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Abstract

In this thesis, the problem of the magneto hydradyic slips flow of heat and mass transfer
over an exponentially  stretching permeable sleeebedded in a porous medium with
chemical reaction. Using a suitable similarity sfmmmation, the governing partial
differential equations are transformed insf@em Of None linear higher ordinary differential
equations. The resulting equations are solved nigallyr using implicit finite difference
scheme known as Keller boxmethod by implementingnath lab. The effects of flow of
parameter like. Hartmann number M the permeabgdayameter K, Prandtl number Reat
source Q and chemical reactiornt Bre demonstrated graphically for velocity profile,

temperature profile and concentration profile.
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CHAPTER ONE
INTRODUCTION
1.1. Background of the study
The study of hydro magnetic electrically conductfhgd flow involving heat transfer over

stretching porous sheet is of great importanceanyrprocesses as modern metallurgical and

metalworking processes.

This field has attracted the attention of many aesgers because of its possible applications
in soil sciences, astrophysics, geophysics, nugbeaver reactors etc. In cooling process
of nuclear fission reactors, liquid sodium is puchgeound using electromagnetic forces. In
medical science, an advanced method is used faispig delivery of medicine to cancer
affected organs, in which MHD equations and firdtement analysis are used to study the
interaction between the magnetic fluid particleshi@ bloodstream and the external magnetic
field. The study of fluid flow through porous mediuhas become predictable in the
extraction of crude oil from the pores of rocks dittcation of solids from liquids. Fluid flow
through porous medium also has applications inrenment such as flow of ground water
through soil and rocks, which is important for aghlure and pollution control. The
suction/injection process has its importance in ynangineering activities such as in the
thermal oil recovery, designing of thrust bearimgl aadial diffusers. Suction is also applied
to chemical processes to remove reactants. In paatping technology natural heat
sources/sinks like air, ground, water etc. are uséds technology is used in compressors,

refrigerators and air conditioners.

Heat transfer of a continuous stretching surfacd wuction or blowing was analyzed by(

Chen and Char, 1988. Heat and mass transfer ilbdhadary layers on an exponentially

stretching continuous surface has been studiediagyari and Keller, 1999).(Elbashbeshy,

2001) considered heat transfer over an exponentstetching continuous surface with

suction. Slip flow past a stretching surface wagstigated by (Andersson, 2002).(Miklavcic

and Wang, 2006) analyzed viscous flow due to enkimg sheet. Hydro magnetic flow and

heat transfer adjacent to a stretching verticabshath prescribed surface heat flux was
studied by (Amanandishak, 2010). (Pal and Hirem&®10) considered computational

modeling of heat transfer over an unsteady stne¢churface embedded in a porous medium.
Boundary layer flow and heat transfer over a shiety sheet with Newtonian heating was

studied by(Salle¢t al. 2010). (Sharma and Singh, 2010) investigated st&&idp natural



convection flow with variable electrical conductiveand heat generation along an isothermal

vertical plate.

The heat transfer over a stretching sheet of achydagnetic flow has been studied by
(Chakrabarthi and Gupta, 1979). The MHD flow cheegstic over a stretching sheet of a
viscoelastic fluid was demonstrated by (Andersd@®@®2). Later his work was extended by
(Char, 1994) with mass transfer. In this paper,haee studied the effect of power index
parameter, magnetic field, Prandtl number, therradlation. In addition to this, effect of
some parameters on skin friction coefficient andame heat transfer rate had also been
investigated. The boundary layer equations govebyetthe partial differential equations was
first transformed into a system of nonlinear ordyndifferential equations using appropriate
similarity transformation before being solved nuitaty using Keller box method (Cebeci
and Bradshaw, 1984).

The governing partial differential equations reprasg the flow problem are reduced to
nonlinear higher order ordinary differential eqoas by using similarity transformations.
The transformed equations had been linearized lemndinearized system of equations could
be written in matrix fornrARd=r ,where the elements of nixad were block matrices of order

7x7,0;andr; argx1 column matrices. The solutionAdf=r can be obéthusing block

elimination method which involves forward and baekw sweeps (Chaltu et al., 2017). The

calculations are repeated until convergence ooiteis satisfied and calculations are stopped

Wheda'vo(”‘ <& ,wheres =10 is the desired level of accuracy.

1.2. Statement of the problem
The study had attempted to find answers for theviehg basic questions.

% How to study the effect of various parameters e MHDslip flow of heat andmass
transfer over an exponentially stretching sheet exidbd in porous medium with
chemical reaction How to apply similarity transfation to change the system of
partial differential

equations to ordinary differential equations?

% What are the parameters that affect velocity, teatpee, skin friction coefficient and
surface heat transfer rate?

% How to apply the Keller box method to the couplezhlimear ordinary differential

equation formed from the boundary layer equations?



1.30bjective of the Study

1.3. 1. General objective
The general objective of this study was to analyit¢D slip flow of heat and mass transfer
over an exponentially stretching sheet embeddea porous medium with heat source/sink
using Keller box method.
1.3.2. Specific objective
The study had the following specific objectives:
v' To study the effect of various parameters on thebly@dgnetic flow of fluid and heat
and mass transfer in porous medium
v' To identify the parameters that affect velocitynperature, skin friction coefficient and
surface heat transfer rate.
v' To apply Keller box method to solve the coupled Im&ar ordinary differential
equations formed from the boundary layer equation.
1.4. Significance of the Study
The outcomes of this study had the following impode.

o
8

*

It haddeveloped the researcher knowledge on applaetiematics research.

o
8

*

It might familiarize a researcher with scientificramunication in applied mathematics.
< It will serve for other researchers as a usefidneice for future research on this area.
1.5. Delimitation of the Study
The study is delimited tthe governing partial differential equations stefldw only on
the constructing Keller box method to investigat&iM slip flow of heat and mass
transfer over an exponentially stretching sheet.
1.6. Definition of Important Terms

Boundary layer: is a fluid character that forms in the flow ofifiuthrough a body of surface.
A steady Flow Is a flow in which the various physical phenomédika velocity, pressure
and density at any point do not change with time.

Stream Line: Is a path, in a steady flow field along whichigeg fluid particle travels.
Similarity transformations ;The transformations which reduce number of indepat
variables of system of partial differential equaticat least one less than that of the original
equations are designated similarity transformafidaasen and Na.Y.T,1968).

Stream Function: Is a functiony which satisfies continuity equation and defined as

0y —0y

ay’ VT Tox

Hydro magnetic Flow. Fluid flow in the presence ofmagnetic field.

Magneto hydrodynamics The study of the interaction between magnetidd$ieand

u =

electrically conducting fluids.



CHAPTER TWO

LITERATURE REVIEW
2.1.Magneto hydrodynamics (MHD)
Magnetohydrodynamics is the branch of continuumtmaecs which deals with the motion
of an electrically conducting fluid in the preserafea magnetic field. The word magneto
hydrodynamic (MHD) is derived from: Magneto-meanimggnetic field, Hydro meaning
Liguid and Dynamics which means movement. Otheriamés of nomenclatures are
Hydromagnetic, magneto-fluid dynamics magneto-gasachics and so on. The concept of
MHD is largely perceived to have been initiatedAayaday when he did the first quantitative
observation of Magneto hydro dynamics. He did expents with mercury as a conducting
fluid flowing in a glass tube placed in magnetieldi and observed that voltage was induced
in direction perpendicular to both the directiorflofv and magnetic field. He further showed
that when an electric field is applied to a conthgtfluid in the direction which is
perpendicular to magnetic field, a force is exexedhe fluid in the direction perpendicular
to both electric field and magnetic field. Sinceriha lot has been done on MHD and its
related fields (Rasal.,1990) studied the heat transfer in porous mediuthe presence of
transverse magnetic field. The effects of the Beatce parameter and Nusselt number were
analyzed. They discovered that the effect of irgirgpporous parameter is to increase the
Nusselt Number.(Kinyanjei al .,2003) investigated MHD Stokes problem for a eaiti
infinite plate in dissipative rotating fluid withall current as (Sigey al .,2004) presented an
investigation on the numerical study on naturalvemtion turbulent heat transfer in an

enclosure.

Hydromagnetic flow of Newtonian fluid and heat s&r over continuous moving flat
surface with uniform suction has been studied bpg&dt al., 2010). (Kumast al., 1990)
studied the effects of induced magnetic field ardtlsource/sink on flow and heat transfer
characteristic over a stretching surface. (Netzal, 2004) investigated the boundary layer
over a moving continuous flat plate in an electlycaonducting ambient fluid with a step
change in applied magnetic field.

2.2. Boundary Layer Flow of an Exponentially StretchingSheet

MHD boundary layer flow due to an exponentiallyesthing sheet with radiation effect was
presented by (Ishak, 2011). (Yas al.,2011) studied heat transfer on a generalized
stretching/shrinking wall with convective boundaogndition. Heat transfer in a fluid through
a porous medium over a permeable stretching susaitethermal radiation and variable
thermal conductivity was analyzed by(Cortell, 20(2Hayat, 2012) considered three-

4



dimensional flow of a Jeffery fluid over a lineadyretching sheet. Hydromagnetic boundary
layer flow over stretching surface with thermaliatidn has been discussed by (Soid et al.,
2012). (Mandal and Mukhopadhyay, 2013) presentedt lransfer analysis for fluid flow

over an exponentially stretching porous sheet wiitfiace heat flux in porous medium.

Slip effects on MHD boundary layer flow over an empntially stretching sheet with
suction/blowing and thermal radiation was shown K§Mukhopadhyay, 2013).
(Norhafizatetal.,2013) studied numerical solution of flow and heahsfer over a stretching
sheet with Newtonian heating using the Keller Boethbd. (Singh and Makinde, 2015)
presented a similarity solution for the combinel@&t of velocity slip and temperature jump
on boundary layer flow over a moving surface. Th&iMslip flow of a conducting
Cassonnano fluid over a convectively heated stigceheet was numerically studied by
(Ibrahim and Makinde, 2016a). Other relevant papeith respect to MHD flow over a
stretching sheet include (Ibrahim and Makinde, 20{Bhanet al. (2016).



CHAPTER THREE

METHODOLOGY
3.1. Study Design
The study had used mixed designs (i.e. documentaigw and numerical simulation)
3.2. Study Site and Period
The study was conducted in Jimma University undher €ollege of Natural sciences in
Mathematics department from September 2018 to AWRNRZD.
3.3. Sources of Information
Magazines, journals, different books, internet,ickt had assessed as a sources of
information.
3.4. Mathematical Procedure of the Study
Mathematical procedure is the fundamental partaththe work in mathematical research.
Hence to achieve the stated objectives the follguwmathematical procedures were followed
» Transforming the governed partial differential eipres (PDE) to ordinary differential

equations (ODE) by introducing similarity transfations.

» Reducing the given ordinary differential equatitms system of first order equations.

A\

Writing the reduced ordinary differential equatidgadinite differences.

» Linear zing the algebraic equations by using Newtomethod and write them in vector
matrix form.

» Solving the linear system by the block tri diagoelahination technique.

» Finally sketches wereproduced using MATLAB.



CHAPTER FOUR
MATHEMATICAL FORMULATION, RESULT AND DISCUSSION
4.1. Mathematical formulation

Steady two dimensional laminar flow of a viscousoimpressible and electrically conducting
fluid past over a flat exponentially non condagtistretching porous sheet embedded in
porous medium with non uniform permeability is ddies the x-axis is taken in the direction
along the stretching sheet and y-axis is taken abitm

y A
Ar r*
Too, @0 B B
—
$C . X
vy VY Yy LT3
-v(x

Figure 1: Physical model and coordinate system

The fluid flow confined toy>0 .The flow is generated kye action of two equal and

opposite forces along the-axis so that the wall is stretched keeping theiorxed. The
surface is assumedto be highly elastic and iscéieet in the<-direction with the velocity

X

U =U,e' . Anon uniform magnetic field* = Boeﬁ is applied along they -direction. The
magnetic Reynolds is taken to be small and theedfoe induced magnetic field is neglected.

X

It is assumed that the temperature of the sheet arighle and given by, =T, +T,e?

A non uniform heat source is also applied. All flued properties are assumed to be constant
throughout the motion. Under these assumptions,gtherning boundary layer equations
(Bansal,1977; Bansal,1994;Schlichting and Gers16@3) are

MLy 4.1)
ox oy
2 *2
u@+v%:06—g- %8 +£* u (4.2)
ox oy oy Yo, k
’ .
UO_T_'_VO_T:LO_'E_'_&(T_TW) (4.3)
ox 9y pc,o0y" pc,
oc oc 0°c
u—+v—n=0D -k,(C -C 4.4
ax ay ayZ O( °°) ( )



where u and v are components of the velocity rdaspdyg along the x and y directions C is
concentration of the fluid, T is temperatulg,s temperature far from the shéet= KoeT is

the non-uniform permeability of the medium &id= Q e' B tlon-uniform heat source.
The appropriate boundary conditions are

. ou
=0,y=0u=U+L — v=-v(Xx
n=0,y Y (x)
T=T,+ D’ —aT ,C=C,+ D’ —aC (4.5)
oy oy
I7—>00 y—»oo,u—>0,-|-—>-|-Do(:—>(:Do

= E . . .
Wherev(x) Vo€ s the section velocity at the sheet.

-X -X

L =I.e? isthevelocity slip factor and D" = D e?
4.2. Similarity Transformations

In order to get the velocity and temperature distiion of the fluid over an exponential
porous stretching sheet, the following dimensiamnlssnilarity variables(P.R.Sharma.et al,
2017).

u = T-T X c-C
=y, =€ 6(n)= - X, y) =\ 2vule? f = S 4.6

n yﬂ/ZVI (17) T T, wxy)=yule? @) ) o) c -C. (4.6)
With stream functions defined by

oy x oy vu, =
u=——=uge' f'(n), v=——"—=- =2 (nf'(m+f 4.7

5y U ) o o € (1t m+ 1) (4.7)
Where f(7 ) is dimensionless stream functioh¥s) isoey profile, 7 is similarity
variable andd(n) is temperature profile alggr,) is coneion profile using equation,

(4.7) the continuity equation is satisfied as:

Ju ov
_t—=
ox oy

0

9,

oy

Yool ot wpty-Yoel (2f wpf M= 0
2l 2

Dai[uoe'f (] + Lo f(1) + 1(1))] =0
X 2

Hence the continuity equation is satisfied
Again by using equation (4.6) and (4.7) equatior2)(4nd (4.3) are transformed into nonlinear

ordinary differential equations as follows.

Here:u=u e’ f'(7)



:a—”—i[u e f ()] = °e'<2f )
[)4

OU _ st Yo ai(o g
and u&—[uoe £ (Il 2 e'2f'+nf")]
=_(u026') @f =+t

(ue) (2f 24pf 't )_u e'

2l

ou < u, o
- = el f el "o and
oy ay[u ‘(M =u_ N 2

you

6

e2| (7f'(7) + £(m) 1y, e " \/59;']

2f *+pff ") 4.8)

=[-

x 2
|

(ue

)

=—=2 finpf'+f 4.9
o U] ) (4.9)
Adding equation (4.8) and (4.9).we get
¥ 2
0
uQU 4 U (U8 yop e g (4.10)

ox 0

y

X

. ou_ < . lu =
again since we have —=ue'f " |—¢?
adQy ° 2vl

2 [
Pu_0()_(Ue) (g
oy- oayl oy 2Vl
x 2
2 I
a_l: :V (uoe ) f m
ay 2Vl
x 2
(Ue') ;.
== f 4.11
o (4.11)
Substituting equation (4.10) and (4.11) into (4v2)get
X 2 X 2
0
(ue) [(2.': 2 _ ff )] _(u ) fvll_(aeB +_)u
2 k*
( T) . B el V X X .
f —elue'f
o B S ko Jue' f'(7)



20,82 2
+

2f 2= ff )= f "= £
( ) ( u,0 uoko )
M = 2|0——"3‘B§ i = ﬂ

u,p K uoko

rt2f2+ﬁ'LmA+%ﬁ'=o

Using the same procedure, we can transform emu#4i.3). Here from equation (4.6) we

have
_T-T,
”’”‘m-n
ST 0+
:f,—Tw( =) (Tw-T,) = L T)
X 2
oT ¥ f'n(Tw-T,),
and u2=u el (i -

_UﬁTPHWﬁw—R)
- 2l

X

againa—T=[(Tw—Tm)6?'i(/7)] @'(Tw-T,) Yo e2'
oy oy

0°T _ 0 0T / x
3y? —E(E)——(Q(T w-T,) Y J

=0"(Tw- T)

10

(4.12)

(4.13)



v"’T=[— m,e;(m.m)”(,n] (9 (Tw-T,) ezx'] (4.19)

oy 2l I
T (Tw—
- LWL g gt
2
T (Twy—
00Ty T - W) gy (4.15)
ax ay 2
substituting equations (4.13) and ( 4.1§ intoequation ( 4.3 we get
LU MWT) - K a1+ Q% 7o
2| (6F)= Cp[e (Tw-T,)- e ]ercp T-T.)
ue (Tw-T x i
SR w)(e-f):i[ e j+Qoe (6T -T.))
2l pcp pcp
S Pogis 1 2V 5
k ku,
= 0"+Pré'f + 2PmQ8 =0
Next for equation (4)
aCc _ 9
ST aclCLremeC, -C)]
=g n)C,-C.n
. 1
=@ ((n)(C, -Cw)nﬁ
aC x . 1
ua—=[uoe' f'(mle(m(C, -Cn -
X 2l
= [ue' f'(mMIe(n)(C, -Cm)ﬂg (4.16)
a—C——(c ¢(C, - C.)
ay
=@ (C,-C.)n
ac - @(C, -C )e2' /u
oy
(1/ o e2| Ynt +f) ¢(C,-C )62'1/
:_2Te|x (C.-C.) (f +f) (4.17)
adding equation (16) and (17)We get
u%vg;—ue'f(w(cw N+ (- Segie, )t + 1)

Z‘I’e'(a(c -c,)f(c,—c.)

11



9°C 0 0/ . u =
- T = ()= C -C —0 2
¥ ay(ay) ay(mw m,)),/ZVI
} u RS u RS
=0 (C -C ) |—pg? (|— g2
#(Cy=Co)\[5e (| e”)
ue ;.
= - (#@.-c) (4.18)

since we have 2C = ((p' C, -C. )) / o g
oy 2Vl
0°C _uge'

TRy (#(c.-C.)

I "
= % (6c.-c.) (4.19)
equating equations (4.18) and ( 4.19 in equation( 4.4 becamse

X
|

ue .. 6= Uy o _ _
o #(Cu=C.)(-1)=D-2e'¢"(C,~C. )~k (C-C.)
#(C,~C.)(-1)=C¢"(C.-C. )~k (C~C) 2,

u,e'

> ¢'+X(¢p'f-Re)=0

Hence the transformed nonlinear ordinary edéhtial equation are then:

FU_2f 24 ff (M +%)f =0 (4.20)
6"+Pré'f + 2PQE = 0 (4.21)
p'+(p'f-Ry)=0 (4.22)
Where: primes denoted differentiation  withpes ton. The Hartmann number M, thepermeability
Parameter k, the Prandtl numbertRe heat source parameteR),  is c&meaction.
2

mM=29B1 sk e s R g kA g v

o, 2Vl k oCpu, 4 D

u.e

Subject to the boundary condition indim etionless form anreduesed fo,

v= () | /,1 R R f=‘ﬁ’j o

12



u= U+Lg—:ue'f —ue'+le2':(ue'f):>ue'f +Ie2'(ue'f ),/
y

f':1+lo\/gf"(0)3 f'(0)= 1+5,f " (0)

n=0,f(0)=s,f (0=1+S,f (08 OF ¥, Oy Ors,@ ©)
n - o, f'(®)-08()- 0pE)- 0 (4.23

S=V, il S’V:|°‘/2uol s =D, ;jl wheresisthesuction parameter, s, isthevel ocity slip parameter
\/vu0 v

and s; isthermal slip parameter.
Coefficient of skin friction, Nassult number andeBRiorld number.

The rate of shear stress in terms of coefficierskad friction at the sheet is given by:
skin friction

=27 ou 0 X X
C.=—X2r =u-—),.,=uU—(uef ue'f 0 e2'
f pug w :u(ay)y_o luay( o )y /u( ( ))

3x

now 7, = u(u,f (0)) ulez'

f (0))\/7 e?)

:>—(( (0)) e2| =-2(f (0) ;jl e? :-(f"(O)),/%ez' = —(f (0)) u;z/lez'

0

U, =ue = Uy = C, ==(f"(0)) |-

el

—2x

C =e' f(O)(Rex)Z

-1

2x
ct = 2% u _(Rexj e' f'(0) where 7,, isthe wall shear stress given by 7, —,u[auj (4.24)
pU 2 ay y=0
rate of transfer in terms os Nusselt number at the sheet given by
x\2
Nu = 9, ___[ k& e' | 6'(0) where g, is the rate of heat transfer given by g, =-k T (4.25)
k(T,-T.) 2 Y )0

Sherworld number is defined as

/2| 1
S‘]X= Xq =, —— S‘]X= —@(0) , where gnm is the mass flux at the surface of sheet given by:
" VX Re,

13



oC
=-D( —= =0
4.3Methods of Solution

Equation (4.20 ) — (4.22) subject to the boundacpndition (4.23) where solved
numerically by Keller box method whichimplemented in mat lab then let's
introduce a new variable u,v,g&qg such that

f'=u
u'=v
p'=q
So that equations (4.20) — (4.22 )in terms of naviables
V'+ fv—2u2—(M +%Ju =0 (4.27)
g'+Prgf + 2PrQ6 = 0 (4.28)
q'+Sc(gqf -R.¢) =0 (4.29)

With the new boundary conditions

f(0)=S, u(0)=1+Sv(Q ue)=0p¢ = 0

6(0)=1+5,9(0) @(0) ¥Sq (Opnd@ ¢ )= 0 (4.30
We know consider the net rectangle in thg ylan as shown in the figure bellow and
the net points defined as follows
X =0,X, =X, +Kk,n=12..N
No=n,=n_+h ,j=12..J n, =p,

Where k is theAx- spacing and hj is th& n spacing the here n and j are the sequence ofuthéers

that indicate the coordinate location.

A brief description of the method is given belowef@ci, and Brand show, 1984) .

7 ? Py Py
/7. + |

| | K

,7j-1. | hj

! \’

,7j—l | | ! —
P3 kn P2

>
X, Xo1/2 X X

Figure 2: Finite difference grid for the box method

Now write the finite difference approximationstbé ordinary differential equations
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(4.23) For the mid points
(xn,nj_l,z) using centered difference derivativesis called centering about (xn,nj_l,z)

fo—f .
JTM = Uj-y = f; = f—h (UJ-1/2) =0
u —u._ .
hi . =V = U, _uj—l_hJ (Vj—llz) =0
6,-6_, . _
hj =0 = ‘91' _‘9]—1_ hJ (gj—llz) =0 (4-31)
- .
] hj =0 =¢-¢.,~h (qi-1/2) =0

Ordinary differential equation ( 4.24-4.26) are @pyimated by centering about the mid point
(xn_l,z,nj_l,z) of therectangle

V V
hj
gj E
hj
q; —Qj
hj

1
=+, ja2Vj-u2 2(“, 1/2)2 ( +Ejuj—1/2:0
+Pr(f,_,9,.1,)*+ 2PQ6,_,,,=

+ Sc(fj—llij—llz_ Rﬂ—uz) =0

U _Uptug,
'_/ ......
j-12 2

Henceequatin (4.28- 4.31becomes

f-f,- (uj+uj_1) 0

Uy —Uj, h—z’(v +V,_ ) 0

h

6 =6,5= (9, +9;4) =0 (4.32)

?-9 h—z’(q,+q, L)=0
Vv, -V, J(f + f )(v +vj_l)— J(u +u 1) —(M kjrg(uj +uj_1) =0 (4.33)
gJ _gj-1+ Pilhj (fJ + fJ‘l)(gi + J—l)+ 2Pr2th (91 +91-1) =0 (4'34)
q, Q,-1+SCThJ[( f+ f) (g +a) |- hJR°(¢ +g.,) =0 (4.35)

Now linearize the non linear the system equation3@4.35) using the Newton’s linearization
systems, that is we assume:

(i +1)‘h itrate
fa=fie5f e (4.36)

substitung equation(4.36)into equations (4.32)— (4.35hecames
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f,+of, - f._l—é'fj_l—h—zj(u. +0u, +u;_,+du;_,)=0

L +h—2j(u +u,_,)

= of, -t ——(du; +du,,) =1

): ),
hj

e (1), = 1ya- 1, —( )

-2
(o

I\)|.§ |\>|._

:>5fi —ij

u; +au, —uj_l—éuj_l—h—zj(vj +0V, +Vj_1+5Vj-1) =0

hj hj

= du, —5uj_1—71(5v]. +5v]._l) =u_,-u +—21(v]. +vj_1)
o

= du, —Juj_l—zj(évj +5v]._l) =(r,),

i
where (rz)j =u,, U +EJ(V1 +vj_l)

hi
6, +5].9—6?j_1—5-_19—31(gj +00; +gj—l+5gj—l) =0

= 86, -6, (69, +39,.,) =6,,~ 6, +h_2j(91 +9;.)

|\>|.§|\>.§

= 88, - 56, -3 (og, + 39, ) =(r),

hj
where (r,) =6,,-6, +EJ(9,- +9,.)

@ +op -¢_1-5¢_1-m(q,- +30; +0y_y+3q;_,) =

= 09 -0~ 3(00,+08,.) =, -g + 2 (0, +a,.)
= op -3, - (5qj 6q,.,) =(r.),

where (r,), =4.,=¢,+ 2 (q, +a,.,

v, + 9V, —vj_l—dvj_l+%[(fj +0f, + 1, +0f_ )(v +0V, =V, ;= 0V,_ 1)] h—zj(uj +0u; +u,_,+ 5uj_1)z

_h

1
> (M +kj(uj +0u, +uj_1+5uj_1)=0

=V, +0V, ~V, , —dV,_ +hJ [(f +f_)ov; +(f, +f,_)ov,_ 1) (vj+vj_1)5fj+(vj+vj_1)5fj_l+(fj+fj_)(vj+vj_)]—

hj 2 hj 1 _
[z(uj +uj_1) +2uj5uj +an5uj_1+ 25uju + A é’uJ 1} Z(M +k](uj +5uj +Uj_1+5uj—1) =0

Simplifying we get:

16



(ai)i oV, +(a2)j 5VJ-1+(a3)j of, +(a4),- 5f1—1+(a5),- ou; +(a6)j du;_,=(ry.

]
where;

(a), =1+ (f + 1)

(a), =141V (f +f,)

(a,), =“74’(vj +v)=(a,),

(@), =13 20 0, 0-(m 2] -(a0)

(r), =vju- .—%[(fj + )V, +vj_1)]+%j(uj +uj_])2+(|v| +%j%(uj U,

Pr
9; +5gj _gj—1+59j—1+ ((fj +5fj + fj—l+5fj—1)(gj +5gj +gj—1+5gj—]))+
h PrQ(@, +39 +9 ,+06.)=0

Arranging these equations we get:

hj Pr hj Pr

hj Pr
L (1 1,00, =1+ (1 + )5, + (g,+g, Jaf + =

4 (9,+9,.)3%,+ hj PQds, +hj PIQJ6, , =

hj Pr(

9= ———(f; + F,.)(9; +9,.0)) ~hi PrQ(6, +9,-1)

then wecan write this as:
(b), 99, +(b,), 09, ,+(bs), o, +(b,), of,_,+(by), 96, +(bg), 98, ,=(r ),

where;

(b), =1+ L2 (f+ 1)
(b), =- hJF’r(f 5,
(b) = “’P%gj +9,)=(b,),

(bS), =hj PI‘Q—( 6)]

hj Pr(

and (r,), =0, ~9;+——(f, +f_)(g, +9,_)) ~hi PrQ(6, +6,_))

hjSc SR.h.
G + 00, =0, = 80+ (4 10(0 40,0 |- (¢ +4.) =0
using thesametechniquesR. (@ +@_,)

I (R)+9p,4(R)+R(g +4.)

Re arranging these equations we get:
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(a); 8a; +(c,), 9 +(cs), OF; +(c.), OF;y+(cy), duy +(c ), duy-,=(r ),

where:
(cl)_—1+h (f, +f,.)
(c:), = 1+h’s°(f 1)

(<), =%<qj +,)=(c.)

(), = 2R = (cy),

hJSC

and (r7)j =0, —q; * (f +f,_)(q,+q,_ 1))+(¢J +@. I)(hJSZCRc)

In general from above equatlons using;,(&);, (c); and (r); we can write the system of the linear
equations as:

ot -5t %J(Ju +0u,,) = (),

du; = du, %J(CW +0V,_ ):(rz)j

06, — 9,4 %(591 +39,.1) =(1),

5¢—5¢]_1 %(5qj+5qj l) ( )

(8,6, +(20), 34, +(2), 1, +(20), 31, + (2, &, +(2), &, =(r)
(B), 09, +(b;); 09, +(by) OF; +(b,), 5T, 1+ (b, %, +(by), 96, ,=(r ),
(c), 90, +(c,), da;,+(cy), of; +(c,), 0f;_1+(co), ag +(c ), o = (r7)j

With the boundary conditions
ou, =1+s,v, ,o0f,=s , 08 = 1+s. 9, , og = 1+Sn(0)
ou; =0 06,=0 ,op =0

Hence linear zed system of equations can be wiittéimee matrix form as:

Ad=r (4.37)
[A]lc ‘ . .
[B.][A][c] jl :

[B][A][c] K ;

A= RV ,0=|."° r={.’°

DRE
o ][]
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the eIementsmatrix[A] areblock of order 7X7

[A]

0 0O 01 0 0 0
-d, 0 0 0 -d, 0 O
0 -d 0 0 0 -d, 0
0O 0 -d 0 0 0 -d
(), 0 0 (a), (@), O O
0 (), O0 () 0 b) O
0 0 @) @) O 0 )
-4, 0 0 1 0 0 O]
1 0 0 0-d 0 0
0O -1 0 0 0 -d O
0O 0 -1 0 0 0 -
(&), 0 0 @) @) 0 O
0 (®) O ®) 0 b) O
00 @) @) 0 0 &) |
2<j<
‘0 0 0 -1 0 0 0]
00 0 0-d 00
0 0 0 0 0 -d O
o 0 0 0 0 0 -
0 0 0 &) @) 0 O
0 0 0@) 0 6) O
0 0 0 @) 0 0 €)]
2<j<
4, 0 0 0 0 0 O
10 0 0 0 0 0
o 1 0 0 0 0 O
o 0 1 0 0 0 O
@), 0 0 0 0 0
0(), O 0 00
0 0 () 00 0 0 |
1<j<d
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h.
where d, :E] and

[ov, ] ou; 4 () ]
5g0 591'—1 (rZ)j
aq, P, (r);
g=|ot, | o =|df, r={(r), 1<j<J
ov, ov, (1),
og, 39, (rs),
0% | oq; | *); |

The solutions of equations (4.37) can be obtainewsing byblock elimination method which consist
of for ward and back ward sweeps

For ward sweeps

To solve equation 37 lets de composed matrix A pmtaduct of lower triangular matrix L and upper
triangular matrix U

A=LU (4.38)
Where

[a] (]
(4] [ Hr

[, ][a.] )
[ﬁj}[ai] i [I]_

[1]istheidentitymatrix of order 7X7 and| @, |and[T; ] are 7X 7matrix which elements are de

ermained bythe following equation

[a:]=[A]

[Allr]=[c]

Lo =18 ]Tia]=[A] i=23.2
[A][r:]=[C] j=2,3..J

Back ward sweep

Equation (4.38 )can be substituting into equatB7) and becomes

LUS =T (439)
if we define
Uuo=Ww (4.40)
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whereW =| Wi, Wy, W, ............ W, W, ]T (4.4
w; are the elements of 7X1 columen matrix
the elementsof W canbe found by solving equation (4.39)

[a][wa] =[r]
Lo Lw J=[n ]=[A wa] 25559

Once the element d¥are found we can find the solution of equati@ruding recurrent relations.

[a][wa] =[r,]
18] =[w]
o) -fl o] . sisa

4.4 Numerical Results
The following tables show comparison of earlier kgoon skin friction coefficient and

surface heat transfer rate. From the tables hasva that the present result agrees with the

previous results done by Sharma et al.(2017).

Table 1 Numerical values eff" (0) for different values of physical parameter
Previous and (Present Result)

K M S S, Sharma et al.(2017) Present Result
1 0.5 3 0.: 2.705100 2.7046580
2 0,5 3 0.: 2.622108 2.6212308
3 0.5 3 0.: 2.868138 2.8680573
1 2 3 0.1 3.131310 3.1313144

Table 2. Numerical values ef@’(0) for different values of physical parameter Pregiand
Preset result

K P.| Q |M S| S, | & Sharma et al. (2017) Present Result
1 0.71 | 0.E 05 |3 | 01 0.1 1.67731! 1.6780816
2 0.71 | OE 0E |3 |01 0.1 - 1.6796362
3 0.71 | 0.t 0E |3 |01 0.1 1.68253! 1.6801841
1 0.71 | 0.E 2 |3 101 0.1 1.66754! 1.6796362
1 1 0.t 0. |3 ] 01 0.1 2.24158: 2.1944002
1 1 1 0. |3 ] 01 0.1 1.38382i 1.3776549
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Figure 4. Effect of Hartmann parameter M on e#joprofile
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Figure 5. Effect of permeability parameter K onoggty profile
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Figure 6. Effect of velocity slip parametey an velocity profile

0.9 S'=o,o.1,o.z,o.3,o.4
0.8
0.7
S =S =o0.1
0.6 v m
Q=Rc=5=M=0.3
@05 Pr -
Sc=2.57
0.4+ K=10
0.3F
0.2}
0.1}
0 ‘ :
0 0.5 1 1.5

f

Figure 7. Effect of thermal slip parameteio8 temperature profile
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) K=10

0.4

0.3

0.2}

0.1F

0 ‘ ‘

0 0.5 1 1.5 2

Q=0.5,0.25,0, -0.25

$ =S =S =o0.1
\' t m

@D 0.5¢ Rc=S=M=o0.3
Sc=2.57
0.4 K=10
Pr=7
0.3
0.2
0.1
0 \ ‘
0 0.5 1 1.5 2

Figure 9. Effect of heat source parameter Q on ezatpre profile
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Figure 10. Effect of Harthmann number parametemM emperature profile
1 I I I I I
0.9+ S =0,01,0.2,0.3,0.4 q
m
0.8 .
0.7 .
0.6 .
S0.5- 8
$ =S =0.1
v t
0.4 Re=M=5-Q=0.3 iy
Sc=2.57
0.3 K = 10 .
Pr=7
0.2 .
0.1+ .
0 | | | T
0 0.5 1 1.5 2 2.5 3

Figure 11. Effect of concentration slip parameteio8 concentration profile
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Figure 13. Effect of chemical reaction parameter Rc orceairation profile
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Figure 14. Effect of velocity slip parametera&d permeability parameter K on skin friction
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Figurel5. Effect of velocity slip parameter&d Hartmann number on skin friction
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Figure 16. Effect of thermal slip parameteraBd permeability parameter K on heat transfer
rate
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Figure 17. Effect of concentration slip parametar &d Schmidt number on mass transfer
rate.
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4.5. Discussion

The system of nonlinear higher ordinary differenéquations (4.20), (4,21)and (4.22) with
boundary condition (4.23) were solved numericabyng Keller box Method. The effect of
different parameters like Hart Mann numbers, thengability parameter , suction/injection
parameter, Prandtl number, heat source and chemézaition parameter on velocity,
temperature, concentration profile, skin frictiavetficient, heat and mass transfer rates have

been analyzed.

Figures 3, 4, 5 and 6 show the effect of sucitijedtion parameter s, Hartman number M
permeability parameter K and velocity slip paramedg on velocity profile respectively,
while the other parameters are constant. We obdefram the figures that increasing
suction/injection parameter, Hartman number, andcity slip parameter is decreasing in
velocity while increasing permeability parametersea the velocity profile of the fluid.
Figures 7, 8, 9 and 10 show the effect of thersligl parameter, Prandlt number, heat
source/sink parameter and Hartman number on temopergrofile, respectively. The figures
reveal that increasing thermal slip parameter amdnd®l number tends to decrease
temperature profile and increasing heat sourcefsamémeter and Hartmann number rises the
temperature. Figures 11, 12 and 13 shows the affemtincentration slip parameter, Schmidt
number and chemical reaction parameter on condemtrarofile respectively. From the
figures one can observe that increasing each of ghmmeters diminishes species
concentration. Effect of velocity slip parameted grermeability parameter on skin friction
coefficient is displayed in figure 14. The figurepicts that reducing the velocity slip
parameter and an increase in permeability paranieteease the skin friction coefficient.
Figure 15 shows the effects of velocity slip pareanend Hartman number on skin friction
coefficient. It is observed from the figure thadecrease in the velocity slip parameter and an

increase in Hartmann number increase the skindnatoefficient.

Figure 16 shows the effect of thermal slip paramatel permeability parameter surface heat
transfer rate. From the figure one cam concludé deareasing the thermal slip parameter
and an increase in permeability parameter raisessthiface heat transfer rate. Figure 17
exhibits effect of concentration slip parameter &wtimidt number on surface mass transfer
rate. The figure reveals that a decrease in coratent slip parameter and an increase in

Schmidt number increases surface mass transfer rate
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CHAPTER FIVE
CONCLUSION AND SCOPE FOR THE FUTURE WORK

5.1. Conclusion

In this study, the effect of different parametakse IHart Mann number, the permeability

parameter, Prandtl number heat source//sink paenaedd chemical reaction parameter on

velocity, temperature, concentration profile, skiction coefficient, surface heat and mass

transfer rates have been analyzed by Keller boxodetBriefly the above discussion can be

summarized as follows:

7
0’0

®
%

®
%

®
%

®.
%

Increasing suction/injection parameter, Hartman Imemnand velocity slip parameter is
decreasing in velocity while increasing permeapilitarameter raises the velocity
profile of the fluid.

Increasing thermal slip parameter and Prandtl nurtdoeds to decrease temperature
profile and increasing heat source/sink parameter ldartmann number rises the
temperature.

Increasing concentration slip parameter, Schmidinber and chemical reaction
parameter diminishes species concentration.

Reducing the velocity slip parameter and an in@&eas permeability parameter
increase the skin friction coefficient.

Decrease in the velocity slip parameter and areas® in Hartmann number increase
the skin friction coefficient.

Decreasing the thermal slip parameter and an iserapermeability parameter raises
the surface heat transfer rate.

Decreasing concentration slip parameter and amaserin Schmidt number increases

surface mass transfer rate.

5.2. Scope for the future work

In the present thesis, numerical solution obtaifoedydro magnetic incompressible laminar

fluid flow over nonlinear stretching sheet in prese of heat source/sink by Keller box

method. So, one can find the solution for the mobbf unsteady incompressible fluid flow

over nonlinear stretching/shrinking sheet.
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