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Abstract

In this research we established fixed point theorems for α-F-convex contraction
mappings in b-metric space and proved the existence and uniqueness of fixed points
for such mappings. Our result extend and generalize the work of Eke et al. (2019).
In this research undertaking, we followed analytical study design and used sec-
ondary sources of data, such as published articles and related books. Finally, We
also provided examples in support of our main findings.
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Chapter 1

Introduction

1.1 Background of the study

Let X be a non-empty set and T : X → X is said to a self-map of X . An element
x ∈ X is called a fixed point of T if T (x) = x and denote by FT or Fix(T ) is the
set of all fixed points of T. Fixed point theory is an important tool in the study
of nonlinear analysis. It is considered to be the key connection between pure and
applied mathematics. It is also widely applied in different fields of study such as
Economics, Chemistry, Physics and almost all engineering fields. The contraction
mapping principle introduced by Banach (1922) has wide range of applications in
a fixed point theory. In 1922, Banach proved the following famous fixed point the-
orem.

Let (X ,d) be a complete metric space, T : X → X be a contraction, there exists
a unique fixed point x0 ∈ X of T. This theorem, called the Banach contraction prin-
ciple is a forceful tool in nonlinear analysis. Another category of contraction which
is separate from Banach contraction, and does not imply continuity, was proposed
by Kannan(1968) who also established in the same work that such mappings nec-
essarily have unique fixed points in complete metric spaces. Mappings belonging
to this category are known as Kannan type.

In 1972, a new concept which is different from that of Banach (1922) and Kannan
(1968) for contraction type mapping was introduced by Chatterjea (1972) which
gives a new direction to the study of fixed point theory. There are the classes of
contractive mappings which are different from Banach contraction and have unique
fixed point in complete metric spaces.

Many authors generalized Banach contraction principle and proved the existence
of the fixed point without the continuity of the mapping in the whole domain X

(see, Choudhury, 2009; Eke, 2016a; Eke, Oghonyon, & Davvaz, 2018; Eke, 2016b,
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Eke, Imaga, & Odetunmibi, 2017; Muresan & Muresan, 2015). Hardy & Rogers
(1973), the existence of the fixed point of Hardy and Rogers contractive mappings
does not require the mapping to be continuous in the entire domain X . Rather, a
mapping satisfying Hardy and Rogers contraction turns out to be continuous at the
fixed point. The family of contractive mappings in metric spaces is a great interest
and has already been studied in the literature since long time.

Istratescu (1981) introduced the class of convex contraction mappings in metric
spaces and generalized the well-known Banach’s contraction principle. Recently,
some works have appeared on the generalization of such classes of mappings in
the setting of various spaces. Czerwik (1993) introduced the concept of b-metric
spaces and proved the Banach contraction mapping principle in the setting of b-
metric spaces. Afterwards, several research papers were published on the existence
of fixed point results for single-valued and multi-valued mappings in the setting of
b-metric spaces.

Very recently, Eke et al. (2019) introduced the notion of convex contractive map-
pings in metric spaces and proved a fixed point theorem for convex contractive
mappings defined on complete metric spaces. Inspired and motivated by the results
of Eke et al. (2019) the aim of this research is to extend and generalize the main
theorem of Eke et al. (2019) in the setting of b-metric spaces.

1.2 Statements of the problem

In this study we focused on establishing and proving fixed point theorems for α-F-
convex contraction mappings in the setting of b-metric spaces.

1.3 Objectives of the study

1.3.1 General objective

The main objective of this study was to establish fixed point theorems for α-F-
convex contraction mappings in the setting of b-metric spaces.
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1.3.2 Specific objectives

This study has the following specific objectives:

• To prove the existence of fixed points for α-F-convex contraction mappings
in the setting of b-metric spaces.

• To verify the uniqueness of the fixed points.

• To verify the applicability of the main results obtained using specific exam-
ples.

1.4 Significance of the study

The study may have the following importance:

• It may provide basic research skills to the researcher.

• The outcome of this study may contribute to research activities on study area.

• It may help to show existence and uniqueness of solution of some problems
involving integral and differential equations.

1.5 Delimitation of the Study

This study was delimited to establishing and proving fixed point theorems for α-
F-convex contraction mappings in the setting of b-metric spaces.
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Chapter 2

Review of Related Literatures
Fixed point theory is very important in diverse disciplines of mathematics since
it can be applied for solving various problems and it is one of the most dynamic
research subjects in nonlinear analysis. A very interesting useful result in fixed
point theory is due to the Banach contraction principle. This theorem has witnessed
numerous generalizations and extensions in the literature because of its simplicity
and contractive approaches. For this reason generalizations of Banach’s contraction
principle have been investigated heavily by many researchers. Banach (1922) Ba-
nach contraction principle was introduced as follows: Let (X ,d) be a metric space
and T : X → X . Then T is called a Banach contraction mapping if there exists
k ∈ [0,1) such that d(T x,Ty)≤ kd(x,y) for all x,y ∈ X . If (X ,d) is a complete met-
ric space, then T has a unique fixed point.

Kannan (1968) The concept of Kannan mapping was introduced in 1968 as fol-
lows: Let (X ,d) be a metric space and T : X → X . Then T is called a Kannan
mapping if there exists k ∈ [0,1/2) such that d(T x,Ty)≤ k[d(x,T x)+d(y,Ty)] for
all x,y ∈ X . If (X ,d) is a complete metric space, then T has a unique fixed point. In
1972, the concept of Chatterjea type mapping was introduced as follow: Let (X ,d)

be a metric space and T : X → X . Then T is called Chatterjea mapping if there
exists k ∈ [0,1/2) such that d(T x,Ty) ≤ k[d(x,Ty)+ d(y,T x)] for all x,y ∈ X . If
(X ,d) is a complete metric space, then T has a unique fixed point.

Istratescu (1981) introduced the concept of convex contraction mappings as fol-
lows: Let (X ,d) be a metric space and a continuous mapping T : X → X is called
a convex contraction mapping of order 2, if there exists a, b ∈ ( 0, 1) such that :
d(T 2x,T 2y)≤ ad(T x,Ty)+bd(x,y) for all x,y ∈ X and a+b < 1.
Generalizing the Banach contraction principle, In 2012, Wardowski introduce the
notion of F-contraction and proved a new fixed point theorem concerning F-contracti-
ons.
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Chapter 3

Methodology
3.1 Study area and period

The study was conducted at Jimma University under the supervision of the depart-
ment of mathematics from September, 2019 G. C. to August, 2020 G. C.

3.2 Study Design

In this study, we followed analytical design using standard mathematical proce-
dures.

3.3 Source of Information

The relevant sources of information for this study where books and published arti-
cles related to the area of the study.

3.4 Mathematical Procedure of the Study

In this study, we followed the procedures stated below:

• Establishing theorems.

• Constructing sequences.

• Showing the convergence of the sequences.

• Showing the constructed sequence are b-Cauchy .

• Proving the existence of fixed point.

• Showing uniqueness of the fixed point.

• Providing examples in support of our main findings.
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Chapter 4

Preliminaries and Main Result

4.1 Preliminaries

Notation: Throughout this research denote, R is the set of all real numbers, R+ is
the set of all non-negative real numbers and N is the set of all natural numbers.

• R= (−∞,∞).

• R+ = [0,∞).

• N= 1, 2, 3, · · · .

• Φ denotes the set of all functions F : R+ −→ R be a mapping satisfying the
following conditions:

(F1) F is strictly increasing, that is, for all x,y ∈ R+

if x < y then F(x)< F(y);

(F2) For each sequence {αn } of positive numbers,
lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) =−∞;

(F3) There exists k ∈ (0,1) such that lim
α→0+

(α)kF(α) = 0.

Definition 4.1.1 (Samet et al., 2012) Let T : X → X be a self-mapping on a non-

empty set X and α : X ×X → R+ be a function. We say that T is an α-admissible

if x,y ∈ X , α(x,y)≥ 1⇒ α(T x,Ty)≥ 1.

Definition 4.1.2 (Singh et al., 2018) An α-admissible mapping T is said to be an

α∗-admissible, if for each x,y ∈ Fix(T ) 6= ∅ we have α(x,y) ≥ 1. If Fix(T ) = ∅
we say that T is vacuously α∗-admissible.

Definition 4.1.3 (Ciric, 1971) Let (X ,d) be a metric space and T : X → X is said

to be an orbitally continuous on X if lim
n→∞

T nx = z implies that lim
n→∞

T (T nx) = T z.
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Definition 4.1.4 (Bakhtin, 1989; Czerwik, 1993 ) Let X be a non-empty set and

s≥ 1 be a given real number. A function d : X×X → R+ is said to be a b-metric if

and only if for all x,y,z ∈ X, the following conditions are satisfied:

(a) d(x,y) = 0 if and only if x = y;

(b) d(x,y) = d(y,x);

(c) d(x,y)≤ s[d(x,z)+d(z,y)].

The pair (X ,d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of
metric spaces, since a b-metric is a metric when s = 1. But, in general, the converse
is not true.
Example 1.1 (Czerwik, 1993) Let X = {−1,0,1} and d : X×X →R+ be given by
d(x,y) = d(y,x) for all x,y ∈ X , d(x,x) = 0, d(−1,0) = 3,
d(−1,1) = d(0,1) = d(1,0) = 1 then (X ,d) is a b-metric on X with s = 3/2, but it
is not a metric space. let x =−1,y = 0,z = 1, then
d(x,y)≤ d(x,z)+d(z,y) since d(−1,0) = 3≮ 2 = d(−1,1)+d(1,0).
Hence the triangle inequality for a metric does not satisfied.
Example 1.2 (Czerwik, 1993 ) Let X = {0,1,2}. Define d : X×X → R+ be given
by d(x,x) = 0 for all x ∈ X , d(0,1) = d(1,0) = 1,d(1,2) = d(2,1) = 2,
d(0,2) = d(2,0) = 6. Then d is a b-metric on X with s = 2. But it is not a metric
on X . For, let x = 0,y = 2,z = 1, then
d(0,2) = 6 > 3 = d(0,1)+d(1,2). Hence (X ,d) is not a metric space.

Definition 4.1.5 ( Boriceanu, 2009) Let (X ,d) be a b-metric space with the coef-

ficient s ≥ 1 and let T : X → X be a given mapping. We say that T is continuous

at xo ∈ X if and only if for every sequence xn ∈ X , we have xn→ xo as n→ ∞ then

T xn→ T xo as n→ ∞. If T is continuous at each point of x0 ∈ X then we say that T

is continuous on X.

In general, a b-metric is not necessarily continuous.

Example 1.3 ( Hussain et al., 2012) Let X = NU {∞}.
Define a mapping d : X×X → R+ as follows:
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d(m,n) =



0 if m = n,

| 1m −
1
n | if one of m and n is even and the other even or ∞,

5 if one of m and n is odd and the other odd or ∞,

2 if others.

d(m, p)≤ 3[d(m,n)+d(n, p)] f or all m,n, p ∈ X .

Then (X ,d) is a b-metric space with s = 3
2 .

Choose xn = 2n for each n ∈ N. Then

d(xn,∞) = d(2n,∞) =
1
2n
→ 0 as n→ ∞

that is, xn→ ∞ as n→ ∞.

But, d(xn,1) = 29 5 = d(∞,1)( as n→ ∞).

Hence it is not cotinuous.

Definition 4.1.6 ( Boriceanu, 2009) Let X be a b-metric space and {xn} be a se-

quence in X we say that

(a) {xn} b-converges to x ∈ X if d(xn,x)→ 0 as n→ ∞;

(b) {xn} is a b-Cauchy sequence if d(xn,xm)→ 0 as n,m→ ∞;

(c) (X ,d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Definition 4.1.7 (Istratescu, 1981) A mapping T : X→ X defined on a metric space

X is called two-sided convex contraction mapping if there exist positive numbers

a1,a2,b1,b2 ∈ (0,1) such that the following inequality holds:

d(T 2x,T 2y)≤ a1d(x,T x)+a2d(T x,T 2x)+b1d(y,Ty)+b2d(Ty,T 2y)

for all x,y ∈ X and a1 +a2 +b1 +b2 < 1.
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Theorem 4.1.1 (Istratescu, 1981) Let (X ,d) be a complete metric space and

T : X −→ X be any two sided convex contraction mapping. Then T has a unique

fixed point.

Definition 4.1.8 (Wardowski, 2012) Let (X ,d) be a metric space and T : X→ X be

a self-map, then T is said to be an F- contraction mapping on (X ,d) if there exists

a F ∈Φ and τ > 0 such that for all x,y ∈ X .

d(T x,Ty)> 0 =⇒ τ +F(d(T x,Ty))≤ F(d(x,y)). (4.1)

Remark 4.1.1 From (F1) and if T satisfies Inequality (4.1), then T is contractive,

i.e.,

F(d(T x,Ty))≤ F(d(x,y))− τ < F(d(x,y)) =⇒ d(T x,Ty)< d(x,y)

for all x,y ∈ X such that T x 6= Ty. Also T is a continuous mapping.

Definition 4.1.9 (Singh et al., 2018) Let (X ,d) be a metric space. A mapping

T : X→ X is said to an α-F- convex contraction on (X ,d) if there exist two function

α : X×X → R+, F ∈Φ and τ > 0 such that for all x,y ∈ X ,

d(T 2x,T 2y)> 0 =⇒ τ +F(α(x,y)d(T 2x,T 2y))≤ F(ad(T x,Ty)+bd(x,y))

where a,b≥ 0 and a+b < 1.

Theorem 4.1.2 (Singh et al., 2018) Let (X ,d) be a complete metric space and

T : X → X be an α-F-convex contraction satisfying the following conditions:

(a) T is α-admissible;

(b) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(c) T is orbitally continuous on X . Then, T has a fixed point in X .
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Definition 4.1.10 (Eke et al., 2019) A mapping T : X → X defined on a metric

space X is called Chatterjea two sided convex contraction mappings if there exist

positive numbers a1,a2,b1,b2 ∈ (0,1) such that the following inequality holds:

d(T 2x,T 2y)≤ a1d(x,Ty)+a2d(Ty,T 2y)+b1d(y,T x)+b2d(T x,T 2x)

for all x,y ∈ X and a1 +a2 +b1 +b2 < 1.

Theorem 4.1.3 (Eke et al., 2019) Let (X ,d) be a complete metric space and T be

a self-mapping satisfying the Chatterjea two sided convex contraction conditions.

Suppose T is orbitally continuous. Then T has a unique fixed point in X . For any

x0 ∈ X , the Picard iteration xn given by xn+1 = T xn, n ≥ 0 converges to the fixed

point of T .

Definition 4.1.11 (Eke et al., 2019) A mapping T : X → X defined on a metric

space X is called Hardy and Rogers convex contraction mapping of type 2 if there

exist positive numbers a1,a2,b1,b2,c1,c2,e1,e2, f1, f2 ∈ (0,1) such that the follow-

ing inequality holds:

d(T 2x,T 2y) ≤ a1d(x,y)+a2d(T x,Ty)+b1d(x,T x)+b2d(T x,T 2x)

+ c1d(y,Ty)+ c2d(Ty,T 2y)+ e1d(x,Ty)+ e2d(Ty,T 2y)

+ f1d(y,T x)+ f2d(T x,T 2x)

for all x,y ∈ X and a1 +a2 +b1 +b2 + c1 + c2 + e1 + e2 + f1 + f2 < 1.

Theorem 4.1.4 (Eke et al., 2019) Let (X ,d) be a complete metric space and T be a

self-mapping satisfying Hardy and Rogers convex contraction conditions. Suppose

T is orbitally continuous. Then T has a unique fixed point in X . For any x0 ∈ X, the

Picard iteration {xn} given by xn+1=T xn, n ≥ 0 converges to the fixed point of T.
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4.2 Main Results

In this section, we proved fixed point results for α-F-convex contraction mappings
in the setting of b-metric spaces.

Definition 4.2.1 Let (X ,d) be a b-metric space with parameter s ≥ 1, T : X → X,

α : X×X→R+ and F ∈Φ. Then T is called Chatterjea two sided α-F-convex con-

traction mapping if there exist ai,bi ∈ [0,1) with ∑i=1,2(ai +bi)< 1/s and satisfies

the following condition:

d(T 2x,T 2y) > 0

=⇒ τ +F
(

α(x,y)d(T 2x,T 2y)
)
≤ F

[
a1d(x,Ty)+a2d(Ty,T 2y)

+b1d(y,T x)+b2d(T x,T 2x)
]

(4.2)

for all x,y ∈ X and τ > 0.

Theorem 4.2.1 Let (X ,d) be a complete b-metric space with s≥ 1.

T : X → X be Chatterjea two sided α-F-convex contraction mapping satisfying the

following conditions:

(a) T is α-admissible;

(b) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(c) T is orbitally continuous on X.

Then, T has a fixed point in X . Further, if T is α∗-admissible, then T has a unique

fixed point z ∈ X . Moreover, for any x0 ∈ X if xn+1 = T n+1x0 6= T nx0 for all n≥ 0,
then lim

n→∞
T nx0 = z.

Proof: By (b) there exists a point x0 ∈ X such that α(x0,T x0) ≥ 1 and define a
sequence {xn} by
x1 = T x0, x2 = T x1, x3 = T x2, · · · , xn+1= T xn for all n = 0,1,2, · · · .
If xn = xn+1 for some n, xn = xn+1 = T xn, xn is fixed point of T .
Assume xn 6= xn+1 for all n = 0,1,2, · · · .
Then d(xn,xn+1)> 0 for all n = 0,1,2, · · · .
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Since T is α-admissible, α(x0,T x0)≥ 1 =⇒ α(x1,x2) = α(T x0,T 2x0)≥ 1.
Therefore, one can obtain inductively that α(xn,xn+1) = α(T nx0,T n+1x0) ≥ 1 for
all n = 0,1,2, · · · .
From Eq. (4.2) by using x = x0 and y = T x0, we have

d(T 2x0,T 3x0) > 0 =⇒ τ +F
(

α(x0,T x0)d(T 2x0,T 3x0)
)

≤ F
[
a1d(x0,T 2x0)+a2d(T 2x0,T 3x0)+b1d(T x0,T x0)+b2d(T x0,T 2x0)

]
= F

[
a1d(x0,T 2x0)+a2d(T 2x0,T 3x0)+b2d(T x0,T 2x0)

]
≤ F

[
a1(sd(x0,T x0)+ sd(T x0,T 2x0))+a2d(T 2x0,T 3x0)+b2d(T x0,T 2x0)

]
= F

[
a1sd(x0,T x0)+a1sd(T x0,T 2x0)+a2d(T 2x0,T 3x0)+b2d(T x0,T 2x0)

]
= F

[
a1sd(x0,T x0)+(a1s+b2)d(T x0,T 2x0)+a2d(T 2x0,T 3x0)

]
≤ F

[
(2a1s+b2)max{d(x0,T x0),d(T x0,T 2x0)}+a2d(T 2x0,T 3x0)

]
= F

[
(2a1s+b2)v+a2d(T 2x0,T 3x0)

]
,

where v = max{d(x0,T x0),d(T x0,T 2x0)}, since F is strictly increasing, and τ > 0,

d(T 2x0,T 3x0) < (2a1s+b2)v+a2d(T 2x0,T 3x0)

(1−a2)d(T 2x0,T 3x0) < (2a1s+b2)v

d(T 2x0,T 3x0) <
2a1s+b2

1−a2
v,1−a2 > 0

d(T 2x0,T 3x0) < λv,
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where λ = 2a1s+b2
1−a2

.

From Eq. (4.2) by using x = T x0 and y = T 2x0, we have

d(T 3x0,T 4x0) > 0 =⇒ τ +F
(

α(T x0,T 2x0)d(T 3x0,T 4x0)
)

≤ F
[
a1d(T x0,T 3x0)+a2d(T 3x0,T 4x0)+b1d(T 2x0,T 2x0)+b2d(T 2x0,T 3x0)

]
= F

[
a1d(T x0,T 3x0)+a2d(T 3x0,T 4x0)+b2d(T 2x0,T 3x0)

]
≤ F

[
a1(sd(T x0,T 2x0)+ sd(T 2x0,T 3x0))+a2d(T 3x0,T 4x0)+b2d(T 2x0,T 3x0)

]
= F

[
a1sd(T x0,T 2x0)+a1sd(T 2x0,T 3x0)+a2d(T 3x0,T 4x0)+b2d(T 2x0,T 3x0)

]
= F

[
a1sd(T x0,T 2x0)+(a1s+b2)d(T 2x0,T 3x0)+a2d(T 3x0,T 4x0)

]
≤ F

[
(a1s)v+(a1s+b2)λv+a2d(T 3x0,T 4x0)

]
,

since F is strictly increasing, and τ > 0,

d(T 3x0,T 4x0) < (2a1s+b2)v+a2d(T 3x0,T 4x0)

(1−a2)d(T 3x0,T 4x0) < (2a1s+b2)v

d(T 3x0,T 4x0) <
2a1s+b2

1−a2
v,1−a2 > 0

d(T 3x0,T 4x0) < λv.

From Eq. (4.2) by using x = T 2x0 and y = T 3x0, we have

d(T 4x0,T 5x0) > 0 =⇒ τ +F
(

α(T 2x0,T 3x0)d(T 4x0,T 5x0)
)

≤ F
[
a1d(T 2x0,T 4x0)+a2d(T 4x0,T 5x0)+b1d(T 3x0,T 3x0)+b2d(T 3x0,T 4x0)

]
= F

[
a1d(T 2x0,T 4x0)+a2d(T 4x0,T 5x0)+b2d(T 3x0,T 4x0)

]
≤ F

[
a1(sd(T 2x0,T 3x0)+ sd(T 3x0,T 4x0))+a2d(T 4x0,T 5x0)+b2d(T 3x0,T 4x0)

]
= F

[
a1sd(T 2x0,T 3x0)+a1sd(T 3x0,T 4x0))+a2d(T 4x0,T 5x0)+b2d(T 3x0,T 4x0)

]
= F

[
a1sd(T 2x0,T 3x0)+(a1s+b2)d(T 3x0,T 4x0)+a2d(T 4x0,T 5x0)

]
≤ F

[
a1s(λ )v+(a1s+b2)(λ )v+a2d(T 4x0,T 5x0)

]
,

13



since F is strictly increasing , and τ > 0,

d(T 4x0,T 5x0) < a1s(λ )v+(a1s+b2)(λ )v+a2d(T 3x0,T 4x0)

(1−a2)d(T 3x0,T 4x0) < (2a1s+b2)λv

d(T 4x0,T 5x0) <
2a1s+b2

1−a2
λv,1−a2 > 0

d(T 4x0,T 5x0) < λ
2v.

From Eq. (4.2) by using x = T 3x0 and y = T 4x0, we have

d(T 5x0,T 6x0) > 0 =⇒ τ +F
(

α(T 3x0,T 4x0)d(T 5x0,T 6x0)
)

≤ F
[
a1d(T 3x0,T 5x0)+a2d(T 5x0,T 6x0)+b1d(T 4x0,T 4x0)+b2d(T 4x0,T 5x0)

]
= F

[
a1d(T 3x0,T 5x0)+a2d(T 5x0,T 6x0)+b2d(T 4x0,T 5x0)

]
≤ F

[
a1(sd(T 3x0,T 4x0)+ sd(T 4x0,T 5x0))+a2d(T 5x0,T 6x0)+b2d(T 4x0,T 5x0)

]
= F

[
a1sd(T 3x0,T 4x0)+a1sd(T 4x0,T 5x0)+a2d(T 5x0,T 6x0)+b2d(T 4x0,T 5x0)

]
= F

[
a1sd(T 3x0,T 4x0)+(a1s+b2)d(T 4x0,T 5x0)+a2d(T 5x0,T 6x0)

]
≤ F

[
a1s(λv)+(a1s+b2)(λ

2v)+a2d(T 5x0,T 6x0)
]
,

since F is strictly increasing, and τ > 0,

d(T 5x0,T 6x0) < (2a1s+b2)λv+a2d(T 5x0,T 6x0)

(1−a2)d(T 5x0,T 6x0) < (2a1s+b2)λv

d(T 5x0,T 6x0) <
2a1s+b2

1−a2
λv,1−a2 > 0

d(T 5x0,T 6x0) < λ
2v.

Continuing this process inductively, we get

d(T mx0,T m+1x0)< λ
lv.

When m is even or m = 2l and m is odd or m = 2l +1 for l ≥ 1.
Now we show that {xn} is a b- Cauchy sequence in X .

Let m,n > 0 with n > m.

14



Case 1: For m = 2l or even, l ≥ 1.

d(T mx0,T nx0) = d(T 2lx0,T nx0)

≤ s
(

d(T 2lx0,T 2l+1x0)+d(T 2l+1x0,T nx0)
)

≤ sd(T 2lx0,T 2l+1x0)+ s2d(T 2l+1x0,T 2l+2x0)+ s3d(T 2l+2x0,T 2l+3x0)+

s4d(T 2l+3x0,T 2l+4x0)+ s5d(T 2l+4x0,T 2l+5x0)+ · · ·+ sn−1d(T n−1x0,T nx0)

≤ sλ
lv+ s2

λ
lv+ s3

λ
l+1v+ s4

λ
l+1v+ s5

λ
l+2v+ s6

λ
l+2v+ · · ·

= sλ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v+ s2

λ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

= (s+ s2)(λ l)
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

≤ (s+ s2)(λ l)
1

1− s2λ
v

d(T mx0,T nx0) ≤ (s+ s2)(λ l)
1

1− s2λ
v→ 0 as l→ ∞.

Case 2: For m = 2l +1 or odd, l ≥ 1.

d(T mx0,T nx0) = d(T 2l+1x0,T nx0)

≤ s
(

d(T 2l+1x0,T 2l+2x0)+d(T 2l+2x0,T nx0)
)

≤ sd(T 2l+1x0,T 2l+2x0)+ s2d(T 2l+2x0,T 2l+3x0)+ s3d(T 2l+3x0,T 2l+4x0)+

s4d(T 2l+4x0,T 2l+5x0)+ s5d(T 2l+5x0,T 2l+6x0)+ · · ·+ sn−1d(T n−1x0,T nx0)

≤ sλ
lv+ s2

λ
l+1v+ s3

λ
l+1v+ s4

λ
l+2v+ s5

λ
l+2v+ s6

λ
l+3v+ · · ·

= sλ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v+ s2

λ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

= (s+ s2)(λ l)
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

≤ (s+ s2)(λ l)
1

1− s2λ
v

d(T mx0,T nx0) ≤ (s+ s2)(λ l)
1

1− s2λ
v→ 0 as l→ ∞.

This shows that {xn} is a b-Cauchy sequence in X .

Since X is b- complete, there exists z ∈ X such that lim
n→∞

xn = lim
n→∞

T nx0 −→ z.
Now we prove that z is a fixed point of T.

By the continuity of T , we obtain z= lim
n→∞

T (T nx0) = T z.

This shows that z is a fixed point of T.
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Uniqueness
We suppose that T is α∗-admissible. Since Fix(T ) 6= /0,
let z,z∗ ∈ Fix(T ), by α∗- admissible of T , we have α(z,z∗)≥ 1. From Eq. (4.2)

F(d(z,z∗)) = F(d(T 2z,T 2z∗) = F(α(z,z∗)d(T 2z,T 2z∗))

≤ F
[
a1d(z,T z∗)+a2d(T z∗,T 2z∗)+b1d(z∗,T z)+b2d(T z,T 2z)

]
− τ

≤ F
[
a1d(z,T z∗)+b1d(z∗,T z)

]
− τ.

Since τ > 0 and F is strictly increasing, we obtain

d(z,z∗) < a1d(z,T z∗)+b1d(z∗,T z)

< (a1 +b1)d(z,z∗)

d(z,z∗)< d(z,z∗), a contradiction, which in turn gives z∗ = z.

Hence T has a unique fixed point in X . 2

Now we give an example in support of Theorem 4.2.1
Example 4.2.1 Let X = [0,1] and d : X ×X −→ R+ be given by d(x,y) = |x− y|2

for x,y ∈ X . Then (X ,d) a complete b-metric space with s = 2.
We define a mapping T : X −→ X by

T (x) =

0, if x ∈ [0, 1
2),

x2

5 + 1
10 , if x ∈ [1

2 ,1].

and

α(x,y) =

1, for all x,y ∈ X ,

0, otherwise.

16



Then T is α-admissible. Setting F ∈Φ such that F : R+ −→ R given by
F(γ) = lnγ and γ > 0. Then for x,y ∈ X . with x 6= y, we obtain

|T x−Ty|2 =
1
5
|x2− y2|2 ≤ |x− y|2

α(x,y)
∣∣T 2x−T 2y

∣∣2 =
∣∣T 2x−T 2y

∣∣2
=

∣∣∣∣(x2

5
+

1
10

)2− (
y2

5
+

1
10

)2
∣∣∣∣2

=

∣∣∣∣ x4

25
+

x2

25
+

1
100
− (

y4

25
+

y2

25
+

1
100

)

∣∣∣∣2
=

∣∣∣∣ x4

25
+

x2

25
− (

y4

25
+

y2

25
)

∣∣∣∣2
=

1
25

∣∣x4− y4 + x2− y2∣∣2
≤ 1

5
|T x−Ty|2 + 1

10
|x− y|2

≤ 1
25

d(x,Ty)+
1

30
d(Ty,T 2y)+

1
25

d(y,T x)+
1

30
d(T x,T 2x)

≤ 55
375

Max
{
|x−Ty|2, |Ty−T 2y|2, |y−T x|2, |T x−T 2x|2

}
≤ e−τ

(
|x−Ty|2, |Ty−T 2y|2, |y−T x|2, |T x−T 2x|2

)
,

where −τ = ln( 55
375). Taking natural logarithm on both sides, we obtain

τ+F
(

α(x,y)d(T 2x,T 2y)
)
≤F

[
a1d(x,Ty)+a2d(Ty,T 2y)+b1d(y,T x)+b2d(T x,T 2y)

]
,

where a1 = b1 =
1

25 , & a2 = b2 =
1

30 .

This shows that T is Chatterjea two sided α-F-convex contraction mapping.
Let T nx = x2n

5 + 1
10n −→ 0 as n−→ ∞. Then

T (1
2) =

3
20 , T n(1

2)−→ 0 as n−→ ∞.
T (T nx)−→ T (0) = 0 as n−→ ∞. This shows that T is an orbital continuous.
The conditions of Theorem 4.2.1 are satisfied and the unique fixed point of T is 0.
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Definition 4.2.2 Let (X ,d) be a b-metric space with parameter s ≥ 1, T : X → X,

α : X × X → R+ and F ∈ Φ. Then T is called Hardy and Rogers α-F-convex

contraction mapping if there exists ai,bi,ci,ei, fi ∈ [0,1) with ∑i=1,2(ai + bi + ci +

ei + fi)< 1/s and satisfies the following condition:

d(T 2x,T 2y) > 0

=⇒ τ +F
(

α(x,y)d(T 2x,T 2x)
)
≤ F

[
a1d(x,y)+a2d(T x,Ty)+b1d(x,T x)+

b2d(T x,T 2x)+ c1d(y,Ty)+ c2d(Ty,T 2y)

+ e1d(x,Ty)+ e2d(Ty,T 2y)+ f1d(y,T x)

+ f2d(T x,T 2x)
]

(4.3)

for all x,y ∈ X and τ > 0.

Theorem 4.2.2 Let (X ,d) be a complete b-metric space with s≥ 1.

T : X → X be Hardy and Rogers α-F-convex contraction mapping satisfying the

following conditions:

(a) T is α-admissible;

(b) There exists x0 ∈ X such that α(x0,T x0)≥ 1;

(c) T is orbitally continuous on X.

Then, T has a fixed point in X . Further, if T is α∗-admissible, then T has a unique

fixed point z ∈ X . Moreover, for any x0 ∈ X if xn+1 = T n+1x0 6= T nx0 for all n≥ 0,
then lim

n→∞
T nx0 = z.

Proof: By (b) there exists a point x0 ∈ X such that α(x0,T x0) ≥ 1 and define a se-
quence {xn} by
x1 = T x0, x2 = T x1, x3 = T x2, · · · , xn+1= T xn for all n = 0,1,2, · · · .
If xn = xn+1 for some n, xn = xn+1 = T xn, xn is fixed point of T .
Assume xn 6= xn+1 for all n = 0,1,2, · · · .
Then d(xn,xn+1)> 0 for all n = 0,1,2, · · · .
Since T is α-admissible, α(x0,T x0)≥ 1 =⇒ α(x1,x2) =α(T x0,T 2x0)≥ 1. There-
fore, one can obtain inductively that α(xn,xn+1) =α(T nx0,T n+1x0) ≥ 1 for all

18



n = 0,1,2, · · · .
From Eq. (4.3) by using x = x0 and y = T x0, we have

d(T 2x0,T 3x0) > 0 =⇒ τ +F
(

α(x0,T x0)d(T 2x0,T 3x0)
)

≤ F
[
a1d(x0,T x0)+a2d(T x0,T 2x0)+b1d(x0,T x0)+b2d(T x0,T 2x0)

+ c1d(T x0,T 2x0)+ c2d(T 2x0,T 3x0)+ e1d(x0,T 2x0)+ e2d(T 2x0,T 3x0)

+ f1d(T x0,T x0)+ f2d(T x0,T 2x0)
]

= F
[
a1d(x0,T x0)+a2d(T x0,T 2x0)+b1d(x0,T x0)+b2d(T x0,T 2x0)

+ c1d(T x0,T 2x0)+ c2d(T 2x0,T 3x0)+ e1d(x0,T 2x0)+ e2d(T 2x0,T 3x0)

+ f2d(T x0,T 2x0)
]

≤ F
[
a1d(x0,T x0)+a2d(T x0,T 2x0)+b1d(x0,T x0)+b2d(T x0,T 2x0)

+ c1d(T x0,T 2x0)+ c2d(T 2x0,T 3x0)+ e1(sd(x0,T x0)+ sd(T x0,T 2x0))

+ e2d(T 2x0,T 3x0)+ f2d(T x0,T 2x0)
]

= F
[
a1d(x0,T x0)+a2d(T x0,T 2x0)+b1d(x0,T x0)+b2d(T x0,T 2x0)

+ c1d(T x0,T 2x0)+ c2d(T 2x0,T 3x0)+ e1sd(x0,T x0)+ e1sd(T x0,T 2x0)

+ e2d(T 2x0,T 3x0)+ f2d(T x0,T 2x0)
]

= F
[
a1 +b1 + e1s)d(x0,T x0)+(a2 +b2 + c1 + e1s+ f2)d(T x0,T 2x0)+

(c2 + e2)d(T 2x0,T 3x0)
]

≤ F
[
a1 +b1 + c1 +2se1 +a2 +b2 + f2)max{d(x0,T x0),d(T x0,T 2x0)}+

(c2 + e2)d(T 2x0,T 3x0)
]

= F
[
a1 +b1 + c1 +2e1s+a2 +b2 + f2)v+(c2 + e2)d(T 2x0,T 3x0)

]
,

where v = max{d(x0,T x0),d(T x0,T 2x0)}. Since F is strictly increasing, and τ > 0,

d(T 2x0,T 3x0) < (a1 +b1 +2e1s+a2 +b2 + f2)v+(c2 + e2)d(T 2x0,T 3x0)

(1− c2− e2)d(T 2x0,T 3x0) < (a1 +b1 + c1 +2se1 +a2 +b2 + f2)v

d(T 2x0,T 3x0) <
(a1 +b1 + c1 +2e1s+a2 +b2 + f2)

(1− c2− e2)
v,(1− c2− e2)> 0

d(T 2x0,T 3x0) < λv,
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where λ =
a1 +b1 + c1 +2e1s+a2 +b2 + f2

(1− c2− e2)
.

From Eq. (4.3) by using x = T x0 and y = T 2x0, we have

(T 3x0,T 4x0) > 0 =⇒ τ +F
(

α(T x0,T 2x0)d(T 3x0,T 4x0)
)

≤ F
[
a1d(T x0,T 2x0)+a2d(T 2x0,T 3x0)+b1d(T x0,T 2x0)+b2d(T 2x0,T 3x0)+

c1d(T 2x0,T 3x0)+ c2d(T 3x0,T 4x0)+ e1d(T x0,T 3x0)+ e2d(T 3x0,T 4x0)+

f1d(T 2x0,T 2x0)+ f2d(T 2x0,T 3x0)
]

= F
[
a1d(T x0,T 2x0)+a2d(T 2x0,T 3x0)+b1d(T x0,T 2x0)+b2d(T 2x0,T 3x0)+

c1d(T 2x0,T 3x0)+ c2d(T 3x0,T 4x0)+ e1d(T x0,T 3x0)+ e2d(T 3x0,T 4x0)+

f2d(T 2x0,T 3x0)
]

≤ F
[
a1d(T x0,T 2x0)+a2d(T 2x0,T 3x0)+b1d(T x0,T 2x0)+b2d(T 2x0,T 3x0)+

c1d(T 2x0,T 3x0)+ c2d(T 3x0,T 4x0)+ e1(sd(T x0,T 2x0)+ sd(T 2x0,T 3x0))+

e2d(T 3x0,T 4x0)+ f2d(T 2x0,T 3x0)
]

= F
[
a1d(T x0,T 2x0)+a2d(T 2x0,T 3x0)+b1d(T x0,T 2x0)+b2d(T 2x0,T 3x0)+

c1d(T 2x0,T 3x0)+ c2d(T 3x0,T 4x0)+ e1sd(T x0,T 2x0)+ e1sd(T 2x0,T 3x0)+

e2d(T 3x0,T 4x0)+ f2d(T 2x0,T 3x0)
]

= F
[
a1 +b1 + e1s)d(T x0,T 2x0)+(a2 +b2 + c1 + e1s+ f2)d(T 2x0,T 3x0)+

(c2 + e2)d(T 3x0,T 4x0)
]

≤ F
[
a1 +b1 + e1s)v+(a2 +b2 + c1 + e1s+ f2)λv+(c2 + e2)d(T 3x0,T 4x0)

]
,

since F is strictly increasing , and τ > 0,

d(T 3x0,T 4x0) < (a1 +b1 +2se1 +a2 +b2 + f2)v+(+c2 + e2)d(T 3x0,T 4x0)

(1− c2− e2)d(T 3x0,T 4x0) < (a1 +b1 + c1 +2se1 +a2 +b2 + f2)v

d(T 3x0,T 4x0) <
(a1 +b1 + c1 +2e1s+a2 +b2 + f2)

(1− c2− e2)
v,(1− c2− e2)> 0

d(T 3x0,T 4x0) < λv.
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Continuing this process inductively, we get

d(T mx0,T m+1x0)< λ
lv.

When m is even or m = 2l and m is odd or m = 2l +1 for l ≥ 1.
Now we show that {xn} is a b-Cauchy sequence in X .

Let m,n > 0 with n > m.

Case 1: For m = 2l or even, l ≥ 1.

d(T mx0,T nx0) = d(T 2lx0,T nx0)

≤ s
(

d(T 2lx0,T 2l+1x0)+d(T 2l+1x0,T nx0)
)

≤ sd(T 2lx0,T 2l+1x0)+ s2d(T 2l+1x0,T 2l+2x0)+

s3d(T 2l+2x0,T 2l+3x0)+ s4d(T 2l+3x0,T 2l+4x0)+

s5d(T 2l+4x0,T 2l+5x0)+ · · ·+ sn−1d(T n−1x0,T nx0)

≤ sλ
lv+ s2

λ
lv+ s3

λ
l+1v+ s4

λ
l+1v+ s5

λ
l+2v+ s6

λ
l+2v+ · · ·

= sλ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v+ s2

λ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

= (s+ s2)(λ l)
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

≤ (s+ s2)(λ l)
1

1− s2λ
v

d(T mx0,T nx0) ≤ (s+ s2)(λ l)
1

1− s2λ
v→ 0 as l→ ∞.
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Case 2: For m = 2l +1 or odd, l ≥ 1.

d(T mx0,T nx0) = d(T 2l+1x0,T nx0)

≤ s
(

d(T 2l+1x0,T 2l+2x0)+d(T 2l+2x0,T nx0)
)

≤ sd(T 2l+1x0,T 2l+2x0)+ s2d(T 2l+2x0,T 2l+3x0)+

s3d(T 2l+3x0,T 2l+4x0)+ s4d(T 2l+4x0,T 2l+5x0)+

s5d(T 2l+5x0,T 2l+6x0)+ · · ·+ sn−1d(T n−1x0,T nx0)

≤ sλ
lv+ s2

λ
l+1v+ s3

λ
l+1v+ s4

λ
l+2v+ s5

λ
l+2v+ s6

λ
l+3v+ · · ·

= sλ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v+ s2

λ
l
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

= s+ s2)(λ l)
[
1+ s2

λ + s4
λ

2 + s6
λ

3 + · · ·
]
v

≤ (s+ s2)(λ l)
1

1− s2λ
v

d(T mx0,T nx0) ≤ (s+ s2)(λ l)
1

1− s2λ
v→ 0 as l→ ∞.

This shows that {xn} is a b-Cauchy sequence in X .

Since X is b- complete, there exists z ∈ X such that lim
n→∞

xn = lim
n→∞

T nx0 −→ z.

Now we prove that z is a fixed point of T.

By continuity of T , we obtain z = lim
n→∞

T (T nx0) = T z.
This shows that z is a fixed point of T.

Uniqueness
We suppose that T is α∗-admissible. Since Fix(T ) 6= /0,
let z,z∗ ∈ Fix(T ), by α∗-admissible of T , we have α(z,z∗)≥ 1. From Eq. (4.3)

F(d(z,z∗)) = F(d(T 2z,T 2z∗) = F(α(z,z∗)d(T 2z,T 2z∗))

≤ F
[
a1d(z,z∗)+a2d(T z,T z∗)+b1d(z,T z)+b2d(T z,T 2z)+ c1d(z∗,T z∗)+

c2d(T z∗,T 2z∗)+ e1d(z,T z∗)+ e2d(T z∗,T 2z∗)+ f1d(z∗,T z)+ f2d(T z,T 2z)
]
− τ

≤ F
[
a1d(z,z∗)+a2d(z,z∗)+ e1d(z,z∗)+ f1d(z∗,z)

]
− τ,

since τ > 0 and F is strictly increasing, we obtain

d(z,z∗)) < a1d(z,z∗)+a2d(z,z∗)+ e1d(z,z∗)+ f1d(z∗,z)

< (a1 +a2 + e1 + f1)d(z,z∗)
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d(z,z∗)< d(z,z∗), a contradiction, which in turn gives z∗ = z.

Hence T has a unique fixed point in X . 2

Now we give an example in support of Theorem 4.2.2.
Example 4.2.2 Let X = [0,1] and d : X ×X −→ R+ be given by d(x,y) = |x− y|2

for x,y ∈ X . Then (X ,d) a complete b-metric space with s = 2.
Define a mapping T : X −→ X by

T (x) =

0, if x ∈ [0, 1
5),

x2

2 + 1
4 , if x ∈ [1

5 ,1].

With α(x,y) = 1 for all x,y ∈ X . Then, T is α-admissible. Let F ∈ Φ such that
F : R+ −→ R given by F(γ) = lnγ, γ > 0. Since we have
|T x−Ty| =1

2 |x
2− y2| ≤ |x− y| for all x ∈ X .

α(x,y)
∣∣T 2x−T 2y

∣∣2 =
∣∣T 2x−T 2y

∣∣2
=

1
32

(
∣∣4x4−4y4 +4x2−4y2∣∣2)

=
1
8
(
∣∣x4− y4 + x2− y2∣∣2)

≤ 1
8
(
∣∣x4− y4∣∣2 + ∣∣x2− y2∣∣2)

≤ 1
2
(|T x−Ty|2 + 1

4
|x− y|2)

≤ 1
14

d(x,y)+
1

16
d(T x,Ty)+

1
30

d(x,T x)+

1
25

d(T x,T 2x)+
1

14
d(y,Ty)+

1
16

d(Ty,T 2y)+

1
30

d(x,Ty)+
1

40
d(Ty,T 2y)+

1
25

d(y,T x)+
1

40
d(T x,T 2x)

≤ 1951
4200

max
{
|x− y|2, |T x−Ty|2, |x−T x|2,

|T x−T 2x|2, |y−Ty|2, |Ty−T 2y|2,

|x−Ty|2, |Ty−T 2y|2, |y−T x|2, |T x−T 2x|2
}

≤ e−τ

(
d(x,y),d(T x,Ty),d(x,T x),d(T x,T 2x),(y,Ty),

d(Ty,T 2y),d(x,Ty),d(Ty,T 2y),d(y,T x),d(T x,T 2x)
)
,
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where −τ = ln
(1951

4200

)
. Taking natural logarithm on both sides, we obtain

τ +F
(

α(x,y)d(T 2x,T 2y)
)
≤ F

[
a1d(x,y)+a2d(T x,Ty)+b1d(x,T x)+b2d(T x,T 2x)

+ c1d(y,Ty)+ c2d(Ty,T 2y)+ e1d(x,Ty)+ e2d(Ty,T 2y)

+ f1d(y,T x)+ f2d(T x,T 2x)
]
,

where a1 = c1 =
1

14 ,a2 = c2 =
1

16 ,b1 = e1 =
1

30 ,b2 = f1 =
1

25 ,e2 = f2 =
1

40 .

This shows that T is Hardy and Rogers an α-F-convex contraction mapping.
Let T nx = x2n

2 + 1
4n −→ 0 as n−→ ∞. Then

T (1
5) =

27
100 , T n(1

5)−→ 0 as n−→ ∞.
T (T nx)−→ T (0) = 0 as n−→ ∞. This shows that T is an orbital continuous.
Thus all conditions of Theorem 4.2.2 are satisfied and the unique fixed point of T

is 0.

Remark 4.2.1 If e1 = e2 = f1 = f2 = 0 and we take s = 1 in Theorem 4.2.2, then

we get the result of Singh et al. (2018). If a1 = a2 = b1 = b2 = c1 = c2 = 0 in

Theorem 4.2.2, then we get the result of Theorem 4.2.1.
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

Eke, K. S., Olisama, V. O., & Bishop, S. A. (2019). Established fixed point the-
orems for convex contractive mappings in complete metric spaces and proved the
existence and uniqueness of fixed points. In this research work, we established fixed
point theorems for α-F-convex contraction mappings, and proved the existence and
uniqueness of fixed points in the setting of complete b-metric spaces. Our results
extend and generalize the comparable results in the literature. We have also sup-
ported the main results of this research work by applicable examples.

5.2 Future scope

There are some published results related to the existence of fixed point theorems
of mappings defined on b-metric space. The researchers believe the search for the
existence and uniqueness of fixed points of self-mappings satisfying α-F-convex
contraction conditions in b-metric spaces is an active area of study. So, any inter-
ested researchers can use this opportunity and conduct their research work in this
area.

25



References

Bakhtin, I. (1989). The contraction mapping principle in quasimetric spaces.

Func. An., Gos. Ped. Inst. Unianowsk, 30, 26-37.
Banach, S. (1922). Sur les oprationsdans les ensembles abstraitsetleur application

aux quationsintgrales. Fund.math, 3(1), 133-181.
Boriceanu, M. (2009). Fixed point theory for multivalued generalized contrac-

tion on a set with two b-metrics. Studia Univ Babes-Bolyai Math., LIV, 3, 1-14.
Boriceanu, M. (2009). Strict fixed point theorems for multivalued operators in

b-metric spaces. Int. J. Mod. Math., 4, 285-301.
Boriceanu, M. Bota, M. and Petrusel, A. (2010). Mutivalued fractals in b-metric

spaces. Cent. Eur. J. Math., 8, 367 - 377.
Chatterjea S. K. (1972). Fixed point theorems. Computes. Rend. Acad, Bulgaria

Sci., 25, 727-730.
Ciric, L. B. (1971).Generalized contractions and fixed-point theorems. Publ.

Inst. Math. (Beograd)(NS), 12(26), 19-26.
Czerwik, S. (1993). Contraction mappings in b-metric spaces.Acta Math.

Inform. Univ. Ostrav., 1, 5-11.
Eke, K. S. (2016a). Fixed point results for generalized weakly C-contractive mapp

ings in ordered G-partial metric spaces. Journal of Advances in Mathematics

and Computer Science, 1-11.
Eke, K. S. (2016b). Common fixed point theorems for generalized contraction mapp

ings on uniform spaces. Far East Journal of Mathematical Sciences, 99(11),

1753-1760.
Eke, K. S., Imaga, O. F., & Odetunmibi, O. (2017). Convergence and stability of

some modified iterative processes for a class of generalized contractive-like op

erators. International Journal of Computer Science, 44(4), 4-4.
Eke, K. S., Oghonyon, J. G., & Davvaz, B. (2018). Some fixed point theorems for

contractive maps in fuzzy G-partial metric spaces. International Journal of Me

chanical Engineering and Technology (IJMET), 9(8), 635-645.
Eke, K. S., Olisama, V. O., & Bishop, S. A. (2019). Some fixed point theorems for

convex contractive mappings in complete metric spaces with applications. Co

gent Mathematics & Statistics, 6(1), 1-11.
Hardy, G. E.,& Rogers, T. D. (1973). A generalization of a fixed point theorem of

26



Reich. Canadian Mathematical Bulletin, 16(2), 201-206.
Hussain,N., Doric,D., Kadelburg, Z., & Radenovic, S.(2012). Suzuki-type

fixed point results in metric type spaces. Fixed point theory and applications,
1, 129.

Kannan, R. (1968). Some results on fixed points. Bull. Cal. Math. Soc., 60,71-76.
Murean, V.,& Murean, A. S. (2015). On the theory of fixed point theorems for

convex contraction mappings. Carpathian Journal of Mathematics, 365-371.
Samet, B., Vetro, C., &Vetro, P. (2012). Fixed point theorems for α−ψ-contractive

type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4),
2154-2165.

Singh, Y. M., Khan, M. S., & Kang, S. M. (2018). F-Convex contraction via admis
sible mapping and related fixed point theorems with an application. Mathemat

ics, 6(6), 105.
Wardowski, D. (2012). Fixed points of a new type of contractive mappings in com

plete metric spaces. Fixed Point Theory and Applications, 2012(1), 94.

27


