables it is significant that all of the absolute errors de-
crease rapidly as h decreases, which in turn shows the convergence of the computed
solution. This shows that the small step size provides the better approximation.
Briefly, the present method is stable, more accurate and effective method for solv-
ing quadratic Riccati differential equations
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