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ABSTRACT 

The aim of this study was to obtain unbiased estimates of genetic parameters in the application 

of trials designed in augmented block design. In addition to this, it was planned to compare the 

variance and covariance components of the intra-block analysis of an augmented experiments 

and the estimators of the components associated to genetic effect. For analysis and discussion; 

the data used consisted four local checks and one hundred eighty eight Durum wheat 

genotypes evaluated using augmented block design at Sinana Agricultural research center in 

2013 cropping season. A model that have been contained check treatments and block as fixed 

factors and Test treatments as random factor have been selected for the data set based on 

Akaike’s Information Createria evidence. The ratios of standard errors of GLM to that of 

mixed model using trial designed as ABD were about 2.7 for both ML and REML. These 

results tell us that a mixed model is more valuable than a GLM to remove the down ward bias 

of variance of the response variable and the boosted variance of the error terms of GLM. The 

inter-class correlation coefficient result showed that estimation based on REML techniques 

best to estimate variance component in linear mixed model for trial designed as augmented 

block design. Finally, the findings of this study showed that about one hundred one genotypes 

of durum wheat have the highest mean yield effects than standard check genotypes. Therefore 

about 101Durum wheat genotypes materials have been recommended for next selection 

program in similar ecology to Sinana. 

Keywords: Augmented design, Linear mixed model, General linear model, Variance 

component, Genotypes, Maximum likelihood, and |Restricted maximum likelihood, variance-

component. 
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1.  Introduction 

  1.1. Background of the Study 

Designs are usually characterized by the nature of grouping of experimental units and the 

procedure of random allocation of treatments to experimental units. Block designs are useful in 

experiments requiring eliminations of heterogeneity in one or two direction. As experiments 

become larger with more genotypes and replications, costs will go up. Federer (1956) developed a 

series of augmented designs to minimize such costs. Augmented designs provide well come 

flexibility to large experiments and these designs are useful in agricultural experiments. The 

augmented designs were proposed by Federer (1956),the designs are a modification of straight 

forward designs, by adding test treatments that appear only once in the experiment to the set of 

replicated control treatments. Among the augmented designs, the augmented block design is 

perhaps the most used, and inferences have been made by means of an intra and inter block 

analysis. 

In genetic resources environment, which is a field in the forefront of biological research, an 

essential activity is to test or evaluate the new germplasm/ provenance / superior selections (test 

treatments), etc. with the existing provenance or released varieties (control treatments).  According 

to SABRAO (2013) the problem in this evaluation studies is that the quantity of the genetic 

material collected from the exploration trips is very limited or cannot be made available since a 

part of this is to be deposited in Gene Bank. 

The available quantity of seed is often not sufficient for replicated trials. Moreover, the number of 

new germplasm or provenance to be tested is very high (usually about 1000-2000 and sometimes 

up to 3000 accessions), and it is very difficult to maintain the within block homogeneity. On the 

other hand; when a new varieties or strains are developed in a plant improvement program, 

sufficient material is often not available for planting more than one experimental plot or unit of the 

new variety at a single location; in some cases, it may be undesirable to lay out more than one 

experimental unit for the treatment under consideration. In some plant breeding investigations even 

though one plot of a new variety is laid out at a single location, the new variety may be planted at a 

number of locations, with the standard or check varieties being replicated r times at each location. 

These experimental situations may also occur in the fields of entomology, pathology, chemistry, 
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physiology, agronomy and perhaps others for screening experiments on new material and 

preliminary testing of experiments on promising material. For in many cases such design is used 

with treatments being selection units sampled from a population. Besides, recovery of information 

on treatments among blocks (inter-block approach) can potentially improve the estimates, and this 

is achieved by regarding block effects as random. 

Designs recognized as having potential to improve the effectiveness ( prediction variance) of 

breeding in field experiments include the randomized complete block design (RCBD), the 

augmented block design (ABD), and the incomplete block design (IBD), with their possible  

variations. ABD is most commonly used in the initial steps of a breeding program when there is 

still a substantial amount of material to be analyzed and, mainly, when there is little propagation 

material (and thus, the replication of treatments is difficult or impossible). One advantage of ABD 

is the ease of establishing the experiments, which is particularly useful for breeding programs, for 

example (Souza et al.; 2006; Peternelli et al.,2009). 

Various augmented experiment designs have been presented in the literature (Federer, 1955, 1961; 

Federer and Raghavarao, 1975; Federer, Nair and Raghavarao, 1975; Federer and Wright, 1988). 

The purpose of this study is to estimate genetic parameters in the trial designed by augmented 

block designs using information obtained from the random effects and from the distributional 

effects of the augmented (or new) treatments in the experiment. Since augmented designs are used 

to include treatments (varieties) for which there is little information and often limited material, 

these treatment or varietal effects can be considered to be distributed around some mean and with a 

common variance σ
2

T. Herein we consider that each new treatment is included once in the 

experiment but this need not be the cases the procedure is easily extendable to take additional 

replication into account. There are c checks or standard treatments which are used to obtain the 

experiment design prior to adding the augmented treatments.  

The check treatment yields are used to obtain solutions for blocking and check treatment effects. 

The former are used to adjust the new treatment effects. From the mean square for the new 

treatments, an estimate of the variance component σ
2

T is obtained and used for adjusting new 

treatment means for their distributional effects. Adjustment for distributional properties of the 

random effects makes use of all information from an experiment. 
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Genetic variances can be underestimated if the intra-block analysis is used in the augmented 

block design (Bearzoti, 1994). Therefore, the theory of mixed models (Henderson, 1984) could 

be used to take into account the randomness of the effects of test treatments and/or blocks 

(Robinson, 1991). The effects of control could be considered fixed in plant breeding, for they are 

generally standard released varieties. 

In plant selection programmed, breeders usually start with a large number of test lines, which 

come either crossing or through introduction from foreign sources. The number of lines can 

range even up to hundreds. To conduct a field experiment for such a large population is 

extremely difficult for a number of reasons, among them that environmental heterogeneity in the 

field cannot be easily taken in to account. To complicate the matter further, material available for 

each test line is often limited, sometimes being sufficient for only one replication. Thus designs 

for variety trials involving large numbers of test lines, for example, lattice square and quasi-

factorial designs, all of which require replications, cannot be used; similarly, designs such as 

chain blocks (Youden and Connor, 1953; Mandel,1954), which require that a substantial number 

of test lines have at least two replication cannot be applied. 

In plant breeding programs, there are cases where controls include new treatments generated 

through breeding. The test treatments are supposed to be compared against certain controls. Any 

of the experimental design can be used depending on the number of treatment and stage of 

breeding programs. In the early stage of selection process, there could be insufficient seed of the 

new treatments’ to undertake replicated experiments or the number of genotypes could be very 

large to manage in terms of resources. In such cases some plant breeder use single row plots to 

evaluate the newly developed test treatments and at a certain regular intervals control varieties 

are planted. The performance of the new treatments is then compared with the performance of 

the nearest controls subjectively. The standard statistical analysis is not possible as the new 

genotypes are not replicated but an objective comparison can be made.  

The disadvantages of subjective judgment are that the controls are systematically placed and no 

provision is made to adjust a given measurement for environmental variation from one part of 

the experiment to another. A better method, when there are many test treatments at the early 

stage of the breeding programs is to use an experimental design called augmented design that 
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was developed by Federer (1956) and well illustrated by Federer and Raghavarao (1975). This 

design is of particular interest in an extensive plant breeding programs. 

To circumvent the difficulties arising from non replicated experiments, Federer (1956) proposed 

a class of design called 'augmented design'. The basic idea is to include control lines for which 

enough material is available and repeat them several times in a standard design. Each repetition 

of the control lines is embedded in a block (or incomplete block, or cell, depending on the design 

used) and test lines are assigned to plots that are not allocated to controls. Estimations of block 

effects and plot error are done only with respect to control lines. The estimated block effects are 

used to adjust the observed values of the test lines and the error is used to test the significance of 

line differences. 

Augmented designs are un-replicated designs where field variation may be controlled using 

several different approaches. Traditional un-replicated designs control local variation using a 

single replicated control variety distributed often systematically across the field. The approach is 

flexible and simple to use in that genotypes need not be randomized, visual evaluation is possible 

and the test genotypes are adjusted using the mean yield of the neighboring controls. 

Augmented designs eliminating heterogeneity in one direction are called augmented block 

designs.  Federer and Raghavarao (1975) who obtained augmented designs using RCB design for 

one-way heterogeneity setting gave a general theory of augmented designs.  The estimable 

contrasts in such designs may be (i) among new varieties (test treatments), (ii) among check 

varieties (control treatments), and (iii) among all check and new varieties simultaneously.  

Indeed it may be possible to estimate the contrasts between check and new varieties. In this study 

we concentrate on augmented block designs which minimize the variance of certain contrasts of 

the new varieties.  

Augmented block experimental designs fall into two categories, complete blocks and incomplete 

blocks for the check genotypes or treatments. A randomized complete block design (RCBD), 

with r replicates or blocks, is used for the c check genotypes to start the construction of an 

augmented randomized block. Then, the r blocks are expanded to include the c checks plus n/r 

new genotypes in each block. If n is not a multiple of r, then fewer or more new genotypes 

would appear in some of the blocks. The c checks and n/r new genotypes are randomly allotted 
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to the experimental units in each block. Genotype numbers are randomly assigned to the new 

genotypes, but this is not necessary in the early stages of screening since each new genotype is a 

random event in itself. 

   1.2. Statement of the Problem 

The best strategy of increasing production of crops is by increasing productivity per unit area 

using improved production technology. On the other hand, reliable improved technologies can 

only be achieved if appropriate designing and modeling is done by accounting for source of 

variation. Mixed Models is rapidly becoming a very useful tool for statisticians. As a general 

paradigm it can be used to handle almost every situation, especially if you extend the Linear 

Mixed Model to the Generalized Linear Mixed Model case or the Nonlinear Mixed Model case. 

It’s also an area in which a lot of research is being done, because the questions are far from being 

answered. Advanced computing power is giving us the capability to answer those questions. One 

important question which, unfortunately, still has no good answer is how to estimate variance 

component and how to select the covariance structure (Chuck. K., 1983). This study, therefore, 

has tried to fill the gaps in genetic parameter estimation of trial designed as augmented block 

design.  

Generally, this study has attempted to answer the following basic research questions: 

1. Which model is appropriate for analysis of data taken from augmented block design? 

2. Which estimation method of variance component is contributing more variability to the 

variability of the model? 

3. Which genotypes have more predicted mean difference than local checks? 

4. Whether or not the random factor significantly minimize the error mean square of the 

response variable.  
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1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this study is to select appropriate model and compare different 

estimation methods of variance components of selected model in trial designed by augmented 

block design.  

1.3.2. Specific Objectives 

 To compare different parameter estimation methods of variance components for trial 

designed as ABD. 

 To present appropriate model for trial designed by ABD for durum wheat genotypes. 

 To select genotypes those have more predicted mean difference than local checks? 

1.3.3. Research Contribution 

Several types of designs have been developed for agricultural field experiments. Using any of 

these designs may be possible for a particular project, but each design has its own advantages 

and disadvantages. The overriding principle for experimental design is: keep the design as simple 

as possible while satisfying the required level of scientific soundness. Researchers do not need a 

complex design with many experimental treatments, multifactor interactions and difficult 

statistical analysis (like estimation of variance components) when a basic, simply designed 

experiment will produce the required information. Therefore, the outcome of the research will 

help field experimenters, breeders and other researchers to conduct research with efficient way, 

especially on the trial designed as ABD  

Moreover, the result helps researchers as a guideline for indicating possible sources of variation 

that might occur in research activities. The result of this study also help in increasing crop 

production by giving awareness for the farmers on the recommended wheat genotypes.  Also 

used for further investigations of experimental and statistical problems related with the 

applications and uses of an ABD in genetic parameter estimation. In general, the application of 

this research result will be expected to be beneficial for different researchers working in the area 

of agriculture and the result will be used as a basis for study on trials ABD. 
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2. LITERATURE REVIEW 

Because of their masking effects on genotypic expression, genotype x environment interaction 

and soli heterogeneity are the two most important factors that limit progress from selection (e.g., 

Jones and Frey, 1960; Schutz and Cockerham, 1966; Fasoulas, 1973). Oftentimes, the result is 

that genetically poor genotypes may appear as good phenotypes because of a positive effect of 

environmental factors and genetically good genotypes may produce poor phenotypes due to a 

negative effect of environmental effects (Keuls and Sieben, 1955). The current repertoire of 

methodologies for addressing the problem of making successful judgments about genotypic 

values of plants has resulted from research on field experimentation that led to the development 

and integration of several key principles. 

2.1. Basic Concepts 

Fisher (1925) laid down the three basic principles of experimental designs as replication, 

randomization, and local control. Replication and local control were not new, but assigning 

treatments to plots at random (subject to the restrictions Imposed by the local control) was a 

major contribution. It assured that the deviations from expected values used for estimating 

experimental error were independent. Further, randomization made it possible to measure the 

relative efficiencies of different experimental designs (Yates, 1950). Yates (1950) considered 

that randomization was the initial fundamental step in the development of field designs for 

comparisons among genotypes. Additional major developments were factorial designs and 

balanced incomplete block designs. Méndez (1971) emphasized, however, that even though 

randomization of the genotypes in a block gave unbiased estimates of the error variance, it did 

not control intra-block variation. 

Replication refers to the number of different plots in which an entry is sown. As expressed by 

Federer (1984), replication is an essential tool to diminish the effects of soil heterogeneity in 

biasing genotypic expression. Blocking (or local control) is a method for reducing the variance 

of a difference between treatment effects (e.g.. Fisher, 1925; Yates, 1936). It groups plots in such 

a manner that the variation among plots within each group (or block) is minimal and that among 

groups (or blocks) is maximal. Blocking should be done with as few groups as possible, because 

degrees of freedom allocated to blocks (incomplete blocks, rows, or columns) reduce those 
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remaining for the error variance. Statistical analysis and interpretation is complex for designs 

with blocking.  

Yates (1933) introduced the principles of orthogonality and confounding to experimental 

designs. Orthogonality is that property of the design which ensures that the different classes of 

effects to which the experimental material is subject will be capable of direct and separate 

estimation. Randomized complete block and Latin square designs insure that effects are 

orthogonal to each other, and they are simple to analyze and provide valid estimates of treatment 

effects and their variances (Federer, 1984). A simple lattice design, on the other hand is not 

orthogonal. Non-orthogonality sometimes is introduced into experimental designs by deliberately 

confounding of blocks and treatments (Yates, 1933, 193b). Yates (1933) indicated that where 

non-orthogonality is deliberate, the design should be such that a slight rearrangement of the data 

will reestablish orthogonality. For example, non-orthogonality due to incomplete blocks in a 

simple lattice design can be removed by treating the design as a randomized complete block 

design (e.g., Yates, 1939, 1940). Thus, a lattice design can never be less efficient than the 

standard randomized complete block design because if blocking is ineffective in reducing error 

variance, the experiment can be analyzed as a randomized complete block design. 

 Experimental designs are used so that the treatments may be assigned in an organized manner to 

allow valid statistical analysis to be carried out on the resulting data. Different designs identify 

different known or suspected sources of variation so that the treatments effects can be evaluated 

free of extraneous environmental or other influences. Statistical theory also requires that certain 

conditions be met during the execution of the experiment to permit valid probability statements 

to be made (Sharma, 2000). 

2.2. Augmented Designs 

 Since Federer published his Article “Augmented (or Hoonuiaku) designs” in 1956, a lot of 

additional research results have been published. Federer (1961) extensively illustrated 

arithmetically and algebraically an augmented randomized complete block design and an 

augmented balanced lattice design. For both designs he considered analyses with and without 

recovery of inter-block information and provided some discussion on unequally sized incomplete 

blocks. He pointed out that sufficient replications of controls need to be included to have 
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sufficient degrees of freedom nineteen for estimating experimental error variance and effects of 

blocking used to control field heterogeneity (Federer and Raghavarao, 1975). He also gave a 

precise introduction to some augmented row-column designs (Federer et al., 1975) and to the 

construction and analysis of augmented lattice square designs (Federer, 2002).Generally, he 

conclude that the appropriate design for an augmented design is the randomized incomplete 

block design. 

Pinney (1991) has made use of augmented designs for on-farm trials or prototype evaluation 

trials. He advocated the use of augmented design that minimizes plot number and enables the 

researcher’s and farmer’s questions to be answered. It allows the farmer some flexibility to 

decide what treatments are tested on his/her farms. The technology developed at research station 

forms the set of core treatments and the farmer defined treatments are called the augmented 

treatments. He has described a hypothetical alley cropping example to illustrate the applications 

of augmented designs to participatory on-farm agro-forestry research by taking two core 

treatments and five augmented treatments. He also conclude that the number of plots per farm 

depend upon the region, population density and farming system. The more the number of plots 

available per farm, the more is the scope for within- farm replications or for more the treatment 

augmentation. 

To circumvent the general difficulties that arise from un-replicated experiments, Federer (1956, 

1960, 1961, 1972), Searle (.1965), Federer and Raghavarao (1975), Federer et al. (1975), Lin and 

Poushinsky (1983), and Lin et al. (1983) introduced augmented designs. An augmented 

experimental design is any standard design augmented with additional treatments in the complete 

block, the incomplete block, the row, the column, etc. (Federer, 1961). 

The statistical analyses for augmented designs in which v check genotypes have been replicated r 

times (or even a particular number of times for each check) and in which v* test genotypes have 

been shown only once can be done in two equivalent ways (Federer and Raghavarao, 1975): (a) 

The trial of v+v* genotypes may be analyzed using standard methods for disproportionate 

numbers in the subclasses; or  (b) A statistical analysis can be performed on the check yields 

only to estimate the error variance. This variance is used for entry comparisons. Federer (1956) 

pointed out the importance of randomization of checks to obtain unbiased error variances.  
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Lin and Poushinsky (1983), however, indicated that if the checks are assigned randomly to the 

plots in a block, their distribution pattern may be irregular and thus may not provide adequate 

adjustment for soil variation. Since the primary objective of a field test in the early stage of 

genotype selection is genotypic ranking and not testing of the genotype differences, they 

concluded that effective adjustment was more important than obtaining an unbiased error 

variance.  

A second problem associated with the random assignment of checks has to do with block shape. 

These two factors led Lin and Poushinsky (1983) to propose an alternative class of augmented 

designs whose structure is based on a split-plot design. With these, whole plots can be laid out in 

any standard design but the arrangement of subplots is always 3x3 with the central plot assigned 

to a check. Because correlations between plots do not decrease linearly with distance (Briggs and 

Shebesky, 1968; Le Clerg, 1966), Lin and Poushinsky (1983) concluded that weighted distance 

measures (Yates, 1936) or random allocation of check plots (e.g., Yates, 1936; Federer, 1958) 

could not give satisfactory adjustments. Therefore, they suggested that subplots should be square 

or nearly square so that the distance between the check plot and the eight test plots was relatively 

uniform.  

Lin et al. (1983) did a simulation study on a modified augmented Latin square using three 

adjustment methods. Adjustment by design structure (row and column correction factors) was 

best when soil variation occurred in one or two directions, but adjustment by regression was best 

when the variation was multi-directional. Adjustment using the check plots to obtain a fertility 

index was least satisfactory. 

Among the experiment designs in augmented block design are the augmented randomized 

complete blocks (ARCBD), augmented balanced incomplete block (ABIBD), and augmented 

partially balanced incomplete blocks (APBIBD). With respect to the augmented or new 

treatments all these designs are incomplete in that all the new treatments do not appear together 

in the blocks. Thus, recovery of inter block information is needed for a more efficient analysis. 

First consider an ARCBD with c checks and n new treatments for a total of v = c + n treatments 

in r blocks. Let the c check treatments appear once in each of the blocks (note that the c 

treatments could appear in the proportions n1: n2: ...: nc in each of the r blocks and the design 
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would still be an orthogonal one (See Federer, 1991, ch. 7)). Since the n new treatments each 

occur once in the experiment the observation can only contribute to the new treatment estimate 

and nothing to block, overall mean or error estimation (Federer and Raghavarao, 1975). 

  2.3. The use of Checks to Control the Effects of Variability 

Several methods for making comparisons among a large number of strains on the basis of checks 

have been described (e.g. Le Clerg, 1966; Yates, 1936). Sometimes checks are placed at regular 

intervals over the test site, but a systematic arrangement may give a biased estimate of error 

variance (Yates, 1936; Federer, 1961). Random assignment of strains may lead to biased 

comparisons with the checks. The strain performance can be expressed relative to the nearest 

check plot. Another procedure of adjusting a genotype's performance consists of a relative value 

computed by dividing the plot yield by a fertility index which is calculated on the basis of 

regression between two check plots. Several studies have been conducted in which the fertility 

indexes were used as covariates (Ïownley-Smith and Hurd, 1973; Mak et al., 1978; Rosielle, 

1980).  

Based upon Smith's coefficient of soil variability Smith (1938), Baker and McKenzie (1967) 

concluded that the use of systematically arranged check plots as fertility indexes was of 

questionable value. They found no advantage for check plots unless Smith's coefficient was less 

than 0.5 in the experiment. Briggs and Shebesky (1968) circulated a questionnaire to wheat 

breeders around the world and found that their use of check to experimental plots ranged from 1 

in 200 plots to 1 in 3. The average was 1 check per 50 plots. Townley-Smith and Hurd (1973) 

compared the efficiencies of adjusting plot yields via repeated checks and moving averages, and 

found that the latter method gave the best control of error variance. Mak et al. (1978) found that 

adjustment by either method was superior to no adjustment for grain protein content, but not for 

grain yield. Both techniques gave similar control of experimental error. A balanced lattice design 

was superior in error control to either adjustment method, however. Rosielle (1980) studied the 

relative efficiencies of lattice designs, check-plot designs, and moving averages for error 

variance control in wheat trials. Lattice and check-plot covariance analyses were equally 

efficient and superior to randomized complete block analyses, but they were only slightly more 

efficient than moving average covariance analyses.  
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Schutz and Cockerham (1966) and Yates (1936) concluded that inclusion of check plots for 

adjusting for block effects was not justified. Another method, discussed by Yates (1936), 

consisted of dividing the experimental genotypes into sets with each set being sown with one or 

more checks in several replications of a randomized complete block or Latin square designs. 

Adjustments of the experimental strains were done by subtracting the mean of the checks for that 

group. This author recognized that adjustment via check means was unlikely to be as efficient as 

using an ordinary randomized complete block design. 

   2.4. Genotype X Environment Interaction 

Dudley and Moll (1969) defined the genotype x environment (GxE) interaction variance as being 

due to failure of genotypes to produce similarly under different environments. The effect of GxE 

interaction in masking genotypic expression has been amply recognized by plant breeders who 

attempt to reduce its importance by testing genotypes over many environments. Comstock and 

Moll (1963) showed statistically how large G x E interactions limits progress from selection. 

Several methods have been proposed to solve the problems created by GxE interaction. Horner 

and Frey (1957) stratified Iowa into homogeneous areas (i.e., they used the blocking principle) to 

control the variety x location interaction. This approach has been used by McCain and Schultz 

(1959) and Liang et al. (1966) also. The use of regression analysis of genotypic performance on 

environments to describe and compare genotypic performance was proposed by Yates and 

Cochran (1938) who subdivided the GxE interaction into sums of squares due to regression and 

deviations from regression. Finlay and Wilkinson (1963) used this regression approach and 

defined the regression coefficient as a parameter of adaptability. The deviations from regression 

provide a measure of stability (Eberhart and Russell, 1966).  

Plaited and Peterson (1959) proposed measuring the stability of individual cultivars via 

combined analyses of variance for all possible pair of genotypes in a set. Wricke (1962) 

proposed a measure called equivalence and Shukla (1972) computed a stability variance for each 

variety. Bilbro and Ray (1976) proposed the coefficient of determination as an independent unit 

criterion for measuring stability of a genotype. Variance components from experiments 

conducted over environments have been used to determine optimum resource allocation. Sprague 

and Federer (1951) and Pederson and Rathjen (1981) found that un-replicated trials sown at 
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several locations and in several years provided the best resource use for making genetic gain. 

Schutz and Cockerham (1906) suggested that experimental design for control of intra-site error 

may be relatively unimportant if GxE interaction is large, and Rosielle (1980) found that 

differences in efficiencies of designs based on intra-site data had little meaning for combined 

analyses. He concluded that genotype x environment interaction was more important than intra-

site error in limiting progress from selection. 

    2.5. Literature Related to Mixed Models 

Ofversten (1993) has given a method of deriving exact tests for variance components in balanced 

mixed models. In particular he looked at a hypothesis of variance components of a model with 

one random factor. He stated that his proposed tests are unbiased and consistent under reasonable 

conditions. Reverter, et al (1996) used mixed model in assessing the efficiency of multiplicative 

mixed model to account for heterogeneous variance across herds in carcass scan traits from beef 

cattle at the University of New England. The result shows that the variance of the error terms of 

mixed model is much smaller than the variance of the error terms of fixed effect model. Chow 

and Shao (1988) also have undertaken research to obtain estimators for variance components 

which avoid non-positive estimates in random effects models. They use decision theoretic 

methods for estimating variance components. The estimators that are constructed are non-

negative and some of them have smaller mean square errors than the classical estimators of 

ANOVA. 

According to Romney et al. (2000) report the analysis that described how to determine (a) the 

influence of household (farm) and cow factors on milk yield, and (b) the relationships between 

milk yield and concentrate fed at different phases of lactation which were analyzed using mixed 

model effect in dairy production which in turn is an important source of income for many 

smallholder households in the highlands of East Africa. 

Mora and Arnhold (2006) have examined genetic breeding values and variance components of 

popping expansion and grain production by means of a mixed linear model approach on 96 S3 

maize families. Best Linear Unbiased Predictors (BLUP) of family effect was obtained by 

considering the Restricted Maximum Likelihood (REML) method of variance component 

estimation. Family and residual variance component values were very similar in the 
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Independence Chain Algorithm and the REML method. Heritability values showed 

imperceptible differences in the approximation between approaches. Differences in the standard 

deviation of these estimates were observed in the REML approach clearly showing the largest 

result. Heritability of grain production was moderate to high for popping expansion indicating 

that simple selection methods can be applied. Using an Independence Chain Algorithm and the 

BLUP approach for breeding values, no important changes were seen in family ranking, which 

was confirmed with high and significant Spearman’s correlations values (rs) ranging from 

0.9941%±0.004 to 0.9973%±0.001. Pearson’s correlation between the BLUP values of popping 

expansion and grain production was low, negative and insignificant (rs=-0.320%±0.02). They 

concluded that an Independence Chain Algorithm could be an important tool to use in maize 

breeding like classical analysis using a mixed linear model procedure. 

Yann et al (2007) compared forty-two paired organic and conventional winter wheat fields in 

three regions of western and central Germany; Leine Bergland, Soester Boerde, and Lahn-Dill 

Bergland. Based on the assumption that factors acting at various scales may affect biodiversity, 

they have compared such fields by using multiple spatial scales in order to understand how 

community richness is determined. They adopted a hierarchical approach to test the contribution 

of region, landscape heterogeneity, local management (organic vs. conventional) and location 

within field (edge vs. centre) to the species richness and abundance of spiders in cereals.  

Field pairs were located in areas ranging from structurally simple to structurally complex 

landscapes. In May and June 2003, spiders were sampled using pitfall traps. Linear mixed 

models were used to determine the relationship of spider diversity and abundance with regional 

spatial factors and landscape heterogeneity within a 500-m radius, as well as with local 

management and within-field location. Results they obtain within-field location of the traps and 

landscape heterogeneity were the best predictors of species richness.  
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3. Materials and Methods of Analysis  

   3.1. Data 

3.1.1. Study Area 

The data that have been used in this study was taken from the experiments conducted at Sinana 

Agricultural research center under the Oromia Agricultural Research institute. Sinana is found in 

Bale Zone of Oromia Region at 463km from Finfine (Addis Ababa). Its geographical location is 

07
0
 07 

N 
latitude and 40

0
10

’ 
E longitude. The elevation of the center is 2400 m.a.s.l with 

topography of gentle conductive for agricultural production system under rain-fed in the present 

climatic conditions.  

3.1.2. Experimental Materials and Design  

The data in this study were taken from experiment have been conducted at Sinana Agricultural 

research center under Oromia Agricultural Research Institute in the eastern part of Ethiopia 

during the 2013 G.C. cropping season. The experimental materials consists one hundred eighty 

eight  Durum wheat genotypes evaluated at Sinana (on-station) in 2013 cropping season with the 

objective of selecting high yielding and disease tolerant durum wheat genotypes. It was carried 

out by Augmented block design with four local checks (Toltu, Dire, Ejersa and Bakalcha) 

replicated five times. (Appendix A of table 1).The experiment was laid out in augmented block 

Design having two rows of 0.2m spaced and 1m length. Seed rate of 150kg/ha and fertilizer rates 

of 41/46 (N/P2O5) were used respectively.  Data to be collected: DH, DM, Plh (cm), TKW (g), 

TW (kg/hl), GY (g/m2), Disease data (Sr, Yr, Lr and Septoria). 

   3.2. Augmented Block Designs 

In randomized complete block design each treatment is replicated in each block. The design is 

suitable for single-factor trials as well as multi-factor trials. The RCB design has many 

advantages. It offers flexibility in the number of treatments and number of replications. Control 

treatment may be introduced more than once. The statistical analysis of RCB design is simple 

and rapid. The principal disadvantage of this layout is when the trial should include a large 

number of treatments. This leads to large complete blocks which may be heterogeneous. Also 

selection in breeding deals with large number of genotypes which is difficult to include in a 

block.  
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Augmented designs are non-replicated experimental designs that circumvent this problem 

(Federer, 1956; Federer et al., 1975; Federer and Raghavarao, 1975). Augmented block design is 

suitable for trials including a large number of populations and when the amount of seed is limited 

and is only enough for one replicate. Controls are repeated systematically in the experiment to 

control the environmental heterogeneity.  

The principles followed in this design are: 

 All controls treatment appears in each block. 

 Test treatments appear only once in the whole experiment (un-replicated test). 

 Block size is determined by number of block, control treatment and test treatments. 

 Number of block is determined by test treatment and control treatment. 

 Control treatment used to estimate block effects and provides error term 

 Effective, but much of the field is taken up with controls. 

The control treatments used as a baseline to compare test treatments and allow a certain degree 

of extrapolation to the performance of test treatment. 

3.3. Genetic Statistical Analysis  

The fixed effects were estimated and the random effects predicted using the Mixed Procedure 

(PROC MIXED) of the computer system Statistical Analysis System (SAS) version 9, 

following a linear mixed model, described by Henderson (1984): Y= Xr + Za + Wb + e Where, 

Y is the phenotypic data vector, r is the vector of replication effects (fixed) added to the general 

mean, a is the vector of genetic effects (random), where, a ~N (0, G) and G=Aσ
2
a, b is the vector 

of block effects (random), e is the vector of residues (random), where, e ~ N (0,R) and R=Iσ
2
e. 

The capital letters represent the matrix incidences for these effects, formed by values 0 and 1, 

which associate the unknown r, a and b with data vector y, respectively.  

Vector r contemplates all replications of all places, in other words, the effects of location and 

replication within locations. In the mixed models focus, G refers to the matrix of genetic 

covariance between the progenies, designated Aσ
2
a. For A the parentage coefficient was 

disregarded here, therefore the matrix G was designated Iσ
2
a, where A=I. Thus, σ

2
a is equivalent 

to the genetic variance between progenies. If the estimates of variances of the random effects 

are known, the fixed effects can be estimated and the random effects predicted simultaneously by 

the mixed model equation (MME) given by: 
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For the above solutions, the genetic and non-genetic components of variance we 

reconsidered unknown, which is a practical reality, and were estimated by the restricted 

maximum likelihood method (REML). Once the REML is an iterative process, the numerical 

algorithm known as Expectation Maximization (with alternating steps of expectation and 

maximization) was used, which characterizes the algorithm as EM-REML. Thus, from 

arbitrary initial values to (genetic variance) and  (block variance), solutions for ,  and 

 are obtained. These solutions are  used  to  obtain new  estimates of the components  of  

variance  and  so  on,  until   the convergence is reached. The response to selection by REML 

was predicted by the mean breeding or genetic values of the selected progenies.  

    3.4. Statistical Models and Model Selection 

To maintain generality, the conventional statistical terms "block," "treatment," and "response" 

are used in this section. Each trial of this study was considered a block, with the positive and 

negative control treatments replicated at least once in each trial to provide an estimate of block 

effects. The response was the average weight of the chicks in a given isolator unit. The observed 

response to the i
th

 treatment in the j
th 

block can be represented as. Yij= μ + βj + τi+ σij 

Where μ denotes the overall mean; βj denotes the effect of the j
th

 block, τi denotes the effect of 

the i
th

 treatment and σij denotes the random variation of the i
th

 treatment in the j
th

 block. Thus, 

different standard errors are required for comparing two treatments depending on whether they 

are control or test treatments and whether or not they are repeated within or across blocks. 

The augmented randomized complete block design is a special case of the partially balanced 

incomplete block design (Cochran and Cox, 1957). The repetition of one or more treatments in 

every block ensures that the design is connected. For connected designs, all the treatment means 

and linear contrasts of the treatment means are estimable.  Yates (1936, 1940) developed the 

methods for the analysis of incomplete block designs. The choice of analysis depends upon the 

nature of the block effect; i.e., is the block effect fixed or random? The fixed effects, or intra-

block, analysis Yates (1936) describes the observed response using the statistical model. 
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Y = XB + e Where y is a vector of observations; X is a known model matrix; B is the vector of 

unknown fixed effects; and e is a random vector with mean vector 0 and variance covariance 

matrix σ
2
I, where σ

2 
is the variance and I is the identity matrix. Because of the unequal treatment 

replication, the block and treatment effects are not-orthogonal. Thus, the treatment sum of 

squares and means must be adjusted for block effects.  

Alternatively, if one of effect is considered random, Yates (1940) showed that not all information 

about the treatments is contained in intra-block analysis and proposed an "inter-block" analysis 

to recover this information. Later, Graybill (1961) and Zelen (1957) showed how to perform 

analyses that combined the intra-block and inter-block information. The combined analysis 

describes the observed response using the statistical model. 

 

Y = XB + Zu + e Where Z is a known design matrix and u is a vector of unknown random 

effects. This model is known as a "mixed model" because it includes a design matrix for both the 

fixed and the random effects.  

 

Although the output follows a different format from GLM, the MIXED procedure also provides 

corrected F tests, adjusted means and their standard errors, and mean comparisons based on the 

least significant difference, adjusted for the unequal sample sizes. The ESTIMATE and 

CONTRAST statements are available to produce custom hypothesis tests as in the GLM 

procedure. 

Information theoretic criteria have played a prominent role in model selection for the linear 

mixed model. Information theoretic criteria are defined as an estimate of the measure of fit of a 

model to the data. The most common criteria used in mixed models are the Akaike Information 

Criterion (AIC, Akaike, 1974) and the Bayesian Information Criterion (BIC, Schwarz, 1978).  

The AIC is the directed divergence between the true model and candidate model with respect to 

the true model. The BIC, on the other hand, technically is not a divergence criterion since it does 

not assume a true model exists. However, it is generally used as an approximation to a measure 

of directed divergence.  
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 3.4.1. The Concept of Random and Fixed Factors 

Mixed model methodology takes its name from the fact that the elements of the model 

underlying the analysis can be a mixture of fixed and random effects and the linear mixed 

models procedure expands the general linear model. The terminology mixed models is used 

when there are models for the fixed effects and one or more than one random effect.  

Fixed and random effects Models 

i. A factor in a model is random if its levels consist of a random sample from a 

population of all possible levels. A model is termed a random effect model if all 

the factors in the variety structure are random.  

ii. A factor in a model is fixed if its levels are selected by a non-random process or 

consist of the entire population of all possible levels. A model is termed a fixed 

effects model if all the factors in the variety structure are fixed effects. 

Searle et al (1995) states that variance component estimation originated from estimating the error 

variance in the analysis of variance by equating the error mean square to its expected value. This 

procedure was then extended to random effects models for balanced data and then for 

unbalanced data.  Here we need to describe and define concepts of fixed and random effects that 

are applied in mixed effects model. A model is termed a fixed effects model if all the factors in 

the variety structure are fixed effects. A model is termed a random effect model if all the factors 

in the variety structure are random.  

A model which contains both fixed and random effect factors with error terms is called mixed 

model or mixed effects model. If the relationship among these factors, the error term and the 

response variable is linear we call such a model as linear mixed model. Hence, mixed-effects 

model is a generalization of the standard linear model that enables the analysis of data generated 

from several sources of variation instead of just one (SAS, 1996). 
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3.4.2. The Model 

3.4.2.1. Description of the Mixed Model 

Here, we will introduce linear mixed model and its properties relevant to this thesis. The starting 

point is the traditional fixed effects linear model written as: 

Y = X𝜷 + 𝜺                                                                                                                           (1) 

Where Y is an N x 1 vector of response variable, 𝛽 is a p x 1 vector of fixed effects parameters, 

X is a known N x p coefficient matrix and 𝜺 is an error vector defined as:         

 𝜺 = Y - E(y) = Y - X𝜷 and thus has E (𝜺) = 0. And the dispersion matrix var (𝜺) = 𝝈2
𝜺𝑰𝑵. X is 

often a matrix of zero’s and one’s, known as design matrix. In mixed models the random effects 

of the model can be represented as Zu, of a nature that parallels X𝜷. U will be the vector of the 

random effects that occur in the data and Z the corresponding design matrix, usually design 

matrix. Moreover, u can be partitioned into a series of r sub-vectors:  

u = [𝒖𝟏 ′ 𝒖𝟐 ′ ... 𝒖𝒓 ′]                                                                                                           (2) 

where each sub-vector is a vector of effects representing all levels of a single factor occurring in 

the data, be it a main effects factor, an interaction factor or a nested factor and r represents the 

number of such random factors.  

Incorporating u into (2) gives a general form of model equation for a linear mixed model as 

Y= X𝜷 + Zu + 𝜺                                                                                                                                         (3) 

With β representing fixed effects and u being for random effects. X and Z are the corresponding 

model matrices, with Z often a design matrix, and 𝜺 is a vector of residual errors.  

It is E(Y) = X𝜷 and E (Y│u) = X𝜷 + Zu                                                                               (4) 

As a result,     𝜺 = y - E (y│u)                                                                                                     (5) 

E (y│u) is the conditional mean of y, given that u represents the actual random effects as they 

occur in the data. E (y│u) we would mean E (Y│U =u) = X𝜷 + ZU where Y and U would be 

vectors of random variables for which y and u are the realizations in the data.  

Thus E (y│U =u)= X𝜷 + ZU would be the expected value of the random variable Y, given that 
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the random variable U has the value u. 

To 𝜺 we now attribute the usual variance-covariance structure for error terms: every element of 𝜺 

has variance 𝝈2
𝜺 and every pair of elements has covariance zero, i.e.  

Var (𝜺) = R = σ
2

εIN                                                                                                                                                                               (6) 

 

Similar properties are attributed to the elements of each 𝒖𝒊: 

Var (ui) = 𝝈2
iIqi ∀I                                                                                                                      (7) 

With qi being the number of elements in u, i.e., the number of levels of the factor corresponding 

to ui that are represented in the data. 

Cov (𝑢i, uj) = 0, ∀ i≠ 𝑗;                                                                                                              (8) 

 And similarly for all elements of U and 𝜺:  

Cov (U, 𝜀') = 0                                                                                                                          (9) 

From (7-9), the variance-covariance structure of u is: 

𝐺 = 𝑉𝑎𝑟 𝑈 =  

𝜎1
2𝐼𝑞1 ⋯ … . .

⋮ 𝜎2
2𝐼𝑞2 ⋱ ⋮

. . ⋯ 𝜎𝑟
2𝐼𝑟2

                                                        (10) 

Where each 𝜎𝑖
2𝐼𝑞𝑖  is a diagonal matrix of dimension qi, i= 1, 2, 3, …, r. Then partitioning Z 

conformably with u of (2) as Z = [Z1, Z2, Z3... Zr] gives 

Y = X𝜷 + Z U +𝜺 = X𝜷 +  ZiUir
i=1  + 𝜺                                                                                            (11) 

Hence from (7) to (11) 

𝑉 = 𝑉𝑎𝑟 𝑦 = 𝑍𝐺𝑍′ + 𝜎𝜀
2𝐼 = 𝑍𝐺𝑍′+R= 𝜎𝑖

2𝑟
𝑖=1 𝑍𝑖𝑍𝑖

′ + 𝜎𝜀
2𝐼                                                (12) 

The mixed linear model represented by Y = X𝜷 + Z u +𝜺 is the model presented by Henderson 

(1975), and studied extensively by him and his students and colleagues in genetics applications. 

It is now the standard form of the mixed model referenced in most statistical research and 

implemented in computer programs. 
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3.4.2.2. Description of the Model Used in this Study 

In the present study we consider the following: 

 Y is 208x 1 vectors of yield of wheat data obtained from one hundred eighty eight 

different varieties and five blocks with four checks that replicate in each block using 

188+5x4 = 208. 

 X is a 208x11 design matrices relating the fixed effect (intercept, block and treatn) that 

contains 0’s and 1’s. The design matrix X is described as: 

Xi1    =    intercept of the model (with entry one) 

Xi2 =       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 block 1 

                0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi3 =     1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 block 2 

              0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi4=       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 block 3 

               0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi5 =     1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 block 4 

              0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi6 =       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 block 5 

               0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi7=       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 treatn1  

              0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Xi8 =       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 treatn2  

.                 0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

. 

Xi11 =     1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑓𝑟𝑜𝑚 treatn5  

                  0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                         where i = 1, 2, 3, …, 208. 

𝛽 is a 11x1 vector of fixed effect parameters. 

Z is a 208x192 design matrices relating random effects (test treatments).  

The design matrix of Z is in the form: 

Zi1=       1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 from 43rd IDYN p# 3 

               0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 
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Zi2=     1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 from CD11 DZMS P# 6 

.            0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

. 

. 

Zi190=    1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 for CD11-DZMS P#719 

                  0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

Zi192=      1, 𝑖𝑓 𝑑𝑎𝑡𝑎 𝑖𝑠 for checks 

                  0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                  where i=1, 2, 3 … 208 

 U is a 192 x1 vector of unobservable random effects variables u (T.treat). The 

distribution of U is considered to be normal with mean vector zero and variance-

covariance matrix G. 

  𝜺 is a 208x1unobservable vector of random residuals. The distribution of 𝜺 is normal 

with mean vector zero and variance-covariance matrix R. 

 The vectors U and 𝜺 are statistically independent, i. e.; cov (u, 𝜀) = 0. 

 The fixed components of the model and the error terms are uncorrelated, i. e.; 

Cov (X, 𝜀) = 0. 

 U and ℰ are normally distributed with:  
 

𝐸  
𝑈
𝜀
 =  

0
0
  And 𝑣𝑎𝑟  

𝑈
𝜀
 =  

𝐺 0
0 𝑅

  

This study has a random variable for the data set. Therefore, it is a mixed model with one 

random variable and two fixed effects (block and treatn).  

   3.5. Data Analysis 

The MIXED procedure fits a variety of mixed linear models to data and enables you to use these 

fitted models to make statistical inferences about the data. A mixed linear model is a 

generalization of the standard linear model used in the GLM procedure, the generalization being 

that the data are permitted to exhibit correlation and non constant variability. The mixed linear 

model, therefore, provides with the flexibility of modeling not only the means of the data (as in 

the standard linear model) but their variances and co variances as well. 

 Since Gaussian data can be modeled entirely in terms of their means and variances/ co-

variances, the two sets of parameters in a mixed linear model actually specify the complete 
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probability distribution of the data. The parameters of the mean model are referred to as fixed-

effects parameters, and the parameters of the variance covariance model are referred to as 

covariance parameters. The fixed-effects parameters are associated with known explanatory 

variables, as in the standard linear model. These variables can be either qualitative (as in the 

traditional analysis of variance) or quantitative (as in standard linear regression). However, the 

covariance parameters are what distinguish the mixed linear model from the standard linear 

model.  

The PROC MIXED provides a variety of covariance structures. The most common of these 

structures arises from the use of random-effects parameters, which are additional unknown 

random variables assumed to impact the variability of the data. The variances of the random-

effects parameters, commonly known as variance components, become the covariance 

parameters for this particular structure.  

Once a model has been fit to the data, we can use it to draw statistical inferences via both the 

fixed-effects and covariance parameters. PROC MIXED computes several different statistics 

suitable for generating hypothesis tests and confidence intervals. 

The validity of these statistics depends upon the mean and variance-covariance model we select, 

so it is important to choose the model carefully.  

In analyzing data via a linear mixed model, we are faced with the determination of variance- 

covariance structure. Thus, let us make a distinction between fixed effects that determine the 

level (expected mean) of observations, and random effects that determine variance. For every 

model at least there exist one fixed effect (mean) and one random effect (residual variance). 

Since test treatments are random factor in the dataset, there exists variance component of random 

factor in addition to the residual variance. In this study there are two components contributing to 

the total variance of the observations: test treatments well as a residual variance component. In 

predicting test treatment that gives best yieldable genotype, we use best Linear Unbiased 

Prediction (BLUP). 
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3.5.1. Methods used for estimating Variance Components of Parameters 

Variance components models are a way to assess the amount of variation in a dependent variable 

that is associated with one or more random-effects variables. The central output is a variance 

components table which shows the proportion of variance attributable to a random effects 

variable's main effect and, optionally, the random variable's interactions with other factors. 

Random effects variables are categorical variables (factors) whose categories (levels) are 

conceived as a random sample of all categories.  

Variance components analysis usually applies to a mixed effects model that is, one in which 

there are random and fixed effects, differences in either of which might account for variance in 

the dependent variable. There must be at least one random effects variable. 

Generally model fitting consists of three parts; estimating variance parameters, fixed effects, and 

random effects. There is an intensive review and discussion of theoretical aspects and application 

of estimation methods used in mixed effect models (Littell et al., 1996). Unlike the situation with 

the Generalized Linear Model (GLM) estimation in LMM is based on different principles known 

by the names REML, ML, MIVQUE0, Types I, II and III. While the ML and REML are based 

on the maximum likelihood estimation approach which requires the assumption that the 

distribution of the response is normal MIVQUE0 does not require normality. This study utilizes 

three estimation methods, and these are the Henderson's Method III, ML and REML. 

   3.5.1.1. Henderson’s Method III.  

There are three methods of Henderson which include method I, method II and method III. It 

should be noted that method I cannot be applied to mixed models and hence it has been left out. 

Also method II is not very practical in estimating variance components and some of its 

disadvantages are Negative estimates can arise and Sampling variances of estimators are not 

obtainable in closed forms except under certain conditions. 

The Method III borrows the approach of sums of squares from the analysis of fixed effects 

models. The sums of squares used are the reductions in sums of squares due to fitting one model 

and various sub-models of it. We therefore begin a description of Method III with a brief 

summary of these sums of squares. 
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 In writing a general mixed model equation as y = Xβ + Zu +e we clearly distinguish between 

fixed effects and random effects, representing them by β and u, respectively. Suppose for the 

moment that we remove this distinction and combine β and u into a single vector b and write the 

model equation as Y = Wb + e and can be considered to be a fixed effects model forgetting all 

about the differences between fixed and random effects, that is by assuming var (u) = 0. Hence 

the best linear unbiased estimator of Wb is given as BLUE (Wb) = Wb
0
 .  

The reason for considering Henderson’s mixed model equations and their BLUP solutions is 

because the algorithms and methods of variance component estimation (such as ML and REML 

to be used later on) used by statistical packages such as SAS (which will be used extensively for 

this thesis) are based on the mixed model equations attributed to Henderson (1953). The 

algorithm uses BLUP estimation of the random effects. A good general summary of the 

derivation of the mixed model equations wheat trial data given above with all given assumptions 

is as follows. They are derived by maximizing the joint probability density function of y and u, 

for which assume that all levels of u pertain to the same source of variation, the var(𝜺) = R and 

var(u) = G of order q and cov(u, 𝜺) = 0.  

𝑓 𝑦, 𝑢 = 𝑓 𝑦 𝑢 . 𝑓 𝑢 =
exp {−

1

2
(y − x𝛽 − 𝑍𝑈)′𝑅−1(y − x𝛽 − 𝑍𝑈) + 𝑈′𝐺−1𝑈}

(2𝜋)0.5(𝑁𝑞)|𝑅|0.5|𝐺|0.5
 

                                                                                                                                       (13)                                                                                                                                               

If we take the partial derivatives of f(y, u) and equate them to zero with respect to elements first 

of 𝛽 and then of u gives, using 𝛽  and 𝑢  to denote the solutions 

 𝑋
′𝑅−1𝑋 𝑋′𝑅−1𝑍

𝑋′𝑅−1𝑋 𝑍′𝑅−1𝑍 + 𝐺−1  𝛽
 

𝑢 
 =  

𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
                                                                     (14) 

3.5.1.2. Maximum Likelihood Method.  

Maximum likelihood estimation begins with writing a mathematical expression known as the 

Likelihood Function of the sample data. Loosely speaking, the likelihood of a set of data is the 

probability of obtaining that particular set of data, given the chosen probability distribution 

model. This expression contains the unknown model parameters. The values of these parameters 

that maximize the sample likelihood are known as the Maximum Likelihood Estimates. 

The method of maximum likelihood estimation, developed by R.A. Fisher in the 1920s (Fisher, 



 

Estimation of Genetic Parameter from Trails Designed as Augmented Block Design.  Page 27 
 

1925) seems to have been first applied to the estimation of variance components by Crump 

(1947, 1951). In this and almost all subsequent presentation of this topic, normality is assumed 

for the error terms and all the random effects, normality with zero means, homogeneous variance 

of all random effects pertaining to each factor, and all covariance’s zero. Within this framework, 

Herbach (1959) gave careful attention, for balanced data, to the need for maximum likelihood 

estimators (MLEs) to be nonnegative, this being essential because ML theory demands that 

maximization be over the parameter space. In describing ML for variance components it is 

therefore essential to distinguish between solutions of the ML equations and estimators. They are 

not necessarily the same. Nor are they always the same as ANOVA estimators.  

ML estimation is an old, yet clear, conceptually very simple, and efficient way of estimating the 

variance components of data. The crucial requirement in estimating the variance components of a 

set of data using ML technique is the assumption of underlying probability distributions for the 

data. For a given model of analysis, parameters to be estimated and data with a specified 

distribution, we can calculate the likelihood of particular numeric values of the parameters, i.e. 

how likely it is that the data have been sampled from a population with these parameter values. 

This is analogous to probability calculations where we determine the probability of observing a 

specific set of data for given parameter values, but with ’cause’ and ’effect’ reversed. ML 

estimates are then, by definition, the parameter values for which the likelihood is maximized. 

As reviewed by Harville (1977), ML estimators are consistent, asymptotically normal and 

efficient, i.e.; all information available is utilized in an optimal way. Moreover, they are well 

defined for cases which cannot be accommodated by standard ANOVA models. 

3.5.1.3. The Maximum Likelihood Equations 

In general, if a vector X of random variables is distributed- N (𝝁, 𝑽 ) we know that the density 

function of X is given as  𝑓 𝑥 =
exp {−0.5 𝑥−𝜇 ′𝑉−1 𝑥−𝜇 }

(2𝜋)0.5𝑁 |𝑉|0.5  

So for our y we have y ~NN (X𝜷, 𝑽) is a function of multivariate normal distribution with 

parameters in 𝜷 and V to be  
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𝑓 𝑦 =
exp{0.5 𝑦 − 𝑋𝛽 ′𝑉−1(𝑌 − 𝑋𝛽)}

(2𝜋)0.5𝑁|𝑉|0.5
 

                                                                                                                                     (15) 

Where N is the length of y and │V│is the determinant of V. The function gives the probability 

of finding a certain y given the parameters. The parameters are the means in X𝜷 (“location 

parameters”) and the variances in V (“dispersion parameters”). However, this function can also 

be used the other way round i. e.; if we have observed data, it gives us the probability of having 

such data for certain parameter values. When the data y is known, f(y) is a likelihood function 

and this function can be maximized in the parameters, i. e.; we want to find the parameters for 

which f(y) has highest value and instead of maximizing f(y) we now maximize L = L(𝜷, 𝑽│X, 

y), which is the log likelihood function, in equation (19) y taking the log of both sides of the 

equation and maximize log L with respect to 𝜷 and σi
2
 as 𝓵 to gives us:l 

ℓ = log 𝐿 =
1

2
Nlog2𝜋 −

1

2
log|V|-

1

2
 𝑦 − 𝑋𝛽 ′ 𝑉−1

 𝑦 − 𝑋𝛽                                   (16) 

Differentiating (20) with respect to 𝜷 will be denoted as l𝜷 so we get 

ℓβ =
∂ℓ

∂𝛽
= X′  𝑉−1𝑦 − X′  𝑉−1𝑋𝛽                                                                                               (17) 

Now differentiating equation (15) with respect to σi
2
 and making use of: 

𝛿𝑉

𝛿𝜎𝑖
2 = 𝑍𝑖𝑍𝑖

′𝑎𝑛𝑑
𝛿log |𝑉|

𝛿𝜎𝑖
2 =  𝑉−1 𝛿𝑣

𝛿𝜎𝑖
2  𝑉−1

    for i = 0, 1, 2, … , r as a notational convenience is to 

define uo = 𝜀 , qo = N, Zo =IN and 𝜎2
𝜀 = 𝜎𝑜

2
, leads to 

ℓ𝜎𝑖
2 =

𝛿ℓ

𝛿𝜎𝑖
2 =

−1

2
𝑡𝑟  𝑉−1𝑍𝑖𝑍𝑖

′ +
1

2
 𝑦 − 𝑋𝛽 ′  𝑉−1𝑍𝑖𝑍𝑖

′  𝑉−1(𝑦 − 𝑋𝛽)                                     (18) 

Searle et al (2006, p. 236) then gives the ML equations as 

X′ ⩒−1 Xβ∙ = X′ ⩒−1 y                                                                                          (19) 

And 

𝑡𝑟  𝑉−1𝑍𝑖𝑍𝑖
′ =  𝑦 − 𝑋𝛽 ′ 𝑉−1𝑍𝑖𝑍𝑖

′  𝑉−1(𝑦 − 𝑋𝛽)                                                      (20) 

 

For i = 0, 1, 2, …, r an algebraically simpler expression for (18) is derived by defining 

𝑃 =  𝑉−1 −  𝑉−1𝑋(𝑋′ 𝑉−1𝑋)
−
𝑋′ 𝑉−1                                                                                (21) 
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Then from (17) it is clear that for Ṗ being P with replaced by 𝑉  

𝑉 
−1

(𝑦 − 𝑋β
∙
) = Ṗy                                                                                           (22) 

So that the ML equations (18) and (19) are 

Where tr  V−1ZiZi
′
  is a column vector and  ⩒ is estimate of 𝑉 𝑤𝑕𝑒𝑟𝑒 𝜎∙2𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝜎2   

3.5.1.4. The Maximum Likelihood Solutions Using BLUP 

Searle et al (2006, pp. 278-279) give the following solutions to the ML equations, that with the 

superscript (m) denoting computed values after m iterations. We have: 

𝜎𝜀
2(𝑚+1)

=
[𝑦 ′ (𝑦−𝑋𝛽0 𝑚  −𝑍𝑢  𝑚  )]

𝑁
                      (23a) 

𝜎𝑖
2(𝑚+1)

=
𝑢 ′ (𝑚 )𝑢 (𝑚 )+𝜎𝑖

2 𝑚  
𝑡𝑟(𝑤𝑖𝑖

(𝑚 )
)

𝑞𝑖
=

𝑢 ′ (𝑚 )𝑢 (𝑚 )

𝑞
𝑖−𝑡𝑟 (𝑤 𝑖𝑖 )(𝑚 )

              (23b) 

Where 𝑊 = (𝐼 + 𝑍′𝑅−1𝑍𝐺)−1 = 𝑊𝑖𝑗  , i,j = 1, 2, 3, …., r and G has qi diagonal elements 

of 𝜎𝑖
2
 . Searle et al (2006, pp.284-285) give the working of ML estimation via iterating as 

follows: Consider the set of equations as above: 

𝜎𝜀
2(𝑚+1)

=
[𝑦 ′ (𝑦−𝑋𝛽  𝑚  −𝑍𝑢 𝑚  )]

𝑁
              (23a’) 

𝜎𝑖
2(𝑚+1)

=
𝑢 ′ (𝑚 )𝑢 (𝑚 )+𝜎𝑖

2 𝑚  
𝑡𝑟(𝑤𝑖𝑖

(𝑚 )
)

𝑞𝑖
=

𝑢 ′ (𝑚 )𝑢 (𝑚 )

𝑞
𝑖−𝑡𝑟 (𝑤𝑖𝑖 )(𝑚 )

             (23b’) 

1. 𝐷𝑒𝑐𝑖𝑑𝑒 𝑜𝑛 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝜎𝜀
2(0)

𝑎𝑛𝑑 𝜎𝑖
2(0)

, 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑚 = 0. 

2. Calculate 𝑊(𝑚) = (𝜎𝜖
2 𝑚 

𝐼 + 𝑍′𝑍𝐺 𝑚 )−1𝜎𝜀
2(𝑚)

, var(u)=G and now solve for 

𝛽(𝑚)𝑎𝑛𝑑 𝑉(𝑚)and then calculate. 

𝑢(𝑚)=𝐺(𝑚)𝑉(𝑚) from  𝑋
′𝑋 𝑋′𝑍𝐺(𝑚)

𝑍′𝑋 𝑊(𝑚)
  𝛽

 𝑚 

𝑢 𝑚 
 =  

𝑋′𝑦

𝑍′𝑦
  

3. Now calculate 𝜎𝜖
2 𝑚+1 

and either of the expressions for 𝜎𝑖
2 𝑚+1 

. 

4. If convergence is reached for 𝝈𝟐’s set 𝜎2(𝑚+1). Denote the resulting terms as 

𝑊 =𝑊(𝑚+1), 𝛽 = 𝛽(𝑚+1), 𝑉 = 𝑉(𝑚+1)and 𝑢 = 𝑢(𝑚+1). Use 𝝈 𝟐and 𝑾 to calculate the 

information matrix, I (𝜎 𝑀𝐿
2 ). 
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5. If convergence is not reached, increase m by unity and return to step 2. At each repeat of 

step 3 uses whichever of the equations (a) or (b), which was used on the first occasion. 

The matrix V is by definition always non-negative definite and usually positive definite. 

Therefore, the ML estimators 𝜎𝜀
2
 𝑎𝑛𝑑 𝜎𝑗

2
 must satisfy these constraints that 𝜎𝜀

2
 > 0 and 𝜎𝑗

2
 ≥0 

for i = 1, 2, 3, …, r. Computer programs must be able to satisfy their constraints and we replace 

the negative solution by a small positive number if any 𝜎𝑗
2
 be set to zero. 

The dispersion matrix of the parameter estimates is estimated using the inverse of the 

information matrix, by substituting the maximum likelihood equations for the parameters in the 

information matrix. Longford (1993) points out that this becomes problematic for small data sets 

since; (a) the asymptotic properties may not apply them and (b) there is a lot of uncertainty about 

the parameters involved in the information function and the information function may vary 

substantially with the parameters. 

Finally to lead us on to the next section in this chapter, one of the criticisms leveled at ML, is the 

statistical analyses used so far in cereal research as related to various factors were ordinary 

maximum likelihood estimator of variance component. But this takes no account of the degree of 

freedom used in estimating fixed effect and hence is biased (as cited by Girma, 2005). 

 3.5.1.5. Residual Maximum Likelihood Estimation.  

The Restricted Maximum Likelihood Method (METHOD=REML) is similar to the maximum 

likelihood method, but it first separates the likelihood into two parts: one that contains the fixed 

effects and one that does not (Patterson and Thompson 1971). The procedure uses a Newton-

Raphson algorithm, iterating until convergence is reached for the log-likelihood objective 

function of the portion of the likelihood that does not contain the fixed effects. 

A major drawback of ML estimation in a mixed model is that fixed effects are treated as if they 

were known, i.e. the loss in degrees of freedom due to fitting these effects is ignored. 

Fortunately, a modified ML procedure, the so-called Restricted (Marginal) Maximum Likelihood 

(REML) as described by Patterson and Thompson (1971), overcomes this problem by 

maximizing only part of the likelihood which is independent of the fixed effects. Conceptually, 

this is achieved by replacing the data by linear functions thereof, ‘error contrasts’, with an 

expectation of zero. These can be viewed as the observations adjusted for generalized least-
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squares estimates of the fixed effects. One of the attractive features of REML is that it takes into 

account the degree of freedom in the variance component estimation and it is based on the idea 

of estimating the variance components via the residuals calculated after fitting by ordinary least 

squares of just the fixed effects part of the model. 

Even more than ML, REML estimation of variance components is computationally highly 

demanding and this has limited practical applications. However, over the last decade 

considerable research effort has concentrated on the development of specialized and efficient 

algorithms. Advances in theory, in particular the development of specialized and efficient 

algorithms, together with an increase in the general level of computing power available have led 

to progressive use of REML. Widely distributed statistical packages like SAS now provide 

options for REML analyses. 

3.5.1.5.1. The Bias 

REML is often interpreted as a technique that is based on linear combinations of y, not forgetting 

that these linear combinations do not contain any fixed effects. Not surprisingly these linear 

combinations of values not containing any fixed effects turn out to be equivalent to the residuals 

obtained after we fit the model the fixed effects. Consider the set of values C’y where matrices 

of the form C’ can be chosen to satisfy C’y  = C’X𝜷 + C’Zu such that no term in 𝛃 is contained. 

i. e.; C’X𝜷 = 0 ∀𝜷                                                                                                 (R1) 

This implies C’X = 0, with 𝐶𝑟∗𝑁
′

 of rank r= r(X) 

𝑃 = 𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 = 𝐶(𝐶 ′𝑉−1𝐶)−1𝐶 ′                                           (R2) 

3.5.1.5.2. REML Equations 

Searle et al (2006, pp. 251- 252) give the REML equations which we summarize as follows: We 

have that y∽N (X𝜷, 𝑽) for C’X = 0 so C’y ∽N (0, C’VC). Using the Maximum Likelihood 

estimation equation we have that  

𝑡𝑟 𝑉−1𝑍𝑖𝑍𝑖
′ = 𝑦′Ṗ𝑍𝑖Ṗ𝑦  , i=1, 2, 3….r       (R3) 

So if we make the following replacements: Replace y by C’y, X by C’X = 0, Z by C’Z and V by 

C’VC. Then equation (23) becomes: 
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𝑡𝑟 (𝐶 ′ ⩒ 𝐶)−1𝐶 ′𝑍𝑖𝑍𝑖
′𝐶 = 𝑦′𝐶(𝐶 ′ ⩒ 𝐶)−1𝐶 ′𝑍𝑖𝑍𝑖

′𝐶(𝐶 ′ ⩒ 𝐶)−1𝐶 ′𝑦  (R4) 

Where, i=1, 2, 3,….r 

And 𝑃 = 𝑉−1 − 𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑉−1 = 𝐶(𝐶 ′𝑉𝐶)−1𝐶 ′  so that equation (R4) now 

becomes 𝑡𝑟(Ṗ𝑍𝑖𝑍𝑖
′ )= 𝑦′Ṗ𝑍𝑖𝑍𝑖

′Ṗ𝑦 i=1,2,3…r     (R5) 

It is clear that PVP = P so we can use the following identity to give us an alternate form of the 

REML equations (as given by Searle et al 2006) 

𝑡𝑟(𝑍𝑖
′Ṗ𝑍𝑗 𝑍𝑗

′Ṗ𝑍𝑖)𝜎 2=𝑦′Ṗ𝑍𝑖𝑍𝑖
′Ṗ𝑦, i= 1,2,3,…,r      (R6) 

Searle et al (2006, p.252) state that the REML equations don’t contain K except only through its 

relationship to P.  

Thus we can express P as 𝑃 = 𝑉−1 − 𝑉−1𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 = 𝐶(𝐶 ′𝑉−1𝐶)−1𝐶 ′  

which does not involve C. This shows that the REML equations are invariant to a particular set 

of error contrasts that are chosen. Searle et al (2006, pp. 282-284) gives the following solutions 

to the REML equations, that with the superscript (m) denoting computed values after m rounds 

of iteration. We have: 

𝜎𝜀
2(𝑚+1)

=
[(𝑦 ′ (𝑦−𝑋𝛽0 𝑚  −𝑍𝑢  𝑚  )]

𝑁−𝑟
       (R7) 

𝜎𝑖
2(𝑚+1)

=
𝑢 ′ (𝑚 )𝑢 (𝑚 )+𝜎𝑖

2 𝑚  
𝑡𝑟(𝑇𝑖𝑖

(𝑚 )
)

𝑞𝑖
=

𝑢 ′ (𝑚 )𝑢 (𝑚 )

𝑞
𝑖−𝑡𝑟 (𝑇𝑖𝑖 )(𝑚 )

    (R8) 

Where 𝑇 = (𝐼 + 𝑍′𝑆𝑍𝐷)−1=𝑇𝑖𝑗  i,j=1,2,3,…r and D has 𝑞𝑖  diagonal elements of 𝜎𝑖
2 

3.5.2. Estimation of the Parameters 

After a convergence criterion is fulfilled, then the next point is estimation of the parameters. For 

the mixed model given by equation (2), a key assumption in the foregoing analysis is that U and 

𝜺 is normally distributed with 𝐸  
𝑈
𝜀
 =  

0
0
  𝑎𝑛𝑑 𝑉𝑎𝑟  

𝑈
𝜀
 =   

𝐺 0
0 𝑅

   

Hence, the variance of y is, therefore, V = ZGZ’ + R. As a result we can model V by setting up 

the random effects design matrix Z and by specifying covariance of G and R, with Z containing 
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dummy variables, G containing variance components in a diagonal structure, and  𝑅 = 𝜎𝜀
2𝐼𝑁 

where IN denotes the N×N identity matrix. As it is shown above, foregoing analysis we need to 

know G and R, since most of the time they are unknown parameters, we first find estimates of 

those parameters. 

3.5.2. 1. Estimating G and R in the Mixed Model. 

Estimation of parameters in the mixed model is more difficult than in the general linear model. 

Because there are not only needs fixed effect parameter estimates as in the general linear model, 

but also we have unknown parameters in u, G, and R as well. Generalized least squares (GLS) is 

more appropriate than Least Square (LS) and applied by minimizing (𝑌 − 𝑋𝛽)′𝑉−1(𝑌 − 𝑋𝛽) or 

maximize the multivariate normal distribution function after taking the natural logarithm. 

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such 

information, one approach is to use estimates GLS, in which we insert some reasonable estimate 

for V into the minimization problem. The goal thus becomes finding a reasonable estimate of G 

and R and intern V. 

 In many situations, the best approach is to use likelihood-based methods, exploiting the 

assumption that u and are normally distributed (Hartley and Rao, 1972; Patterson and Thompson 

1971; Harville 1977; Laird and Ware 1982; Jennrich and Schluchter 1986). PROC MIXED in 

SAS implements two likelihood-based methods: maximum likelihood (ML) and 

restricted/residual maximum likelihood (REML). Using calculus, it is possible to reduce this 

maximization problem to one over only the parameters in G and R.  

The corresponding log likelihood functions are as follows: 

𝑀𝐿: 𝑙 𝐺, 𝑅 = −
1

2
log 𝑉 −

1

2
𝑟′𝑉−1𝑟 −

𝑛

2
log(2𝜋) 

𝑅𝐸𝑀𝐿: 𝑙𝑅 𝐺, 𝑅 = −
1

2
log 𝑉 −

1

2
log X′V−1X − −

1

2
𝑟′𝑉−1𝑟 −

𝑛 − 𝑝

2
log(2𝜋) 

Where 𝑟 = 𝑦 − 𝑋(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦 and p is the rank of X.  

Mixed model actually minimizes -2 times these functions using a ridge-stabilized Newton-

Raphson algorithm. One advantage of using the Newton-Raphson algorithm is that the second 

derivative matrix of the objective function evaluated at the optima is available upon completion. 



 

Estimation of Genetic Parameter from Trails Designed as Augmented Block Design.  Page 34 
 

Denoting this matrix H, the asymptotic theory of maximum likelihood (Serfling 1980) shows that 

2H
-1

 is an asymptotic variance-covariance matrix of the estimated parameters of G and R. 

However, these can be unreliable in small samples, especially for parameters such as variance 

components which have sampling distributions that tend to be skewed to the right. 

But since, a residual variance 𝜎2is a part of mixed model; it can usually be profiled out of the 

likelihood. This means solving analytically for the optimal 𝜎2and plugging this expression back 

into the likelihood formula (Wolfinger et al, 1994). This reduces the number of optimization 

parameters by one and can improve convergence properties. Mixed model profiles the residual 

variance out of the log likelihood whenever it appears reasonable to do so. Therefore, in Mixed 

Model analysis, the ML,REML, or Type I through Type III provide estimates of G and R, which 

are denoted 𝐺  and 𝑅  ,respectively. 

3.5.2. 2. Estimating Fixed Effects and Predicting Random Effects  

Inferences about fixed effects have come to be called estimates, whereas those that concern 

random effects are known as predictions. Procedures for obtaining such estimators and predictors 

have been developed using a variety of approaches. The most widely used procedures are BLUE 

and BLUP, referring respectively to best linear unbiased estimator and best linear unbiased 

predictor. They are best in the sense that they minimize the sampling variance, linear in the sense 

that they are linear functions of the response variable, and unbiased in the sense that E[BLUE(𝛽  

)] = β and E[BLUP(𝑈 )] = E(U). For the mixed model given by Equation (6), the BLUE of β is: 

𝛽 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦                    (R9) 

With V = ZGZ’ +R provided all indicated inverses exist. If not, then generalized inverses are 

used and this is just the generalized least squares (GLS) estimator. Henderson (1963) showed 

that the BLUP of U is:  

𝑈 = 𝐺𝑍′𝑉−1(𝑦 − 𝑋𝛽 )                 (R10) 

Which is equivalent to the conditional expectation of u given y under the assumption of 

multivariate normality and since everything is Gaussian, these are linear functions of the data, 

and as everything is linear, they are unbiased. They have minimum variance amongst such 
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estimators. The solution of Equations (R7) and (R8) requires the inverse of the covariance matrix 

V. However, the computation of   𝑉−1can be quite difficult. As a way around this problem, 

Henderson (1984) offered a more compact method for jointly obtaining 𝛽  and 𝑈  in the form of 

his mixed-model equations (MME), 

 𝑋
′𝑅−1𝑋 𝑋′𝑅−1𝑍

𝑋′𝑅−1𝑋 𝑍′𝑅−1𝑍 + 𝐺−1  𝛽
 

𝑢 
 =  

𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
             (R11) 

While these expressions may look considerably more complicated than Equations (R7) and (R8), 

𝑅−1 and 𝐺−1are trivial to obtain if R and G are diagonal, and hence the sub-matrices in Equation 

(R9) are much easier to compute than 𝑉−1. A second advantage of Equation (R9) can be seen by 

considering the dimensionality of the matrix on the left; the matrix that needs to be inverted to 

obtain the solution for 𝛽  and 𝑈  is of order (p + q) x (p + q), which is usually considerably less 

than the dimensional of VN x N matrix. 

Although there are several ways to derive the mixed-model equations (Robinson 1991), 

Henderson (1953) originally obtained them by assuming that the covariance matrices G and R 

are known and that the densities of the vectors u and 𝜺 are each multivariate normal with no 

correlations between them. Equation (R9) then yields the maximum likelihood estimates of the 

fixed and random effects. Henderson (1963) later showed that the mixed model equations do not 

actually depend on normality, and that 𝛽  and 𝑈  are BLUE and BLUP, respectively, under 

general conditions provided the variances are known. 

However, the contrary is usually true, so that (R7) and (R8) cannot be used in their basic forms. 

In most cases, V = ZGZ’+ R is a function of a vector of covariance parameters, 𝛉. The estimated 

least squares approach first parameter estimates of the covariance matrices G and R, then 

substitutes these estimates for the parameters into the functional form of G (𝜽) and R (𝜽) to 

obtain 𝐺  = G (𝜽) and 𝑅  = R (𝜽). Then 𝑉  is computed as  𝑉 = 𝑍𝐺  𝑍′ + 𝑅  . Maximum likelihood, 

Residual maximum likelihood, or Type I, Type II, Type III sum of Squares has become the 

favored method of estimation (Searle et al 2006) of random effect parameters (G and R). 
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Thus, an estimate 𝑉  of V must be used in the computation, providing the “estimated” generalized 

least squares (EGLS) estimate (BLUE) of 𝛃 and BLUP are becomes:  

𝛽 = (𝑋′𝑉 −1𝑋)−1𝑋′𝑉 −1𝑦         (R7’) 

And  𝑈 = 𝐺 𝑍′𝑉 −1(𝑦 − 𝑋𝛽 )         (R8’) 

3.6. Choosing Covariance Structure and Model selection 

We have many choices for the covariance structures (G and R). Ideally the covariance structure 

should be known from previous work or subject matter condition. Otherwise, one should risk of 

shopping for the structure that leads to a better fit. We contemplate a few life structures and 

choose among them according to some measures of fit. These lead to be composed as two 

measures; one that rewards for the acquiring of the fit and another penalize for the number of 

parameters it takes to achieve best fit. 

 Reward: looks at how well the estimated and observed structures agree. 

 Penalty: considers how many parameters it takes to achieve the fit. 

Information criteria such as AIC (Akaike, 1974), BIC (Schwarz, 1978), AICC (Hurvich and Tsai, 

1989), and CAIC (Bozdogan, 1987) are available for selecting the covariance structure (G, and 

R) and also for model selection. In general, these information criteria are functions of both the 

maximized log-likelihood for a given model (l) and a penalty term based on the number of 

parameters (q) in the model (Gurka, 2006). Common formulas for AIC and BIC are: 

 𝐴𝐼𝐶 = −2ℓ + 2𝑞  And 

𝐵𝐼𝐶 = −2ℓ + 2𝑞(𝑙𝑜𝑔𝑁∗)                 (R15) 

Where, ℓ is the log-likelihood of either of ML or REML, 𝑁∗ = N under ML, and 𝑁∗ = N – p 

under REML. For ML estimation, q = p + k, the total number of parameters in the model. 

However, under REML estimation, q = k, the number of covariance parameters, and p is the 

number of fixed effects parameters (Gurka, 2006). Note that the AICC corrects for small sample 

sizes and as the sample size increases, the AICC converges to the AIC. In the same way, as the 

sample size increases, the CAIC converges to the BIC (SPSS results coach, Version 13.0). The 

model with the smaller value of either of the above is the better the model fits for the data. But, 

since we are interested in getting as simple models as possible we also have to consider the 

number of parameters in the structures which is the smallest as much as possible. 
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    3.7. Model Checking 

A statistical model, whether of the fixed-effects or mixed-effects factors, represents how we 

think the data were generated. Diagnostics is the assessment of agreement of the model and the 

data fitted and it is very important in linear mixed models because likelihood based estimation 

methods are particularly sensitive to unusual observations especially. Many graphical methods 

and analytical techniques for linear regression model extend to mixed model setting as well. 

As we have appropriate covariance structure for the selected model, it is trivial to check whether 

or not the error term for the linear mixed model is assumed to be independent and normally 

distributed with zero mean and constant variance. In other words check whether or not the 

observed residual fitted would have mean zero and constant variance.  

There are many mechanisms to check the normality assumptions of the model, like the normal P-

P plots, histogram of residuals, and a scatter plot of standardized residuals versus predicted 

values. All these are strengthen using SAS PROC UNIVARIATE procedure for residuals. 

Normal probability plot (P-P plot) is sketched by using each residual against the expected value 

under normality. A plot that is nearly linear suggests that the normality assumption is valid, 

whereas a plot departs substantially from linearity suggestion that the distribution of the errors is 

not normal. If the sketch of normal P-P plot is scattered around the straight line, then we can say 

the observed error satisfies the stated normality assumptions. Substantial departure from the 

straight line indicates that the distribution is not normal. On the other hand, if the plot shows a 

certain pattern instead of following the straight line randomly then we can conclude that the 

samples are taken from either positive or negative skewed distribution based on the pattern of 

plot (Douglas et al 1991). 

The normality assumption may also be checked by constructing histogram of residuals. 

However, if the number of residuals is too small it is too difficult to allow easy visual 

identification of the shape of the normal distribution. If the line of normal curve is almost 

symmetric around the mean of the residual, then there is an indication of the satisfaction of the 

normality assumption. However, if the normal curve is tailed in either left or right, the 

assumption of normality is failed. 
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The standardized residuals are also useful tool in detecting departures of the error term from the 

normality. A plot of standardized residual against the corresponding fitted (predicted) values of 

the dependent variable is useful to such checking. If the plot of standardized residual versus 

predicted values lie within plus or minus two horizontal bands, then there are no model 

violations of normality assumptions. In general, if the errors are normally distributed, then 

approximately 99 percent of them should fall between plus and minus three. If the scatter plot of 

standardized residual versus predicted values lie outside the specified horizontal band with the 

large number of observation, then it is possible to say that there is a model deficiency (Douglas 

et al 1991).  

    3.8. Computer package use in this study  

The Statistical Analysis System (SAS) package has been used in this study for the analysis of the 

data. It is commonly used statistical software package in agricultural research. The use of SAS in 

statistical analysis is rapidly increasing with the availability of command-driven SAS in personal 

computers (PC–SAS). It is powerful in data management and flexible in formatting output. 

    3.9. Ethical Consideration  

The research Ethics Review Board of Jimma University has provided an ethical clearance for the 

study. The data was brought from Oromia Agricultural research institute and to do so the 

department of statistics asked to write an official co-operation letter to the Oromia agricultural 

research institute from where data was obtained. In this research, the information obtained from 

the researchers is secured.  

 

 

 

 

 

 

 

 

 



 

Estimation of Genetic Parameter from Trails Designed as Augmented Block Design.  Page 39 
 

               4.  RESULT AND DISCUSSION 

4.1. Choosing Covariance Structures and model selection 

In order to estimate variance components, firstly we need to obtain covariance structures and 

have a model having an adequate representation of the data. Here in this thesis, the data are not 

longitudinal and the structure of G may have VC, CS or UN. A model fitted based on variance 

component structure (VC) has smallest AIC among all the covariance structures. In addition to 

this, VC has a simple covariance structure as it has one parameter (𝜎2
) only. This implies that VC 

is appropriate for analysis and further interpretation. In fact, covariance structure in this thesis is 

variance component (VC). 

Table 4.1 shows that all models were comparable as convergence criteria met with positive 

Hessian matrix. If convergence is met and the estimated Hessian matrices are positive definite 

then estimators have some desirable properties. The fixed effect estimates are unbiased (Kackar 

and Harville, 1984) and estimates of variance parameters (elements in random effects and 

residual) are asymptotically unbiased (Raudenbush and Bryk, 2002). The estimates of fixed 

effects and variance parameters also tend to be asymptotically efficient. Taking this into 

consideration, a model that contained random variable Test treatments has smallest values of 

AIC and BIC for ML (AIC = 2331.7 and BIC = 2367.6). This model also has the smallest values 

of AIC and BIC for REML (AIC = 2250.2 and BIC = 2256.7). Therefore, a model that contains 

all fixed effects (treatn and block) and random factor Test treatments is appropriate to the data 

set of this study.     

                   Table 4.1: Selected Information Criterion for model selections. 

 

 

Variables Methods  -

2LogLike 

Diff ML 

(REML)   

ML REML 

Criteria Criteria 

-2LogLike AIC BIC 

 

-2LogLike AIC BIC   

Fixed  2322.1 2338.1  2335.0 2284.2 2290.2 2289.1   

Fixed and 

random  

2309.7 2331.7 2367.6 2246.2 2250.2 2256.7 12.4 (38) 
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Now the linear mixed model of this study is Y =X𝜷 + ZU +𝜺 can be fitted to the data as: 

Y208x1: a vector representing yield of durum wheat in gram per plot. 

X208x11: the design matrix of fixed effects.  

𝛽11x1: vector parameters of fixed effects. 

Z208x192: represents the matrix for random effect. 

U192x1: represents the random effect parameters of test treatments. 

4.2. Model Checking 

As discussed in previews section, we used the PP-plot of residual, histogram of residual, 

goodness-of-fit tests  and the scatter plot of standardized residual versus predicted values to 

check whether the stated normality assumptions is met. The PP-plot of residuals in Figure 1 

shows that the data conforms to the hypothetical normality assumptions. The fact that the plot is 

scattered around the straight line and does considerable patter indicates that the distribution of 

the error term and the response variable is normal (linearity of the error term is fulfilled). This 

implies that, the residuals are appearing to be fairly normally distributed. 

 

Figure 1:  The normal Probability plot of mixed effects for residuals.  

To strengthen this conclusion, the histogram of residual is better than PP-plot to identify easily 

the shape of the normal distribution as the number of data is too large. 



 

Estimation of Genetic Parameter from Trails Designed as Augmented Block Design.  Page 41 
 

 

        Figure 2: Histogram of mixed effects for Distribution of Residual 

The histogram of residual sketched in Figure 2 shows that considerably all observations are at 

the center and the normal curve is symmetrical about the mean of the residuals. It confirms the 

validity of normality assumptions (mean of residual is zero and the distribution of the data is 

symmetric around the mean). Finally, we have to consider the scatter plot of standardized 

residual versus predicted values to detect whether the model is debit or not. 

Figure 3 shows that a scatter plots of standardized residual versus the predicted values that 

includes random effects, y − X𝛽 − Z𝑈 versus X𝛽 + Z𝑈, of the response variable (yield of wheat). 

It shows that almost all observations are within the indicated horizontal band (plus or minus two) 

and the observations are randomly distributed around a horizontal line passing through zero. 

From this, we can see that constant variance across predicted values and the normality 

assumptions are fulfilled. 

The scatter plot of standardized residual versus predicted values are also used to identify 

potential outlying and influential observations. Therefore, there is no apparent outlier and 

influential observations so that it makes us confined with the original data for further analysis 

and interpretation. 
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 Figure 3: Scatter plot of standardized residuals versus predicted values for mixed effects.  

All of the above conclusions are checked by Goodness-of-Fit Tests method for Normal 

Distribution (normality tests) as the   p-value (0.150) of Kolmogorov-Smirnov is greater than 

level of significant, 0.05 (Table 4.2). The Kolmogorov-Smirnov statistic tests hypothesis that the 

data are normally distributed and a low significance value (generally less than 0.05) indicates 

that the distribution of the data differs significantly from a normal distribution. 

Table 4.2 Tests for Normality of residual by Goodness-of-Fit Tests method 

Goodness-of-Fit Tests for Normality distribution 

Test Statistic p Value 

Shapiro-Wilk W 0.987695 Pr < W 0.0696 

Kolmogorov-Smirnov D 0.049846 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.107957 Pr > W-Sq 0.0904 

Anderson-Darling A-Sq 0.737335 Pr > A-Sq 0.0549 

 

From the results of model checking, normality assumption is satisfied and the original data is 

appropriate and can be used in statistical analysis and inference without transformation of the 

response variable.    
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4.3. Descriptive statistics  

Every good statistical analysis begins with an "ocular test," that is, a good look at the data. 

Before directly proceeding to graphical representations of the data, it is important to look at the 

data itself, its structure to determine how best to proceed using the computer. A first step in any 

statistical data analysis is an exploratory data analysis. In order to get insight about the variables 

within the data set various exploration techniques were applied.  

From Table 4.3, the overall yield of data ranges from 531.9 to 847.6 gram per plot with mean of 

682.41gram per plot. The mean yield for check treatments (Toltu, Dire, Ejersa, Bakkalcha) 

ranged from 725.1, 611.1, 669.7 and 635.5 to 789.1, 772.2, 732.9 and 744.6 with mean of 755.2, 

688.94, 692.66 and 679.02 gram per plot respectively. The mean yield of un-replicated treatment 

(treatn (999)) ranged from 531.9 to 847.6 with mean of 680.11 gram per plot. Descriptive 

statistics give insight into the forgoing estimation and inference like the variation of response 

variable, covariance components of G and R, and predicted means for fixed and random effects.  

               Table 4.3: Descriptive statistics for some variables in the study 

Variables N Mean Std Dev Minimum Maximum 

Overall 208 682.40577 68.013956 531.9 847.6 

Block 1 44 724.31136 72.612803 556.9 847.6 

Block 2 44 673.175 62.903411 531.9 783.7 

Block 3 44 674.46364 59.23039 552 773.9 

Block 4 44 670.04318 60.813296 552.1 808.2 

Block 5 32 665.39688 69.801689 553.9 803.8 

treatn189 5 755.2 23.817641 725.1 789.1 

treatn190 5 688.94 75.047005 611.1 772.2 

treatn191 5 692.66 26.281229 669.7 732.9 

treatn192 5 679.02 40.649747 635.5 744.6 

Treatn999 188 680.1133 69.185932 531.9 847.6 

New 0 20 698.955 58.788161 584 789.1 

New 1 188 680.1133 69.185932 531.9 847.6 
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4.4. Estimation of Variance Components Using Data from trial designed by ABD  

The model fitting includes estimation of variance parameters, fixed effects, and random effects. 

A key assumption in the foregoing analysis for the model that U and 𝜺 are normally distributed 

with zero mean vector and covariance matrix of G and R. The estimates of G and R are 

calculated using SAS procedure of Henderson method III, ML and REML methods. The fitted 

model was obtained from model selection procedure as specified in previously, i. e., yield as the 

dependent variable, block and checks as fixed effects, and test treatments as random effects.  

4.4.1. Henderson’s Method III 

Searle et al (2006, p. 312) summarize different computer packages with their respective 

procedures to estimate variance parameters and in particular states that the SAS procedure 

VARCOMP calculates ANOVA estimators based on Henderson’s method III from SAS Type I 

sums of squares. The results are summarized in Table 4.4. The variance component estimated for 

the random part of the model, i.e., for test treatments is 1896.72, whiles the variance component 

of the error term is 2415.79; it represents the error that remains after the fixed effects and random 

effects are accounted for.  

Table 4.4: Estimation of Variance Components as 𝛃 and u are fixed for trial designed as ABD 

Source DF Sum of 

Squares 

Mean 

Square 

Expected Mean Square VARCOMP 

Estimates 

block 4 99774 24944 Var (Residual) + 0.9019 Var(T.treat) + Q(block, 

treatn) 

 

treatn 4 29203 7300.72 Var(Residual) + 0.0244 Var(T.treat) + Q(treatn)  

T.treat 187 799594 4275.91 Var(Residual) + 0.9807 Var(T.treat)     1896.72 

Residual 12 28990 2415.79 Var(Residual)       2415.79 

  

This model is fitted considering that there is no difference between 𝛃 and u and apply the 

VARCOMP procedure in SAS. Henderson’s method III in SAS does not give any fixed effects 

estimates or means, it is simply for estimating variance components. 

 



 

Estimation of Genetic Parameter from Trails Designed as Augmented Block Design.  Page 45 
 

The Type I analysis of variance in Table 4.4 consists of a sequential partition of the total sum of 

squares. The mean square is the sum of squares divided by the degrees of freedom, and the 

expected mean square is the expected value of the mean square under the mixed model. The “Q” 

notation in the expected mean squares refers to a quadratic form in parameters of the 

parenthesized effect. The Type I estimate of the variance components in Table 4.4 result from 

solving the linear system of equations established by equating the observed mean squares to their 

expected values. 

4. 4.2. Maximum Likelihood Estimation 

The “Maximum Likelihood Iterations” in Table 4.5: shows that the Newton-Raphson algorithm 

required two iterations to converge. The test treatments variance component is 1348.66 and 

within treatment variance component (Residual) is 1810.21. The estimate in Maximum 

Likelihood method for residual is smaller than the estimated Variance Component in Type I 

method.  One benefit of using likelihood-based methods is that an approximate covariance 

matrix is available from the matrix of second derivatives evaluated at the ML solution.   

Table 4.5: Estimation of Variance Components using ML for trial designed as ABD.  

Iteration History using ML Covariance Parameter Estimates using ML 

Iteration Evaluations -2 Log Like Criterion Cov 

Parm 

Estimate Standard 

Error 

Z Value p-value  

0 1 2314.5849  T.treat 1346.66 750.45 3.21 0.0007 

1 2 2309.72 1.2E-07 Residual 1810.21 597.63 3.03 0.0012 

2 1 2309.7199 0      

Asymptotic Covariance Matrix of Estimates       

Row Cov Parm CovP1 CovP2      

1 T.treat 563182 -364466      

2 Residual -364466 357156      

 4. 4.3. Residual Maximum Likelihood Estimation 

The “Residual Maximum Likelihood Iterations” in Table 4.6 shows that the REML optimization 

requires two iterations to converge. The REML estimate variance components of the random 

effect (test treatments) is 1906.67 and for an error (residual) is 2406.65 (Table 4.6).  
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Table 4.6: Estimation of Variance Components using REML for trial designed as ABD 

Iteration History REML Covariance Parameter Estimates REML 

Iteratio Evaluation -2 Res Log 

Like 

Criterion Cov Parm Estimat

e 

Standar

d Error 

Z 

Value 

p-value 

0 1 2248.17  T.treat 1906.67 997.35 1.91 0.028 

1 2 2246.16 0 Residual 2406.65 884.86 2.72 0.0033 

Asymptotic Covariance Matrix of Estimates REML      

Row Cov Parm CovP1 CovP2      

1 T.treat 994702 -787213      

2 Residual -787213 782970      

Table 4.7 shows the overall summary estimate for variance components and differences of each 

other. The difference between estimates of REML and ML for test treatments and the error term 

are 558.01, and 596.44 (𝜎2𝑢REML- 𝜎
2𝑢ML    and 𝜎2

𝜀REML- 𝜎2𝜀 ML), respectively. The reason that 

ML produces smaller estimate of error term is due to the fact that the ML procedure does not 

take into account the number of degree of freedom lost when estimating parameters of the model.  

Table 4.7: The differences of Estimates of Variance Component with Different Techniques for 

trial designed in ABD 

Covariance 

components 

Techniques 

 VARCOMP ML REML REML- 

VARCOMP 

REML- 

ML 

ML- 

VARCOMP 

T.treat 1896.72 1348.66 1906.67 9.95 558.01 -548.06 

Residual  2415.79 1810.21 2406.65 -9.14 596.44 596.44 

The contribution of random factor in the model variability is determined by the corresponding 

value of Inter-Class Correlation Coefficient (ICC) of random variables. The larger the inter-class 

correlation coefficient values of the random variable tell us the larger the contribution of that 

random variable for the variation of response variable. The ICC values of test treatments for 

VARCOMP, ML and REML are 43.9%, 42.7%, and 44.2%, respectively.  
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 In practice the best approach to estimate the variance components is to work out in all 

VARCOMP, ML and REML estimation techniques and compare them (as cited by Shauh, R., 

2002). If the difference is not too great, then either method can be chosen. If the difference is too 

great, then one must possibly look at the standard errors of the variance component estimates. 

Therefore, a difference of ICC with all techniques is too small and estimation based on REML 

techniques is best to estimate variance components in mixed model for random factors. 

4.5. Test Statistics of Variance Estimates and Inference for trials designed in   

ABD 

In a linear mixed model, variance component estimation produces point estimates of each 

parameter. These point estimates are valuable in making inferences. For inferences concerning 

covariance parameters in linear mixed model, it is possible to use likelihood based statistics. One 

common likelihood-based statistic is Wald statistic. It is computed as the parameter estimate 

divided by its asymptotic standard error. 

 The asymptotic standard errors are obtained from the inverse of second derivative matrix of the 

likelihood with respect to each of the covariance parameters. The observed Fisher information 

matrix is evaluated at the final iteration covariance parameter estimate.  

Therefore, PROC MIXED procedure uses these asymptotic variance-covariance estimates by 

profiling out the residual variance from the likelihood to calculate different statistic, like Wald 

statistic.  

Table 4.8 Covariance Parameter Estimates for ABD together with Wald Statistic 

Covariance Parameter Estimates ML Covariance Parameter Estimates REML 

Cov 

Parm 

Estimate Standard 

Error 

Z 

Value 

Pr Z Cov 

Parm 

Estimate Standard 

Error 

Z 

Value 

P-

value 

T.treat 1348.66 750.45 3.21 0.0007 T.treat 1906.67 997.35 2.14 0.028 

Residual 1810.21 597.63 3.03 0.0012 Residual 2406.65 884.86 2.72 0.003 

Table 4.8 displays covariance parameter estimates together with asymptotic standard errors and 

the Wald statistic of trial designed in ABD using ML and REML techniques. As we have seen 

from Table 4.8, the Wald test statistic indicates that the random variable (T.treat) and residuals 

are significant (p-value <0.05) for ML and REML methods. 
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 As the p-values of the covariance components are small, i. e., <0.05, (Table 4.8) the random 

variable is useful in the model to minimize error mean squares of response variable. It is because 

that the error mean square of response variable is the totality of both experimental and random 

effects. 

   4.6. Advantage of Mixed Effects Model over Fixed Effects Model. 

To see the advantage of mixed model over GLM, we need to observe the standard error of mixed 

model (likelihood estimation) and GLM. The standard errors of residuals from mixed model for 

trial designed as ABD are 597.63 and 884.86 in ML and REML techniques (Table 4.8) 

respectively. While the standard errors of residuals from GLM for trial designed as ABD is 

2415.79 (Table4.4). The ratios of standard errors of GLM to that of mixed model using trial 

designed as ABD are about 2.7 for both ML and REML. These results tell us that a mixed 

model is more valuable than a GLM to remove the downward bias of variance of the 

response variable and the boosted variance of the error terms of GLM. 

   4.7. Properties of Fixed & Random Effects for Trial Designed in ABD. 

As described in chapter three, the standard method is to solve the mixed model normal equations 

to obtain estimates of 𝛃 and u. When the inverse of (X’X) does not exist, a generalized inverse 

can be used in its place. But, in our case X has no full column rank and hence used a generalized 

inverse of X. Because, the sum of the last columns of the design matrix for fixed effect gives the 

first column which represents the intercept. As a result, the true inverse of X′V −1X  does not 

exist. Hence, generalized inverse is used instead. Therefore, to obtain the fixed effect estimates 

in both method of estimation, we have to use the generalized inverse of  X′V −1X  to over-come 

the nonexistent of inverse. 

Inferences about fixed effects have come to be called estimates, whereas those that concern 

random effects are known as predictions. If 𝐺  and 𝑅  are known, 𝛽  is the best linear unbiased 

estimator (BLUE) of 𝛃 and 𝑢  is the best linear unbiased predictor (BLUP) of u. They are best in 

the sense that they minimize the sampling variance, linear in the sense that they are linear 

functions of the response variable and unbiased in the sense that E (𝛽 ) = 𝜷 and E (𝑢 ) = E (U). 

However, G and R are usually unknown and are estimated using one of the above mentioned 
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(VARCOMP, ML and REML) methods. These estimates, 𝐺  and 𝑅 , are therefore simply 

substituted into the preceding expression to obtain the approximate variance-covariance matrix 

of (𝛽  − 𝛃, 𝑢  − 𝐮). In this case, the BLUE and BLUP acronyms are no longer applied, but the 

word empirical is often added to indicate such an approximation. The appropriate acronyms thus 

become EBLUE and EBLUP (McLean and Sanders 1988). As a result, the analysis and 

inferences using ML and REML estimation for EBLUE and EBLUP are the same. 

As we have seen from Table 4.9A, the PROC MIXED procedure in SAS sets zero the estimates 

of the last level of block (block five). However, these are not the actual estimates of those 

factors. In mixed model, if the model under consideration is a no-intercept model and the 

variable under consideration has different levels, PROC MIXED in SAS sets the estimates of 

each level of the variable by subtracting the estimates of the last level from the estimates of the 

remaining levels of the variable. If the model is intercept model, the estimates of each variable is 

the sum of intercept and the estimate set for specific level of the variable under consideration 

(SAS 1999). 

 Having this in mind, Table 4.9A shows difference mean effect yield of durum wheat genotypes 

in block five with other block levels. Therefore, the difference mean effect yield of durum wheat 

genotypes between block five and block one is 58.9145 and so on. Block five is statistical 

significance difference at alpha level of 0.05 only with blocks one. The difference mean effects 

of other blocks are statistically not different from zero at alpha level of 0.05. 

Table 4.9A: Empirical Best Linear Unbiased Estimates of Fixed Effects (blocks) 

Effect block Estimate Standard 

Error 

DF t Value P-value 

Intercept  665.4 11.4912 203 57.9 <.0001 

block 1 58.9145 15.1024 203 3.9 0.0001 

block 2 7.7781 15.1024 203 0.52 0.6071 

block 3 9.0668 15.1024 203 0.6 0.5489 

block 4 4.6463 15.1024 203 0.31 0.7587 

block 5 0 . . . . 
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Table 4.9B: Least Squares Means Estimates for Fixed Effects (blocks). 

Least Squares Means 

Effect block Estimate Standard Error DF t Value p-value  

block 1 724.31 9.7998 203 73.91 <.0001 

block 2 673.18 9.7998 203 68.69 <.0001 

block 3 674.46 9.7998 203 68.82 <.0001 

block 4 670.04 9.7998 203 68.37 <.0001 

block 5 665.4 11.4912 203 57.9 <.0001 

Table 4.9B shows actual estimated means for fixed effects (blocks). It is obtained by summing 

estimates of the intercept (=block five) and estimates of respective fixed effect levels for blocks. 

For instance, the actual estimated mean effect for last block is 665.40+0 (=665.40) and the actual 

estimated mean effect for fourth block is 665.40+4.64 (=670.04). In similar way the other block 

levels, actual estimated mean effect can be computed. 

 The predicted mean for last block is 665.40 which is the smallest predicted mean among all 

blocks. The predicted mean for the second block level is 724.31; that shows the highest predicted 

mean. The second highest predicted mean has been seen at block3 (=674.46). Table 4.9B also 

shows that all predicted means for all blocks have p-values less than 0.0001 and were statistically 

different from zero. This indicates that all blocks have different mean effects on estimating 

genetic parameters of durum wheat yield. 

Table 4.10A shows the difference mean effect yield of durum wheat genetic parameters among 

checks and un- replicated treatment. The difference mean effect yield of durum wheat genetic 

parameters between un-replicated treatment (treatn999) and check (189) is 75.0867 and so on. 

The statistical significance difference is existing at alpha level of 0.05 only between un-

replicated treatment (treatn999) and check (189). The other checks and un-replicated treatment 

(treatn999) are statistically no different mean effect from zero at alpha level of 0.05. 
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       Table 4.10A: Empirical Best Linear Unbiased Estimates of Fixed Effects (treatn) 

Solution for Fixed Effects 

Effect Treatn Estimate Standard 

Error 

DF t Value P-value 

Intercept  680.11 4.9345 203 137.83 <.0001 

treatn 189 75.0867 30.6578 203 2.45 0.0152 

treatn 190 8.8267 30.6578 203 0.29 0.7737 

treatn 191 12.5467 30.6578 203 0.41 0.6828 

treatn 192 -1.0933 30.6578 203 -0.04 0.9716 

treatn 999 0 . . . . 

Table 4.10B shows actual estimated means for fixed effects (treatn). It is obtained by summing 

estimates of the intercept (=treatn (999)) and estimates of respective fixed effect levels for treatn. 

For instance, the actual estimated mean effect for last level of treatn (999) is 680.11+0 (=680.11) 

and the actual estimated mean effect for treatn (192) is 680.11-1.09 (=679.02). In similar way the 

other treatn levels, actual estimated mean effect can be computed. 

    The predicted mean for treatn (bakkalcha (192)) is 679.02 which is the smallest predicted mean 

among all checks and un-replicated treatments. The predicted mean for the treatn (Toltu (189)) is 

755.20; that shows the highest predicted mean. The second highest predicted mean has been seen 

at treatn (191) is 692.66. This tells us the check treatment Toltu (treatn (189)) has the highest 

predicted mean and the predicted mean of the un-replicated treatment (treatn (999) = 680.11) is the 

third highest which greater than the check treatment Bakkalcha (treatn (192) = 679.02).   Table 4.10B 

also shows that all predicted means for all treatn levels have p-values less than 0.0001 and were 

statistically different from zero. This indicates that all treatn levels have different mean effects.  

   Table 4.10B: Least Squares Means Estimates for Fixed Effects (treatn). 

Least Squares Means 

Effect treatn Estimate Standard 

Error 

DF t Value Pr > |t| 

treatn 189 755.2 30.258 203 24.96 <.0001 

treatn 190 688.94 30.258 203 22.77 <.0001 

treatn 191 692.66 30.258 203 22.89 <.0001 

treatn 192 679.02 30.258 203 22.44 <.0001 

treatn 999 680.11 4.9345 203 137.83 <.0001 
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The empirical estimates of random effects with approximate standard errors, the t-test statistic, and 

p-value are given in Appendix C of Table C2. Empirically best linear unbiased predictor (EBLUP) 

of yield in Table C2 shows that the overall mean plus average effect of each test treatments to the 

mean yield of durum wheat.  

Appendices C of Table C2 shows that the top one hundred one genotypic materials (test treatments) 

have been best mean effects to yield production of durum wheat when we compared with standard 

check variety. The overall empirical estimated predictors of random effects are illustrated in 

Appendix C of Table C3. From Appendices C of Table C2, varieties CD11-DZMS P#1263 (165), 

CD11-DZMS P# 1094 (133) and CD11-DZMS P# 1023 (136) have the highest mean effects on the 

mean yield of durum wheat in decreasing order. But, when we compare each genotypic material 

(test treatments) with standard check eighty seven genotypic materials (test treatments) produces 

small empirical estimated predictor to mean yield of durum wheat. For instance, as we see in 

Appendix C of Table C3, varieties CD11-DZMS P# 1135 (139), CD11-DZMS P# 96 (37) and 

P#1368 (181) have the smallest mean effects on the mean yield of durum wheat in decreasing order.  
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   4.8. Discussion 

This study was used to estimate genetic parameters in the application of trials designed in 

augmented block design. In addition to this, it was planned to compare the variance and 

covariance components of the intra-block and inter-block analysis of an augmented experiments. 

We have seen in this study that the ABD can be analyzed based on the fixed and random effects 

model. The test treatments where considered as random and other effects as fixed (best to use 

mixed model procedures for analysis) to see the BLUE and EPLUPS for the realizations of the 

random and the fixed effects parameters.  

The principles and mathematical descriptions of ICCs have been discussed at length in the 

literature (Eg. Perrett, 2004). Perrett and Higgins (2006) applied a modified form of the ICC to 

analyze non-replicated greenhouse data. The larger the inter-class correlation coefficient values 

of the random variable tell us the larger the contribution of that random variable for the variation 

of response variable. In our study the result of the ICC values high percent were recorded for 

REML and the difference of ICC with all techniques are too small and estimation based on 

REML techniques is best to estimate variance components. The results recorded for ICC were 

comparable with Demeke L. (2010) findings. 

In relation to Wald test statistic, a better alternative is the chi-square likelihood ratio test i.e. 𝜒2. 

This is commonly used when we are testing that a variance component equals or not to its lower 

boundary constraint of zero (Self and Liang 1987). It ensures that whether using random effect 

really increases the variance of response variable or not. If the test statistic shows that the 

variance is not significantly different from zero, then the inclusion of the random variable is 

meaningless. But, if the test statistic indicates that the variance is above the lower boundary 

constraints, then the variance of the response variable also increases and this in turn reduces the 

overall estimation, confidence interval, prediction interval and test statistic is based on this 

variance. The square of Wald statistic is approximately chi-square distribution with one degree 

of freedom for that Wald test statistic is approximately normal ( Self and Liang (1987).  The 

result of Wald test statistic Table 4.8 shows the chi-square statistic for test treatments is 10.304 

for ML techniques and 4.5796 for REML methods. The 95 percent of the chi-square distribution 

with one degree of freedom have critical values of 3.84. Therefore, the test statistic with 5% 

indicates that the random variable is statistically significant, meaning that the estimate of the 
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variance of a random effects is above the lower boundary constraint of zero. This implies that a 

random factor has a contribution for increasing variance of response variable and in turn 

minimizes error mean squares of response variable. These results also agreed with the privies 

findings of ( Demeke L. ,2010 and  Bentler & Bonett’s, 1980) 

As it is generally accepted, General Linear Model (GLM) is a regression model and does not 

include the random effect except the random error terms of the model. Hence, there is no 

variance due to the random effect other than the variance of random error terms when calculating 

the variances (standard error) of the response variable, estimates of the parameters, testing and 

constructing confidence interval. As a result, all variances expected from the model, if any, are 

included in the variance of the disturbance term inappropriately since all factors in GLM are 

fixed effects which do not tolerate the inclusion random effects. In such kinds of models the 

variance of the error terms increase very much (Springer, 2000, Temesgen, 2009/10). This 

illustrates the danger of misusing the statistical models and the rush to irrelevant conclusion. In 

our data set there are random factors included in the mixed model that contributed their strong 

share in estimating the variance of the response variable. In this study the ratios of standard 

errors of GLM to that of mixed model were about 2.7. This tells us that a mixed model is more 

valuable than a GLM to remove the downward bias of variance of the response variable and the 

boosted variance of the error terms of GLM. Our results are comparable to previous studies 

Demeke L. (2010).  

In linear mixed models, prediction means of random effects should be used as a selection index 

based on the degree of estimated predictors to the response variable without bothering about its 

significance (Searle, S. R., Casella, G., and Mcculloch, C.E. (2006). Temesgen, 2009/10). This is 

because the standard errors are not obtained from the covariance matrix of empirical estimates 

(𝑢 ). The standard errors are rather obtained from the covariance matrix of the difference between 

empirical estimates and the unknown random parameters (𝑢 − 𝑢) (Verbeke and Molenberghs, 

2000). So, the higher the empirical estimated predictor of random effect the larger contribution to 

mean yield. In similar way in our study one hundred one treatments have been selected as best 

mean effects to durum wheat production when compared with standard check variety.  
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   5.  Conclusion and Recommendations 

   5.1. Conclusion 

 We have seen in this study that the augmented block design can be analyzed based on the 

fixed and random effects model. The genetic covariance can be incorporated in to a 

mixed model; the random effects estimates in the model are typically more efficient than 

the fixed effects estimates. For the trials designed as ABD the ratios of standard errors of 

GLM to that of mixed model using trial designed as ABD are about 2.7 for both ML and 

REML. These results tell us that a mixed model is more valuable than a GLM to remove 

the downward bias of variance of the response variable and the boosted variance of the 

error terms of GLM. 

 The results of IAC indicate that the models that contend un-replicated treatments as 

random and other factors as fixed effects have been selected. In our study the REML is 

the best method of estimation for variance components of genetic parameters for trials 

designed as augmented block design. 

 The results of the present study indicated that about one hundred one genotype materials 

have been selected as best mean effects to the yield when compared with standard check 

variety. But, about eight seven of them have been less than standard check variety mean 

effect on the production of wheat yield. 
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 5.2. Recommendations 

Based upon the major findings of this paper, the author would like to recommend the following 

major points to the problems addressed by the study. 

 Wheat researchers, who conduct trials in augmented block design, should use mixed 

models rather than fixed effect models to minimize the severely inflated experimental 

error mean square and to attain an acceptable level of experimental precision as the 

standard error of GLM is higher than that of mixed model. 

 It is recommended that the approach to estimate the variance components in linear mixed 

model for trials designed as ABD to be REML. 

 About 101Durum wheat genotypes materials have been recommended for next selection 

program in similar ecology to Sinana. 
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Appendix A 

Table A1: Durum wheat Genotypes in the study  

Genotype  Codes Genotype  Codes Genotype  Codes 

43rd IDYN p#3 1 CD11-DZMS P# 83 34 m6 srr SN P# 204 67 

CD11DZMS P#6 2 43 IDSN P#85 35 m6 srr SN P# 211 68 

43rd IDYN p#11 3 43 IDSN P#93 36 CD11-DZMS P# 222 69 

43th IDYN*H p#15 4 CD11-DZMS P# 96 37 CD11-DZMS P# 251 70 

CD11DZMS P#14 5 43 IDSN P#96 38 Ejersa 191 

m6 srr SN P#16 6 43 IDSN P#97 39 CD11-DZMS P# 283 71 

43rd IDYN p#3 7 43 IDSN P#100 40 CD11-DZMS P# 267 72 

43th IDYN P#15 8 Bakkalcha1 192 CD11-DZMS P# 281 73 

m6 srr SN P#18 9 43 IDSN P#101 41 CD11-DZMS P# 289 74 

43rd IDYN P#20 10 43 IDSN P#109 42 CD11-DZMS P# 309 75 

Toltu 189 CD11-DZMS P# 108 43 CD11-DZMS P# 311 76 

43 IDSN P#22 11 CD11-DZMS P# 110 44 CD11-DZMS P# 317 77 

CD11-DZMS P#21 12 43 IDSN P#113 45 CD11-DZMS P# 318 78 

43 IDYN*H  p# 22 13 43 IDSN P#114 46 CD11-DZMS P# 321 79 

43 IDSN P#23 14 43 IDSN P#120 47 CD11-DZMS P# 352 80 

43 IDYN*H  p# 25 15 43 IDSN P#122 48 Bakkalcha2 192 

CD11-DZMS P#27 16 CD11-DZMS P# 123 49 CD11-DZMS P# 353 81 

CD11-DZMS P#30 17 43 IDSN P#129 50 CD11-DZMS P# 354 82 

43rd IDYN P#39 18 Toltu 189 CD11-DZMS P# 355 83 

43  IDYN*H  p# 35 19 43 IDSN P#133 51 CD11-DZMS P# 356 84 

43 IDSN P#36 20 43 IDSN P#135 52 CD11-DZMS P# 358 85 

Dire 190 m6 srr SN P# 136 53 CD11-DZMS P# 359 86 

43rd IDYN P#36 21 CD11- DZms p#137 54 CD11-DZMS P# 360 87 

43  IDSN P#32 22 CD11- DZms p#240 55 CD11-DZMS P# 361 88 

43 IDYN *H P#37 23 43 IDSN  P# 143 56 CD11-DZMS P# 364 89 

CD11-DZMS P#37 24 CD11-DZMS P# 146 57 CD11-DZMS P# 366 90 

43 IDYN *H P#34 25 CD11-DZMS P# 150 58 Toltu 189 

43 IDYN *H P#40 26 m6 srr SN P# 152 59 CD11-DZMS P# 367 91 

CD11-DZMS P#42 27 m6 srr SN P# 153 60 CD11-DZMS P# 370 92 

CD11-DZMS P#48 28 Dire 190 CD11-DZMS P# 393 93 

P# 57 29 43 IDSN  P# 153 61 CD11-DZMS P# 394 94 

CD11-DZMS P# 64 30 m6 srr SN P# 157 62 CD11-DZMS P# 395 95 

Ejersa 191 CD11-DZMS P# 163 63 CD11-DZMS P# 403 96 

p#60 31 CD11-DZMS P# 167 64 CD11-DZMS P# 404 97 

43 IDSN P#57 32 CD11-DZMS P# 168 65 CD11-DZMS P# 406 98 

43 IDSN P#71 33 CD11-DZMS P# 169 66 CD11-DZMS P# 408 99 
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CD11-DZMS P# 415 100 CD11-DZMS P# 744 120 CD11-DZMS P# 1137 140 

Dire 190 Bakkalcha3 192 Dire 190 

CD11-DZMS P# 419 101 CD11-DZMS P# 743 121 CD11-DZMS P#1136 141 

CD11-DZMS P# 454 102 CD11-DZMS P# 769 122 CD11-DZMS P#1138 142 

CD11-DZMS P# 489 103 CD11-DZMS P# 372 123 CD11-DZMS P#1139 143 

CD11-DZMS P# 511 104 CD11-DZMS P# 777 124 CD11-DZMS P#1158 144 

CD11-DZMS P# 512 105 CD11-DZMS P# 782 125 CD11-DZMS P#1163 145 

CD11-DZMS P# 513 105 CD11-DZMS P# 785 126 CD11-DZMS P#1145 146 

CD11-DZMS P# 549 107 CD11-DZMS P# 847 127 CD11-DZMS P#1162 147 

CD11-DZMS P# 548 108 CD11-DZMS P# 848 128 CD11-DZMS P#1167 148 

CD11-DZMS P# 550 109 CD11-DZMS P# 856 129 CD11-DZMS P#1164 149 

CD11-DZMS P# 646 110 CD11-DZMS P# 866 130 CD11-DZMS P#1147 150 

Ejersa 191 Toltu 189 Ejersa 191 

CD11-DZMS P# 653 111 CD11-DZMS P# 875 131 CD11-DZMS P#1170 151 

CD11-DZMS P# 663 112 CD11-DZMS P# 949 132 CD11-DZMS P#1165 152 

CD11-DZMS P# 618 113 CD11-DZMS P# 1094 133 CD11-DZMS P#1169 153 

P# 710 114 CD11-DZMS P# 1008 134 CD11-DZMS P#1206 154 

CD11-DZMS P# 715 115 CD11-DZMS P# 1009 135 CD11-DZMS P#1231 155 

CD11-DZMS P# 718 116 CD11-DZMS P# 1023 136 CD11-DZMS P#1233 156 

CD11-DZMS P# 728 117 CD11-DZMS P# 1113 137 CD11-DZMS P#1237 157 

CD11-DZMS P# 736 118 CD-DZMS P# 1134 138 CD11-DZMS P#1241 158 

CD11-DZMS P# 738 119 CD11-DZMS P# 1135 139 CD11-DZMS P#1242 159 

CD11-DZMS P#1245 160 CD11-DZMS P#1291 169 CD11-DZMS P#1363 178 

Bakkalcha5 192 CD11-DZMS P#1304 170 CD11-DZMS P#1365 179 

CD11-DZMS P#1248 161 Toltu 189  P#1367 180 

CD11-DZMS P#1253 162 CD11-DZMS P#1316 171 Dire 190 

CD11-DZMS P#1259 163 CD11-DZMS P#1318 172 P#1368 181 

CD11-DZMS P#1260 164 CD11-DZMS P#1347 173 CD11-DZMS P#1369 182 

CD11-DZMS P#1263 165 CD11-DZMS P#1353 174 CD11-DZMS P#1392 183 

CD11-DZMS P#1268 166 CD11-DZMS P#1354 175 P#1445 184 

CD11-DZMS P#1269 167 CD11-DZMS P#1355 176 CD11-DZMS P#1382 185 

CD11-DZMS P#1290 168 CD11-DZMS P#1356 177 CD11-DZMS P#1411 186 

  Ejersa         191 CD11-DZMS P#357 187 

    CD11-DZMS P#719 188 
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Appendix B 

Proc Mixed Codes Using SAS. 

/* Model selection from candidate model*/;  

/*MODEL1*/; 

proc mixed data = ugbore22 method = REML  covtest; 

TITLE 'Augmented Block Design using PROC MIXED –genotypes (T.treat) is random and 

block and treatn are fixed';  

Class block treat treatn; Model yield =block treatn; Random T.treat; Run; 

 proc mixed data = ugbore22 method = ML covtest; 

TITLE 'Augmented Block Design using PROC MIXED –genotypes (T.treat) is random and 

block and treatn are fixed';  

Class block treat treatn; model yield =block treatn; random T.treat; run;    

/*MODEL2*/; 

proc mixed data = ugbore22 method = REML  covtest; ; 

TITLE 'Augmented Block Design using PROC MIXED – genotypes (T.treat) and block are 

random and treatn is fixed'; 

class  block treat treatn; model yield =  treatn ; random block T.treat; run; 

proc mixed data = ugbore22 method = ML  covtest; ; 

TITLE ABD using PROC MIXED – genotypes (T.treat) and block are random and treatn is 

fixed'; class  block treat treatn; model yield =  treatn ; random block T.treat; run; 

/*Check the residuals for normality */; 

title "Checking Residuals for Normality"; 

proc univariate data=outreg1 PLOT NORMAL;var rstudent; histogram / normal; qqplot / 

normal(mu=est sigma=est);run;quit proc means data = ugbore22; var yield ; run;  

 /*this procedure prints the mean of over all of yield that has only one value*/; 

proc sort data=ugbore22; by block;  proc means data=ugbore22; var yield; by block; run; 

 /*this is used to print out the mean of yield in each block with 5 values*/ 

proc sort data=ugbore22; by treatn; proc means data=ugbore22; var yield; by treatn; run; 
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/* this is the procedure of calculating a mean of treatments and the means of four checks in all 

blocks that prints five values*/; 

proc sort data=ugbore22; by treat; proc means data=ugbore22; var yield; by treat; run; 

/*this is the procedure of calculating the mean of treat genotypes*/ 

/*PROC GLM for ABDs with One-Way Blocking  

SAS PROC GLM to obtain only intrablock and intravariety analyses for an ABD, as follows:*/; 

PROC GLM;TITLE 'Augmented block  Design using GLM – Test treatmentsrandom  and block 

and treatn are fixed '; 

CLASS block treat treatn new; MODEL yield =treatn block  T.treat/solution; 

RANDOM T.treat/test; RUN; 

LSMEANS treatn; 

/*Variance Components Estimation methods*/ 

proc mixed data = ugbore22 method =type1 covtest; /*Variance Components Estimation 

Procedure using Henderson's Method III for trials designed in ABD*/ 

TITLE ' ABD using PROC MIXED – genotypes (T.treat) is random and treatn and block are 

fixed'; class block treat treatn; model yield = block treatn; random T.treat/ type=VC; run; 

/*Variance Components Estimation Procedure using ML for trials designed in ABD*/ 

proc mixed data = ugbore22 method =ml asycov covtest ; 

TITLE ABD using PROC MIXED – genotypes (T.treat) is random and treatn and block are 

fixed'; class  block treat treatn; model yield =  block treatn; random   T.treat/ type=vc; run; 

proc mixed data = ugbore22 method =reml asycov covtest; /*Variance Components Estimation 

Procedure using REML for trials designed in ABD*/; 

TITLE ABD using PROC MIXED – genotypes (T.treat) is random and treatn and block are 

fixed'; class  block treat treatn; model yield =  block treatn; random   T.treat/ type=vc; run; 

proc mixed data = ugbore22 method =reml asycov covtest ; 

TITLE ' ABD using PROC MIXED – genotypes (T.treat) is random and treatn and block are 

fixed'; CLASS block treat treatn; MODEL yield=treatn block/solution; 

RANDOM  T.treat/solution; LSMEANS treatn/diff; RUN; 
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Appendix C 

Proc Mixed Outputs Using SAS. 

Table C1: Constant Outputs for All Procedure 

Model Information Dimensions 

Data Set WORK.UGBORE22 Covariance Parameters 2 

Dependent Variable yield Columns in X 11 

Covariance Structure Variance Components Columns in Z 192 

Estimation Method ML Subjects 1 

Residual Variance Method Profile Max Obs Per Subject 208 

Fixed Effects SE Method Model-Based Observations Used 208 

Degrees of Freedom Method Containment Observations Not Used 0 

  Total Observations 208 

Class Level Information 

Class Levels Values 

block 5 1 2 3 4 5 

treat 192 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 

184 185 186 187 188 189 190 191 192 

treatn 5 189 190 191 192 999 
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     Table C2: Selected EBULP for random effect (T.treat). 

Solution for Random Effects Solution for Random Effects 

Effect treat EBLUP Std Err Pred Rank Effect treat EBLUP Std Err Pred Rank 

T.treat 165 61.543 32.9996 1 T.treat 95 26.5104 32.8992 40 

T.treat 133 61.391 32.8992 2 T.treat 182 26.4008 32.9996 41 

T.treat 136 58.606 32.8992 3 T.treat 164 25.5609 32.9996 42 

T.treat 14 56.308 32.8992 4 T.treat 144 25.1434 32.8992 43 

T.treat 76 50.453 32.8992 5 T.treat 188 24.9421 32.9996 44 

T.treat 187 47.663 32.9996 6 T.treat 65 23.4883 32.8992 45 

T.treat 55 47.226 32.8992 7 T.treat 129 23.331 32.8992 46 

T.treat 106 44.944 32.8992 8 T.treat 75 21.6317 32.8992 47 

T.treat 185 44.392 32.9996 9 T.treat 40 20.8124 32.8992 48 

T.treat 19 42.207 32.8992 10 T.treat 29 20.5471 32.8992 49 

T.treat 89 40.833 32.8992 11 T.treat 13 20.2819 32.8992 50 

T.treat 115 40.523 32.8992 12 T.treat 73 19.2447 32.8992 51 

T.treat 120 39.02 32.8992 13 T.treat 71 18.4932 32.8992 52 

T.treat 51 37.943 32.8992 14 T.treat 21 18.3369 32.8992 53 

T.treat 64 37.634 32.8992 15 T.treat 146 18.1149 32.8992 54 

T.treat 184 37.364 32.9996 16 T.treat 105 17.8906 32.8992 55 

T.treat 163 36.745 32.9996 17 T.treat 124 17.6728 32.8992 56 

T.treat 24 36.593 32.8992 18 T.treat 126 17.6728 32.8992 57 

T.treat 11 36.24 32.8992 19 T.treat 145 16.9214 32.8992 58 

T.treat 154 34.824 32.8992 20  T.treat 49 16.9019 32.8992 59 

T.treat 61 34.672 32.8992 21 T.treat 155 15.4626 32.8992 60 

T.treat 8 34.118 32.8992 22 T.treat 43 15.2663 32.8992 61 

T.treat 28 33.985 32.8992 23 T.treat 158 14.6227 32.8992 62 

T.treat 38 33.764 32.8992 24 T.treat 122 14.1365 32.8992 63 

T.treat 108 33.495 32.8992 25 T.treat 166 14.0678 32.9996 64 

T.treat 98 33.406 32.8992 26 T.treat 33 13.7839 32.8992 65 

T.treat 52 33.036 32.8992 27 T.treat 142 13.7828 32.8992 66 

T.treat 57 32.727 32.8992 28 T.treat 134 13.4292 32.8992 67 

T.treat 12 32.659 32.8992 29 T.treat 10 12.6346 32.8992 68 

T.treat 34 31.775 32.8992 30 T.treat 157 12.5893 32.8992 69 

T.treat 103 31.461 32.8992 31 T.treat 159 12.5009 32.8992 70 

T.treat 112 30.489 32.8992 32 T.treat 41 12.3046 32.8992 71 

T.treat 20 30.449 32.8992 33 T.treat 68 12.2162 32.8992 72 

T.treat 47 29.235 32.8992 34 T.treat 109 12.1882 32.8992 73 

T.treat 22 28.99 32.8992 35 T.treat 48 11.8626 32.8992 74 
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T.treat 78 28.925 32.8992 36 T.treat 45 11.7299 32.8992 75 

T.treat 31 27.708 32.8992 37 T.treat 99 10.5526 32.8992 76 

T.treat 39 26.78 32.8992 38 T.treat 179 10.5315 32.9996 77 

T.treat 91 26.51 32.8992 39 T.treat 125 9.8045 32.8992 78 

T.treat 86 9.6244 32.8992 79 T.treat 81 4.9387 32.8992 91 

T.treat 56 9.1219 32.8992 80 T.treat 135 4.7652 32.8992 92 

T.treat 85 8.475 32.8992 81 T.treat 54 3.729 32.8992 93 

T.treat 59 8.282 32.8992 82 T.treat 156 2.8202 32.8992 94 

T.treat 104 8.0772 32.8992 83 T.treat 17 2.7328 32.8992 95 

T.treat 36 7.7721 32.8992 84 T.treat 117 1.977 32.8992 96 

T.treat 102 7.5468 32.8992 85 T.treat 88 1.8002 32.8992 97 

T.treat 131 6.4449 32.8992 86 T.treat 60 1.2977 32.8992 98 

T.treat 118 6.2648 32.8992 87 T.treat 96 0.7393 32.8992 99 

T.treat 30 5.8713 32.8992 88 T.treat 183 0.1435 32.9996 100 

T.treat 114 5.4249 32.8992 89 T.treat 18 0.08054 32.8992 101 

T.treat 173 4.9617 32.9996 90      

Table C3: Empirical Best Unbiased Linear Predictions for random factors. 

Solution for Random Effects Solution for Random Effects 

Effect treat EBLUP Std Err 

Pred 

Rank Effect treat EBLUP Std Err 

Pred 

Rank 

T.treat 165 61.5432 32.9996 1 T.treat 95 26.5104 32.8992 40 

T.treat 133 61.3909 32.8992 2 T.treat 182 26.4008 32.9996 41 

T.treat 136 58.606 32.8992 3 T.treat 164 25.5609 32.9996 42 

T.treat 14 56.3084 32.8992 4 T.treat 144 25.1434 32.8992 43 

T.treat 76 50.4529 32.8992 5 T.treat 188 24.9421 32.9996 44 

T.treat 187 47.6631 32.9996 6 T.treat 65 23.4883 32.8992 45 

T.treat 55 47.226 32.8992 7 T.treat 129 23.331 32.8992 46 

T.treat 106 44.9436 32.8992 8 T.treat 75 21.6317 32.8992 47 

T.treat 185 44.392 32.9996 9 T.treat 40 20.8124 32.8992 48 

T.treat 19 42.2072 32.8992 10 T.treat 29 20.5471 32.8992 49 

T.treat 89 40.8326 32.8992 11 T.treat 13 20.2819 32.8992 50 

T.treat 115 40.5232 32.8992 12 T.treat 73 19.2447 32.8992 51 

T.treat 120 39.0202 32.8992 13 T.treat 71 18.4932 32.8992 52 

T.treat 51 37.9431 32.8992 14 T.treat 21 18.3369 32.8992 53 

T.treat 64 37.6337 32.8992 15 T.treat 146 18.1149 32.8992 54 

T.treat 184 37.3635 32.9996 16 T.treat 105 17.8906 32.8992 55 

T.treat 163 36.7446 32.9996 17 T.treat 124 17.6728 32.8992 56 

T.treat 24 36.5933 32.8992 18 T.treat 126 17.6728 32.8992 57 

T.treat 11 36.2397 32.8992 19 T.treat 145 16.9214 32.8992 58 
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T.treat 154 34.8241 32.8992 20 T.treat 49 16.9019 32.8992 59 

T.treat 61 34.672 32.8992 21 T.treat 155 15.4626 32.8992 60 

T.treat 8 34.1179 32.8992 22 T.treat 43 15.2663 32.8992 61 

T.treat 28 33.9852 32.8992 23 T.treat 158 14.6227 32.8992 62 

T.treat 38 33.7642 32.8992 24 T.treat 122 14.1365 32.8992 63 

T.treat 108 33.4947 32.8992 25 T.treat 166 14.0678 32.9996 64 

T.treat 98 33.4063 32.8992 26 T.treat 33 13.7839 32.8992 65 

T.treat 52 33.0364 32.8992 27 T.treat 142 13.7828 32.8992 66 

T.treat 57 32.727 32.8992 28 T.treat 134 13.4292 32.8992 67 

T.treat 12 32.6591 32.8992 29 T.treat 10 12.6346 32.8992 68 

T.treat 34 31.775 32.8992 30 T.treat 157 12.5893 32.8992 69 

T.treat 103 31.4613 32.8992 31 T.treat 159 12.5009 32.8992 70 

T.treat 112 30.4888 32.8992 32 T.treat 41 12.3046 32.8992 71 

T.treat 20 30.4489 32.8992 33 T.treat 68 12.2162 32.8992 72 

T.treat 47 29.2348 32.8992 34 T.treat 109 12.1882 32.8992 73 

T.treat 22 28.9902 32.8992 35 T.treat 48 11.8626 32.8992 74 

T.treat 78 28.9254 32.8992 36 T.treat 45 11.7299 32.8992 75 

T.treat 31 27.7082 32.8992 37 T.treat 99 10.5526 32.8992 76 

T.treat 39 26.7799 32.8992 38 T.treat 179 10.5315 32.9996 77 

T.treat 91 26.5104 32.8992 39 T.treat 125 9.8045 32.8992 78 

T.treat 86 9.6244 32.8992 79 T.treat 67 -11.212 32.8992 123 

T.treat 56 9.1219 32.8992 80 T.treat 138 -11.237 32.8992 124 

T.treat 85 8.475 32.8992 81 T.treat 25 -11.722 32.8992 125 

T.treat 59 8.282 32.8992 82 T.treat 87 -12.08 32.8992 126 

T.treat 104 8.0772 32.8992 83 T.treat 151 -12.209 32.8992 127 

T.treat 36 7.7721 32.8992 84 T.treat 116 -12.743 32.8992 128 

T.treat 102 7.5468 32.8992 85 T.treat 127 -12.828 32.8992 129 

T.treat 131 6.4449 32.8992 86 T.treat 130 -13.977 32.8992 130 

T.treat 118 6.2648 32.8992 87 T.treat 180 -14.002 32.9996 131 

T.treat 30 5.8713 32.8992 88 T.treat 170 -14.179 32.9996 132 

T.treat 114 5.4249 32.8992 89 T.treat 107 -14.202 32.8992 133 

T.treat 173 4.9617 32.9996 90 T.treat 101 -15.174 32.8992 134 

T.treat 81 4.9387 32.8992 91 T.treat 53 -15.235 32.8992 135 

T.treat 135 4.7652 32.8992 92 T.treat 123 -15.259 32.8992 136 

T.treat 54 3.729 32.8992 93 T.treat 62 -16.428 32.8992 137 

T.treat 156 2.8202 32.8992 94 T.treat 167 -17.008 32.9996 138 

T.treat 17 2.7328 32.8992 95 T.treat 175 -17.096 32.9996 139 

T.treat 117 1.977 32.8992 96 T.treat 74 -18.241 32.8992 140 

T.treat 88 1.8002 32.8992 97 T.treat 178 -18.732 32.9996 141 

T.treat 60 1.2977 32.8992 98 T.treat 69 -18.771 32.8992 142 

T.treat 96 0.7393 32.8992 99 T.treat 141 -19.945 32.8992 143 

T.treat 183 0.1435 32.9996 100 T.treat 1 -22.022 32.8992 144 

T.treat 18 0.08054 32.8992 101 T.treat 50 -23.191 32.8992 145 
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T.treat 189 0 43.6655 102 T.treat 113 -24.369 32.8992 146 

T.treat 190 0 43.6655 103 T.treat 121 -25.073 32.8992 147 

T.treat 191 0 43.6655 104 T.treat 77 -25.269 32.8992 148 

T.treat 192 0 43.6655 105 T.treat 174 -25.628 32.9996 149 

T.treat 139 -1.5118 32.8992 106 T.treat 160 -25.692 32.8992 150 

T.treat 181 -2.0225 32.9996 107 T.treat 93 -26.27 32.8992 151 

T.treat 37 -2.1297 32.8992 108 T.treat 58 -26.772 32.8992 152 

T.treat 148 -2.7496 32.8992 109 T.treat 70 -27.17 32.8992 153 

T.treat 4 -3.6768 32.8992 110 T.treat 119 -28.48 32.8992 154 

T.treat 80 -3.7858 32.8992 111 T.treat 169 -29.562 32.9996 155 

T.treat 32 -4.5609 32.8992 112 T.treat 171 -29.606 32.9996 156 

T.treat 27 -5.0472 32.8992 113 T.treat 83 -29.85 32.8992 157 

T.treat 150 -5.1366 32.8992 114 T.treat 147 -29.935 32.8992 158 

T.treat 186 -5.2495 32.9996 115 T.treat 42 -30.087 32.8992 159 

T.treat 26 -6.8595 32.8992 116 T.treat 90 -30.292 32.8992 160 

T.treat 132 -8.8055 32.8992 117 T.treat 162 -30.402 32.9996 161 

T.treat 82 -8.8972 32.8992 118 T.treat 16 -30.73 32.8992 162 

T.treat 153 -8.9824 32.8992 119 T.treat 137 -32.411 32.8992 163 

T.treat 94 -8.9857 32.8992 120 T.treat 63 -32.784 32.8992 164 

T.treat 111 -9.7371 32.8992 121 T.treat 172 -33.363 32.9996 165 

T.treat 5 -10.086 32.8992 122 T.treat 46 -34.198 32.8992 166 

T.treat 177 -34.512 32.9996 167 T.treat 143 -46.423 32.8992 182 

T.treat 9 -35.459 32.8992 168 T.treat 15 -48.323 32.8992 183 

T.treat 79 -35.657 32.8992 169 T.treat 168 -48.791 32.9996 184 

T.treat 92 -35.773 32.8992 170 T.treat 161 -48.923 32.9996 185 

T.treat 97 -35.861 32.8992 172 T.treat 152 -49.695 32.8992 186 

T.treat 44 -37.602 32.8992 173 T.treat 84 -51.687 32.8992 187 

T.treat 2 -37.979 32.8992 174 T.treat 128 -51.816 32.8992 188 

T.treat 176 -38.049 32.9996 175 T.treat 23 -52.39 32.8992 189 

T.treat 35 -40.366 32.8992 176 T.treat 100 -53.146 32.8992 190 

T.treat 72 -40.386 32.8992 177 T.treat 66 -60.854 32.8992 191 

T.treat 149 -43.550 32.8992 178 T.treat 6 -63.927 32.8992 192 

T.treat 140 -44.080 32.8992 179 T.treat 3 -72.194 32.8992 193 

T.treat 110 -45.852 32.8992 180 T.treat 84 -51.687 32.8992 187 

T.treat 7 -45.936 32.8992 181 T.treat 128 -51.816 32.8992 188 

T.treat 143 -46.423 32.8992 182 T.treat 23 -52.39 32.8992 189 

T.treat 15 -48.323 32.8992 183 T.treat 100 -53.146 32.8992 190 

T.treat 168 -48.790 32.9996 184 T.treat 66 -60.854 32.8992 191 

T.treat 161 -48.923 32.9996 185 T.treat 6 -63.927 32.8992 192 

T.treat 152 -49.694 32.8992 186 T.treat 3 -72.194 32.8992 193 

 


