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• SCF- Self Consistent Field

• DFT- Density Functional Theory
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Abstract
In this thesis, the electronic structural properties of Cobalt (Co) was investigated
with the density functional theory by using Quantum Espresso Package. The gener-
alized gradient approximation (GGA) was used to compute the exchange correlation
energy. The total energy of Cobalt is performed as a function of cutoff energy and
Monk Horst- pack grid size. The results show that the total energy per cell is mono-
tonically decreasing with increasing cutoff energy and converged 50Ry plane wave
cutoff energy and the ground state energy had its minimum at -596.86253968 Ry.
The total energy of Co per cell has converged at 8×8×8 k-point grids with a ground
state energy of -593.47698056 Ry. Besides, the optimized lattice constants of bulk
Co have been determined to be a = 4.7 Bohr , c = 7.59168, and c/a = 1.615251
with respect to our computational calculation. The experimental values of bulk HCP
cobalt is (a = 4.743212 Bohr, c = 7.691185 Bohr, and c/a = 1.622). The lattice
constant determined using DFT calculation is compatible with an experimental re-
sult by an error of 1.29%. Moreover, different smearing calculations were made and
it was observed that both mv and mp are much less dependent upon degauss and
allow for faster convergence than simple Gaussian broadening. Finally, the band
structure and density of state of HCP cobalt was computed. The band structure
calculation shows that there is overlap between the conduction band and the valance
band. This clearly shows that Co is purely metallic and zero band gap material.
The density of state also shows that there is no discontinuity before and after the
Fermi Level. The density of state is continuous and there is no an insulating regime.

Keywords: Cobalt,density functional theory,electronic structure,total energy
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Chapter One

1 Introduction

1.1 Background of the study

Cobalt is a chemical element with Co as its symbol and the ground state electronic
configuration of [Ar]3d74s2. Cobalt is stable in air and is not affected by water. It
is active chemically and dissolves in dilute sulfuric acid, nitric or hydrochloric acid.
Alkalies have an effect on it as well. Cobalt is a hard, brittle metal. It is similar in
appearance to iron and nickel. Cobalt has a magnetic permeability around two-third
that of iron. Cobalt is found as a mixture of two allotropes over a wide temperature
range. In its crystal structure Cobalt has a hexagonal close-packed (HCP) structure
with cell parameters a = 4.743212 Bohr, c = 7.691185 Bohr, and c/a = 1.622 [1]
Cobalt forms many useful alloys. It is alloyed with iron, nickel, and other metals to
form Alnico, an alloy with exceptional magnetic strength. Cobalt, chromium, and
tungsten may be alloyed to form Stellite, which is used for high-temperature, high-
speed cutting tools and dies. Cobalt is used in magnet steels and stainless steels. It
is used in electroplating because of its hardness and resistance to oxidation. Cobalt
salts are used to impart permanent brilliant blue colors to glass, pottery, enam-
els, tiles, and porcelain [2] Cobalt is used to make Sevres and Thenard’s blue. A
cobalt chloride solution is used to make a sympathetic ink. Cobalt is essential for
nutrition in many animals. Cobalt-60 is an important gamma source, tracer, and
radio-therapeutic agent. Cobalt is found in the minerals cobaltite, erythrite, and
smaltite. It is commonly associated with ores of iron, nickel, silver, lead, and copper.
Cobalt has the highest Curie Point of all metals. Cobalt also has valuable catalytic
properties[3].
This study is aimed at the first principle calculation of cobalt using Density Func-
tional Theory and Quantum Espresso packages as tools.
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1.2 Statement of the problem

There is a great need for new methods to accelerate materials design. Many ma-
jor industries depend on materials advancements to bring improved technologies to
market. Often, these technological challenges relate to societal problems, such as
cleanly generating and using energy, that are currently in need of materials break-
throughs within short time frames. However, materials innovations rarely appear
overnight. Even after a new material demonstrates success in the laboratory, it
takes about twenty additional years before its widespread adoption, largely due to
the difficulties in building production capacities and lowering manufacturing costs
from initial laboratory results [4]. It is therefore necessary to identify promising
materials early on so that scale-up can begin as soon as possible. In addition, it
is important to better understand the strengths and weaknesses of potential ma-
terials candidates early in the design process, as this helps avoid costly and time
consuming materials optimization down the road [5-7]. In recent years, ab initio
or first-principles computations (i.e., based on solving the fundamental equations of
quantum mechanics have become ubiquitous in materials science, and it is nowadays
hard to find a material of scientific interest that has not been studied computation-
ally. The most popular approach to first-principles computations is currently by
far density functional theory [8-12]. Although the theoretical roots of modern DFT
trace back to Hohenberg–Kohn theorems of the last two decades of DFT research
have been particularly important to materials design due to more accurate treat-
ments of exchange and correlation effects of electrons, more powerful computational
resources available to materials researchers, more efficient numerical algorithms. So
the purpose of this study was to investigate the structural and electronic properties
of Co with the help of density functional theory or ab-Initio techniques.
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1.3 Research questions

This research tried to answer the following research questions:

1. What is the total energy of Co per cell with respect to cut-off energy?

2. What is the total energy of Co per cell with respect to k-point sampling?

3. What is the lattice constant of Co using DFT?

4. What does the smearing of the element looks-like?

5. What is the band structure of Co using DFT?

6. What is the density of state of cobalt?

1.4 Objectives of the study

The study has the following general and specific objectives.

1.4.1 General objective

The general objective of this study was to determine the electronic and structural
properties of Co using density functional theory.

1.4.2 Specific objectives

specifically, the objectives of the study are:

1. to calculate the total energy of Co per cell with respect to cut of energy,

2. to calculate the total energy of Co per cell with respect to k-point sampling,

3. to determine the Lattice constant of Co using DFT,

4. to determine the smearing of Co,

5. to determine the band structure of Co using DFT and

6. to describe the density of state of Co

1.5 Significance of the study

This study may help to understand the first principle calculations of cobalt with
respect to density functional theory and may help to get an insight of the quanti-
ties when compared to the experimental values. Moreover, it helps to understand
different properties of Co which in turn helps its application in modern electronics
and optical devices.

1.6 Scope of the study

This study is focused on the first principle calculation of cobalt using DFT as com-
putational tool and focus on the total energies with respect to cut-off energy and
k-point sampling and finding the lattice constant, band structure and the density of
state for Co using Density Functional Theory. Besides, the study focused on finding
the smearing of bulk Cobalt using Density Functional Theory.
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Chapter Two

2 Literature Review

2.1 Introduction

DFT is used to study the electronic and structural properties of cells, molecules or
bulk materials. The DFT provides a frame work to obtain the electronic, structural
and the total energy using the concepts of quantum mechanics. DFT can also be
used to address a vast variety of systems and problems in physics, chemistry, biology,
and material science. Any problem in the electronic structure of matter is covered by
Schrödinger equation including the time. In most cases, however, one is concerned
with cells and molecules without time dependent interaction, so we may focus on
the time independent Schrödinger equation [13]. Solving the Schrödinger equation
to obtain energies and forces, require only the cell numbers of the constituents
as input, and should describe the bonding between the cells with high accuracy.
The Schrödinger equation for the complex many-cell, many-electron system is not
analytically solvable, and numerical approaches have become invaluable for physics,
chemistry, and materials science [14].

2.2 Schrödinger’s Equation

All materials are composed of cellic nuclei and electrons. The macroscopic material
properties that we observe only depend on the position of these electrons and ions.
Thus knowing only the type of cells, the material is made of is in principle enough to
calculate the wave function and energy of the system using the (time independent)
Schrödinger equation. The stationary Schrodinger equation [15] is given by

HΨ = EΨ, (1)

where H is the Hamiltonian and E the total energy of the system. The solution
to this equation gives us the total wave function Ψ which in principle contains all
wanted properties of the system and is, therefore, essential in quantum mechanics.
The goal is, therefore, to find this wave function or equivalently, as in the case of
DFT, the density n(r) = |Ψ|2.
For the many-body problem of a system containing N electrons and K nuclei with
charge ZI the Hamiltonian calculated as [16, 17]

H = −
N∑
i=1

h̄2∇2
i

2me

−
K∑
I=1

h̄2∇2
I

2mI

+
1

4πε0

N∑
i=1

∑
j>i

e2

|ri − rj|
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |
(2)

The first two terms represent the kinetic energy of the electrons and nucleons, Te and
Tn. The third term represents the electrostatic repulsion between the electrons, Vee.
The fourth term represents the electrostatic attraction between the electrons and
nuclei, Vne, and the last term between the nuclei, Vnn. me is the mass of the electrons,
and MI the mass of the cores. ZI is the number of protons in each core, I. This looks
rather complicated. It turns out that the stationary Schrödinger equation can only
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be solved analytically for a one-electron system, e.g. the hydrogen cell or the ionized
helium cell He+. So, to be able to continue, certain approximations have to be made.
As a first approximation one usually makes the Born-Oppenheimer approximation
[18], which is justices by the fact that the nuclei (ions) are much heavier than the
electrons, MI >> me. In most cases, this justify a time-scale separation by saying
that the electrons immediately adapt to changes in the positions of the ions. This
means that the electronic and ionic system can be treated separately and for the
electrons the ions can be regarded as fixed. We can, therefore, drop the ionic kinetic
energy term and the ion-ion interaction term in the Hamiltonian and only consider
the terms involving electrons.

HBO = −
N∑
i=1

h̄2∇2
i

2me

+
1

4πε0

N∑
i=1

∑
J>i

e2

|ri − rj|
− 1

4πε0

K∑
I=1

N∑
i=1

ZIe
2

|ri −RI |
(3)

If we denote the interaction of electron i with the ions Vext(ri) and use Hartree cellic
units h̄ = me = e = 1

4πε0
= 1, we can write the Hamiltonian as

H = −1

2

∑
i

∇2
i +

∑
i

∑
J>i

1

|ri − rj|
+

∑
i

Vext(ri) (4)

The Hamiltonian H(t) = T + V (t) + W is assumed to consist of the kinetic en-
ergy, spin-independent single-particle potential and some spin-independent particle-
particle interaction.

2.3 Density functional theory

Density Functional Theory (DFT) is the model of choice for understanding con-
densed matter at low energies. It has achieved a certain status as a standard first-
principles method. Indeed for many, though not all, significant condensed-matter
phenomena. DFT is a powerful analytic tool for studying electronic, vibrational,
magnetic, superconducting among others [19].
Density Functional Theory (DFT) is a quantum mechanical technique used in
Physics and chemistry to investigate the structural and electronic properties of many
body systems. DFT has proved to be highly successful in describing structural and
electronic properties in a vast class of materials, ranging from cells and molecules to
simple crystals and complex extended systems (including gasses and liquids). Fur-
thermore DFT is computationally very simple. For these reasons DFT has become
a common tool in first-principles calculations aimed at describing or even predicting
properties of molecular and condensed matter systems [20, 21, 22].
Traditional methods in electronic structure theory, in particular Hartree-Fock the-
ory and its descendants are based on the complicated many-electron wave function.
The main objective of density functional theory is to replace the many-body elec-
tronic wave function with the electronic density as the basis quantity. Whereas the
many-body wave function is dependent on 3N variables, three spatial variables for
each of the N electrons, the density is only a function of three variables and is a
simpler quantity to deal with both conceptually and practically [8].
The basic foundations of DFT were provided in 1964 by Hohenberg and Kohn with
their two fundamental theorems. In 1965 the major milestone in the development of
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DFT was introduced by Hohenberg, Kohn and Sham(HKS). They gave the proofs
of these theorems by showing that DFT was an exact theory in same sense as the
wave function theory [23].

2.4 The Hohenberg-Kohn theorems

The Hohenberg-Kohn formalism [23] of DFT is based on two theorems:
Theorem I
For any system of interacting particles in an external potential Vext(r), the poten-
tial Vext(r) is determined uniquely, up to a constant, by the ground state particle
density, n0(r).

Theorem II
The second HK theorem defines energy functional for the system and proves that
the correct ground state electron density minimizes this energy functional [24]. The
energy functional of the density E[n] is:

E[n] =
∫
drVext(r)n(r) + F [n], (5)

where F [n] is a universal functional of the density and incorporates the kinetic and
the potential energy. Once the external potential Vext(r) has been fixed, the energy
functional E[n] has its , the ground state energy E0, at the physical ground state
density n0(r):

E0 = E[n0]. (6)

The Hohenberg-Kohn (HK) theorems have the limited purpose to prove that a
universal functional of the electron density exists; they do not derive its actual ex-
pression. A direct minimization of the functional is usually not applicable, because
no good expression for the kinetic energy as a functional of n is known, except for
simple metals. The Kohn-Sham (KS) scheme, a reformulation of the theory based
on the KS orbitals instead of the mere density, is the starting-point of most of the
actual calculations.

2.5 Kohn-Sham equation

The Density Functional Theory (DFT), in the Kohn-Sham formalism, provides a
powerful computational scheme, which allows to determine exactly the ground-state
properties even of complex systems for interacting particles, simply solving a single
particle like equation. Kohn-Sham density theory [25,26] is widely used for self con-
sistent field electronic structure calculations of the ground state properties of cells,
molecules, and solids. The Kohn and Sham equation as:

[−1

2
∇2 +

Vext(r)︷ ︸︸ ︷
V (r) + VH(r) + Vxc(r)]︸ ︷︷ ︸

HKS

ψi(r) = εiψi(r), (7)

where Vext(r) external potential,ψi eigenfunction.
Within the framework of Kohn-Sham DFT (KS DFT), the intractable many-body
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problem of interacting electrons in a static external potential is reduced to a tractable
problem of non-interacting electrons moving in an effective potential. The effective
potential includes the external potential and the effects of the Coulomb interactions
between the electrons, e.g., the exchange and correlation interactions. Modeling the
latter two interactions becomes the difficulty within KS DFT [22].

2.6 Exchange-correlation energy

The KS DFT provides a practical procedure to solve the many-body problem by
breaking the problem into a set of single-particle problems. This formalism is exact
but practically still unsolvable since the many-body wave functions are still included
in the exchange-correlation term EXC [n], whose exact form is not known.

To make the formalism useful, it is necessary to make some approximations for
the exchange-correlation term EXC [n]. The most common and straightforward ap-
proximation to EXC [n] is the Local Density Approximation (LDA) [23].
The idea of the LDA is assuming that the exchange-correlation energy per electron
of a non-uniform system at any point in space is equal to the exchange-correlation
energy per electron in a uniform electron gas having the same density at this point.
In LDA the exchange-correlation functional can be written as

ELDA
XC [n] =

∫
d−→r εxc[n]n(−→n ) (8)

εxc[n] = εuniformxc [n]. (9)

By definition, the LDA is local because the exchange correlation energy εxc[n] at
each point in space only depends on the electron density at the same point. The
εxc[n] has been calculated and parameterized through Monte Carlo total energy cal-
culation for a uniform electron gas with a variety of electron densities [27, 28].
Since the LDA is based on uniform electron gas, it is expected to be accurate only
for systems in which the electron density varies slowly. It is clearly not suitable
for the situations where the electron density undergoes rapid changes, as in the
case of covalent bounded solids. To overcome this deficiency of the LDA, another
form of exchanged-correlation functional has been developed, that is, the General-
ized Gradient Approximation (GGA) [29-30]. TheGGA functional depends on the
local electron density as well as the spatial variation of the electron density that is
represented by the density gradient. The GGA functional can be written as

EGGA
XC [n] =

∫
d−→r εxc[n]Fxc[n,

−→∇n]n(r) (10)

The EGGA
XC [n] is the exchange correlation energy per particle of an electron gas and

Fxc is a functional of the electron density and its gradient. The GGA method gives
better total energies, especially for small molecules, but computationally it is more
time consuming than LDA [31]. Generally, GGA has the following advantages over
LDA [32, 33-34]:

– GGA improves ground state properties for light cells, molecules and clusters.

– GGA predicts the correct magnetic properties of 3d transition metals such as
body centered iron.
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– Though GGA seems to be superior compared to LDA, it has several drawbacks.
A GGA method fails to accurately treat the hydrogen bond. This defect is
clearly manifested through expansion and hence softening of bonds [35].

2.7 Periodic system

We defined the shape of the cell that is repeated periodically in space, the system,
by lattice vectors a1, a2, and a3. If we solve the Schroödinger equation for this
periodic system, the solution must satisfy a fundamental property known as Bloch’s
theorem.

2.7.1 Bloch’s theorem

Bloch’s theorem states that in a periodic solid each electronic wave function can be
written as the product of cell-periodic part and wave like part[36].

Ψk(r) = ei
−→
k .
−→r uk(r), (11)

where uk(r) is periodic in space with the same periodicity as the supercell. That is,
uk(r + n1a1 + n2a2 + n3a3) = uk(r) for any integers n1, n2, and n3. This theorem
means that it is possible to try and solve the Schrödinger equation for each value of
k independently.
The cell-periodic part of the wave function can be expanded using a basis set con-
sisting of a discrete set of plane waves whose wave vectors are reciprocal lattice
vectors of the crystal,

uk(r) =
∑
G

ci,Ge
iG.r (12)

Where the reciprocal Lattice vectors G are defined by G.l = 2πn for all l where l
is a Lattice vector of the crystal and n is an integer. Therefor each electronic wave
function can be written as a sum of plane waves,

Ψk(r) =
∑
G

ci,k+Ge
[i(k+G).r] (13)

The electronic wave functions at each k.point are now expressed in terms of a discrete
plane wave basis set. In principle this Fourier series is infinite. However, in practice
we cannot work with an infinite basis set, it has to be truncated. The number of
plane waves can be restricted by placing an upper boundary to the kinetic energy
of the plane waves. This boundary is called energy cut-off Ecut.

2.7.2 Energy Cutoffs

Our lengthy discussion of k space began with Bloch’s theorem, which tells us that
solutions of the Schrödinger equation for a supercell have the form

Ψk(r) = ei
−→
K .
−→r uk(r) (14)
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where uk(r) is periodic in space with the same periodicity as the supercell. It is now
time to look at this part of the problem more carefully. The periodicity of uk(r)
means that it can be expanded in terms of a special set of plane waves:

uk(r) =
∑
G

ci,Ge
iG.r (15)

where the summation is over all vectors defined by G = n1b1 + n2b2 + n3b3 with
integer values for ni. These set of vectors defined by G in reciprocal space are
defined so that for any real space Lattice vector li ,G.l = 2πn.
Combining the two equations above gives

Ψk(r) =
∑
G

ci,k+Ge
[i(k+G).r] (16)

According to this expression, evaluating the solution at even a single point in k
space involves a summation over an infinite number of possible values of G. This
does not sound too promising for practical calculations! Fortunately, the functions
appearing in the above equation have a simple interpretation as solutions of the
Schrödinger equation: they are solutions with kinetic energy

E =
h̄2

2m
|k +G|2. (17)

It is reasonable to expect that the solutions with lower energies are more physically
important than solutions with very high energies. As a result, it is usual to truncate
the infinite sum above to include only solutions with kinetic energies less than some
value:

Ecut =
h̄2

2m
G2
cut (18)

The infinite sum then reduces to

Ψk(r) =
∑

|G+k|<Gcut
cG+ke

[i(K+G)r (19)

This expression includes slightly different numbers of terms for different values of
k. The discussion above has introduced one more parameter that must be defined
whenever a DFT calculation is performed the cutoff energy, Ecut. In many ways,
this parameter is easier to define than the k-points, as most packages will apply
sensible default settings if no other information is supplied by the user. Just as with
the k- points, it is good practice to report the cutoff energy used in your calculations
to allow people to reproduce your results easily [37].

2.7.3 K-points sampling

The solution that is used most widely was developed by Monkhorst and Pack in 1976.
Using these methods, one can obtain an accurate approximation for the electronic
potential and the total energy of an insulator or semiconductor by calculating the
electronic states at a very small number of k-points. The electronic potential and
total energy are more difficult to calculate if the system is metallic because a dense
set of k-points is required to define the Fermi surface precisely. The magnitude
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of any error in the total energy due to inadequacy of the k-points sampling can
always be reduced by using a denser set of k-points. The computed total energy
will converge as the density of k-points increases, and the error due to the k-point
sampling approaches zero.
In principle, a converged electronic potential and total energy can always be obtained
provided that the computational time is available to calculate the electronic wave
functions at sufficiently dense set of k-points. The computational cost of performing
a very dense sampling of k-space can be significantly reduced by using the k-point
total energy method [38-39].

2.7.4 Plane wave basis sets

Bloch’s theorem states that the electronic wave functions at each k-point can be
expanded in terms of a discrete plane-wave basis sets.
In principle, an infinite plane wave basis set is required to expand the electronic
wave function. However, the coefficients Ci,k+G for the plane waves with small

kinetic energies. h̄2

2m
|K + G|2 are typically more important than those with large

kinetic energy. Thus, the plane wave basis set can be truncated to include only
plane waves that have kinetic energies less than some particular cutoff energy. If a
continuum of plane wave basis states were required to expand each electronic wave
function,the basis set would be infinitely large number matter how small the cutoff
energy. Application of the Bloch theorem allows the electronic wave functions to
expanded in terms of a discrete set of plane waves. Introduction of any energy cutoff
to discrete plane wave basis set produces a finite basis set.
The truncation of plane wave basis set at a finite cutoff energy will lead to an error
in the computed total energy. However, it is possible to reduced the magnitude of
the error by increasing the value of cutoff energy. In principle, the cutoff energy
should be increased until the calculated total energy has converged [40].

2.8 Pseudopotentials

From the earliest developments of plane-wave methods, it was clear that there could
be great advantages in calculations that approximated the properties of core elec-
trons in a way that could reduce the number of plane waves necessary in a calcula-
tion.
The most important approach to reducing the computational burden due to core
electrons is to use pseudopotentials. Conceptually, a pseudopotential replaces the
electron density from a chosen set of core electrons with a smoothed density chosen
to match various important physical and mathematical properties of the true ion
core. The properties of the core electrons are then fixed in this approximate fashion
in all subsequent calculations; this is the frozen core approximation. Calculations
that do not include a frozen core are called all-electron calculations, and they are
used much less widely than frozen core methods.
A pseudopotential is developed by considering an isolated cell of one element, but the
resulting pseudopotential can then be used reliably for calculations that place this
cell in any chemical environment without further adjustment of the pseudopotential.
This desirable property is referred to as the transferability of the pseudopotential.
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The details of a particular pseudopotential define a energy cutoff that should be used
in calculations including cells associated with that pseudopotential. Pseudopoten-
tials requiring high cutoff energies are said to be hard, while more computationally
efficient pseudopotentials with low cutoff energies are soft. The most widely used
method of defining pseudopotentials is based on work by Vanderbilt; these are the
ultrasoft pseudopotentials (USPPs). As their name suggests, these pseudopotentials
require substantially lower cutoff energies than alternative approaches [37].

2.9 Self-consistent-field calculation

In (1897-1958) D.R. Hartree came up with the first idea of getting Self Consistent
Field (SCF) solutions to a many-electron problem as a strategy to break the state.
D.R. Hartree was helped by his father, William Hartree, in solving the numerical
problems involved in solving the SCF problem [41,42-43]. Here we focus discussion
on SCF in DFT calculations, the most time-consuming part of an SCF calculation is
in matrix diagonalization, which consists of computing the self-consistent solutions
of the following Kohn-Sham equation (in cellic units):

[−∇
2

2
+ Vext(n(r), r)]ψi(r) = εiψi, (20)

where ψi(r) is a wave function, εi is a Kohn-Sham eigenvalue. The external potential

Vext(n(r), r) = Vion(r) + VH(n(r), r) + Vxc(n(r), r), (21)

includes the ionic potential Vion, the Hartree potential VH and the exchange-correlation
potential Vxc. In DFT the external potential depends only on n(r)the charge density.
The charge density is given by

n(r) = 2
nocc∑
i=1

|ψi(r)|2, (22)

where nocc is the number of occupied states (half the number of valence electrons
in the system) and the factor of two comes from spin multiplicity. Self-consistent
iterations for solving this problem consist of starting with an initial guess of the
charge density n(r), then obtaining a guess for Vext and solving Kohn-Sham equa-
tion for wave function ψi(r) to update charge density and external potential. Then
Kohn-Sham equation is solved again for the new wave function and the process is
carried on until the difference between two consecutive external potential is below
a certain tolerance (equivalently, the wave functions are close to stationary)[44].

2.10 Algorithm: self-consistent iteration

The SCF method is an iterative procedure which yields a self-consistent set of wave
functions and orbital energies. It consists of the following steps.

1. An initial guess for the charge density.

2. Solve [−∇2

2
+ Vext(n(r), r)]ψi(r) = εiψi(r) for wave function ψi(r), i = 1, 2, ..
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3. Compute new charge density n(r) = 2
∑nocc
i=1 |ψi(r)|2

4. Solve for new Hartree potential VH .

5. Update Vxc and Vion.

6. If the wave function does not satisfy the right boundary condition, we return
to step 3 in order to make another guess for the energy εi(r). If the wave
function satisfies the right boundary condition, the calculation returns to step
2 and the newly obtained ψi(r) plays the role of wave functions [45].
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Chapter Three

3 Materials and Methods

3.1 Materials

The study was based on understanding the structural and electronic properties
of cobalt, an intensive literature review is carried out. The main sources of
literature review were the published articles, books, thesis and dissertations.
Latex software and computers are additional instruments used to accomplish
this project.

3.2 Methods

3.2.1 Computational method

In this thesis first-principles (ab-initio) calculations was used for performing
the structural and electronic property of cobalt. This method of calculation
is based on density functional theory. That is the structural and electronic
property of cobalt is obtained based on the principles of density functional the-
ory. The calculation was performed computationally using Quantum Espresso
which is an open-source package for research in electronic structure, simula-
tion and optimization. The Quantum Espresso distribution contains the core
packages PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Pirandello)
for the calculation of electronic-structure properties within density-functional
theory using a plane-wave (PW) basis set and pseudo-potentials.

13



Chapter Four

4 Results, and Discussion

Introduction
In this work, the structural and electronic properties of cobalt (Co) was cal-
culated within the frame work of the density functional theory. One of the
important aspects in studied cobalt was the total energy. Results are mainly
presented in tables and figures under five parts. The first part presents the to-
tal energy of cobalt with respect to cutoff energy and the second part presents
total energy of cobalt with respect to k-point sampling. The third part presents
the equilibrium Lattice constant. The fourth part presents the smearing func-
tions of Co and the last part presents the band structure and density of state
of cobalt. The output files of the computations were used to deduce the tables
of energy cutoffs, and Lattice constants against the total energies and graphs
were plotted to obtain the optimized parameters for cobalt.

4.1 Total energy of Co per cell with respect to energy
cutoffs

In this computation, the input parameters are 2× 2× 2 = 8 cells and a Lattice
constant of 4.7449 Bohr. To determine the total energy of Co per cell with
respect to cutoff energy, different energy cutoff values from 20 Ry to 120 Ry
were used and the respective total energies were computed and the result of
the outputs was given by the table below.
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Table 4.1: Ecut-off versus total energy

Ecut Total Energy
20 -593.71073596
30 -596.77045398
40 -596.86052682
50 -596.86253968
60 -596.86325994
70 -596.86406201
80 -596.86497621
90 -596.86514847
100 -596.86531204
110 -596.89563505
120 -596.86579896

4.1.1 Convergence test for the total energy with respect to cutoff energy

The total energy of Co is calculated as a function of cutoff energy was investigated.
The total energy of Co is monotonically decreasing with increasing energy cutoff until
convergence is achieved. The total energy converges at 50 Ry plane wave cutoff energy
and the ground state energy had its at -596.86253968 Ry. The plot of the cutoff energy
and the total energy is shown in the figure below:
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Figure 1: Ecut vs total energy

4.2 Total energy of Co per cell with respect to k-point sampling

To compute the total energy of Co per cell with respect to k-point grids, different k-point
values are used starting from 2×2×2 up to 12×12×12 with step of 2 keeping the Cutoff
energy at 20 Ry and lattice constant of 7.59168 Bohr whose out put is shown below
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Table 4.2: k-point versus total energy

Total Energy
2× 2× 2 -593.71073596
4× 4× 4 -593.55080583
6× 6× 6 -593.49527979
8× 8× 8 -593.47698056

10× 10× 10 -593.47945031
12× 12× 12 -593.49630534

4.2.1 Convergence test for total energy of Co

A convergence test of total energy for k-point sampling was performed on Co. The total
energy of the Co cell was calculated using various sets of ranging from 2 × 2 × 2 up to
12 × 12 × 12. In each of these cases the plane wave kinetic energy cutoff of 20 Ry was
used. The total energy of cobalt is calculated as a function of grid size using PWscf code.
For this calculations, the other variables such as lattice constant and energy cutoff are
kept constant. Convergence of the total energy is achieved at 8× 8× 8 k-point grids and
the total energy at this point is -593.47698056 Ry whose plot is shown below

Figure 2: K-point vs Total Energy
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4.3 The equilibrium lattice constant of cobalt

The equilibrium Lattice constant of Co was calculated by keeping the cutoff energy at
50 Ry and k-point grids at 8 × 8 × 8. In this calculation the total energy of cobalt was
computed by changing the lattice parameter from 4.2 Bohr to 5.5 Bohr in step of 0.05
and the result of the output is shown by the table below.
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Table 4.3: Lattice parameter Vs total energy

Lattice parameter Total Energy
4.2 -596.88332520
4.25 -596.90324315
4.3 -596.92114873
4.35 -596.93629454
4.4 -596.94877343
4.45 -596.95884646
4.5 -596.96691666
4.55 -596.97295561
4.6 -596.97721861
4.65 -596.97992028
4.7 -596.98116102
4.75 -596.98106221
4.8 -596.97979547
4.85 -596.97748339
4.9 -596.97428189
4.95 -596.9702578

5 -596.96552710
5.05 -596.96012041
5.1 -596.95415613
5.15 -596.94773314
5.2 -596.94088400
5.25 -596.93371280
5.3 -596.92608223
5.35 -596.91902047
5.4 -596.91164240
5.45 -596.90405842
5.5 -596.89630452
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4.3.1 The equilibrium lattice constant

The total energy of cobalt was computed for different values of lattice parameters ranging
from 4.2 to 5.5 Bohr under a constant cutoff energy of 50 Ry and k-point grids 8× 8× 8.
The result of the output shows that the total energy is decreasing untill the Lattice pa-
rameter is 4.7 Bohr and then start increasing from 4.75 Bohr up to 5.5 Bohr lattices. This
shows that the total energy is converged at a lattice values of a= 4.7 Bohr and C/a value
of 1.615251 Bohr. This was better shown in the plot below

Figure 3: Lattice parameter vs Total Energy

4.4 Total energy of Co with respect to degauss/smearing

Degauss is the electronic temperature; it controls the broadening of the occupation num-
bers around the Fermi energy and smearing used to select occupation distribution. There
are Four types of smearing; Gaussian, Methfessel-Paxton(M-P), Marzari-vanderbilt(m-v)
and Fermi-Dirac smearing (fd). In this calculation, the plane wave cutoffs for wave func-
tions are fixed at 20 Ry and Brillouin zone integration have been performed using different
smearing from 0.001 up to 0.1 over shifted Monkhorst-Pack meshes of order 2× 2× 2 for
the HCP cobalt structure. In the case of smearing, the kinetic energy cutoff, the Lattice
constant and the k-point grid are kept constant
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4.4.1 Total energy with respect to gauss gmearing

The variation of the total energy with the change of smearing was analyzed by varing the
degauss value from 0.01-0.1 and the output is given by table below.

Table 4.4: Output of smearing and total energy
Dag T. Energy(ga) MP MV FD
0.01 -593.712478 -593.7114587 -593.71146157 -593.717047
0.02 -593.7150704 -593.7117522 -593.7126236 -593.733281
0.03 -593.7188547 -593.71211 -593.7135202 -593.767266
0.04 -593.7240282 -593.7118947 -593.7121594 -593.822686
0.05 -593.7313762 -593.7106482 -593.7085632 -593.889021
0.06 -593.7416926 -593.7086581 -593.7034483 -593.962572
0.07 -593.7556938 -593.7063424 -593.698076 -594.042689
0.08 -593.7740293 -593.7042243 -593.6933783 -594.128745
0.09 -593.7964474 -593.7028233 -593.6898856 -594.22015
0.1 -593.8203524 -593.7025605 -593.6879312 -594.316384

4.4.2 Convergence test for energy

The result of the output for total energy for different values of the four types of smearing
are shown below and it has been obtained that the Kinetic energy cutoff is achieved at
0.02 degauss value whose plot is shown below
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Figure 4: Smearing

Smearing describes occupied states. The procedure of smearing is to reduce the short
distance fluctuations. Occupations, degauss, smearing, are particular details for the Bril-
lioun zone integration for metals. Adding electronic temperature (degauss) smooth out
the abrupt change of the occupation number and as a result total energy converges with
fewer number of . Both m-v and m-p are much less dependent upon degauss and allow
for faster and safer convergence than simple Gaussian broadening.

4.5 Band structure and density of state of cobalt

In solid state physics and condensed matter physics, the density of states (DOS) of a
system describes the number of states that are to be occupied by the system at each
level of energy. It is mathematically represented as a distribution by a probability density
function, and it is generally an average over the space and time domains of the various
states occupied by the system. The density of states is directly related to the dispersion
relations of the properties of the system. High DOS at a specific energy level means that
many states are available for occupation.

4.5.1 Band structure of cobalt

An important parameter in the band theory is the Fermi level, the top of the available
electron energy levels at low temperatures. The position of the Fermi level with the re-
lation to the conduction band is a crucial factor in determining electrical properties. A
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useful way to differentiate between conductors, insulators and semiconductors is to plot
the available energies for electrons in the materials. Instead of having discrete energies as
in the case of free atoms, the available energy states form bands. Crucial to the conduc-
tion process is whether or not there are electrons in the conduction band. In insulators
the electrons in the valence band are separated by a large gap from the conduction band,
in conductors like metals the valence band overlaps the conduction band, and in semi-
conductors there is a small enough gap between the valence and conduction bands that
thermal or other excitation can bridge the gap.The band structure of Cobalt is shown
below

Figure 5: Band structure

From figure 5 one can observe that there is overlap between the valance and conduction
bands. That is Co is pure metal and zero band gap material.

4.5.2 Density of State of Cobalt

Generally, the density of states of matter is continuous. In isolated systems however, such
as atoms or molecules in the gas phase, the density distribution is discrete, like a spectral
density. Local variations, most often due to distortions of the original system, are often
called local density of states (LDOS). The DOS of cobalt is given below
Calculating the density of state of materials can also helps to differentiate either a ma-
terial is a conductor or insulator. From figure 6 one can understand that the density of
state is continious and there is no insulating regime.
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Figure 6: DOS

24



Chapter Five

5 Conclusion

The electronic and structural properties of cobalt (Co) was investigated within the frame
work of the density functional theory, plane wave basis sets, and pseudo potentials (ultra-
soft). All calculations have been carried out with Quantum Espresso package (software).
The total energy calculation is performed as a function of cutoff energy and Monkhorst
pack-grid size, respectively, fixing the other parameters constant. The total energy con-
vergence test is achieved, at the energy cutoff 50 Ry for the first case and at 8 × 8 × 8
k-point grid size for the second case. The total energy is -596.86253968 Ry for the first
case and -593.47698056 Ry for the second case. Besides, the optimization of lattice pa-
rameters was conducted with a 8× 8× 8 k-mesh and the energy cutoff up to 50Ry. The
optimized Lattice constants of bulk Co have been determined to be a = 4.7 Bohr, c =
7.59168 Bohr, and c/a = 1.615251 with respect to our computational calculation. The
experimental values of bulk HCP-cobalt is (a = 4.743212 Bohr, c = 7.691185 Bohr, and
c/a = 1.622). The Lattice constant determined using DFT calculation is compatible with
an experimental result by an error of 1.29%. In addition, different smearing calculations
were made and it was observed that both mv and mp are much less dependent upon
degauss and allow for faster convergence than simple Gaussian broadening. Finally, the
band structure and density of state of HCP cobalt was computed. The band structure
calculation shows that there is overlap between the conduction band and the valance
band. This clearly shows Co is purely metallic and zero band gap material. The density
of state also shows that there is no discontinuity before and after the Fermi level. The
density of state is continuous and there is no an insulating regime.

25



References

[1] R. Lumley, Fundamentals of Cobalt Metallurgy: Production, processing and applica-
tions, 1st ed., Wood head,Vol.1, 2011, pp.1-8

[2] J. Dwight, Cobalt Design and Construction, 1st ed., Taylor and Francis Group,Vol.1,
1999, pp.301

[3] Lide D.R. ”CRC handbook of chemistry and physics,” New York, NY: CRC Press,
pp.4-79, 2005 M, eds. Kirk-Othmer encyclopedia of chemical technology, New York,
John Wiley and Sons,Vol.2, 1992, pp. 248-249

[4] A. Kiejna, K.F. Wojciechowski, Metal Surface Electron Physics. Elsevier Science, New
York, Oxford, Tokyo. 1996

[5] R.Cobden, Alcan, Banbury, ”Cobalt: physical properties, characteristics and alloys,”
EAA - European Cobalt Association, pp.8-9, 1994

[6] P.K. Lam , M.L. Cohen, ” Effect of pressure on the optical absorption in aluminum,”
Phys. Rev.B,Vol. 27, pp.5986, 1983

[7] G.S.M. Galadanci, Garba Babaji,” Computations of the Ground State Cohesive Prop-
erties of AlAs Crystalline Structure Using Fhi-Aims Code,” IOSR Journal of Applied
Physics (IOSR-JAP), Vol. 4, PP. 85-95, 2013

[8] H.R. Jappor,”Band-Structure Calculations of GaAs within Semiempirical Large Unit
Cell Method E.J.S.R,” Vol.59, pp.264-275, 2011

[9] E. Wachowicz, and A. Kiejna,”Bulk and surface properties of hexagonal-close-packed
Be and Mg,” J. Phys: Condens Matter. Vol.13, pp. 10767- 10776, 2001

[10] F.S. Hashim, H.R. Jappor, K.H.B. Al-Ammar, ”Structural and electronic properties
of gallium arsenide crystal using INDO method,” Babylon University, 2007.

[11] M.M. Woldemariam and T.B. Habte, ”Electronic and Structural Study of Hexago-
nal Wurtizite Zinc Oxide Using Ab-Initio Technique,” The International Journal Of
Science and Technoledge,Vol. 4, pp. 102-107, 2016

[12] R.G. Parr and W. Yang, ” Density functional theory of cells and molecules,” Oxford
university press, Inc. pp. 336, 1989

[13] J. Hafner, C. Wolverton, and G. Ceder, Guest Editors, ” Toward Computational
Materials Design: The Impact of Density Functional Theory on Materials Research,”
mrs bulletin, Vol. 31, pp. 659-668, 2006

[14] E. Lipparini,” Modern Many-Particle Physics: cellic Gases, Quantum Dots and
Quantum Fluids,” Singapore, World Scientific, 2003

[15] E. Schrodinger, ”Quantisierung als Eigenwertproblem,” Annalen der physik,
Vol.385, pp. 437-490, 1926

[16] R. M. Martin, ”Electronic Structure: Basic Theory and Practical Methods,” Cam-
bridge Univ. Press, Cambridge, 2004

[17] M. Born, R. Oppenheimer, ”Zur quantentheorie der molekeln,” Annalen der Physic
,Vol. 389 , pp. 457-484, 1927

[18] M.P. Das and F. Green, ” Revisiting the Fermi Surface in Density Functional Theory,”
Journal of Physics,IOP science , Conference Series,Vol. 726 , pp. 012001-1,2016

[19] P. Giannozzi, ” Density Functional Theory for Electronic Structure Calculations
Struttura della Materia,” Vol.1, 2005

[20] C. Fiolhais, F. Nogueira, M, Marques, ” A Primer in Density Functional Theory,
Springer-Verlag Berlin,” 2003

26



[21] R.G. Parr ,W. Yang ,”Density Functional Theory of cells and Molecules,” Oxford
University Press, New York, 1989

[22] P. Hohenberg and W. Kohn, ”Inhomogeneous Electron Gas” Phys. Rev.B, Vol. 864,
pp. 136, 1964

[23] G. Vignale and M. Rasolt, ”Density-functional theory in strong magnetic fields,”
Physical Review Letters. Vol. 59 , pp. 2360, 1987

[24] R.M. Dreizler and E.K.U. Gross, ”Density Functional Theory,” Springer and Verlag,
Berlin, 1990

[25] W. Kohn, L.J. Sham, ”Self-consistent equations including exchange and correlation
effects,” Physical Review.Vol. 140 , pp. 1133-1138, 1965

[26] J.P. Perdew and A. Zunger, ”Self-interaction correction to density functional approx-
imations for many electron system,” Phys. Rev.B, Vol. 23, pp.5048, 1981

[27] D M. Ceperley and B.J. Alder, ”Ground state of the electron gas by a stochastic
method,” Phys. Rev. Letters.Vol. 45, pp. 566, 1980

[28] J. P. Perdew,”Accurate density functional for the energy: Real-space cutoff of the
gradient expansion for the exchange hole,” Phys. Rev. Letters.Vol. 55, pp.1665, 1985

[29] J. P. Perdew and Y. Wang,” Accurate and simple analytic representation of the
electron gas,” Phys. Rev.B, Vol. 45, pp. 13244, 1992

[30] A. A. El-Barbary, First principle characterisation of defects in irradiated graphitic
materials, Ph.D. thesis, University of Sussex, 2005

[31] J. P. Perdew,”Density functional approximation for the correlation energy of the
inhomogeneous electron gas,” Phys. Rev.B, Vol.33, pp. 8822,1986

[32] J.P. Perdew, A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh
and C. Fiolhais.”cells, molecules, solid, and surfaces: Application of the generalized
gradient approximation for exchange and correlation,” Phys. Rev.B, Vol. 46, pp.
6671, 1992

[33] J.P. Perdew, K. Burke, and M. Ernzerhof, ”Generalized gradient approximation made
simple,” Phys. Rev.B, Vol. 77, pp. 3865, 1996

[34] E. Proynov, E.Ruiz, A. Vela, D. Salahub, International Journal of Quantum Chem-
istry, Vol. 56 , pp. 61, 1995

[35] N.W. Ashcroft, and N.D. Mermin,” Solid State Physics,” Holt Saunders, philadel-
phia, pp. 113,1976

[36] D.S. sholl, J.A. steckel, ”Density Functional Theory a Practical Introduction,” Vol
1. John Wiley and Sons, Inc.2009, pp61-62

[37] I.J. Robertson and M.C. Payne, ”k-point sampling and the k.point method in pseu-
dopotential total energy calculations,”Journal of Physics: Condensed Matter, Vol. 2,
pp. 9837, 1990

[38] I.J. Robertson and M.C. payne,”The number method in pseudopotential total
energy calculations: error reduction and absolute energies,” J.phys.condens mat-
ter,Vol.3,pp.8841,1991

[39] M.C. payne, M.P. Teter and D.C. Allan,T.A. Ariasand and J.D. Jonnopoulos ,” Itera-
tive minimization techniques for ab-initio total energy calculations molecular dynamics
and conjugate gradients,” Review of modern physics ,Vol. 64, pp. 1052-1053,1992

[40] D.R. Hartree,”Proceedings of the Royal Society of London: Mathematical and phys-
ical sciences. Series A,” London A, Vol.141, pp.282, 1933

27



[41] D.R. Hartee, Calculation of Cellic Structure, Wiley, 1952

[42] J.C. Slater,Quantum Theory of cellic Structure McGraw-Hill,New York,Vol. 2, pp.
8-15,1960

[43] Y.Zhou, Y. Saad, M.L. Tiago, J. R. Chelikowsky,”Self-consistent-field calculations
using Chebyshev-filtered subspace iteration,” Journal of Computational Physics.Vol.
219, pp. 172184, 2006

[44] F. Rioux, A Hartree self-consistent field calculation on the helium cell,” Eur. J. Phys.
Vol. 12, pp. 74-76,1991

[45] D. Vanderbilt,”self-consistent pseudo potentials in a generalized eigenvalue formal-
ism,” Physical Review, Vol. 41, pp .7892-7895. 1990

[46] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio,
S.Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, Code available from http://www.
Quantum-espresso. org.

[47] W.E. Pickett, ”Pseudo potential methods in condensed matter applications,” Com-
put. Phys, Vol. 9, pp. 97-115,1989

28


