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Abstract

One of the most intensively explored classes of semiconductor structures is the class of

quantum wires. With the advances in semiconductor growth techniques it is possible

to fabricate quantum wires of different sizes and geometries from different materials.

Cylindrical quantum wire made of ZnO is one of such geometries. This cylindrical

structure can be described using a parabolic potential model. In this study the energy

eigenvalue of restricted electrons was calculated for ZnO cylindrical quantum wire.

Using this energy eigenvalue the nonlinear optical properties such as susceptibility,

index of refraction and absorption coefficient were investigated with the help of density

matrix formalism. From the result of this study the change in index of refraction

∆n(ω) and absorption coefficient ∆β(ω) were calculated numerically and represented

graphiclly. The changes in both cases are the difference of nonlinear and linear. The

changes are very large and nonlinear, in general, this tells us our case material(ZnO

cylindrical quantum wire) exhibits nonlinear optical properties.
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Chapter 1

Introduction

1.1 General Background

The ancient Greek philosopher Democritus can be considered as a father of modern

nanotechnology, since he was the first to use the name ”atom” to characterize the

smallest particle of matter [1]. In modern history the first practical breakthrough in

nanotechnology was made by the American inventor George Eastman, who in 1884

fabricated the first roll film for a camera. This film contained a photosensitive layer of

silver bromide nanoparticles. The notion of ”nanotechnology” was introduced for the

first time by Richard Feynman in 1959 in his famous Caltech lecture ”There’s plenty

of room at the bottom”, showing his vision towards small sized. Richard Feynman

imagined the world of the nanoscale where the fundamental laws of quantum physics

define the behavior of a single atom and control the formation of different structures

from individual atoms. Nanotechnology is the art and science of manipulating matter

at the nanoscale. Nanotechnology also defined as use of technology to create materials

on an atomic scale. It is based on the ability to manipulate individual atoms and

molecules in order to assemble them into bigger structures. Such artificial nanoscale

structures, usually fabricated using self-assembly phenomena. Therefore, from the
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formal point of view nanostructures can be any objects with size (at least in one of

the directions) of the order of 100nm or less. Thus, nanostructures are objects whose

sizes range from individual atoms (the size of an atom is about 0.1nm) to large clusters

consisting of up to 108 atoms or molecules. The transition of material structures from

macroscale to nanoscale results in sharp changes of their properties. These changes

are due to two reasons. The first reason is the increase of the proportion of surface

atoms in the structure. The surface of the material can be considered as a special

state of matter. The higher the proportion of atoms on the surface, the stronger are

effects connected with the surface of a specimen. The ratio of the number of atoms

located within a thin near-surface layer(∼ 1nm)to the total number of atoms in a

specimen increases with decreasing volume of the specimen. Also the surface atoms

are under conditions, which are very different from the conditions for the bulk atoms,

because they are bound to the neighboring atoms in a different way. Atoms in the

surface layer have some of their chemical bonds broken and therefore they are free to

make new bonds. Recent advances in semiconductor technology have made possible

the fabrication of low-dimensional semiconductor heterostructures [2, 3], because the

main objects of research in nanoelectronics are quantum-dimensional structures [1].

A low dimensional system is one in which microscopic degrees of freedom of carriers

is restricted from moving in the full 3D space due to quantum confinement [4, 5]. The

dimensionality refers to the number of degrees of freedom in the electron momentum.

Artificial structures where the electrons motion is made to be restricted to move in

less than three spatial dimensions, Such structures are called nanostructures [1, 6].

Low dimensional structures can be classified based on the number of dimensions,

which are not confined to the nanoscale range dimensions. Such as 2D, 1D, and 0D
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are quantum wells, quantum wires, and quantum dots, respectively. In the case when

electrons motion along only one direction is limited to nanoscale(for example, along

the z-direction) i.e., when the condition, Lz ≤ λ is satisfied, where λ is the electron

de Broglie wavelength, the electron energy states corresponding to this direction are

quantized. At the same time, the electrons motion in the other two directions(x- and

y-directions) stays free, with the continuous energy spectrum. Such a structure is

called a quantum well(QW).

Figure 1.1: Quantum well(thin film)

In the case when the electrons motion is restricted along two directions (for exam-

ple, along the y- and z-directions), i.e., when the conditions Ly ≤ λ and Lz ≤ λ are
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satisfied, the energy which corresponds to these two directions of motion is quantized.

At the same time, the electrons motion in the other one direction(x-direction) stays

free, with the continuous energy spectrum. Such a structure is called a quantum wire

(QWR).

Figure 1.2: Quantum wire

In the case when the electrons motion is restricted along all three directions, i.e.,

when the conditions Lx ≤ λ, Ly ≤ λ and Lz ≤ λ are satisfied, the energy spectrum

of such a structure, which is called a quantum dot(QD), is totally quantized. This

means reducing the degrees of freedom to zero.

Quantum dots can be regarded as artificial atoms to which the electrons are bound

by a ”manufactured” confining potential. They are a new class of artificially struc-

tured materials with atomic-like discrete states which is ideal for use in laser structures

[4, 7]. Usually arrays of such dots are prepared on semiconductor heterostructures,

such that all of them contain the same number of electrons. The spatial confinement

of carriers enhances the coulomb interaction between the electron and hole, which
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Figure 1.3: Quantum dot

leads to an increase in the exciton binding energy and oscillator strength [8, 9]. As

more number of the dimension is confined, more discrete energy levels can be found,

that is carrier movement is strongly confined in a given dimesion. The energy band

structure of bulk semiconductor materials is almost continuous. In nano-size par-

ticles, the bands are split into sublevels because of the quantum confinement. The

oscillator strengths increase as the confinement increases from bulk→quantum well→

quantum wire→quantum dot. The oscillator strength can be regarded as a measure

of strength of a transition from an initial state with energy Ei to a final state with

energy Ef [10]. The smaller the dimensions of the nanostructure (smaller L), the

wider is the separation between the energy levels, leading to a spectrum of discreet

energies. The band gap of semiconductor materials increase with decreasing size, and

discrete energy levels arise at the band age [11]. In general, confinement produces a

blue shift of the band-gap. One reason is that quantum confinement of carriers in
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the low-dimensional system leads to the formation of discrete energy levels and the

drastic changes of physical and chemical properties such as the novel nonlinear optical

effects [12]. On the other hand the nonlinear optical properties in the low-dimensional

materials have the potential for device applications in laser amplifiers, infrared photo

detectors, high-speed electro-optical modulators, light emitting diode, single electron

transistors and so on. As we make a semiconductor ”crystal” smaller and smaller,

the physical properties change in many ways. In a large crystal, the overall shape and

size of the crystal make little or no difference to its internal properties. As the crystal

becomes smaller, however, the effects of the surface become increasingly important.

The most extreme consequence is that as the fraction of atoms at the surface becomes

larger, the arrangement of the nuclei changes in order to relax the energy of the sys-

tem as a whole, i.e., a transition from crystalline to molecular (cluster) behavior takes

place [13].

1.2 Statement of the problem

The nonlinear optical properties in the low-dimensional materials have the potential

for device applications in laser amplifiers, photodetectors, high-speed electro-optical

modulators, and so on [12]. Recent advances in nanotechnology have made it possible

to fabricate nanowires of different sizes and geometries [13, 14]. In nanostructures

cylindrical surfaces show physical interesting properties. These structures can be

described using a parabolic potential model and it is one of the types confining po-

tentials [9, 15]. The parabolic confining potential is also introduced for technological

reasons. With recent advances in material growth techniques, such as atomic layer

epitaxy, etc., the growth of single atomic layers of good quality has become possible,
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which has allowed potential profiles with reasonable shapes such as parabolic shapes

and stepped shapes, etc[11]. Most of the studies that are mentioned in [2, 7, 9, 11,

16, 17] have been done on the optical properties of cylindrical quantum wires, with

different kinds of confining potential, made of different kinds of materials and using

different methods. However in this study we have determined the optical properties

of ZnO cylindrical quantum wire in parabolic confining potential using density ma-

trix formalism. The main purpose of this study is calculating the energy eigenvalue

of ZnO cylindrical quantum wire, and determining its nonlinear optical properties.

Research questions:

• What was the confining potential which we used to describe cylindrical quantum

wire?

• How could we calculate energy eigenvalue of confined electrons?

• What are the linear and nonlinear optical properties of ZnO cylindrical quantum

wire?

• Which method is important and effective for the determination of optical prop-

erties of ZnO cylindrical quantum wire?

• What are the applications of nonlinear optical properties of ZnO cylindrical

quantum wire?

1.3 Objectives

1.3.1 General Objective

The general objective of this study is
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• To study the nonlinear optical properties of ZnO cylindrical quantum Wire

1.3.2 Specific Objectives

The specific objectives of this study are:

• To calculate energy eigenvalue of ZnO cylindrical quantum wire

• To determine linear and nonlinear susceptibilities of ZnO cylindrical quantum

wire

• To determine linear and nonlinear refractive indices of ZnO cylindrical quantum

wire

• To determine linear and nonlinear absorption coefficients of ZnO cylindrical

quantum wire

1.4 Significance of the study

Optical properties of low-dimensional semiconductor structures are important part

of the modern physics of semiconductors. A large number of theoretical and experi-

mental works have been devoted to the study of optical properties in low dimensional

semiconductor nanostructures. It is to be noted that the study of optical properties

of low dimensional semiconductor structures is important, not only to know, but also

in the fabrication and subsequent working of electronic and optical devices based on

such systems. Also this study helps us to know the energy eigenvalue and nonlinear

optical properties of ZnO cylindrical quantum wire.
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1.5 Limitation of the study

Due to time constraint, the scope of this study was limited only to determining

nonlinear optical Properties of ZnO cylindrical quantum wire for confide electrons in

parabolic confining potential using density matrix formalism.

.
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Chapter 2

Literature Review

2.1 Introduction

Due to the rapid advances of nanotechnology, it is possible to fabricate low-dimensional

quantum system structures, such as quantum wells(QW), quantum wires(QWW), and

quantum dots(QD) [12]. Because of their many properties different from bulk system

structures, the investigation on low-dimensional semiconductor has attracted much

interest in recent years. There are two approaches to fabricate these low dimensional

systems. One is the top-down approach where small structures are obtained from

a large structure by using lithographic patterning, which is based on the sequential

decrease of the object’s size for the fabrication of objects of nanoscale size and the

other is the bottom-up approach where small structures are made by letting atoms

or molecules self-assemble into the desired form [1, 18]. That means the bottom-up

technology is based on the self-assembly phenomenon. The main idea of technology

is in the development of the controlled self-assembly of the atoms, molecules, and

molecular chains into nanoscale objects. The bottom-up technology allows the fab-

rication of nanoobjects, such as quantum dots, quantum wires, and super lattices

[1].
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2.2 Quantum wire

One of the most intensively explored classes of semiconductor structures is the class of

quantum wires [12]. In a quantum wire the electrons motion is free along the length of

the wire while its motion in the plane normal to the length is confined [16, 19]. Quan-

tum confinement of charge carriers in these structures leads to formation of discrete

energy levels, the enhancement of the density of states at specific energies and the

drastic change of optical absorption spectra [20]. In quantum wires, due to dimension

decreasing in contrast to quantum well, the electron hole interaction is enhanced by

two-dimensional confinement. As a result, the wave function overlap of the electron

and the hole is enhanced, namely, the exciton effect becomes especially prominent.

Many authors found that the binding energy and polaronic effect of an exciton are

greatly larger in quantum wire than in quantum well and predicted application to

electronic and optoelectronic devices. Among the low-dimensional structures, there

has been a great deal of interest in the investigation of quantum wires [21]. So far,

many investigators studied the properties of quantum wires using several theoretical

and experimental methods. The study of quantum wires has been revolutionary in

the fundamental sciences due to the potential applications of these structures in the

technology of electronic and optoelectronics devices and fundamental physics inves-

tigations [17, 21]. We know that Sakaki proposed the concept of quantum wires for

the first time in 1975. After this, with the advances in semiconductor growth tech-

niques like chemical lithography, molecular-beam epitaxy, and etching, researchers

could fabricate quantum wires of nanometre size with various cross-sections such as

circular, V-shape, triangular, parallelogram, T-shape, and hexagonal shape [21, 22].

Recent advances in nanotechnology have made it possible to fabricate nanowires of
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different sizes and geometries [1, 14, 23]. Nanowires have a variety of novel prop-

erties, rendering them invaluable in diverse disciplines like medicine, optoelectronics

and energy physics, among others. However, due to the small dimensions concerned,

it is very difficult to fabricate nanostructures with controllable and uniform cross-

sectional area, to which some effort has been directed. Apart from the difficulty in

fabricating nanowires of uniform cross-sectional area, it may be beneficial to produce

nanowires with non-uniform cross-sectional area.

2.2.1 Cylindrical quantum wire

In nanostructures, cylindrical surfaces show physical interesting properties [13]. These

structures can be described using a parabolic potential model and it is one of the types

confining potentials [9, 15, 16]. The parabolic confinement potential is also introduced

for technological reasons. Electron confinement is selected in the form of transverse

parabolic potential, since there are no rigid interface boundaries. At the same time

according to Kohn theorem, optical properties of the systems are independent of

both electron-electron interaction and the number of electrons in the layer; i.e., it can

be neglected. The parabolic potential is equivalent to the potential produced by a

positive charge uniformly distributed over an infinite layer. However, we note that the

Kohn theorem is not true for two basic cases: for multicomponent systems (such as

double quantum wells and for a nonparabolic well). In such systems, electronelectron

interaction can have a strong effect on the optical properties of electrons. At small

values of the radius of the quantum wire the parabolic confining potential can be

regarded as a model for the real potential.
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2.3 Optical Properties

2.3.1 General optical Properties of semiconductor

A full understanding of the optical properties of semiconductors is thus deeply rooted

in the foundations of modern solid-state physics [24]. The optical properties of a semi-

conductor can be defined as any property that involves the interaction between elec-

tromagnetic radiation or light and the semiconductor, including absorption, diffrac-

tion, polarization, reflection, refraction, and scattering effects. From the macroscopic

viewpoint, the interaction of matter with electromagnetic radiation is described by

Maxwell’s equations. The optical properties of matter are introduced into these equa-

tions as the constants characterizing the medium such as the dielectric constant,

magnetic permeability, and electrical conductivity. From our optical viewpoint, we

choose to describe the solid by the complex dielectric constant or complex dielec-

tric function ε(ω). The complex refractive index is the complex square root of the

dielectric function. Its real and imaginary parts are the refractive index n and the

extinction coefficient k. These optical constants describe an electromagnetic wave

in the medium of propagation; the refractive index n gives the phase shift of the

wave, and the extinction coefficient k gives the attenuation of the wave. The field of

optical spectroscopy is a very important area of science and technology since most

of our knowledge about the structure of atoms, molecules, and solids is based upon

spectroscopic investigations. Since the early 1950s, detailed knowledge about the

various eigenstates present in semiconductors has emerged including energy bands,

excitonic levels, impurity and defect levels, densities of states, energy-level widths

(lifetimes), symmetries, and changes in these conditions with temperature, pressure,
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magnetic field, electric field, etc. Most optical properties of semiconductors are inte-

grally related to the particular nature of their electronic and vibrational structures.

These electronic and vibrational dispersion relations are in turn related to the type

of crystallographic structure, the particular atoms, and their bonding. The optical

properties of semiconductors are often subdivided into those that are electronic and

those that are vibrational (lattice related) in nature. The electronic properties con-

cern processes involving the electronic states of the semiconductor, while the lattice

properties involve vibrations of the lattice (absorption and creation of phonons). Lat-

tice properties are of considerable interest for heat dissipation, electronic transport,

and lifetimes (broadenings) of electronic states, but it is the electronic properties

which receive the most attention in semiconductors because of the technological im-

portance of their practical applications. Modern-day semiconductor optoelectronic

technologies include lasers, light-emitting diodes, photodetectors, optical amplifiers,

modulators, switches, etc., all of which exploit specific aspects of the electronic optical

properties. The phenomena usually studied to obtain information on the optical prop-

erties of semiconductors are absorption, reflection or ellipsometry, photoconductivity,

emission, light scattering, and modulation techniques.

2.3.2 Optical Properties of quantum wire

Optical and electronic properties of low-dimensional semiconductor structures are im-

portant part of the modern physics of semiconductors [24]. The effect of confinement

on the electronic and optical properties increases as one goes from quantum wells

to quantum dots [23]. A large number of theoretical and experimental works has

been devoted to the study of optical properties in low dimensional semiconductor

nanostructures [11]. The linear and nonlinear optical properties of low dimensional
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semiconductor structures have been widely studied in the last few years, due to their

potential applications in optoelectronic and photonic devices [11]. It is to be noted

that the study of optical properties of low dimensional semiconductor structures is

important, not only to know, but also in the fabrication and subsequent working of

electronic and optical devices based on such systems. The decrease in dimensionality

of system for semiconductors can lead to a dramatically enhancement of nonlinearities.

So the nonlinear optical properties of semiconductor quantum wells, quantum wires,

and quantum dots have attracted much attention in the past few years in theoretical

and applied physics sides [12]. One reason is that quantum confinement of carriers

in the low-dimensional system leads to the formation of discrete energy levels and

the drastic changes of physical and chemical properties such as the novel nonlinear

optical effects. Another reason is that the nonlinear optical properties in the low-

dimensional materials have the potential for device applications in laser amplifiers,

photo detectors, high-speed electro-optical modulators, and so on. The confinement

of electrons in these systems changes the electron mobility remarkably. This results

in a number of new phenomena, which concern a reduction of the sample dimensions.

These effects, for example, electron-phonon interaction and scattering rates, the linear

and nonlinear optical properties, differ from those in bulk semiconductors.

2.3.3 Optical processes

When light beam incident on optical medium, it may be: reflected, propagated and

transmitted [25]. Absorption occurs during the propagation if the frequency of the

light is resonant with the transition frequencies of the atoms in the medium. When

light of sufficient energy shines on to a material, it induces transitions of electrons

from occupied(lower level) states below the Fermi energy to unoccupied(higher level)
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states above the Fermi energy. Photon is absorbed by exciting an electron from a lower

level to higher level. Therefore optical absorption can lift electrons from completely

full valence band to empty conduction band. Exciting electrons in a solid in addition

to by photon absorption is exciting electron by other electron. This done by shining a

beam of mono energetic electron at a sample. The conduction band and valence band

are separated by an energy called band gap Eg = Ec−Ev, where Ec and Ev are energy

of conduction band and valence band respectively. Absorption can occur ~ω > Eg.

Absorption can not occur at ~ω = Eg, where ~ω is the energy of the photon. The

lowest energy at which absorption can occur is given by difference in energy, Ee1−Eh1

, between the lowest state in the well on the conduction band and the lowest in the

well in the valence band. Absorption can occur at higher energy. The strongest

quantization occurs between corresponding states in two bands, so that ne = nh = n.

The strong absorption occurs at the frequency given by, ~ωn = Een − Ehn. The

energy of the photons matches the difference in electric energy level. It is given by

~ωn = Ee2−Ee1. Atoms jump to an excited stated state by absorption of photon, then

relax to an intermediate state, before re-emitting a photon by spontaneous emission

as it falls back to the ground state. In solids this the re-emission process is called

luminescence. In other words luminescence is the general name given to the process

of spontaneous emission of light by excited atoms in a solid state materials. The

photon emitted has a smaller energy than the absorbed photon. This reduction in

the photon energy is called Stoke’s shift. Note Materials with direct band gaps are

better than those with indirect band gaps because their absorption is higher [25]. In a

direct band gap semiconductor, large number of electrons are excited from the valence

band to conduction band. In semiconductor physics a direct band gap means that
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the minimum of the conduction band lies directly above the maximum of the valence

band in the k space. In contrast, an indirect semiconductor refers to a semiconductor

with a band gap in which the minimum energy in the conduction band is shifted by

a k vector relative to the top of the valence band. Indirect transitions(nonvertical

transition) Semiconductors such as GaP, Ge, and Si have indirect gaps where the

maximum valence band energy and minimum conduction band energy do not occur

at the same k value. In this case, the electron cannot make a direct transition from

the top of the valence band to the bottom of the conduction band because this would

violate conservation of momentum. Such a transition can still take place but as a

two-step process requiring the cooperation of another particle and which can then

be described by second-order perturbation theory. Semiconductor nanowires (NWs)

are usually characterized by anisotropic optical properties like optical absorption,

photoluminescence, photoconductivity, as well as generation of higher harmonics,

and strongly depend on the polarization of exciting light [26].

2.4 Zinc Oxide (ZnO) and its application in tech-

nology

Zinc oxide is a transparent piezoelectric semiconductor which occurs naturally in the

mineral called zincite [27]. Zinc oxide(ZnO) is one of II-IV semiconductor material

and it is an important semiconductor material with a wide and direct band gap of

3.44 eV at low temperatures and 3.37 eV at room temperature, and it has relatively

high Curie temperature, which has a large exciton binding energy of 60 meV at

room temperature, even larger than the ionization energy at the same temperature

[27-30]. This makes it especially suitable for room temperature optoelectronics in
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the near UV spectral region. Having large exaction binding energy of ZnO, implies

that it emits more excitons at room temperature when compared to others [31]. Note

Materials with direct band gaps are better than those with indirect band gaps because

their absorption is higher [25]. In a direct band gap semiconductor, large number

of electrons are excited from the valence band to conduction band. ZnO is a key

technological material[27, 32], because ZnO has attracted more and more attention

due to its interesting properties. The growth of nano sized ZnO, including the ZnO

quantum well, ZnO nano wire, and ZnO quantum dots have been investigated widely

and used as transparent conductors in solar cell, as a component in UV light emitters

and high-power electronics. Recently, ZnO nano structures attracted attention for

possible applications in optoelectronic and spintronic devices, such as light emitting

and laser diodes, spin-based memory, and logic [33]. When the size of ZnO nano

particles is smaller than the Bohr radius, the quantum confinement has a notable

influence on the band gap and further causes a series of novel characteristics such

as the blue-shift of luminescence in the cathode luminescence(CL) spectrum which

implies that ZnO QDs would be applicable to optoelectronic and spintronic devices

[34]. In general a partial lists of the properties of ZnO that distinguish it from

other semiconductors or oxides: direct and wide band gap, large exciton binding

energy, large piezoelectric constant, strong luminescence, the high electron mobility,

high thermal conductivity, large non-linear optical coefficients, has high conductance,

chemical and thermal stability, a good radiation resistance and is harmless to the

environment, it has been also observed that ZnO exhibits exceptionally high radiation

hardness, which is important for application at high altitude or in space and so on

[27, 30].
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2.5 Nonlinear optics

The optical properties of semiconductors at low light levels are often referred to as

linear properties in contrast to the nonlinear optical properties described later[24].

There are many physical processes that control the amount of absorption or other

optical properties of a semiconductor. In turn, these processes depend upon the

wavelength of radiation, the specific properties of the individual semiconductor being

studied, and other external parameters such as pressure, temperature, etc. Just as the

electrical properties of a semiconductor can be controlled by purposely introducing

impurity dopants (both p and n type) or affected by unwanted impurities or defects,

so too are the optical properties affected by them. Thus, one can talk about intrinsic

optical properties of semiconductors that depend upon their perfect crystalline nature

and extrinsic properties that are introduced by impurities or defects.

Properties such as the refractive index, absorption coefficient and reflectivity are

independent of optical power [25]. Linear optics [35]:

• Optical properties, such as the refractive index and the absorption coefficient

are independent of light intensity.

• The principle of superposition, a fundamental tenet of classical, holds.

• If input A produces response X and input B produces response Y then input

(A + B) produces response (X + Y)→ image.

• The frequency of light cannot be altered by its passage through the medium.

• Light cannot interact with light; two beams of light in the same region of a

linear optical medium can have no effect on each other.
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• Thus light cannot control light.

This approximation is only valid at low power levels [25]. With a high power laser,

it is possible to enter a different realm of behavior called nonlinear optics. Nonlinear

optics is the study of phenomena that occur as a consequence of the modification

of the optical properties of a material system by the presence of light [33]. In other

words nonlinear optics is the study of the interaction of intense laser light with matter

[24]. Typically, only laser light is sufficiently intense to modify the optical properties

of a material system [33]. The beginning of the field of nonlinear optics is often

taken to be the discovery of second-harmonic generation. We are concerned with

the effects that light itself induces as it propagates through the medium. Nonlinear

optical phenomena are ”nonlinear” in the sense that they occur when the response of

a material system to an applied optical field depends in a nonlinear manner on the

strength of the optical field. For example, second-harmonic generation occurs as a

result of the part of the atomic response that scales quadratically with the strength

of the applied optical field. Consequently, the intensity of the light generated at the

second-harmonic frequency tends to increase as the square of the intensity of the

applied laser light. Nonlinear optics (When E is very high) [35]:

• The refractive index, and consequently the speed of light in an optical medium,

does change with the light intensity.

• The principle of superposition is violated.

• Light can alter its frequency as it passes through a nonlinear optical material

(e.g., from red to blue!).

• Light can control light; photons do interact
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The optical properties of materials are described through the real and imaginary

parts of the dielectric constant εr. The dielectric constant is derived from the polar-

ization p of the medium. In linear optics, we assume that P depends linearly on the

electric field of the light wave, so that we can write:

−→
P (t) = ε0χ

−→
E (t) (2.5.1)

Where χ is the electric susceptibility. We derive the usual relationship between εr

and 2 χ namely:

εr = 1 + χ (2.5.2)

In nonlinear optics we consider the possibility that relationship between
−→
P (t) and

−→
E (t) is more general than that given by equation 2.6.2.

−→
P nonlinear(t) =

−→
P 1(t) +

−→
P 2(t) +

−→
P 3(t) + .... (2.5.3)

We now introduce nonlinear susceptibility χnonlinear:
−→
P nonlinear(t) = ε0χ

nonlinear−→E (t)

= ε0(χ
(1)−→E (t) + χ(2)−→E 2(t) + χ(3)−→E 3(t) + ...) (2.5.4)

where E is the magnitude of the applied electric field. The various terms in equations

2.6.3 and 2.6.4 correspond directly with each other so that

−→
P 1(t) = ε0χ

(1)−→E (t) (2.5.5)

−→
P 2(t) = ε0χ

(2)−→E 2(t) (2.5.6)

−→
P 3(t) = ε0χ

(3)−→E 3(t) (2.5.7)
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Comparing equations 2.6.3 and equation 2.6.5, we see that:

εnonlinear
r = 1 + χnonlinear (2.5.8)

2.6 Density matrix formalism of the third order

susceptibility

We calculate the nonlinear optical susceptibility through use of the density matrix

formulation of quantum mechanics [36]. We use this formalism because it is capable of

treating effects, such as collisional broadening of the atomic resonances, that cannot

be treated by the simple theoretical formalism based on the atomic wave function.

Let us begin by reviewing how the density matrix formalism follows from the basic

laws of quantum mechanics. If a quantum-mechanical system (such as an atom)is

known to be in a particular quantum-mechanical state that we designate S, we can

describe all of the physical properties of the system interms of the wave function

ψS(r, t) appropriate to this state. This wavefunction obeys the Schrdinger equation

i~
∂ψs(r, t)

∂t
= Ĥψs(r, t) (2.6.1)

where Ĥ denotes the Hamiltonian operator of the system. We assume that Ĥ can be

represented as

Ĥ = Ĥ0 + V̂ (t) (2.6.2)

where Ĥ0 is the Hamiltonian for a free atom and V̂ (t) represents the interaction

energy. Third-order nonlinear optical interactions (i.e., those described by a X(3)

susceptibility) can occur for both centrosymmetric and noncentrosymmetric media.

In order to describe more precisely what we mean by an optical nonlinearity, let us

consider how the dipole moment per unit volume, or polarization −→p (t), of a material
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system depends on the strength
−→
E (t) of an applied optical field. In the case of con-

ventional(i.e, linear) optics, the induced polarization depends linearly on the electric

field strength in manner that often be described by the relationship

−→p (t) = ε0χ
(1)−→E (t) (2.6.3)

where the constant of proportionality χ(1) is known as the linear susceptibility and ε0

is the permittivity of free space. In nonlinear optics, the optical response can often

be described by the polarization −→p (t) as a power series in the field strength
−→
E (t) as

−→p (t) = ε0[χ
(1)−→E (t) + χ(2)−→E 2(t) + χ(3)−→E 3(t) + ....] (2.6.4)

−→
P 3(t) = ε0χ

(3)−→E 3(t) (2.6.5)

as the third-order nonlinear polarization. The third-order correction to the density

matrix is given by

ρ(3)
nm = exp[−(ωnm + γnm)t]

∫ t

−∞

−i
~

[V̂ , ρ̂2]nm exp(iωnm + γnm)t′dt′ (2.6.6)

where the commutator can be represented explicitly as

[V̂ , ρ̂2]nm = −
∑

ν

(µnνρ
(2)
νm − ρ

(2)
nν)µνm).Ẽ(t) (2.6.7)

Expressions for ρ
(2)
νm and ρ

(2)
nν are very complicated, we use the abbreviated notation

introduced there:

ρ(2)
νm =

∑
l

∑
pq

Kνlm exp−i(ωp + ωq)t (2.6.8)

where Kνml has been displayed explicitly. We also represent the electric field as

Ẽ(t) =
∑

r

E(ωr)e
−iωrt (2.6.9)

24



The commutator thus becomes

[V̂ , ρ̂2]nm = −
∑
νl

∑
pqr

[µnν .E(ωr)]Kνmle
−i(ωp+ωq+ωr)t+

∑
νl

∑
pqr

[µνm.E(ωr)]Knνle
−i(ωp+ωq+ωr)t

(2.6.10)

The nonlinear polarization oscillating at frequency ωp + ωq + ωr is given by

P (ωp + ωq + ωr) = N〈µ(ωp + ωq + ωr)〉 (2.6.11)

We express the nonlinear polarization in terms of the third-order susceptibility defined

by

Pk(ωp + ωq + ωr) = ε0
∑
hij

∑
pqr

χ
(3)
kjih(ωp + ωq + ωr, ωr, ωq, ωp)× Ej(ωr)Ei(ωq)Eh(ωp)

(2.6.12)

where ωp, ωq and ωr are permutation frequencies.
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Chapter 3

Materials and Methodology

3.1 Materials

The study is purely theoretical.

• An intensive survey of literature from published articles, books, thesis and dis-

sertation have been carried out.

• MATLAB and MATHEMATICA softwares and computers are the other very

important and necessary instruments those have been used for numerical cal-

culations and generation of graphs

3.2 Methodology

3.2.1 Analytical

In this thesis one of the methods or approaches that we have used to solve the problem

was analytical method. We have calculated the energy eigenvalues of ZnO cylindrical

quantum wire by exactly solving Schrödinger equation analytically. And its optical

properties have been calculated analytical using density matrix formalism.
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3.2.2 Computational(Graphical)

Both numerical and graphical methods have been used to solve the intended research

problem. For numerical calculation and generation of graphs softwares MATHE-

MATICA and MATLAB have been used. Change in index of refraction, absorption

coefficient and photon energy are calculated numerically and these numerically cal-

culated values were represented graphically.
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Chapter 4

Energy eigenvalue and optical
properties of ZnO cylindrical
quantum wire

4.1 Introduction

One of the most intensively explored classes of low dimensional semiconductor struc-

tures is the quantum wire [23]. In recent years, quantum wires have attracted great

attention due to their potential applications in optoelectronic devices and fundamen-

tal physics investigations [17]. With the advances in semiconductor growth techniques

it has been made possible to fabricate a wide variety of heterostructures with well-

controlled dimension and composition. Among heterostructures, quantum wires with

rectangular, T-shaped, V-groove, and other cross sections have received lots of atten-

tion by researchers during the last decade [20]. Optical and electronic properties of

low-dimensional semiconductor structures are important part of the modern physics

of semiconductors. The linear and nonlinear optical properties of low dimensional

semiconductor structures have been widely studied in the last few years, due to their

potential applications in optoelectronic and photonic devices [2]. It is to be noted
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that the study of optical properties of low dimensional semiconductor structures is

important, not only to know, but also in the fabrication and subsequent working of

electronic and optical devices based on such systems [14]. In this study, the selected

heterostructure of quantum wire is cylindrical with parabolic confining potential.

The energy eigenvalues of ground and excited states of cylindrical quantum wire were

calculated. Depending on these energy eigenvalues the refractive index and absorp-

tion coefficient are calculated for cylindrical quantum wire by using density matrix

formalism.

4.2 Mathematical formulation of energy eigen value

We consider a wire of ZnO with circular cross-section with radius ”a” and a length ”`”

embeded in ZnMgO. The carriers(electrons ) are assumed to be confined by symmetric

parabolic potential of the form:

φ =
1

2
m∗ω2

0r
2 (4.2.1)

where m∗ is the effective mass of electron , and ω0 is parabolic confinement frequency

of the potential well. Electrons in a ZnO cylindrical semiconductor quantum wire with

two dimensional parabolic confinement potential along Z direction can be described

by the effective mass Hamiltonian in a cylindrical co-ordinate system as:

Ĥ =
−~2

2m∗ [
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
] +

1

2
m∗ω2

0r
2 − ~2

2m∗
d2

dz2
(4.2.2)

where m∗ is the effective mass of electron in the conduction band of ZnO, ω0 is

parabolic confinement frequency, and the energy is continuous in Z-direction. How-

ever, our interest is to calculate energy eigenvalue of discrete energy levels, so that

29



Hamiltonian for these discrete energy level is:

Ĥ =
−~2

2m∗ [
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
] +

1

2
m∗ω2

0r
2 (4.2.3)

Using the dimensionless variable ρ =
√

m∗ω0

~ r , then after some mathematical steps

equation(4.2.3)can be rewritten as:

Ĥ =
−1

2
[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1

ρ2

∂2

∂θ2
] +

1

2
ρ2 (4.2.4)

The Schrödinger equation for this Hamiltonian is given as:

Ĥnmψnm =
−1

2
[
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
)− 1

ρ2

∂2

∂θ2
− ρ2]ψnm = εψnm (4.2.5)

where, ε = E
~ω0

. The envelop wave function that can satisfy the above Schrödinger

equation in this case is given by

ψnm(ρ) =

√
2n!

(n+ |m|)!
e
−ρ2

2 ρ|m|L|m|
n (ρ2)

1√
2π
eimϕ (4.2.6)

where, n = 0, 1, 2, ...,m = 0,±1,±2, ... and L
|m|
n are generalized Lagure polynomials.

The ground state wave function for parabolic confinement is given by

ψ00(ρ) =
1√
π
e−

ρ2

2 (4.2.7)

and also the ground state energy can be determined using

Enm =< ψnm|Ĥ|ψnm > (4.2.8)

E00 =< ψ00|Ĥ|ψ00 > =< ψ00|K̂|ψ00 > + < ψ00|V̂ |ψ00 >

E00 =

∫ 2π

0

∫ ∞

0

1√
π
e−

ρ2

2 [
−1

2
(
1

ρ

∂

∂ρ
(ρ
∂

∂ρ
))]

1√
π
e−

ρ2

2 ρdρdθ+

∫ 2π

0

∫ ∞

0

1√
π
e−

ρ2

2 (
1

2
ρ2)

1√
π
e−

ρ2

2 ρdρdθ

(4.2.9)
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E00 = −1
2

∫ 2π

0

∫ ∞
0
e−

ρ2

2 (1
ρ

∂
∂ρ

(ρ ∂
∂ρ

))]e−
ρ2

2 ρdρdθ + 1
2

∫ 2π

0

∫ ∞
0
e−

ρ2

2 (ρ3)e−
ρ2

2 dρdθ

= − 1
2π

(2π)(−1
2
) + 1

2π
(2π)(1

2
)

= 1
2

+ 1
2

= 1 in the units of ~ω. Therefore,

E00 = ~ω0 (4.2.10)

The first excited state wave function of cylindrical quantum wire in the parabolic

confinement is

ψ01 =
1√
π
ρe−

1
2
ρ2

eiθ (4.2.11)

Enm =< ψnm|Ĥ|ψnm > (4.2.12)

E01 =< ψ01|Ĥ|ψ01 >

=< ψ01|K̂|ψ01 > + < ψ01|V̂ |ψ01 >, where K̂ and V̂ are the kinetic energy and

potential energy operators of Hamiltonian respectively.

E01 = Ek + Ev (4.2.13)

Ek =< ψ01|K̂|ψ01 > (4.2.14)

Ek = −1
2

∫ 2π

0

∫ ∞
0

1√
π
ρe−

1
2
ρ2
eiθ(1

ρ
∂
∂ρ

(ρ ∂
∂ρ

) + 1
ρ2

∂2

∂θ2 )
1√
π
ρe−

1
2
ρ2
eiθρdρdθ.

= − 1
2π

∫ 2π

0

∫ ∞
0
ρe−

ρ2

2 eiθ(1
ρ

∂
∂ρ

(ρ ∂
∂ρ

) + 1
ρ2

∂2

∂θ2 )ρe
− ρ2

2 eiθρdρdθ.

Ek = −1(−1) = 1 (4.2.15)

in the units of ~ω.

Ev =< ψ01|V̂ |ψ01 > (4.2.16)
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= 1
2

∫ 2π

0

∫ ∞
0

1√
π
ρe−

1
2
ρ2
eiθρ2 1√

π
ρe−

1
2
ρ2
eiθρdρdθ =

∫ ∞
0
ρ5e−

ρ2

2 dρdθ

Ev = 1 (4.2.17)

in the units of ~ω.

E01 = Ek01 + Ev01 = 1 + 1 = 2 (4.2.18)

in the units of ~ω

E01 = 2~ω0 (4.2.19)

4.3 Optical properties of ZnO cylindrical quantum

wire using density matrix formalism

In this part the linear and third order nonlinear susceptibility, refractive index and

absorption coefficient are calculated using density matrix formalism. Density ma-

trix formalism is capable of treating effects such as collision broadening of atomic

resonances, that can not be analyzed by simple theoretical formalism with respect

to atomic wave functions. Considering that the charge carriers in a cylindrical ZnO

quantum wire are excited by laser field,

−→
E (t) = Ěeiwt + Ěe−iwt (4.3.1)

where ω is the frequency of the external field with a polarization vector normal to the

quantum wire. The time dependent equation of the density matrix operator is given

by

%̇ij = (i~)−1[Ĥ0 − er
−→
E (t), %]ij − γij(%− %(0))ij. (4.3.2)

where Ĥ0 is unperturbed Hamiltonian, e is the electronic charge, %(0) is the unper-

turbed density matrix and γij is the relaxation rate representing the damping due
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to the electro-phonon interaction or collision between electrons. The value of the

relaxation rate is assumed γij= γ= 1
T
, with T is the relaxation time. For analysis of

equation(4.3.2) the usual iterative method is used [36]

%(t) =
∑

n

%(n)(t) (4.3.3)

with

%̇
(n+1)
ij = (i~)−1{[Ĥ0, %

(n+1)]ij − i~γij%
(n+1)
ij } − (i~)−1[er, %(n)]ijĚ(t) (4.3.4)

The electric polarization of the parabolic cylindrical quantum wire due to the time

dependent electric field Ě(t) can be expanded with respect to equation(4.3.3). We

consider only the first three lowest orders, and the second order is usually zero due

to the symmetry condition.

−→p (t) = ε0χ
(1)Ěe−iwt + ε0χ

(3)
ω |Ě|2Ěe−iwt + ε0χ

(3)
3ω Ě

3e−3iwt + cc (4.3.5)

where χ(1), χ
(3)
ω , and χ

(3)
3ω are the linear and third order and third order harmonic

order generation susceptibilities respectively, ε0 is the permetivity of free space. The

electronic polarization of the nth order is given by

P
(n)

(t) =
1

V
Tr(%(n)µ) (4.3.6)

where µ is the transition dipole moment. The transition dipole moment is given by

µ̂ =< ϕnm|er|ϕnm > (4.3.7)

V is the volume of the interaction and Tr denotes the summation over the diagonal

element of the matrix %(n)µ̂. The analytical expression for χ(1) and χ(3) are described

by[36]

χ(1) =
1

ε0

N |µnm|2

Enm − ~ω − i~Γnm

(4.3.8)

33



χ(3) =
1

ε0

N |µnm|2E2

Enm − ~ω − i~Γnm

[
4|µnm|2

(Enm − ~ω)2 + (~ω)2
]− (µnn − µmm)2

(Enm − i~Γnm)(Enm − ~ω − i~Γnm)

(4.3.9)

The electric susceptibility χ(ω) is connected with the change in refractive index as

∆n(ω) = Re
χ(ω)

2nr

(4.3.10)

where nr is the medium refractive index.

∆n(1)(ω) =
1

2nr

|µnm|2N [
Enm − ~ω

(Enm − ~ω)2 + (~Γnm)2
] (4.3.11)

and

∆n(3)(ω) =
−µc
4nrε0

|µnm|2
NI

[(Enm − ~ω)2 + (~Γnm)2]2
× [4(Enm − ~ω)|µnm|2 (4.3.12)

− (µnn−µmm)
(Enm)2+(~Γnm)2

] ×{(Enm − ~ω)Enm[Enm − ~ω − (~Γnm)2]− ~Γnm)2(2Enm − ~ω)2},

where I = 2nr

µc
|Ě(ω|2, c is the speed of light in free space, N is the carrier density

in the system , µ is the permeability of the system and Enm is the energy difference of

the two systems, and Γnm is the inverse of relaxation rate. Similarly the absorption

coefficient can be given by

β1(ω) = ω

√
µ

εr

|µnm|2N~Γnm

(Enm − ~ω)2 + (~Γnm)2
(4.3.13)

β3(ω) = −ω
√
µ

εr
(

I

2ε0nrc
)

|µnm|2N~Γnm

[(Enm − ~ω)2 + (~Γnm)2]2
× {4|µnm|2 (4.3.14)

− (µnn−µmm)2[3Enm−4Enm~ω+~2(ω2−Γ2
nm)]

E2
nm+(~Γnm)2

}
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4.3.1 Numerical results and discussions

In order to clarify the results that have been obtained in this section, we numerically

calculated the linear and nonlinear optical absorption coefficients and index of re-

fraction for a ZnO cylindrical quantum wire. The parameters used in our numerical

work are : effective mass(m∗) of ZnO = 0.21mo ⇒ m∗

m0
= o.21, ε(ZnO) = 8.5 ⇒ nr =

√
8.5 = 2.92. The dipole moment(transition)u 4.5×10−28cm. The damping constant

γnm = 5× 1011/s, ρv = 1022m3. Since the radius of the cylindrical wire we are inter-

ested is 30nm, the relation between the parabolic confinement frequency ω0 and the

radius a = 30nm should satisfy ~ω0 = ~2

m∗a2 . This results in the confining frequency

ω0 = 6.16 × 1011/s. The transition energy can be calculated: Eeg = 2~ω0 − ~ω0

= ~ω0 = 6.47429× 10−23 .

Figure 4.1: The change in refractive index ∆n(ω) versus photon energy (~ω) in (J)
for ZnO CQWR.
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In Fig.4.1 the change in refractive index ∆n(ω) versus photon energy (~ω) in(J)

is plotted and the change is nonlinear. The change ∆n(ω) is the difference between

the nonlinear n(3)(ω) and linear n(1)(ω) refractive indices. From the graph, as it has

the larger nonlinear than linear, as a result of this the change becomes nonlinear.

Figure 4.2: The change in optical absorption coefficient ∆β(ω) versus photon energy
~ω in (J) for ZnO CQWR.

In Fig.4.2 the change in absorption coefficient ∆β(ω) versus photon energy ~ω

in(J) is plotted in parabolic potential well for ZnO cylindrical quantum wire and the

change is very large and nonlinear. The change ∆β(ω) is the difference between the

nonlinear β3(ω) and linear β1(ω) absorption coefficients .
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Chapter 5

conclusion

In this study, the nonlinear optical properties of ZnO cylindrical quantum wire in

parabolic confining potential is calculated with help of density matrix formalism.

Such nonlinear optical properties are susceptibility, index of refraction and absorp-

tion coefficient. These optical properties were calculated using its discrete energy

eigenvalues. From the result of this study, the ZnO cylindrical quantum wire has

a very large nonlinear n(3)(ω) and a very small linear n(1)(ω) indices of refraction.

As a result of this change in index of refraction ∆n(ω) is very large and nonlinear.

And also it has a very large nonlinear β(3)(ω) and a very small linear β(1)(ω) absorp-

tion coefficients. As a result of this the change in absorption coefficient ∆β(ω) is

very large and nonlinear. From this point of view we can consider that the changes

of both index of refraction and absorption coefficient are very large and nonlinear.

These indicate that as a total the material (ZnO cylindrical quantum wire) exhibits

nonlinear optical properties in our case. From this point of view we can conclude that

due to these its nonlinear optical properties it is very important in modern theoretical

and applied physics. So it has the potential for device applications in laser amplifiers,

photodetectors, high-speed electro-optical modulators, and so on
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