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ABSTRACTS 
 
 

Introduction:  Tuberculosis is the long-lasting infectious disease caused by bacteria called 

Mycobacterium tuberculosis. Globally, in 2016 alone, approximately 10.4 million new cases 

have occurred worldwide. Africa has shared around 25% of the incidence and specifically in 

Ethiopia around 82 thousand was caught by Tuberculosis.  

Objectives: This study has been aimed to model the counts of Tuberculosis cases using Bayesian 

hierarchical approach of Latent Gaussian Model (LGM) with Integrated Nested Laplace 

Approximation method. It is also designed to determine the predictors and see the variation of 

Tuberculosis incidences across districts of Jimma zone.  Moreover, the researcher intends to 

compare the inbuilt R-INLA default priors and penalized complexity priors so that to assure the 

robustness of the priors for which Bayesian hierarchical approach of latent Gaussian model was 

applied.    

Methods:  The study has been conducted in Jimma zone of entire districts and the data is 

basically secondary which is obtained from Jimma zone health office. The counts of 

Tuberculosis cases have been analyzed with factors like gender, HIV co-infection, Population 

density and age of patients. The Integrated Nested Laplace Approximation (INLA) method of 

Bayesian approach which is fast, deterministic and promising alternative to MCMC method was 

used to determine posterior marginal.  

Results: The latent Gaussian model of Poisson distributional assumption of Tuberculosis cases 

that includes both fixed and random effects with penalized complexity priors appeared to be the 

best model to fit the data based on the Watanabe Akaike Information Criteria and other 

supportive criteria. Using Kullback-Leibler Divergence criteria, the under-used simplified 

Laplace approximation indicated that posterior marginal was well approximated by normal 

distribution. The predictive value of the best model is not far deviated from the actual data based 

on the Conditional Predictive Ordinate and the probability integral transform. 

Conclusions: The hierarchical level of Latent Gaussian Model with Penalized Complexity was 

found to be the appropriate model. All the variables were significant under this model and the 

posterior marginal was well approximated by standard Gaussian. The PIT indicated that 

predictive distribution was less affected by outliers and the model was reasonably well. 

Key words:  Tuberculosis, Bayesian, LGM, INLA
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CHAPTER ONE 
 

1. INTRODUCTION 
 

1.1. Background of the Problems 
 

 

Tuberculosis (TB) is a chronic infectious disease caused by a bacillus belonging to a group of 

bacteria grouped in the Mycobacterium tuberculosis complex and remains an important public 

health problem of the 21st century (WHO, 2017). It remains a high-priority communicable 

disease that causes an enormous burden of morbidity and mortality. Tuberculosis (TB) control 

and elimination rely on an early detection of active TB cases, prompt anti-TB treatment, 

identification of persons in risk of exposure and infection and prevention of secondary TB cases. 

(Lönnroth et  al., 2015).  

 

Globally, in 2016 alone, approximately 10.4 million new cases (range from 8.8 million to 12.2 

million) which are equivalent to 140 cases per 100000 have occurred worldwide. According to 

the reports of WHO (2017), the most estimated number of TB cases are in the WHO South-East 

Asia Region (45%), the WHO African Region (25%) and the WHO Western Pacific Region 

(17%). Similarly, smaller proportions of cases occurred in the WHO Eastern Mediterranean 

Region (7%), the WHO European Region (3%) and the WHO Region of the Americas (3%) and 

1.8 million deaths of tuberculosis were reported worldwide. It is also indicated that  of all the 

cases, 11% of new cases and 0.4 million deaths were people with co-infected of human 

immunodeficiency virus (HIV) which makes the TB disease more serious top causes of mortality 

and morbidity (WHO, 2017; Asemahagn et al., 2018).  

 

Likewise, there were worsened burden of TB with the estimated 600000 (range, 540 000–660 

000) incident cases of Multi-Drug Resistant Tuberculosis (MDR-TB) with cases accounting for 

82% (490 000). For the same report, the global number of notified TB cases is estimated to be 

350 000 (range, 330 000–370 000) MDR/RR-TB cases among notified TB patients (WHO, 

2017). Considering the burden of this infection, WHO has recognized that TB as a global public 

health emergency and launched direct observation therapy strategy (DOTS) in 1994 because of a 
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number of peoples exposed to this disease and many deaths was registered (WHO, 2017; 

Deribew et al., 2012; FMoH, 2015).  

 

According to the WHO (2017) report,  Africa is not among the regions registered to have a 

declined in TB mortality rates. The variation in the country in CFR has varied especially from 

under 5% in a few countries to more than 20% in most countries in the WHO African Region. 

Thus, this is an indicator for the inequalities in accessing the diagnostics of TB disease. The 

summary of WHO report indicated that the incidence rate of TB and HIV co-infected in WHO 

Africa region is estimated to be 41 (34-48) per 100000 population whereas mortality for the 

same cases is 31(27-36). In 2016, the total notified TB cases in this region was 1303483 with 

84% of pulmonary cases which intake an estimated MDR/RR-TB cases of 40000 (ranging from 

36000 to 44000) among notified pulmonary TB cases. The estimated TB treatment coverage in 

the WHO Africa region is only 49%   (WHO, 2017).   

 

Different reports and studies certified that Ethiopia has only limited resources to spend on 

combating tuberculosis and multidrug-resistant tuberculosis.  It ranked the ninth among the 

world most TB burden country and is one of 27 MDR TB high burden countries. In 2016 only 

182 (ranging, 128-245) thousand TB incidence, of which 14 (9.6-19) was related to HIV co-

infection has occurred in Ethiopia and the estimated notified co-infected people was 103330 

(81%). The rate incidence of the cases for the same year is found to be 177/100000. In another 

way the number of deaths due to TB cases without HIV co-infection, was estimated to be 26 

thousand where the death rate is 25/100000 and whereas 4 (2.7-5.4) thousands of HIV co-

infected died (WHO, 2017; Deribew et al., 2012; FMoH, 2015).  

 

According to different studies, a south west region of Ethiopia was one of the areas recorded to 

have high risk of Tuberculosis disease.  In Jimma zone (south west region) around 10.9% of the 

cases was recorded annually.  The expanding of the diseases was more focused on especially in 

the two priority risk groups of people living with HIV and children under 5. It shares estimated 

cases of 25%. Similarly, the most death of TB cases with HIV co-infected is also accounted for 

this region which is found to be 82% in 2016 (Ali et al., 2017; Asemahagn et al., 2018). 
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Why Bayesian? Although the application of Bayesian statistics sounds the researchers, it stayed 

long century with its theoretical definition only because of its difficulties with the integration of 

the denominator in Bayes theorem. Thanks to simulation-based MCMC methods, the approach 

got valued to have numerical meaning with the efficient estimation of the application in any 

fields with some limitation like the burden of time in approximating the posterior and 

convergence problem (Gelman et al. 2009; Berger, 2013). As of 2009, the other news was 

welcomed with very flexible and fast approximation techniques called Integrated Nested Laplace 

Approximation (INLA) for Latent Gaussian Model (Rue et al., 2009). 

  

With this study, the reason why the Bayesian approach is preferred over the usual frequentist 

technique is that the power of information obtained from the approach is much better as it is the 

combination of likelihood data and prior information about the distribution of the parameter. It 

still empowers the efficiency of the data even when the size of observation may large enough in 

representing the target population by giving distribution for the unknown parameters. Thus, 

considering the stated advantages of Bayesian application over classical method and the 

interesting application of  INLA with Latent Gaussian Model (LGM) method are the most key 

for the motivation to apply it for the data set under this study (Riebler et al., 2017; Blangiardo et 

al., 2015).  

 

Latent Gaussian Model (LGM) forms a flexible subclass of Bayesian hierarchical models.  Its 

practical application from a statistical modeling point of view is readily interpretable. 

Consequently, LGMs have become popular in many areas of statistics and various fields of 

applications especially in the spatial and spatiotemporal model (Nzabanita, 2012). The Integrated 

Nested Laplace Approximation (INLA) proposed by Rue et al. (2009) is focused on providing a 

good approximation to the posterior marginal distributions of the parameters in the model of the 

Bayesian hierarchical framework. In particular, this approximation has been developed for 

Latent Gaussian models.   
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1.2. Statement of the Problems 
  

The different study reported from various parts of the country showed that the prevalence of 

smear-positive cases ranged from 33 to 213.4/100,000 people in Ethiopia. This burden of the 

diseases were gradually increased till the year of 2016 (Deribew et al., 2012; Asemahagn et al., 

2018). Considering the seriousness of the disease and gaps found with different studies, the 

researcher has fitted the latent Gaussian model with the Bayesian hierarchical approach using 

INLA method. Therefore, this study has addressed the gaps seen with previous studies; with 

especial weight to model gaps used by different researchers.    

 

According to different studies of Bayesian GLMM of TB cases, the model with Bayesian 

approach have empowered over the frequentist (Jaya et al., 2014; Randremanan et al., 2010; 

Gelman et al., 2009). However, those studies were based on the application of the simulation-

based MCMC method which has the burdensome of time-consuming, convergence problem and 

Monte Carlo error. Thus, with this study, the deterministic, fast and promising alternative of 

MCMC called INLA to approximate the posterior marginal has been applicable (Rue et al., 

2009; Blangiardo et al., 2015; Martins et al., 2013). Besides, for the study with random effects 

and Poisson distribution of the observation, the offset variable is considered to adjust the number 

of events and population size.  This concept was ignored with those previous studies are 

considered under this study (Tonui et al., 2018; Ojo et al., 2017; Randremanan et al., 2010).  

 

The previous studies with INLA methods also were based on the default priors only that 

sometimes were bad and without further concise with the approximation methods of INLA. This 

thesis, therefore, addressed the problem of prior assignment by considering the informative 

Penalized Complexity (PC) prior and intended on the application of different approximation 

methods of INLA (Riebler et al., 2017; Bivand et al., 2015; Kipruto et al., 2015)  

 

Thus, the study have attempted to answer the basic research questions on: whether there is 

variation in the distribution of TB cases among the districts of Jimma zone, whether changes in 

prior assignment really affect the candidate model to be selected and answered the questions on 

how to apply the latent Gaussian model with INLA methods under the framework Bayesian 

hierarchical paradigm.  
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1.3. Objectives 
 

1.3.1. General Objective 
 

The general objective of this study was to model the counts for TB cases in Jimma zone using 

the Bayesian hierarchical approach of the latent Gaussian model with INLA method. 

 

1.3.2. Specific Objectives 
  

i. To identify the predictors of TB cases and see the variation in the 

distribution of the cases across districts. 

ii. To compare the R-INLA’s inbuilt default priors with the informative 

penalized complexity priors for robustness of the priors.  

iii. To fit the latent Gaussian model with INLA methods under the 

framework of Bayesian hierarchical paradigm. 

 

1.4. The Significance of the Study 
 

The results of this study may help the organization as well as individuals who work in this area 

to get a clue on to what extent TB distribution is serious across the districts of Jimma zone. It 

may also be an input to see the trend of TB prevalence by comparing the result of this study with 

previous studies. The other basic significance of the study is that it may also further assist other 

researchers interested in this area and they may use it as a benchmark for their future works. In 

determining the posterior distribution, MCMC simulation technique is the most applicable 

methods used for a long period of time. But, recently (as of 2009) very fast, convenient and a 

very fast representative approximation technique called INLA which designed for the latent 

Gaussian model is availed. With this study, therefore, researchers will benefit by getting familiar 

with the method and may further help in advertising the approximation technique. The result of 

this study will also be expected to help those make a policy of any TB concern agendas and 

strategies. 
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                                                               CHAPTER TWO 
 
 

2. LITERATURE 
 

2.1. Overview of Tuberculosis Cases 
 

Tuberculosis is a bacterial disease which caused by Mycobacterium tuberculosis, which is spread 

by airborne droplet nuclei consisting of tiny particles (between 1mm and 5 mm in size) that 

contains the bacteria and produced by untreated pulmonary TB patient while talking, coughing, 

sneezing and it remains a high-priority communicable disease that causes an enormous burden of 

morbidity, mortality which infected an approximately one-third of the global population, and is 

the second leading cause of death among infectious diseases worldwide(WHO, 2017). It is a rod-

shaped, non-spore forming, and is neither gram-positive nor gram-negative aerobic bacteria. 

Because of its thick cell wall, the bacterium does not decolorize after staining with acid and is 

therefore known as acid-fast bacilli (AFB) (Pedro et al., 2017). A person with active TB can 

infect 10-15 persons with any of the contacts in the course of a year through close contact 

(Moghaddam et al., 2016)  

 

Tuberculosis primarily affects the lungs (pulmonary TB) in about 80% of the cases but can affect 

any organ of the body (extra-pulmonary TB) including bones, skin, brain, vertebral spine among 

others if it is not immediately treated. The very common symptom of TB is a cough for a 

duration of two weeks or more which is usually accompanied with fever, weight loss, night 

sweats, chest pain, shortness of breath, tiredness, loss of appetite and in some instances 

hemoptysis which may serious as the time of infection is being increased (Moghaddam et al., 

2016). It is, however, a treatable and curable disease, and the common treatment of the disease 

are the four anti-Tb drugs namely Rifampicin, Isoniazid, Ethambutol and Pyrazinamide 

(Karumbi et al., 2015). Thus, the initial intensive phase of TB treatment is intended to kill 

actively growing and semi-dormant TB bacilli. The intensive phase treatment can shorten the 

duration of infectiousness by rapid smear conversion (80–90%) following two-three months of 

treatment using fixed-combination dose of the four drugs (WHO, 2015).  
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In the world, a number of people were suffering from TB disease. Different reports and studies 

revealed that approximately two to three billion of the world's populations are estimated to be 

infected with Mycobacterium tuberculosis (WHO, 2015; Hayward et al., 2018). Once individuals 

are infected with TB disease, the probability of time to develop the disease is determined by their 

age, immunity, and duration of infection. Patients with latent TB cases have a chance of having 

progressive active TB case 10%-20% during their lifetime (Martinez et al., 2017). Even though 

the disease is serious anywhere in the world, continents have shared a different proportion of 

being infected. The global health organization report indicated that Asia takes the major burden 

of the cases (58%) and Ethiopia share 28%; whereas eastern Mediterranean region, America and 

European have the smaller proportion of the disease risk which is 8%, 3%, 3% respectively 

(WHO, 2015).  

 

Globally, the absolute number of TB deaths among HIV negative people has been falling since 

2000, from 1.7 million in 2000 to 1.3 million in 2016. The TB mortality rate (per 100 000 

population) fell by 37% between 2000 and 2016, and by 3.4% between 2015 and 2016. Rates 

have also been falling in all six of the WHO regions. Since 2010, the fastest average rates of 

decline in the mortality rate have been in the WHO European Region and the WHO Western 

Pacific Region (6.0% and 4.6% per year, respectively), and lowest in the WHO Eastern 

Mediterranean Region (2.2% per year). Trends in mortality rates in the 30 high TB burden 

countries vary markedly, ranging from substantial reductions since 2000 (e.g. in Cambodia, 

China, Ethiopia, Myanmar, the Russian Federation, and Viet Nam) to limited changes (e.g. in 

Angola, Congo, and South Africa). High TB burden countries with rates of decline exceeding 

6% per year since 2010 included Ethiopia, the Russian Federation, the United Republic of 

Tanzania, Viet Nam and Zimbabwe is more affected by the disease (WHO, 2017) 

 

The key purposes like integrated, patient-centered care and prevention, bold policies, supportive 

systems, and intensified research, as well as innovation, are the main pillars and components of 

the strategies of Sustainable Development Goals (SDGs). The achievement of these goals 

warrants a continued effort in both low- and high-incidence countries towards controlling the 

disease. The SDGs’ plan to end the TB epidemic is to achieve an average reduction of TB 

incidence by 5% per annum until 2025, and then by 4% per annum, in order to reach the 2035 
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global target but the accomplishment during the year of 2000 to 2014 is too far from the plan 

which was only 1.5% (Lönnroth et al., 2015). With this under-achievement, it seems must 

conduct technical research to identify the gap so that the futures of the agenda of SDG have to 

accomplish accordingly.   

 

2.2. Tuberculosis in Ethiopia 
 

Even though Ethiopian health institute has a different structure of working and introduced 

sectors to prevent communicable disease, but still the issue of controlling the communicable 

disease remains to be not well addressed. Thus, according to the federal ministry of health report, 

to do further on this problem the country has formed Health Sector Transformation Plan (HSTP) 

during the second growth and transformation plan of 2015 by giving more emphasis for the 

disease like malaria, HIV and TB (FMoH, 2015).  

 

According to the study conducted by (Kebede et al., 2014), the history of controlling TB in 

Ethiopia was started in the early of 1960s in very limited urban areas; but it becomes popular 

following the establishment of national TB control program office in 1976.  Since then, 

application of different strategies including DOTs extensively exercising with better 

improvement through time. However, the disease is till serious throughout the country especially 

following the rapid increment of the population.  The FMoH report indicated that Ethiopia is 

among the 22 high-TB-burden countries in the world. It also accounts the proportion of 1.6% and 

12%, for new and retreatment cases respectively of 27 high-MDR-TB-burden countries 

worldwide and the disease is the third leading cause of hospital admissions and the second top 

cause of death in the country (WHO, 2015;  FMoH, 2015).  

 

The report of world health organization indicated that the number TB infected people in Ethiopia 

are increased through years and the annual measure of the disease in the country is beyond the 

average annual incidence of the world. As an indicator, in 2015 the annual incidence of all forms 

of TB cases in Ethiopia is estimated to be 207, while that of prevalence is 200 per 100,000 

people and the result is higher than the annual incidence and prevalence of people in the world 

which was 174 and 133/100,000 respectively considering for the year. In 2014, the TB case 
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notification for all forms of TB cases for the respective measure was 123 and 43.3 per 100,000 

people for smear-positive TB in Ethiopia (WHO, 2015). Generally, the occurrence of TB cases 

in Ethiopia has been increasing from year to year; since the chance of being infected is high with 

the dense population. Hence, the disease has become more serious in the country for which 

multidirectional prevention methods were established and yet not be well addressed. 

 

2.3. Determinants of Tuberculosis Disease 
 

The progress of TB infection developed to active TB is conditioned by many factors that the 

development of TB in a person is a two-stage process, in which a susceptible individual is 

exposed to an infectious TB case and becomes infected, and may later develop active TB 

(Legido et al., 2013).  The prevalence of infectious TB cases and the duration of infectiousness 

are important factors that increase the risk of infection in the general population. An untreated 

TB case remains infectious unless such patients have access to TB diagnosis and treatment. 

Close contacts of TB patients such as household contacts and caregivers including healthcare 

workers are particularly at a higher risk of becoming infected with TB (Hamusse et al., 2016). 

According to the recent studies conducted by (Chalovich et al., 2013) which entitled the role of 

casual contacts in the recent transmission of tuberculosis in settings with high disease burden, the 

casual transmission of TB can take place within a short contact period in both high and low 

incidence settings. The impacts of determinants of TB including all factors registered under 

health office are reviewed as follow.  

 

2.3.1. Gender 
 

The world health organization report of 2017 quantified that the number of male TB infected is 

greater than that of the female. It indicated that of all 10.4 million estimated TB incidents 6.7 

(range, 3.7 to 8.6) million is found to be male. This implies that for every one case of TB 

incidence among females, there were about 1.3 incidences of TB cases among males for the 

eastern Mediterranean region to 2.7 western Pacific regions. Globally the ratio of notified TB 

cases among is 1.7 to those of female (WHO, 2017) 
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Sulis et al. (2016) conducted a study to identify the evolution of TB infection in the world 

community. Considering control and prospects for reducing tuberculosis incidence, prevalence 

and deaths globally, the study found that the progression of TB infection to disease is high 

among women in the reproductive age group compared to men. The socio-cultural factors, 

including an inability to make decisions on resources, stigma and poor health-seeking behavior 

may hinder a women’s ability to utilize the existing health services. The study also assured that 

hormonal factors might play a role in the risk of tuberculosis infection and its progression to 

active disease.  

 

Heunis et al. (2017) made a study on Risk factors for mortality in TB patients: a 10-year 

electronic record review in a South African province. The study was analyzed using the adjusted 

odds ratio and found that the number of males with TB cases was 53%. But, the adjusted odds 

ratio indicated that the difference between sexes in a sense was not such significant. 
 

According to the research of Biruk et al. (2016) which is to identify the treatment outcomes of 

tuberculosis and associated factors in an Ethiopian university hospital, the study includes 1584 

sample TB infected patients and found that 882 were males and only 702 were female. 

Moreover, the variable was significant in the model that the odds of the female are less than that 

of the male. Hence, studies that could help to understand the interaction between the biological, 

health system and socio-cultural determinants of gender-based variances are needed to be 

undertaken. 

 

2.3.2. TB/HIV Co-infection 

  

HIV is known to be the most powerful determinant in increasing the risk of TB infection and its 

progression to active disease. Approximately 80% of the total of estimated HIV associated TB is 

found in the countries of Sub-Saharan Africa. Of the 9.27 million TB cases existed globally, 15% 

(1.37 million) cases were HIV-related tuberculosis, of which 79% were from the African region 

which is almost 1.1 million cases. Because of this interaction, these two diseases form a vicious 

cycle (Getahun et al., 2010; WHO, 2017). Similarly, Getahun et al. (2010) also studied on co-

infection of TB/HIV resulted as there was a positive relationship between the prevalence of TB 
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and HIV. The result of the study suggested that the prevalence of HIV infection was significantly 

associated with the incidence of TB. Thus, the strong spearman correlation(r=0.69, p<0.01) also 

certified the association.  

 

Sreenivasulu et al. (2018) found that the co-infection of TB-HIV is a major problem of public 

health importance. They concluded that HIV is a major determinant in the treatment outcome 

among the tuberculosis patients and if patients infected with HIV, also then the death rate 

increases by 25% more compared to those tuberculosis patients who are not infected with HIV. 

Among HIV patients also tuberculosis is the most common opportunistic infection. HIV is acting 

as an important hurdle in the targets of TB treatment success. This is especially applicable for 

countries with a high burden of HIV.   

 

In Sub-Saharan Africa, the TB epidemic has worsened because of its interaction with HIV and 

AIDS (Corbett et al., 2003). The results indicate that tuberculosis infections among immune 

competent individuals remain asymptomatic and become latent infections. Still, there is a high 

risk of for the progression of a primary infection to active TB among HIV infected individuals. 

Likewise, the risk of a latent TB progression to an active one among HIV-infected individuals is 

roughly 20-30 times more likely compared to non-HIV infected ones. Behind this, the treatment 

of active TB among HIV co-infected TB patients are complicated due to adverse drug reactions, 

drug interactions, and less favorable patient outcomes, with an increased likelihood of mortality, 

lower cure rates, and lower treatment success rates compared to non-HIV infected TB patients 

(WHO, 2014). 

 

 Hayward et al. (2018) have found that Infection with HIV is the strongest known risk factor for 

the development of TB disease. According to their study, TB-HIV co-infection synergistically 

worsens both conditions, leading it to be termed the cursed duet and HIV increases both the risk 

of rapid progression to active disease following infection and reactivation with an increased risk 

of TB throughout the course of HIV disease and incidence rate ratios >5 when averaged across 

all levels of immunodeficiency.  

 

According to the assessment report of Datiko et al. (2009), producing health extension worker in 

Ethiopia, aimed to prevent the communicable disease, the extension health workers have been 



 

  12 
 

successfully involved in TB identification: collecting sputum and storing and transporting it to 

the nearest microscopic centers for TB diagnosis.  This resulted in improved case detection: 

122.2% in intervention areas compared to 69.4% in control areas, with women showing the 

highest rise in case detection which further benefited the HIV co-infected not to develop active 

TB cases. Generally, since many studies have supported as HIV is a major factor that hurries the 

TB cases to be active, it is also considered in this study as one factor of TB cases.    

 

2.3.3. Age 

Differences in TB infection and disease burden across various age groups have been reported 

from different parts of the world. Addisu et al. (2018) conducted study entitled factors associated 

with poor treatment outcome of tuberculosis in Debre Tabor northwest Ethiopia. To identify the 

associated risk factors adjusted the odd ratio of logistic regression was used with which Age was 

found to be a significant factor. For this study patient of age, less than 14 was treated as 

reference categories and all other categories of their age were indicated significant difference as 

compared to the reference group.  

 

The risk of infection increases from early infancy to early adult life, possibly due to the 

increasing number of social interactions and frequency of contacts. The incidence of TB rises 

from early infancy to pre-adolescence but falls as the time from of infection increases. Moreover, 

young children often developed disseminated TB such as TB meningitis and extra-pulmonary 

TB, which affected organs other than the lungs as a result of immature cellular immunity to 

localized TB bacilli. Tuberculosis is predominantly reported to be a disease among the adult 

population in the productive age group from 15 to 49 years (Pahlavanzadeh et al., 2016; Gugssa 

et al., 2017). 

 

2.3.4. Population Density 
 

The Population density has a significant effect on the existence of TB especially as the TB 

transmits airborne particles in the increase for the dense area. Since the infected person has the 

chance of transmitted the disease to around 5-10 person, the number is inflated due to the density 

of people in the limited land.  According to the study conducted by Padmanesan(2013) that has 

the objective of identifying the risk factors of TB cases, crowded living conditions were found to 
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have significant effect to increase the rate of TB spread through increased contact between 

infectious and susceptible individuals.  

 

The different study had observed to have high TB rates in areas of the high population (Jacirema 

et al., 2009; Girum et.al., 2018; Legido et al., 2013). However, the study conducted by Harling 

et al. (2014) indicated that the observed that population density was a predictor of high 

tuberculosis rates regardless of poverty and urban residence which was partially mediated by 

higher rates of HIV/AIDS rates in the municipalities. High population density is associated with 

outdoor residential crowding experienced in cities especially in urban slums and informal 

settlements characterized by lack of basic sanitation, poor housing, and overcrowding, high 

levels of congestion and urban air pollution as a result of increased vehicular movements, 

industrial pollution, effluent from generating sets and household fuel combustion. These 

situations may contribute to increased respiratory illness including TB (McMichael, 2000). 

 

2.4. Overview of Bayesian Modeling 
  

The Bayesian statistical methodology presents a well-established framework for making an 

inference from observed data for quantities of interest by using an underlying probability model 

for a comprehensive overview of modern Bayesian statistical analysis. The Bayesian 

methodology differs from the classical frequentist approach in that all of the unknown 

parameters in the underlying probability model are treated as random variables, as opposed to 

unknown constants in the classical frequentist approach. As such, the unknown parameters are 

assigned prior distributions which are based on a priori subjective beliefs or scientific knowledge 

about the unknown parameters. In other words, prior distributions serve as probabilistic 

descriptions of what is known about the unknown parameters before observational data are 

collected and analyzed (Gelman et al., 2013;  Berger, 2013).   

   

According to the study conducted by Geirsson et al. (2014) the temperature is depending on 

where and when it is measured. The study was aimed to test the spatial modeling of annual 

minimum and maximum temperature in Iceland, the observed data, consisting of measurements 

of temperature, exhibit a latent dependence structure in the sense that the temperature is 
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dependent on where and when it is measured. It also indicated that including the random effects 

were significant.  

 

Gelman et al. (2009) defined Bayesian hierarchical modeling as a systematic modeling 

methodology to capture the latent dependence structure of observed data. Moreover, the 

Bayesian paradigm is flexible to handle multiple parameters where the model parameters are 

related or dependent in a systematic manner. The resulting joint probability model should thus 

reflect the dependence structure of the parameters. Further, it is considered natural to structure a 

model of this type hierarchically, with observable data modeled conditionally on a certain set of 

model parameters, which in turn can be potentially dependent on another set of model 

parameters.  

 

Jaya et al. (2014) conducted a study to model Bayesian conditional auto-regression (CAR) and 

map tuberculosis cases in India with Win BUGS software to assess the spatial pattern of TB. The 

study observed that states in the North-eastern region had a higher risk of tuberculosis compared 

with other regions in the country The Bayesian CAR model, in addition, provided a smoothed 

map of the Standardized Incidence Ratio (SIR) that had fewer extreme relative risk values 

compared with the raw unsmoothed SIR values. 

 

Randremanan et al. (2010) in Antananarivo city, Madagascar have used a combination of a 

Bayesian approach and generalized linear mixed model in order to spatially model TB cases and 

identify the potential risk factors of the disease. The Bayesian spatial modeling approach in 

Markov Chain Monte Carlo (MCMC) used the Win BUGS software to detect clusters of TB. 

Tuberculosis was associated with households with more than one TB cases and households who 

had a TB patient that had been lost to follow-up. In comparing the two approaches (the spatial 

scan statistics and the Bayesian approach) in Antananarivo, it was observed that the spatial scan 

method detected general regions with significantly high risk for TB. However, the spatial scan 

method generated larger clusters than expected thus had more high false positive areas than the 

Bayesian approach. The Bayesian approach, on the other hand, identified neighborhoods that 

significantly contributed to the scan statistics circle but with a lower false positive rate.  
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Musenge et al. (2013) conducted Bayesian Spatio-temporal analysis using the INLA package in 

R software in the study of childhood TB/HIV mortality in South Africa. The study identified 

three hotspots areas in the central, southeasterly and southwesterly regions. The factors 

protective of childhood mortality were the number of adults in the household, the number of 

antenatal clinic attendance and mother being alive. Households with a higher socioeconomic 

status had significantly lower childhood deaths compared with poorer households.  

 

Kipruto et al. (2015) undertook a spatiotemporal modeling of tuberculosis in the 47 regions in 

Kenya using the Bayesian Hierarchical generalized linear mixed model in the INLA package in 

R software (Rue et al., 2009). The study identified TB hot-spots in 11 regions namely Nairobi, 

Mombasa, Marsabit, Isiolo, Lamu, Machakos, Kajiado, Makueni, Kisumu, Siaya and Homabay. 

In addition, the study found a significant association between TB and risk factors such as age, 

gender, and HIV. 
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CHAPTER THREE 
 

3. DATA AND METHODOLOGY 
 

3.1. Study Area 
 

Jimma is one of the zones in the Oromia regional state of Ethiopia and is named for the former 

kingdom of Jimma, which was absorbed into the former province of Kaffa in 1932. The capital 

town of the zone is Jimma which is the largest city in south-west Ethiopia. The zone has a 

latitude and longitude of 7040’N 36050’E/7.660N 36.8330E and the temperature at Jimma are in a 

comfortable range, with the daily mean staying from 20 to 25 degree Celsius.  Recently the zone 

includes around 22 districts. Based on the 2007 census conducted by the CSA, this zone has a 

total population of 2,486,155 and has an area of 15,568.58 square kilometers. It has a population 

density of 159.69. 

 

3.2. Source of Data 

 

The data for this study was mainly based on the secondary data that has been obtained from 

Jimma zone and Jimma district health office except for data related to population density. All the 

cases registered on the data base of the office have been considered. The population size has 

been taken from the central statistical agency. Since the latest census in Ethiopia was held in 

2007 which seems a bit old; population projection on the current was determined by considering 

the expected annual increase of the population in Jimma zone. All data on any forms of TB cases 

and identified covariates except population density have been obtained from the district and zone 

health office registered from September 2016 to August 2017 which was recorded for a year. 

 

3.3. Variables under Study 
 

3.3.1. Response Variable 
 

The dependent variable of this study was the count of TB cases (all forms) in each district of 

Jimma zone recorded under the health office from September 2016 to August 2017. 
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3.3.2. Explanatory Variables 

 

According to the different reviewed study discussed in literature parts, the explanatory variables 

considered for this study which has been registered in the health office were gender, HIV co-

infection, population density and age of patients. 

 

3.4. Methods of Data Analysis 
 

In any research design, an appropriate data analysis plays a crucial place for the relevance of data 

under consideration. Thus, to fit the data well, the researcher has been passed through different 

stages of data analysis for which the techniques were presented under sub-sections here below.  

 

3.4.1. Bayesian Hierarchical Model 
 

The Bayesian approach to inference allows parameter estimation using information coming from 

the data via the likelihood function as well as information coming from other sources (i.e. 

previous studies, subjective judgments) which is formalized via prior distributions. These 

probability statements are conditional on the observed value. Generally, the Bayes theorem is 

termed as: 

       
          

∫          
                                                                                  [3.1] 

The so-called Bayesian hierarchical models are very recent and attractive as they provide a 

unified approach to data analysis (Samuels et al., 2015). They are usually characterized by three 

stages of observations and parameters. The first stage consists of distributional assumptions for 

the observations. For this data, the TB counts    (i =1, . . , 21 ) for i geographic districts within a 

pre-specified time period were applied.  It is assumed that    followed the Poisson distribution 

with the rate    . The parameter    denotes the relative risk for the TB cases in district i. The   ’s 

are conditionally independent given all     . On the second stage, the priors were defined for all 

the parameters   
   or, more often, a specific transformation of them.  For the Poisson 

distribution, it is common to use log(  ) =   The variable    is called the linear predictor and is 

usually an additive term of unknown random components (Octavianty et al., 2017).   
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The unknown random components are of different types like spatial random effects and linear or 

smooth effects of covariates. High flexibility can be obtained by assigning Gaussian priors to all 

components of the linear predictor. Such models are also called latent Gaussian models (Rue et 

al., 2009). The third stage consists of prior distributions for unknown hyper-parameters r ,...,1 , 

which typically are variances or correlations for random effects within  = (       )
T
. The hyper-

parameters are not expected to necessarily have Gaussian distribution. The prior assignment for 

all parameters in the model has been discussed below in section 3.4.6. Bayesian hierarchical 

models with latent Gaussian layers have proven very flexible in capturing complex stochastic 

behavior and hierarchical structures in high-dimensional data. 

 

3.4.2. Likelihoods 
 

The likelihood is the function of the distributional assumption of the observation.  For this 

dataset, since it is characterized to count data, Poisson distribution has been used. The observed 

number of TB patients in each district of Jimma zone which was   ; i=1, 2,…,21 has been 

considered. Thus, the distribution of TB cases   ~Poisson (  ) where   a function of relative 

risks for the disease under consideration was taken as the distribution of the TB cases with log 

canonical link function.   

 

In order to account for different population sizes of districts, the researchers preferred to 

compute the expected number of patients in each district, which has been used as a scale factor. 

This technique of scaling is known as an offset variable. The offset variable is mainly used to 

adjust different sizes of the population in each district so that to inline the effect of the 

population size of the districts with its corresponding TB cases (Srinivasan et al., 2014). 

Moreover, the attractive application of this offset variable is that rather than adjusting variation 

due to population size, it is not presented as the explanatory variable since it always has a 

coefficient value of 1. Then, the expected number of patients in each district can be determined 

as: 

     

∑    

∑    
 

Where    the number of TB counts for the i
th

 district, and    is all population under the risk of 

TB disease in districts i 
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3.4.3. Latent Gaussian Model 
 

The structured latent Gaussian regression models amenable to INLA-based inference can be 

defined in terms of three layers: hyper-parameters, latent Gaussian field, likelihood model. The 

univariate likelihood captures the marginal distribution of data and is often chosen as an 

exponential family similar to the framework of generalized linear models. 

 

For those exponential family models, the link function is used to have the linear relationship with 

the response variable. Hyper-parameters can appear in the likelihood as dispersion parameters 

like the variance of the Gaussian distributions (Opitz, 2016). Formally, the Latent Gaussian 

Model (LGM) can be written as:  

 

       ∏ (
  

 ⁄    )                                        Likelihood                                                        [3.2]        

                                                      Latent Field                                                      [3.3] 

         
T                                                  Hyper-priors                                                     [3.4] 

 

The dimension of the latent field   can be large (10
2 

-10
5
) and the number of hyper-parameters is 

not expected to exceed 6. This helps to reduce the complexity of the model (Hosseini et al., 

2011).  

 

Thus, considering the latent Gaussian model, the specific generalized linear mixed model for 

cases of TB counts has form of: 

  ∏         
 
   

                                                               

Where   is an observed dataset (count of TB cases), x is the joint distribution of all 

parameters in the linear predictor (including itself) which is ,                 . The 

coefficients    stands for the total average TB occurrences keeping covariates at reference 

categories for categorical variables and constant for continues covariates,     is the average 

TB occurrence in district level and              were the coefficients of sex, HIV co-

infection, population density, and Age respectively. All fixed covariates have the joint 

Gaussian distribution of mean zero and small variance and whereas the random effect 
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follows the Gaussian distribution with mean zero and inverse variance precision matrix 

which denoted by θ  that are the hyper-parameters of the latent field which is not 

necessarily Gaussian. (Rue  et al., 2009; Opitz, 2016).  

 

Thus, the model is said to be Latent Gaussian Model (LGM), provided that if and only if there is 

strong assumption that the parameters have joint Gaussian distribution and it can be achieved by 

assigning normal priors for each element of latent fields. With this, we mean that x is the joint 

distribution of the parameters of the linear predictor including itself.  

 

  [ ,                    ]                                                                      [3.5] 

 

This is an indicator that the joint parameters under consideration ascertain for the existence of 

latent Gaussian model in which its precision matrix (inverse of the variance) can handle the 

variability among the random effect (Rue et al., 2009). If we assumed conditional 

independence in  , then this latent field   is a Gaussian Markov Random Field (GMRF).  

 

3.4.4. Gaussian Markov Random Field 
 

We can form a large vector x, which consists of the linear predictor vector 
T
 and all its additive 

components. As the  i’s are on the first I positions in the vector x, each observation    depends 

directly only on the corresponding i
th

 element xi in x. Furthermore, since Gaussian priors are 

assigned to all components of x as mentioned above, the vector x is also Gaussian and forms a 

so-called Gaussian Markov random field (GMRF) (Bolin, 2015; Rue et al., 2005). 

 

 A GMRF is a random vector following a multivariate normal distribution with Markov 

properties: for               . The notation     refers to all elements of   other 

than i and j. The conditional independence between two components    and     of a GMRF can 

directly be read off from its so-called precision matrix  . It holds that:                

 ; more formally we can define a random vector               as GMRF with mean  and 
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positive definite precision matrix Q.  Sturtz (2008) provide a description of methods for efficient 

computation of GMRF which can be used to speed up computations and provide fast 

approximations. GMRF is the key to providing good Gaussian approximations for the posterior 

marginal if its density of the above equation [5] has the form: 

 

          
 

   
 

                                                                                 [3.6] 

 

The covariance Q
-1

 of the GMRF is the inverse of the precision matrix. At the second stage 

within a hierarchical model, GMRFs provide a flexible tool to model the dependence between latent 

effects and thus, implicitly, the dependence between the observed data (TB cases) (Rue et al., 2009). 

 

3.4.5. Integrated Nested Laplace Approximation  
 

Integrated nested Laplace approximation (INLA) is a recent approach to Bayesian statistical 

inference for latent Gaussian Markov random field models introduced by (Rue et al., 2009). It 

provides a fast, deterministic alternative to Markov chain Monte Carlo (MCMC) which, at the 

moment, is the standard tool for inference in such models of Bayesian inference.  

 

The main advantage of the INLA approach over MCMC is that it is much faster to compute and 

is promising accurate; it gives answers in minutes and seconds where MCMC requires hours and 

days. The fundamental idea of INLA consists in applying the device of Laplace approximation to 

integrate out high-dimensional latent components. This theoretical foundation is combined with 

efficient algorithms and numerical tricks, and approximations to ensure a fast yet accurate 

approximation of posterior marginal densities of interest like those of the predictors or of hyper-

parameters. This approximation technique is specifically designed for the latent Gaussian model 

(Rue et al., 2009).   

 

The main goal of the approximation techniques used in the analysis of the latent Gaussian model 

is to compute posterior marginal for each component of x of expression [3.5].  Generally, the 

marginal posterior distributions for each element of the parameter vector can be formulated as: 
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        ∫                  
 

                                                                                          [3.7] 

And the marginal posterior distribution for each element of the hyper-parameter vector: 

 (    )  ∫                                                                                                                   [3.8] 

Now, our intention was to compute        from which all the relevant         can be obtained 

and to determine           which is needed to compute the parameter marginal posteriors 

        

 

Assuming  ̃          and  ̃     ) were approximations of            and      ) respectively, 

we further demonstrated different techniques of the approximation. The approximation for the 

hyper-parameter can be approximated as: 

 ̃      
        

 ̃        
                                                                                                                [3.9] 

Where  ̃         is the Gaussian approximation to the full conditional of   and       is the 

mode of a full conditional for   for a given  .  

 

To compute out the posterior marginal of the latent field, we started by determining the Gaussian 

approximation  ̃         and to approximate the density of        as  

 

 ̃                       
                                                                                               [3.10]                                                                                     

 

Then, the integral for each element of the latent Gaussian to determine posterior marginal can be 

approximated with the finite sum as. 

 

 ̃       ∑  ̃           ̃                                                                                            [3.11] 

 

 ̃         and  ̃    ) denote approximations of           and      ) respectively. Finally, 

the sum is evaluated at support points   by numerical integration using appropriate weights   .  

 

Generally, the approximation for the expression [3.5] can be computed in three steps. The first 

step approximates the posterior marginal of   by using the Laplace approximation. The second 
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step computes Laplace approximation or the simplified Laplace approximation for   and finally, 

the two was combined with numerical integration (Blangiardo et al., 2015; Rue et al., 2009).     

 

3.4.5.1. Approximating the latent field parameters 
 

Besides of approximating the posterior marginal of  , the other ultimate goal of doing with 

INLA was to get the accurate approximation for      of equation [3.5] that are conditioned on 

the  . 

Considering  ̃          denote the approximation of the latent field parameters, three 

approximation techniques; i.e. Gaussian approximation, Laplace approximation and simplified 

Laplace approximation have been applicable.  

 

The denominator in the equation [3.9] is the simplest Gaussian approximation of the posterior 

marginal for the latent field. This Gaussian approximation often gives reasonable results, but 

there can be errors in the location and/or errors due to the lack of skewness (Rue et al., 2007; 

Blangiardo et al., 2013). The second and most natural of computation is the so-called Laplace 

approximation (LA). It can have the general form of: 

 

 ̃           
        

 ̃  (
   

 
    )

         
                                                                                             

 

This method of approximation is computationally expensive; because the Gaussian 

approximation in the denominator of expression [3.12] must be recomputed for each value of    

and   since the precision matrix depends on such parameters.   

 

The other most efficient and computationally simplest method is simplified Laplace 

approximation (SLA). The technique is based on Taylor's series expansion up to the third order 

of both numerator and denominator for  ̃        . The series expansion was effectively 

correcting the Gaussian approximation for location and skewness to increase the fit to the 

required distribution (Rue et al., 2009; Baio, 2013; Blangiardo et al., 2013).  
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 To identify which approximation method (LA or SLA) is better in approximating the posterior 

marginal, the popular comparison technique in INLA called Kullback-Leiber divergence has 

been applied. It was the automatic output in any model results of INLA. The value of the 

Kullback-Leibler divergence (KLD) describes the difference between the standard Gaussian and 

the Simplified Laplace approximation to the marginal posterior densities or between standard 

Gaussian and full Laplace approximation keeping Simplified Laplace approximation as first 

desire if the criteria were met to reduce computation burden. The smaller the KLD, the better 

approximation of the posterior distribution is. The default approximation method in INLA was 

simplified Laplace approximation (Baio, 2013).  

  

3.4.6. Priors Assignment for the Distributions of Parameters 
 

To do with Bayesian inference, the choice of prior distribution is a vital issue as it represents the 

information that is available for the parameters of interest.  The prior may be selected based on 

the previous study and from the knowledge of experts (informative) or if there is no such option, 

after all, one may select prior using non-informative techniques without seeing the data. For 

convenience purpose, there are few models with which the distribution of the posterior is 

naturally known based on the conjugate of prior parameter distribution and the distribution of the 

likelihood. 

 

The latent Gaussian model of INLA application assumed that all the fixed effects follow the 

Gaussian distribution with mean zero and the small number of precision matrix  . Hence, only 

the parameters in the precision matrix of the random effect need a prior which was considered as 

a hyper-parameter (Baio, 2013). 

 

3.4.6.1. Priors Comparison for Robustness of the priors 

  

With this study, to go over the effect of the prior assignment, the researchers were interested to 

fit the model under two different priors namely default priors in INLA of the latent Gaussian 

model with the Poisson distribution of the data and Penalized Complexity (PC) priors.  
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The default priors are the inbuilt priors of R-INLA packages of INLA function in which the 

researchers need not to further assign the other priors.  It was widely used by different 

researchers (Bivand et al., 2015; Martins et al., 2013; Rue et al., 2009; Blangiardo et al., 2015). 

According to the study by Rue et al. (2009) (who was the developer of R-INLA packages and 

INLA function), these default priors were considered as weak informative priors that were 

checked under different conditions before officially encoded under the R-INLA packages. Thus, 

all the parameters are assumed to follow Gaussian distribution.  If the observation is assumed to 

follow the Poisson distribution, for intercept, INLA assign zero for both mean and precision; i.e. 

Normal(0,0) and all the fixed parameters are assigned mean zero and precision 0.001; meaning 

that they have Normal(0,0.001) priors.  Whereas the random effect (district for our case) is also 

Gaussian with mean zero and precision parameter. Finally, the precision parameter in the random 

effects is also assigned to other distribution of log gamma which is log-gamma(1, 0.00001) (Rue 

et al., 2009; Blangiardo et al., 2015).    

 

The other and very applicable recent priors are the one called Penalized Complexity prior (PC) 

priors. It was developed by Simpson et al. (2014) and was an informative prior. PC priors are 

general enough to be used in realistically complex statistical models and are straightforward 

enough to be used by general practitioners. Using only weak information, PC priors represent a 

unified prior specification with a clear meaning and interpretation. With this type of priors, 

researchers were agreed with its advantages of controlling the heterogeneity in random effect as 

it defined with the results of the standard deviation of residuals in the fixed effect. 

 

 In the PC priors, the distribution of intercept and all fixed effects are same to that of the value in 

the default priors. However, after the random effect was assigned to follow            . Thus, 

the precision value    can be determined as: 

 (     )  
 

 
        (    

 

 )                                                                            [3.13] 

This also has the form of exponential distribution of standard deviation with   that determines 

the magnitude of the penalty for deviating from the base model. Here the idea is to specify (   ) 
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that requires to determine  . So that     ( 
√ ⁄     )   . After some mathematical 

arrangement: 
        

 ⁄  .   

Finally, the marginal standard deviation of random effect, after type-2 Gumbel distribution for   

is integrated out, is about 0.3*U when       . U is the standard deviation of residuals of the 

data (TB cases) (Simpson et al., 2014; Simpson et al., 2017). The proof and derivation of PC 

priors were found in the Appendix 3.  

 

3.4.7. Posterior Distribution 
 

A great advantage of working in a Bayesian framework is the availability of the entire posterior 

probability distribution for the parameter(s) of interest. Obviously, it is always possible and 

useful to summarize it through some suitable synthetic indicators. 

 

In a Bayesian model, we generally want posterior distributions for our models (the 

distribution of the parameters given the data), or predictive posterior distributions (for 

prediction/forecasting - the distribution of new values given the observed ones) (Kruschke, 

2008).  

 

Finally, we obtained a posterior distribution for the parameter for which we can provide 

summary statistics (median, median, or mode) and quantiles to directly obtain credible 

intervals. The summary statistic typically used is the posterior mean, which, for a hypothetical 

continuous parameter of interest , is: 

       ∫        
   

                                                                                        [3.14]                                                                                                                    

Where   all the possibilities that the variable   can assume and the integral becomes summation 

if the value of   is assumed to be discrete.  Moreover, it is also possible to determine the 

indicators of which divide the probability in a very convenient way. Thus, the posterior median 

of      is defined as the value which divides the probability distribution into two equal halves 

and can be determined as: 
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                                              .  

While the 95% credibility interval (CI) is defined as the pair of   values (                 ) so 

that  

                                             .  

 

However, the interpretation of credibility interval is completely different from that of the 

confidence interval. In frequentist approach, the          confidence interval suggests that if 

we could repeat the same experiment, under the same conditions, for a large number M of times, 

then the real value of   would fall out of the intervals only  % of the times. This convoluted 

statement is not equivalent to asserting that the probability of   lying within the confidence 

interval is        , since the parameter is considered a fixed, unknown value, and it is not a 

random variable characterized by a probability distribution. Conversely, within the Bayesian 

approach, a credibility interval explicitly indicates the posterior probability that   lies within its 

boundaries;          ; this is made possible by the fact that the parameter of interest is 

associated with a probability distribution, so that we can make probabilistic statements and take 

the underlying uncertainty into account (Rue et al., 2009; Blangiardo et al., 2015).  

 

3.5. R-INLA Packages 
 

R-INLA is the R package to implement approximate Bayesian inference using the INLA 

approach (Rue et al., 2009). In order to fulfill this aim, the r-INLA package (http://www.r-

inla.org) was created as an R interface to the INLA program, which is itself written in C. The 

syntax for the r-INLA package is based on the inbuilt glm function in R, which highlights the 

effectiveness of the INLA method as a general solver for generalized linear (mixed) models. The 

key to the computational efficiency of the r-INLA program is that it is based on GMRFLib, a C 

library written by H°avard Rue for performing efficient computations on Gaussian Markov 

random fields. As such, r-INLA is particularly effective when the latent Gaussian field has the 

Markov property. This covers the case of spline smoothing (in any dimension), as well as 

conditional autoregressive models and some Matern random fields (Lindgren et al., 2011). 
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3.6. Bayesian Model Checking and Selections 
 

An important aspect of Bayesian modeling is the assessment of its plausibility and checking 

which model better fit of the dataset. Two major aspects have been considered here. The first is 

model criticism, which can be get defined as the evaluation of which variables have included in 

the model, which assumptions to make on the parameters (e.g., exchangeability, independence, 

etc.), which prior distribution to assign on parameters and hyper-parameters. Are they plausible? 

Do they provide reasonable posterior inference?  The second was called model selection which 

emphases on finding the best fit for the data in hand and compares model differing for the 

variables included the assumptions on parameters and likelihood and the prior distribution on 

parameters and hyper-parameters (Ferkingstad et al., 2017) 

 

With this study, three different models were compared to identify the best model that fit the data 

well. This comparison was done in two different sessions; meaning that the first model including 

only fixed effects was compared with other models which has an additional random effect. The 

comparison was under the assumption of default priors discussed under sub-sub-title 3.4.8.1 

above. The comparison has advantages so that to whether there may TB distribution differences 

across the district. Moreover, since the selection of priors was the crucial issues in the Bayesian 

framework, the researcher further compared the full model under two different priors assignment 

called default priors and penalized complexity priors. 

 

According to Blangiardo et al. (2015), it would be possible to perform sensitivity analysis setting 

up a joint distribution of both model criticism and selection which is a mixture of all models to 

be checked. However, practically it is not such feasible and two different approaches are 

commonly used: the first is based on the predictive distribution and the second uses functions of 

the deviance. The function of deviance is also not theoretically attractive for model selection; 

thus the researcher was preferred to wrapping widely applicable information criteria instead of 

DIC after showing how it was efficient and theoretically attractive over it. 
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3.6.1. Predictive Distribution Methods 
                                 

This method is based on the assumption of classifying the observation says   into two groups, so 

that           , where    is used to fitting the model and to estimate the posterior distribution 

of the parameters and    is used to perform model criticism. The idea on how to classify the 

sample data and techniques undergone for the application of model selection and criticism for 

predictive distribution can be seen in two major ways called cross-validation and posterior 

predictive check(Piironen et al., 2017).  

  

3.6.1.1. Cross-Validation 
       

Once the data has been splitting into the two groups, the posterior distribution for the parameters 

have the form of  (    )     is a vector including all the parameters.  This technique is called 

leave one out cross-validation, which assumes                    . To evaluate the goodness 

of the model in this perspective, the Conditional Predictive Ordinate (CPO) and the Probability 

Integral Transform (PIT) are the two indices applicable with this method. The CPO facilitates the 

computation of the cross-validated log-score for model choice and PIT histograms can be 

computed to assess calibration of out-of-sample predictions (Czado et al., 2009; Vehtari et al., 

2016). 

 

According to Czado et al. (2009), numerical problems may occur when the CPO and PIT indexes 

are computed. To this regards, the function in the R-INLA has provided automatically a sign for 

failure vector which contains a 0 or 1 value for each observation. The value equal to 1 in the 

output indicates that for the corresponding observation, the predictive measures are not reliable 

due to some problems in the calculation (Schrödle, 2011).    

 

3.6.1.2. Posterior Predictive check 
                                                          

The posterior predictive checks are working based on the assumption that          so all the 

observations are used for the model estimate and checking. In particular two quantities are of 

interest called posterior predictive distribution and posterior predictive p-value has been used 

here. Using the proved formula of Gelman et al. (2013), the value of posterior predictive P-value 
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near 0 or 1 indicates that the model fails to fit the data and it should be reconsidered. Unusually 

small values of indicate observations that come from the tails of the assumed distribution and can 

be classified as outliers. If this happens for many values, this suggests that the model is not 

adequate for the data in hand. 

 

3.6.2. Watanabe Akaike Information Criteria 
                             

The most commonly used measure of model fit based on the deviance for Bayesian models is the 

deviance information criterion (DIC), proposed by (Spiegelhalter et al., 2002). It is a 

generalization of the Akaike information criterion (AIC), developed especially for Bayesian 

model comparison.  

 

Though DIC has gained popularity in recent years, in part through its implementation in the 

graphical modeling package BUGS (Spiegelhalter et al., 2002), but it is known to have some 

problems, which arise in part from not being fully Bayesian in that it is based on a point estimate 

(Van , 2005).  

 

WAIC (the widely applicable or Watanabe-Akaike information criterion) is a promising 

alternative and can be viewed as an improvement on the DIC for Bayesian models (Watanabe, 

2010). Compared to DIC, WAIC has the desirable property of averaging over the posterior 

distribution rather than conditioning on a point estimate and does not rely on posterior means of 

parameters. This is especially relevant in a predictive context, as WAIC is evaluating the 

reductions that are actually being used for new data in a Bayesian context. WAIC works also in 

the singular models and this is particularly helpful for models with hierarchical and mixture 

structures in which the number of parameters increases with sample size and where point 

estimates often do not make sense.  

  

WAIC can be easily determined analytically as well. The first step is to write the predictive 

density for each data point;              
  

  ̅
  

 

 
  and summing the terms for the data points, 

we get, 

 

∑               
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)  

 

 

      

   
  

                                                                  [3.15] 
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Next, we determine the two forms of the effective number of parameters. The first effective 

number of the parameter can be calculated with the formula: 

 

       
   

   
  

           
 

 
                                                                                     [3.16] 

 

To evaluate the next effective numbers of the parameter, we based on the variance of the 

posterior distribution and averaging over it. Then, the effective parameter can be determined as: 

 

       
   

 
  

  
 

  
                                                                                                            [3.17] 

 

 Then from the combination of equation 3.10, 3.11 and 3.12, the WAIC is formulated as: 

 

       ∑             
 
                                                                                     [3.18]                                                                                                                                           

 

Generally, the empirical and theoretical reason based formulation of WAIC makes it more 

acceptable over that of DIC. Especially, since it used the point-wise predictive density averaging 

of each term over the entire posterior distribution rather than conditional on a point estimate, its 

acceptability and efficiency in comparing the model is quite reasonable (Gelman et al., 2013; 

Piironen et al., 2017).   

 

3.7. Ethical Consideration   
 

The Research Ethics Review Board of Jimma University has provided an ethical clearance for 

the study. The data was taken from Jimma zone health office, and the formal cooperation letter 

was written from college of natural science research office to the Jimma zone health office where 

data was obtained. The study conducted without individual informed consent; because it relied 

on retrospective data. The one year computer based recorded data was obtained with their 

corresponding covariates.  
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CHAPTER FOUR 

 

4. RESULTS AND DISCUSSION 
 

4.1. Results  
 

Under this section of data analysis, the researcher tried to answer the basic research questions 

and attained to address the objectives by modeling the data with the appropriate model fit. In 

order to further go for the model, we have started with the simplest frequency table which has the 

power to intend the appropriate candidate model.  

 

Thus, using the concept of INLA of the Bayesian framework, the results of the models with 

different fixed and random parameters considering the assignment of priors have been discussed 

stepwise here below. The results obtained from the different model of this study were compared 

by using standard statistical tools of model selection and comparison so that to filter out the 

relative best model in approximating the posterior marginal well. 

 

4.1.1. Descriptive Data Analysis 
 

Table 4.1 presents the counts and percentages of TB patients in each district of Jimma-zone.  It is 

indicated that, without considering the effect of sex and ages, Nono bench district accounted 

minimum (2%) TB cases, whereas Seka chokorsa recorded to have the highest (12%). The 

numbers of male cases in each district were greater than those of females, except for districts of 

Agaro, Gomma, Limmu Seka, and Kersa. 

  It is also indicated that  age class of the two edges of extreme (0-14 and >54) have lower TB 

cases which found to be 10% and 14% of the total cases; whereas the two middle class ages (15-

34 and 35-54) were relatively more affected group; which is 30% and 46%. While the middle 

age of each district was developed more TB cases, people of aged 35-54 with the cases in Setema 

district have been recorded to have a higher number of cases (59%) in comparative of infected 

people of other districts of the same age group. However, with this same age category, in Boter 

district, only 22% of the cases were grouped under age 35-54. There were 1446 males and 1260 

females of TB infected peoples in Jimma zone. Specifically, Mencho district has largest number 
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(64%) of males with TB cases considering the number of TB cases in the district as compared to 

other districts; whereas Agaro district has lowest (40%) number of Males infected with TB cases. 

Table 4.1: Summary of TB counts of each district by considering Sex and Age 

 

Districts 

Tuberculosis Cases  

By Sex Counts (%) 

Tuberculosis Cases by Ages 

Counts(Percentage) 

TB per each 

District (%) 

 

Female Male 0-14 15-34 35-54 >54 

Agaro 54(60) 36(40) 18(20) 32(36) 27(30) 13(14) 90(3) 

Boter Tolay 31(48) 34(52) 9(14) 33(50) 14(22) 9(14) 65(2) 

Chora Botol 52(39) 80(61) 25(19) 49(37) 35(27) 23(17) 132(5) 

Dedo 57(49) 60(51) 6(5) 40(35) 59(50) 12(10) 117(4) 

Gera 63(48) 69(52) 11(8) 59(45) 49(37) 13(10) 132(5) 

Gomma 125(51) 121(49) 22(9) 84(34) 117(48) 23(9) 246(9) 

Gumma 47(44) 61(56) 9(8) 26(24) 54(50) 19(18) 108(4) 

Limmu Kossa 67(50) 68(50) 17(13) 36(27) 60(44) 22(16) 135(5) 

Limmu Seka 38(55) 31(45) 12(17) 10(15) 33(48) 14(20) 69(3) 

Mana 62(48) 66(52) 17(13) 35(27) 61(48) 15(12) 128(5) 

Mencho 48(36) 86(64) 14(10) 48(36) 55(41) 17(13) 134(5) 

Nono Bench 22(46) 26(54) 9(19) 12(25) 19(40) 8(17) 48(2) 

Omo Beyem 46(43) 62(57) 7(6) 21(19) 60(56) 20(19) 108(4) 

Omo Nada 75(47) 84(53) 20(12) 38(24) 71(45) 30(19) 159(6) 

Kersa 73(55) 60(45) 10(8) 41(31) 66(49) 16(12) 133(5) 

Seka Chokorsa 156(50) 159(50) 29(9) 87(28) 156(50) 43(13) 315(12) 

Setema 41(39) 65(61) 8(8) 32(30) 63(59) 3(3) 106(4) 

Shebe Sombo 46(42) 63(58) 7(6) 33(30) 53(49) 16(15) 109(4) 

Sigmo 47(44) 61(56) 5(5) 24(22) 63(58) 16(15) 108(4) 

Sokoru 72(43) 97(57) 20(12) 44(26) 62(37) 43(25) 169(6) 

Tiro Itefa 38(40) 57(60) 5(5) 25(26) 57(60) 8(9) 95(3) 

Total TB cases 

at Zone level  

1260(47) 1446(53) 280(10) 809(30) 1234(46) 383(14) 2706(100) 
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The graphical presentation of Figure 4.1 was the results of the total counts of all forms of TB 

cases in each district of Jimma zone. It was supported by the results obtained in Table 1 above 

that Seka Chokorsa district has the highest number of TB cases as compared to the other districts 

and Nono Bench district seem to have fewer counts of the cases. 

 

The graph clearly showed that the counts of the cases were varied from one district to the other 

and leads to looking in a way that how to handle the heterogeneity in such difference. It also still 

empowers the researcher to bear in account whether the number of population of each district 

may also have effect for the variability of the cases across the districts. 

 

Fig 4.1: Counts of all forms of TB cases in each district of Jimma zone 
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4.1.2. Model Based Data Analysis 
 

The outcome in Table 4.2 below is the summary results of LGM of Poisson distributional 

assumption for TB cases with fixed effects only model under default priors. For the convenience 

and get the easy understanding of the interpretation, the researcher has interpreted the 

exponentiation value of the coefficients.  The intercept exp(0.723)=2.06 represents the average 

rate of yearly TB cases in Jimma zone when Age=0-14 and the effect of HIV co-infected and 

population density were getting zero. The model indicated that all covariates except sex were 

found to have a significant effect. Thus, sex as a factor of determining the TB cases was not 

significant under this model; since the credible interval (CI) (-0.012, 0.144) has included zero.  

 

The coefficient value of the age categories of 15-34 was exp(1.138)=3.121 with (2.678, 3.536) 

CI. This is interpreted as the yearly incidence rates of TB cases in Jimma zone aged 15-34 was 

3.121 times greater than those of age 0-14 holding the other factors at constant. Similarly, the 

coefficients of age 35-54 and >54 can be written as exp (1.679)=5.36 and exp(0.914)=2.494, and 

meaning that compared to those aged 0-14, the yearly incidence rates of TB cases were 5.36 and 

2.94 times greater for age 35-54 and >54 respectively. 

 

The value exp(0.098)=1.103 is for a unit increase in the number of HIV infected who screened 

for the TB cases, the yearly incidence rates of all forms of TB was increased by 1.103. In the 

same way, exp(0.005)=1.005 represents the yearly increase in TB incidence rate for a one unit 

increase in population density.  
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Table 4.2: Summary results of LGM for fixed effects only model with default priors 

Fixed effects Post. 

Estimate 

St.dev Media      95% CI Mode Kld 

Intercept 

Sex(Male) 

Age(15-34) 

Age(35-54) 

Age(>54) 

HIV co infect 

Pop. Density 

0.723 

0.066 

1.138 

1.679 

0.914 

0.098 

0.005 

0.138 

0.040 

0.079 

0.088 

0.107 

0.009 

0.001 

0.724 

0.066 

1.138 

1.678 

0.913 

0.098 

0.005 

(0.450,  0.992) 

(-0.012, 0.144) 

(0.985,  1.263) 

(1.508,  1.852) 

(0.705,  1.123) 

(0.080,  0.115) 

(0.004,  0.007) 

0.725 

0.066 

1.137 

1.677 

0.913 

0.098 

0.005 

0 

0 

0 

0 

0 

0 

0 

 

The summary presented in Table 4.3 below was the results of LGM with default prior under the 

consideration of generalized linear mixed model. Here the effect of the district was also included 

as the random effect so that to handle the variability from one district to the other.  With this 

model, all the covariates were found to be significant since all the CI has not included zero.   

 

The researcher preferred to take advantage of interpreting the exponentiating results.  The 

intercept exp(1.039)=2.826 was the average yearly incidence rates of TB in Jimma zone when 

sex=female, age=0-14, and holding HIV co-infected and population density at constant. 

 

The coefficients value of male patients was exp(0.1075 )=1.113. This is to mean that the yearly 

TB incidence rates of the male were 1.113 times greater than those of female for the same cases. 

The same interpretation was drawn for the age factor. The exponentiated value of age 15-34 was 

exp(1.144)=3.139 and meaning that those aged 15-34 were 3.139 times greater than patients aged 

0-15 in getting yearly TB incidence rates. Similarly, the yearly TB incidence rates of those aged 

35-54 and >54 were 5.209 and 2.05 times greater than people aged 0-14 respectively. 

For a one unit increase in the number of HIV infected who screened for the TB cases, the yearly 

incidence rates of all forms of TB increased by 1.04 (4%). And for a one unit increase in 

population density, the yearly incidence rates of TB were increased by 1.0036. 
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Table 4.3: Summary results of the LGM model with both fixed and random effects with default 

priors 

 

Fixed effects 

                          Results of Fixed Effects 

Post. 

Estimate 

St.dev  Media     95% CI Mode kld 

Intercept 

Sex(Male) 

Age(15-34) 

Age(35-54) 

Age(>54) 

HIV co infect 

Pop. Density 

1.0392  

0.1075  

1.1440 

1.6503 

0.7180  

0.0435  

0.0036    

0.2467     

0.0398     

0.0917      

0.1175  

0.1551    

0.0105 

0.0012  

1.0373     

0.1075      

1.1437      

1.6501     

0.7184  

0.0435      

0.0036       

(0.5601, 1.5285)  

(0.0293, 0.1857)  

(0.9651,  1.3248)   

(1.4200,  1.8812) 

(0.4123,  1.0214)  

(0.0227,  0.0640)    

(0.0013,  0.0058) 

1.0334   

0.1075   

1.1430    

1.6499  

0.7192  

0.0436   

0.0036    

0 

0 

0 

0 

0 

0 

0 

                        Results of Random Effects 

Precision of 

Districts 

11.71  4.489       12.09       (5.7710, 2 3.240)  10.88 - 

 

The summary data in table 4.4 below was the outcome of Poisson distributional assumption of 

Tb cases under LGM which include both fixed and random effects with penalized complexity 

priors. The intercept exp(1.0703)=2.916. When the sex=female, age=0-14 and covariates HIV 

co-infection and population density were held constant, the average incidence rates of TB in 

Jimma zone was found to be 2.916. This is because the intercept was interpreted under the 

reference categories of categorical covariates and assumed when the effect of continues variables 

were zero. 

 

The incidence rate of TB with the male was 1.114 times greater than those of female. This is to 

mean that around 11.4% more diseases with males. Each category of ages was also significant 

for the occurrences TB cases. Compared to those aged 0-14, people with age 15-34 developed 

TB incidence rates by 3.12 times more. In the same fashion, the incidence rates of people aged 

35-54 was 5.15 times greater than those of aged 0-14 and those in the age interval of >54 were 

2.01 times more likely to have TB incidence rates than those ranged in the age 0-14. 
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For a one unit increase in the HIV co-infected people, the TB incidence rate was increased by 

1.044(4.4%). This result has an implication that the number of HIV co-infected in this study 

seems not to such signs in determining the relative risk of TB cases. On the other hand, the 

incidence rate of TB was increased by 1.0034(0.34%) as population density was increased by 

one unit. Even though the population density was found to be significant, under this model, the 

coefficient value indicated that this variable was not such potential in determining the occurrence 

of TB cases for this study. 

 

The Kullback-Leibler divergence (KLD) describes the difference between the standard Gaussian 

and the under-used Simplified Laplace Approximation (SLA).  Therefore, with this model, since 

the values of KLD irrespective of all covariates were zero, the researcher can generalize that the 

marginal posterior densities were well approximated by the Normal distribution. Thus, the under-

used SLA which is the default approximation method in INLA function, in determining the 

densities of posterior marginal was defined as having good (small) error rate and no need to use 

the more computationally intensive technique full Laplace approximation. 

Table 4.4: Summary results of LGM for a model including both fixed and random effects with 

Penalized Complexity priors 

Results of Fixed Effects 

Fixed effects Post. 

Estimate 

St.dev Media      95% CI Mode kld 

Intercept 

Sex(Male) 

Age(15-34) 

Age(35-54) 

Age(>54) 

HIV co infect 

Pop. Density 

1.0703 

0.1080 

1.1377 

1.6393 

0.6992 

0.0427 

0.0034 

0.2530     

0.0398     

0.0923     

0.1190     

0.1574     

0.0105     

0.0012  

1.0684     

0.1079     

1.1373     

1.6391     

0.6995     

0.0427     

0.0035 

(0.5788,  1.5720) 

(0.0297,  0.1861) 

(0.9575,  1.3197) 

(1.4062,  1.8732) 

(0.3893,  1.0073) 

(0.0219,  0.0633) 

(0.0011,  0.0057) 

1.0645   

0.1079   

1.1366   

1.6387   

0.7001   

0.0428   

0.0035    

0 

0 

0 

0 

0 

0 

0 

  Results of Random Effects 

 Prec. of district  12.51 3.911       11.946       (4.5260, 19.730)  8.858 - 
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The summarized result of table 4.5 below is the posterior marginal distribution of districts 

variation of tuberculosis with penalized complexity priors. The interpretation of posterior 

marginal for the precision of the random effect district in Table 5 is more general and bit difficult 

to interpret because it is on the scale of 1/variance. On the other hand, it is not possible to take 

the reciprocal of the (square-rooted) summaries to obtain information about the posterior 

distribution of the standard deviation, because the transformation is not linear.  

 

Thus, the researcher preferred to compute posterior marginal with the scale of standard 

deviation. The average standard deviation of the variation of TB cases across districts was 0.294 

with (0.207, 0.416) credible interval. Besides, the table 4.8 in Appendix 2 indicated that Seka 

Chokorsa has the highest incidence of TB cases and whereas Nono Benj district has less affected 

with TB cases. The diseases with the other were also varied in between.  Generally, the appendix 

indicated that there is variation in TB cases across districts of Jimma zone. 

Table 4.5: Posterior marginal distributions of standard deviation for random effect under PC 

priors 

Posterior distribution   Mean St.dev Media   95% CI 

St.dev for districts 0.294 0.053   0.287  (0.207, 0.416) 

 

4.1.3. Model Checking 

 
The graphical and numerical presentation of model checking methods has been tested so that to 

see the underlying assumption and distributional properties of the data. 

 

In order to check whether the numerical problems may occur in the predictive measure when the 

CPO and PIT indexes are computed, the researcher used in-built R-INLA function which 

contains 0 or 1 value for each observation in that 1 is an indicator for the failure vector. Thus, for 

this study since the sum of failure values in CPO from the fitted model was found to be zero, the 

researcher has evidence to get concluded that there was no numerical problems occurred in 

predictive measure; since no failure has been detected.  
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The graphical presentation of Fig 4.2 was the scatter plot and histogram of cross-validated CPO 

and PIT with the possible indexes and probability.  The purpose of plotting CPO was to see the 

surprising observation in which the extreme value is an indicator of the problem. The graph 

indicated that most of the observations have relatively the same distribution with very little 

deviated value which actually not expected to affect the model.  Besides, the PIT is the measure 

of outliers. Hence, the idea behind having this plot was to see whether the predictive distribution 

matches the actual data, which is possible if the histogram shows uniform distribution. For this 

data, the histogram indicated that the PIT is almost uniformly distributed with very few deviated 

residual value and can get reasonable that the predictive distribution matches the actual data. 

Therefore, based on the plots of both CPO and PIT, the authors have evidence to say that 

predictive distribution was not significantly affected by surprising observation and extreme 

outliers (Gianluca, 2013). 

Fig 4.2: The graphical presentation of CPO and PIT value for not fail values   
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4.1.4. Model Comparisons 
 

 

In order to select the model which was relatively best fit the data, the researcher has intended to 

compare the model in two phases. The candidate models were: 

Model 1: LGM with covariates of fixed effects only and default priors 

Model 2: LGM including covariates of both fixed and random effects with default priors 

Model 3: LGM including covariates of both fixed and random effects with PC priors 

 

 Thus, at the first stage of this model comparison, model 1 and model 2 have been compared in 

order to see whether the random effect has a significant effect or not. Then, to get valued on the 

robustness of the priors, model 2 and model 3 have been compared which in fact is to see the 

actual changes on the model as the priors on the parameters were changed. All the models were 

compared with the standard model comparison techniques, WAIC and other supportive criteria.   

 

Table 4.6 is the summary results of WAIC, the effective number of parameters and number of 

equivalent replicates for the aforementioned three candidate models with the different number of 

parameters and/or under different priors. 

 

At the first stage of model comparison, model 2 which is the model with covariates of both fixed 

and random effects under the assumption of default priors, have less WAIC (1105.25) as 

compared to model 1, WAIC (1300.79) which in fact includes only fixed effect with same priors. 

Thus, by the operational definition that the smaller the WAIC, the better the model fit, the 

researcher can prioritize model 2 as the relative better fit of the data under study. It also supports 

that including districts as the random effect has advantages in order to handle variation in 

incidence rates of TB across districts. 

 

Once the model with both fixed and random effects under default priors was selected, the 

researcher was able to compare the same model under different priors which help to more 

ascertain the robustness of the priors. We did this because it helps to avoid the problem of model 
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fit due to bad priors and also used for further investigation as for whether the recent informative 

PC priors was efficient than the R-INAL inbuilt default priors or not. 

 

Thus, based on the results of Table 4.6 below, the WAIC for model 3 which was 1104.27 was 

relatively smaller than that of model 2 which was 1105.25.  However, different literature said 

that the models of the same parameters were considered to be significantly different, if their 

WAIC were at least 3-5 differences ((Ntirampeba et al., 2018; Spiegelhalter et al., 2002).  

 

As the rule of model difference based on the WAIC’s value difference is rule of thumb, other 

technical methods of model comparison have been used to see the clear difference between the 

models. Hence, the concept of the effective number of parameters and number of equivalent 

replicates were applicable here. Since the expected number of effective parameters is basically 

the number of independent parameters included in the model, the smaller is the better the model. 

This is because, at any stages of model comparison, the intention of the researcher was to come 

with the best model of the smaller parameter. Besides, the number of equivalent replicates is the 

result of sample size per effective number of parameters in the model and thus the smaller is an 

indication of poor fit.   

 

But, the difference in both effective number of parameters and number of equivalent replicates 

for model 2 and 3 seems not such significant.  However, since there were no clear-cut rules that 

judge to decide on the size of difference on such comparison techniques, the researcher has been 

forced to compare the models without valued the size of the difference in those model 

comparison methods.    

 

Therefore, since the effective number of parameters of model 3 (24.74) was slightly smaller than 

that of model 2 (25.08), we can say that the candidate model with PC priors was relatively better 

in fitting the data well. Moreover, the number of equivalent replicates of model 3 was very 

slightly greater than that of model 2 and this also still has some information to decide that model 

with PC prior was comparatively better.  
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On the other regards, we extended our evidence from the perspective of standard errors by 

considering the results of standard deviation for the precision of the district (random effect) 

based on table 3 and 5 above. Recalling the direct proportion between standard error and 

standard deviation of the same sample size, we can say that the greater the standard deviation, 

the larger the standard error is. Hence, the standard deviation for the precision of districts in the 

model with default priors was 4.489  and that of the model with PC priors was 3.911, and 

considering the truth that the smaller the standard error, the efficient the model was, we still can 

support model with PC priors was better in fitting the data. Additionally, since the credible 

interval for the precision of districts of the model with PC priors (4.526, 19.73) was narrower 

than that of the model with default priors (5.771, 23.24), this may also assist the researcher to 

conclude that model with PC priors was relatively better in fitting the data.   

 

Generally, considering the collective evidence detailed above and since PC priors are 

informative priors, we finally selected the LGM of Poisson distributional assumption of TB cases 

including covariates of both fixed and random effects with PC priors as the best model.   

 

Table 4.6: Results of WAIC, effective number of parameters and number of equivalent replicates 

for the three candidate models  

Candidate models     WAIC Effective no. of parameters No. of equivalent replicates 

 

    

Model 1 1300.79 7.016 23.95 

Model 2 1105.25 25.08 6.699 

Model 3 1104.27 24.74 6.791    
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4.2. Discussions 
 

The descriptive results of the study indicated that the number of males with TB cases (53%) was 

greater than the number of females with the same cases. These results were in line with WHO 

reports of 2017, which also presented as the number of males with TB cases was greater than 

females worldwide. Similarly, the number of TB counties of middle-aged people was greater 

than the two extreme categories of the ages and this also matches with the truth existed 

throughout the world (WHO, 2017) and different studies from Ethiopia were also persisted with 

this results (Gugssa et al., 2017; Hamusse, 2017). Besides, the descriptive summary clearly 

showed that the counts of the cases were varied from one district to the other and empowers the 

researcher to bear in account whether the number of population of each district may also have 

effect for the variability of the cases across the districts.  

 

In order to assimilate the variation in the population size across districts with the corresponding 

TB cases, the offset variable was included in the correction factor. The offset in a sense means 

that the expected counts of TB cases in each district and especially used to correct the number of 

events (TB cases).  The offset is the special type of variable that was widely applicable when the 

observation was assumed to have Poisson distribution with the known slope of 1 that helps to 

adjust the problem due to variation in population size from one district to the other. 

 

Some of the researchers have been considered this adjustment under different dataset (Kipruto et 

al., 2015; Blangiardo et al., 2013). But, many studies that included geographical variation as 

random effect had missed these potential terms offset which used to weighted (corrected) the 

effect of miss many numbers of events and population size (Iddrisu et al., 2016; Musenge et al., 

2013). Thus, our study has been filling the gap with the miss used of the offset variable. 

 

At the first stage of the model fit, the LGM with Poisson distributional assumption of the 

observations has been fitted with covariates of fixed effects only under R-INLA inbuilt default 

priors. The variables age, HIV-co-infection, and population density were found to be significant. 

In order to check the effectiveness of simplified Laplace approximation method that applied in 

this model, the researcher considered the value of KLD in which the minimum the KLD is the 

less difference between the standard Gaussian and the Simplified Laplace Approximation.  In our 
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case, since the value of KLD corresponding to all the variables was zero, the SLA was 

reasonably well in approximating the value which expected from standard Gaussian (Gianluca, 

2013).    

 

The LGM of Poisson distributional assumption of the observation which includes both fixed and 

random effects with default priors revealed that all the covariates have significant effects on the 

incidence rates of TB. The efficiency and relevance of the model were supported by the work of 

different researchers which in fact applied for the different dataset (Bivand et al., 2015; Martins 

et al., 2013; Rue et al., 2009). Moreover, the significance of the variables in this study was 

persistent with the finding of different researchers (Sreenivasulu et al., 2018; Roza et al., 2012, 

Couceiro et al., 2011). Since KLD result was found to be zero, the underused SLA has well 

approximated the standard Gaussian and no need to go for further intensive approximation 

methods like full Laplace approximation (Gianluca, 2013).   

  

The other model called LGM of Poisson distributional assumption of observation with both the 

fixed and random effects under PC priors was applied. The same to model with default priors, all 

the covariates were found to be significant and the KLD values were also zero; meaning that 

SLA approximately had the same results with standard Gaussian.  The developer of PC priors 

(Simpson et al., 2014) has been checked the effectiveness of the priors with simulated data and 

other few European researchers including Professor Havard Rue who is famous and developer of 

R-INLA program (Rue et al., 2009) had also exercised with the same simulated data. Thus, since 

the prior was developed in a very recent time and is informative, the authors were intended to 

apply for this actual data.  

  

In order to make the model comparison, the researcher preferred the WAIC model comparison 

technique because of theoretical reasoning and inclusive advantages of the method detailed under 

sub-topic of 3.6.2 above and in the literature (Gelman et al., 2013). For clarity purpose, the three 

candidate models were compared in two phases; at the first stage, model 1 and 2, and at the 

second stage model 2 and 3 were compared so that to selected the best model which fitted the 

data well.   
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The results of WAIC indicated that model 2 which was the LGM of Poisson distributional 

assumption with both fixed and random effects under default priors was better than model 1 

which was the same to model 2 except it includes only fixed covariates. Then, to check further 

for the effects of the priors, model 2 was compared with model 3 which was similar to model 2 

except priors' assignments. Thus, since the WAIC of model 3 was smaller than that of model 2, 

the LGM of Poisson distributional assumption with both fixed and random effects considering 

PC priors was selected as the relative best model to fit the incidence rates of TB cases in Jimma 

zone. The advantage of comparison of models with different priors were certified under previous 

studies (Simpson et al., 2014; Schrödle, 2011; Simpson et al., 2017).  

 

The random effect in the study was found to be significant and varied across the districts. This is 

an indicator that including districts as random effect here is advantageous so that to identify the 

district(s) with the highest TB cases.  With this study, therefore, Seka chokorsa district was 

found to be the most severed districts. Previous studies also are also consistent with this result 

that TB cases were varied across the geographical regions (Kipruto et al., 2015; Iddrisu et al., 

2016).   

 

The CPO and PIT were used for model checking. Before further go for graphical model 

checking, the researcher intended to check whether the usual numerical problem occurred during 

the computation of CPO. Thus, since the sum of the number of failure in CPO was zero, no 

failure was detected and meaning that no numerical problem has occurred. The histogram and 

scatter plot of PIT indicated that the predictive residual based values were almost uniformly 

distributed with very few deviated outlier and we can get reasonable that the predictive 

distribution matches the actual data. Besides, the same graphs of CPO also indicated that most of 

the observed predictive values have the same distributional shape with the tolerance of surprising 

observation. Therefore, based on the plots of both CPO and PIT, the predictive values seem not 

significantly affected by surprising observation and extreme outliers (Gianluca, 2013; Rue et al., 

2011; Martino, 2008).    
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CHAPTER FIVE 
 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. Conclusions  
 

For better attainment of the model fit, three different candidate LGMs namely: Poisson 

distributional assumption of TB cases of fixed effects only with default priors, Poisson 

distributional assumption of TB cases of both fixed and random effects with default priors and 

Poisson distributional assumption of TB cases with both fixed and random effect under PC priors 

have been fitted.  With all the candidate models, the fixed covariates were sex, age, HIV co-

infection, population density and districts as the random effect. Thus, based upon the WAIC and 

other supportive model comparison technique, the LGM of Poisson distributional assumption of 

TB cases which includes both fixed and random effects with PC priors has been selected as the 

best model that fits the data well. All the covariates under the best model are found to be 

significant.  

 

The Kullback-Leibler divergence which is the difference between the standard Gaussian and 

Simplified Laplace approximation (full Laplace approximation) is found to be zero 

corresponding to all the covariates of the best model and is an indicator that the posterior 

marginal is well approximated by the Normal distribution.  Thus, having the computational 

advantages of SLA and its better approximation in the data, the researcher preferred not to use 

the more computationally intensive full Laplace approximation.  

 

Finally, the model check has been assessed by using CPO and PIT methods. The graph of CPO 

indicated that the predictive distribution seems not significantly affected by surprising 

observation; meaning that the predictive distribution was consistent with the actual observation. 

Whereas the scatterplot and histogram of PIT indicated that the predictive distribution was less 

affected by outliers and the model fit was reasonably well. 
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5.2. Recommendations 
 

 Based on the findings of this study, the researcher recommended the following points for 

researchers, Jimma health office and individuals interested in any sub-work of this study.   

1. All the covariates in this study are significant factors of TB cases.  Thus, Jimma zone 

health office and other health sectors should have to focus on controlling TB cases with 

special focus to districts that have a high severity of the disease. 

2. The posterior marginal of this study is totally determined with the methods of INLA 

which actually is very fast and has a less computational burden. However, the issue 

related to the better approximation of INLA over MCMC in determining the posterior 

marginal is not addressed here. Thus, the researchers should strongly recommend so 

that to compare the methods.   

3. This thesis was limited to few variables recorded at the health office. Thus, researchers 

are recommended to include clinical diagnostic related variables.  

4. Interested researchers are recommended to extend this work by including fully spatial 

covariates in order to map and identify the hot-spot areas. This is very flexible and 

widely applicable in INLA.   

 

5.3. Future Works 

   
INLA was designed for LGM that Gaussian distribution is assigned to all parameters. But, for 

the models other than LGM (for those have non-Gaussian distribution of priors), the application 

of INLA is still under-development. Thus, the authors and other researchers should have to do 

for further development of the methodological formulation and R-INLA codes (syntax). This 

methods will enhance the researchers so that to flex with non-Gaussian distribution of the 

parameters.  
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Appendix 2: Some selective relevant tables and graphs.  

  

Table 4.7: Posterior marginal distributions of standard deviation for random effect under default 

priors 

 

 

 

 

Table 4.8: Empty model with R-INLA default priors 
 

 Mean St.dev 0.025quant 0.5quant 0.975quant mode kld 

 (Intercept) 2.6998 0.089 .52 2.7002 2.875 2.7009 1e-04 

 Prec. 

District 

6.989 2.245 3.374 6.724 12.12 6.199 - 

WAIC=2077.63 

 

 

Table 4.9: Individual model fit of all districts as random effect with PC priors 

Posterior distribution Mean  St.dev Media    95% CI 

 St.dev for districts 0.325  0.062   0.280          (0.225, 0.470) 

Districts Mean sd 0.025quant 0.5quant 0.975quant mode                Kld 

Agaro -0.27 0.12 -0.52 -0.27 -0.04 -0.27 0 

Mana -0.05 0.12 -0.28 -0.05 -0.02 -0.05 0 

Mencho 0.02 0.11 -0.19 -0.02 0.001 -0.02 0 

Nono Benj -0.56 0.16 -0.88 -0.55 -0.26 -0.54 0 

Omo beyem -0.24 0.12 -0.47 -0.24 0.00 -0.24 0 

Omonada 0.17 0.11 0.05 0.17 0.39 0.17 0 

Kersa 0.04 0.11 0.18 0.04 0.26 0.04 0 

Seka chokorsa 0.82 0.10 0.63 0.82 1.01 0.81 0 

Setema -0.04 0.12 -0.27 -0.04 0.19 -0.03 0 

shebe sombo -0.03 0.12 -0.26 -0.03 -0.019 -0.03 0 

Sigmo 0.01 0.12 -0.24 0.01 0.22 0.01 0 

Boter tolay -0.31 0.15 -0.60 -0.30 -0.03 -0.30 0 

Sokoru 0.22 0.11 0.00 0.22           0.44 0.21 0 

Tiro atefa -0.15 0.12 -0.39 -0.15 -0.08 -0.15 0 

chora botol 0.07 0.11 -0.14 0.07 0.29 0.07 0 
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Fig 4.3:  Marginal distribution of the fixed effects in final model 

 

Dedo wereda -0.11 0.11 -0.34 -0.11 -0.01 -0.11 0 

Gera 0.08 0.11 0.14 0.08 0.29 0.08 0 

Gomma 0.52 0.11 0.31 0.51 0.73 0.51 0 

Gumma 0.05 0.14 0.22 0.05 0.31 0.06 0 

Limmu kossa 0.04 0.11 0.17 0.04 0.26 0.04 0 

Limmu seka -0.27 0.14 -0.56 -0.27 -0.12 -0.26 0 
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Fig 4.4: Histogram of posterior density for precision of district  

 

 

 

Fig 4.5: Posterior marginal distribution of st.dev for the random effects with PC priors 
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Fig 4.6: Linear predictor (above) and fitted values of linear predictor (below) with 95%CI 
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Fig 4.8: Scatterplot of the posterior mean for the predictive distributions against the observed 

values (left) and Histogram of the posterior predictive p-value (right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


