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Abstract

The success of general theory of relativity (GR) over a wide range of astrophysical observa-

tions is the manifestation of progress in astronomy and astrophysical studies. Whilst, there

are encouraging past success of GR and future hopes there is an outstanding debates on GR

field equations dated back to their origin, where Einstein himself was also puzzled in the so-

lutions of the equations. As the consequence, Einstein did introduce a positive cosmological

constant to his original field equations. Since then, the cosmological constant has remained

with debate where it is being cast out at a time and reintroduced at other time. But a firm

considers of is triggered in the 1960’s when an excess quasi-stellar objects (QSO’s) near the

redshift Z ∼= 1.95 were observed. Moreover, the recent discovery of expanding universe at

an accelerated rate favors a flat low density Cold Dark Matter with dark energy in the form

of cosmological constant Λ − CDM model is more or less consistent with all the current

cosmological observations. But the general perception, owing to its tiny value, questions

its significance on a local gravitational phenomenon. But, a local effect of cosmological

constant is claimed to be observable from relativistic accretion phenomena around massive

BHs which involve distancescales. So the effect of on the dynamics of objects including jets

around massive objects at kiloparsecs or more astrophysical distances need investigations.

So far all the works on the effect of Λ on accreting systems were carried out under some

restricted conditions owing to the complex and nonlinear character of the equations in GR;

if not most were under Newtonian. Motivated by this short scientific rationale, we studied

the effect of cosmological constant on dynamical systems including magnetohydrodynamic

(MHD) instabilities around massive objects like BHs in the current standard Λ − CDM
model where the Schwarzschild de Sitter (SdS) background is being considered then the

interior and exterior solutions of Einsteins equations with a non-zero cosmological constant

vi



vii

are given for static and spherically symmetric configurations of uniform density. The poten-

tial and pressure are determined for both positive and negative values of the cosmological

constant. Limits on the outer radius of the interior solutions are established.The potential

around a compact object between the horizons considering mean density of universe is dis-

cussed.

Key words: GR, cosmological constant, SdS.
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Introduction

The success of theory of general relativity (GR) in the observation of deflection of light [?],

radar echo delay [?], precession of planetary motion [?] and gravitational redshift [?] by

gravity are the manifestation of progress in astronomy and astrophysical studies. The dis-

covery of the expanding universe at an accelerating phase [?, ?] and the direct confirmation

of gravitational wave detection are other outstanding progresses in astronomy and astro-

physics. Nowadays, the end products of stellar evolution called compact objects (White

Dwarf (WD), Neutron Star (NS) and Black Hole (BH)) act as laboratory for the Theory

of General Relativity tests over a wide range including origins and future determinations.

These objects provide important information about the age of astrophysical objects; con-

strain models of galactic and cosmological evolutionary history from small scale to large

scale structure. Currently, the development of astronomy has led an expansion of human

knowledge reaching out, ever farther from our home where the observational tools were

solely dependent on the information carried by electromagnetic waves (EMWs). But, due

to EMWs interaction with matter there are limitations where these waves unable to pene-

trate a great deal of objects including compact objects. However, the transparency of media

to GWs is hoped as a laboratory for general relativity and a window to energetic astro-

physical phenomena. The information that carried by gravitational waves is very different

from that carried by electromagnetic waves. While, EM waves permit to imaging objects,

GW observations do not generally allow imaging, instead used to extract information from

waveforms proceeds with audiolike methods such as timefrequency analysis [?].

The recent observations of high redshift Type Ia supernovae [?],[?] and temperature fluc-

tuations of the cosmic microwave background [?] that presently the universe is expanding at

an accelerating phase with approximately flat geometry. As reported by these observational

data analysis group a flat low density Cold Dark Matter with dark energy in the form of
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cosmological constant (Λ +CDM) universe with Ωm = 0.3 and ΩΛ = 0.7 , with an approx-

imately flat metric is favored over a wide range of observational data ranging from large

and intermediate angle Cosmic Microwave Background Radiation (CMBR) anisotropies to

observations of galaxy clustering on large scales. On the theoretical ground the compo-

nent, that represents approximately 70 percent of the total matter energy content of the

universe today is characterized by a negative pressure, and should be responsible for the

expansion of the universe.

In the presence of a repulsive cosmological constant (positive) ′+′ the spacetime ge-

ometry exterior to a static spherically symmetric metric is Schwarzschild-de Sitter (SdS),

which describes an isolated black hole (BH) in a spatially inflated Universe, rather than

Schwarzschild metric. Therefore, the cosmological constant may affect any local gravita-

tional phenomenon like perihelion shift of the orbits of gravitationally bound systems [?].

The Λ−CDM model is more or less consistent with all the current cosmological obser-

vations [?] though the origin of cosmological constant still remains elusive. Therefore, the

cosmological constant may affect any local gravitational phenomenon like perihelion shift of

the orbits of gravitationally bound systems [?], gravitational bending of light [?] , geodesic

precession [?], but the general perception is that owing to its tiny value, cosmological con-

stant does not lead to any significant observable effects in a local gravitational phenomenon.

However, the contribution of repulsive Λ could be significant (larger than the second or-

der term) even in a local gravitational phenomenon when kiloparsecs to megaparsecs-scale

distances are involved, such as the gravitational bending of light by cluster of galaxies [?].

Moreover, the recently confirmed gravitational wave presence shines on the matter to study

high precision astrophysical phenomena at small scale level. Probably, a local effect of cos-

mological constant is claimed to be observable from relativistic accretion phenomena around

massive BHs which involve distance-scale of the order of hundreds of parsecs or even more
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[?] and the references therein. However, a few studies have been carried out so far to inves-

tigate the effect of Λ in astrophysical jet/accretion flow paradigm [?],[?]. So the effect of Λ

on the dynamics of kiloparsecs to megaparsecsscale astrophysical objects including jets need

investigations. The work of [?] showed that Λ has considerable strong collimation effect on

jets on the dynamical stability of accretion with constant angular momentum around a Sds

BH.So due to this facts we are studied hydrodynamic instability around compact object in

Sds background.We Provide preliminary boundary conditions to derive the relevant set of

dynamical equations from the GR equations in the SdS background also Study and examine

the effects of the relevant parameters derived from the equations and Numerically generate

some theoretical data from the formalism using computation.

The paper is organized as follows: in the first section the Einstein equations and the nota-

tion are introduced.In Section 2, Einsteins equations with a non-zero cosmological constant

and the conservation law of energy-momentum tensor are used in the case of spherically

symmetric spacetimes to give the equations of structure of spherically symmetric and static

configurations representing relativistic stars and the equations of structure are explicitly

integrated for the configurations of uniform density, and the pressure and potential inside

of these configurations are given. In section 3 using the pressure the exterior and interior

solution with non-zero cosmological constant is determined and discussed.At the end in

section 4 summery and conclusion given.



Chapter 1

Gravitation and General Theory
Of Relativity

1.1 Introduction to Einstein General Relativity

After many years of development Einstein presented his general theory of relativity in 1915,

it was then published the following year in [?]. General relativity is an extension of special

relativity which includes a modification of Newtons law of gravity. It provides a relativis-

tic description of the gravitational field exerted by a massive object and its effects on the

geometric structure of the surrounding spacetime. The theory states that the gravitational

interaction due to the presence of matter causes spacetime to curve hence distorting the

path of a nearby object. This differs from the original foundations of Newtons laws of grav-

itation, where gravity is an attractive force between two massive objects which interacts

instantaneously. In this description, planetary orbits are a consequence of this gravitational

pull emanating from the sun, therefore in this theory the suns gravitational field interacts

directly with the planet as opposed to the surrounding spacetime. However given certain

circumstances Newtonian theory provides an accurate description of the gravitational in-

teraction, this includes a weaker gravitational field. This is known as the Newtonian limit

in which spacetime is asymptotically flat and the field equations can be approximated with

Newtons laws of motion. General relativity is required for a more significant gravitational

4
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field, when Newtonian gravity no longer agrees with observation. For instance, the obser-

vation of the precession of the perihelion of Mercury deviated slightly from the predictions

of Newtons equations, whereas solutions in general relativity describe this orbit correctly

1.2 Space-time Geometry Of Gravitation

In general relativity, spacetime has the structure of a four-dimensional pseudo -Riemannian

manifoldM, this is equipped with a metric gµν which can be used to determine local geomet-

ric quantities such as angles and lengths. The metric associated with a pseudo-Riemannian

manifold is not positive definite, therefore it will have signature (1, 3) or (3, 1), for the pur-

poses of this thesis I will consider a metric with signature (−,+,+,+) for results in general

relativity unless otherwise stated. The metric gµν and its inverse gµν are symmetric so that

gµν = gνµ and gµν = gνµ , where gµσgνσ = δµν . The line element

ds2 = gµνdx
µdxν (1.2.1)

is invariant under arbitrary invertible transformations known as diffeomorphisms.

1.3 Tensor In General Relativity

Principle of General Covariance by virtue of the Einstein Equivalence Principle, a physical

equation holds in an arbitrary gravitational field if

1. the equation holds in the absence of gravity, i.e. when gµν = ηµν ,Γµνλ = 0

2. the equation is generally covariant, i.e. preserves its form under a general coordinate

transformation

In order to construct generally covariant equations, we need objects that transform in a

simple way under coordinate transformations. The prime examples of such objects are

tensors .[?]
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1.3.1 Metric tensor and Affine Connection

Affine connection is the field that determines the gravitational force and used as to repre-

sent the gravitational field. It also called as the Christoffel second symbol which denoted

as {µν, λ} or {λµν} or Γλµν .the metric tensor is used to determine the proper time interval

between two events with a given infinitesimal coordinate separation and also the gravita-

tional potential.Its derivative helps to determine the field Γλµν as well as denoted as gµν .

The mathematical definition of gµν and Γλµν as,

gµν ≡
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ

Γλµν ≡
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(1.3.1)

where ξα and ξβ are local coordinates. The infinitesimal line element and the motion of

particle in a gravitational field can be written as,

dτ2 = gµνdx
µdxν ,

d2xλ

dτ2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0 (1.3.2)

Now differentiating the metric tensor in a gravitational field with respect to the general

coordinate system xλ

∂gµν
∂xλ

=
∂

∂xλ

(
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ
)

∂gµν
∂xλ

=
∂2ξα

∂xλ∂xµ
∂ξα

∂xµ
ηαβ +

∂ξα

∂xµ
∂2ξβ

∂xµ∂xν
ηαβ (1.3.3)

Equation(1.3.3) can be written as,

∂gµν
∂xλ

= Γρλµ
∂ξα

∂xρ
∂ξβ

∂xν
ηαβ + Γρλν

∂ξα

∂xµ
∂ξβ

∂xρ
ηαβ (1.3.4)

where

Γρλµ =
∂xρ

∂ξα
∂2ξα

∂xλ∂xµ

Γρλν =
∂xρ

∂ξα
∂2ξα

∂xλ∂xν
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Equation(1.3.4)can be written as,

∂gµν
∂xλ

= Γρλµgρν + Γρλνgρµ (1.3.5)

where,

gρν =
∂ξα

∂xρ
∂ξβ

∂xν
ηαβ

gρµ =
∂ξα

∂xµ
∂ξβ

∂xρ
ηαβ

The two Γρλµ and Γρλν are the affine connections. If we considering freely falling particle

affine connection is field that determine the gravitational force. Now using the symmetry

property of affine connection with the exchange of lower indices ,i.e Γρλµ = Γρµλ. To solve

for the affine connection ,it is a matter of adding to equation (??) the same equation with

µand λ inter changing and subtract the same equation with ν and λ interchange.It shows,

∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

= Γρλµgρν + Γρλνgρµ + Γρµλgρν + Γρµνgρλ − Γρνµgρλ − Γρνλgρµ (1.3.6)

From the symmetry property of affine connection,Γρµν and the metric tensor,gµν ,then

∂gµν
∂xλ

+
∂gλν
∂xν

−
∂gµλ
∂xν

= 2Γρλµgρν (1.3.7)

Now let us define metric gνσ as the inverse of gνσ.

gνσgρν = δσρ

where, δσρ is the kronecker delta define as δσρ = 1 for σ = ρ and zero for else. Therefore,

applying (σ = ρ) to kronecker delta,thus

Γσλµ =
1

2
gνσ

(
∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)
(1.3.8)

Equation (1.3.8) is the relation developed between the metric tensor and affine connection

in a gravitational field. Here both of them represent the presence of gravitational effect.

Consider the case where a particle is moving slowly in a weak stationary gravitational field.
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For sufficiently slow motion of a particle,the equation of motion of a particle can be written

as,

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)
= 0 (1.3.9)

This is from the equation of motion of the particle in a gravitational field which can be

given by,

d2xµ

dτ2
+ Γµλν

dxλ

dτ

dxν

dτ
= 0 (1.3.10)

For which λ = ν = 0 and dx0 = dt.Recall the relation given by, (??)

Γσλµ =
1

2
gνσ

(
∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)
Since the field is stationary,all time derivatives of gµν vanish,so that

Γλ00 = −1

2
gλν

∂g00

∂xν
(1.3.11)

For a weak static field produced by non-relativistic mass density ρ,

gαβ = ηαβ + hαβ

where, ‖ hαβ ‖ << 1 and ηαβ is is minkowski metric tensor. For α = β = 0 and applying

the relation η00 = 1.

g00 = 1 + h00 (1.3.12)

Therefore we have,

Γα00 = −1

2
ηαβ

∂h00

∂xβ
(1.3.13)

Now the equation of motion has take the form of,

d2xµ

dτ
=

1

2
ηαβ

(
∂h00

∂xβ

)(
dt

dτ

)2

(1.3.14)

For α = β = 1, 2, 3 the minkowski metric tensor,ηαβ = ηαβ,then the above equation can be

written as,

d2x

dτ2
= −1

2

[ dt
dτ

]2∇h00 (1.3.15)
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Where,∂h00
∂x = ∇h00 . Once rearranging the equation that gives,

d2x

dt2
= −1

2
∇h00 (1.3.16)

Now the corresponding Newtonian result is,

d2x

dτ2
= −∇φ (1.3.17)

Where,φ is the Newtonian potential. The comparison of equations result,

1

2
∇h00 = ∇φ

∇h00 = 2∇φ

h00 = 2φ+ constant (1.3.18)

Furthermore,the coordinates system must become Minkowskian at great distance so h00

vanish at infinity. Then if φ defined to vanish at infinity
(
where φ = −GM

r , r is the distance

from the center of a spherical body of mass M
)
. By recall the relation for a weak static

field given by,

gαβ = ηαβ + hαβ

Therefore

g00 = 1 + h00 (1.3.19)

g00 = 1 + 2φ (1.3.20)

1.3.2 Curvature Tensor

If we use only gµν and its first derivatives , then no new tensor can be contracted , for

at any point we can find a coordinate system in which the first derivative of the metric

tensor vanish, so in this coordinate system the desired tensor must be equal to one of those

that can constructed out of the metric tensor alone, and since this is an equality between
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tensors alone, and since this is an equality between tensors it must be true in all coordinate

systems[?].This simplest possibility is to construct a tensor out of the metric tensor and

its first and second derivatives.To do this it is possible to write the transformation rule of

affine connection as,

Γ
′λ
µν =

∂x
′λ

∂ξα
∂2ξα

∂x′µ∂x′ν

or it can be written as,

Γ
′λ
µν =

∂x
′λ

∂xρ
∂xρ

∂ξα
∂

∂x′µ

(
∂ξα

∂xσ
∂xσ

∂x′ν

)
(1.3.21)

but,

∂

∂x′µ

(
∂ξα

∂xσ
∂xσ

∂x′ν

)
=
∂ξα

∂xσ

(
∂2xσ

∂x′µ∂x′ν

)
+
∂xσ

∂x′ν

(
∂2ξα

∂xτ∂xσ
∂xτ

∂x′µ

)
Therefore the transformation of affine connection becomes,

Γ
′λ
µν =

∂x
′λ

∂xρ
∂xρ

∂ξα

(
∂ξα

∂xσ
∂2xσ

∂x′µ∂x′ν
+
∂xσ

∂x′ν
∂2ξα

∂xτ∂xσ
∂xτ

∂x′µ

)
=

∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν

(
∂xρ

∂ξα
∂2ξα

∂xτ∂xσ

)
+
∂x
′λ

∂xρ
∂xρ

∂ξα
∂ξα

∂xσ

(
∂2xσ

∂x′µ∂x′ν

)
(1.3.22)

Using the relation given by affine connection and kronecker delta into equation (1.3.21)

which are,

Γρτσ =
∂xρ

∂ξα
∂2ξα

∂xτ∂xσ

∂xρ

∂ξα
∂ξα

∂xσ
= δρσ

Where , δρσ = 1 for ρ = σ else zero.

Γ
′λ
µν =

∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ +

∂x
′λ

∂xρ

(
∂2xρ

∂x′µ∂x′ν

)
(1.3.23)

According to the statement given by general coordinate transformation ,equation (1.3.22)

implies that Γλµν is not a tensor. If Γλµν is a tensor the expected term will be ,∂x
′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ.Now

invert equation (1.3.22) as,

Γλµν =
∂xλ

∂x′τ
∂x
′ρ

∂xµ
∂x
′σ

∂xν
Γ
′τ
ρσ +

∂xλ

x′τ
∂2x

′τ

∂xµ∂xν
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Thus,

∂2x
′τ

∂xµ∂xν
=
∂x
′τ

∂xλ
Γλµν −

∂x
′ρ

∂xµ
∂x
′σ

∂xν
Γ
′τ
ρσ (1.3.24)

Differentiating this equation with respect to xκ gives,

∂3x
′τ

∂xκ∂xµ∂xν
=

∂2x
′τ

∂xκ∂xλ
Γλµν+

∂x
′τ

∂xλ
∂

∂xκ
Γλµν−

∂2x
′ρ

∂xκ∂xµ
∂x
′σ

∂xν
Γ
′τ
ρσ+

∂x
′ρ

∂xµ
∂2x

′σ

∂xκ∂xν
Γ
′τ
ρσ−

∂x
′ρ

∂xµ
∂x
′σ

∂xν
∂

∂xκ
Γ
′τ
ρσ

(1.3.25)

According to the relation given by the equation(??) it is possible to write the following,

∂2x
′τ

∂xκ∂xλ
=
∂x
′τ

∂xη
Γηκλ −

∂x
′ρ

∂xκ
∂x
′σ

∂xλ
Γ
′τ
ρσ

∂2x
′ρ

∂xκ∂xµ
=
∂x
′ρ

∂xη
Γηκµ −

∂x
′η

∂xκ
∂x
′ξ

∂xµ
Γ
′ρ
ηξ

∂2x
′σ

∂xκ∂xν
=
∂x
′σ

∂xη
Γηκν −

∂x
′η

∂xκ
∂x
′ξ

∂xν
Γ
′σ
ηξ

Substituting those equation into equation(??), we get,

∂3x
′τ

∂xκ∂xµ∂xν
=

(
∂x
′τ

∂xη
Γηκλ −

∂x
′ρ

∂xκ
∂x
′σ

∂xλ
Γ
′τ
ρσ

)
Γλµν+

∂Γλµν
∂xκ

∂x
′τ

∂xλ
−Γ

′τ
ρσ

∂x
′σ

∂xµ

(
∂x
′ρ

∂xη
Γηκµ −

∂x
′η

∂xκ
∂x
′ξ

∂xµ
Γ
′ρ
ηξ

)

− ∂x
′ρ

∂xµ
∂x
′σ

∂xν
∂Γ
′τ
ρσ

∂xκ
− Γ

′τ
ρσ

∂x
′ρ

∂xµ
(∂x′σ
∂xη

Γηκν −
∂x
′η

∂xκ
∂x
′ξ

∂xν
Γ
′σ
ηξ

)
(1.3.26)

Now collect similar terms and juggle indices a bit gives,

∂3x
′τ

∂xκ∂xµ∂xν
=
∂x
′τ

∂xλ
(∂Γλµν
∂xκ

+ ΓηµνΓλκη
)
− ∂x

′ρ

∂xµ
∂x
′σ

∂xν
∂
′η

∂xκ
(∂Γ

′τ
ρσ

∂x′η
− Γ

′τ
ρλΓ

′λ
ησ − Γ

′τ
λσΓ

′λ
ηρ

)
− Γ

′τ
ρσ

∂x
′σ

∂xλ
(
Γλµν

∂x
′σ

∂xκ
+ Γλκν

∂x
′ρ

∂xµ
+ Γλκµ

∂x
′ρ

∂xν
)

(1.3.27)

then after subtracting the same equation with interchanging ν ←→ κ at the drop out the

product of Γ and Γ′ ,so that

0 =
∂x
′τ

∂xλ
(∂Γλµν
∂xκ

−
∂Γλµκ
ν

+ ΓηµνΓλκη − ΓηµκΓλνη
)

− ∂x
′ρ

∂xµ
∂x
′σ

∂xν
∂
′η

∂xκ
(∂Γ

′τ
ρσ

∂x′η
−
∂Γ
′τ
ρη

∂x′σ
− Γ

′τ
λσΓ

′λ
ηρ + Γ

′τ
ληΓ

′λ
σρ

)
(1.3.28)
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This may be written as a transformation rule,

R
′τ
ρση =

∂x
′τ

∂xλ
∂xµ

∂x′ρ
∂xν

∂x′σ
∂xκ

∂x′η
Rλµνκ (1.3.29)

From the term in the first bracket of equation(??)using the curvature tensor notation

as,

Rλµνκ =
∂Γλµν
∂xκ

−
∂Γλµκ
ν

+ ΓηµνΓλκη − ΓηµκΓλνη (1.3.30)

Rλµνκ is called Riemann-Christoffel curvature tensor plays an important role in specifying

the geometrical properties of space-time.The space-time is considered flat,if the Riemann

tensor vanishes every where. It is possible to write the Riemann curvature tensor in it fully

covariant form as,

Rλµνκ = gλσR
σ
µνκ (1.3.31)

Riemann curvature tensor can also be written directly in terms of the space-time metric,

using the definition of affine connection,

Γσλµ =
1

2
gνσ

(
∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)
Thus,

Rλµνκ =
1

2
gλσ

∂gσρ

∂xκ

(
∂gρν
∂xµ

+
∂gσρ
∂xµ

− ∂gµν
∂xρ

)
− 1

2
gλσ

∂gσρ

∂xν

(
∂gρµ
∂xκ

+
∂gρκ
∂xµ

− ∂gµκ
∂xρ

)
+ gλσ

(
ΓηµνΓσκη − ΓηµκΓσνη

)
(1.3.32)

Now define the kronecker deltaδρλ = 1, where ρ = λ and ,

gλσ
∂gσρ

∂xκ
= −gλρ∂gλσ

∂xκ
= −gσρ

(
Γηκλgησ + Γηκσgηλ

)
Therefore most of ΓΓ terms cancel,then

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
+ gησ

(
ΓηνλΓσµκ − ΓηκλΓσµν

)
(1.3.33)
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This is the covariant form of Riemann-Christoffel curvature tensor. The algebraic prop-

erty of the curvature tensors are,

1. Symmetry

Rλµνκ = Rνκλµ (1.3.34)

2. Antisymmetry

Rλµνκ = −Rµλνκ = −Rλµκν = Rνκλµ (1.3.35)

3. Cyclicity

Rλµνκ +Rµκλν +Rλκµν = 0 (1.3.36)

Therefore,the Riemann tensor in 4-dimensional space-time has only 20 independent com-

ponents because of symmetries. Thus the general rule for computing the number of inde-

pendent components in a N-dimension space-time is N2(N2−1)
12 [?].

1.3.3 Ricci Tensor,Ricci Scalar and Einstein Field Tensor

Ricci Tensor: Obtained from the Riemann curvature tensor by contracting over two of

the indices

Rµκ = Rλµλκ

= gλνRλµνκ

Which can be written as,

Rµκ =
1

2
gλν

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
+ gλν

(
ΓηνλΓσµκ − ΓηκλΓσµν

)
(1.3.37)

and also one can write the Ricci tensor as,

Rµκ =
∂Γλµλ
∂xκ

−
∂Γλµκ
∂xλ

+ ΓηµλΓλκη − ΓηµκΓλλη (1.3.38)

Ricci tensor is symmetric.Therefore,it has at most ten independent components.

Rµκ = Rκµ
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Ricci Scalar: By further contracting the Ricci tensor with the contravariant component

of the metric, one obtains the curvature scalar,

R = gµκRµκ = gλνgµκRλµνκ (1.3.39)

or

R = Rµµ (1.3.40)

Einstein Field Tensor: Einstein field tensor Gµκ is constructed only from the Riemann

tensor and the metric

Gµκ = Rµκ −
1

2
gµκR (1.3.41)

Where, Gµκ is a linear combination of the metric tensor and its first and second deriva-

tives. Since the Ricci tensor and metric tensor are symmetric, so Einstein field tensor also

symmetric, thus

Gµκ = Gκµ (1.3.42)

1.3.4 Bianchi Identity

The Riemann curvature tensor obeys important differential identities. These can be derived

at a given point,x by adopting a locally inertial coordinate system in which Γλµν vanishes at

x thus at x,

Rλµνκ;η =
1

2

∂

∂xη
[ ∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

]
(1.3.43)

By permuting ν,κ and η cyclically,we obtain the Bianchi identities,

Rλµνκ;η +Rλµην;κ +Rλµκη;ν = 0 (1.3.44)

Now recalling that the covariant derivatives of gλν vanish,then we find on contraction of λ

with ν that,

Rµκ;η −Rµη;κ +Rνµκη;ν = 0 (1.3.45)
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Again contracting gives,

R;η −Rµη;µ −Rνη;ν = 0

or (
Rµη −

1

2
δµηR

)
;µ = 0 (1.3.46)

An equivalent but more familiar form is,

(
Rµν − 1

2
gµνR

)
;µ = 0 (1.3.47)

or

Gµν;µ = 0 (1.3.48)

1.3.5 Energy-Momentum Tensor

Some time Energy Momentum called as stress-energy tensor. It describes the density and

flows of the 4 momentum .

In the absence of gravity Energy-Momentum Tensor for perfect fluid is given by

Tαβ = Pηαβ + (P + ρ)UαUβ (1.3.49)

The four velocity, Uα is define as

Uα =
dxα

dτ
and Uβ =

dxβ

dτ
(1.3.50)

From line element

dτ2 = ηαβdx
αdxβ (1.3.51)

Now using (??),(??) we can derive,

1 = ηαβU
αUβ (1.3.52)
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Using (??),(??),(??), The energy-momentum tensor of a perfect fluid therefore takes the

following form in its rest frame.

Tαβ =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 (1.3.53)

This is an important formula for applications such as stellar structure and cosmology[7,11].

In fact,one way to define T would be a(2,0) tensor with units of energy per volume,which

is conserved.

In the presence of gravity Energy-Momentum Tensor for perfect fluid given by

Tµν = Pgµν + (P + ρ)UµUν (1.3.54)

also from normalization

gµνU
µUν = −1 (1.3.55)

1.4 Einstein Field Equation

In Newtonian theory, gravity can only exist where there exists matter. However Einstein

showed that matter and energy are only different faces of the same coin. This encouraged

him to make the conclusion that gravity is not only created by the presence of matter, it is

in fact the product of the presence of energy. General relativity must present appropriate

analogues of the two parts of the dynamics,one how particles move in the response to

gravity,and secondly,how particles generate gravitational effects [?]. The analogue of the

poisson equation of the second idea can be,

∇2φ(x) = 4πGρ(x) (1.4.1)

Now we start to derive Einstein field equation under the approximation of a weak static

field produced by a non-relativistic mass density ρ [?, ?]. Therefore,the energy density for



17

non-relativistic matter is,

T00 = ρ = T 00 (1.4.2)

One can write the poisson equation as,

∇2φ = 4πGT00 (1.4.3)

From equation(??) we get,

∇2φ =
1

2
∇2g00 (1.4.4)

Therefore poison equation result,

1

2
∇2g00 = 4πGT00

∇2g00 = 8πGT00 (1.4.5)

From this fact the weak field equation for a general distribution of energy and momentum

Tαβ will take the form,

Gαβ = 8πGTαβ (1.4.6)

Where, Gαβ is a linear combination of the metric tensor and its first and second derivatives.

The principle of equivalence that the equation which govern gravitational fields of arbitrary

strength must take the form,

Gµν = 8πGTµν (1.4.7)

Therefore,equation (??) is the approximated form of equation (??) in a weak static grav-

itational field as equivalence principle states. Here is a tensor which reduce to Gαβ for a

weak fields and since Tµν is symmetric, Gµν also. To go further consider the nature of Gµν ;

1. By definition Gµν is a tensor

2. By assumption Gµν contain terms that are linear in the second derivative of the metric

tensor or quadratic in the first derivative of the metric.
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3. Since Tµν is symmetric so does Gµν

4. Since Tµν is conserved in the absence of external forces,so does Gµν .

5. For a weak stationary field produced by non-relativistic matter ,the 00 component

must satisfy

G00
∼= ∇2g00 (1.4.8)

Hence (1) and (2) require Gµν to take the form

Gµν = C1Rµν + C2gµνR (1.4.9)

Where, C1 and C2 are constants.Since this is symmetric condition(3) is automatically sat-

isfied. It follows from the above relation that.

gσµGµν = C1g
σµRµν + C2g

σµgµνR (1.4.10)

Equivalent to,

Gσν = C1R
σ
ν + C2δ

σ
νR (1.4.11)

This follows as

Gσν;σ = C1R
σ
ν;σ + C2δ

σ
νR;σ (1.4.12)

Using the result,Rσν;σ = 1
2δ
σ
νR;σ in to the above equation and it follows,

Gσν;σ =
1

2
C1δ

σ
νR

σ
;σ + C2δ

σ
νR;σ (1.4.13)

If ν = σ

Gσν;σ =
(C1

2
+ C2

)
R;σ (1.4.14)

By the conservation of Gµν we have Gσν;σ = 0 and this yields the relation,

(C1

2
+ C2

)
R;σ = 0
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C1

2
= −C2 (1.4.15)

Therefore we can rewrite Gµν as,

Gµν = C1Rµν −
C1

2
gµνR

Gµν = C1

(
Rµν −

1

2
gµνR

)
(1.4.16)

To fix the constant C1,use the property[?]. A non-relativistic system always has ‖Tij‖ <<

‖T00‖ and here look the case where ‖Gij‖ << ‖G00‖ thus,

Gij ∼= 0 (1.4.17)

From equation(1.2.20)we can be written as,

Rij −
1

2
gijR = 0

Rij =
1

2
gijR (1.4.18)

Since we deal here with a weak field approximation (i.e.gαβ ∼= ηαβ) as well as gij ∼= ηαβ.

Therefore,this lead to write as,

Rij ∼=
1

2
ηijR (1.4.19)

By applying the property of metric tensor ηij = 1, for i = j = 1, 2, 3 and taking the sum

over each indices,

Rij =

3∑
i,j=1

1

2
ηijR ∼=

3

2
R

Rkk =
3

2
R (1.4.20)

The curvature scalar is therefore given by,

R ∼= Rkk −R00 =
3

2
R−R00

R ∼= 2R00 (1.4.21)
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Thus in the weak field approximation we have the following information,

R ∼= 2R00

gαβ ∼= ηαβ

Gµν = C1

(
Rµν −

1

2
gµνR

)
For the 00 component of Gµν equals to,

G00 = C1

(
R00 −

1

2
g00R

)
= C1

(
R00 −

1

2
η00

)
(1.4.22)

Now the task is to calculate R00. Recall the expression given by the Riemann curvature

tensor Rλµνκ that is,

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
+ gησ

(
ΓηνλΓσµκ − ΓηκλΓσµν

)
Since we are looking for a weak field approximation,it is better to use the linear part of

Rλµνκ ,given by

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
(1.4.23)

When the field is static all the time derivatives vanish,and the components that we need

are,

R0000
∼= 0

Riojo ∼=
1

2

∂2g00

∂xi∂xj
=

1

2
∇2g00 (1.4.24)

Where ∂2g00

∂xi∂xj
= ∇2g00 . From the contraction of curvature tensor over the two indices

R00 = gλνRλ0ν0

R00 = Riojo −R0000 (1.4.25)

By using this relation in to equation(1.2.33) for Gµν ,

G00 = 2C1

(
Riojo −R0000

)
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G00 = 2C1

(1

2
∇2g00 − 0

)
= C1∇2g00 (1.4.26)

Comparing equation (??) to equation (1.4.26),

G00 = C1∇2g00 = ∇2g00 (1.4.27)

This gives the value of C1 = 1 ,and therefore we can write the equation for Gµν as,

Gµν =
(
Rµν −

1

2
gµνR

)
= 8πGTµν

Rµν −
1

2
gµνR = 8πGTµν (1.4.28)

Equation (1.4.28) is Einstein field equation. This shows that the metric of space-time is

dependent upon the matter present in that space-time.

1.5 Introduction of Cosmological Constant into Einstein Field

Equations

After completing his theory of GR, Einstein was interested to find a static solution of his

field equations with the idea of incorporating Mach’s principle, for details see [?]. But

Einstein soon noticed that his original field equations yield a non - static solution. As

the consequence, Einstein himself after a year, in 1917 introduced a positive cosmological

constant with the belief of constructing a static solution, (??). But at the same year that

Einstein introduced the cosmological term, de Sitter presented solutions to static Ein-

stein universe , which had both static and dynamic features. The de Sitter’s prediction is

considered as the first step towards the theoretical discovery of expanding universe. On

the other hand, in 1922 Freidmann constructed a matter dominated expanding universe

without a cosmological constant.Then, the possibility that the universe may be expanding

led Einstein to abandon the idea of a static universe and, along with it, the cosmological
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constant. However, other groups sustained supporting a model with cosmological constant.

For example, Weyl in 1923 recommended de Sitter’s model to explain measurements of the

spectra of spiral nebulae that showed redshifted; Lemaitre constructed an expanding model

which originated from such an asymptotically static state ( static Einstein universe ) in the

distant past. Since then, the cosmological constant has remained with debate where it is

being cast out at a time and reintroduced at other time.

Einstein field equation with cosmological constant Λ became,

Rµν −
1

2
gµνR+ gµνΛ = 8πGTµν (1.5.1)

Recent observational data and results in modern cosmology revealed that the dark energy

which is described in majority by the cosmological constant is of dominant importance in the

dynamics of our Universe. Measurements conducted by Wilkinson Microwave Anisotropic

Probe (WMAP) indicate that almost three fourth of total mass-energy in the Universe is

Dark Energy and the leading theory of dark energy is based on the cosmological constant

characterized by repulsive pressure which was introduced by Einstein in 1917 to obtain a

static cosmological model. Later on Zeldovich[?] interpreted this quantity physically as a

vacuum energy of quantum fluctuation whose size is of the order of ∼ 3× 10−56cm−2



Chapter 2

Hydrodynamics in General
Relativity in the Schwarzschild-de
sitter space-time

2.1 Introduction

The first static, spherically symmetric perfect fluid solution with constant density was al-

ready found by Schwarzschild in 1918. In spherical symmetry Tolman [?] and Oppenheimer

and Volkoff [?]reduced the field equations to the well known TOV equation.

The boundary of stellar models is defined to be where the pressure vanishes. At this surface

a vacuum solution is joined on as an exterior field.In case of vanishing cosmological constant

it is the Schwarzschild solution.For very simple equations of state Tolman integrated the

TOV equation and discussed solutions. Although he already included the cosmological con-

stant in his calculations he did not analyze them. He stated that the cosmological constant

is too small to produce effects.

Buchdahl [?] assumed the existence of a global static solution, to show that the total mass

of a fluid ball is bounded by its radius. He showed the strict inequality M < (4
9)R , which

holds for fluid balls in which the density does not increase outwards. It implies that radii

of fluid balls are always larger than the black-hole event horizon.

23
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Geometrical properties of constant density solutions were analyzed by Stephani[?] . He

showed that they can be embedded in a five dimensional flat space and that they are

conformally flat. The cosmological constant can easily be included in his calculations by

redefining some variables.

Collins [?] stated that for a fixed equation of state and cosmological constant the choice

of central pressure and therefore central density does not uniquely determine the solution.

This is disproved.

Static perfect fluid solutions with cosmological constant were analyzed by Kriele [?] and

later by Winter [?]. Both derived the analogous TOV- equation. The first one shows unique-

ness of the solution for given pressure and density distributions, which already disproved

Collins [?]. An analogous type of Buchdahl inequality is derived but not discussed in the

context of upper and lower bounds on radii of stellar objects. Winter [?] integrates the

TOV- equation from the boundary inwards to the centre, without proving the existence of

that boundary. This leads to solutions with non-regular centres and is therefore not suitable

for discussing stellar models.

Constant density solutions with cosmological constant were first analysed by Weyl . More

than 80 years later Stuchlk [?] analysed these solutions again. He integrated the TOV-

Λ equation for possible values of the cosmological constant up to the limit Λ < 4πρ0,

where ρ0 denotes this constant density. In these cases constant density solutions describe

stellar models. For larger cosmological constant the pressure will vanish after the coordi-

nate singularity. The volume of group orbits is decreasing and there one has to join the

Schwarzschild-de Sitter solution containing the r = 0 singularity. Increasing the cosmologi-

cal constant further leads to generalizations of the Einstein static universe. These solutions

have two regular centres with monotonically decreasing or increasing pressure from the first

to the second centre. Certainly the Einstein cosmos itself is a solution. Another new kind
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describes solutions with a regular centre and increasing divergent pressure. In this case the

spacetime has a geometrical singularity. These solutions are unphysical and therefore not

of great interest.

This chapter deals with the Einstein field equations with cosmological constant in the spher-

ically symmetric and static case. For a generalized Birkhoff theorem see [?].

Perfect fluid is assumed to be the matter source. This directly leads to a Λ-extended

Tolman-Oppenheimer-Volkoff equation which will be called TOV-Λ equation. The TOV-Λ

equation together with the mean density equation form a system of differential equations.

It can easily be integrated if a constant density is assumed

2.2 Metric tensor

The metric is a geometric tool that relates distances in spacetime, a kind of generalized

pythagorean theorem where the time coordinate is included as well. The underlying physics

is more important than the relative coordinates, so all equations are written in the invariant

language of tensors, or multi-indexed objects. The Einstein summation convention shortens

the notation by assuming an implied sum over repeated indices. With this in mind, the

Schwarschild-de sitter metric for a spherically symmetric vacuum space-time (valid outside

a star or black hole) in coordinates (t, r, θ, ϕ) is

gµν =


−e2Φ 0 0 0

0
(
1− 2mr − r

2 Λ
3

)−1
0 0

0 0 r2 0

0 0 0 r2sin2θ

 gµν =


−e−2Φ 0 0 0

0
(
1− 2mr − r

2 Λ
3

)
0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ


(2.2.1)

which induces the following line element for measuring infinitesimal distances, for the deriva-

tion see appendix (??)

ds2 = −
(

1− 2
m

r
− r2 Λ

3

)
dt2 +

(
1− 2

m

r
− r2 Λ

3

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (2.2.2)
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we can re write this in the form of some potential, Φ as,

ds2 = −e2Φdt2 +

(
1− 2

m

r
− r2 Λ

3

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (2.2.3)

Due to spherical symmetry and no time dependence, we only have the r component of

the metric and therefore the pressure P and the energy-density ε will only depend on this

component, and thus a calculation of this component is required, let start calculating for Γ

using (??)(??). Then the non vanishing terms of Γ are,

Γrtt =
(
1− 2mr − r

2 Λ
3

)
Φ
′
e2Φ Γrrr =

Λr
3
−m
r2

+m
′
r

r2(
1− 2m

r
− r2Λ

3

) Γrθθ = −r
(
1− 2mr − r

2 Λ
3

)
Γrφφ = −r

(
1− 2mr − r

2 Λ
3

)
sin2θ Γtrt = Φ

′
Γφθφ = cot θ

Γθφφ = − cos θ sin θ Γφrφ = Γθrθ = 1
r

2.2.1 Ricci Tensor and Ricci Scalar

Now lets find the component of Ricci tensor (Rtt, Rrr, Rθθ, Rφφ) using

Rµν = Γλµν;λ − Γλµλ;ν + ΓαµνΓλαλ − ΓαµλΓλαν (2.2.4)

Then the Rtt

Rtt = Γrtt;r + Γrtt

[
Γtrt + Γθrθ + Γφrφ + Γrrr

]
−
[
ΓttrΓ

r
tt + ΓrttΓ

t
rt

]
let assume

(
1− 2m

r −
r2Λ

3

)
= K

Rtt =
d

dr

[
Φ
′
e2ΦK

]
+ Φ

′
e2ΦK

Φ
′
+

2

r
+

Λr
3 −

m
r2 + m

′
r

r2(
1− 2m

r −
r2Λ

3

)
− [2(Φ

′
)2
e2ΦK

]

= Φ
′′
e2ΦK+Φ

′
e2ΦK

′
+Φ

′
(e2Φ)

′
K+Φ

′
e2ΦK

Φ
′
+

2

r
+

Λr
3 −

m
r2 + m

′
r

r2(
1− 2m

r −
r2Λ

3

)
−[2(Φ

′
)2
e2ΦK

]

= Φ
′′
e2ΦK+2Φ

′
e2Φ

[
m−m′r

r2
− rΛ

3

]
+2(Φ

′
)2e2ΦK+Φ

′
e2ΦK

Φ
′
+

2

r
+

Λr
3 −

m
r2 + m

′
r

r2(
1− 2m

r −
r2Λ

3

)
−2(Φ

′
)2e2ΦK
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=
(

Φ
′′

+ (Φ
′
)2
)
e2ΦK + 2Φ

′
e2Φ

[
m−m′r

r2
− rΛ

3

]
+ Φ

′
e2ΦK

2

r
+

Λr
3 −

m
r2 + m

′
r

r2(
1− 2m

r −
r2Λ

3

)


=
(

Φ
′′

+ (Φ
′
)2
)
e2ΦK + e2ΦΦ

′

[
2

(
m−m′

r2

)
− 2rΛ

3
+

2K

r
+

Λr

3
− m

r2
+
m
′
r

r2

]

Rtt = e2Φ

[(
Φ
′′

+ (Φ
′
)2
)(

1− 2m

r
− r2Λ

3

)
+ Φ

′

(
2r −m′r − 3m

r2
− rΛ

)]
(2.2.5)

For Rrr we use (??) then,

Rrr = −Γtrt;r − Γθrθ;r − Γφrφ;r + Γrrr

[
Γtrt + Γθrθ + Γφrφ

]
−
[
ΓtrtΓ

t
rt + ΓθrθΓ

θ
rθ + Γφrφ

]

= − d

dr
(Φ
′
)− d

dr

[
1

r

]
− d

dr

[
1

r

]
+

[
Λr
3 −

m
r2 + m

′
r

r2

]
1− 2m

r −
r2Λ

3

[
Φ
′
+

2

r

]
−
[
(Φ
′
)2 +

2

r2

]

= −Φ
′′

+
2

r2
+ (1− 2m

r
− r2Λ

3
)−1

[
Λr3

3 −m+m
′
r

r2

][
rΦ
′
+ 2

r

]
−
[
(Φ
′
)2 +

2

r2

]

Rrr = (1− 2m

r
− r2Λ

3
)−1

[
[Λr3

3 −m+m
′
r][rΦ

′
+ 2]

r3

]
−
(

Φ
′′

+ (Φ
′
)2
)

(2.2.6)

For Rθθ we use (??) then,

Rθθ = Γrθθ;r − Γφθφ;θ + Γrθθ

[
Γθrθ + Γtrt + Γφrφ + Γrrr

]
−
[
ΓθrθΓ

r
θθ + ΓrθθΓ

r
rθ + ΓφθφΓφφθ

]

=
d

dr
[−r + 2m+

r3Λ

3
]− d

dθ
[cot θ] + [−rK]

2

r
+ Φ

′
+

[
Λr
3 −

m
r2 + m

′
r

r2

]
K

− [−2K + cot2 θ]

= −1 + 2m
′
+ r2Λ +

1

sin2 θ
− 2K − rΦ′K − r(Λr

3
− m

r2
+
m
′
r

r2
) + 2K − cot2 θ

= 2m
′
+ r2Λ− rΦ′(1− 2m

r
− r2Λ

3
)− r(Λr

3
− m

r2
+
m
′
r

r2
)

= 2m
′ −m′ + r2Λ− r2Λ

3
+
m

r
+ Φ

′
(−r + 2m+

r3Λ

3
)
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Rθθ = m
′
+
m

r
+

2r2Λ

3
− Φ

′
(−r + 2m+

r3Λ

3
) (2.2.7)

for Rφφ we use (??)

Rφφ = Γθφφ;θ + Γrφφ;r + Γrφφ

[
Γtrt + Γrrr + Γθrθ + Γφrφ

]
− 2ΓrφφΓφrφ − ΓθφφΓφθφ

=
d

dθ
(− cos θ sin θ)+

d

dr
(−rK sin2 θ)+(−rK sin2 θ)

[
Φ, +

Λr
3 −

m
r2 + m,

r

K
+

2

r

]
+2K sin2 θ+sin θ cos θ cot θ

= sin2 θ−cos2 θ−K sin2 θ−rK , sin2 θ−rKΦ, sin2 θ−r(Λr

3
−m
r2

+
m,

r
) sin2 θ−2K sin2 θ+2K sin2 θ+cos2 θ

= sin2 θ −K sin2 θ − rK , sin2 θ − r(Λr

3
− m

r2
+
m,

r
) sin2 θ − rKΦ, sin2 θ

=

[
1− (K + rK , + r(

Λr

3
− m

r2
+
m,

r
))

]
sin2 θ − rKΦ, sin2 θ

=

[
1− (1− 2m

r
− r2Λ

3
+

2m

r
− 2m, − 2Λr

3
+

Λr2

3
− m

r
+m,)

]
sin2 θ − rKΦ, sin2 θ

= (m, +
m

r
+

2Λr2

3
) sin2 θ − (r − 2m− Λr3

3
)Φ, sin2 θ

= sin2 θ

[
m, +

m

r
+

2Λr2

3
− (r − 2m− Λr3

3
)Φ,

]
= sin2 θRθθ (2.2.8)

Now lets find the Ricci scalar R using, (??),(??),(??),(??),(??),(??),(??)

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ (2.2.9)

= −e−2Φ

[
e2Φ

[(
Φ
′′

+ (Φ
′
)2
)(

1− 2m

r
− r2Λ

3

)
+ Φ

′

(
2r −m′r − 3m

r2
− rΛ

)]]

+(1− 2m

r
− r2Λ

3
)

[
(1− 2m

r
− r2Λ

3
)−1

[
[Λr3

3 −m+m
′
r][rΦ

′
+ 2]

r3

]
−
(

Φ
′′

+ (Φ
′
)2
)]

+
1

r2

[
m
′
+
m

r
+

2r2Λ

3
− Φ

′
(−r + 2m+

r3Λ

3
)

]
+

1

r2sin2θ

[
sin2θ

(
m
′
+
m

r
+

2r2Λ

3
− Φ

′
(−r + 2m+

r3Λ

3
)

)]

= −
(

Φ
′′

+ (Φ
′
)2
)

(1− 2m

r
− r

2Λ

3
)−Φ

′

(
2r −m′r − 3m

r2
− rΛ

)
+

[Λr3

3 −m+m
′
r][rΦ

′
+ 2]

r3
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−
(

Φ
′′

+ (Φ
′
)2
)

(1− 2m

r
− r2Λ

3
) +

2

r2

(
m
′
+
m

r
+

2r2Λ

3
− Φ

′
(−r + 2m+

r3Λ

3
)

)
= −2

(
Φ
′′

+ (Φ
′
)2
)

(1− 2m

r
− r2Λ

3
)− Φ

′

(
2r −m′r − 3m

r2
− rΛ

)
+ Φ

′

[
Λr3

3 −m+m
′
r

r2

]

2

(
Λr3

3 −m+m
′
r

r3

)
+

2m
′

r2
+

2m

r3
+

4Λ

3
− Φ

′
(

2

r
− 4m

r2
− 2rΛ

3

)

= −2
(

Φ
′′

+ (Φ
′
)2
)

(1− 2m

r
− r2Λ

3
) + Φ

′

(
2Λr +

2m
′
r

r2
+

6m

r2
− 4r

r2

)
+

4m
′

r2
+ 2Λ

R = 2

[
2m

′

r2
+ Λ + Φ

′

(
m
′
r + 3m− 2r

r2
+ Λr

)
− (Φ

′′
+ (Φ

′
)2)

(
1− 2m

r
− r2Λ

3

)]
(2.2.10)

2.3 Energy-momentum tensor and Field Equation

The stress energy-momentum tensor Tµν of a perfect fluid is given in terms of pressure P

and the energy-density ε of a given stellar object and is defined by .

Tµν = (ε+ P )UµUν + gµνP (2.3.1)

Where ε -is the energy of the fluid, also it’s

ε = (ρc2 + ε) (2.3.2)

Where ρ-rest mass density.

Where ε-internal energy (thermal motion of particles)

Also we know that from normalization

gµνUµUν = −1 (2.3.3)

Now using (??),(??),(??) we can find each component of Tµν and Tµν

Tµν =


e2Φε 0 0 0

0 P (1− 2mr − r
2 Λ

3 )−1 0 0

0 0 r2P 0

0 0 0 r2P sin2 θ

 (2.3.4)
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the inverse of Tµν

Tµν =


e−2Φε 0 0 0

0 P (1− 2mr − r
2 Λ

3 ) 0 0

0 0 r−2P 0

0 0 0 r−2P csc2 θ

 (2.3.5)

2.4 Hydrodynamics Instability and Effect of Gravitation in

SDS Background

2.4.1 Tolmn-Oppenheimer-Volkoff Equations

With SDS metric, we will use Einsteins equations to determine the equations for the struc-

ture of the star, so we can calculate the limits on the size and mass of the star. First we

need some parameters to describe the star itself. We will use a perfect fluid to model the

stars distribution of matter, since shear stresses, viscosity, or heat conduction are negligible

on a hydrodynamic time scale because all fermion states are already occupied (full electron

or neutron degeneracy). Therefore the star can be described in its rest frame by just two

parameters: the mass density ρ(r) and isotropic pressure P (r)

Gµν = 8πTµν = Rµν −
1

2
gµνR+ gµνΛ (2.4.1)

then the tt component became,

Gtt = 8πTtt = Rtt −
1

2
gttR+ gttΛ (2.4.2)

by using (??),(??),(??),(??),(??)
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8πe2Φε = e2Φ

[(
Φ
′′

+ (Φ
′
)2
)(

1− 2m

r
− r2Λ

3

)
+ Φ

′

(
2r −m′r − 3m

r2
− rΛ

)]

+e2Φ

[
2m

′

r2
+ Λ + Φ

′

(
m
′
r + 3m− 2r

r2
+ Λr

)
− (Φ

′′
+ (Φ

′
)2)

(
1− 2m

r
− r2Λ

3

)]
− e2ΦΛ

8πε =
(

Φ
′′

+ (Φ
′
)2
)(

1− 2m

r
− r2Λ

3

)
+Φ

′

(
2r −m′r − 3m

r2
− rΛ

)
+

2m
′

r2
+Λ+Φ

′

(
m
′
r + 3m− 2r

r2
+ Λr

)

−(Φ
′′

+ (Φ
′
)2)

(
1− 2m

r
− r2Λ

3

)
− Λ

8πε = Φ
′

[
2r −m′r − 3m+ 3m+m

′
r − 2r

r2

]
+

2m
′

r2

4πε =
m
′

r2

m
′

= 4πr2ε

dm

dr
= 4πr2ε (2.4.3)

now to by using (??),(??),(??),(??) we find Φ
′

as,

Grr = 8πTrr = Rrr −
1

2
grrR+ grrΛ (2.4.4)

8πP (1−2
m

r
−r2 Λ

3
)−1 = (1−2m

r
−r

2Λ

3
)−1

[
[Λr3

3 −m+m
′
r][rΦ

′
+ 2]

r3

]
+(1−2

m

r
−r2 Λ

3
)−1Λ−(Φ

′′
+(Φ

′
)2)

−(1−2
m

r
−r2 Λ

3
)−1

[
2m

′

r2
+ Λ + Φ

′

(
m
′
r + 3m− 2r

r2
+ Λr

)
− (Φ

′′
+ (Φ

′
)2)

(
1− 2m

r
− r2Λ

3

)]

8πP = Φ
′

[
Λr3

3 −m+m
′
r

r2

]
+ 2

[
Λr3

3 −m+m
′
r

r3

]
− Φ

′

[
m
′
r + 3m− 2r

r2
+ Λr

]
− 2m

r2

8πP = Φ
′

(
Λr

3
− Λr +

−m+m
′
r −m′r − 3m+ 2r

r2

)
+

2Λ

3
− 2m

r3

8πP = 2Φ
′
(
r − 2m

r2
− Λr

3

)
+

2Λ

3
− 2m

r3

Φ
′
(
r − 2m

r2
− Λr

3

)
=
m− Λr3

3 + 4πr3P

r3
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Φ
′

=
m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )
(2.4.5)

dΦ

dr
=
m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )

Another relevant issue arises from the conservation equation, ∇νTµν = 0 , which gives

an equation that relates the pressure gradient in the radial direction to the fluid density

and the pressure. choosing µ = r .

∇νTµν =
∂Tµν

∂xν
+ T σνΓµσν + TµσΓνσν = 0

∂T rr

∂r
+ T ttΓrtt + T rrΓrrr + T θθΓrθθ + T φφΓrφφ + T rr

[
Γtrt + Γrrr + Γθrθ + Γφrφ

]
= 0

d

dr
P (1− 2

m

r
− r2 Λ

3
) + e−2Φε(Φ

′
e2Φ(1− 2

m

r
− r2 Λ

3
)) + (1− 2

m

r
− r2 Λ

3
)P

 Λr
3 −

m
r2 + m

′
r

r2

1− 2mr − r2 Λ
3


+r−2P − r(1− 2

m

r
− r2 Λ

3
) + r−2csc2θP (−rK(1− 2

m

r
− r2 Λ

3
)sin2θ)

+(1− 2
m

r
− r2 Λ

3
)P

Φ
′
+

2

r
+

Λr
3 −

m
r2 + m

′
r

r2

1− 2mr − r2 Λ
3

 = 0

(1− 2
m

r
− r2 Λ

3
)
[
P
′
+ (ε+ P )Φ

′
]

= 0

Then,

P
′

= −(ε+ P )Φ
′

(2.4.6)

dP

dr
= −(ε+ P )

m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )
(2.4.7)

Then the TOV equation summarized using (??), (??), (??)

dm

dr
= 4πr2ε

dΦ

dr
=
m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )

dP

dr
= −(ε+ P )

m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )
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For realistic equations of state,the equations of stellar structure can be integrated analyti-

cally for some idealized and ad hoc equations of state.We shall consider in the next section

one of the most useful analytic solutions.

2.5 Equation of State

To progress toward a solution of the Equation (??) we assume a polytropic equation of state

(EOS) for a relation between the isotropic pressure and the rest mass density

P = KρΓ (2.5.1)

where Γ is the adiabatic index and K is a normalization constant. For adiabatic processes

we may neglect heat transfer (i.e.dQ = 0) so the first law of thermodynamics is simply

dU = −PdV (2.5.2)

where U = εV is the total energy of the fluid in a volume V , including both the rest energy

and internal energy. However, we may write the rest mass density as ρ = mN = V , where

N is the number of particles of mass m in the same volume V . In other words, the first law

of thermodynamics can be written

d

(
ε

ρ

)
= −Pd

(
1

ρ

)
=
P

ρ2
dρ = KρΓ−2dρ (2.5.3)

The last equality was obtained by applying the polytropic EOS P = KρΓ to the star. The

integrated equation is written suggestively as

ε

ρ
= (a+ 1) +

K

Γ− 1
ρΓ−1 (2.5.4)

The constant of integration is placed in the equation to ensure continuity of the piecewise

polytropic EOS which we will adopt later on. In fact, our primary concern is that in the low

density limit all energy originates from the rest mass. Specifically, we require limρ→0
ε
ρ = 1
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and set a = 0 for the stellar boundary.The form of the equation is nicer when we remember

the form of the internal energy ε = ε− ρ and the specific enthalpy h = (ε+p)
ρ . The resulting

equations are

ε = aρ+
p

Γ− 1
and h = 1 + a+

Γ

Γ− 1

p

ρ
(2.5.5)

Piecewise Polytrope

A nuclear equation of state is often given as a table or a piecewise polytrope for dividing

densities ρ0 < ρ1 < ρ2 < ... based on the various envelopes and crusts . Thus, we continue

by expressing the above equations in a piecewise manner and the important fluid variables

are smoothly given in each section by

ε = (1 + ai)ρ+
Ki

Γi − 1
ρΓi

ε = aiρ+
Ki

Γi − 1
ρΓi

h = 1 + ai +
Γi

Γi − 1
Kiρ

Γi−1 (2.5.6)

Recall that the integration constants ai are chosen to ensure the energy is smooth at the

transitions in the piecewise function so that

a0 = 0

ai = ai−1 +
Ki−1

Γi−1 − 1
ρ

Γi−1−1
i − Ki

Γi − 1
ρΓi−1
i (2.5.7)

Now when integrating the TOV equations, it is useful to define a generalization of the

Newtonian specific enthalpy

η = h− 1 (2.5.8)

which subtracts off the contribution from the rest mass of the fluid. Furthermore, the

polytropic index ni = 1
Γi−1 is defined exactly as in the class notes. Thus we may write the

fluid variables in terms of η in the following manner

ρ(η) =

(
η − ai

Ki(ni + 1)

)ni
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p(η) = Ki

(
η − ai

Ki(ni + 1)

)ni+1

ε(η) = ρ(η)

(
1 +

ai + niη

ni + 1

)
(2.5.9)

The TOV equations of (??) diverge at r = 0 and can be difficult to integrate numerically for

r → 0 . A common technique in the literature to continue analytically and avoid singular

equations is to change variables by defining a pseudo-enthalpy

y(p) =

R∫
dp
′

ε(p′) + P ′
(2.5.10)

Indeed the TOV equation for dΦ = dr can be integrated immediately to give ey+Φ = heΦ =√
1− 2M

R −
ΛR2

3 , where M and R are the mass and radius of the star. This follows from

the relation dΦ = dy and choosing the constant of integration to match the Schwarzschild

spacetime beyond the surface of the star. The meaning of this new insight is that the

gravitational potential Φ for the star is fully determined if we can integrate the other two

TOV equations. This becomes apparent when we complete the change of variables to the

Newtonian specific enthalpy η. TOV Equation becomes

dr

dη
= − r(r − 2m)

m+ 4πr3p(η)

1

η + 1
(2.5.11)

dm

dη
= 4πr2ε(η)

dr

dη
(2.5.12)

which are well-behaved both at the center of the star and at the surface.

Recall that in the case of a relativistic star with ρ = ρ̄ , it is not necessary to use

the unrealistic notion of an incompressible fluid. One can think of the fluids with pressure

growing as radius decreases, having a composition that varies from one radius to another.,

and being hand-tailored [?].

Assuming ρ = ρ̄ , we can integrate the structure equations analytically. First, we obtain
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from the mass formula (??) that

m(r) =
4π

3
ρr3 (2.5.13)

At the surface of the star (r = R) ,we obtain the total mass of the star

M = m(r) =
4π

3
ρR3 (2.5.14)

Now ,we can easily rearrange the radial component of the metric tensor using (??)(
1− 2m

r
− Λr2

3

)−1

= (1− r2

β2
)−1 (2.5.15)

where we have introduced a new parameter, β by the relation

1

β2
=

1

3
(8πρ+ Λ) (2.5.16)

At the surface of the star ,there is(
1− 2M

R
− ΛR2

3

)−1

=

(
1− R2

β2

)−1

(2.5.17)

and we can see immediately that the radial metric coefficient of the interior spacetime is

smoothly matched to the corresponding metric coefficient of the exterior Schwarzschild-de

Sitter spacetime of the mass parameter M = m(R) .

If ρ = ρ̄ ,the modified TOV equation (??) became,

dP

(P + ρ)(3P + ρ− Λ
4π )

= −4π

3

rdr

(1− r2

β2 )
(2.5.18)

which have to be integrated from the surface of the star (R = r), where P (R) = 0, down to

the center of the star at r = 0 . For a non-zero cosmological constant we find the pressure

at a radius r to be given by the relation

P (r) =
ρ(ρ− Λ

4π

[
(1− r2

α2 )
1
2 − (1− R2

β2 )
1
2

]
3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

(2.5.19)

The maximum pressure is at the center of the star, where

pc = p(r = 0) =
ρ(ρ− Λ

4π

[
1− (1− R2

α2 )
1
2

]
3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )
(2.5.20)



Chapter 3

Result and Discussion

The influence of the repulsive cosmological constant on the black-hole space-time structure

can be properly represented by the dimensionless cosmological parameter y = Λ
3M

2. For

SdS black holes admitting existence of stable circular geodesics,i.e., existence of accretion

discs, the cosmological parameter y < yms,e = 0.0002378 [?]. The cosmological tests using

the supernova magnitude-redshift relation and the Cosmic Microwave Background Radia-

tion fluctuations measurements[?] imply Λ ≈ 10−56cm−2 , and thus very low values of y

for astrophysically realistic black holes. In fact,y ∼ 10−24 for super-massive black holes[?];

strong optical observable effects could be expected for super-giant black holes [?] (or clusters

of galaxies) with M ≥ 1015M⊙ .

For astrophysically realistic SdS black holes, the strong gravity near the black hole hori-

zon rh ∼ 2M weakens with distance growing and at r >> M can be described quite well

by the Newtonian theory. However, the Newtonian theory looses its validity near the so-

called static radius rs ∼ y
−1
3 M , where the repulsive effect of the cosmological constant

starts to be relevant up to the other strong gravitation region near the cosmological horizon

rc ∼ y
−1
2 M . Therefore, the cosmological constant has relevant influence on the structure of

disc configurations introducing quite naturally outer edge of the accretion discs[?, ?].Inthis

chapter we are going to discuss both the interior and exterior solutions

37
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3.1 Exterior solution

In the Schwarzschild-de Sitter space-time there may exist a black-hole event horizon and

there may also exist a cosmological event horizon. It depends onM and Λ in the Schwarzschild-

de Sitter metric (??) which of the cases occur.Where M is the mass parameter of the space-

times. It is useful to introduce the dimensionless parameter (??) and use dimensionless

coordinates t→ t
M , r → r

M , which is equivalent to putting M = 1 .Singularities of the line

element, i.e., black-hole and cosmological horizons, are given by the relation 1− 2
2 −yr

2 = 0

, thus by solutions of the equation

y = yh ≡
r − 2

r3
(3.1.1)

which can be expressed in the form

rh =
2√
3y

cos
π + ξ

3
, rc =

2√
3y

cos
π − ξ

3
(3.1.2)

where ξ = cos−1(3
√

3y).

The pressure at any relativistic star must be finite and positive. The restrictions on (??)

ρ− Λ

4π
≥ 0 (3.1.3)

3ρ(1− R2

β2
)

1
2 − (ρ− Λ

4π
) ≥ 0 (3.1.4)

yield limits on the allowed values of outer radii R of the stars. The equality in (??) de-

termines limiting configurations with a divergent central pressure.Substituting for ρ and

β2 from (??), and (??), respectively, and introducing new dimensionless cosmological and

radius parameters by the relations

y =
1

3
ΛM2 (3.1.5)
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x =
R

M
(3.1.6)

the condition (??) can be transformed into the relation(for derivation see appendix (??) )

[y − y+][y − y−] ≤ 0 (3.1.7)

where

y±(x) ≡ 2x− 9± 3 | 2x− 3 |
2x4

(3.1.8)

For the cosmological repulsion (y > 0) only the function

y+(x) =
4x− 9

x4
(3.1.9)

is relevant at x ≥ 9
4 .

If x = 9
4 ,it is the solution for vanishing cosmological constant Λ = 0 . From generalised

Buchdahl inequality [?] one finds

R2 <

1
3

(
4− Λ

4πρ

)
4πρ

(3.1.10)

the boundary in this case ,

R2 <
1

3πρ

using M = 4π
3 ρR

3 leads to

M <
4

9
R (3.1.11)

Because of the analogous inequalities of the former cases write

3M <
4

3
R (3.1.12)

we arrive at the well known limit of the interior Schwarzschild solutions [?]. However, the

validity of the condition (??) is restricted to the region up to the maximum of y+(x), given

by (??). It is located at xmax = 3 , where ymax = 1
27 . At x ≥ xmax = 3 , the relevant

condition is (??) which determines a critical value of the cosmological constant for a given
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mass parameter M . In terms of the dimensionless parameters x and y , it implies the

condition

y ≤ ystat ≡
1

x3
(3.1.13)

For y = ystat ,were Λ = 4πρ

The outer radius of the star is located just at the so called static radius rs of the corre-

sponding external Schwarzschild-de Sitter spacetime. At r = rs , the gravitational attraction

acting on a test particle is just compensated by the cosmological repulsion [?].

For y > ystat, were Λ > 4πρ.

At r > rs , the repulsion prevails, and a static configuration is possible only with a surface

stress acting inwards.In this case the horizons disappear and the SdS spacetimes become

dynamic naked singularity spacetimes

3.2 Interior solution

For an attractive cosmological constant, Λ < 0 , the relations (??) and (??) have to be

satisfied again, but we obtain an other family of critical values of the cosmological constant,

given by the condition 1
β2 = 0 . In terms of the dimensionless parameters x and y , we

arrive at

ycrit = − 2

x3
(3.2.1)

in terms of the constant density ρ , the critical value of the cosmological constant is given

by

Λcrit = −8πρ (3.2.2)

Now, we have to distinguish the cases y > ycrit, y < ycrit, and y = ycrit.

If y > ycrit(
1
β2 > 0), the relations (??) and (??) are valid. Recall that at x ≥ 3

2 , there is

y−(x) = ycrit(x),while at x ≤ 3
2 there is y+(x) = ycrit(x) . For x = 3

2 , y−(x) = y+(x) =
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−16
27 .Therefore, in addition to y > ycrit ≡ − 2

x3 , there must be satisfied the condition

− 2

x3
≤ y ≤ 4x− 9

x4
(3.2.3)

at x > 3
2 ,and

4x− 9

x4
≤ y ≤ − 2

x3
(3.2.4)

at x < 3
2

If y < ycrit(
1
β2 < 0) the relation (??) has to be replaced by

[y − y+][y − y−] ≥ 0 (3.2.5)

In addition to y < ycrit ≡ − 2
x3 , we obtain the conditions

y ≥ − 2

x3
or y ≤ 4x− 9

x4
(3.2.6)

at x < 3
2 .

It follows from the conditions (??)-(??) that for Λ < 0 the static configurations are allowed

at radii satisfying the condition

y ≤ 4x− 9

x4
(3.2.7)

At y = ycrit(
1
β2 = 0),were Λ = −8πρ

In this case (??) can be written as,

dp

dr
= −4πr(ρ+ p)2 (3.2.8)

after integration the the pressure is given by

p(r) =
2πρ2(R2 − r2)

1− 2πρ(R2 − r2)
(3.2.9)

In term of the dimensionless parameters, the central pressure of this special class of solutions

is determined by the relation

pc = p(0) =
3ρ

2x− 3
= − 3Λcrit

8π(2x− 3)
(3.2.10)
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also(??) can be integrated if the constant of integration is fixed at the centre by p(r = 0) = pc

, one obtains

p(r) =
1

2πr2 + 1
pc+ρ

− ρ (3.2.11)

as r →∞ then p→ −ρ . At p(R) = 0,from this we find,

R2 =
1

2π

(
1

ρ
− 1

pc + ρ

)
(3.2.12)

One finds that the radius R is bounded by 1√
2πρ

. Inserting the definition of the density

yields to

R2 <
1

2πρ
=

1

2π

4πR3

3M
(3.2.13)

which implies

3M < 2R (3.2.14)

Clearly, the special class of static configurations with y = ycrit is allowed for x ≥ 3
2 only.

Values of the cosmological parameter y must be restricted by the condition

− 16

27
≤ y < 0 (3.2.15)

3.3 Potential

Finally, we determine the time component of the internal metric tensor, using the bound-

ary condition of smooth matching of the internal solution onto the external time metric

coefficient at r = R:

e2Φ(R) =

(
1− 2M

R
− 1

3
ΛR2

)
(3.3.1)

or

eΦ(R) =

(
1− 2M

R
− 1

3
ΛR2

) 1
2

(3.3.2)
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The function Φ(r) can be found from (??) by using the relation for the pressure as a function

of radius(??). If 1
β2 6= 0 , we arrive at the expression

dΦ

dr
=
m− Λr3

3 + 4πr3P

r(r − 2m− Λr3

3 )

=
4πρr3

3 − Λr3

3 + 4πr3p(r)

r2(1− 8πρr2

3 − Λr2

3 )

=
4π
3 (ρ− Λ

4π )r + 4πrp(r)

(1− r2

β2 )

now using (??),we can wright,

=

4π3(ρ− Λ
4π )r + 4πr

[
ρ(ρ− Λ

4π

[
(1− r

2

β2 )
1
2−(1−R

2

β2 )
1
2

]
3ρ(1−R2

β2 )
1
2−(ρ− Λ

4π
)(1− r2

β2 )
1
2

]
(1− r2

β2 )

=
4πρ(ρ− Λ

4π )(1− R2

β2 )
1
2 r − 4π

3 (ρ− Λ
4π )2(1− r2

β2 )r + 4πρ(ρ− Λ
4π )(1− r2

β2 )
1
2 r − 4πρ(ρ− Λ

4π )(1− R2

β2 )
1
2 r

(1− r2

β2 )(3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2 )

then,removing the first and the forth term, the equation became,

=
4πρ(ρ− Λ

4π )(1− r2

β2 )
1
2 r − 4π

3 (ρ− Λ
4π )

1
2 (1− r2

β2 )r

(1− r2

β2 )(3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2 )

=
(ρ− 1

3(ρ− Λ
4π ))4π(ρ− Λ

4π )(1− r2

β2 )
−1
2 r

3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

dΦ =

1
β2 (ρ− Λ

4π )(1− r2

β2 )
−1
2 rdr

3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

then we integrate both sides,

r∫
R

dΦ =

r∫
R

1
β2 (ρ− Λ

4π )(1− r2

β2 )
−1
2 dr

3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

using the technique of integration by substitution the above integral became,

Φ(r)−Φ(R) = ln

[
3ρ(1− R2

β2
)

1
2 − (ρ− Λ

4π
)(1− r2

β2
)

1
2

]
−ln

[
3ρ(1− R2

β2
)

1
2 − (ρ− Λ

4π
)(1− R2

β2
)

1
2

]



44

Φ(r)− Φ(R) = ln

[
3ρ(1− R2

β2
)

1
2 − (ρ− Λ

4π
)(1− r2

β2
)

1
2

]
− ln

[
(2ρ+

Λ

4π
)(1− R2

β2
)

1
2

]

Φ(r)− Φ(R) = ln

3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

(2ρ+ Λ
4π )(1− R2

β2 )
1
2


eΦ(r)−Φ(R) =

3ρ(1− R2

β2 )
1
2 − (ρ− Λ

4π )(1− r2

β2 )
1
2

(2ρ+ Λ
4π )(1− R2

β2 )
1
2

eΦ(r)

eΦ(R)
=

3ρ(1− R2

β2 )
1
2

(2ρ+ Λ
4π )(1− R2

β2 )
1
2

−
(ρ− Λ

4π )(1− r2

β2 )
1
2

(2ρ+ Λ
4π )(1− R2

β2 )
1
2

now using the relation (??),(??) also for ρ we can substitute using (??),then we get the

potential out side of the compact object

eΦ(r) =
9M

6M + ΛR3

(
1− 2M

R
− 1

3
ΛR2

) 1
2

− 9M − ΛR3

6M + ΛR3

(
1− 2Mr2

R3
− 1

3
Λr2

) 1
2

(3.3.3)

This can be write as

Φ(r) = ln

[
3M

2R

[
1

M
R + ΛR2

6

](
(1− 2M

R
− 1

3
ΛR2)

1
2 − (1− ΛR3

9M
)

(
1− 2Mr2

R3
− 1

3
ΛR2

) 1
2

)]
(3.3.4)

now lets interpret the potential at different conditions,

1.When r ≤ R

The potential derived (??) holds at r ≤ R equally for both cases y > ycrit and y < ycrit.

And it became

Φ(r) = ln

[
3M

2R

[
1

M
R + ΛR2

6

](
(1− 2M

R
− 1

3
ΛR2)

1
2 − (1− ΛR3

9M
)

(
1− 2Mr2

R3
− 1

3
ΛR2

) 1
2

)]
2.When r = R

At r = R the relation (??) really reduces to (??) so it became

Φ(R) =
1

2
ln

(
1− 2M

R
− 1

3
ΛR2

)
3.When y = ycrit(

1
β2 = 0)

Φ(r) = ln

(
1 +

3M

2R

(
r2

R2
− 1

))



Chapter 4

Summery and Conclusion

General theory of relativity is the theory of gravitation and geometry of spacetime.It gen-

eralizes the spacial theory of relativity and Newtons law of universal gravitation. The mat-

ter and geometry of spacetime are related by the Einstein field equations (Gµν + gµνΛ =

8πGTµν),where Gµν is Einsteins field tensor that tales geometry of spacetime and Tµν is

energy-momentum tensor that is matter. Techniques equivalent this energy-momentum

tensor is deduce from perfect fluid that is important to stellar structure and cosmology

Tµν = Pgµν + (P + ρ)UµUν . Generally, the spacetime geometry and gravitation are de-

scribed by tensors specially second rank (0, 2) tensors like Metric tensor,Reiman curvature

tensor,Ricci tensor,Ricci scalar,Einstein field tensor and energy-momentum tensor in ad-

dition to Affine connections.Using schwarzchild-de sitter space-time metric we derive the

basic TOV − Λ equations then by using equation of state the pressure as a function of

radius considering ρ = ρ0 = ρmean derived.From TOV −Λ equations we derived important

formulas of pressure and potential.

The optical reference geometry is very useful in attempts to understand the character

of spherically symmetric spacetimes. Geodesics of the optical geometry exhibit some inter-

esting physical propertiesthey coincide with the possible trajectories of light rays, massive

particles require a speed-independent orthogonal thrust in order to move along them, and

gyroscopes transported along them do not precess with respect to the direction of motion

45
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. Moreover, the optical geometry appears to be very useful in the analysis of a variety

of unusual processes that take place around compact objects . Properties of the optical

spaces associated with spherically symmetric spacetimes can be appropriately represented

by embedding diagrams of their central planes into the 3-dimensional Euclidean space. The

embedding allows an accurate treatment of some non-trivial effects. However, the em-

bedding is possible for a limited part of the optical space only. It is interesting that in

the case of Schwarzschild spacetimes the limit of embeddability of the optical geometry

r = 9
4M , coincides with the minimum possible radius of a static configuration of matter

of uniform density with fixed mass M .For the spacetimes with an attractive cosmological

constant,y < 0 , there is no outer limit of embeddability of the optical geometry and the

inner limit coincides with the limit on radius of static configurations of uniform density.

However, there exists a special class ( 1
β2 = 0) of the internal solutions which corresponds to

the outer limit of embeddability of the ordinary induced geometry on t = cons, hypersur-

faces . The existence of stable circular photon orbits inside the configurations having radius

R < 3m ; surprisingly, the limiting radius is independent of the cosmological constant.

The radius r = 3M , corresponding to the unstable circular photon orbits in the external

Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes plays a crucial role in

embedding of the optical reference geometry associated with these spacetimes .When the

radius r ≤ R, the potential have the same value for y > ycrit and y < ycrit .

Generally,according to the above discussions cosmological constant has an effect at large

scale as well as local size and major impact on the motion of particles around compact

object which cause instability due to the in flow motion of particles .



Appendix A

Derviation of Schawrzschil-de

sitter- metrc

The line element is given as:

ds2 = −Adt2 +Bdr2 + r2dθ2 + r2 sin2 θdφ2 (A.0.1)

gµν =


−A 0 0 0

0 B 0 0

0 0 r2 0

0 0 0 r2sin2θ

 gµν =


− 1
A 0 0 0

0 1
B 0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ

 (A.0.2)

then using(??),Then the non vanishing terms of Γ are,

Γrtt = Á
2B Γrrr = B́

2B Γrθθ = − r
B

Γrφφ = −r sin2 θ
B Γtrt = Á

2A Γφθφ = cot θ

Γθφφ = − cos θ sin θ Γφrφ = Γθrθ = 1
r

Now using (??), the Ricci tensors for the corresponding component found

For Rtt

Rtt = Γrtt;r + Γrtt

[
Γtrt + Γθrθ + Γφrφ + Γrrr

]
−
[
ΓttrΓ

r
tt + ΓrttΓ

t
rt

]
47
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then,

Rtt =
A
′′

2B
− 1

4

A
′

B

[
B
′

B
+
A
′

A

]
+
A
′

Br
(A.0.3)

For Rrr

Rrr = −Γtrt;r − Γθrθ;r − Γφrφ;r + Γrrr

[
Γtrt + Γθrθ + Γφrφ

]
−
[
ΓtrtΓ

t
rt + ΓθrθΓ

θ
rθ + Γφrφ

]
Rrr = −A

′′

2A
+

1

4

A
′

A

(
A
′

A
+
B
′

B

)
+
B
′

Br
(A.0.4)

For Rθθ

Rθθ = Γrθθ;r − Γφθφ;θ + Γrθθ

[
Γθrθ + Γtrt + Γφrφ + Γrrr

]
−
[
ΓθrθΓ

r
θθ + ΓrθθΓ

r
rθ + ΓφθφΓφφθ

]
(A.0.5)

Rθθ = − 1

B
+

r

2B

[
B
′

B
− A

′

A

]
+ 1 (A.0.6)

For Rφφ

Rφφ = Γθφφ;θ + Γrφφ;r + Γrφφ

[
Γtrt + Γrrr + Γθrθ + Γφrφ

]
− 2ΓrφφΓφrφ − ΓθφφΓφθφ

Rφφ = sin2 θ

[
− 1

B
+

r

2B

[
B
′

B
− A

′

A

]
+ 1

]
(A.0.7)

Rφφ = sin2θRθθ (A.0.8)

Now from (??) and (??) we get,

B

A
Rtt +Rrr =

A
′

Ar
+
B
′

Br
(A.0.9)

From (??) by taking Tµν = 0 we get

Rµν −
1

2
gµνR+ gµνΛ = 0 (A.0.10)

then multiplying both sides by gµν we get

R = 4Λ (A.0.11)
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Then put (??) in to (??) we get

Rµν = gµνΛ (A.0.12)

using (??) and (??) the components of ricci tensors are as follow

Rtt = gttΛ = −AΛ (A.0.13)

Rrr = grrΛ = −BΛ (A.0.14)

Rθθ = gθθΛ = −r2Λ (A.0.15)

Rφφ = gφφΛ = −r2 sin2 θΛ (A.0.16)

From this equation we find the relation

AB = constant (A.0.17)

Now we impose the condition on A and on B at r → ∞ , the metric became minkowskian

in spherically closed system.

as A→ 1, B → 1

AB = 1

A(r) =
1

B(r)
(A.0.18)

Now put (??) and (??) into (??) then the result is

B
′

B
= −A

′

A
(A.0.19)

Now substitute (??) and (??) in to (??) then,

1

B
− r B

′

B2
= 1− r2Λ (A.0.20)

d

dr

[ r
B

]
= 1− r2Λ (A.0.21)
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Then by integrating both sides by

1

B
= 1− r2 Λ

3
+
C

r
(A.0.22)

Now imposing the condition on A and B at large distance if Λ is very small,so that C
r �

r2Λ for values of r on the scale of inter galactic distance (millions of light years),then for

these distance the cosmological constant term can be neglected and the requirement thatwe

reclaim newton’s law of gravity for those distances give us the condition C = −2Gm . Then

using(??) so the metric became. ,

ds2 = −(1− r2 Λ

3
− 2

Gm

r
)dt2 +

dr2

(1− r2 Λ
3 − 2Gmr )

+ r2dθ2 + r2 sin2 θdφ2 (A.0.23)



Appendix B

Boundry condition

3ρ(1− R2

β2
)

1
2 − (ρ− Λ

4π
) ≥ 0 (B.0.1)

Substituting for ρ and β2 from (??), and (??), respectively, and introducing new dimen-

sionless cosmological and radius parameters by the relations

y =
1

3
ΛM2 (B.0.2)

x =
R

M
(B.0.3)

ρ =
3

4π

M

R3
(B.0.4)

Then,

3

[
3

4π

M

R3

](
1− R2

3
(8πρ+ Λ)

) 1
2

−
(

3M

4πR3
− Λ

4π

)
≥ 0

9

4π

(
M

R

)3 1

M2

(
1− 2

M

R
− 1

3
(
R

M
)2M2Λ

) 1
2

−
(

3

4π

1

x3

Λ

3y
− Λ

4π

)
≥ 0

Λ

4π

3

x3y

(
1− 2

x
− x2y

) 1
2

− Λ

4π

(
1

x3y
− 1

)
≥ 0

9

x6y2

(
1− 2

x
− x2y

)
≥ 1

x6y2
− 2

x3y
+ 1

51



52

8

x6y2
− 18

x7y2
− 9

x4y
+

2

x3y
− 1 ≥ 0

y2x7 + y(9x3 − 2x4) + 18− 8x ≤ 0 (B.0.5)

then using quadratic formula

y±(x) =
2x4 − 9x3 ±

√
9x6(9− 12x+ 4x2)

2x7

then ,

y±(x) =
2x− 9± 3 | 2x− 3 |

2x4

y+(x) =
4x− 9

x4
, y−(x) =

−2

x3
(B.0.6)

then (??) can be written as,

[y − y+(x)] [y − y−(x)] ≤ 0 (B.0.7)

then the solution set became

y−(x) < y < y+(x) (B.0.8)

for

[y − y+(x)] [y − y−(x)] ≥ 0 (B.0.9)

the solution set is

y < y−(x) and y > y+(x) (B.0.10)
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