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ABSTRACT

Heart failure is failure of the heart to pump blood with normal efficiency and globally growing
public health issue with high death rate over the world including Ethiopia. The aim of this
study was to identify factors affecting the survival time of heart failure patients in Jimma Uni-
versity Medical Center. To reach the aim, 409 heart failure patients were including in the study
based on data taken from medical record of patients enrolled during January, 2016 to January,
2019. Kaplan Meier plots and log rank test were used for comparison of survival function;
Bayesian survival models was used to identify factors affecting the survival time heart failure
patients. Of the total patients in the study 164 (40.1%) were died. The estimated median sur-
vival time of patients was 31 months. Bayesian log-normal accelerated failure time model using
Markov chain monte carlo and Integrated nested laplace approximation method fit heart fail-
ure data-set better than other Bayesian accelerated failure time models used in this study. The
Bayesian log-normal accelerated failure time model using Integrated nested laplace approxi-
mation method was preferable than Markov chain monte carlo method due to smaller standard
error and narrow credible interval. From the results of this model shows that the survival time
of heart failure patients significantly affected by age, chronic kidney disease, diabetes mellitus,
etiology of heart failure, hypertension, anemia, smoking cigarette and stages of heart failure.
Bayesian log-normal accelerated failure time model using Integrated nested laplace approxi-
mation method describes the heart failure data-set well. Age group (49 to 65 years and greater
than 65 years); etiology of heart failure (rheumatic valvular heart disease, hypertensive heart
disease and Other diseases); presence of hypertension; presence of anemic; presence of chronic
kidney disease; smokers; diabetes mellitus (type I and type II diabetic); and stages of heart fail-
ure (II, III and IV) were prolong the timing death of heart failure patients. The hospital, Jimma
University medical center, need to improve public awareness for early detection of heart failure.

Keywords: Heart failure, Bayesian, Survival Analysis, MCMC, INLA
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1 INTRODUCTION

1.1 Background of the Study

Heart failure is defined as a clinical syndrome; specifically, failure of the heart to pump blood
with normal efficiency, characterized by typical symptoms (shortness of breath, persistent cough-
ing or wheezing, ankle swelling and fatigue) that may be accompanied by the following signs
(jugular venous pressure, pulmonary crackles, increased heart rate and peripheral oedema)
caused by a structural and functional cardiac abnormality, resulting in a reduced cardiac output
and elevated intracardiac pressures at rest or during stress. In addition, HF is a syndrome and
not a disease, its diagnosis relies on a clinical examination and can be challenging (Ponikowski
et al., 2016; Yancy et al., 2013).

Heart failure is global major cause of death and is a rapidly grown public health issue affect-
ing approximately 40 million individuals worldwide and an estimated 287,000 deaths occurred
a year, making it the most quickly growing cardiovascular disorder. It is ever increasing preva-
lence across developed and developing countries resulted as a complications from an increasing
aging population (Vos et al., 2015). In the United State of America, the prevalence of HF is
nearly 6.5 million, approximately 960,000 new cases of HF are diagnosed each year, the in-
cidence of HF approaching 21 per 1,000 population and also an estimated 1 in 8 deaths in
2017 (Benjamin et al., 2019). The prevalence of symptomatic HF is estimated to 5% of the
population, and the mortality is estimated at about 13% in Europe (Huffman et al., 2013).

In Africa, HF has emerged as a major public health problem, imposing enormous pressure
on the health care systems; HF is not a disease by itself patients with HF have other causes of
death. The sub-Saharan Africa Survey of HF, a prospective multi center study of HF across
the continent, showed that HF is predominantly non-ischemic, most commonly hypertension;
HF strikes individuals in sub-Saharan Africa at a much younger age than in the United States
and Europe (Damasceno et al., 2012). Similarly, HF is reported to have caused 2.5% of deaths
among all age groups in a sampled hospital based mortality in Ethiopia (Misganaw et al., 2014).

In this study, the researchers applied survival analysis since it addresses the limitation of
classical regressions like logistic and linear regressions. In survival analysis, all the information
of an investigated individual would be used until the last moment in the study, but in classical
regressions, cannot be used all the available information. Most medical studies has been used
cox regression model for assessing the survival distribution of heart failure patients, while alter-
native parametric models including exponential, weibull, log-normal, and, log-logistic model
has been used to identify the prognostic factors (Giolo et al., 2012; Hailay et al., 2015).

The popular Cox-PH model is to evaluate simultaneously the effect of several factors on
survival. The proportional hazards assumption holds with time fixed covariates, cannot specify
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the general shape of the hazard curve (Collett, 2015). The parametric survival models could
provide a more suitable description of the survival data if one is able to identify the distribution
of the survival time (Khanal et al., 2014). The parametric AFT models (i.e exponential, weibull,
log-normal and log-logistic) has a more realistic interpretation and provides more informative
results than Cox-PH model (Qi, 2009). Epidemiologists have documented several risk factors
for the development of HF like as age, hypertension (Sheng et al., 2018) and anemia (Ahmad
et al., 2017) were increased risk of mortality among HF patients. Factors such as age, sex,
stages of HF, hypertension, anemia, and diabetes mellitus has statistically significant effect on
the survival of HF patients (Zeru, 2018).

The parametric survival models play an important role in Bayesian survival analysis, since
many Bayesian analysis in practice are carried out using parametric AFT models and provide
computational advantages via the implementation of MCMC method with Gibbs sampling of es-
timation. It generates conclusions based on the synthesis of new information from an observed
data and historical knowledge or expert opinion. Historical knowledge from past similar stud-
ies can be very helpful in interpreting the results of the current study by Ibrahim et al. (2001).
The Bayesian approach assumes that the observed data is fixed and that model parameters are
random. The prior probability distributions represents a powerful mechanism for incorporating
information from previous studies and for controlling confounding (Ibrahim et al., 2011). The
Bayesian methods combine objective prior knowledge with the information acquired from the
data by using Bayes theorem (Gelman et al., 2014).

In this study, Bayesian Survival Models would be used to identify the factors that affecting
the survival time of heart failure patients in JUMC, Jimma, Ethiopia so, the interesting appli-
cation of MCMC and INLA method of estimation with Bayesian survival models are the most
key for the motivation to apply it for the HF data-set under this study. The main aim of this
study was to identify the factors that affecting survival time of HF patients. It quests to identify
the prognostic factors of HF patients, to determine the best parametric survival models for heart
failure data-set, to estimate the survival time of HF patients and to explore the bayesian AFT
models using MCMC method with Gibbs sampling and INLA method.

The thesis was structured into five sections. The second section deals with the review of
literature on HF patients in JUMC, Jimma, Ethiopia and the rest of the world, whereas third
section data description and methodology and variables to be included in the study. Meth-
ods of data analysis are also described in this section. Section four reports results from the
Bayesian survival analysis and provides discussions. Finally, the last section draws conclusions
and makes recommendations for further studies.
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1.2 Statement of the Problem

Heart failure is a serious condition during which the guts is unable to pump enough blood to
satisfy the requirements of the body (Lloyd-Jones et al., 2002). In approximately all regions
of the world, HF is both common and increasing; it is predicted that the number of patients
with HF to increase in countries with aging populations and the leading cause of HF death
(Benjamin et al., 2019). Studies show that HF is extremely increasing in African countries,
including Ethiopia (Damasceno et al., 2012; Misganaw et al., 2014).

Several studies have been conducted in analyzing the survival data using parametric survival
models (Hailay et al., 2015), and Cox regression model (Ahmad et al., 2017; Giolo et al., 2012)
to estimate the survival time of heart failure patients in hospital based. Many scholars used
semi-parametric model, and parametric models (Sheng et al., 2018; Hailay et al., 2015), and
Generalized additive model (Berarti and Goshu, 2015) to identify the prognostic factors of heart
failure patients in hospital based. However, in JUSH the studies have been conducted on HF
patients in hospital based using descriptive statistics (Habte et al., 2010), and logistic regression
analysis (Amare et al., 2015). These statistical methodologies are not capable to consider the
survival rate of the patients in the hospital and also multi-variable logistic regression does not
account the censoring observations, that is, it does not hold for time-to-event data.

Few studies have been conducted based on survival analysis of heart failure patients hospital
based with classical approach were fitted to identify factors affecting survival time of heart fail-
ure patients (Zeru, 2018; Hailay et al., 2015). Bayesian approach is the possibility of improving
the precision of the results by introducing external information in terms of the prior distribu-
tion. The advantages of Bayesian approach are to produce more accurate parameter estimates,
and higher convergence (Ibrahim et al., 2011). Thus, considering the advantages of Bayesian
application is the most key for the motivation to apply it for the heart failure data-set under this
study. So, chosen Bayesian Survival Analysis using MCMC and INLA method to analysis heart
failure data-set.

Considering HF is a growing problem in the countries hospital based and gaps found with
different studies, the researchers was explore the Bayesian Survival Analysis of HF patients
in JUMC, Jimma, Ethiopia. Therefore, this study aims to answer the following scientific
questions:-

- Which factors significantly affect the survival time of heart failure patients?

- What is the estimated survival time of heart failure patients?

- Which parametric survival models is the most appropriate for analyzing the heart failure
data set?

3



1.3 Objectives of the Study

1.3.1 Generalized Objective

The aim of this study was to identify factors affecting the survival time of heart failure patients
in Jimma University Medical Center, Jimma, Ethiopia using Bayesian Survival Models.

1.3.2 Specific Objectives

The specific objectives of this study were:-

- To identify the prognostic factors of heart failure patients.

- To estimate the survival time of heart failure patients.

- To determine the best parametric survival models for heart failure data-set.

- To explore the bayesian accelerating failure time models for the heart failure data-set
using MCMC and INLA method.

1.4 Significance of the Study

Studying the survival time of HF patients is a mechanism of overcoming the problem of healthy
in the society by identifying factors associated with death. On top of this, the result of this
study might be used to improve awareness on the factors that trigger the death of HF patients. It
also enables to provide scientific information about the finding to ministry of health in Ethiopia
that helps policymakers to enhance the awareness of the society about factors that increase the
probability of death due to HF which is protect-able and curable if it is screened and treated in
its earlier stage with appropriate treatment.
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2 LITERATURE REVIEW

2.1 Overview of Heart Failure

Heart failure is an increasingly common condition resulting in high rates of a major cause
of premature morbidity, mortality, poor quality of life and a significant economic burden on
national healthcare systems with a lifetime risk of 20% - 46% (Ambrosy et al., 2014). The
prevalence of HF is 1% to 2% in the general population of developed countries, and the lifetime
risk of growing the disease is at least 1 in 5 among both men and women (Huffman et al., 2013).

Globally, HF represents an increasing issue for health care systems and it is affecting mil-
lions of individuals worldwide. It is a common cause of death; is increasing in the prevalence
and incidence worldwide (Vos et al., 2015). According to the AHA, the prevalence of HF is
nearly 6.2 million (46%) in USA had HF, nearly 800,000 new cases are diagnosed each year,
and 78,356 deaths (35,424 males and 42,932 females) are occurred in 2016 since it is expected
to rise 8.5 million by 2030 (Benjamin et al., 2019). The study done by Dokainish et al. (2017)
shows that 5823 HF patients within 1 year: the mortality were; highest in Africa (34%) and
India (23%), intermediate in southeast Asia (15%), and lowest in China (7%), South America
(9%), and the Middle East (9%).

In the study by Lam et al. (2016), shows that approximately 4.2 million people had HF,
with 500,000 new cases diagnosed each year, accounting for an incidence of 0.9% in china; the
predominant causes of HF were ischemic heart disease and rheumatic valvular heart diseases
which causes 38.1% and 29.9% of the total population respectively.

The study done by Bloomfield et al. (2013) shows that HF was predominantly a major public
health issue in the sub-Saharan Africa. In Ghana, the result shows that among those patients
involved in the study, 398 of the patients had HF according to the modified framingham criteria
for the diagnosis of HF; giving rise to a prevalence of 76% seen in the study supports the fact that
HF is a major contributor to cardiovascular disease burden in SSA. Similar findings have been
reported from Cameroon where HF is found to be the fifth to sixth cause of hospital admissions.
In other parts of SSA, HF has been found to account 5% - 10% of hospital admissions (Owusu
and Boakye, 2013).

Heart failure is an important cardiovascular disease due to its increasing prevalence and high
mortality rate and it is found to be the third cause of death following hypertension and stroke
in Ethiopia (Misganaw et al., 2012). In the study done by Habte et al. (2010) in JUSH for the
duration of 5 year period, they found that among 781 HF patients, rheumatic heart disease was
32.8%, hypertensive heart disease was 24.2%, cardiomyopathy was 20.2% and the remaining
is other etiologies of HF. The patient registers from 2001 to 2012 among 3282 adult Ethiopian
patients in TASH showed 9.1% of the patients had HF (Abdissa et al., 2014).
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The results of the Berarti and Goshu (2015) study that out of 263 patients considered in
the analysis, 18.6% patients have died of HF while 81.4% were alive. A death proportion for
female was 19.6% and that of male patients was 17.5% in Asella Referral Hospital. From the
generalized additive model analysis showed that the predictors: age, anemia, diabetes mellitus,
and hypertension significantly affect the death status of HF patient.

2.2 Risk Factors for Heart Failure

Heart failure is the non-communicable disease risk factors vary substantially across world re-
gions, with hypertension being highly associated with HF in all regions but most commonly in
Latin America, the Caribbean, Eastern Europe, and SSA (Khatibzadeh et al., 2013)

According to a recent study by Benjamin et al. (2019), Epidemiologists there are many
known HF causes including lifestyle factors, such as cigarette smoking and high blood pressure
and other medical conditions factors, such as anemia and diabetes all dramatically increase the
likelihood of HF. Similarly, HF has been estimated that a 5% reduction in the number of people
with diabetes in the USA would prevent about 30,000 HF cases every year (Avery et al., 2012).
Likewise, HF factors includes higher level of anemia; high blood pressure (higher than normal
range); aging were the key factors contributing towards increased risk of mortality among HF
patients (Ahmad et al., 2017).

Sex:- The study by Ahmad et al. (2017) has confirmed that among 299 HF patients, 62
(64%) death were males and 34 (36%) death were females. Thus, the death proportion for
female HF patients was lower than that of male HF patients. In addition, the non-parametric
kaplan-keier survival curve showed female heart failure patients had higher survival probability
than male heart failure patients. However, their survival time of male patients seems lower.

Age:- Heart failure becomes more common with increasing age. A retrospective study
conducted in Felege Hiwot referral hospital from 2013 to 2017 indicates that 384 HF patients
were considered, the results of Cox-PH model shows HF patients was affect the middle age (49
to 65 years) group as well as the older age (greater than or equal to 65 years) group; since age
has significant (p-value = 0.0001) factor of HF patients and the expected survival time of HF
patients decreases as they gets older (Zeru, 2018; Adebayo et al., 2017)

Residence:- In the study of Hailay et al. (2015) shows that among 147 heart failure patients,
the mortality were 33 (77.2%), 13 (22.8%) heart failure patients live in rural area and urban area
respectively. However, the results shows the death proportion for HF patients live in urban area
was seems lower than that of HF patients live in rural area.

Chronic Kidney Disease:- Chronic kidney disease is an important risk factor for HF pa-
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tients. In addition, the results of Cox-PH model shows that the HF patients with chronic kidney
disease were less survival time than those without chronic kidney disease and chronic kidney
disease has a significant (p-value = 0.0071) factor for heart failure patients (Zeru, 2018).

Anemia:- Anemia is associated with more symptoms, worse functional status, greater risk
of HF patients, and reduced survival time (Ponikowski et al., 2016). As study shown by Ahmad
et al. (2017), among 299 HF patients, 54 (56%) death were HF patients with anemic and 42
(44%) death were HF patients without anemic. In addition, the results of semi-parametric model
shows that HF patients with anemic were less survival time than those without anemic and
anemia has significant (p-value = 0.0096) factor for HF patients.

History of Heart Failure:- Study by Hailay et al. (2015) indicates that among 147 heart
failure patients, mortality were 15 (39.5%) was new patients, 31 (28.4%) was HF patient before
and 22 (25.6%) was medical OPD. Thus, the death proportion for new HF patients were higher
than that of HF patient before and HF patients in medical OPD.

Etiology of Heart Failure:- The main etiology of HF were ischemic heart disease 15.8%,
rheumatic valvular heart disease 40.1%, cardiomyopathy 12.5%, hypertensive heart disease
16.0% and the remaining were from other causes constituted the majority of all admissions
due to HF (Abebe et al., 2016). In addition, the etiologies of HF in Africa’s remain largely
hypertensive heart disease, rheumatic valvular heart disease and cardiomyopathy heart disease
were the main contributors to the etiology of heart failure in SSA accounting for over 90% of
cases (Bloomfield et al., 2013).

Smoking Cigarette:- Smoking is an important risk factor in the development of HF. The
study by Ahmad et al. (2017) indicates that among 299 HF patients, about 66 (69%) were
the death proportion for HF patients without smoking cigarette and 30 (31%) were the death
proportion for HF patients with smoking cigarette

Treatments Taken:- Study by Zeru (2018) shows that among those heart failure patients,
261 (68%) used spironolactone, 228 (59.4%) used atorvastatin, 130 (33.9%) used digoxin and
24 (6.2%) used other treatments. Although, survival rates for all patients with HF have im-
proved during the past several decades, the greatest gains have been made in the treatment of
patients with heart failure with reduced heart failure. The patients went to medication they
had diagnosed in different mechanisms, since method of diagnosis had an effect on the type of
treatment they had taken (McManus et al., 2013).

Stages of Heart Failure:- The New York Heart Association functional classification system
stratified HF patients in to 4 groups, which was originally developed in 1928 and later by criteria
committee in 1964 that described the functional classification system. The NYHA functional
classification system was designed for clinical assessment of patients by physicians has been
categorized in to 4 classes (I, II, III and IV) (Bennett et al., 2002). As study shown by Zeru
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(2018), HF patients with NYHA class, among 384 HF patients 82.6% of patients had NYHA
class IV, 11.5% had NYHA class III and 6% of the cases had NYHA class II, this reflects NYHA
class IV takes the highest portion for the cause of HF as compared to the other NYHA class.
In addition, the results of Cox-PH model shows that stage of HF has statistically significant
(p-value = 0.008) factor of HF patients, and the HF Patients with late stage disease had much
lower survival rates than those with early stage disease.

Alcohol Consumption:- Study done by Urrutia et al. (2016) has confirmed that among 327
heart failure patients considered, 50% of the heart failure patients used alcoholic and 50% of
the heart failure patients were non-alcoholic users.

Diabete Mellitus:- Diabetic patients have an increased risk of developing HF. Study done
by Fadini et al. (2015) shows that among the patients were considered, 58% HF patients without
diabetic and 42% with diabetic have an increased mortality. Thus, the results of cox regression
model shows that diabetes mellitus has significant (p-value = 0.016) factor of HF patients and
expected that heart failure patients with diabetic was less survival time than those with out
diabetic Miyagawa et al. (2019).

Hypertension:- Hypertension is associated with an increased risk of developing HF patients
and it is the dominant cause of HF in Africa, responsible for up to 46% of cases of HF patients
(Lip et al., 2015; Callender et al., 2014). The results of semi-parametric model shows hyper-
tension has significant (p-value = 0.0195) factor for HF patients and expected that HF patients
with hypertension was less survival time than those without hypertension (Ahmad et al., 2017).

2.3 Overview of Model Used

Survival analysis studies the time duration until the occurrence of an event and time-to-event
endpoints are widely used in many medical fields. According to the study conducted by Hailay
et al. (2015) shows that to estimate the survival time of HF patients using parametric AFT mod-
els (i.e exponential, log-normal, weibull, log-logistic) and Cox-PH model in Gondar university
hospital, Gonder, Ethiopia.

Ahmad et al. (2017) conducted survival analysis of heart failure patients using cox regres-
sion model in Allied hospital Faisalabad-Pakistan; the results shows anemia, high blood pres-
sure (higher than normal range), age were significant factor of heart failure patients and also
those key factors were contributing towards increased risk of mortality among heart failure
patients. Sheng et al. (2018) conducted survival analysis of HF patients using Cox propor-
tional hazards model, a total of 1789 patients with heart failure were collected from Shanghai
Shuguang Hospital, China.
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The study has been done in survival data analysis using Semi-parametric survival model
for analyzing the prognostic factors on survival of heart failure patients in Sao Paulo, Brazil
(Heart Institute of the Sao Paulo University Medical School) (Giolo et al., 2012). Cox-PH
model was the most popular model for analyzing the prognostic factors on survival of gastric
cancer patients; when the proportional hazard assumption does not hold, the parametric AFT
models estimate the parameter more efficiently than the Cox-PH model. In addition, the para-
metric AFT models (i.e Weibull, Exponential, Log-normal, and Log-logistic) can provide more
accurate estimates than Cox-PH model (Pourhoseingholi et al., 2011).

According to Abrha et al. (2018), study the Comparison of Parametric and Bayesian Sur-
vival Regression Models in Simulated and HIV Patient Antiretroviral Therapy Data using MCMC
method in win-bugs software: Case Study of Alamata Hospital, North Ethiopia; the results
Bayesian survival analysis was better performance than classical parametric survival analysis.
The efficiency and relevance of the Bayesian survival model with application to clinical re-
search and medicine or public health were supported by the work of different researchers which
in fact applied for the different data-set (Khanal et al., 2014; Khan and Khan, 2013; Kumar
et al., 2019). The analyzing of heart failure data set based on the theory and algorithms for
learning Bayesian networks, the death of a patient can be determined by hypertension, diabetes
mellitus, anemia, chronic kidney disease were significant factors of HF patients (Berarti and
Goshu, 2015).

The study has been done using data on hormone receptor status for breast cancer cases
hospital based by Avi (2017) which indicates that the Bayesian log-normal model was chosen
over different Bayesian AFT models using MCMC method with Gibbs sampling in win-bugs
software. Akerkar et al. (2010) conducted Implementing Approximate Bayesian Inference for
Survival Analysis on Kidney Dialysis Patients data-set using INLA method in R-software and
MCMC method in win-bugs software uses Gibbs sampling. Bayesian Inference for Survival
models using INLA method was supported by the work of the researcher applied for the differ-
ent data-set (Martino et al., 2011).
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3 DATA AND METHODOLOGY

3.1 Data Description

3.1.1 Study Area

The study has been conducted on the data taken from Jimma University Medical Center which
is located in Oromia National Regional State, Jimma town 350Km Southwest of Addis Ababa,
Ethiopia. JUMC is the only medical center in Jimma zone serving the majority of peoples living
in Jimma city and its surrounding.

Figure 3.1: Location map of Jimma University Medical Center

Source: The data has been taken from Geographical Information System Masters Student.

3.1.2 Study Design and Population

A retrospective study has been applied to obtain data on HF patients that recorded in JUMC,
Jimma, Ethiopia. The population of this study was all HF patients who had been registered at
JUMC for 3 years starting from first January, 2016 up to first January, 2019.

The data has been carefully reviewed from the registration log book and patients registration
card; any inadequate information encountered was checked from the file and excluded from
analysis if proven to be inadequate. Thus, the data has been collected from patient follow up
records based on the variables in the study.
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3.1.3 Inclusion and Exclusion Criteria

Inclusion criteria:- All person registered with full information including study variables of
interest in the registration book or in the chart were considered to be eligible for the study. The
patients was to be included in the study they must take treatment at least for one time from the
hospital.
Exclusion criteria:- The patient with insufficient information regarding study variables on the
registration book or in the card were not eligible. Thus, the HF patients lost from the study
without starting any treatment was not included.

3.1.4 Data Collection Methods

Ethical permission has been obtained from the JUMC, Jimma, Ethiopia. Then secondary data
were taken based on data existing in the hospital by trained enumerator and the principal inves-
tigator using check list (data extraction form).

3.2 Variables in the Study

The response variable was survival time of heart failure patients (in months), which defined as
the difference between time of diagnosis and time to one of the events ”death”, ”lost to follow
up”, ”dropped out”, ”stopped”, ”transferred out to other health centers or hospitals” occurred.
Death was considered to be an event of interest. The status variable was coded as 0 for censored
and 1 for death.

Starting Time:- the start time of the interval (in months). Time origin or the beginning of
the study, the entry of the survival data would be considered from the day that the heart failure
patients starts diagnosis; when the patient first received the treatment.

Ending Time:- the time (in months) at which the event was occurred, when the heart failure
patients was died or was lost to follow-up at first January, 2019 (at the end of study). This means
that the type of the survival data is right censored.
The factors considered for the purpose of Bayesian survival analysis of HF patients were as
follows:-

1. Sex (0=Female, 1=Male)

2. Age (1=≤ 49 years, 2=49-65 years, 3=≥ 65 years)

3. Residence (0=Urban, 1=Rural)
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4. History of Heart Failure (1=New, 2=HF patient before, 3=Medical OPD)

5. Etiology of Heart Failure (1=Ischemic heart disease, 2=Rheumatic valvular heart dis-
eases, 3=Cardiomyopathy heart disease, 4=Hypertensive heart disease and 5=Others)

6. Chronic kidney disease (0=No, 1=Yes)

7. Smoking Cigarette (0=No, 1=Yes)

8. Hypertension (0=No, 1=Yes)

9. Diabetes Mellitus (1=Not, 2=Type I and 3=Type II)

10. Treatments (1=Digoxin, 2=Spironolactone, 3=Atorvastatin, 4=Others and 5=Combina-
tion of two or more)

11. Anemia (0=No, 1=Yes)

12. Alcohol Consumption (0=No, 1=Yes)

13. Stages of Heart failure (1=I, 2=II, 3=III, 4=IV)

3.3 Method of Data Analysis

3.3.1 Descriptive Statistics

The description of survival data utilizes non-parametric methods to compare the survival func-
tions of two or more groups and kaplan-meier plot(s) would be employed for this purpose
(Kaplan and Meier, 1958). The frequency distribution table was used to summarize the data
obtained from registration book of patients based on the study variables in JUMC, Jimma,
Ethiopia.

3.3.2 Statistical Models

3.3.2.1 Survival Data Analysis

Survival analysis is the statistical analytic method used for modeling and analyzing the data that
have a principal end point the time until an event occurs. It is used in analyzing the time-to-
event data arises in several applied fields like medicine, public health, epidemiology and etc.
Survival data are censored in the sense that they did not provide complete information since
subjects of the study may not have experienced the event of interest. Survival analyses consider
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a key analytic problem of censoring that occur when some information about individual survival
time is known, but not the exact survival time (Aalen et al., 2008).
Censoring is common in survival analysis and it is considered as an important feature of sur-
vival data. Survival analysis is well suited for heart failure data-set which are very common
in medical research since studies in medical areas have a special feature that follow-up stud-
ies could start at a certain observation time and could end before all experimental units had
experienced an event.

Right censoring:- occurs to the right of the last known survival time and the observation
of patient is terminated before the event occurs. Survival time is said to be right censored
when it is recorded from its beginning to a defined time before its end time. This type of
censoring is commonly recognized survival analysis and also considered in this study (Klein
and Moeschberger, 2006).

Survival Function:- The distribution of survival time is characterized by survival function,
probability density function and hazard function. Let T be a random variable associated with the
survival times and t be the specified value of the random variable T and f(t) be the underlying
probability density function of the survival time T. The survival function, S(t), is given by:-

S(t) = P (T ≥ t) = 1− F (t), t ≥ 0

Where, F(t) is cumulative distribution function, which represents the probability that a subject
selected at random will have a survival time less than some stated value t, given by:-

F (t) = P (T < t) =

∫ t

0

f(u)du, t ≥ 0

The probability density function, f(t), is given by:-

f(t) =
d

dt
F (t) =

−d
dt
S(t)

The hazard function is the instantaneous probability of having an event at time t given that one
has survived up to time t (Kleinbaum and Klein, 2012). Hazard function is given by:-

λ(t) =
f(t)

S(t)
F (t) =

−d
dt
lnS(t)

The cumulative hazard function is defined as:-

Λ(t) =

∫ t

0

λ(u)du = −lnS(t), S(t) = e−Λ(t)

3.3.2.1.1 Estimation of Survival Function
The Kaplan-Meier estimator, non-parametric estimator used to estimate the survival function
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with censoring, which is not based on the actual observed event and censoring times, but rather
on the order in which events and censored observations occur. It incorporates information
from all of the observations available, both censored and uncensored, by considering any point
in time as a series of steps defined by the observed survival and censored times (Kaplan and
Meier, 1958). Therefore, the Kaplan Meier estimate of the survival function at time t, (S(t)) is
given by:-

Ŝ(t) =
∏
j:τj≤t

[1− dj
rj

]

where:- τj denote the set of k distinct death time in the observed in the sample, rj is the number
of subjects alive (at risk) just before time tj (the jth ordered survival time) and dj denotes the
number who died at time tj .

3.3.2.1.2 Comparison of Survival Function
The Kaplan-Meier plots are used to see whether there is difference in survival times or not

between groups of covariate under investigation. But, the plot cannot be used to decide whether
the survival time of heart failure patients in each covariate is different or not and log-rank test
was used for this purpose (Mantel and Haenszel, 1959).

The test statistic for log rank test is given by:

χ2
logrank =

[
∑

(d0j − r0j
dj
rj

)]2∑ r0jr1jdj(rj−dj)
r2j (1−rj)

∼ χ2
(1)

where: d0j is the number of failure in jth time of 1st group, d1j is the number of failure in jth

time of 2nd group, dj is the number of failure in jth time (d0j + d1j), r0j is the number at risk at
jth time of 1st group, r1j is the number at risk at jth time of 2nd group and rj is the number at
risk at jth time (r0j + r1j).

The hypotheses to be tested are:-
H0 : − There is no difference between the survival curves.
H1 : − There is difference between the survival curves.

3.3.2.1.3 Cox Proportional Hazards Model
The purpose of Cox PH model is to evaluate simultaneously the effect of several factors on

survival. In other words, it allows us to examine how specified factors influence the rate of a
particular event happening at a particular point in time. This rate is commonly referred as the
hazard rate. Thus, the relationship of predictors and the time-to-event in survival analysis is
given through hazard function as follows:-

λ(t|Z) = λ0(t)eβ
′Z = λ0(t)eβ1Z1+,...,+βpZp
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Where
λ(t|Z) is the hazard at time t for a subject with a set of predictors Z1, ..., Zp, λ0(t) is the baseline
hazard function, and β1, ..., βp are the model parameters describing the effect of the predictors
on the overall hazard.
The interpretation of the Cox PH model can be done using hazards ratios, which defined as the
ratio of two individuals with different covariate. Since hazard ratio is time independent we call
Cox PH model as Proportional Hazards model. The corresponding survival function for Cox
PH model is given by :-

S(t|Z) = [S0(t)]e
β1Z1+,...,+βpZp (1)

Where S0(t) is the baseline survival function
In this model, as model in equation (1), no distributional assumption is made for the survival
time and the only assumption is that the hazard ratio does not change over time (i.e. proportional
hazard) that is why this model is also known as semi-parametric model.

3.3.2.1.4 Accelerated Failure Time Models
Cox-PH model has been extensively used for modeling survival data. The AFT model is para-

metric model and an alternative model to fit the data when the proportional hazards assumption
fails. The AFT models are useful for comparison of survival times whereas the Cox-PH is ap-
plicable for comparison of hazards. The key differences between the two models are baseline
hazard function and ways of estimating coefficients (Kleinbaum and Klein, 2012).

AFT model is obtained by regressing of the logarithm of the survival time over the covariates
and the effect of the explanatory variables on the survival time is directly measured. Some of
the standard parametric accelerated failure time models are Exponential, Weibull, Log-normal,
and Log-logistic (Dätwyler and Stucki, 2011).

The survival function of an individual with covariate X at time t, in the accelerated failure
time model, is the same as the baseline survival function at time t * exp(β1X1i+, .....,+βpXpi),
where β1, ..., βp are coefficients of the regression. Thus, S(t|X) = S0[t∗exp(β1X1i+, .....,+βpXpi)]

for all t. The effect of the covariates on the survival function is that the time scale is changed by
a factor exp(β′X), which called accelerated factor (γ). A γ greater than one will increase the
survival time, while a factor less than one is harmful on survival time.

The AFT model treats the logarithm of survival time as the response variable and includes
an error term that is assumed to follow a particular distribution. The AFT model can be written
as follows:-

log(Ti) = µ+ β1X1i+, .....,+βpXpi + σεi

This model shows the log linear representation of the AFT model for the ith individual, where:
µ is intercept, log(Ti) is the log-transformed survival time, Ti is survival time, X1, ..., Xp are
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explanatory variables with coefficients β1, ..., βp, εi represents residual or unexplained variation
in the log-transformed survival times and σ denote scale factor.

Table 3.1: Commonly used distributions and parameters in AFT models

Distribution f(t) S(t) λ(t)

Exponential λe−λt e−λt λ

Weibull λρtρ−1e−ρt e−ρt λρtρ−1

Log-logistic λρtρ−1

[1+λρtρ]2
1

1+λρtρ
λρtρ−1

1+λρtρ

Log-normal 1√
2πσ

exp[−[logt−µ]2

2σ2 ] 1− Φ[ logt−µ
σ

]
1√
2πσ

exp[
−[logt−µ]2

2σ2
]

1−Φ[ logt−µ
σ

]

where:

• λ (lambda) and ρ (rho) denotes scale parameter and shape parameter respectively for
Exponential, Weibull, & Log-logistic distribution.

• σ and µ denote scale parameter and shape parameter respectively for Log-normal distri-
bution.

• Φ(.) denotes the standard normal distribution function.

3.3.2.1.5 Estimation of Parameters in AFT Models
The parameters of Cox-PH model were estimated by partial likelihood function. Partial like-

lihood is a technique developed to make inference about the regression parameters, β, in the
presence of nuisance parameters λ(t|Z) (Cox, 1972).

The parameters of AFT models were estimated by maximum likelihood method and Newton-
Raphson procedure was used to obtain maximum likelihood parameters estimates (Qi, 2009).

3.3.2.1.6 Model Selection Criterion
Akaikes Information Criterion was used to choose the best AFT model from models like

Exponential, Weibull, Log-normal, and Log-logistic model, that fit the data results. It is a
method proposed to compare different models, models that are not nested, and/or models with
different numbers of parameters (Akaike, 1974). AIC is obtained by:-

AIC = 2log(L) + kp
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where: p is the number of parameters in the model, L is the likelihood, k is a constant and can
be seen as a penalty for additional parameters between 2 and 6 (often 2). The recommendation
is to use a larger k with small sample. The model which as smallest AIC value is considered as
best fitted model.

Bayesian Information Criteria was used to select the best AFT model. The BIC is given by
Schwarz (Schwarz et al., 1978). Bayesian Information Criteria is obtained by:-

BIC = 2log(L) + kp ∗ log(n)

where: p is the number of parameters in the distribution, L is the likelihood, log(n) is the
number of observations, k is a constant. The distribution which has the lowest BIC value is
considered as best fitted model.

3.3.2.2 Bayesian Survival Analysis

Bayesian approach is preferred over the frequentist approach in survival analysis is that the
power of information obtained from the approach is much better as it is the combination of like-
lihood data and prior information about the distribution of the parameter. In addition, Bayesian
approach has several advantages over classical methods, it is well known that survival models
are generally quite hard to fit, especially in the presence of complex censoring schemes. With
the use of the Gibbs sampler and other MCMC techniques, fitting complex survival models
is fairly straightforward, and the availability of software like BUGS eases the implementation
greatly (Ibrahim et al., 2001). MCMC methods, has some limitation like the burden of time
in approximating the posterior and convergence problem (Brooks and Gelman, 1998; Berger,
2013). As of 2009, the other news was welcomed with very flexible and fast approximation
techniques called Integrated Nested Laplace Approximation. Bayesian approach with INLA
method is focused on providing a good approximation to the posterior marginal distributions of
the parameters in the model (Rue et al., 2009). Bayesian approach is the best method to obtain
the appropriate estimates of the model (Gelfand and Mallick, 1995).

The main reasons why one might choose to use Bayesian statistics to produce more ac-
curate parameter estimates. In addition, Bayesian statistics one can incorporate uncertainty
about a parameter and update this knowledge through the prior distribution (Depaoli, 2014).
Bayesian approach is more useful in clinical data analysis over frequentist and suitable data
analysis technique for clinical researchers (Bhattacharjee, 2014). Bayesian approach considers
the parameters of the model as random variables and requires that prior distributions be speci-
fied for them and data are considered as fixed. In addition, Statistical inferences done by using
Bayesian approach is based on the posterior distribution of the model generated (Dezfuli et al.,
2009).
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Components of Bayesian inference:-
Prior Distribution:- π(θ), It probability distribution used to expresses uncertainty about un-
known quantities parameter θ, before the data are taken into account. It is prior distribution,
which is a probability distribution that represents the prior information associated with the pa-
rameter of interest. A conjugate prior distribution is intended for an unknown parameter which
leads to a posterior distribution. Since there is no information available about the parameter,
uniform distribution is most commonly used non-informative prior (Ibrahim et al., 2001).

Likelihood:- Ł(θ|Data), it is a likelihood functions, which is a function that gives the probabil-
ity of observing of the sample data given the current parameters. For set of unknown parameters
in the presence of right censoring it can be written as:

L(θ|Data) =
n∏
i=1

[f(ti|Xi; θ)
σi ∗ S(ti|Xi; θ)

1−σi ]

where

- σi is censoring indicator (0=censored and 1=death)

- f(ti|Xi; θ and S(ti|Xi; θ) are the probability density and survival distributions respec-
tively (Ganjali and Baghfalaki, 2012).

Posterior Distribution:- Posterior Distribution is a combination of prior distribution and like-
lihood using the Bayes rule, likelihood which includes information about model parameters
based on the observed data, and a prior, which includes prior information (before observing
the data) about model parameters. It is obtained by multiplying the prior distribution over all
parameters, θ, by the full likelihood function L(θ|X) (Christensen et al., 2011). Given by

Posterior =
Likelihood ∗ prior∫
Likelihood ∗ priordθ

Assuming that θ is a random variable and has a prior distribution denoted by π(θ), then posterior
distribution, π(θ|X), of θ is given by:

π(θ|X) =
L(X|θ)π(θ)∫
L(X|θ)π(θ)dθ

It is clear that π(θ|X) is proportional to the likelihood multiply by the prior, π(θ|X) ∝ L(X|θ)π(θ),
and thus it involves a contribution from the observed data throughL(X|θ) and contribution from
prior information quantified through π(θ). The quantity m(x) =

∫
L(X|θ)π(θ)dθ is the nor-

malizing constant of π(θ|X), and is often called the marginal distribution of the data or the prior
predictive distribution (Ibrahim et al., 2001).
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3.3.2.2.1 Bayesian Accelerated Failure Time Models
Parametric models play an important role in Bayesian survival analysis, since many Bayesian

analyses in practice are carried out using parametric models. Parametric modeling offers straight-
forward modeling and analysis techniques (Ibrahim et al., 2001).

Exponential Model
The Exponential model is the most fundamental parametric model in survival analysis. Suppose
we have independent identically distributed survival times t = (t1, t2, ...., tn)

′ each having an
exponential distribution with parameter β, where the censoring indicators σi = 0 if ti is right
censored and σi = 1 if ti is failure time. Let f(ti|β) =βexp(−βti) denotes the density for ti,
S(ti|β) =exp(−βti) denotes the survival function for ti and X = (n, t, σ) denotes the observed
data. We can write the likelihood function of β as

L(β|X) =
n∏
i=1

[f(ti|β)σi ∗ S(ti|β)1−σi ] = βXexp(−β
n∑
i=1

ti)

where X =
∑n

i=1 σi. If we assume a p dimensional normal prior for β with mean as µ0 and
covariance matrix as Σ0 (Ibrahim et al., 2001). Then the posterior distribution of β is given by

π(β|X) ∝ L(β|X)π(β|µ0,Σ0) ∝ β
∑n
i=1 σiexp(−β

n∑
i=1

ti)(β
µ0−1exp(−Σ0β))

π(β|X) = βµ0+x−1exp(−β(Σ0 +
n∑
i=1

ti))

Weibull Model
The Weibull model is perhaps the most widely used parametric survival model. Suppose
we have independent identically distributed survival times t = (t1, t2, ...., tn)

′ each having
an Weibull distribution with parameter α, where α > 0 and λ. The density for ti is given
by f(t|α, λ) = αtα−1exp(λ − exp(λ)tα). The survival function is given by S(t|α, λ) =

exp(−exp(λ)tα).
We can write the likelihood function of (α, λ) as

L(α, λ|X) =
n∏
i=1

[f(ti|α, λ)σi ∗ S(ti|α, λ)1−σi ]

= αxexp[λx+
n∑
i=1

(σi(α− 1)log(ti)− exp(λ)tαi )]

where σi is the indicator variable taking value 1 if ti is failure time and 0 if ti is right censored.
Then the posterior distribution of (α, λ) is given by

π(α, λ|X) ∝ L(α, λ|X)π(α|α0, k0)π(λ|µ0, σ
2
0)
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Let λi = x
′
iβ, where xi is a covariates, β is a parameters. Assuming Normal prior with param-

eters (µ0, σ
2
0) for β and gamma prior for α (Ibrahim et al., 2001). The posterior distribution of

(β, α|X) is given by

π(β, α|X) ∝ αα0+X−1exp[
n∑
i=1

(σi + x
′

iβ + σi(α− 1)log(ti)− tαi exp(xi′β))−

k0α− 1/2(β − µ0)Σ−1
0 (β − µ0)]

where X = (n, t, σ) denote the observed data for survival model.

Log-Normal Model
Another commonly used parametric survival model is the log-normal model. For this model, we
assume that the logarithms of the survival times are normally distributed. If ti has a log-normal
distribution with parameters (µ, σ2), denoted by LN(µ, σ2), then the density function is given
by

f(ti|µ, σ) = (2π)−1/2(tiσ)−1exp(
−1

2σ2
(log(ti)− µ)2).

The survival function is given by

S(ti|µ, σ) = 1− φ(
log(ti)− µ

σ
)

Then the likelihood function of (µ, σ) as

L(µ, σ|X) =
n∏
i=1

[f(ti|µ, σ)σi ∗ S(ti|µ, σ)1−σi ]

= (2πσ2)−x/2exp(
−1

2σ2
)

n∑
i=1

[σi(log(ti))− µ)2]

∗
n∏
i=1

[t−σii (1− φ(
log(ti)− µ

σ
))1−σ

Let τ = 1/σ2 and µi = x
′
iβ, where xi is a covariates, β is a parameters. Assuming Normal

prior for β and gamma prior for τ (Ibrahim et al., 2001). The posterior distribution of (β, τ) is
given by

π(β, τ |X) ∝ τ
α0+X

2
−1exp[

−τ 2

2
(
n∑
i=1

σi(log(ti)− x
′

iβ)2 + (β − µ0)
′
Σ−1
i (β − µ0) + λ0)]

∗
n∏
i=1

[t−σii (1− φ(τ−1/2(log(ti)− x
′

iβ)))1−σi
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Log-Logistic Model
Log-logistic model is used parametric survival model. If ti has a log-logistic distribution with
parameters (µ, σ), denoted by LL(µ, σ), then the density function is given by

f(t|µ, σ) =
exp( log(t)−µ

σ
)

σ(1− exp(log(t)−µ)
σ

)2

The survival function is given by

S(t|µ, σ) = (1 + exp(
log(t)− µ

σ
))−1

Then the likelihood function of (µ, σ) as

L(µ, σ|X) =
n∏
i=1

[f(ti|µ, σ)σi ∗ S(ti|µ, σ)1−σi ]

Let τ = 1/σ2 and µi = x
′
iβ, where xi is a covariates, β is a parameters. Assuming Normal

prior for β and gamma prior for τ (Ibrahim et al., 2001). The posterior distribution of (β, τ) is
given by

π(β, τ |X) ∝
n∏
i=1

[(
(τ 1/2 exp(log(t)− x′βτ 1/2))

(1 + exp(log(t)− x′βτ 1/2))2
)σi ∗ (

1

(1 + exp(log(t)− x′βτ 1/2))
)1−σi

∗[(2πσ2)−1/2 exp(
(β − µ0)

2σ0

)]

3.3.2.2.2 Estimations of Parameter in Bayesian Survival Models
Markov Chain Monte Carlo Method

A Markov Chain Monte Carlo method was used to carry out simulations in estimation of
Bayesian parameters. The simulation is used to do the integration numerically rather than an-
alytically by sampling from the posterior distribution of interest even when the form of that
posterior has unknown algebraic form (Spiegelhalter et al., 2004).

The basic MCMC methods are Gibbs sampler and metropolis hasting algorithm. Gibbs
sampler is the first choice for conditionally conjugate models, the posterior densities are easy
to obtain and its also easy to draw samples from each conditional posterior distribution, but
metropolis algorithm can be used for models that are not conditionally conjugate. Therefore,
In this study the models are conditionally conjugate, because of that Gibbs sampler was used
rather than metropolis algorithms (Ibrahim et al., 2001).

Gibbs sampler is an algorithm that sequentially generates samples from a joint distribution
of two or more random variables. The means of the posterior samples provide point estimates
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for the model parameters, while the standard deviations provide measures of precision. The
95% credible intervals, calculated using the 2.5th and 97.5th percentiles of the posterior samples,
provide an alternative indication of the covariates effects along with estimation precision.

Integrated Nested Laplace Approximation Method
The Integrated Nested Laplace Approximation Method was used to estimate the parameters
in Bayesian survival model. Survival analysis consists of a great body of work using latent
gaussian models. According to Rue et al. (2009), INLA computes posterior marginals for each
component in the model and it is from these that the posterior expectations and standard devia-
tions can be found. The survival models can be expressed as a latent gaussian model on which
the integrated nested Laplace approximations can be applied (Akerkar et al., 2010).

The main aim is to approximate the posterior marginals of the latent field, π(Xi|Y ) and the
posterior marginals of the hyper parameters π(θ|Y ) and π(θj|Y ). The posterior marginals are
given by:

π(Xi|Y ) =

∫
π(Xi|θ)π(θ/Y )dθ

π(θj|Y ) =
∫
π(θ/Y )dθ−j where π(Xi|Y ), π(θ|Y ) and π(θj|Y ) are the posterior marginals

to be approximated by the latent gaussian models. INLA has a great improvement in speed
compared to the other MCMC and also a higher level of accuracy (Akerkar et al., 2010). In
addition, INLA provide both extremely fast and very accurate approximations to the posterior
marginal through a clever use of laplace approximations and advanced numerical methods and
it can be adapted to fit survival models. An R package called R-INLA works as an interface for
INLA and it is used just as the other R functions. The INLA programme and the R package for
INLA are freely available from http://www.r-inla.org.

3.3.2.2.3 Bayesian Model Selection Criterion
For Bayesian models, we might prefer the Deviance Information Criteria was used for Bayesian

survival model comparison. The preferable model is the one with the lowest value of the DIC
(Spiegelhalter et al., 2004). We define the deviance of the model as:

D(θ) = −2log(P (y|θ))

In a Bayesian model, this is a random variable so we use the expected deviance E(D(θ)) under
the posterior distribution as a measure of fit. For counting the parameters, we introduce the idea
of the effective number of parameters:

pD = E(D(θ))−D(E(θ)) =
−
D −

−
D (θ),

and the DIC is then:
DIC =

−
D + pD
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An alternative is the Watanabe Akaike information criterion, (Watanabe, 2010) which follows a
more fully Bayesian approach to construct a criterion. (Gelman et al., 2014) claims the WAIC
is preferable to the DIC.

3.3.2.2.4 Bayesian Model Diagnostics
Bayesian Cox-Snell residual plot

Model checking and adequacy play an important role in models for survival data. In Bayesian
analysis, Chaloner (1991) defined the Bayesian version of the residuals:-

rci = Hi(ti, θ|xi) = − log(S(ti, θ|xi)), i = 1, 2, ...., n

Each rci is just a function of unknown parameters, and posterior distribution is therefore straight-
forward to calculate. The posterior mean or median of the rci’s can be calculated and evaluated.
More simply, Wakefield (2013) suggested that one could substitute the posterior mean or me-
dian of θ directly to obtain the approximate Bayesian residuals.

If the model fits well and the posterior mean is close to the true value, then the posterior
mean or median of rcis should look like a censored sample from a unit exponential distribution.
In order to check whether the rcis behave as a sample from a unit exponential distribution,
we could compute the Nelson Aalen estimator of the cumulative hazard rate of rcis, which is
defined as H(t) =

∑
rci

di
mi

with di the number of events at rci and mi the total individuals at
risk just prior to time rci .

If the exponential distribution fits the residuals, the estimate should be very close to the true
cumulative hazard rate of the unit exponential model, that is, H(t) = t. Hence, one could check
the so-called Cox-Snell residual plot, a plot of the residual rci versus its Nelson Aalen estimate
(rci). If a model fits well, this plot should follow a straight line through the origin with a slope
of 1.

Predictive Distribution
The idea on how to classify the sample data and techniques undergone for the application of
criticism for predictive distribution (Piironen and Vehtari, 2017). The predictive distribution for
observation x is

p(x|y) =

∫
θ

p(x|θ)p(θ|y)dθ

To evaluate the goodness of the model in this perspective and whether there are any outliers,
the conditional predictive ordinates and probability integral transform values can be examined.
The conditional predictive ordinate introduced by Pettit (1990), is defined as:

CPOi = P (yi|y−i)

where: y−i means all the data except for the ith observation. If a choice of model leads to many
small CPOs, the model may be flawed in some way. This is similar to investigating the residuals
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of a model, whereas a residuals only measure the distance between the data and the model, the
CPO measures the probability of that distance, i.e. this takes the distribution of the model into
account. In addition, the sum of the CPO values is a measure of fit (Held et al., 2010).

The probability integral transform is similar to the CPO statistic. It was introduced by
(Dawid, 1984) and is defined as:-

PITi = P (Yi < yi|y−i)

The observations were drawn from the predictive distribution, If the model represents the ob-
servation well, the distribution of the different values should be close to a uniform distribution
between 0 and 1 (Martino et al., 2011).

3.4 Ethical Consideration

The Research Ethics Review Board of Jimma University would provide an ethical clearance
for the study. The data has been collected after written permeation was obtained from Jimma
University Medical Center and department of statistics write an official co-operation letter to
the Hospital for the permeation.

The data has been carefully reviewed from the registration log book and patients registration
card. Confidentiality of any information related to the patients and their clinical history has
been maintained by keeping both the hardcopy and softcopy of every collected data in a locked
cabinet and password secured computer. Only the researcher would access to the de-identified
data that has been kept in a secure place. All data has been coded with numbers and without
personal identifiers. All analysis has been on de-identified and coded data. During the study,
there is no contact between the patients and the researcher. The study is non-invasive and
without any harm to the patients. Then, the data obtained from the hospital has been secured.

3.5 Statistical Software Used

The statistical software used were:-

• SPSS version 21 used for data coding and entry.

• WinBUGS version 14 used for data analysis in MCMC method.

• R version 3.6.1 used for others data analysis.
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4 RESULTS AND DISCUSSIONS

4.1 Results

4.1.1 Descriptive Summaries

The data for this study has been taken from 409 patients receive treatments for HF, at least
one time, at Jimma University Medical Center, Jimma, Ethiopia in the year first January, 2016
to first January, 2019. The minimum and maximum event time observed from HF patients
follow up where 6 and 36 months respectively. Among those HF patients, about 59.90% were
censored (right censored) and remaining 40.10% were died. Fifty percent of HF patients who
receive treatments, survived 31 months or above it. Almost half, 52.81%, of the HF patients
were female and the remaining were male during the follow up study. However, their survival
time of male patients seems lower.

Most of HF patients, about 64.79% live in rural area and the remaining were in urban area.
The survival time of HF patients seems less as they gets older. About 20.05%, 22.25%, 23.72%,
25.43% and 8.55% of HF patients were ischemic heart disease, rheumatic valvular heart dis-
eases, cardiomyopathy heart disease, hypertensive heart disease and other disease respectively.
By observing the smoking status of HF patients, most HF patients were, 74.82%, non-smokers
and the death proportion seems highest for those HF patients who smoker which was 54.88%
compared to non-smokers which was 45.12%. About, 64.55% of HF patients were not alcohol
users and 35.45% were alcohol users.

Moreover, about 19.08% HF patients treated in the hospital with a combination of two
or more treatments and 19.32% HF patients take digoxin. In addition, the remaining 24.2%,
25.18% and 11.49% of HF patients treated with spironolactone, atorvastatin and other treat-
ments respectively. About 58.19%, 13.69% and 28.12% HF patients were non-diabetic, type I
diabetes mellitus and type II diabetes mellitus respectively.

By observing the chronic kidney disease of HF patients, about 30.32% and 69.68% were HF
patients with chronic kidney disease and without chronic kidney disease respectively, in which
HF patients with chronic kidney disease seems lower survival time. Most of HF patients has no
hypertension, 60.64%, and the remaining has hypertension.

Looking the stage at which the HF patients goes to the hospital for treatment, about 36.92%,
28.61%, 19.07% and 15.4% were in stage IV, in stage III, in stage II and in stage I respectively.
Most of, about 54.87% death, HF patients go for treatment into the hospital at later stage and
their survival time seems low at this stage.
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Table 4.1: Descriptive summaries of patient’s for HF data set

Patients Status
Covariates Categories No of Censored(%) No of Death(%) Total

Sex Female 148(60.41) 68(41.46) 216(52.81)
Male 97(39.59) 96(58.54) 193(47.19)
≤ 49 98(40.0) 17(10.36) 115(28.12)

Age 49-65 78(31.84) 53(32.32) 131(32.03)
≥ 65 69(28.16) 94(57.32) 163(39.85)

Alcohol No 172(70.20) 92(56.10) 264(64.55)
Yes 73(29.80) 72(43.90) 145(35.45)

Residence Urban 97(39.59) 47(28.66) 144(35.21)
Rural 148(60.41) 117(71.34) 265(64.79)

History of HF New 74(30.20) 46(28.05) 120(29.34)
HF patient before 84(34.29) 79(48.17) 163(39.85)

Medical OPD 87(35.51) 39(23.78) 126 (30.81)
CKD No 224(91.43) 61(37.20) 285(69.68)

Yes 21(8.57) 103(62.80) 124(30.32)
Hypertension No 203(82.86) 45(27.44) 248(60.64)

Yes 42(17.14) 119(72.56) 161(39.36)
Anemia No 205(83.67) 62(37.80) 267(65.28)

Yes 40(16.33) 102(62.20) 142(34.72)
DM Not 204(83.26) 34( 20.73) 238(58.19)

Type I 18(7.35) 38(23.17) 56(13.69)
Type II 23(9.39) 92(57.0) 115(28.12)

IHD 62(25.31) 20(12.19) 82(20.05)
Etiology of HF RVHD 47(19.18) 44(26.83) 91(22.25)

Cardiomyopathy 55(22.45) 42(25.61) 97(23.72)
HHD 55(22.45) 49(29.88) 104(25.43)

Others 26(10.61) 9(5.49) 35(8.55)
Cigarette No 232(94.69) 74(45.12) 306(74.82)

Yes 13(5.31) 90(54.88) 103(25.18)
Digoxin 48(19.59) 31(18.90) 79(19.32)

Spironolactone 65(26.53) 34(20.73) 99(24.20)
Treatments Atorvastatin 62(25.31) 41(25.0) 103(25.18)

Others 27(11.02) 20(12.20) 47(11.49)
Combination ≥2 43(17.55) 38(23.17) 81(19.80)

I 58(23.67) 5(3.05) 63(15.40)
Stages II 61(24.90) 17(10.37) 78(19.07)

III 65(26.53) 52(31.71) 117(28.61)
IV 61(24.90) 90(54.87) 151(36.92)

No: Number; %: percent; DM: Diabetes mellitus; CKD: Chronic kidney disease; IHD:
Ischemic heart disease; RVHD: Rheumatic valvular heart disease; and HHD:

Hypertensive heart disease.
Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.
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The Kaplan Meier Estimate for some Covariate:-

Figure 4.1 (a) below, the overall survival rate at the end of the first year was almost 93.1%,
and the overall survival rate at the end of 34 months in this study was 31%, 95% confidence
interval was (23.9%, 40.2%).

Figure 4.1 (b) below, indicated that HF patients whose age was below 49 years were at a
higher probability of surviving than patients whose age was 49 to 65 years and also patients
whose age was greater than or equal to 65 years. The probability of surviving becomes less for
the patients whose age was greater than or equal to 65 years.

Figure 4.2 (c) below, shows that HF patients with stage I were higher chance of surviving
than other stages. The survival curve for patients with stage II was above the survival curve of
those patients with stage III and stage IV. The probability of surviving becomes less for the HF
patients with stage IV.

Figure 4.2 (d) below, one sees that the HF patients without hypertension was at a higher
chance of survival than the HF patients with hypertension.

Figure 4.1: Kaplan-Meier estimates of the survival curves of HF data set for (a): Overall sur-
vivor function for heart failure patients in the study, (b): Age group
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Figure 4.2: Kaplan-Meier estimates of the survival curves of HF data set for (c): Stages, (d):
Hypertension

4.1.2 Comparison of Survival time of HF patients

From Table 5.1 in appendix, indicating log-rank for the covariates, there is difference in the
survival time of HF patients with respect to sex, age, chronic kidney disease, diabetes mellitus,
etiology of heart failure, hypertension, anemia, smoking cigerette and stages of heart failure
since there corresponding p-value was smaller than common alpha level of significance (5%).
On the other hand, the remaining covariates like residence, treatment taken, alcohol consump-
tion and history of heart failure were not statistically significant.

4.1.3 Cox Proportional Hazard Model

To determine the covariates which are associated with the observed time to death of HF patients,
the variable with p-value less than or equal to 25% in uni-variable analysis were considered for
multi-variable analysis (Hosmer Jr et al., 2008). Then, the multi-variable Cox proportional
hazard model was fitted including all the potential covariates that were significant in the uni-
variable at 25% level of significance. The fitted Cox-PH model, as shown from Table 5.3
in the appendices, shows that the survival time of HF patients significantly affected by sex,
age, chronic kidney disease, diabetes mellitus, etiology of heart failure, hypertension, anemia,
smoking cigarette and stages of heart failure since there corresponding p-value was smaller than
common alpha level of significance (5%).
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4.1.3.1 Checking the Assumption of Cox-PH

As it can be shown in the Table 4.2 below, the p-values for alcohol consumption, chronic kidney
disease and anemia are less than common (5%) level of significance using correlation test (rho)
and these shows as the assumption of Cox-PH model was not valid for HF data set. In addition,
by looking for global test the assumption of Cox-PH fails since the test result was significant.

Table 4.2: Shows test of assumption in Cox-PH model

Covariates rho Chi-square P-value
Age 0.0125 0.0269 0.86981
Sex -0.0349 0.2344 0.62829

History of HF 0.0367 0.2201 0.63896
Alcohol consumption 0.1639 4.5498 0.03292

Hypertension -0.0639 0.7364 0.39081
Chronic kidney disease -0.1970 7.9647 0.00477

Etiology of HF -0.1205 2.4705 0.11600
Smoking cigarette 0.0907 1.6229 0.20269
Diabetes mellitus -0.0179 0.0573 0.81077

Anemia 0.2030 8.2169 0.00415
GLOBAL TEST NA 23.4782 0.00911

Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.

4.1.4 Accelerated Failure Time Models

Proportionality assumption of cox proportional hazard model was not fulfilled for HF data-set.
In this case parametric AFT models was used for the HF data set. To determine the covariates
which are associated with the observed time to death of HF patients, the variable with p-value
less than or equal to 25% in uni-variable analysis were considered for multi-variable analysis
(Hosmer Jr et al., 2008). For the survival time of HF data-set, AFT model such as exponential,
weibull, log-normal and log-logistic distribution were fitted by including all the covariates that
were significant in the uni-variable at 25% level of significance.

To compare the efficiency of these different models AIC and BIC were used and the one
with the smallest value and seems best fit. All AFT models and the corresponding AIC and BIC
values were displayed in Table 5.5 of the appendices. As it can be observed from this table,
the AIC and BIC value for log-normal model is less than all proposed AFT models. Thus,
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log-normal AFT model (AIC = 1298.620 and BIC = 1365.253) found to be the best fit for the
survival time of HF patients data set from the given alternative, the step-wise procedure was
applied to select the significant covariates. The results for the log-normal AFT model as shown
from Table 5.4 in the appendices shows the survival time of HF patients statistically significantly
affected by age, chronic kidney disease, diabetes mellitus, etiology of HF, hypertension, anemia,
smoking cigarette and stages of HF since there corresponding p-value was smaller than common
alpha level of significance (5%).

4.1.5 Bayesian Accelerated Failure Time Models

As it can be shown in the Table 4.2, the assumption of Cox-PH model was not valid for heart
failure data set; in this case parametric AFT models was used for HF data set. For the HF data
set, the time ti where i = 1, 2, ...., 409 of heart failure patients. Given that β = (β0, β1, ..., βp)

′ is
the vector of coefficients of the covariates considered for analysis, β0 is the intercept and p the
number of covariates (p = 13), we assume that all these coefficients have a normal prior with
mean 0 and variance 1000. We assume that scale parameter have a gamma prior with shape
parameter 1 and inverse scale parameter 0.001, this prior was used for Weibull, Log-normal
and Log-logistic distribution for INLA and MCMC method of estimation (Akerkar et al., 2010;
Ibrahim et al., 2001). In this simulation study of Bayesian inference using MCMC, the Gibbs
sampler algorithm was implemented with 40,000 iterations in three different chains, 15,000
burn-in terms discarded, as to obtain 60,000 samples for full posterior distribution.

From Table 4.3 below, shows that analysis of HF data set for model comparison using
MCMC and INLA method. To compare the efficiency of these different models DIC and WAIC
were used and the one with smallest value and seems best fit. Accordingly, Bayesian log-
normal AFT model using INLA (DIC = 1297.84; WAIC = 1297.47) and Bayesian log-normal
AFT model using MCMC Method (DIC = 1321.73) found to be the best for survival time of HF
patients data-set from the give alternative. The Bayesian log-normal AFT model using INLA
method has the smallest DIC than using MCMC method.

Table 4.3: The comparisons of Bayesian AFT model using MCMC and INLA methods
MCMC INLA

Distributions pD DIC pD DIC WAIC
Exponential 15.764 1497.050 12.24 1400.62 1522.88
Log-Normal 16.796 1321.730 17.06 1297.84 1297.47

Weibull 16.360 1411.070 11.63 1389.20 1383.43
Log-logistic 16.424 1386.650 7.59 1326.88 1326.39

Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.
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The Results of Bayesian Log-normal AFT model using MCMC and INLA method

As shown in Table 4.4 below, the Bayesian log-normal AFT model using INLA method was
better than Bayesian log-normal AFT model using MCMC method due to smaller standard error
and narrow credible interval for all significant parameters in HF data set. The standard error
of MCMC results were larger than INLA method with wider credible interval. Thus, INLA
method provides a faster and more accurate alternative to simulation based MCMC schemes
with higher precision.

Table 4.4: The results of Bayesian log-normal AFT model using MCMC and INLA method
Method of Estimations

MCMC INLA
Cova Categ PM Sd CrI PM Sd CrI

Intercept 5.18 0.2417 [4.397, 5.645] 4.95 0.221 [4.541, 5.409]
≤ 49 Ref Ref

Age 49-65 -0.27 0.123 [-0.503, -0.032] -0.25 0.115 [-0.488, -0.036]
≥ 65 -0.35 0.121 [-0.561, -0.113] -0.33 0.110 [-0.557, -0.125]

Hyper No Ref Ref
Yes -0.31 0.107 [-0.465, -0.129] -0.30 0.076 [-0.452, -0.153]

CKD No Ref Ref
Yes -0.40 0.101 [-0.541, -0.206] -0.38 0.075 [-0.537, -0.244]
IHD Ref Ref

Etio RVHD -0.31 0.126 [-0.545, -0.057] -0.30 0.116 [-0.533, -0.076]
Cardio -0.16 0.122 [-0.390, 0.064] -0.15 0.113 [-0.382, 0.063]
HHD -0.27 0.123 [-0.504, -0.031] -0.25 0.115 [-0.486, -0.035]
Others -0.39 0.183 [-0.713, -0.059] -0.38 0.160 [-0.693, -0.066]

I Ref Ref
Stages II -0.43 0.207 [-0.817, -0.321] -0.40 0.190 [-0.782, -0.038]

III -0.42 0.180 [-0.793, -0.080] -0.42 0.176 [-0.781, -0.090]
IV -0.51 0.175 [-0.879, -0.178] -0.50 0.173 [-0.857, -0.180]

Ciga No Ref Ref
Yes -0.16 0.088 [-0.362, -0.080] -0.15 0.073 [-0.300, -0.014]
Not Ref Ref

DM TypeI -0.24 0.120 [-0.468, -0.029] -0.23 0.100 [-0.431, -0.036]
TypeII -0.43 0.11 [-0.605, -0.256] -0.42 0.086 [-0.593, -0.255]

Anem No Ref Ref
Yes -0.16 0.085 [-0.297, -0.011] -0.15 0.072 [-0.298, -0.013]

Cov: Covariates; Categ: Categories; PM: Posterior mean; CrI: Credible Interval; Sd:
standard deviation; Ref: Reference; Hyper: Hypertension; CKD: Chronic kidney disease;
Etio: Etiology of HF; Anem: Anemia; DM: Diabete mellitus and Ciga: Smoking cigarette.
Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.
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4.1.5.1 Bayesian Log-Normal AFT Model using INLA method

For the HF data set, the time ti where i = 1, 2, ...., 409 of heart failure patients follows a log-
normal distribution. The final model is defined as:
log(Ti) = β0 + β12 (49-65) years age group +β13(≥ 65) years age group +β22 had hyperten-
sion +β32 had CKD +β42 RVHD +β43 HHD +β44 Others +β52 Stage II +β53 Stage III +β54

Stage IV +β62 Smokers +β72 TypeI DM +β73 TypeII DM +β82 Anemia +σεi, i = 1, ..., 409.
where:- CKD: Chronic kidney disease, DM: Diabetes mellitus, HHD: Hypertensive heart dis-
ease, RVHD: Rheumatic valvular heart disease.

The final results for the Bayesian log-normal AFT model using INLA method was shown as
in Table 4.5 and as this result shows the survival time of HF patients statistically significantly af-
fected by age, chronic kidney disease, diabetes mellitus, etiology of heart failure, hypertension,
anemia, smoking cigarette and stages of heart failure.

Table 4.5: Indicating the results for Bayesian log-normal AFT model using INLA method
Covariates Categories Pmean sd Median CrI Mode Kld

Intercept 4.953 0.221 4.945 [4.541, 5.409]* 4.929 0
≤ 49 Ref

Age 49-65 -0.258 0.115 -0.256 [-0.488, -0.036]* -0.253 0
≥ 65 -0.336 0.110 -0.335 [-0.557, -0.125]* -0.331 0

Hyper No Ref
Yes -0.301 0.076 -0.300 [-0.452, -0.153]* -0.299 0

CKD No Ref
Yes -0.389 0.075 -0.388 [-0.537, -0.244]* -0.387 0
IHD Ref

EthiHF RVHD -0.302 0.116 -0.302 [-0.533, -0.076]* -0.300 0
Cardiomy -0.158 0.113 -0.158 [-0.382, 0.063] -0.157 0

HDD -0.258 0.115 -0.257 [-0.486, -0.035]* -0.255 0
Others -0.381 0.160 -0.381 [-0.693, -0.066]* -0.382 0

Scigarette No Ref
Yes -0.156 0.073 -0.155 [-0.300, -0.014]* -0.154 0

I Ref
Stages II -0.400 0.190 -0.397 [-0.782, -0.038]* -0.389 0

III -0.423 0.176 -0.419 [-0.781, -0.090]* -0.410 0
IV -0.506 0.173 -0.501 [-0.857, -0.180]* -0.492 0

? is indicated statistically significant. Pmean: Posterior mean; CrI: Credible Interval;
Sd: standard deviation; Kld: Kullback-leibler divergence; Hyper: Hypertension; CKD:
Chronic kidney disease; EthiHF: Etiology of heart failure; IHD: Ischemic heart disease;
RVHD: Rheumatic valvular heart disease, and Scigarette: Smoking cigarette.
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Extension of Table 4.5, Indicating the results for Bayesian log-normal AFT model using INLA
method

Covariates Categories Pmean sd Median CrI Mode Kld
Not Ref

DM Type I -0.232 0.10 -0.231 [-0.431, -0.036]* -0.230 0
Type II -0.422 0.086 -0.421 [-0.593, -0.255]* -0.419 0

Anemia No Ref
Yes -0.154 0.072 -0.153 [-0.298, -0.013]* -0.152 0

Tau parameter for log-normal 4.30 0.497 4.28 [3.38, 5.33]* 4.24 -

? is indicated statistically significant. Pmean: Posterior mean; CrI: Credible Interval; Sd:
standard deviation; Kld: Kullback-leibler divergence; and DM: Diabetes mellitus.
Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.

Interpretation of Bayesian log-normal AFT model using INLA method

From Table 4.5, the final model were interpreted using acceleration factor, 95% credible
interval of Bayesian accelerated failure time estimated values. The estimated acceleration factor
is defined as γ = [exp(β̂)] = [exp(posterior mean)].

Under the Bayesian log-normal AFT model, keeping the effect of other factors constant, the
estimated acceleration factor for age group of HF patients were 49 to 65 and greater than or
equal to 65 years old are estimated to be 0.7726 with [95% CrI: 0.6138, 0.9646] and 0.7146
with [95% CrI: 0.5729, 0.9875] respectively. Thus, the expected survival time of HF patients
decrease by 22.74% and 28.54% for HF patients aged group 49 to 65 and 65 or above 65 years
older respectively as compared to HF patients of aged group 49 or below 49 years (Reference).
The 95% Credible Interval for acceleration factor of both age group did not include one which
implies that both age group has significant effect on the survival time of HF patients.

Looking for chronic kidney disease, keeping the effect of other factors constant, the esti-
mated acceleration factor of HF patients with chronic kidney disease is estimated to be 0.6777
with [95% CrI: 0.5844, 0.7835] which implies the expected survival time decreases by 32.23%
than HF patients without chronic kidney disease. The 95% CrI for acceleration factor of HF
patients with chronic kidney disease did not include one which implies that HF patients with
chronic kidney disease has significant effect on the survival time of HF patients.

By observing hypertension, keeping the effect of other factors constant, the estimated accel-
eration factor for HF patients with hypertension is estimated to be 0.74 with [95% CrI: 0.5844,
0.7834] in which the expected survival time is 26% decrease as compared to HF patients with
out hypertension (Reference). The 95% credible interval for acceleration factor of HF patients
with hypertension did not include one which implies that HF patients with hypertension has
significant (in the Bayesian sense) effect on the survival time of HF patients.
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On other hand, keeping the effect of other factors constant, the estimated acceleration factor
for HF patients who were smoking cigarette is estimated to be 0.8555 with [95% CrI: 0.7408,
0.986]. The 95% credible interval for the acceleration factor of HF patients who were smoking
cigarette did not include one. Thus, HF patients who were smoking cigarette has significant
effect on the survival time of patients and the expected survival time of HF patients who were
smoking cigarette decreases by 14.45% than not smoking cigarette.

Regarding to etiologies of HF, keeping the effect of other factors constant, the estimated
acceleration factor for etiologies of HF were rheumatic valvular heart disease, hypertensive
heart disease and other heart disease are estimated to be 0.7393 with [95% CrI: 0.5868, 0.9268],
0.772 with [95% CrI: 0.615, 0.965] and 0.683 with [95% CrI: 0.5, 0.936] respectively. Thus,
the expected survival time of HF patients decreases by 27.07% were rheumatic valvular heart
disease, 22.8% were hypertensive heart disease and 31.7% were other heart disease as compared
to ischemic heart disease of HF patients. The 95% CrI for acceleration factor of HF patients
for etiology of HF were rheumatic valvular heart disease, hypertensive heart disease and other
heart disease did not include one which implies that etiology of HF were rheumatic valvular
heart disease, hypertensive heart disease and other heart disease has significant effect on the
survival time of HF patients, while the etiology of HF were cardiomyopathy heart disease has
not significant effect on the survival time of HF patients.

Moreover, for diabetes mellitus, keeping the effect of other factors constant, the estimated
acceleration factor for HF patients with type I diabetic and type II diabetic are estimated to be
0.793 with [95% CrI: 0.649, 0.964] and 0.655 with [95% CrI: 0.552, 0.774] respectively. Thus,
the expected survival time of HF patients decreases by 20.7% for type I diabetic and 34.5%
for type II diabetic as compared to HF patients non-diabetic (Reference). The 95% credible
interval for acceleration factor of HF patients with both type of diabetes did not include one
which implies that HF patients with both type of diabetes has significant effect on the survival
time of HF patients.

Looking for anemia, keeping the effect of other factors constant, the estimated acceleration
factor of HF patients with anemia is estimated to be 0.857 with [95% CrI: 0.742, 0.987] which
implies the expected survival time decreases by 14.3% than HF patients without anemia. The
95% CrI for acceleration factor of HF patients with anemia did not include one which implies
that HF patients with anemia has significant effect on the survival time of HF patients.

Finally, observing stages of HF, keeping the effect of other factors constant, the estimated
acceleration factor for stage II, III and IV of HF patients are estimated to be 0.67 with [95%
CrI: 0.457, 0.962], 0.655 with [95% CrI: 0.457, 0.913] and 0.602 with [95% CrI: 0.424, 0.835]
respectively. Thus, the expected survival time of HF patients decreases by 33%, 34.5% and
39.8% for stage II, III and IV of HF patients respectively as compared to stage I. The 95%

34



credible interval for acceleration factor of HF patients having stage II, III and IV did not include
one this indicates that stage II, III and IV has significant effect on the survival time of heart
failure patients.

From Table 4.5, the Kullback-leibler divergence values for all significant parameters in
Bayesian log-normal AFT model were 0, and thus, small values indicate that the posterior dis-
tribution was well approximated by a normal distribution. A simplified laplace approximation
was the most efficient algorithm with improved efficiency and results to higher computation
speed. In addition, there is no need to perform the more computationally intense full Laplace
approximation. Therefore, simplified laplace approximation was appropriate.

4.1.5.2 Bayesian Model Diagnostics

Bayesian Cox Snell Residual Plots

By observing Bayesian cox-snell residual plots figure below, the Bayesian log-normal AFT
model best fit HF data-set among the five models, since the plot of Cox-Snell residuals against
cumulative hazard function of residuals was approximately a straight line with slope one and
Bayesian cox-snell residual plot for Bayesian log-normal AFT model were nearest to the line
through the origin. In addition, the plot also indicated that Bayesian log-normal model describes
the HF data-set well.
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Figure 4.3: Bayesian Cox-Snell residual plots for baseline distribution and Cox-PH that were
used to fit the Heart failure data set

The histograms of the cross-validated probability integral transform values in appendix Fig-
ure 5.4, shows that the posterior predictive p-values are some extent closer to a uniformly dis-
tributed with some observations outliers in HF data-set. The Conditional predictive ordinate
values that are considerably smaller (order of magnitude smaller) than the others, so with re-
spect to the Bayesian log-normal model, the observed values would be considered ’surprising’,
because the sum of the observations associated with failure flags are equal to zero in HF data-set.

From Figure 5.5, in appendix shows that the plots including 95% credibility interval by ob-
serving the posterior density for the parameters was normally distributed in HF data-set. The
kullback-leibler divergence is a diagnostic that measures the accuracy of the INLA approxi-
mation, since from Table 4.5 shows that the kld for all significant parameters in the Bayesian
log-normal AFT model were 0.
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4.2 Discussions

The main aim of this study was to identify factors affecting the survival time of HF data set,
which was obtained from JUMC, Jimma, Ethiopia. Heart failure is a growth problem in the
world and the overall prevalence of HF in the adult population in developing countries is 7%
- 10% with exponential rise with age (Adebayo et al., 2017). The descriptive results of the
study indicated that a total of 409 HF patients were included in this study, the minimum and
maximum event time observed from HF patients follow up where 6 and 36 months respectively.
In addition, fifty percent of HF patients who receive treatments, survived 31 months or above it.

In this study, among those HF patients, about 59.90% were censored (right censored) and re-
maining 40.10% were died. This finding was similar to a study conducted by Hailay et al. (2015)
shows among those HF patients, 31.3% of them were dead while the rest 68.7% were censored.
The Cox-PH model was applied for this data set. But, the assumption of Cox-PH model was
violated and the AFT models with different baseline distribution (exponential, weibull, log-
normal, log-logistic) were fitted for the HF data set. Among those different AFT models the
log-normal AFT model was chosen over the other since AIC and BIC were small (Akaike,
1974; Schwarz et al., 1978). Bayesian approach was applied on parametric AFT models and to
compare the efficiency of different AFT models DIC and WAIC were used (Spiegelhalter et al.,
2004; Watanabe, 2010). Bayesian log-normal AFT model was the best model to describe HF
data set from the given alternative. This result was similar with study done by Avi (2017).

Bayesian survival analysis using INLA and MCMC method helped to increase the accuracy
of the results by observing narrow credible interval and minimum the standard error, this results,
also confirmed by other studies done by El-Hakim and Uthman (1999), Akerkar et al. (2010),
and Martino et al. (2011). The efficiency and relevance of the Bayesian survival models using
MCMC method of estimation with application to clinical research were supported by the work
of different researchers which in fact applied for the different data set (Khanal et al., 2014; Khan
and Khan, 2013; Kumar et al., 2019).

In this study, Bayesian log-normal AFT model using INLA method was showed that smaller
standard error and narrow credible interval for all significant parameters better than that of
Bayesian log-normal AFT model using MCMC method and log-normal AFT (classical or fre-
quentist) model in HF data-set. This results was similar to a study done by Abrha et al. (2018)
shows that Bayesian survival analysis was better performance than classical parametric survival
analysis and also the result was consistent with study done by Akerkar et al. (2010) shows that
Bayesian survival models using INLA method was better than Bayesian survival models using
MCMC method. Therefore, INLA method was provides a faster and more accurate alternative
to simulation based MCMC schemes in HF data set. This result was consistent with studies
done by Akerkar et al. (2010), and Martino et al. (2011).
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However in this study, the results of Bayesian log-normal AFT model using INLA method
shows that the survival time of HF patients significantly affected by age, chronic kidney disease,
diabetes mellitus, etiology of HF, hypertension, anemia, smoking cigarette and stage of HF.
From the result of this study the age group has a significant effect on the survival time of HF
patients. In addition, the survival time of HF patients seems less as they gets older (greater
than or equal to 65 years) and different studies were also persisted with this results Adebayo
et al. (2017), Zeru (2018), and Sheng et al. (2018). The survival time of HF patients has no
hypertension was higher than that of with hypertension and thus, hypertension had a significant
effect on HF patients, the studies done by Ahmad et al. (2017), and Sheng et al. (2018) shows
the same results.

On other hand, the survival time of smoker HF patients were decreases as compared to non-
smoker which is similar to study done by Ahmad et al. (2017). The survival time of HF patients
significantly affected by both type of diabetes mellitus and the expected survival time of HF with
both type of diabetes mellitus was less as compared to HF patients without diabetic, this results
consistent with studies done by Ahmad et al. (2017), and Zeru (2018). In addition, chronic
kidney disease was significantly affected the survival time of HF patients and the survival time
was high for HF patients do not have chronic kidney disease as compared to HF patients having
chronic kidney disease, this results, also confirmed with study by Zeru (2018).

The studies done by Ahmad et al. (2017), and Zeru (2018) shows that the survival time of HF
patients significantly affected by anemia and the expected survival time of HF with anemia was
less as compared to HF patients without anemic. This studies was consistent with the current
study. The stages of HF patients has significant effect on the survival time of HF patients. The
study done by Zeru (2018) shows that the stages of HF patients has been significantly affected
the survival time of HF patients. From the results of these study the survival time of HF patients
was smaller as the stage increases as in result of this study.

For checking adequacy of the model, the cumulative hazard plots for the Bayesian Cox Snell
residuals of the Cox-PH, Exponential, Weibull, Log-normal and the Log-logistic models were
plotted as in Figure 4.3. The plots were more approached to the line in case of the Bayesian
log-normal model that indicates the Bayesian log-normal was best in HF data-set. This result
was consistent with other study done by Avi (2017). The conditional predictive ordinate and
probability integral transform were also used for model checking. Before adequacy checking
using graphical methods, it can be important to check whether the usual numerical problem
occurred during the computation of conditional predictive ordinate. Thus, since the sum of
the number of failure in conditional predictive ordinate was zero, no failure was detected and
meaning that no numerical problem has occurred in HF data-set. The histogram and scatter
plot of probability integral transform were plotted as in Figure 5.4, indicated that the plots of
predictive residual based values were to some extent uniformly distributed with some deviated
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outlier and there is reasonable predictive distribution matches the actual data. This result was
persisted with other studies done by Akerkar et al. (2010), and Martino et al. (2011).

The Bayesian log-normal AFT model diagnostic plots including 95% credibility interval
were plotted as in Figure 5.5 shows that the plot of posterior density for the parameters was nor-
mally distributed. Similarly, the kullback-leibler divergence is a diagnostic that measures the
accuracy of the INLA approximation. In this study the values of kld for all significant param-
eters in the Bayesian log-normal AFT model were 0. This indicate that Bayesian log-normal
AFT model using INLA method was fast and higher accuracy. This results, also confirmed by
other studies done by Martino et al. (2011), and Akerkar et al. (2010).

However, the thesis was not done without limitation. The study was conducted based on
secondary data gathered from registration log book and patients registration card, which might
have incomplete and biased information; Lack of published literature’s on the countries hospital
based related to the survival time of heart failure patients using Bayesian survival models; As
different literature pointed out, there are different prognostic factors (Body mass index and
Weight) that are assumed to have impacts on the survival time of HF. However, data on those
variables could not be available in hospital records.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study used survival time of heart failure patients data set, for those patients who were
receiving treatments for at-least one time in Jimma University Medical Center. Bayesian log-
normal AFT model performing better than various parametric models with baseline distribution
(Exponential, Weibull, Log-logistic and Log-normal) for this study. The small standard error
and narrow credible interval for all significant parameters for Bayesian log-normal AFT model
using INLA method was better than Bayesian log-normal AFT model using MCMC method
for the HF data set. Fifty percent of heart failure patients who receive treatments, survived 31
months or above it.

The survival time of HF patients significantly affected by age, chronic kidney disease, dia-
betes mellitus, etiology of heart failure, hypertension, anemia, smoking cigarette and stages of
heart failure. Of all this statistically significant covariates; age (49 to 65 years and greater than
65 years); etiology of heart failure (rheumatic valvular heart disease, hypertensive heart disease
and Other diseases); presence of hypertension; presence of anemic; presence of chronic kidney
disease; smokers; diabetes mellitus (type I and type II diabetic); and stages of heart failure (II,
III and IV) were prolong the timing death of heart failure patients.
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5.2 Recommendations

Based on the finding of the study it is recommended as follows:-

• The ministry of health and policy makers should work on awareness by letting to know
the risk factors for heart failure.

• The hospital, JUMC, need to improve public awareness for early detection of HF.

• Awareness has to be given for the society regarding smoking cigarette. The mass media
can play an effective role in this regard.

• The researchers who are interested to investigate on the same area are recommended to
introduce frailty modeling to account the correlation which comes from the cluster and
to accounts un-observable random effect using Bayesian survival analysis using MCMC
and INLA method.
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Appendices

Appendix-1:- Some selective relevant summary tables and figures for HF data-set

Table 5.1: The Log-rank test of each the covariates

Covariates Chi-square Degree of freedom P-value

Sex 4.8 1 0.03∗

Age 21.7 2 2e-05∗

Residence 0.4 1 0.5

Alcohol Consumption 2.5 1 0.1

History of Heart failure 5.7 2 0.06

Chronic kidney disease 84.8 1 <2e-16∗

Diabetes Mellitus 102 2 <2e-16∗

Etiology of Heart failure 19.7 4 6e-04∗

Hypertension 75.8 1 <2e-16∗

Anemia 58.5 1 2e-14∗

Smoking Cigerette 63.1 1 2e-15∗

Treatments Taken 3.4 4 0.5

Stage of Heart failure 41.2 3 6e-09∗
∗ is <0.05 (significant).

Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.

Table 5.2: Counts for patient status

Patients Status Number of patients (%)

Censoring 245(59.90)

Death 164(40.10)
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Table 5.3: The Multivariable analysis of Cox PH for HF data set

Covariates Categories β̂ SE[β̂] exp(β) z [95%CI exp(β)] p-value
Sex Female Ref

Male -0.466 0.216 0.627 -2.158 [0.41, 0.95] 0.030∗
≤ 49 Ref

Age 49-65 0.439 0.292 1.552 1.501 [0.874, 2.756] 0.133
≥ 65 0.738 0.281 2.093 2.625 [1.205, 3.634] 0.0086∗

Hist.of HF New Ref
HF Pati. 0.023 0.195 1.024 0.122 [0.698, 1.502] 0.902
Medical -0.031 0.228 0.969 -0.137 [0.618, 1.518] 0.891

Alcohol No Ref
Yes -0.037 0.176 0.962 -0.21 [0.681, 1.361] 0.830

Hyper No Ref
Yes 0.702 0.20 2.01 3.51 [1.364, 2.989] 0.00044∗

CKD No Ref
Yes 0.602 0.195 1.826 3.086 [1.245, 2.676] 0.002∗
IHD Ref

Etio. of HF RVHD 0.672 0.297 1.958 2.257 [1.092, 3.512] 0.024∗
Cardio 0.087 0.294 1.091 0.298 [0.612, 1.944] 0.765
HHD 0.473 0.283 1.605 1.671 [0.921, 2.797] 0.094

Others 0.094 0.447 1.616 1.07 [0.673, 3.883] 0.28
I Ref

Stages II 1.105 0.521 3.021 2.11 [1.086, 8.402] 0.034∗
III 1.103 0.483 3.015 2.281 [1.168, 7.786] 0.022∗
IV 1.178 0.477 3.248 2.470 [1.275, 8.274] 0.013∗

Scigarette No Ref
Yes 0.688 0.216 1.989 3.183 [1.302, 3.039] 0.0014∗
Not Ref

DM TypeI 0.538 0.26 1.713 2.0 [1.012, 2.900] 0.044∗
TypeII 1.047 0.232 2.85 4.49 [1.805, 4.499] 6.88e-06∗

Anemia No Ref
Yes 0.60 0.182 1.826 3.307 [1.278, 2.609] 0.000943∗

∗ is <0.05 (significant). exp(β):indicates Acceleration factor; 95%CI for exp(β): 95%
confidence interval for acceleration factor; SE: standard error; Ref:Reference.
Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.
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Table 5.4: The analysis of maximum likelihood parameter estimates

Covariates Categories β̂ SE[β̂] φ [95%CIφ̂] p-value
Intercept 4.8604 0.2077

≤ 49 Ref
Age 49-65 -0.242 0.109 0.7849 [0.6335 , 0.9726] 0.0268∗

≥ 65 -0.3175 0.1043 0.7279 [0.5933 , 0.8931] 0.0023∗
Hyper No Ref

Yes -0.2891 0.0721 0.7489 [0.6502 , 0.8627] 6.1e-05∗
CKD No Ref

Yes -0.375 0.0708 0.6873 [0.5982, 0.7896] 1.2e-07∗
IHD Ref

Etiology of HF RVHD -0.2951 0.1109 0.7445 [0.599, 0.9252] 0.0078∗
Cardio -0.1557 0.1079 0.8558 [0.6927, 1.0573] 0.1489
HHD -0.2484 0.1092 0.780 [0.6297 , 0.9662] 0.0229∗

Others -0.3756 0.1519 0.6868 [0.510 , 0.925] 0.0134∗
I Ref

Stages II -0.3824 0.181 0.6822 [0.4784 , 0.9726] 0.0346∗
III -0.4005 0.1676 0.6699 [0.4824 , 0.9305] 0.0169∗
IV -0.4792 0.1642 0.6193 [0.4488, 0.8544] 0.0035∗

Scigarette No Ref
Yes -0.145 0.0692 0.865 [0.7553 ,0.9907] 0.0362∗
Not Ref

DM TypeI -0.2190 0.0954 0.8033 [0.6663, 0.9685] 0.0217∗
Type II -0.4058 0.0815 0.6664 [0.568, 0.7819] 6.5e-07∗

Anemia No Ref
Yes -0.1434 0.0688 0.8664 [ 0.757 , 0.9915] 0.0373∗

∗ is <0.05 (significant). φ:indicates Acceleration factor; 95%CI for φ: 95% confidence
interval for acceleration factor; SE: standard error; Ref:Reference.
Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.

Table 5.5: Indicating the comparisons of AFT model using AIC and BIC

Distribution Loglikelihood AIC BIC

Exponential -724.7 1489.453 1547.915

Log-normal -628.3 1298.620 1365.253

Weibull -630.8 1303.567 1369.596

Log-logistic -630.5 1302.935 1367.806

Source: JUMC, Jimma, Ethiopia; from first January, 2016 to first January, 2019.
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Figure 5.1: Kaplan-Meier estimates of the survival curves of HF data set for Residence, Sex,
Chronic kidney disease, Smoking cigarette, Alcohol and Anemia
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Figure 5.2: Kaplan-Meier estimates of the survival curves of HF data set for Diabetes, and
Etiology of heart failure

Figure 5.3: Plots for Linear predictors
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Figure 5.4: The scatter plots of the posterior mean, plot of the precision for the Bayesian log-
normal model, and Histograms of the posterior predictive p-value
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Figure 5.5: The Marginal distribution of Bayesian log-normal AFT model using INLA method.
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Appendix-2:- Information Sheet and Data Extraction Form

Information Sheet

Introduction:- This information sheet is prepared for Jimma University Medical Center, Jimma,
Ethiopia. The aim of the form is to make clear about the purpose of thesis, data collection pro-
cedures and to get permission for data collection.

Objective: The aim of this study is to identify factors affecting the survival time of heart
failure patients in JUMC, Jimma, Ethiopia using Bayesian Survival Models.

Data Collection Procedure:- In order to achieve the above objective, information, which
is necessary for the study, will be taken from the registration log book and patients registration
card; if any inadequate information is countered it is checked from the file and excluded from
analysis if proven to be inadequate. In order to come up with the above mentioned findings,
total document of program clients enrolled during first January, 2016 up to 2019 will be seen
and a review of the required information from the records are made by using the checklist.

Risk:- Since the study will be conducted by taking appropriate information from medical
chart, it will not inflict any harm on the patients. The name or any other identifying information
will not be recorded and all information taken from the chart will be kept strictly confidential
and in a safe place. The information extracted will be kept secured and the information retrieved
will only be used for the study purpose.

Benefits:- the thesis has no direct benefit for those whose document/ record is included in
this thesis. However, indirectly the result of this study might be used to improve awareness on
the factors that triggers the death of heart failure patients. It also enables to provide scientific
information about the finding to Ministry of health in Ethiopia that helps policy makers to
enhance the awareness of the society about factors that increase the probability of death due to
heart failure which is protectable and curable if it is screened and treated in its earlier stage with
appropriate treatment.

Confidentiality:- To ensure confidentiality the data on the chart will be collected by those
individuals who are working in Hospital unit nurse and information will be collected without
the name of the clients. The information collected from this thesis will be kept confidential and
will be stored in a file. In addition, it will not be revealed to anyone except the investigator and
it will be kept in key and locked system with computer password.

Person to contact:- This thesis will be reviewed and approved by college of Natural science,
Jimma University post graduate research coordinate and by the department.

Permission:- Lastly but not least, you are kindly requested to permit and forward your
permission to concerned body in your organization so that I can get cooperation from the data
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clerks and other responsible bodies in place.
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