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Abstract

In this study, analysis of thermal radiation and thermal slip effects on heat trans-

fer in stagnation point flow over a permeable flat plate is considered. The governing

continuity, momentum and energy equations are transformed into nonlinear ordi-

nary differential equations using the similarity transformations and solved analyt-

ically by Optimal Homotopy Asymptotic Method. The effect of various physical

parameters such as suction/blowing parameter, Eckert number, thermal slip pa-

rameter, magnetic parameter, velocity slip parameter, permeability parameter, wall

temperature exponent, Prandtl number on velocity and temperature of fluid flow

profile. were analyzed and displayed graphically using MATLAB software.
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Nomenclature
B0 applied magnetic field
cp specific heat at constant pressure (J/kg.K)
D temperature slip factor
f dimensionless stream function
f0(η) initial approximation of f

k coefficient of thermal conductivity (W/mK)
k1 absorption coefficient
L, N, auxiliary linear operators defined in Eqs.(4.2) & (4.5)
M magnetic parameter
N Navier’s constant slip length
P pressure
Pr Prandtl number
qr radiative heat flux (kW/m2)
R radiation parameter
s mass transfer parameter
T temperature of the fluid (K)
T∞ ambient fluid temperature (K)
u,v velocity components in x- and y-directions (m/s)
uslip velocity slip
ue free stream velocity (m/s)
vw uniform surface mass flux
Greek Symbols
α thermal diffusivity
β dimensionless velocity slip parameter
η similarity variable
γ dimensionless thermal slip parameter
λ exponent of the wall temperature
µ coefficient of fluid viscosity
υ kinematic viscosity
Ω permeability parameter
ψ stream function
ρ density (kg/m3)
σ electrical conductivity
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σ∗ Stefan-Boltzmann constant
θ dimensionless temperature
θ0(0) initial approximation of θ

Subscripts
w condition at wall
∞ ambient environment
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Chapter 1

Introduction
1.1 Background of the study

A point on the surface of an object in the flow field where the local fluid ve-
locity is zero called stagnation point. The stagnation point flow analysis plays a
significant role in the study of numerous natural and industrial phenomena, because
of its applications in the exploring of flows over the tips of submarines, tip of ships
and aircrafts. It is important in various engineering disciplines like hydrodynamic
processes, cooling of nuclear reactors, cooling of electronic devices by fans, etc
Sparrow eta l., (1963).

On account of the afore-mentioned applications only, Hiemenz (1911) was the
very first researcher to do a pioneering work so as to investigate the viscous fluid
motion generated by a two-dimensional stagnation point flow over a flat plate. The
flow due to a stretching sheet often occurs in engineering processes. For example,
in manufacturing industry, polymer sheets and filaments are manufactured by con-
tinuous extrusion of the polymer from a die to a windup roller, which is located at
a finite distance away Nield eta l., (2006) .

Crane (1970) was the first to give similarity solution in closed analytical form
for two-dimensional flow caused by stretching of a plate. Since the pioneer study
of Crane (1970), many authors have showed interest to this type of problem, one
of them was Chiam (1994) who combined the stretching plate problem with two-
dimensional stagnation point flow. Chiam concluded that the flow near the stretch-
ing surface is the same as the inviscid flow far from the surface; hence, no boundary
layer is formed. Later, Mahapatra and Gupta (2002) obtained the results that were
contrary to the conclusion of Chiam (1994). They claimed that a viscous layer is
formed near the stretching surface where the structure of the boundary layer de-
pends on the velocity ratio of the stretching surface to that of the frictionless poten-
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tial flow in the neighborhood of the stagnation point.

The problem on boundary layer flow and heat transfer in the region of the stag-
nation point on a stretching surface that had been studied in past few years are
mostly concerned with the condition where the sheet is assumed to stretch on its
own plane with a velocity proportional to the distance from the stagnation point.
This type of problem has been considered in the papers by Mahapatra and Gupta
(2001) for magnetohydrodynamics flow, Nazar eta l., (2004) for micro polar fluid,
Reza and Gupta (2005) and Lok eta l.

The process of suction/injection is of special significance with reference to the
practical problems related to the boundary control applications. For example film
cooling, fiber coating, and coating of wires. Due to this reason, Schlichting and
Bubmann (1943) were the first to analyze the effect of suction on the Hiemenz
flow. This problem was further extended by Preston (1948). Ariel (1994) made the
analysis of the same problem by way of considering uniform suction. As the mag-
netohydrodynamics stagnation point flow problems are having their theoretical as
well as practical applications in manufacturing processes like boundary layer along
material handling conveyers, blood flow problems, extrusion of plastic sheets, cool-
ing of infinite metallic plate in cooling bath, etc., these problems have attracted in
the recent past the attention of many a researchers such as Sparrow eta l., (1963);
Na (1979), and Ariel (1994).

Rehman eta l., (2017) investigated the stagnation point flow over different ge-
ometrical configuration. Because of the numerous engineering applications of per-
meable media related heat transfer problems in geothermal energy recovery, crude
oil extraction, thermal energy storage etc., Ingham and Pop (1998); Vafai (2005);
Nield eta l., (2006) and Raptis eta l., (1982) analyzed hydromagnetic free con-
vection flows through porous media. Thereafter, Takhar and Ram (1994) and Yih
(1998) investigated the problem under different conditions.

The radiation effects become more important at high absolute temperatures
in the context of space technology, comical flight aerodynamics, plasma physics,
space craft, aerodynamics, etc. As a consequence of this, the effects of thermal
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radiation for different geometrical configurations have been investigated by various
researchers such as Viskanta and Grosh (1962); Chen eta l., (1984); Elbashbeshy
(2000).

The fluid exhibiting wall slips properties are very important on account of their
technological applications. For example the polishing of artificial heart valves and
internal cavities. So, in order to have a better understanding of the slips phenom-
ena, many researchers like Mooney (1931); Rao and Rajagopal (1999); Khaled and
Vafai (2004); Wang (2002); Wang (2006) and Hayat eta l., (2007) examined the
effects of slips boundary conditions on fluid flows through different geometries.

Marinca eta l., (2008, 2009) and Marinca and Herisanu (2008) have been the
first to propose a type of approximate analytic method which requires no small
parameter. This method is known as the optimal homotopy asymptotic method,
aiming at solving nonlinear problems without depending on a small parameter and
it is used to obtain approximate analytic solution of nonlinear problems of thin film
flow of a fourth-grade fluid down a vertical cylinder. In their work, this method
was to understand the behavior of nonlinear mechanical vibration of an electrical
machine. The same method was also used by Marinca eta l., (2008, 2009) and Mar-
inca and Herisanu to obtain the nonlinear equations solution, arising in the steady
state flow of a fourth-grade fluid past a permeable plate and nonlinear equations
solution, arising in heat transfer.

The most important feature of the OHAM is the optimal control of the con-
vergence of solutions by means of a particular convergence-control function H(p),
which ensures a fast convergence when its components (known as convergent con-
stants) are optimally determined (Marinca and Herisanu, 2008, 2010). The validity
of the OHAM is also independent of whether there exist small parameters in the
problem being considered.

The aim of the present study is to investigate the effects of thermal radiation
Eckart number and partial slips on the flow field under the variable wall temperature
condition of the plate by OHAM.
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1.2 Statement of the Problem

The study of nonlinear problem is so important in areas of physics and engi-
neering. Because most phenomena of the world are basically nonlinear (Campbell,
1992; Liao, 2003) and described by nonlinear equations. Boundary layer fluid flow
problems in different dimensions with heat transfer and magneto hydrodynamic ef-
fect have plentiful and inclusive applications in several engineering and industrial
sectors. They include glass blowing, melt spinning, heat exchanger design, fiber
and wire coating, production of glass fibers, industrialization of rubber and plastic
sheets, etc. In addition, the action of thermal radiation is vital to calculating heat
transmission in the polymer treating industry Pavlov (1974).

Liao (2003) used HAM to solve nonlinear differential equation. Liao used HAM
successfully to investigate a variety of nonlinear problems in science, engineering
and finance. Nasreen eta l., (2018) investigate the effect of thermal radiation on
steady laminar forced MHD Hiemenz flow past a flat plate in porous medium by
the use of HAM.

The present study is aimed to analyze the effects of suction/blowing parameter,
Eckert number, thermal slip parameter, magnetic parameter, velocity slip parameter,
permeability parameter, wall temperature exponent parameter, Prandtl number on
velocity and temperature of fluid flow profile.
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1.3 Objectives of the Study

1.3.1 General Objective

The general objective of the present study is to analysis the effects of thermal ra-
diation and thermal slips on MHD forced convection stagnation point flow through
permeable medium.

1.3.2 Specific Objectives

The specific objectives of the present study are:

• To solve the equation governing the flow problem by using OHAM.

• To identify parameters that affect velocity and temperature of the flow prob-
lem.

• To explore the effects of thermal radiation, prandtl number and magnetic field
on velocity and temperature profile of the flow.

• Discuss the effects of various parameters on the flow problem in terms of
physical meanings.

1.4 Significance of the Study

The out come of this study is expected to have the following significance:

• It may help the researcher to gain a comprehensive understanding on Optimal
Homotopy Asymptotic Method for solving nonlinear problems involved in
numerous engineering fields.

• It familiarize a researcher with scientific communication in applied mathe-
matics.

• The results of the finding may have an application in the field of fluid me-
chanics, physics and in different industrial sectors.
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1.5 Delimitation of the Study

The study is delimited to the governing partial differential equations of laminar
boundary layer and to analyze analytical solution for MHD forced convection stag-
nation point flow through a permeable medium on stretching sheet with convective
boundary conditions.

1.6 Definition of key terms

• Boundary layer: Is a fluid character that forms in the flow of fluid through a
body of surface.

• Magnetohydrodynamics: is the branch of continuum mechanics which deals
with the motion of an electrically conducting fluid in the presence of a mag-
netic field.

• Thermal radiation: is the procedure in which energy is released in the form
of electromagnetic radiation by a surface in all directions. Thermal radiation
has numerous uses in the areas of engineering and heat transfer analysis.

• Stagnation Point Flow A point on the surface of an object in the flow field
where the local fluid velocity is zero is called stagnation point.

• Optimal homotopy asymptotic method: is a semi-analytic approximate
technique for the treatment of the time-dependent partial differential equa-
tion.
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Chapter 2

Review Literature

2.1 Magnetohydrodynamics

Magnetohydrodynamics is the branch of continuum mechanics which deals with
the motion of an electrically conducting fluid in the presence of a magnetic field.

Faraday (1812) did experiments with mercury as a conducting fluid flowing in
a glass tube placed in magnetic field and observed that voltage was induced in di-
rection perpendicular to both the direction of flow and magnetic field. He further
showed that when an electric field is applied to a conducting fluid in the direction
which is perpendicular to magnetic field, a force is exerted on the fluid in the direc-
tion perpendicular to both electric field and magnetic field. Since then a lot has been
done on MHD and its related fields. Rao eta l., (1990) studied the heat transfer in
porous medium in the presence of transverse magnetic field.

MHD is important branch of fluid dynamics. Many technological problems and
natural phenomena are susceptible to MHD analysis. Engineers apply MHD prin-
ciple, in the design of heat exchangers, in creating novel power generating systems,
pumps and flow meters, thermal protection, braking, control and re-entry, in space
vehicle propulsion (Kumari eta l., 1990).

MHD convection flow problems are also very important in the fields of stellar
and planetary magnetosphere, aeronautics, electronics and chemical engineering.
Hydromagnetic flow of Newtonian fluid and heat transfer over continuous moving
flat surface with uniform suction has been studied by (Prasad et al., 2010). Kumari
eta l.,(1990) studied the effects of induced magnetic field and heat source/sink on
flow and heat transfer characteristic over a stretching surface. Nazar eta l., (2004)
investigated the boundary layer over a moving continuous flat plate in an electrically
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conducting ambient fluid with a step change in applied magnetic field. The Magne-
tohydrodynamics equations play an important role in many areas of astrophysics,
space physics and engineering. Typical applications in those areas require one to
capture flow on a range of scales in a way that is as dissipation-free as possible.
As a result, there has been considerable interest in bringing accurate and reliable
numerical methods to bear on this problem.

2.2 Heat Transfer Mechanisms

Heat transfer is the science that predicts energy transfer between material bodies
as a consequence of temperature difference. The heat transfer depends not solely
on the transfer of heat energy, but also to predict the heat exchange rate, that take
place under certain specified conditions. Heat transfer supplements the principles
of thermodynamics by providing additional experimental rules that are used to es-
tablish energy-transfer rates (Holman eta l., 2010). There are three types of heat
transfer mechanisms. These are conduction, convection and radiation heat transfer.

2.2.1 Conduction Heat transfer

When a temperature gradient exists in a body, there is an energy transfer from
high temperature region to low temperature region. Conduction may be viewed as
the transfer of energy from the more energetic to the less energetic particles of a
substance due to interactions between the particles.

2.2.2 Convection Heat transfer

Convection heat transfer is the process in which the heat is convected out. The
term convection provides with an intuitive notion concerning the heat transfer pro-
cess. It is the movement of molecules within fluids (liquids, gases). It cannot take
place in solids, since neither bulk current flows nor significant diffusion can take
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place in solids. Convection is one of the major modes of heat transfer and mass
transfer Raptis, A. and Tzivanides, G (1983).

In the context of heat and mass transfer, the term ”convection” is used to refer
to the sum of advective and diffusive transfer. Convection also includes fluid move-
ment both by bulk motion (advection) and by the motion of individual particles
(diffusion). However in some cases, convection is taken to mean only advective
phenomena. For instance, in the transport equation, which describes a number of
different transport phenomena, terms are separated into convective and diffusive ef-
fects Raptis, A. and Tzivanides, G (1983). Convective heat transfer is a mechanism
of heat transfer occurring because of bulk motion (observable movement) of flu-
ids. Heat is the entity of interest being advected (carried), and diffused (dispersed).
There are two types of convections. These are natural and forced convection.

Natural Convection heat transfer

Natural convection, or free convection, occurs due to temperature differences
which affect the density, and thus relative buoyancy, of the fluid. Heavier (more
dense) components will fall while lighter (less dense) components rise, leading to
bulk fluid movement. Natural convection occurs, only in a gravitational field. It is
more likely and/or more rapid with a greater variation in density between the two
fluids and a larger distance through the convecting medium. Convection will be less
rapid with more rapid diffusion (there by diffusing away the gradient that is causing
the convection) and a more viscous (sticky) fluid (Raptis, A. and Tzivanides, G
1983).

Forced Convection heat transfer

In forced convection fluid movement results from external surface forces such
as a fan or pump. Forced convection is typically used to increase the rate of heat
exchange. Many types of mixing also utilize forced convection to distribute one
substance within another. Forced convection also occurs as a by-product to other
processes, such as the action of forced convection may produce results more quickly
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than free convection. For instance, a convection oven works by forced convection,
as a fan which rapidly circulates hot air forces heat into food faster than would
naturally happen due to simple heating without the fan (Raptis, A., eta l., 2004).

2.2.3 Radiation heat transfer

In contrast to the mechanisms of conduction and convection, where energy
transfer through a material medium is involved, heat energy is also transferred
through regions where a perfect vacuum exists. The mechanism in this case is
electromagnetic radiation. Electromagnetic radiation that is propagated as a result
of a temperature difference is known as thermal radiation.

Thermal Radiation

Thermal radiation is electromagnetic radiation from an object that is simply
caused by its temperature (Quinn Brewster, M 1992). It rapidly increases in power,
and also increases in frequency, with increasing temperature. For example, space
craft may have thermal radiators, also called heat radiators to lose excess heat. They
tend to be reflective to avoid absorption of solar radiation energy. Examples of ther-
mal radiation are an incandescent light bulb emitting visible-light, infrared radiation
emitted by a common household radiator or electric heater, as well as radiation from
hot gas in outer space.

Thermal radiation is generated when thermal energy is converted to electro-
magnetic radiation by the movement of the charges of electrons and protons in the
material (Quinn Brewster, M 1992). Sunlight is solar electromagnetic radiation
generated by the hot plasma of the Sun, and this thermal radiation heats the Earth
by the reverse process of absorption, generating kinetic, thermal energy in electrons
and atomic nuclei. The Earth also emits thermal radiation, but at a much lower in-
tensity and different spectral distribution because it is cooler. The balance between
heating by incoming solar radiation and cooling by the Earth’s outgoing radiation
is the primary process that determines Earth’s overall temperature.
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2.3 Stagnation Point Flow

The planar laminar flow of an incompressible viscous fluid in a steady state
close to a stagnation point is also called Hiemenz flow. For this flow in a plane,
Hiemenz gave similarity solutions of the governing Navier-Stokes equations. There-
after, this kind of study was carried forward by researchers like Eckert (1942) and
Beard eta l., (1964). Mahapatra and Gupta then re investigate the stagnation point
flow towards a stretching sheet by considering different stretching and straining ve-
locities. Many researchers have been working on stagnation point flow by taking
consideration on its types of fluid, physical conditions and the effects towards the
flow.

Literature study shows that researchers have studied the flow caused by stretch-
ing sheet because of its distinctive solution. Sahar investigated the impact of mag-
netic field flow over a permeable stretching wall in porous medium with heat radi-
ation and suction/injection. Meanwhile, in the presence of radiation and buoyancy
effects, Rashidi eta l., conducted a study on free convective heat and mass transfer
for MHD flow over a permeable vertical stretch sheet.

Later, the research was proceeded over a stretching porous sheet by Yahaya
eta l., (1996). and the issue was solved using the technique of homotopy analysis
method. The findings of their study found that when the parameter of buoyancy
rises, the velocity of the fluid rises and the heat boundary layer reduces where
it was in fact a good agreement with prior studies. As in case of thermal radia-
tion, increasing the thermal radiation parameter produces significant increases in
the thermal conditions of the fluid temperature.
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2.4 The Optimal Homotopy analysis method

Liao (1992) investigated the homotopy analysis method. The strength of HAM
is that it leads to convergent analytic series solutions of strongly nonlinear prob-
lems faster than any other existing methods, independent of small or large physical
parameters involved in the problem (Liao, 1992). This behavior of HAM makes it
a superior technique to the conventional perturbation methods.

Liao (2003), indeed, showed that HAM is the general case and the Adomian
decomposition method, expansion method and Lyapunov artificial small parame-
ter method are the special cases of HAM. Moreover, He’s homotopy perturbation
method (2000) is also a special case of the HAM (cf. Liao (2005). In 1998 He pro-
posed the Homotopy Perturbation Method which is valid in general for nonlinear
differential equations.

In 2015 Marinca and Herisanu proposed Optimal Homotopy Asymptotic Method.
Instead of an infinite series, they need only a few terms, mostly two terms. The
procedure is successful to obtain the analytical (in classical sense) approximate so-
lutions of currently important problems in practice and its effective and reliable
(Marinca and Herisanu, 2015). OHAM is a powerful method for solving nonlinear
problems without depending on small or large parameters, which shows its valid-
ity and potential for the solution of nonlinear problems in science and engineering
applications (Marinca and Herisanu, 2015).
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Chapter 3

Methodology

3.1 Study Area and Period

The study was conducted at Jimma University under the department of mathe-
matics from September, 2019 G.C. to August, 2020 G.C.

3.2 Study Design

In the study documentary review study design was analytical.

3.3 Source of Information

The sources of information used to conduct this study were:

1. Related reference book

2. Published articles.

3. Journals and etc.

3.4 Mathematical Procedure of the Study

The study has been conducted through the following general procedures :

1. Formulate the equation governing the flow problem.

13



2. Change the partial differential equation governing the flow problem in step
1 in to equivalent ordinary differential equation by using suitable similarity
transformation.

3. Apply OHAM to the equation obtained in step 2 to get an expression deter-
mining the velocity and temperature of the flow.

4. Solve the equation obtaind in step 3 by using respective boundary conditions.

5. Analyze effects of different parameters embedded in the governing problem
on velocity and temperature of the flow.

6. Visualize the effect of different parameters on velocity and temperature pro-
file graphically by using mathlab.
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Chapter 4

Result and discussion

4.1 Basic Principles of Optimal Homotopy
Asymptotic Method

The basic principles of OHAM as expanded by Marinca, Herisanu and other
researchers were as follows:
1. Consider the following differential equations

A [V ]+a(x) = 0, x ∈Ω (4.1)

Where Ω is problem domain, A(v) = L(v) + N(v), where L, N are linear & nonlinear
operators, v(x) is an unknown function, a(x) is a known function.
2. Construct an optimal homotopy equation as

(1− p) [L(φ(x, p))+a(x)]−H(p) [A(φ(x, p))+a(x)] = 0, (4.2)

Where 0 ≤ p ≤ 1 is an embedding parameter H(p) = ∑
m
k=1 pkck is an auxiliary

function on which the convergence of the solution greatly dependent. The auxiliary
function H(p) also adjusts the convergence domain and controls the convergence
region.
3. Expand φ(x, p,c j) in Taylor’s series about p, one has an approximate solution.

φ(x, p,c j) = v0(x)+
∞

∑
k=1

v(x,c j)pk, j = 1,2,3, ... (4.3)

Many researchers have observed that the convergence of the series Eq. (4.3) de-
pends upon c j, (j = 1, 2, 3, ..., m)

v̂ = v0(x)+
m

∑
k=1

v(x,c j) (4.4)
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4. Substituting Eq.(4.4) in to Eq.(4.1) we have the following residual:

R(x,c j) = L(v̂(x,c j))+a(x)+N(v̂(x,c j)), j = (1,2,3, ...,m) (4.5)

If R(x,c j) = 0, then v̂ will be the exact solution.
5. Finally, substituting those constants in Eq. (4.4) and one can get the approximate
solution.
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4.2 Mathematical formulation

Following the Raptis and Takher (1987) model for the permeability medium and
by introducing the boundary layer approximation the governing continuity, momen-
tum and energy equation of the flow can be written as follows.

∂u
∂x

+
∂v
∂y

= 0, (4.6)

u
∂u
∂x

+ v
∂u
∂y

=
−1
ρ

∂ p
∂x

+υ
∂ 2u
∂y2 −

υ

K
u−

σB2
0

ρ
µ, (4.7)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 −

1
ρcp

∂qr

∂y
+

υ

ρcp
(
∂u
∂y

)2, (4.8)

Where the fluid is placed in a two dimensional environment where the x-axis
is taken parallel to the surface while y-axis extends upwards normal to the surface
and u and v are velocity components in x-and y-directions, respectively; P is the
pressure; ρ is the fluid density; υ = µ

ρ
is the kinematic viscosity where µ is the

coefficient of fluid viscosity; K is porosity parameter, σ is the electrical conductiv-
ity; B0 is the applied magnetic field along y-direction; T is the temperature of the
fluid and the porous medium which are in local thermal equilibrium; α = k

ρcp
is the

equivalent thermal diffusivity, where k is coefficient of thermal conductivity; cp is
the specific heat at constant pressure, and qr is the radiative heat flux. The boundary
conditions are defined as follows:

y = 0;v = vw,u = uw +uslip = Nυ
∂u
∂y ,

T = Tw +Tsil p = T∞ +AXλ +D∂T
∂y ,

y→ ∞;u = ue = ax,T = T∞,

(4.9)

Where vw is the uniform surface mass flux positive for blowing and negative
for suction; uslip is velocity slip, which is proportional to the local wall shear stress
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and is given by Nυ
∂u
∂y , where N is Naviers constant slip length; λ is the exponent

of the wall temperature; D is temperature slip factor, and ue = ax is the free stream
velocity where a is a positive number.

The governing partial differential equations representing the flow problem are
reduced to nonlinear higher order ordinary differential equations by using similarity
transformations.
Using the free stream velocity u = ue = ax in equation (4.7) we have
u∂u

∂x + v∂u
∂y = ue

∂ue
∂x

=⇒ u∂u
∂x + v∂u

∂y = ue
∂ue
∂x = −1

ρ

∂ p
∂x +υ

∂ 2ue
∂y2 − υ

K ue−
σB2

0ue
ρ

=⇒ ue
∂ue
∂x = −1

ρ

∂ p
∂x +υ

∂ 2ue
∂y2 − υ

K ue−
σB2

0ue
ρ

=⇒ −1
ρ

∂ p
∂x

= ue
∂ue

∂x
+

υ

K
ue +

σB2
0ue

ρ
. (4.10)

plugging Eq. (4.10) in to Eq. (4.7) we have:
u∂u

∂x + v∂u
∂y = ue

∂ue
∂x + υ

K ue +
σB2

0ue
ρ

+υ
∂ 2u
∂y2 − υ

K u− υ

K ue−
σB2

0u
ρ

,

u
∂u
∂x

+ v
∂u
∂y

= υ
∂ 2ue

∂y2 +ue
∂ue

∂x
− υ

K
(u−ue)−

σB2
0

ρ
(u−ue). (4.11)

Equation (4.11) illustrated that the free stream velocity affects the flow of a
fluid, and therefore convection of heat will be affected considerably. This shows
that the flow is of forced convection type. It is assumed that the viscous dissipation
is neglected, the physical properties of the fluid are constant and the boussinesq and
boundary layer approximation may be adopted for steady laminar flow. The fluid
is considered to be gray, absorbing-emitting radiation but non-scatter medium. The
radiative heat flux is described by Rosseland approximation.

Next, we can express the radiative heat flux in terms of temperature using Rosse-
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land approximation for radiation Brewster(1992) as follows.

qr =
−4σ ′

3k1

∂T 4

∂y
, (4.12)

Where σ ′ depicts the Stefan-Boltzmann constant and k1 the mean absorption
coefficient. Suppose the temperature differences within the flow are sufficiently
small, so that T 4 can be expressed as linear function after using Taylor series to
expand T 4 about the free stream temperature T∞ and neglecting higher order terms.
This result is the following approximation:

T 4 ≡ 4T 3
∞T −3T 4

∞ . (4.13)

Plug Eq. (4.12) & Eq. (4.13) in to Eq(4.8) gives
qr =

−4σ ′

3k1
∂

∂y [4T 3
∞T −3T 4

∞ ] =
−16σ ′

3k1
(∂T

∂y )T
3

∞ = −16σ ′T 3
∞

3k1
∂T
∂y

=⇒ ∂qr

∂y
=
−16σ ′T 3

∞

3k1

∂T
∂y

. (4.14)

Plugging Eq. (4.14) in to Eq. (4.8) we get:

u
∂T
∂x

+ v
∂u
∂y

= α
∂ 2T
∂y2 +

16σ ′T 3
∞

3k1ρcp

∂ 2T
∂y2 +

υ

ρcp
(
∂u
∂y

)2, (4.15)

Where α = k
ρcp

is the thermal diffusivity, from this equation it is clearly seen
that the influence of radiation is to enhance the thermal diffusivity.

Now, let us Introduce stream function ψ defined as

u =
∂ψ

∂y
and v =−∂ψ

∂x
. (4.16)

In view of relations in Eq. (4.16), Eq. (4.6) is satisfied automatically.

We then Introduce a similarity variable η and dimensionless stream function
f (η) and temperature defined as follows;
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η = y
√

a
α
,ψ =

√
aαx f (η),θ(η) =

T −T∞

Tw−T∞

, (4.17)

From Eq. (4.16) and Eq. (4.17) we get{
u = ∂ψ

∂y = ax f ′(η),

v =−∂ψ

∂x =−
√

aα f (η),
(4.18)

Where f ′(η) = d f
dη

, Tw is a constant temperature of the wall, θ(η) is non-
dimensional form of the temperature.

Using Eq. (4.7)-Eq. (4.18) we get

u
∂u
∂x

+ v
∂u
∂y

=v
∂ 2u
∂y2 +ue

∂ue

∂x
− υ

k
(u−ue)−

σB2
0

ρ
(u−ue),

=⇒ (ax f ′)(a f ′)−
√

aα f (ax f ′′)(
√

a
α
) = v(

a2x f ′′′

α
)+

υ

k
(ax f ′−ax)−

σB2
0

ρ
(ax f ′−ax),

⇔ a2x( f ′)2−a2x f ′′ f =
v
α

a2x f ′′′+a2x− υ

k
ax( f ′−1)−

σB2
0

ρ
ax( f ′−1),

⇔ f ′2− f ′′ f =
v
α

f ′′′+1− υ

ak
(1− f ′)+

σB2
0

ρa
( f ′−1),

⇔ v
α

f ′′′+1− f ′2 + f f ′′′+
υ

ka
( f ′−1)−

σB2
0

ρa
( f ′−1) = 0,

⇔ Pr f ′′′+(1− f ′2)+ f f ′′+(Ω+M2)(1− f ′) = 0,

(4.19)

Where Pr = v
α

is the Prdtal number, Ω = v
ka is the permeability parameter, M =√

σB2
0

ρa is the magnetic parameter.

From Eqs. (4.9) and Eq. (4.19) we get the following transformed velocity
boundary condition;
at y = 0, v = vw = −

√
aα f (0),

=⇒ f (0) = −vw√
aα

= s and u = Nv∂u
∂y = ax f ′(0),

=⇒ f ′(0) = Nv
ax

∂u
∂x = Nv

ax (ax f ′′
√ a

α
) = Nv f ′′

√ a
α

= β f ′′(0),
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Where s = - vw√
aα

, β = Nv
√ a

α
,

As y→ ∞; u = ue = ax and u = ax f ′.
=⇒ f ′0(η) = 1 as η → ∞.

Using Eqs. (4.17) and (4.9) we get the transformed energy equation of the flows
∂T
∂y = θ ′(Tw−T∞)

√ a
α
, and ∂ 2T

∂y2 = θ ′′ a
α
(Tw−T∞),

T = T∞ +Axλ +D∂T
∂y = Tw +Tslip,

T −T∞ = Axλ +T −Tw,

Tw−T∞ = Axλ ,

(4.20)

From T −T∞ = Axλ +T −Tw, we get

T −T∞ = θ(Axλ ) =⇒ ∂T
∂x

= Aλθxλ−1, (4.21)

Thus, equation. (4.15) and (4.20) gives

u
∂T
∂x

+ v
∂T
∂y

=α
∂ 2T
∂y2 +(

4σ ′T 3
∞

k1k
4
3

α)
∂ 2T
∂y2 +

υ

cp
(
∂u
∂y

)2

= α
∂ 2T
∂y2 (1+

4
3

R)+
υ

cp
(
∂u
∂y

)2

=⇒ (ax f ′)(Aλθxλ−1)− (
√

aα f )θ ′(Tw−T∞)

√
a
α

= (1+
4
3

R)
θ ′′

α
a(Tw−T∞)+

υ

cpα
u2

ea f ′′2

=⇒ Axλ

Tw−T∞

θ f ′λ −θ
′ f = (1+

4
3

R)θ ′′+ pr
ue

(Tw−T∞)
f ′′2

=⇒ (1+
4
3

R)θ ′′+ f θ
′−λ f ′θ + prEc f ′′2 = 0.

(4.22)

at y = 0,T = Tw +Tslip = T∞ +Axλ +D∂T
∂y ,

as y→ ∞, T = T∞ and θ = T−T∞

Tw−T∞
,

at y = 0,θ =
Axλ+D ∂T

∂y
Tw−T∞

=
Axλ+Dθ ′(Tw−T∞)

√ a
α

Tw−T∞
,
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=⇒ Axλ

Tw−T∞
+Dθ ′

√ a
α
= θ ,

=⇒ θ(0) = 1+ γθ ′(0) as y→ ∞,T = T∞ =⇒ θ(η) = T−T∞

Tw−T∞
= 0.

Hence the transformed equation representing the flow problem with respect to
their boundary conditions are given as Eq. (4.23) and Eq. (4.24) below{

Pr f ′′′+(1− f ′2)+ f f ′′+(Ω+M2)(1− f ′) = 0,
(1+ 4

3R)θ ′′+ f θ ′−λ f ′θ +PrEc f ′′2 = 0,
(4.23)

With boundary conditions

f (0) = s, f ′(0) = β f ′′(0) and f ′= f (∞) = 1,θ(0) = 1+γθ
′(0),θ(∞) = 0, (4.24)

Where, primes denote differentiation with respect to η , γ = D
√ a

α
, is the di-

mensionless thermal slip parameter, R = 4σ∗T 3
∞

k1k is the radiation parameter, α = k
ρcp

is the equivalent thermal diffusivity, υ = µ

ρ
is the kinematic viscosity(monument

diffusivity), Ec = u2
e

cpTw−T∞
is the Eckert number, Pr = υ

α
is the Pradtl number, k is

the thermal conductivity, cp the constant pressure specific heat capacity, µ is the
dynamic viscosity, s = − vw√

aα
, is the mass transfer parameter where s > 0 for suc-

tion, s < 0 for blowing and s = 0 reflects the impermeable surface, β = Nv
√ a

α
is

the dimensionless velocity slip parameter.

4.3 Solution of the problem

Applying OHAM to the nonlinear ordinary differential Eq. (4.23) we have:{
Pr f ′′′(1− p) = H1(p)[Pr f ′′′+(1− f ′2)+ f f ′′+(Ω+M2)(1− f ′)],

(1+ 4
3R)θ ′′(1− p) = H1(p)[(1+ 4

3R)θ ′′+ f θ ′−λ f ′θ +PrEc f ′′2],
(4.25)

Where the primes denote differentiation of the function f with respect to η We
consider f, θ , H1 and H2 as follows, (Fazle et .al ., 2013).
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f (η) = f0 + f1 p+ f2 p2 + f3 p3,

θ(η) = θ0 +θ1 p+θ2 p2 +θ3 p3,

H1(p) = c1 p+ c2 p2 + c3 p3,

H2(p) = c4 p+ c5 p2 + c6 p3, p ∈ [0,1],

(4.26)

Using Eq. (4.26) in Eq. (4.25) we obtain:

Pr f ′′′(1− p) =Pr(1− p)[ f ′′′0 + f ′′′1 p+ f ′′′2 p2 + f ′′′3 p3]

=Pr[ f ′′′+( f ′′′1 − f ′′′0 )p+( f ′′′2 − f ′′′1 )p2 +( f ′′′3 − f ′′′2 )p3− f ′′′3 p4].

PrH1(p) f ′′′ =Pr[c1 p+ c2 p2 + c3 p3]( f ′′′0 + f ′′′1 p+ f ′′′2 p2 + f ′′′3 p3)

=Pr[c1 f ′′′0 p+(c1 f ′′′1 + c2 f ′′′0 )p2 +(c1 f ′′′2 + c2 f ′′′1 )p3 + ...].

−H1(p) f ′2 =− (c1 p+ c2 p2 + c3 p3)[ f 2
0 +2 f ′0 f ′1 p+(2 f ′0 f ′2)p2 +(2 f ′0 f ′3 +2 f ′1 f ′2)p3 + ...]

=− [c1 f 2 p+(2 f ′0 f ′1c1 + c2 f ′2)p2 +[(c1(2 f ′0 f ′2 + f 2
1 ))+2c2 f ′0 f ′1 + c3 f ′20 ]p3

+ c1(2 f ′0 f ′3 +2 f ′1 f ′2)p4 + ...].

H1(p) f f ′′ =( f0 + f1 p+ f2 p2 + f3 p3)( f ′′0 + f ′′1 p+ f ′′2 p2 + f ′′3 p3)(c1 p+ c2 p2 + c3 p3)

= ( f0 f ′′0 +( f0 f ′′1 + f1 f ′′1 )p+( f0 f ′′2 + f1 f ′′1 + f2 f ′′2 )P
2

+( f0 f ′′3 + f1 f ′′2 + f2 f ′′1 + f3 f ′′0 )p3 + ...)H1(p)

= c1 f0 f ′′0 p+[c1( f0 f ′′1 + f1 f ′′0 )+ c2 f0 f ′′0 ]p
2 +[c1( f0 f ′′2 + f1 f ′′1 + f2 f ′′0 )

+ c2( f0 f ′′1 + f1 f ′′0 )+ c3 f0 f ′′0 ]p
3 + ....

H1(Ω+M2)(1− f ′) =(Ω+M2)(1− f ′0− f ′1 p− f ′2 p2− f ′3 p3)(c1 p+ c2 p2 + c3 p3)

=(Ω+M2)[c1(1− f ′0)p+[c2(1− f ′0)− c1 f ′1]p
2 +[c3(1− f ′0)− c2 f ′1− c1 f ′2]p

3].

Collecting similar terms based on power of p, we obtain:
The Zeroth order problem:
f ′′′0 (η) = 0,

With boundary condition,
f0(0) = S, f ′0(0) = β f ′′0 (0), f ′0(η) = 1, as η → ∞.

The First order problem:
Pr( f ′′′1 − f ′′′0 ) = Prc1 f ′′′0 + c1− c1 f ′20 + c1 f0 f ′′0 + c1(Ω+M2)(1− f ′0),
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=⇒ Pr f ′′′1 = Pr(c1 +1) f ′′′0 + c1− c1 f ′20 + c1 f0 f ′′0 +C1(Ω+M2)(1− f ′0)),
=⇒ f ′′′1 (η ,c1) = C1

Pr (1− f ′20 + f0 f ′′0 +(Ω+M2)(1− f ′0)),

With boundary condition,
f1(0) = 0 = f ′1(0), f ′1(η) = 0, as η → ∞.

The Second order problem:

Pr( f ′′′2 − f ′′′1 ) =Pr(c1 f ′′′1 + c2 f ′′′0 )+ c2− (2 f ′0 f ′1c1 + c2 f ′20 )+ c1( f0 f ′′1 + f1 f ′′0 )+ c2 f0 f ′′0

+(Ω+M2)(c2− c2 f ′0− c1 f ′1),

=⇒ f ′′′2 (η ,c1,c2) =(c1 +1) f ′′′1 +
c2

Pr
(1− f ′20 + f0 f ′′+(Ω+M2)(1− f ′0))

+
c1

Pr
( f0 f ′′2 + f1 f ′′0 −2 f ′0 f ′1− f1).

With boundary condition,
f2(0) = f ′2(0) = 0, f ′2(η) = 0 as η → ∞

The Third order problem:

Pr( f ′′′3 − f ′′′2 ) =Pr(c1 f ′′′2 + c2 f ′′′1 + c3 f ′′′0 )+ c3− c1(2 f ′0 f ′2 + f ′21 )−2c2 f ′0 f ′1− c3 f ′20

+ c2( f0 f ′′1 + f1 f ′′0 )+ c3 f0 f ′′0 +(Ω+M2)[c3(1− f ′0)− c2 f ′1− c1 f ′2]

=⇒ f ′′′(η ,c1,c2,c3) =(1+ c1) f ′′′2 + c2 f ′′1 +
c3

Pr
(1− f ′20 + f0F ′′0 )(Ω+M2)(1− f ′0)

+
c3

Pr
( f0 f ′′1 + f1 f ′′0 −2 f ′0 f ′1− (Ω+M2) f ′1)

− c3

Pr
(2 f ′0 f ′2 + f ′21 +(Ω+M2) f ′2)

With boundary condition,
f3(0) = f ′3(0) = 0, f ′3(η) = 0 as η → ∞.

Similarly applying OHAM onto the thermal equation of the problem we have:
(1− p)(1+ 4

3R)θ ′′ = H2(p)[(1+ 4
3R)θ ′′+ f θ ′−λ f ′θ +PrEc f ′′2]
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(1− p)(1+
4
3

R)θ ′′ =(1− p)(1+
4
3

R)(θ ′′0 +θ
′′
1 p+θ

′′
2 p2 +θ

′′
3 p3)

=(1+
4
3

R)[θ ′′0 +(θ ′′1 −θ
′′
0 )p+(θ ′′2 −θ

′′
1 )p2 +(θ ′′3 −θ

′′
2 )p3−θ

′′
3 p4]

H2(p)(1+
4
3

R)θ ′′ =(c4 p+ c5 p2 + c6 p3)(1+
4
3

R)[(θ ′′0 +θ
′′
1 p+θ

′′
2 p2 +θ

′′
3 p3)]

= (1+
4
3

R)[c4θ
′′
0 p+(c4θ

′′
1 + c5θ

′′
0 )p2 +(c4θ

′′
2 + c5θ

′′
1 + c6θ

′′
0 )p3 + ...]

f θ
′ =( f0 + f1 p+ f2 p2 + f3 p3)(θ ′0 +θ

′
1 p+θ

′
2 p2 +θ

′
3 p3)

= f0θ
′
0 +( f1θ

′
0 + f0θ

′
1)p+( f0θ

′
2 + f1θ

′
1 + f2θ

′
0)p2 +( f0θ

′
3 + f1θ

′
2 + f2θ

′
1 + f3θ

′
0)p3 + ...

H2(p) f θ
′ =(c4 p+ c5 p2 + c6 p3)( f θ

′)

= c4 f0θ
′p+[c4( f1θ

′
0 + f0θ

′
1)

+ c5 f0θ
′
0]p

2 +[c4( f0θ
′
2 + f1θ

′
1 + f2θ

′
0)+ c5( f1θ

′
0 + f0θ

′
1)]p

3 + ...

−λ f ′θ =−λ ( f ′0 + f1 p+ f ′2 p2 + f ′3 p3)(θ0 +θ1 p+θ2 p2 +θ3 p3)

=−λ ( f ′0θ0 +( f ′1θ0 + f ′0θ1)p+( f ′0θ2 + f ′1θ1 + f ′2θ)p2

+[( f0θ
′
2 + f1θ

′
1 + f2θ

′
0)+ c5( f1θ

′
0 + f0θ

′
1)p3 + ...]

H2(p)(−λ f ′θ) =−λ (c4 p+ c5 p2 + c6 p3)( f ′θ)

=−λ [c4 f ′0θ0 p+[c4( f ′0θ0 +( f ′0θ1)+ c5 f ′0θ0)]p2 +(c4( f ′0θ2 + f ′1θ1 + f ′2θ0)

+ c5( f ′1θ0 + f ′0θ1)+ c6 f ′0θ0)p3 + ...]

f ′′2 =( f ′′0 + f ′′1 p+ f ′′2 p2 + f ′′3 p3)( f ′′0 + f ′′1 p+ f ′′1 p2 + f ′′3 p3)

= f ′′20 +2 f ′′0 f ′′1 p+(2 f ′′0 f ′′2 + f ′′21 )p2 +(2 f ′′0 f ′′3 +2 f ′′1 f ′′2 )p3 + ...

PrEcH2(p) f ′′2 =PrEc(c4 p+ c5 p2 + c6 p3) f ′′2

= PrEc[c4 f ′′20 p+[2c4 f ′′0 f ′′1 + c5 f ′′20 ]p2 +[c4(2 f ′′0 f ′′2 + f ′′21 )+2c5 f ′′0 f ′′1 ]p
3 + ...]

Collecting similar terms based on the power of p we get the Zeroth, first, second
and the third order problem with their respective boundary condition.

The Zeroth order problem:

(1+ 4
3R)θ ′′ = 0 =⇒ θ ′′(η) = 0
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With boundary conditions;
θ0(0) = 1+ γθ ′0(0),θ0(∞) = 0

First order problem:
(1+ 4

3R)(θ ′′1 −θ ′′0 ) = (1+ 4
3R)c4θ ′′0 + c4 f0θ ′′0 − c4λθ0 f ′0 +PrEcc4 f ′′20

θ ′′(η ,c4) = (1+ c4)θ
′′
0 + 3c4

3+4R [ f0θ ′0−λ f ′0θ0 +PrEc f ′′20 ]

With boundary conditions;
θ0(0) = 0,θ0(∞) = 0

The Second order problem:

(1+
4
3

R)(θ ′′2 −θ
′′
1 ) =(1+

4
3

R)(c4θ
′′
1 + c5θ

′′
0 )+C4( f1θ

′
0 + f0θ

′
1)

+ c5 f0θ
′
0−λc4( f ′1θ0 + f ′0θ1)−λc5 f ′0θ0 +PrEc(2c4 f ′′0 f ′′1 + c5 f ′′20 )

=⇒ θ
′′
2 (η ,c4,c5) =(1+ c4)θ

′′
1 + c5θ

′′
0 +

3c4

3+4R
[ f1θ

′
0 + f0θ

′
1−λ ( f ′1θ0 + f0θ1)

+2PrEc f ′′0 f ′′1 +
3c5

3+4R
[ f0θ

′
0−λ f ′0θ0 +PrEc f ′′20 ]]

With boundary conditions;
θ2(0) = 0,θ2(∞) = 0

The third order problem:

(1+
4
3

R)(θ ′′3 −θ
′′
2 ) =(1+

4
3

R)(c4θ
′′
2 + c5θ

′′
1 +C6θ

′′
0 )

+C4( f0θ
′
2 + f1θ

′
1 + f2θ

′
0)+ c5( f1θ

′
0 + f0θ

′
1)

−c4λ ( f0θ
′
2 + f ′1θ1 + f ′2θ0)c5λ ( f1θ

′
0 + f ′0θ1)− c6λ f ′0θ0

+PrEcc4(2 f ′′0 f ′′2 + f ′′21 )+2PrEcc5 f ′′0 f ′′1

=⇒ θ
′′
2 (η ,c4,c5,c6) =(1+ c4)θ

′′
2 + c5θ

′′
1 + c6θ

′′
0

+
3c4

3+4R
[ f0θ

′
2 + f1θ

′
1 + f2θ

′
0−λ ( f ′0θ2 + f ′1θ1 + f ′2θ0)+PrEc(2 f ′′0 f ′′2 + f ′′21 )]

+
3c4

3+4R
[ f1θ

′
0 + f0θ

′
1−λ ( f ′1θ0 + f ′0θ1)+2PrEc f ′′0 f ′′1 ]+

−3c6λ

3+4R
f ′0θ
′
0
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With boundary condition;
θ3(0) = 0,θ3(∞) = 0

Thus, Zeroth order problems:{
f ′′′0 (η) = 0
θ ′′0 (η) = 0

(4.27)

With boundary conditions;{
f0(0) = s, f ′0(0) = η f ′′0 (0), f ′0(η) = 1 as η → ∞

θ0(0) = 1+ γθ ′0(0),θ0(η) = 0 as η → ∞
(4.28)

Since this problem has semi infinity boundary conditions, we need to transform
the coordinate to solve problem with boundary conditions analytically.
coordinate transformation

Let ε = η

η∞
=⇒ η = εη∞ =⇒ dη

dε
= η∞

f ′0(ε) = f ′0(η)η∞, f ′′0 (ε) = f ′′0 (η)η2
∞ and f ′′′0 (ε) = f ′′′0 (η)η3

∞,

Thus, f ′′′0 (η) =⇒ f ′′′0 (ε) = 0

With boundary conditions; f0(0) = s , f ′0(0) = β f ′′0 (0)
η∞

and f ′0(1) = η∞ at ε →1
and
θ ′0(ε) = θ ′0(η)η∞ =⇒ θ ′0(η) = θ ′0(ε)

η∞
(by coordinate transformation).

∴ θ ′′0 (ε) = 0,

With boundary condition;
θ0(0) = 1+ γθ ′0(0)

η∞
,θ0(1) = 0.

Thus, the transformed zeroth order problem becomes{
f ′′′0 (ε) = 0,
θ ′′0 (ε) = 0,

(4.29)

With boundary conditions;
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f0(0) = s, f ′0(0) = β f ′′0 (0),
f ′0(ε) = η∞ as ε → 1

θ0(0) = 1+ γθ ′0(0)
η∞

,θ0(1) = 0.

(4.30)

Eq. (4.29) is solved by successive integration with respect to ε and using bound-
ary conditions Eq. (4.30) we get.
f0(ε) =

(η2
∞−β f ′′0 (0))ε

2

2η∞
+

β f ′′0 (0)ε
η∞

+ s

=⇒ f0(η) =
(η2

∞−β f ′′0 (0))
2η∞

( η

η∞
)2 +

β f ′′0 (0)η
2
∞

η∞

η

η∞
n+ s

⇔ f0(η) =
1

2η∞

(1−β f ′′0 (0))η
2 +β f ′′0 (0)η + s (4.31)

Similarly, applying successive integration to the second Eq. (4.29) and using
respective boundary conditions we get
θ0(ε) = (

η∞+γθ ′0(0)
η∞

)(1− ε)

=⇒ θ0(η) = (1+ γθ
′
0(0))(1−

η

η∞

). (4.32)

First order problem:{
f ′′′1 (η ,c1) = C1

Pr (1− f ′20 + f0 f ′′0 +(Ω+M2)(1− f ′0)),

θ ′′1 (η ,c4) =
3c4

3+4R [ f0θ ′0−λ f ′0θ0 +PrEc f ′′20 ],
(4.33)

With boundary condition:

f1(0) = f ′1(0) = 0,θ1(0) = 0, f1(η) = θ1(η) = 0, as η → ∞. (4.34)

Plugging Eq.(4.31), Eq.(4.33) and their derivatives and using coordinate trans-
formation we get
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f ′′1 (ε,c1) =
C1η∞

Pr

[
η2

∞ +(Ω+M2)(η2
∞−β f ′′0 (0))+ sη∞−

β f ′′0 (0)
η∞

(s+β f ′′0 (0))
]

+C1η∞

Pr

[
(

β f ′′0 (0)
η∞

)2−β f ′′0 (0)+(Ω+M2)(β f ′′0 (0)−η2
∞)
]

ε

+C1η∞

Pr

[
η2

∞

2 −η2
∞ +β f ′′0 (0)−

1
2(

β f ′′0 (0)
η∞

)2
]

ε2

θ ′′1 (ε,c4) =
−3c4
3+4R

[
η∞+γθ ′0(0)

η∞
(s+β f ′′0 (0)+(β f ′′0 (0)+λ (η2

∞−β f ′′0 (0)))
]

ε

+ −3c4
3+4R

[
η∞+γθ ′0(0)

η∞
(η2

∞

2 −
β f ′′0 (0)

2 +λβ f ′′0 (0)−λη2
∞)
]

ε2

− −3c4
3+4R

[
PrEc
η2

∞

(η2
∞−2β f ′′0 (0)+(

β f ′′0 (0)
η∞

)2)
]

(4.35)
With boundary condition;

f1(0) = f ′1(0) = 0,θ1(0) = 0, f1(ε) = θ1(ε) = 0 as ε → ∞. (4.36)

Next, solve Eq.(4.35) by successive integration with respect to ε with the re-
spective boundary condition in Eq.(4.36) and using the coordinate transformation
we get the following solutions for the first order problem:

f1(η ,c1) =
c1η∞

2Pr

[
(1+Ω+M2)(1−β f ′′0 (0))(

s
η∞
−β f ′′0 (0))(

s
η∞
−β f ′′0 (0))(

η3

3η∞
− η2

2 )
]

+c1η∞

2Pr

[
1
6

[
β f ′′0 (0)(β f ′′0 (0)−1)+(Ω+M2)(β f ′′0 (0)−

1
η∞

)
]]

( η4

2η2 −η2)

+c1η∞

2Pr

[
1
6 [β f ′′0 (0)(1−

β f ′′0 (0)
2 )− 1

2 ](
η5

5η3
∞

− η2

2 )
]

θ1(η ,c4) =
−3c4(1+γθ ′0(0))

6+8R [(s+β f ′′0 (0))(η
2−η∞η)+ 1

3(β f ′′0 (0)

+λ (1−2β f ′′0 (0)))(
η3

η
−η∞η)+ 1

12((1−2λ )(1−β f ′′0 (0)))(
η4

η2
∞

−η∞η)]

+3c4PrEc
6+8R [1+β f ′′0 (0)(β f ′′0 (0)−2)](η2

η2
∞

− η

η∞
)

(4.37)

29



Second order problem:
f ′′′2 (η ,c1,c2) = (c1 + c2) f ′′′1 + c2

Pr (1− f ′20 + f0 f ′′

+(Ω+M2)(1− f ′0))+
c2
Pr ( f0 f ′′2 + f1 f ′′0 −2 f ′0 f ′1− f1)

θ ′′2 (η ,c3,c4) = (1+ c3)θ
′′
1 + 3c4

3+4R [ f1θ ′0 + f0θ ′1−λ ( f ′1θ0 + f0θ1)

+2PrEc f ′′0 f ′′1 + 3c4
3+4R [ f0θ ′0−λ f0θ0 +PrEc f ′′20 ]]

(4.38)

With boundary condition;

f2(0) = f ′2(0) = 0, f ′2(η) = 0,θ2(0) = θ2(1) = 0. (4.39)

Eq. (4.36) is solved by successive integration with respect to η with the bound-
ary condition in Eq. (4.37) is employed and its solution is:
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f2(η ,c1,c2) =
η∞

Pr
[

[
1+(Ω+M2)(1−β f ′′0 (0))+

s
η∞

−β f ′′0 (0)(
s

η∞

+β f ′′0 (0))
]
((c1 + c2

1)(
η3

6
− η2

4
)

+
c2

1
Pr

(
η4

24η∞

− η3

12
+

η2η∞

24
)+

c2
1

Pr
(1−β f ′′0 (0))(

−η6

144η2
∞

+
η5

80η∞

− η2
∞η2

96
)

−
c2

1
Pr

(2β f ′′0 (0)+1)(
η5

120η∞

− η4

48η∞

+
η2

∞η2

48
))]

+
η∞

Pr
[[β f ′′0 (0)(β f ′′0 (0)−1)+(Ω+M2)(β f ′′0 (0)−

1
η∞

)]((c1 + c2
1)(

η4

24η2
∞

− η2

12
)

+
c2

1
Pr

(
η5

12η2
∞

− η3
∞η2

36
+

η2
∞η2

48
)+(

1−β f ′′0 (0)
Pr

)c2
1(
−η7

720η3
∞

+
η5

240η∞

− 13η2η2
∞

1440
)

−
c2

1
Pr

(2β f ′′0 (0)+1)((
η6

720η∞

− η4

144η∞

+
7η2

∞η2

720
))]

+
η∞

Pr
[[β f ′′0 (0)(1−

β f ′′0 (0)
2

)− 1
2
][(c1 + c2

1 + c2)(
η5

60η3
∞

− η2

24
)+

c2
1

Pr
(

η6

360η3
∞

− η3

72

+
η∞η2

∞

80
+(1−β f ′′0 (0))(

η5

120η∞

− η4

48η∞

+
η2

∞η2

48
))]]

+
η∞

Pr
[[β f ′′0 (0)(1−

β f ′′0 (0)
2

)− 1
2
][(c1 + c2

1 + c2)(
η5

60η3
∞

− η2

24
)

+
c2

1
pr

(
η6

360η3
∞

− η3

72
+

η∞η2

80
+(1−β f ′′0 (0))(

η8

20160η4
∞

− η5

1440η∞

+
31η2

∞η2

20160
))]]

+
η∞

Pr
[
c2

1
Pr

(β f ′′0 (0)(β f ′′0 (0)−2))[(β f ′′0 (0)+
1
2
)(

η7

252η3
∞

− η4

288
+

η2
∞η2

180
)

+(1−β f ′′0 (0))(
η8

4032η∞

− η5

720η∞

+
5η2

∞η2

2016
)]]

+
η∞

Pr
[[(1+Ω+M2)(

η3

6η∞

− η2

4
)+ [η∞β f ′′0 (0)(β f ′′0 (0)−1)

+(Ω+M2)(β f ′′0 (0)−1)](
η4

24η2
∞

− η2

12
)

+ [s−β f ′′0 (0)(s+η∞β f ′′0 (0))−β f ′′0 (0)η∞(Ω+M2)](
η3

6η2
∞

− η2

4η∞

)]]
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θ2(η ,c4,c5) =
−3c4(η∞ + γθ ′0(0))

η∞(3+4R)
[(

3c4(s+β f ′′0 η2
∞)

6+8R
)[
(1+ c4)(3+4R)

3c4
(

η2

η2
∞

−1)

+
1
2
(η∞−β f ′′0 (0))(

η5

10η3
∞

− η4

12η2
∞

+
η2

∞

60
)+ s(

η3

3η2
∞

− η2

2η∞

+
η∞

6
)

+λ (1−β f ′′0 (0))(
η4

12η2
∞

− η5

20η3
∞

− η2
∞

30
)+β f ′′0 (0)[

η4

6η2
∞

− η3

6η∞

+λ [
η3

∞

6
− η4

12η2
∞

− η2
∞

12
]]]]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[
c4(β f ′′0 (0))+λ (1−2β f ′′0 (0))

6+8R
[
(1+ c4)(3+4R)

3c4
(

η3

3η∞

− η2
∞

3
)

+
1
2
(η∞−β f ′′0 (0))(

η6

30η2
∞

− η4

36
− η4

∞

180
)+β f ′′0 (0)(

η5

20η∞

− η∞η3

18
+

η4
∞

180
)

+ s(
η4

12η3
∞

− η∞η2

6
+

η3
∞

12
)+λ (1−β f ′′0 (0))(

η4

36
− η6

90η2
∞

− η4

60
)

+λ [
η∞η3

18
− η5

60η∞

− 7η4
∞

180
]]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[
3c4(1−β f ′′0 (0)+2λ (β f ′′0 (0)−1))

3+4R
[
(1+ c4)(3+4R)

3c4

(
η4

6η2
∞

− η2
∞

6
)+

1
36

(η∞−β f ′′0 (0))(
η6

30η2
∞

− η4

36
− η4

∞

180
)+β f ′′0 (0)(

2η7

7η3
∞

− η4

4
+

η4
∞

28
)+

β f ′′0 (0)
6

(
2η6

15η2
∞

− η∞η3

6
)+

s
6
(

η5

5η2
∞

− η∞η2

2
)

+
λ

18
(1−β f ′′0 (0))(

η4

4
− η7

14η3
∞

− 5η4

28
)+

λβ f ′′0 (0)
6

(
η∞η3

6
− η6

30η2
∞

− 2η4
∞

15
)]]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[[1+(Ω+M2)(1−β f ′′0 (0))+

s
η∞

−
β f ′′0 (0)

η∞

(s+η∞β f ′′0 (0))]
c1

pr
(

η3

120η∞

− η4

48
− η4

∞

80
+λ (

η4

12
− η∞η3

12
− η5

40η∞

+
η4

∞

80
))]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[
c1

pr
[(β f ′′0 (0))

2−β f ′′0 (0)+(Ω+M2)(β f ′′0 (0)−
1

η∞

)]

[
η6

720η∞

− η4

144
+

η4
∞

180
+λ (

η5

120η∞

− η∞η3

36
+

η4

72
− η6

180η2
∞

+
η4

∞

90
)]]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[
c1

Pr
(β f ′′0 (0)−

1
2
(β f ′′0 (0))

2− 1
2
)(

η7

2520η3
∞

− η4

288

+λ (
η6

360η2
∞

− η∞ηη3

72
+

η4

144
− η7

504η2
∞

))]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[3c4PrEc[(

1−2β f ′′0 (0)+(β f ′′0 (0))
2

6+8R
)[
(1+ c1)(3+4R)

3c4
(

η2

η2
∞

−1)]]]
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+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[(

η∞

2
−

β f ′′0 (0)
2

)+(
η5

10η4
∞

− η4

12η3
∞

− η∞

60
)+β f ′′0 (0)(

η4

6η2
∞

− η3

6η∞

)]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[s(

η3

3η2
∞

− η3

2η∞

+
η∞

6
)+λ (1−β f ′′0 (0))(

η4

12η2
∞

− η5

20η3
∞

− η2
∞

30
)]

+
−3c4(η∞)+ γθ ′0(0)

η∞(3+4R)
[λβ f ′′0 (0)(

η3

6η∞

− η4

12η2
∞

− η2
∞

12
)]

− (
3c5

3+4R
)(1+ γθ

′
0(0))[(

1
2
−

β f ′′0 (0)
2

+λ (β f ′′0 (0)−1))(
η4

12η2
∞

− η2
∞

12
)]

+(
3c5

3+4R
)(1+ γθ

′
0(0))[(β f ′′0 (0)+λ (1−2β f ′′0 (0)))(

η3

6η∞

− η2
∞

6
)+(

s+λβ f ′′0 (0)η∞

2
)(

η2

η∞

−η∞)]

+
3c5 prEc

3+4R
((β f ′′0 (0))

2−2β f ′′0 (0)+1)(
η2

2η∞

− η∞

2
η∞)

Using OHAM for p = 1, we obtain the three terms solution:{
f (η ,c1,c2) = f0(η)+ f1(η ,c1)+ f2(η ,c1,c2)

θ(η ,c4,c5) = θ0(η)+θ1(η ,c4)+θ2(η ,c4,c5)
(4.40)

We use the method of least squares to obtain the four unknown convergent con-
stants in Eq.(4.40 ).

For example, in case of Pr = 2, R = 1, M = 1, Ω = 1, β = 0.2, s = 1, γ = 0.2,
Ec = 0.1 and λ = 1 the values of constants are c1 =−0.01379646, c2 = 4.181133,
c4 =−0.04417926 and c5 =−905.104899

By substituting those constants into Eq. (4.40), we obtain the approximate so-
lution for the given problem on Eqs. (4.23).

4.4 Discussion

To obtain the solution of the differential equation(4.23) with the boundary con-
ditions(4.24) a procedure based on OHAM is employed. The effects of various
parameters on the flow (velocity) and temperature profile have been determined for
different values of Prandtl number, Permeability parameter, Magnetic parameter,
suction/blowing, Velocity slip parameter, Radiation parameter, Eckert number, ex-
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ponent of wall temperature and thermal slip parameter.

The effects of various parameters on the non-dimensional velocity profile within
the boundary layer are depicted in Figures 1−6 . The Figures 7−14 illustrate the
behaviors of temperature profile for different values of embedded parameters in the
boundary layer.

Figure 4.1 illustrates the effects of magnetic parameter on the velocity profile.
It shows an increasing trend in presence of slips corresponding to the increasing
values of magnetic parameter. This occurs because of the fact that the magnetic
force increases the fluid motion in the boundary-layer due to the presence of the
term( ue−u) in the momentum equation.

Figure 4.2 describes the effects of permeability parameter on the velocity pro-
files in the presence of slip parameters. The figure shows that the velocity profile
increase for increasing values of permeability parameter.

Figure 4.3 makes the graphical representation of the effects of velocity slip pa-
rameter on momentum profiles is an increase in slip parameter, results into a de-
crease in the momentum. The fluid velocity remains unaffected of the variations in
the values of radiation parameter, wall temperature exponent and thermal slip . This
is simply because of the flow problem being uncoupled from the thermal problem.

Figure 4.4 it is obvious that the velocity profiles exhibit an increasing trend with
respect to the increasing values of suction/blowing parameter.

Figure 4.5 Velocity profiles for different values of Eckert number. It illustrates
that Ec has no effect on the monument of fluid velocity.

Figure 4.6 illustrates the effects of Prandtl number on the temperature profiles
in the presence of slip parameters. The figure shows that temperature profiles is
increasing with respect to the increasing values of prandtl number.

Figure 4.7 shows that temperature profiles is decreasing with respect to the in-
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creasing values of suction/blowing parameter. This proves the profundity of the
effect of suction/blowing parameter on the boundary-layer thickness. The suction
reduces the thermal boundary-layer thickness while blowing thickens it. As a re-
sult, the process of suction can be used effectively for fast cooling. As the thermal
boundary thickness increases with strong blowing, the heated fluid moves farther
from the wall and forms an insulating layer of nearly the same temperature as that
of the wall. This results into a decrease in the heat transfer rate from the wall, and
hence leads to slower cooling.

Figure 4.8 shows that the thermal boundary-layer thicknesses show the same
trend with the increasing values of the permeability parameter. In case of suction,
the effect of permeability parameter on temperature profile is almost negligible.

Figure 4.9 makes the graphical representation of the effects of velocity slip on
thermal boundary-layer thicknesses.Thus, an increase in slip parameter, results into
a decrease thermal boundary-layer thicknesses.

Figure 4.10 it is concluded that the thermal boundary layer thickness and the
temperature distribution increase with the increasing values of the thermal radia-
tion parameter. This is due to the fact that the divergence of the radiative heat flux (
∂qr
∂y ) increases along with the decreasing values of the Rosseland radiative absorp-

tivity (k1). This, in turn, shows an increase in the rate of radiative heat transfer to
the fluid. This causes the fluid temperature to increase. In view of this fact, the
effect of radiation becomes more significant as R→ ∞, and the radiation effect is
negligible as R→ 0

From the Figure 4.11 it is concluded that the thermal boundary layer thickness
decreasing and the temperature distribution increase with the increasing values of
the Eckert number parameter.

In the figure 4.12 the effect of wall temperature exponent on thermal boundary
layer has been investigated, and it has been found that the temperature profile de-
creasing trend as the wall temperature exponent increases. In this case, the thermal
boundary layer becomes thin. Further, from the figure the increase of exponent of
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wall temperature parameter results into a increase in thermal boundary layer thick-
ness.

Figure 4.13 makes the graphical representation of the effects of thermal slip
parameter on thermal boundary-layer thicknesses.Thus, an increase in thermal slip
parameter, results into a decrease thermal boundary-layer thicknesses both section
and blowing.

Figure 4.1: Velocity profiles for different values of M when pr = 0.72, Ω = 1, β =
0.2, R = 1, s = 1, γ = 0.2, Ec = 0.1 and λ = 1.
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Figure 4.2: Velocity profiles for different values of Ω when Pr = 2, M = 1, β = 0.2,
R = 1, s = 1, γ = 0.2, Ec = 0.1 and λ = 1.

Figure 4.3: Velocity profiles for different values of β when Pr = 2, M = 1, R = 1, s
= 1, γ = 0.2, Ω = 1, Ec = 0.1 and λ = 1.
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Figure 4.4: Velocity profiles for different values of s when Pr = 2, M = 1, R = 1, β

= 0.3, γ = 0.2, Ω = 1, Ec = 0.1 and λ = 1.

Figure 4.5: Velocity profiles for different values of Ec when Pr = 2, M = 1, R = 1,
β = 0.3, γ = 0.2, Ω = 1, s = 1 and λ = 1.
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Figure 4.6: Temperature profiles for different values of Pr when M = 1, Ω = 2, β =
0.2, R = 1, s = 1, γ = 0.2, Ec = 0.1 and λ =1.

Figure 4.7: Temperature profiles for different values of s when Pr = 2, M = 1, R =
1, β = 0.2, γ = 0.2, Ω = 1, Ec = 0.1 and λ = 1.
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Figure 4.8: Temperature profiles for different values of Ω when Pr = 2, M = 1, β =
0.2, R = 1, s = 0.5, γ = 0.2, Ec = 0.1 and λ = 1.

Figure 4.9: Temperature profiles for different values of β when Pr = 2, M = 2, R =
2, s = 1, γ = 0.5, Ω = 2, Ec = 1 and λ = 1.
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Figure 4.10: Temperature profiles for different values of R when M = 2, Pr = 0.72,
Ω = 2, β = 0.2, s = 1, γ = 0.5, Ec = 1 and λ = 1.

Figure 4.11: Temperature profiles for different values of Ec when M = 2, Pr = 7, Ω

= 2, β = 0.2, R = 2, s = 1, γ = 0.4 and λ = 1.
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Figure 4.12: Temperature profiles for different values of λ when M = 2, Pr = 7, Ω

= 2, β = 0.2, R = 2, s = 1, γ = 0.4 and Ec = 10.

Figure 4.13: Temperature profiles for different values of γ when M = 2, Pr = 7, Ω

= 2, β = 0.2, R = 2, s = 1, λ = 0.4 and Ec = 10.
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The present study is carried out to analyze the two dimensional steady MHD
laminar forced convection stagnation point flow and heat transfer over a flat plate
in a permeable medium with varying wall temperature by considering the radiation
effect and partial slip conditions. The analysis has been done with the help of math
lab based on the OHAM. The effects of the governing parameters Pr, Ω, M, s, β ,
Ec, R, λ and γ on the velocity and temperature profiles are examined in details. The
following significant conclusions are drawn from the analysis:

1. An increase in Eckert number increase the temperature profile.

2. An increase in thermal slip parameter, results into a decrease thermal boundary-
layer thickness both section and blowing.

3. The velocity profile is an increasing function of the parameters Ω, M, s and
β .

4. An increase in permeability parameter does not change the temperature pro-
file.

5. The thermal boundary layer thickness exhibit increasing trend along with Pr,
Ec and R.

6. An increase in parameters β , s, λ and γ reduces the temperature profile.

7. An increase in Eckert number has no significant change in velocity profile.
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5.2 Recommendation

In this study, OHAM is a powerful method for solving nonlinear problems with-
out depending on small or large parameters, which shows its validity and potential
for the solution of nonlinear problems in science and engineering applications.
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