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Abstract 

Road traffic accidents are one of the leading causes of injuries and death in both developed and 

developing countries. According to WHO, 1.35 million people die each year as a result of road 

traffic accidents globally. Ethiopia is one of the developing countries and at least 114 people die 

for every 10,000 vehicle accidents annually. Moreover, road traffic accident the capital city, Addis 

Ababa resulting in thousands of physical injuries and costing the economy in millions of dollars. 

Hence, time series analysis related to the road traffic accident has a very important place in 

revealing the future trends of the accident and decision making process. Therefore, this study 

focuses on statistical analysis of road traffic accident using Seasonal Autoregressive Integrated 

Moving Average (SARIMA) and Self-Excited Threshold Autoregressive (SETAR) time series 

models. Data were obtained from Addis Ababa Traffic Police Commission and temporally 

aggregated from January 2004 to December 2018 for analysis purpose. Data analyses were 

performed using R and S-plus statistical software. The estimated trend component of RTA showed 

a rising trend from 2010 to 2016 G.C .Furthermore, road traffic accident most frequently occurs 

during the rainy seasons (June, July and August) of Ethiopia. The two regime SETAR model was 

adopted to accommodate non linearity and linear SARIMA model was fitted as a benchmark for 

comparative analysis. The model was nominated from SARIMA and SETAR models based on the 

selection criteria and model comparison was made between the selected models. Nonlinear 

SETAR(2,8,8) outperformed forecast than linear SARIMA(1,1,1)(1,1,2) 12 model for road traffic 

accident of Addis Ababa. The out sample forecasted value indicates that, road traffic accident has 

an increasing trend over the forecasted period. 

Keywords: Regime, unit root, invertible, stationary, nonlinearity
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1. Introduction 

1.1. Background 

Road traffic accident is a major public health problem worldwide. It includes collisions between 

vehicles and animals, vehicles and pedestrians, vehicles and fixed objects or vehicles and vehicles 

(Bereket et al., 2016).According to WHO (2018) report, there are 1.35 million deaths per year and 

road traffic accident is the eighth leading cause of death for all age groups globally. 

WHO (2018) investigated the risk of dying in a road traffic accident by continent and Africa is the 

leading with the chance of 26.6 followed by south east Asia (20.7).Even though the numbers show 

the large prevalence rate in road traffic accident in developing countries specifically in Africa 

(including Ethiopia), the issue is still under reported and neglected to be studied and interventions 

are needed urgently (Samuel  et al., 2012).  

Abegaz et al. (2019) reveals that, road accident related injuries and fatalities are exceptionally high 

in Ethiopia and there is paucity of evidence regarding of the accident. Further, the available 

estimates based on official reports are likely to underestimate the extent of the problem. Abdi et 

al.(2017) showed that, road traffic accident in Addis Ababa resulting in thousands of physical 

injuries and costing the economy in millions of dollars. Moreover, the finding of Teferi (2019) 

emphasis that, road traffic accident continue to be a significant for morbidity and mortality 

problem in Addis Ababa and requiring urgent attention. Similarly, road traffic deaths and injuries 

affect the livelihood of community and the economy of the country unless effective measures are 

taken to control the problem (Fesseha  et al., 2014). 

Unless the trend is detained, the social and economic problem of road traffic accident will become 

more and more serious as the number of vehicle increases. And, access to the information about 

road traffic accident in a given context is significant to generate evidence to contribute to the 

prevention and control of context-specific accidents (Cherati et al., 2012).Time series models are 

very useful to enhance one’s understanding on traffic accident trends (Bossche et al., 2004). 

The cases of accident being a timely occurrence can be modeled using Box and Jenkins approach 

to time series modeling developed by two mathematicians, George Box and Gwilym Jenkins 

(1970). The Box-Jenkins model requires the data to be stationary, and differencing was used to 

make the data stationary if it is not stationary. When seasonality is contained in the series, the 
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seasonal components are incorporated into the ARIMA model to make the seasonality not to die 

out .This leads to Seasonal Autoregressive Integrated Moving Average (SARIMA) model (Eze et 

al.,2018). 

Nonlinear threshold model was introduced by Tong (1978) and Self-Exciting Threshold 

Autoregressive (SETAR) model was a special case of the TAR model which accommodates 

structural changes in regimes of the data. Moreover, Clements et al. (2004) reviewed, the current 

state of this model ranging from estimation, evaluation and selection of forecasting models. Due 

to the shortcomings of linear and nonlinear models, the hybrid forecasting approach has come to 

the forefront over the past decade (Gulay, 2019).According to Zhang (2019) finding, the combined 

linear and nonlinear time series model can be an effective way to improve forecasting accuracy 

achieved by either of the models used separately. Therefore, this study was focused on the 

application of SARIMA and SETAR model for analyzing road traffic accident of Addis Ababa. 

1.2. Statement of the problem 

In Ethiopia, the rate of road traffic accidents is very high and at least 114 people die for every 

10,000 vehicle accidents annually. The real figure may be higher due to underreporting. In 

addition, the country is experiencing highest rate of such accidents resulting in fatalities and the 

capital city, Addis Ababa shares 65% of the total accident in the country (NRSCO, 2008). 

Tesema (2005) conducted a research on road traffic accident data comprising a dataset of 4,658 

accident records at Addis Ababa traffic police commission to investigate the application of data 

mining technology for accident severity using classification of algorithms .Also, Guyu (2013) 

studied, spatial distribution of the severity of road traffic accident among the 10 sub-cities of Addis 

Ababa and the study identified 125 hazardous black-spots in all sub-cities of Addis Ababa. 

Hordofa et al. (2018) investigated the prevalence of fatality and associated factors of road traffic 

accidents using bivariate and multivariate analyses. Subsequently, Kebede (2015) examined the 

factors contributing to the mortality related to road traffic accidents and the cause of the accident 

was analyzed using descriptive statistics. 

Hence, previous researchers were used descriptive statistics, spatial distribution, bivariate, 

multivariate, classification of algorithm and data mining model for analyzing road traffic 
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accidents. Though, to inform police traffic commission about the estimates of road traffic accident 

in the future, time series analysis related to the road traffic accident has a very important place in 

revealing the trends and decision making process. It has a major impact in the development of 

appropriate solutions to combat this phenomenon, and can provide important information in road 

accident trends. This future trend can help in identifying the feature of road accidents whether it 

tends to increase or decrease so that preventive measures can be taken. Therefore, the objective of 

this research was to analyze road traffic accident in Addis Ababa using SARIMA and SETAR 

models. The key questions that was addressed in this research were: 

 What is the pattern of road traffic accident in Addis Ababa? 

 In which season does road traffic accident most frequently occurs over time span of the 

data? 

 Which SARIMA and SETAR model is appropriate for modeling and forecasting road 

traffic accident in the study area? 

1.3. Objectives of the study 

1.3.1. General objective 

The general objective of this study is to analyze road traffic accident in Addis Ababa using 

SARIMA and SETAR model. The results of this study can provide information that could be useful 

to reduce road traffic related morbidity and mortality in the study area. 

1.3.2. Specific objectives 

   The specific objectives are: 

 To assess the pattern of road traffic accident in Addis Ababa 

 To investigate the season in which road traffic accident mostly frequently occurs over 

the time span of the data 

 To identify appropriate model from SARIMA and SETAR for modeling and 

forecasting road traffic accident in the study area 
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1.4. Significance of the Study 

Road traffic accident have been increasing from time to time and become fear of society. Hence, 

identifying the current trend and forecasting magnitude of road traffic accident was an important 

step to guide future course of action for describing its economic implications and saving the lives. 

Therefore, the study could be used to assist in designing strategy to policymakers, transport 

authorities, road engineers, and other concerned bodies to prevent accidents and number of deaths 

due to it in the upcoming years. 

1.5. Limitation of the study 

This study mainly uses the information collected from Addis Ababa traffic police commission that 

is available from 15 years accident records which is from 2004 to 2018 G.C.  Though, there was 

seven daily observation and twenty four recorded data in hourly basis per one year.  Hence, there 

were no documented data in monthly basis. Due to poor handling and recording of road traffic 

accidents data, temporal aggregation was employed for analysis purpose. 

1.6. Organization of the study  

This thesis was organized into the following chapters. Chapter one was introduction of the thesis. 

This chapter briefly addresses the research objectives, statement of problem, significance of the 

study, limitation and background of the study. Chapter 2 reviews the literature with emphasis on 

road traffic accident and the statistical tools relevant on the application of SARIMA and SETAR 

models. Chapter 3 explains the methodology applied in building SARIMA and SETAR models 

and estimating their parameters. Chapter 4 presents the result and discussions. Chapter 5 was 

conclusions and recommendations. 
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2. Literature Review 

2.1.Overall burden of road traffic accident 

Road accident is one of the causes for the death of people and has been ranked as one of the top 

leading causes of death in the world. Over millions of people are killed each year.  Every day, 

thousands of people are killed and injured on road by traffic accident. It is the leading cause of 

death, disabilities and hospitalization, sever socioeconomic costs, across the world.  According to 

(WHO, 2018), it has been estimated that Road Traffic Accident takes the live of over 1.35 million 

each year. In addition, when considered in the context of the increasing global population and rapid 

motorization that has taken place over the same period, this suggests that existing road safety 

efforts may have mitigated the situation from getting worse. However, it also indicates that 

progress to realize Sustainable Development Goal (SDG) target 3.6 which calls for a 50% 

reduction in the number of road traffic deaths by 2020 remains far from sufficient. 

Road traffic accident is the series issue in Africa and it is from most killer disease. The numbers 

of road traffic injuries and deaths have been increasing from time to time. African Region had the 

highest rate of fatalities from road traffic injuries worldwide at 26.6 per 100 000 population. The 

increased burden from road traffic injuries and deaths is partly due to economic development, 

which has led to an increased number of vehicles on the road. Given that air and rail transport are 

either expensive or unavailable in many African countries, the only widely available and 

affordable means of mobility in the region is road transport. However, the road infrastructure has 

not improved to the same level to accommodate the increased number of commuters and ensure 

their safety and as such many people are exposed daily to an unsafe road environment (Abegaz et 

al., 2014). 

Various studies have addressed the different aspects of road traffic with most focusing on 

predicting or establishing the critical factors influencing injury severity (Chong et al., 2005). 

Numerous data mining-related studies have been undertaken to analyze RTA data locally and 

globally, with results frequently varying depending on the socio-economic conditions and 

infrastructure of a given location 

Ossenbruggen, Pendharkar et al. (2001) used a logistic regression model to identify the prediction 

factors of crashes and crash-related injuries, using models to perform a risk assessment of a given 
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region. These models included attributes describing a site by its land use activity, roadside design, 

use of traffic control devices, and traffic exposure. Their study illustrated that village sites were 

less hazardous than residential or shopping sites.  

Tibebe (2005) analyzed historical RTA data, including 4,658 accident records at the Addis Ababa 

Traffic Office, to investigate the application of data mining technology to the analysis of accident 

severity in Addis Ababa, Ethiopia. Using the decision tree technique and applying data mining 

tool, the developed model classified accident severity into four classes: fatal injury, serious injury, 

slight injury, and property-damage. Accident cause, accident type, road condition, vehicle type, 

light condition, road surface type, and driver age were the basic determinant variables for injury 

severity level. The classification accuracy of this decision tree classifier was reported to be 

87.47%. 

2.2. Empirical literature on road traffic accident using SARIMA model 

Yousefzadeh-Chabok et.al. (2016) studied a time series model for assessing the trend and 

forecasting the road traffic accident mortality Zanjan Province, Iran in the period 2007 to 2013.The 

logarithmic transformation was used to remove the non-stationary condition in variance. Then, 

seasonality variation was removed by seasonality differencing with lag 12. SARIMA model used 

to analyze the data and the model was identified through ACF and PACF plots. The study showed 

a decreasing trend over the past and the next four years in Iran. 

Eke et al. (2000) studied the seasonal effect on road traffic accident using data collected form 

university of Port Harcourt Teaching Hospital (UPTH) from January 1986 to December 1995 

found that most of the accident in Port Harcourt, Nigeria occurred during the rainy seasons (June, 

July and August).In addition, Manikandan et.al. (2018) forecasted road traffic accident deaths in 

India using SARIMA model from January 2001 to December 2012 (144 months). The trend of 

RTA deaths in India showed a seasonal pattern and to stabilize the mean and variance, first order 

of difference of historical time series data was considered. Subsequently, the tentative SARIMA 

model was selected as SARIMA (1,0,0) (2,1,0)12 using the smallest value of AIC and BIC. 

Nanga (2016) investigated time series analysis of road accidents in Ghana using SARIMA model. 

The Box Jenkins method was applied for a 20 year period from 1991-2010.A model was 

subsequently developed to fit the time series data. SARIMA (1,1,0) × (0,1,1)12  was found to be 
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the best model for road  accident cases with a maximum log likelihood value of 245.48, and least 

AIC value of 5.892 and RMSE value of  17.930 .The rate of road accidents is expected to increase 

at least for the next years 10 years. 

Favour et al. (2016) investigated that statistical analysis of pattern on monthly reported road 

accidents in Nigeria. The data used for this paper was monthly data collected for a period of 2004 

to 2014. Autoregressive Moving average model were fitted to the data and the best order was 

choosing using AIC. The order = c (1, 1, 2), seasonal =c (1, 1, 2)) gives the best description of the 

data with minimum (AIC). The time plot plotted showed that, the graphs maintain a constant 

movement from 2004 to 2008 but increases abnormally in 2010 and later drop again maintaining 

appreciable downward movement as the year progresses.  

Balogun et al. (2014) analyzed a data set collected from Nigerian traffic accidents using time series 

approach. The data collected spanned the period between 1989  to 2008. The study reveals that, 

the best model was AR (1) for annual data. Moreover, Mutangi (2015) analyzed the data of traffic 

accidents in Zimbabwe using three ARIMA tentative models which were suggested based on the 

ACF and PACF plots of the differenced series. These were ARIMA(0,1,0), ARIMA(1,1,0) and 

ARIMA(1,1,1) and he decided that ARIMA (0,1,0) was the best model for the Zimbabwe annual 

traffic accidents data. 

Foroutaghe et al. (2019) studied time trends in gender specific incidence rates of road traffic 

injuries in Iran. The seasonal auto-regressive integrated moving average method (SARIMA) was 

employed to predict road traffic incidence time series. The final model was selected from various 

SARIMA models based on the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC). To examine whether the residuals were white noise, the Ljung-Box test and 

residuals plots were used with respective for no correlation and zero mean stationarity. The sample 

auto-correlation function (ACF) and the partial autocorrelation function (PACF) with 20 lags were 

employed to determine the order of models and to ascertain if the residuals of the model were 

uncorrelated 
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2.3. Empirical studies using SETAR model in several time series analysis 

Non-linear time series modelling has attracted much attention in recent years. The threshold 

autoregressive (TAR) model proposed by Tong and Lim (1978) is one of the popular non-linear 

time series models that shows wide application in many areas. An important special case of TAR 

was Self-exciting Threshold Autoregressive (SETAR) model. Similar economics study by Sjoberg 

(2010), compared the forecast performance of ARIMA, and SETAR models using monthly 

Swedish industrial production from 28 branches over the period January1990 to December 2008.  

Tong's (1978) threshold autoregressive (TAR) model has been a useful and popular tool in 

nonlinear time series modeling. The threshold approach is a natural approach as nonlinearity can 

be well approximated by a piecewise linear structure which can be created by a regime dependent 

linear model. The basic idea of threshold models is the introduction of regimes via thresholds. The 

principle allows the analysis of a complex stochastic system by decomposing it into simpler 

subsystems (Li, 2006). 

 Akeyede et al. (2015) compared different forecasting methods proposed in existing literature to 

obtain h-step ahead forecast. Multi step forecast performance of linear and nonlinear time series 

model was compared and the finding reveals that SETAR model was best in terms of its prediction 

ability. Likewise, Badawi et al. (2016) in an unpublished master’s thesis, compared the forecast 

performance between SARIMA and SETAR models using data on pneumonia cases in the northern 

region of Ghana. The data was obtained from the Tamale Teaching Hospital over the period 

January, 2000 to October, 2015 based on the forecast values from the two models, the SETAR 

model was adjudged the best in terms of its MSE, RMSE and Diebold and Marino test also 

performed to check whether there is exist a difference in forecasting abilities of the two models. 

Clements et al. (2001)  evaluated  forecasts  from  SETAR  models  of   exchange rates  and  

compared  them  with  traditional  random  walk  measures.  Caner et al. (2001) used Chow test in 

testing unknown structural   change timing. Boero et al. (2003) studied  the  out of sample  forecast  

performance  of   SETAR models  in  Euro  effective  exchange  rate. The  SETAR  models  were 

specified  with two  and  three  regimes,  and  their  performance was  assessed  against  that  of   a 

simple  linear  AR  model . 
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Aidoo (2010) forecast the performance of Ghana Inflation rates using SARIMA models and 

SETAR model. Based on the in-sample forecast assessment from the linear SARIMA and the 

nonlinear SETAR models, the forecast measure Mean Absolute Error (MAE) and Residuals Mean 

Square Error (RMSE) suggest that the nonlinear SETAR model outperform the linear SARIMA 

model. Also, using multi-step-ahead forecast method the researcher was predicted and compared 

the out-of-sample forecast of the linear SARIMA and the nonlinear SETAR models over the 

forecast horizon of 12 months. The results as suggested by MAE and RMSE, the forecast 

performance of the nonlinear SETAR models was superior to that of the linear SARIMA model in 

forecasting Ghana inflation rate. 

Nafisah (2018) studied comparative analysis of forecast performance between SARIMA and 

SETAR models using macroeconomic variables in Ghana.  Keenan and Tsay-F tests showed the 

datasets were threshold nonlinear with two regime SETAR model. Accordingly, the performance 

between the SARIMA and SETAR models were compared for inflation by employing forecast 

measures RMSE and MAE and the nonlinear SETAR model outperformed than linear SARIMA 

model for inflation rate of Ghana. 

Analyzing structural changes in the Taiwan stock market, Hsu et al. (2010) found the SETAR 

model to better examine the out of sample forecast of the non-linear time series. Employing 

monthly data from January 2005 to December 2009, the best model was chosen by performing a 

unit root test and comparing the out of sample forecast between the standard linear ARIMA model 

and the nonlinear SETAR model. A graphical view of their results showed that the structural 

change in the time series occurred in the month of June 2008. Thereby they built a 2 regime 

SETAR model. In conclusion the nonlinear SETAR model was found to be superior in forecasting 

to the linear ARIMA model in the Taiwan stock market. 

Desaling Germay (2016) dealt with modeling the unemployment rate in Sweden is using univariate 

time series SARIMA and SETAR models. The combined modeling process showed that 

unemployment rate was non stationary and nonlinear. The rate also has stationary seasonal nature. 

The predictive accuracy performance of model was measured based on RMSE, MAE as well as 

Diebold and Marino test. And, the study showed that SETAR model was better forecasting 

performance than SARIMA model. 
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3. Research Methodology 

3.1. Study Area 

Addis Ababa, the capital city of the Federal Democratic Republic of Ethiopia, is located in the 

center of the country .The city has a total of 54,000 hectares and 4,725,816 population. The city is 

the country‘s political and economic center, the seat of head offices of African union and united 

nations economic commission for Africa. It also accommodates many international aid and 

development organization and more than 100 embassies. Addis Ababa is exhibiting high social, 

economic, structural and change is found to be a fast growing city. More than 70% of registered 

vehicles in the country are found in Addis Ababa.  

For administration purposes, Addis Ababa is divided into 10 sub cities, Akaki Kaliti, Nefas Silk, 

Kolfe Keraniyo, Gulele, Ledeta, Kerkos, Arada, Addis Ketema, Bole and Yeka. Over the past 

years, the city of Addis Ababa has witnessed with an amazing expansion in size. The rapid increase 

in urban population with an annual growth rate of 3.8 percent per year has not been provided with 

an equal growth in provisions of road infrastructures, urban transportation, and other 

infrastructures. The road length envisaged by the Addis Ababa 2003 was 800 km. As of April 

2010, constructed road and pedestrian walkway was 620km and 423km respectively. Currently the 

road coverage of the built area is 11.3% and it is envisioned to have the road network coverage 

about 20% by the year 2020. Mobility has been improved; but the total number of road traffic 

accident has also gone up (Helen, 2018). 

3.2. Sources of Data 

Data for this study were obtained from the Addis Ababa traffic police commission. The site was 

chosen due to availability of relatively long series of road traffic accident data. Even though, the 

data were recorded in total hourly (24 hrs) per in each year .The hourly data of road traffic accident 

were aggregated to monthly for statistical analysis.  

An aggregation process consists of deriving a low frequency representation of the process from a 

high frequency formulation; this derivation can be exerted through time. Aggregation across time, 

also called temporal aggregation, refers to the process by which a low frequency time series is 

derived from a high frequency time series (Nikolopoulos, 2011). 
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After the data aggregated from total hourly  to January 2004 to December 2018, the model forecast 

performance was conducted by splitting a given data set into in-sample period which were used 

for initial parameter estimation and model selection; and out sample period which were used to 

evaluate forecast performance. Yet, there are no broadly accepted guidelines as to how to select 

the sample split (Peter, 2012).Instead, researchers adopt a variety of practical approaches (Hansen 

et al., 2012). In this study, the in sample period was runs from January 2004 to December 2016 

(156 observation). And, this was used to model selection and estimation. Whereas, the out-of-

sample period runs from January 2017 to December 2018 (24 observation) for evaluation of 

forecasting purpose. 

3.3. Statistical Model 

3.3.1. The concept of stationary 

The concept of stationary of a stochastic process can be visualized as a form of statistical 

equilibrium. The statistical properties such as mean and variance of a stationary process do not 

depend upon time.  Usually time series showing trend or seasonal patterns are non-stationary in 

nature. In such cases, differencing was used to remove the trend and to make the series stationary. 

A unit root test was used verify stationary of the data. 

3.3.2. Unit Root Test 

In statistics, a unit root test examines whether a time series is stationary or not, using an 

autoregressive model. The widely used unit-root tests were Augmented Dickey Fuller (ADF) and 

Phillips-Perron (PP) tests. The following discussion outlines the basic features of unit root tests. 

3.3.2.1. The Augmented Dickey Fuller (ADF) Test 

The augmented Dickey-Fuller (1979) test was used to determine if a time-series is stationary by 

checking for unit roots. This was important when applying an SARIMA model to determine if the 

data needs to be differentiated. Hence, the autoregressive order one is given as  

ttt yy   1 ………………………………………………………………………………..[1] 

Where   is a parameter to be estimated, and t  is assumed to be white noise. If 1 , ty  is a 

non-stationary series and the variance of y increases with time and approaches infinity. On the 
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other hand, if 1 ty is stationary series. Therefore, the hypothesis of stationary was evaluated 

by testing whether the value of     is strictly less than one. The hypotheses are:  

   H0:   = 1 (the series is not stationary) vs    Ha:   < 1 (the series is stationary) 

Dickey Fuller model can be expressed as: 

ttt yy   1  …………………………………………………………………………………[2] 

Where 11  ttt yyyand  

The null and alternative hypothesis may be rewritten as: Ho:    = 0 vs Ha:    < 0 

The test statistic is the conventional t-ratio for   ;   
 



ˆ

ˆ

se
t  ……………..………………….[3] 

Where ̂  is the OLS estimate of    and  ̂se  is the standard error of ̂ . 

3.3.2.2. The Phillips-Perron (PP) Test 

Phillips and Perron (1988) developed a number of unit-root test and received much attention in 

analysis of most time series data. This unit root test is quite different from the Augmented Dickey 

Fuller (ADF) test in terms of their approach in dealing with errors arising from serial correlation 

and heteroscedasticity. Also, this test unlike the ADF test, makes use of non-parametric procedures 

in their test regression. The test regression for the PP tests can be written as follows; 

tttt yDy   1 ............................................................................................................... [4] 

Where,   is a difference operator, β   is a constant, tD  is a time trend,    is the dickey fuller test 

statistic and t  is an error term. The hypothesis is:  

H0:  = 0 (non-stationary)     vs    H1: Not H0 
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On the other hand, the Phillips- Perron test was built on the same principles as the Augmented 

Dickey Fuller test. But, it ignores any serial correlation in the regression used for the test and adds 

a correction to the t- test statistic and produces the following test statistic: 
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Where,
 

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parameters. 
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3.3.3. Moving Average (MA) process 

Moving average models accounts for the possibilities of a relationship between a variable and a 

residuals from a previous period.  The jth   order MA process can be expressed as; 

qtqtttty    ....2211 t

q

j

jti   




1

………………………………[6] 

Where, t  and  jt  are the current disturbance terms and previous white noise disturbance term 

respectively , i  is the MA  parameters which describes the effect of the past error on ty .So that 

ty depends on the current and previous values of a white noise disturbance term. 

3.3.4. Autoregressive (AR) Process 

Autoregressive models are models in which the value of the variable in one period is related to its 

value in previous period. A time series ty  is an autoregressive process with order p if each 

observation of AR (p) process can be denoted as the following equation: 
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tptpttt yyyy    ....2211  = 


 
p

i

titi y
1

 …………………………………..[7] 

 Where, µ is constant, t  is a white noise term and i  is the coefficients of lagged variable in time 

t-p. ity    is the value  and 𝑡 − 𝑖   periods ago. The only special thing is the regressor is the 

dependent variable’s own lagged terms. 

3.3.5. Autoregressive Moving Average process (ARMA) 

Autoregressive of order p and Moving Average of order q were combined to obtain a very flexible 

class of ARMA processes. Its specific subset of univariate modeling in which a time series was 

expressed in terms of past values of itself plus current and lagged values of a white noise error 

term. ARMA (p, q) was given by: 

 

 

 
 

 
p

i

q

j

jtjitit y
1 1

 ……………………………………………………….[8] 

Where ty  was the value of traffic accident at time t,µ is constant mean , p ,...,, 21 are 

autoregressive parameters, t , 1t ,…, pt  are white noise error with mean zero and variance t
2

and q ,,, 21  are moving average parameters. 

3.3.6. The Seasonal ARIMA Model 

The seasonal autoregressive integrated moving average (SARIMA) model, of Box and Jenkins 

(1976) was given by 

t

s

t

dD

s

s wBBxBB )()()()(   ……………………………………………………….[9] 

The general model was denoted as SARIMA (p, d, q) × (P, D, Q)S. The non-seasonal 

autoregressive and moving  average component are represented by polynomials )(B  and )(B of 

the order p and q ,respectively and the seasonal autoregressive and moving average component by 

 
qtqttptptttt yyyy    ........ 22112211
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)( sB  and )( sB of orders P and Q and non-seasonal and seasonal difference components by 

dd B)1(   and 
DsD

s B )1(   

Where,  

 p, d and q are the order of non-seasonal AR, differencing and MA respectively.  

 P, D and Q is the order of seasonal AR, differencing and MA respectively.  

 tx  Represents time series data at period t.  

 tw Represents Gaussian white noise process (random shock) at period t. 

 B, represents backward shift operator ( ktt

k xxB  ) 

 
D

s , represents seasonal difference 

 d , represents non-seasonal difference 

 S, represent seasonal order (s= 12 for monthly data). 

3.3.7. Building Seasonal ARIMA Models  

There were a few basic steps to fitting Seasonal ARIMA models to time series data. These steps 

involve plotting the data, possibly transform the data, identifying the appropriate model, parameter 

estimation, model diagnosis and forecasting. The original Box-Jenkins modeling procedure 

involves an iterative three-stage process of model selection, parameter estimation and diagnostic 

checking. But, further explanations of the process by Makridakis et al. (1998) often add a 

preliminary stage of data preparation and a final stage of forecasting and evaluation of the forecast 

performance measure. 

3.3.7.1. Model Identification 

The purpose of the identification stage is to determine the differencing required to achieve 

stationarity and also the order of both the seasonal and the non- seasonal autoregressive and 

moving average operators. 

3.3.7.1.1. Autocorrelation Functions 

Autocorrelation function is a very useful in order to identify a time series model. It measures the 

linear dependence or the correlation between ty  and   kty  . 
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The order of moving average was determined by the number of significant auto correlation. 

3.3.7.1.2. Partial Autocorrelation Function 

 The correlation between ty  and   kty  after removing the effect of the intervening variables 1ty , 

2ty , 3ty ,…., 1kty denoted by kk  

),.....,|,( 12,1  ktttkttkk yyyyycorr  
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

 ……………………………………………………………..…...…….[11] 

.,1,1,...2,1,...,3,2, 11100,1,1,1    kjkjwhere kkkkkjk  

When the stationarity condition of the data was satisfied, the order of the model which AR, MA, 

seasonal AR and MA terms were determined with the help of the ACF and the PACF plot of the 

stationary series. The ACF gives information about the internal correlation between observations 

in a time series at different distances apart, usually expressed as a function of the time lag between 

observations. These ACF and PACF plots suggest the model should be built and the researcher 

was look at both seasonal and non-seasonal lags. Usually the ACF and the PACF has spikes at lag 

k and cuts off after lag k at the non-seasonal level. Also, the ACF and the PACF has spikes at lag 

ks and cuts off after lag ks at the seasonal(s) level. The number of significant spikes suggests the 

order of the model. Table 3.1 and 3.2 below describes the behavior of the ACF and PACF for both 

seasonal and the non-seasonal series (Shumway and Stoffer, 2006). 
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Table 3.1: Behavior of ACF and PACF for Non-seasonal ARMA (p, q) 

 AR(p) MA(q) ARMA(p, q) 

ACF Tails off at lag k, k=1, 2, 3… Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off at lags k, k=1, 2, 3… Tails off 

Table 3.2: Behavior of ACF and PACF for pure Seasonal ARMA (P, Q)S 

 AR(P)s MA(Q)s ARMA(P,Q)s 

ACF Tails off at lag ks  

k=1, 2,3,….. 

Cuts off after lag Qs Tails off at lag ks 

PACF Cuts off after lag Ps Tails off at lags ks, k=1, 

2,3,…… 

Tails off at lag ks 

 

 

3.3.7.2. Model Selection with the HK-algorithm 

Hyndman and Khandakar (2008) developed the Hyndman-Khandakar (HK) algorithm and can be 

applied in R with the function auto.arima in the forecast package. They suggest an iterative time-

saving procedure where the model with the smallest value of AIC and BIC.To derive these 

information criterions, the first thing that is needed was the likelihood function  )~(L  , where ~  

is the maximum likelihood estimates of the parameters for the SARIMA with k=p+q+P+Q+1     

parameters and sample size n. The criterions are then derived by the following equations. 











n

RSS
nkAIC log2 …………………………………………………………..…...…….[12] 

)log()(log 2 n
n

k
BIC e   ………………………………………………………..…...…….[13] 

Where: 

 k is the number of parameters in the statistical model, (p+q+P+Q+1). 

 RSS is the residual sum of squares of the estimated model. 
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 n  is the number of observation, or equivalently, the sample size. 

 e
2   is the error variance. 

The HK-algorithm then performs an iterative procedure to select the model that minimizes the 

value of each criterion. 

3.3.7.3. Parameter Estimation 

Parameter estimation of SARIMA model was achieved using maximum likelihood estimation. At 

this stage precise estimates of the coefficients of the chosen model was estimated. If the tentative 

model has significant parameters, whose values lie within the bounds of stationary and inevitability 

and was not highly correlated, then the researcher was proceed to the last stage, diagnostic 

checking. If not, the researcher was return to the identification stage and formulate an alternate 

model based on the information gained at the estimation stage. 

3.3.7.4. Model Diagnostics 

Once a model has been identified and the parameters estimated, diagnostic checks was applied to 

the fitted model. In model diagnostics the researcher was examine standardized residuals, ACF of 

residuals and the formal test of serial correlation. If the model fits well, the standardized residuals 

should behave as an identically and independently distributed with zero mean and unit variance. 

Also, the ACF plot of the residuals must show no significant autocorrelations at any lag order. One 

might expect approximately 1 lag in every 20 lags to be statistically significant by chance alone 

for a 95% confidence limit test.  

3.3.7.4.1. Ljung-Box Test 

Ljung and Box (1978), described this test as a diagnostic tool used to check for the presence or 

absence of serial correlations in the residuals of a fitted model. Thus, a time series with any 

specified lag orders, say order m examines autocorrelations in the residuals. Instead of testing 

randomness at each distinct lag, usually it tests the overall randomness based on a number of 

specified lags. The test procedure is given as follows; the hypothesis was given as follows; 

H0: There is no autocorrelation 

H1: not H0 
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The test statistic is; 
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   m is the number lags being tested, n is the 

number of residuals.   

3.3.7.5. Forecasting From Seasonal ARIMA Models  

The last step in Box-Jenkins model building approach was forecasting. After a model was passed 

the entire diagnostic test, it becomes adequate for forecasting.  For given Seasonal ARIMA model 

we can forecast the next step which is given by (Cryer, 2008) 

    1312113121 )(   tttttttt yyyy   

   1312113121   tttttttt yyyy  …………………………..…….[15] 

The one step ahead forecast from the origin t is given by 

121112111   ttttttt yyyy 


…………………………….……..…….[16] 

The next step is 

1110111012   tttttt yyyy 


………………………………………..…….[17] 

And so forth. The noise terms 1101112,13 ,,,,   (as residuals) was enter into the forecasts for 

lead times l=1,2,….,13,but for l>13 the autoregressive part of the model  takes over and we have 

1313121   lforyyyy ltltltlt 


…………………………………..……..…..….[18] 
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3.3.8. SETAR model 

Self-Excited  Threshold  Autoregressive  (SETAR) model  is  a  class  of  the Threshold 

Autoregressive  (TAR)  model proposed  by  Tong  (1978)  and  further  studied in Tong  and  

Lim(1980). The  SETAR  model  is  a  set  of  different  linear  AR models, changing  according 

to  the  value  of  the  threshold  variable which  is  the  lagged values  of  the series.  The  process  

was linear in  each  regime,  but  the  movement  from  one  regime  to  the  other makes  the  entire  

process  nonlinear.  The two regime SETAR model order (2; P(1), P(2)) was given as: 

𝑦𝑡 =

{
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…………………………..……………………..[19] 

Where 
)1(

i  and 
)2(

i are the coefficient in lower and higher regime respectively which needs to be 

estimated; τ is the threshold value; P(1),  and P(2) are the order of the linear AR model in low and 

high regime respectively. dty   is the threshold variable that governs the transition between the two 

regimes,  d is  the delayed parameter which is a positive integer (d≤ p); 
)1(

t and 
)2(

t  are a sequence 

of independently and identically distributed random variables with zero mean and constant 

variance.  

3.3.8.1. Test of non-linearity 

This was done using graphical method, Keenan test, Tsay test and likelihood ratio test for threshold 

nonlinearity. 

3.3.8.1.1. Graphical method 

This method basically gives a clue. If the regression lines were all straight in lagged scatter plots 

and the density of the plots decrease from the center suggests that the underlying process could be 

linear. If on the other hand, there were curved regression lines and there exists a hole in the center, 
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then it was suggested that the data could fitted with nonlinear time series model (Cryer and Chan, 

2008). 

3.3.8.1.2. Keenan’s One-Degree Test for Nonlinearity 

For an observable time series yt, the SETAR model was only be applied if the series under 

consideration is found to be nonlinear or irregular in nature under the hypothesis: 

      H0: linearity exists 

      H1: nonlinearity exists 

Beyond testing for nonlinearity, Keenan test suggests the working order (p) of the AR process. 

This was determined by minimizing the AIC through the AR function. However, where the 

working order (p) of the AR was known, it can be added in the Keenan test function through the 

order argument. The partial autocorrelation graph can also suggest the working order (p) of the 

AR process. 

According to Cryer and Chan (2008), Keenan’s test was motivated by approximating a nonlinear 

stationary time series by a second-order Volterra expansion. This can be represented in equation 
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Where, µ is the mean level of nonlinear observation yt , with the error terms 𝜀𝑡−𝑢 and 𝜀𝑡−𝑣 . 𝜀𝑡  is a 

sequence of independent and identically distributed with zero-mean random variable. The process 

yt is linear if the double sum of the right-hand side of (25) does not exist 

(i.e. ∑ ∑ 𝜃𝑢𝑣𝜀𝑡−𝑢
∞
𝑢=−∞

∞
𝑣=−∞ 𝜀𝑡−𝑣 = 0) Thus, the researcher was test linearity of the time series by 

testing whether or not the double sum of (25) was zero. The Keenan’s test is equivalent to testing 

if η=0 in the multiple regression model  

ttmtmtt yyyy   

2

110
ˆ .…….………………………………………………[21] 

The Keenan’s test statistic for the null hypothesis of linearity (H0: η =0) was given as; 
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Where, m is lag order of the linear autoregressive process, n is same size considered, RSS: the 

residual sum of squares from the AR(m) process. The null hypothesis of linearity was rejected if 

the p-value associated with F̂  was small (p– value< ). 

3.3.8.1.3. Tsay’s F -test 

Tsay (1989) introduced the Tsay test for detecting nonlinearity in an observable time series after 

improving on the power of the Keenan (1985) test in 1986. Tsay’s (Tsay, 1986) linearity test was 

based on recursive auto regression and destructive term estimators .firstly, the recursive auto 

regressions were established starting from b observation value in return for the p and the relevant 

d values  with AR level, h is max(1, p+1-d ), tê  is the estimated residual and then the model was 

established between the tê  values and  
pttt yyy  ,,,,1 21   .Then, the following test was obtained 

among the inclusions of the model formed with tê  
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In the F test of Tsay,   the hypothesis was tested as; 

H0: linear AR( p) model vs H1: non-linear threshold model 

3.3.8.1.4. Threshold Nonlinearity (Likelihood Ratio) Test 

This helps to handle the weakness of Keenan test in detecting threshold nonlinearity (Chan, 1991; 

and Tong, 1990). Therefore, it becomes important to consider a likelihood ratio test with the 

threshold model as the specific alternative. The hypothesis of threshold nonlinearity test was given 

as follows;  

                   H0: Model is an autoregressive process AR (p) vs  

                   H1: Model is two-regime TAR model of order p and with constant noise variance 

The likelihood ratio test statistic was given by:  
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Where n-p is the effective sample size, )(ˆ
0

2 H   is the maximum likelihood estimator of the noise 

variance from the linear AR (p) fit and )(ˆ
1

2 H  from the TAR fit with threshold searched over 

some finite interval. 

3.3.8.2. Choosing the Threshold Variable and Delay Parameter 

Tsay (1989) describe a method of selecting the threshold variable. In context of SETAR model for 

a given time series y the threshold variable was taken as its own lag value yt−d for some positive 

integer d called delay parameter providing that d ε{1, 2,. . . , d∗}, where d∗ was the upper bound. 

The estimated optimal value of d was chosen in such a way that it provides the maximum F-values. 

Tsay suggests to select an estimate of the delay parameter, such that    

 ),(ˆmaxarg ppd dpFd  …………………………………………………………..………..[25] 

Where, ),(ˆ
pdpF  was given in equation (28) the F-statistic value, the estimate of d depends on p. 

The delay value that gives the highest test of F value for the relevant p-value was selected from 

the threshold variables and it was suspected to be the delayed parameter for the SETAR model. 

3.3.8.3. Model Selection 

The SETAR model has two different AR processes in the two regimes defined by the threshold 

variable dty   and threshold value (τ). One important issue in fitting the SETAR model was to 

select the best subset model. In other words, we need an efficient way to identify values of d and 

subsets of  
)(k

i ,k=1,2 and k=0,…, P(i)  that were important , given the maximum AR orders of P(1)  

and P(2)  for the two regimes. Mike et al. (2003) reveals that identification problem can be highly 

complicated because it involves a very large number of possible models and there were  𝑑0 ×

2𝑃1+𝑃2+2 models to consider, where 𝑑0  the maximum possible delay parameter. The grid search 

method was used to find the potential threshold in the series by minimizing the residual sum of 

square of as follows: 
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)(minargˆ 


Rss ………………………………………………………………..………..[26] 

Where θ is threshold parameter. The model which have the smallest residual sum of squares was 

the most consistent estimate of the delay parameter. Therefore, a threshold value corresponding to 

the smallest sum square of residuals was efficient. The orders of SETAR models were commonly 

identified by considering the Akaike information criterion (AIC). For each possible delay 

parameter, Tong and Lim (1980) use the AIC to estimate threshold value and find suitable 

autoregressive orders in both regimes of the threshold model. 

)1(2)1(2)ˆln()ˆln(),( 21

2

22

2

1121  ppnnppAIC  …….…….………….….……[27] 

Where, 2,1, jn j is the number of observations in the jth regimes and 

2,1,ˆ 2 jj  is the variance of the residuals in the jth regimes 
1p and 

2p   are the selected lags 

order in regime 1 and 2 respectively for which the information criterion is minimized. 

3.3.8.4. Parametric Estimation 

After the desired model was selected, the next step is to estimate the parameters of the selected 

model. The parameters were estimated using a sequential conditional least square method. 

According to Franses and van Dijk (2000), by using this method the resulting estimates were 

equivalent to maximum likelihood estimates under the additional assumption that the residuals are 

normally distributed. 

3.3.8.5. Model Diagnostics 

After carefully selecting tentative models to be used for forecasting, the residuals of the models 

were checked. This step is paramount to making any meaningful inferences with the models. So, 

plot of residual versus time, test of normality and Ljung-Box test of serial correlation were 

employed in this study. 

3.3.8.5.1. Time Plot of the Residuals  

Time plot of the standardized residuals should not show any structure. It must indicate no trend in 

the residuals and no changing variance across time. 
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3.3.8.5.2. Normality of the residuals 

To investigate whether or not the residuals of the fitted model were normally distributed, the 

Jarque-Bera test and Q-Q plot were applied. Q-Q plot was a normal probability plot of a plot based 

on estimated quantiles. The normal Q-Q plots provide a quick way to visually inspect to what 

extent the pattern of data follows a normal distribution. 

3.3.8.5.4. Test for Serial Correlation 

Ljung and Box (1978), described this test as a diagnostic tool used to check for the presence or 

absence of serial correlations in the residuals of a fitted model. The test procedure was given as 

follows; The hypothesis to be tested is; 

          H0 : Residuals are uncorrelated up to order k 

          H1: Residuals are correlated up to order k 

The test statistic is  
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…….……………………………………………………..……………[28] 

Where, 
2

ˆ
d represents residual autocorrelations of the series at lag k, k is the number lags being 

tested, n is the number of residuals. The model was considered adequate when the p-value 

associated with Qk is large; otherwise the whole estimation process has to be repeated again in 

order to get the most adequate model. 

3.3.8.6. Forecasting From SETAR Model 

The important aim of considering nonlinear type of model such as SETAR as compare to the linear 

counterpart was to adequately describe the dynamic behavior of the observable series under 

consideration and also to produce adequate forecast values .The optimal one step-ahead forecast 

from the origin is given by: 

   tttttt
xFEyEy  

);( 111



…….……………………………………………………[29] 
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Where 1ty


 is the forecast value for the time (t+1), and t  is the history of the time series up to 

and including the observation at time t. );( txF  is the nonlinear function that represent the SETAR 

model. The next optimal step-ahead forecast is given by: 

   tttttt
xFEyEy  

);( 222



….…………………………………………..……..…[30] 

In general, the linear conditional expectation operator E cannot be interchanged with the nonlinear 

operator F, that is 

   .(.) EFFE  …….………………………………………………………….………………[31] 

Put differently, the expected value of a nonlinear function is not equal to the function evaluated at 

the expected value of its argument. Hence, 

        ;;; 11 thttttt yFyEFyFE
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…….……………………..…………………[32] 

The optimal h-step-ahead forecast can be obtained as 

  );( 1 
 htthttht

xFyEy


…….…………………………………….…...…………...…[33] 

3.3.8.7. Comparison of forecasting performance between SARIMA and SETAR model 

A good model for forecasting can be described as a model that produces minimum forecast errors 

as compare to other competing models. And to choose a final model for forecasting the accuracy 

of the model should be higher than that of other competing model. The accuracy for each model 

was checked to determine how the model performed in terms of both in-sample and out-of-sample 

forecast. In this study, the accuracy of the models was compared using   Mean Error (ME), Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE) .A model with a minimum of ME, 

MAE and RMSE was considered to be the better for forecasting. In mathematical notation it was 

defined as follows; 
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Where ty  is the actual observation, ty


is the forecasted value and T is the sample size. 

3.3.8.7.1. Diebold-Mariano (DM) test 

A test suggested by Diebold and Mariano (1995) was also used to compare the forecasting 

performance of models.  The test checks for the existence of significant differences between the 

forecasting accuracy of two models. The DM test has the null hypothesis of no difference between 

the forecast accuracy of the two models. 

 In competing forecasts 𝑦
(𝑖)+

ℎ

𝑡

 from two models 𝑖 = 1,2, the corresponding forecast errors was  

computed as  𝜀
(𝑖)+

ℎ

𝑡

= 𝑦𝑡+ℎ − 𝑦(𝑖) 𝑡+ℎ
𝑡

 the h - steps forecasts were computed for 𝑡 = 𝑡1, … , 𝑇  

producing   a series of forecast errors {  𝜀
(𝑖)+

ℎ

𝑡

}
𝑡1

𝑇

   which was also be serially correlated because of 

the overlapping data used to compute the forecasts. 

The accuracy of each forecast is measured using a loss function 𝐿(𝑦𝑡+ℎ , 𝑦(𝑖)𝑡+ℎ
𝑡

) = 𝐿(𝜀
(𝑖)𝑡++

ℎ

𝑡

) 

which was in most cases taken as the squared errors or absolute errors. The Diebold -Mariano 

test with the null hypothesis of equal forecast accuracy between the models has the following 

loss function and test statistic: 

Loss function: 𝑑𝑡 = 𝐿 (𝜀(1)𝑡+ℎ
𝑡

) − 𝐿 (𝜀
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)………………………………………………... [37] 
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Alternative hypothesis: 𝐸 [𝐿 (𝜀
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The Diebold-Mariano test statistic:
2/1)/( TLRV

d
S

d

 …………….…………………...…..… [40] 

Where 
T

d

d

T

i

i
 0  and ),cov( jttd

ddLRV   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

4. Result and discussion  

4.1. Data summary 

The data employed in this study comprise of 180 total monthly aggregated observations of road 

traffic accidents of Addis Ababa spanning from January 2004 to December 2018.The data was 

divided into two parts, one was for model estimation and another was for evaluation of forecasting 

road traffic accident .The first part which is called in sample data set with 156 observations varying 

from the total accident of January 2004 to December 2016 was used to estimate the models. 

Meanwhile, the second part which is called out-sample data set with 24 observations varies from 

January 2017 to December 2018 for evaluation of forecasting purpose. The below Table 4.1 was 

the summary of data description.  

          Table 4.1: summary of road traffic accident data  

Skewness Kurtosis Jarque-Bera (p-value) 

0.768 -0.1254 0.0004 

The above Table 4.1 shows that, the skweness is 0.0768 which implies that the distribution has a 

long right tail than normal distribution (positively skewed). Hence, the kurtosis is -0.125 which is 

smaller than normal distribution of kurtosis of 3 and it reveals that the data was platykurtic in 

nature. The Jarque-Bera test of normality was used to confirm the asymmetric nature of the road 

traffic accident. At 5% significance level, the test confirmed that the data was not normally 

distributed as its p-value (0.0004). 
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4.2. Features and Stationarity of Accident Series    

 

                                          Figure 4.1: Plot of road traffic accident data 

The above Figure 4.1, reveals both increasing and decreasing pattern in road traffic accident 

overtime. The plot shows the existence of seasonal fluctuations.  This series varies randomly over 

time and there was a general trend and seasonal fluctuations. From Figure 4.1, it is evident that 

unconditional mean and variance were changing over time. The seasonal fluctuations were roughly 

constant in size over time and do not seem to depend on the level of the time series. Since the 

random fluctuations in the data were roughly constant in size over time, time series was described 

using an additive model. 
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                   Figure 4.2: Decomposition of time series data into trend, seasonal and random. 

The above Figure 4.2 shows, the original time series (top), the estimated trend component (second 

from top), the estimated seasonal component (third from top), and the estimated random 

component (bottom). Here, it was clearly observed that the estimated trend component shows a 

constant movement from 2004 to 2006 and steady decrease from 2007 to 2010 then showing 

indications of a rising trend in from 2010 to 2016 G.C. It appears that road traffic accidents in the 

Addis Ababa were highly seasonal. There was a gradual increase at the start of every year and 

minor drop early and midway followed by a sharp drop at the end of each year. Moreover, the 

seasonal subseries plot of monthly road traffic accident was shown on the Figure 4.3 below. 
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                           Figure 4.3: Seasonal subseries plot of road traffic accident in Addis Ababa. 

In the above Figure 4.3, the horizontal lines indicate the mean of traffic accident for each months 

during the year. This form of plot enables the underlying seasonal pattern to be seen clearly, and 

also shows the changes in seasonality over time .It was shown that during a period, the highest 

values were observed in the month of May, June, July and August and lower in other months. 

Hence, from the above seasonal subseries plot, most of road traffic accident occurs during the 

months of June, July and August, the rainy season in Ethiopia. So, there was a seasonal effect on 

the number of accident, which in the raining seasons the trend increased as compared to other 

months. 
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4.3. ACF and PACF plot of road traffic accident data  

To identify the stationarity feature of the series, analysis of ACF and PACF plots were a useful 

and very informative method. It is known that for a stationary time series, the ACF drops to zero 

relatively quickly, while the ACF of non-stationary time series decreases slowly. 

 

                        Figure 4.4: ACF and PACF plot of road traffic accident data of Addis Ababa 

The above Figure 4.4 demonstrates, upside down progress with clear evidence of regularly 

repeating patterns after every 12 lags. This reveals that non stationary of the series, with the 

presence of seasonality and trend components. Also, it show that, the time series was non-

stationary and requires some preprocessing steps to make it stationary. At the beginning, the log 

transformation was performed. This was used to stabilize the variance of the series, but it wasn't 

enough to make it stationary (Robert Nau, 2017).  

To stabilize the mean of the series, seasonal and non-seasonal differencing were performed. The 

non-seasonal differencing was achieved to eliminate the trend from the series, but there were still 

remained seasonal patterns in the plot of ACF, repeating after every 12 lags. However, the simple 

non-seasonal differencing cannot deal with strong seasonality effect. Therefore, after one non-

seasonal differencing, seasonal differencing with lag = 12 was performed. Hence, a seasonal 

ARIMA process was a form of SARIMA (p, 1, q) (P, 1, Q) 12. The estimated order of the model 
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parameters p, q, P and Q were identified by visual inspection of ACF and PACF of the stationary 

process. 

Figure 4.5: The ACF and PACF plot of monthly road traffic accident data after log 

transformation, one non-seasonal and seasonal differencing with lag=12. 

The ACF and PACF plots of the preprocessed time series data demonstrate signs of stationarity. 

This was also confirmed by the ADF and PP test. The results of the two tests were shown in below 

Table 4.2 

Table 4.2: The ADF and PP test after taking the first and seasonal difference of log original data 

Test P-value 

ADF 0.01 

PP 0.01 

 

From the above Table 4.2, the p-value of both ADF and PP test were 0.01, which is less than 0.05, 

suggesting stationarity and no other differencing was needed. 
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4.4. Seasonal ARIMA Model 

In this section the researcher fit SARIMA model and forecast monthly road traffic accident of 

Addis Ababa. In the modeling cycle, the researcher was illustrate the steps in the methodology 

though model identification, estimation, diagnostic checking, forecasting and measuring the 

accuracy of the forecast were adopted. 

4.4.1. Model Identification 

Identification of the model was concerned with deciding the appropriate values of (p,d,q) (P,D,Q). 

It was done by ACF and PACF plots. The ACF helps in choosing the appropriate values for 

ordering of moving average terms (MA) and PACF for those autoregressive terms (AR). The 

seasonal part of the time series was handed separately from the non-seasonal trend.  It means that 

identifying P, D, Q for the seasonal component and p, d, q for the non-seasonal part.   Notice that 

capital letters are used to denote the seasonal autoregressive (P), differencing (D), and moving 

average (Q) orders.    

The ACF and PACF plots were employed to get a preliminary model from Seasonal ARIMA 

models. The ACF and PACF  plot of  monthly road traffic accident data after log transformation, 

one non-seasonal differencing and one seasonal differencing with lag=12 was plotted in the above 

Figures 4.5. To determine the non-seasonal AR terms, we look at the PACF, which shows clear 

spikes at lags 1, 2. Thus, the non-seasonal AR terms were determined to be of order 2. There were 

two spikes at lags 1, 5 in ACF, so we have two non-seasonal MA terms. Now for the seasonal part 

of the model, we have to look at lag 12, 24, 36, and 48 for both ACF and PACF plot. For both 

ACF and PACF plot, there were two significant spikes at lags 12 and 24; thus, the order of the 

seasonal AR and MA was two. 

4.4.2. Model Selection 

As discussed in the methodology part, a model with small AIC and BIC is preferable. Based on 

these selection criteria, SARIMA(1,1,1)(1,1,2)12 is found to be the best model that fits the data 

and all suggested SARIMA models were  displayed in Table A1(appendix).Hence, as described in 

equation (9) methodology part. This model have p=1,q=1,d=1 and P=1,D=1,Q=2,S=12.For this 

the general model can be written as : 
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4.4.3. Model estimation 

Model estimation was the process of estimating the model parameters after selecting an appropriate 

model. From the above model selection, the model that have the lowest value of AIC and BIC was 

SARIMA(1,1,1)(1,1,2)12. The maximum likelihood estimation method was used to estimate the 

parameters of the model. The results of estimation are given in Table 4.3 below: 

                                           Table 4.3: Maximum Likelihood Estimates for parameters 

Coefficients   Estimates Standard error p-value 

ar1 0.467 0.102792 <0.01 

ma1 -0.882 0.049396 <0.01 

sar1 -0.642 0.260291 0.01368 

sma1 0.321 0.265771 0.22687 

sma2 -0.438 0.110747 <0.01 

As described on the above equation 4.1, the corresponding parameter values from the Table 4.3 

above were; 467.01  , 641.01  , 882.01  , 321.01  , 438.02  .and, the final fitted 

model was written as follows: 

tt wBBBXBBBB )4358.01()321.01)(882.01()1)(1)(641.01)(467.01( 241212  ….[4.2] 

4.4.4. Diagnostic Checking of SARIMA (1, 1, 1)(1,1,2)12 Model 

Model diagnostics were concerned with assessing the quality of the model that was specified and 

estimated in model estimation. It was concerned with testing the goodness of fit of a model. In 

time series modelling, the selection of model to the data was directly related to whether residual 

analysis was performed well. Accordingly, Ljung-Box test and ACF plot of residuals were used to 

check the adequacy of the model. 
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4.4.4.1. Ljung-Box Test 

The Ljung–Box test was used to check whether or not the residuals from an SARIMA model 

appear to be white noise. The shown in below Table 4.4, the p-value was higher than 0.05. This 

leads to the conclusion that we cannot reject the null hypothesis that the autocorrelation is zero. 

Therefore, the selected model was an appropriate one for forecasting monthly road traffic accident 

of Addis Ababa. 

                              Table 4.4: Box-Pierce test for SARIMA (1,1,1)(1,1,2)12 model 

Box-Ljung test  X-squared     Df p-value 

0.0020134 1 0.9642 

 

 

           Figure 4.6: Residual graphics and Ljung-Box p-values for SARIMA(1,1,1)(1,1,2)12  model 

The top box of Figure 4.6 contains the time plot of the standardized residuals of the model .It 

shows that no obvious pattern and looks like an independent identical distribution sequence with 
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mean zero.  There was no trend in the residuals and no changing variance across time. The middle 

part is the ACF plot of the residuals. The plotted ACF of residuals versus lag lies within the 

confidence interval and the residuals shows no significant autocorrelations except at lag 1 which 

was a good result. The bottom plot displays the p-values of the Ljung-Box test for various values 

of horizontal line and the p-values for the Ljung-Box test are above 0.05% for all lag orders 

showing there is no significant departure from white noise for the residuals. The Ljung-Box p-

value plot also suggests that SARIMA (1, 1,1)(1,1,2)12 capture the data well enough. 
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4.4.5. Forecasting of SARIMA (1, 1, 1) (1, 1, 2)12 model     

From below Table 4.5, the out-of-sample forecast was performed from January 2017 to December 

2018 which consists 24 observations. The out-of-sample forecast graph was also displayed in 

Figure A1 (Appendix) and it show that increasing trend of monthly road traffic accident of Addis 

Ababa over the forecast period from January 2017 to December 2018. 

Table 4.5: The actual and fitted values of RTA (January, 2017-December, 2018) 

Month Out of sample  

observed value 

Forecast  

Value 

Month Out of sample 

observed value 

Forecast  

Value 

Jan 2017 777 907 Jan 2018 1575 1069 

Feb 2017 948 837 Feb 2018 1630 980 

Mar 2017 1551 1575 Mar 2018 2146 1846 

Apr 2017 2768 2874 Apr 2018 3236 3724 

May 2017 3124 3192 May 2018 3347 4068 

Jun 2017 3165 3221 Jun 2018 3196 4016 

Jul 2017 3089 3096 Jul 2018 2973 3823 

Aug 2017 3280 3364 Aug 2018 2819 4115 

Sep 2017 3051 2829 Sep 2018 2607 3502 

Oct 2017 2382 2353 Oct 2018 2142 2825 

Nov 2017 1677 1450 Nov 2018 1605 1897 

Dec 2017 1125 901 Dec 2018 1085 1165 
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4.5. SETAR Model 

4.5.1. Detection of nonlinearity graphically 

In case of SARIMA model, monthly aggregated road traffic accident data were one non-seasonal 

and seasonal differenced with lag=12 after log transformation. This was done to obtain stationarity 

feature of linear SARIMA model. However, SETAR model can capture nonlinearity in data. 

Therefore, the data was not seasonally differenced for SETAR model. Hence, nonlinearity was 

checked by plotting the scatter diagram of yt against yt–1 or   yt−2  or yt−3 and so on. The relationships 

between the first differenced log of monthly road traffic accident data and its lags were captured 

in Figure A2 (Appendix) and it shows that a fitted nonparametric regression lines on each scatter 

diagram. As shown in Figure A2 (In the appendix), the scatter diagrams, especially lag 1 up to 8 

have holes in the center. This suggests that the process was nonlinear. In addition, the plots of the 

non-parametric regression function estimates appear to be strongly nonlinear for lags 1 to 8. This 

supports the first deference of logarithm of Addis Ababa monthly road traffic accident data were 

a nonlinear behavior. Additionally, nonlinearity feature of the data could be checked using the 

formal tests. 

4.5.2. Formal test of nonlinearity 

In modeling road traffic accident with the SETAR model, the data should first satisfy the condition 

of nonlinearity. So, the nonlinearity was checked in this series by specifying the order of the linear 

AR(p) model. The order of the linear AR(p) was chosen as the AR(p) model based on the 

maximum lag order with the least value of AIC. The summary of the linearity tests were given in 

the following Table 4.6; 
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              Table 4.6: Linearity test for first differenced log road traffic accident data 

Test Test statistic  P- value Order Decision 

Keenan Test 10.60241 0.00144 12 Reject Linearity 

Tsay Test 3.296 0.0000 12 No threshold nonlinearity rejected 

Likelihood 

Ratio Test 

3.42983 0.00025  12  The model is  SETAR  with two regimes 

From the above Table 4.6, Keenan and Tsay tests suggest that the working order, p could be 12 

using Akaki Information Criterion. The Keenan test statistic (10.60241) was significant with p-

value (0.00144), and Tsay test statistic (3.296) was significant with p-value (0.000). As a result, 

the null hypothesis was rejected with conclusion that first differenced log road traffic accident data 

follows a nonlinear process. In addition, the p-value of likelihood ratio test is 0.0025. So, we reject 

the null hypothesis that the time series follows some AR process and concluded that data follows 

a two-regime SETAR model of order p with constant noise variance. 

4.5.3. Selection of the lag order and nonlinearity test 

 

Figure 4.7: ACF and PACF of first order differenced logarithm of monthly road traffic accident 

data of Addis Ababa 
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The above Figure 4.7 reveals that, the autocorrelation function and partial autocorrelation function 

were the indication of linear dependence existing between the lags. The structure of the lags 

indicate the presence of a strong and persistent cycle in the data. From the above Figure 4.7, there 

was significant large spike at seasonal lags (12, 24, 36, etc.) revealing that, there was seasonality 

in the first order differenced logarithm of monthly road traffic accident data of Addis Ababa. The 

researcher notice a non-seasonal lag cut at lag1 and a seasonal lag cut at lag12 suggesting an AR 

parameter of order 12 (p=12).This also confirmed by Keenan and Tsay tests from the  Table 4.6. 

This suggests that, an AR model with each individual lag order from 1 to 12 should be tested using 

Tsay’s F test for threshold nonlinearity.  

                                                           Table 4.7:  Nonlinearity test (p=12) 

Delay (d) F-value P-value 

1 3.6002 0.0001* 

2 3.3464 0.0003* 

3 3.3005 0.0003* 

4 1.3898 0.1769 

5 1.1934 0.2947 

6 1.6188 0.0917 

7 2.6682 0.0029* 

8 2.5099 0.0050* 

9 2.4310 0.0066* 

10 1.5563 0.1103 

11 2.4720 0.00l57* 

12 1.8786 0.0411* 
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The above Table 4.7 shows that, all tests suggest nonlinearity for  d=1,2,3,7,8,9,11 and 12 at the 

5% level .However, The  p-values of delayed  4, 5,6 and 10  were  greater than 0.05. That means, 

we do not reject the null hypothesis of no threshold nonlinearity for all chosen delay parameter. 

Then, the researcher tried lower the lag order (p) to 8 by avoiding a non-significant delayed 

parameters as adopted in (Zivot, E. and Wang, J., 2005). Subsequently, nonlinearity for lag order 

(p=8) was tested. The summary of the result was given in the following Table 4.8. 

              Table 4.8:  Nonlinearity test when p=8 

Delay(d) 1 2 3 4 5 6 7                  8 

F-value 5.2409 8.5895 4.8626 9.4523 10.7204 5.3914 4.1018 4.3857 

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.0001 0.0001 

The above Table 4.8 show that, the tests for all delays (d) have a p-values less than 0.05. The null 

hypothesis of no threshold nonlinearity was actually rejected for all delayed parameters. The 

optional argument p specifies the AR order to use in the arranged auto regression, and the optional 

argument d was used to select the delay parameters from 1 to 8. The output  was give the F statistics 

and their corresponding p-values for all chosen values of delayed parameter (d), and shows that 

the evidence for threshold nonlinearity was strong with the AR(8) specification . 

4.5.4. Selection of the delayed parameter  

For a given AR order p, Tsay suggests to select an estimate of the delay parameter, such that 

),(ˆmaxarg ppd dpFd  .Where, ),(ˆ
pdpF was the F-statistic value, the estimate of d depends on 

p. From above Table 4.9, when d=1, F=5.2409, when d=2, F=8.5895, when d=3, F=4.8626, when 

d=4, F=9.4523, when d=5, F=10.7204, when d=6, F=5.3914 , when d=7, F=4.1018 , when d=8, 

F= 4.3857 .The largest test statistic value occurred at  d = 5. Consequently, 5 is suspected to be the 

delayed parameter for the SETAR model.  
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4.5.5. Model Selection  

After confirming that the data were threshold nonlinear with 5 delayed parameter, the specific 

SETAR model that fit the data was identified. This was done by determining the autoregressive 

lag order (p) in each regime and the threshold variable dty   .Where, d represent the delayed 

parameter. The researcher choose the model with lag order (p) for both regimes and threshold 

variable with the minimal AIC by performing a grid search on all possible combinations of SETAR 

models. The selected model using grid search from all possible models combinations were 

illustrated in Table 4.10. 

Thus, from below Table 4.9, the grid search using delay (d=5) with order of lower regime 8 and 

order of upper regime 8 with -0.2564485 threshold value have the smallest AIC value. 

Accordingly, SETAR (2, 8, 8) model with no serial correlation is found to be the selected model 

that fits road traffic accident data. 

     Table 4.9: Grid search for SETAR model using d=5 

                                          Grid search for the model using  (p=8) 

Threshold 

delayed 

(d) 

Rank Order of lower 

regime 

order of upper 

regime 

Threshold  

Value 

AIC Serial 

correlation 

 

d=5 

1 8 8 -0.2564485 -396.9006 No 

2 8 8 -0.2674560 -395.6086 No 

3 8 8 -0.2244672 -394.1635 No 

4 5 8 -0.2718599 -393.6719 Yes 
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4.5.6. Model Estimation 

Table 4.10: Maximum likelihood estimates of SETAR (2, 8, 8) model 

              Low Regime                    High Regime 

Coefficient Estimate Std 

Error 

t- value p-value Estimate Std Error t- value p-value 

Constant 0.220 0.207 1.059 0.291 0.136 0.033 4.141 0.000 

1  -0.964 0.206 -4.682 0.000 0.387 0.086 4.490 0.000 

2  -0.887 0.143 -6.189 0.000  0.169 0.098 1.730 0.085 

3  -1.122 0.175 -6.399 0.000 -0.211 0.089 -2.364 0.019 

4  -0.771 0.159 -4.845 0.000 -0.254 0.077 -3.276 0.001 

5  -0.692 0.196 -3.522 0.000 -0.208 0.071 -2.892 0.004 

6  -0.806 0.376 -2.143 0.033 -0.310 0.075 -4.107 0.000 

7  -0.986 0.378 -2.607 0.010 -0.135 0.0621 -2.189 0.030 

8  -1.351 0.277 -4.8685 0.000 -0.391 0.0619 -6.317 0.000 

 
        Threshold value = -0.2564 

Proportion 25.17% 74.83% 

As indicated in Table 4.10, the numbers of data falling in lower and upper regimes are 25.17% and 

74.83% respectively.  Hence, the final SETAR (2, 8, 8) model using the estimated value of above 

Table 4.11 was written as follows; 
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Figure A3 (in appendix) depicts the nature of the regimes. And, it reveals which data value falls in 

which regime in the first differenced logarithm of monthly road traffic accident data. Data falling 

in the lower regime was drawn as black line while high regime was drawn by red line .The 

estimated threshold was -0.2564 as estimated in the above Table 4.11.This threshold value was  

not close to the minimum or the maximum observation . It was the break point of the data. 

4.5.8. Forecasting of SETAR (2, 8, 8) Model 

 The below Table 4.11 show that the out-of-sample forecasted value from January 2017 to 

December 2018 which consists 24 observations. 

  Table 4.11: Actual and forecasted values of the series using SETAR (2, 8,8) 

Month Out of sample  

observed value 

Forecast  

Value 

Month Out of sample 

observed value 

Forecast  

Value 

Jan 2017 777 578 Jan 2018 1575 808 

Feb 2017 948 1003 Feb 2018 1630 1254 

Mar 2017 1551 1347 Mar 2018 2146 1688 

Apr 2017 2768 2489 Apr 2018 3236 2946 

May 2017 3124 4703 May 2018 3347 3725 

Jun 2017 3165 4203 Jun 2018 3196 3621 

Jul 2017 3089 4285 Jul 2018 2973 3335 

Aug 2017 3280 2704 Aug 2018 2819 2604 

Sep 2017 3051 2456 Sep 2018 2607 2509 

Oct 2017 2382 1928 Oct 2018 2142 1845 

Nov 2017 1677 1214 Nov 2018 1605 1375 

Dec 2017 1125 1000 Dec 2018 1085 1194 
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4.5.9. Model diagnosis 

After carefully selecting tentative models to be used for forecasting, the researcher check the 

residuals of the models to ensure that, the model satisfy the assumptions. 

4.5.9.1. Time plot of the SETAR (2,8,8) model residuals  

 

 

                                    Figure 4.8: Time plot of the SETAR (2,8,8) model residuals. 

As shown in above Figure 4.8, the standardized residuals plot shows no obvious pattern and looks 

like an identically and independently distributed of mean zero.   

4.5.9.2. Test of Normality  

To investigate whether or not the residuals of the fitted model are normally distributed, the Jarque-

Bera test was applied. The test have a null hypothesis that the residual follows a normal distribution 

and therefore a rejection of the null hypothesis suggests that the residual does not follow a normal 

distribution. 

                         Table 4.12: Jarque Bera test for SETAR (2,8,8) model residuals 

 

Jarque Bera Test 

X-squared     Df p-value 

1.1787 2 0.5547 

As shown in above Table 4.12, the p-value for the test was 0.5547 which was greater than 0.05. 

So, we do not reject the null hypothesis. This test was provide evidence of normality for the 

standardized residuals. In addition, Figure A4 (Appendix) show that the histogram and QQ plot of 

SETAR (2,8,8) model residuals. The histogram features provide strong indications of the proper 
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distributional of the model for the data. Also, the QQ-normal plot seem to follow a straight line 

especially in the extreme values.  

4.5.9.3. Test for Serial Correlation 

Ljung and Box (1978), described this test as a diagnostic tool used to check for the presence or 

absence of serial correlations in the residuals of a fitted model. 

                                   Table 4.13: Box-Pierce test for SETAR (2,8,8) model 

Box-Ljung 

test  

X-squared     Df p-value 

0.051991 1 0.8196 

 

The above Table 4.13 shows that the p-value was higher than 0.05. This leads to the conclusion 

that we don’t reject the null hypothesis of no autocorrelation. Therefore, the selected model is an 

appropriate one for forecasting road traffic accident of Addis Ababa. 

4.6. Comparison between SARIMA and SETAR models 

The researcher compare between two methodologies for building time series models and using the 

models for forecasting. Error measurement play a critical role in tracking forecast accuracy, and 

benchmarking forecasting process .The forecasting performance of SARIMA(1,1,1)(1,1,2)12 and 

SETAR (2, 8, 8) model were compared based on ME, MAE,RMSE and  Diebold and Marino test  

Table 4.14: Comparison of forecasting accuracy between SETAR (2, 8, 8) and SARIMA (1, 1, 

1)(1,1,2)12 
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Forecast Performance SETAR (2, 8, 8) SARIMA(1,1,1)(1,1,2)12 

ME 0.0008 0.0057 

MAE 0.090 0.1018 

RMSE 0.113 0.1618 

                                           Diebold and Marino test 

Model DM-test statistics p-value 

SARIMA vs  SETAR  2.7236 0.003599 

From above Table 4.14, the two-tailed Diebold and Marino test was performed to examine whether 

there was any predictive accuracy difference between the models. The p-value of Diebold and 

Marino test was 0.003599 which was less than (p=0.05) and it reveals that there were enough 

evidence to reject the null hypothesis of equal predictive accuracy of SETAR and SARIMA 

models. Also, the  result of ME, MAE and RMSE of SETAR (2, 8, 8) model was relatively 

minimum with compared to  SARIMA (1,1,1)(1,1,2)12 model. Since, A model with a minimum of 

forecasting error was considered to be the better, SETAR (2, 8, 8) model performs better than 

SARIMA (1, 1,1)(1,1,2)12 model in forecasting  road traffic accident of Addis Ababa. 

4.7. Discussion 

This study emphasized on application of SARIMA and SETAR models on road traffic accident of 

Addis Ababa. Several studies also applied time series model to predict road traffic accidents (Eze 

et al.,2018; Foroutaghe et al.,2019;Nanga,2016).The finding of this research indicated that the 

trend of road traffic accident showed a constant movement from 2004 to 2006 , steady decrease 

from 2007 to 2010 and then showing indications of a rising trend from 2010 to 2016 G.C. Despite 

of this finding, the pattern on monthly reported road accidents in Nigeria reveals that, a constant 

movement from 2004 to 2008 and increased abnormally in 2010 and then downward movement 

as the year progresses. Accidents can occur at any time and at any place. Hence, how do road 



50 
 

traffic accidents occur was varies from time to time and from place to place depending on the 

intensity of the interaction and places of importance. 

This study followed 12-monthly seasonal pattern of road traffic accident of Addis Ababa and the 

accident was most frequently occurred in rainy season of Ethiopia (June, July and August). In 

agreement with this study, Eke et al. (2000) collected road traffic accident data from Port Harcourt 

university of Nigeria from January 1986 to December 1995 and found that, road traffic accident 

most frequently occurs during the rainy seasons (June, July and August). Moreover, Parshant et 

al. (2018) studied the impact of rain on road transport of India and the study showed that, high 

number of road traffic accident occurs in a rainy season due to widening of potholes and cracks. 

Beside of comparative analysis of SARIMA and SETAR models, the result obtained from this 

study reveals that SETAR (2, 8, 8) model performs better than SARIMA(1,1,1)(1,1,2)12 model in 

forecasting road traffic accident of Addis Ababa. And, this was consistent with the study of  

Nafisah (2018) on comparative analysis of forecast performance between SARIMA and SETAR 

models using macroeconomic variables in Ghana.  Keenan and Tsay-F tests showed the datasets 

were threshold nonlinear with two regime SETAR model. Accordingly, the performance between 

the SARIMA and SETAR models were compared for inflation by employing forecast measures 

RMSE and MAE and the nonlinear SETAR model outperformed than linear SARIMA model for 

inflation rate of Ghana. 
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5. Conclusion and recommendation 

5.1. Conclusion 

This study examined statistical analysis of road traffic accident in Addis Ababa using SARIMA 

and SETAR models. The estimated trend component showed that, a constant movement from 2004 

to 2006, steady decrease from 2007 to 2010 and then showing indications of a rising trend from 

2010 to 2016 G.C. In addition, road traffic accident most frequently occurs during the rainy seasons 

(June, July and August) of Ethiopia. In the case of SARIMA model, SARIMA (1, 1,1)(1,1,2) 12 

emerged  as the appropriate model after examining different competitive models. Moreover, the 

out of sample forecasted result indicates that, an increasing trend of road traffic accident in Addis 

Ababa. 

In the nonlinear SETAR modelling, graphical method, Keenan test, Tsay test and likelihood ratio 

test were used check non linearity features of the data. A delayed parameter was selected as (d=5) 

with eight order of lower and upper regime using grid search method. Henceforth, SETAR (2,8,8) 

was identified amongst the tentative models and out of sample forecasts were made for 24 months. 

Finally, It was shown that, SETAR (2, 8, 8) model performs better than SARIMA (1,1,1)(1,1,2)12 

model in forecasting  road traffic accident of Addis Ababa. 
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5.2. Recommendation 

 Addis Ababa police traffic commission should modernize road traffic accidents data 

recording system in detailed and improved reporting template. It is more desirable, if the 

analyst acquires data published on a monthly basis. 

 This study showed the increasing pattern of road traffic accident over the forecasted period 

and recommends policy maker to pay more attention on preventive measures for road 

traffic accidents. 

 In this study, the researcher focused on the application of SARIMA and SETAR models in 

forecasting road traffic accident of Addis Ababa. Hence, further studies may employ 

Artificial Neural Network (ANN) and Multinomial Logit model to identify the impact of 

climate change on RTAs using different sets of rainfall data.  
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Appendix 

 

 Figure A1: out-of-sample forecast graph of SARIMA (1, 1, 1)(1,1,2)12 model for the road traffic 

accident Addis Ababa. 
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Figure A2: Lag plots of   log of monthly road traffic accident of Addis Ababa 
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Figure A3:  Data falls in the lower and upper regimes of a fitted SETAR (2,8,8)  model 

 

 

Figure A4: Histogram and Q-Q plot of standardized SETAR (2,8,8) residuals 
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Table A1: Comparison of SARIMA model 

Model type 

 

AIC BIC  Correl

ation 

Model type AIC BIC  corre

lation 

SARIMA(0,1,1)(0,1,1)12 -73.65 -64.76 NO SARIMA(2,1,1)(0,1,1)12 -80.10 -65.28 NO 

SARIMA(0,1,1)(0,1,2)12 -75.64 -63.79 NO SARIMA(2,1,1)(0,1,2)12 -81.86 -64.08 NO 

SARIMA(0,1,1)(1,1,0)12 -70.71 -61.82 NO SARIMA(2,1,1)(1,1,0)12 -74.27 -59.46 NO 

SARIMA(0,1,1)(2,1,0)12 -75.36 -63.51 NO SARIMA(2,1,1)(2,1,0)12 -80.51 -62.73 NO 

SARIMA(0,1,1)(2,1,1)12 -73.54 -58.72 NO SARIMA(2,1,1)(2,1,1)12 -83.32 -62.58 NO 

SARIMA(0,1,1)(2,1,2)12 -73.48 -55.70 NO SARIMA(2,1,1)(2,1,2)12 -78.18 -60.40 NO 

SARIMA(0,1,1)(1,1,1)12 -74.25 -62.40 NO SARIMA(2,1,1)(1,1,1)12 -79.86 -59.12 NO 

SARIMA(0,1,1)(1,1,2)12 -75.41 -60.59 NO SARIMA(2,1,1)(1,1,2)12 -73.22 -55.44 NO 

SARIMA(0,1,2)(0,1,1)12 -80.88 -66.06 NO SARIMA(2,1,2)(0,1,1)12 -80.16 -59.42 NO 

SARIMA(0,1,2)(0,1,2)12 -81.90 -67.08 NO SARIMA(2,1,2)(0,1,2)12 -78.53 -54.83 NO 

SARIMA(0,1,2)(1,1,0)12 -75.82 -63.97 NO SARIMA(2,1,2)(1,1,0)12 -79.37 -52.71 NO 

SARIMA(0,1,2)(2,1,0)12 -82.18 -67.37 NO SARIMA(2,1,2)(2,1,0)12 -78.55 -57.81 NO 

SARIMA(0,1,2)(2,1,1)12 -80.54 -62.76 NO SARIMA(2,1,2)(2,1,1)12 -81.32 -57.61 NO 

SARIMA(0,1,2)(2,1,2)12 -80.73 -59.99 NO SARIMA(2,1,2)(2,1,2)12 -76.27 -64.41 NO 

SARIMA(0,1,2)(1,1,1)12 -80.00 -66.06 NO SARIMA(2,1,2)(1,1,1)12 -82.43 -64.65 NO 

SARIMA(0,1,2)(1,1,2)12 -82.72 -64.94 NO SARIMA(2,1,2)(1,1,2)12 -76.27 -64.41 NO 

SARIMA(1,1,0)(0,1,1)12 -63.60 -54.72 NO SARIMA(1,1,1)(0,1,1)12 -82.43 -64.05 NO 

SARIMA(1,1,0)(0,1,2)12 -66.31 -54.46 NO SARIMA(1,1,1)(0,1,2)12 -82.43 -62.35 NO 

SARIMA(1,1,0)(1,1,0)12 -55.42 -46.53 NO SARIMA(1,1,1)(1,1,0)12 -83.31 -62.57 NO 

SARIMA(1,1,0)(2,1,0)12 -67.02 -55.17 NO SARIMA(1,1,1)(2,1,0)12 -82.43 -61.23 NO 

SARIMA(1,1,0)(2,1,1)12 -65.09 -50.27 NO SARIMA(1,1,1)(2,1,1)12 -81.23 -64.65 NO 
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SARIMA(1,1,0)(2,1,2)12 -66.39 -48.61 NO SARIMA(1,1,1)(2,1,2)12 -80.45 60.89 NO 

SARIMA(1,1,0)(1,1,1)12 -64.35 -52.50 NO SARIMA(1,1,1)(1,1,1)12 -79.16 62.58 NO 

SARIMA(1,1,0)(1,1,2)12 -68.39 -53.57 NO SARIMA(1,1,1)(1,1,2)12 -85.29 -67.51 NO 

SARIMA(2,1,0)(0,1,1)12 -71.26 -59.41 NO SARIMA(1,1,2)(0,1,1)12 -80.12 -65.31 NO 

SARIMA(2,1,0)(0,1,2)12 -73.04 -58.23 NO SARIMA(1,1,2)(0,1,2)12 -81.86 -64.08 NO 

SARIMA(2,1,0)(1,1,0)12 -66.23 -54.37 NO SARIMA(1,1,2)(1,1,0)12 -74.28 -59.47 NO 

SARIMA(2,1,0)(2,1,0)12 -73.52 -58.70 NO SARIMA(1,1,2)(2,1,0)12 -82.19 -64.41 NO 

SARIMA(2,1,0)(2,1,1)12 -71.57 -53.79 NO SARIMA(1,1,2)(2,1,1)12 -80.48 -59.74 NO 

SARIMA(2,1,0)(2,1,2)12 -72.01 -51.27 NO SARIMA(1,1,2)(2,1,2)12 -81.34 -57.64 NO 

SARIMA(2,1,0)(1,1,1)12 -71.56 -56.75 NO SARIMA(1,1,2)(1,1,1)12 -80.51 -62.73 NO 

SARIMA(2,1,0)(1,1,2)12 -74.01 -56.24 NO SARIMA(1,1,2)(1,1,2)12 -83.32 -62.58 NO 

 

 

 


