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Abstract
In this thesis, we study the squeezing and statistical properties of light

produced by degenerate squeezed three level laser and one mode

subharmonic generator. We first obtain, the master equation, with the aid of

the master equation, we determine c-number Langevin equations for a

degenerate squeezed three level laser and one-mode subharmonic generator.

With the help of solutions of c-number Langevin equations, we also obtain the

antinormally ordered characteristic function defined in the Heisenberg

picture. The resulting characteristic function is used to determine the

Q-function of the light beams produced by degenerate squeezed three level

laser and a one-mode sub-harmonic generator. Finally we superposed the two

Q functions. Employing the resulting Q-function, we calculated the photon

statistis and quadrature fluctuation.And we have seen that squeezing is

enhanced for the superposed light beams.
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1

Introduction

There has been a considerable interest in the analysis of the squeezing and sta-

tistical properties of the light generated by three-level lasers [1,2,3]. A three-level

laser may be defined as a quantum optical system in which three-level atoms in

a cascade configuration, initially prepared in a coherent superposition of the

top and bottom levels, are injected in to a cavity coupled to a vacuum reser-

voir via a single-port. One interesting features of a three level laser involves the

coupling of the top and bottom levels of the atoms by injecting a strong coher-

ent light in to the cavity. When a three-level atom in a cascade configuration

makes a transition from the top to the bottom level via the intermediate level,

two photons are generated. If the two photons have the same frequency, then

the three-level atom is called degenerate three-level atom otherwise it is called

non degenerate. Three-level lasers in which the crucial role is played by the co-

herent superposition of the top and bottom levels of the injected atoms have

been studied by several authors [1, 6]. These studies show that this quantum

optical system can generate light in a squeezed state under certain conditions.

A three-level laser with the top and bottom levels of the atoms injected in to the

cavity coupled by a strong coherent light can also generate light in a squeezed

1
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state [7 ,8]. Ansari et al. [1]. Here we consider a degenerate three level laser in

which the injected atoms are initially prepared in the top level and with the top

and bottom levels of the atoms coupled by a strong coherent light.

Squeezing is one of the interesting non classical feature of light that has been

attracting attention and studied by many authors [1,11]. In squeezed light the

noise in one quadrature is below the vacuum coherent level at the expense of

enhanced fluctuations in the other quadrature, with the product of the uncer-

tainties in the two quadratures satisfying the uncertainty relation. Squeezed

lights have potential applications in low noise communications and precision

measurements [13, 14]. Squeezed light can be generated by quantum optical

processes such as parametric oscillation [1-10], second harmonic generation

[9,12,15], and four-wave mixing [9,15].

The concept of laser has been studied by different authors. TM Mainman of

higher research laboratory scientist was first to experimentally demonstrate laser

by flashing light through a ruby crystal in 1960. Three level lasers produced by

the superposition of the top and bottom levels of the injected atoms have been

studied by several authors [1, 6]. These studies show that this quantum optical

system can generate light in a squeezed state under certain conditions. Ansari

[1] has calculated the quadrature variance of the cavity mode for a degenerate

three level laser employing the steady state solutions of the equations of evolu-

tion of the expectation values of the cavity mode variables. He has found that

the cavity mode is in a squeezed state if the probability for the injected atoms

to be in bottom level is larger than the probability for the atoms in the top level.
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And almost perfect squeezing can be obtained for slightly more probable for

the atoms to be in the bottom level and for large value of linear gain coeffi-

cient. Using c-number langavin equation, Fisseha K. [16] has shown that the

light produced by a degenerate three level laser is a squeezed state when the

probability for the injected atoms to be the bottom level is greater than that of

the upper level. And the degree of squeezing increases with the linear gain coef-

ficient. A subharmonic generator has been considered as an important source

of squeezed light. It is one of the most interesting and well characterized opti-

cal devices in quantum optics. In this device a pumped photon interacts with

a nonlinear crystal inside a cavity and is down converted into two highly corre-

lated photons.If these photons have the same frequency, the device is called

a one mode subharmonic generator, otherwise it is called a two mode sub-

harmonic generator. The quadrature squeezing and photon statistics of the sig-

nal mode produced by one mode subharmonic generator coupled to a squeezed

vacuum reservoir have been analyzed by a number of authors [11, 12, 14]. One

mode sub harmonic generation is one of the most interesting and widely stud-

ied quantum optical process. In this process a pump photon of frequency 2ω is

down converted into a pair of signal photons each of frequency ω. A theoretical

analysis of the statistical and squeezing properties of the signal mode produced

by one-mode subharmonic generation has been made by a number of authors

[11, 12, 14, 15]. Among other things, it has been predicted that the signal mode

has a maximum squeezing of 50% below the vacuum state level [4-7].

In this thesis, we study the photon statistics and quadrature squeezing of the

light produced by degenerate squeezed and subharmonic light.
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2. Degenerate Squeezed Three Level Laser

In this chapter we seek to find the master equation and c-number Langavin

equation for the cavity mode produced by degenerate three level laser. Using

the solution of c-number Langavin equation,we find the antinormally ordered

characterstic function. Employing the antinormally ordered characterstic func-

tion, we obtain the Q-function. Then applying the Q-function, we calculate the

mean photon number, the variance of the photon number, the quadrature vari-

ance and quadrature squeezing.

2.1 The master equation

The interaction of a three level atom with the cavity mode in the rotating wave

approxi- mation and in the interaction picture can be described by the the Hamil-

tonian [18, 20].

Ĥ = ig

(
(|a〉〈b|+|b〉〈c|)a− â†(|b〉〈a|+|c〉〈b|)

)
,

(2.1)

4



2.1 The master equation 5

Figure 2.1: Schematic diagram of degenerate squeezed three level laser

where g is the coupling constant and â is the annihilation operator for the cavity

mode. We take the initial state of a three level atom to be

|ψA(0)〉 = Ca(0)|a〉+ Cc(0)|c〉, (2.2)

where Ca(0) and Cc(0) are probability amplitudes for the three level atom to be

in the upper and bottom levels respectively. The initial density operator for a

single atom has the form

ρ̂A(0) = ρ̂(0)aa |a〉〈a|+ ρ̂(0)ac |a〉〈c|+ ρ̂(0)ca |c〉〈a|+ ρ̂(0)cc |c〉〈c|, (2.3)

where ρ̂(0)aa = |Ca|2, ρ̂(0)ac = CaC
∗
c , ρ̂

(0)
ca = CcC

∗
a , ρ̂

(0)
cc = |C|2. Suppose ρ̂AR(t, tj) is the

density operator for a single atom plus the cavity mode at a time t, with the atom

injected at a time tj such that (t− τ) ≤ tj ≤ t. The density operator for all atoms

in the cavity plus the cavity mode at time t can then be written as

ρ̂AR(t) = ra
∑
j

ρ̂AR(t, tj)∆tj, (2.4)
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where ra the rate atoms are injected into the cavity. Now converting the sum-

mation over integration as ∆tj −→ 0,we have

ρ̂AR(t) = ra

∫ t

t−τ
ρ̂AR(t, t

′
)dt

′
,

(2.5)

and on differentiating with respect to t, there follows

d

dt
ρ̂AR(t) = ra(ρ̂AR(t, t)− ρ̂AR(t, t− τ)) + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′
)dt

′
. (2.6)

We observe that ρ̂AR(t, t) is the density operator for the cavity mode plus the

atom injected at time t. This density operator can thus be expressed as

ρ̂AR(t, t) = ρ̂A(t)ρ(t), (2.7)

with ρ̂(t) being the density operator for a cavity mode alone. We also note that

ρ̂AR(t, t− τ) represents the density operator for an atom plus the cavity mode at

a time t, with being removed from the cavity at this time.This operator can also

put in the form

ρ̂AR(t, t− τ) = ρ̂A(t− τ)ρ(t). (2.8)

Now in view of Eqs.(2.7) and (2.8), one can write Eq.(2.6) as

d

dt
ρ̂AR = ra(ρ̂A(t)− ρ̂A(t− τ))ρ̂(t) + ra

∫ t

t−τ

∂

∂t
ρ̂AR(t, t

′
)dt

′
. (2.9)

In the absence of damping of the cavity mode by vacuum reservoir, the density

operator ρ̂AR(t, t
′
) evolves in time according to

∂

∂t
ρ̂AR(t, t

′
) = −i[Ĥ, ρ̂AR(t, t

′
)], (2.10)

so that using this and taking in to account Eq.(2.5), one can put Eq.(2.9) in the

form

d

dt
ρ̂AR(t) = ra(ρ̂A(t)− ρ̂A(t− τ))ρ̂(t) − i[Ĥ, ρ̂AR(t, t

′
)]. (2.11)
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Furthermore, tracing over the atomic variables and taking into account the damp-

ing of the cavity mode by a vacuum reservoir, we have

dρ̂

dt
= −iT rA[Ĥ, ρ̂AR(t)] +

1

2
κ(2âρ̂â† − ρ̂â†â− â†âρ̂), (2.12)

we have used the fact that

Trρ̂A(t) = Trρ̂AR(t− τ) = 1. (2.13)

Employing Eq.(2.1) the master equation for the cavity mode can be put in the

form

d

dt
ρ̂ = g(ρ̂abâ

† − â†ρ̂ab + ρ̂bcâ
† − a†ρ̂bc + âρ̂ba − ρ̂baâ+ âρ̂cb − ρ̂cbâ

+
1

2
κ(2âρ̂â† − ρ̂â†â− a†âρ̂), (2.14)

in which the matrix element ρ̂αβ is defined by

ρ̂αβ = 〈α|ρ̂AR|β〉, (2.15)

with α, β = a, b, c. On the other hand, we see from Eq.(2.11) that

d

dt
ρ̂αβ = ra(〈α|ρ̂A(0)|β〉 − 〈αρ̂A(t− τ)|β〉)ρ̂(t)

−i(〈αĤρ̂AR|β〉 − 〈αρ̂ARĤ|β〉)− γρ̂αβ, (2.16)

where the last term is included to account for the decay of the atoms due to

spontaneous emission. Here γ, considered to be the same for all three levels,is

the atomic decay rate. We assume that the atoms are removed from the cavity

after they have decayed to a level other than the middle or bottom level.We then

see that

〈α|ρ̂A(t− τ)|β〉 = 0, (2.17)
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hence Eq.(2.16) reduces to

d

dt
ρ̂αβ = ra〈α|ρ̂A(0)|β〉ρ̂(t)− i(〈αĤρ̂AR|β〉 − 〈αρ̂ARĤ|β〉)− γρ̂αβ.

(2.18)

Appliying Eq.(2.28) and taking in to account Eqs. (2.1) and (2.3), one readly ob-

tains

d

dt
ρ̂ab = g(ρ̂acâ

† + âρ̂bbâ− ρ̂aaâ)− γρ̂ab, (2.19)

d

dt
ρ̂bc = g(âρ̂cc − ρ̂bbâ− â†ρ̂ac)− γρ̂bc, (2.20)

d

dt
ρ̂aa = raρ̂

(0)
aa ρ̂+ g(ρ̂abâ

† + âρ̂ba)− γρ̂aa, (2.21)

d

dt
ρ̂ac = raρ̂

(0)
ac ρ̂+ g(âρ̂bc − ρ̂baâ)− γρ̂ac, (2.22)

d

dt
ρ̂bb = g(ρ̂bcâ

† + âρ̂cb − â†ρ̂ab − ρ̂baâ)− γρ̂bb, (2.23)

d

dt
ρ̂cc = raρ̂

(0)
cc ρ̂g(â†ρ̂bc + ρ̂cbâ)− γρ̂cc. (2.24)

Upon dropping the g-terms and applying the adiabatic approximation scheme,

we get from Eqs.(2.21), (2.22), (2.23) and (2.24) that

ρ̂aa =
raρ̂

(0)
aa ρ̂

γ
, (2.25)

ρ̂bb = 0, (2.26)

ρ̂ac =
raρ̂

(0)
ac ρ̂

γ
, (2.27)

ρ̂cc =
raρ̂

(0)
cc ρ̂

γ
. (2.28)
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Now combination of Eqs. (2.19), (2.25), (2.26) and (2.27) as well as (2.20), (2.26),

(2.27) and (2.28) leads to

d

dt
ρ̂ab =

rag

dt
(ρ̂(0)cc ρ̂â

† − ρ̂(0)aa ρ̂â)− γρ̂ab, (2.29)

d

dt
ρ̂bc =

rag

γ
(ρ̂ccâρ̂− ρ̂acâ†ρ̂)− γρ̂bc. (2.30)

Finally, on account of Eqs. (2.29) and (2.30), the master equation for the cavity

mode given by Eq.(2.14) takes the form

d

dt
ρ̂ =

1

2
Aρ̂(0)aa (2â†ρ̂â− ρ̂ââ† − ââ†ρ̂)

+
1

2
(Aρ̂cc + κ)(2âρ̂â† − ρ̂â†â− â†âρ̂)

+
ρ̂
(0)
ac A

2
(ρ̂â†2 + â†2ρ̂− 2â†ρ̂a†)

+
ρ̂
(0)
ca A

2
(ρ̂â†2 + â2ρ̂− 2âρ̂â), (2.31)

where A = 2rag2

γ2
is the linear gain coefficient. Next we wish to find the approxi-

mate solution of the c-number Langavin equation for the degenerate three level

laser.

C-number Langavin equation

Employing relations

d
dt
〈A〉 = Tr( d

dt
ρA),

with the aid of Eq.(2.31) it can be readly verified that

d

dt
〈â(t)〉 =

A

2
ρ̂(0)aa Tr(2â

†(t)ρ̂â(t)− ρ̂(̂a)â†(t)− â(t)â†(t)ρ̂)

+
1

2
(Aρ̂cc + κ)Tr(2â(t)ρ̂â†(t)− ρ̂â†(t)â(t)− â†(t)â(t)ρ̂)

+
Aρ̂

(0)
ac

2
Tr(ρ̂â†2(t) + â†2(t)ρ̂− 2â†(t)ρ̂a † (t))

+
Aρ̂

(0)
ca

2
Tr(ρ̂â†2(t) + â2(t)ρ̂− 2â(t)ρ̂â(t)), (2.32)
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d

dt
〈â〉 = −1

2
µ〈â〉, (2.33)

d

dt
〈â(t)â(t)〉 = −µ

2
〈â2(t)〉+ Aρ(0)ac , (2.34)

d

dt
〈â†(t)â(t)〉 = −µ〈â†(t)â(t)〉+ Aρ(0)aa (2.35)

where µ = A(ρ̂ca − ρ̂aa + κ).

We see that the c-number Langavin equation corresponding to Eqs. (2.32), (2.33),

(2.34) and (2.35) is given by

d

dt
〈α(t)〉 = −µ

2
〈α(t)〉, (2.36)

d

dt
〈α(t)α(t)〉 =

−µ
2
〈α(t)α(t)〉+ Aρ(0)ac , (2.37)

d

dt
〈α∗(t)α(t)〉 = −µ〈α∗(t)α(t)〉+ Aρ(0)aa , (2.38)

At steady state, solutions of Eqs.(2.36), (2.37) and (2.38) have the form

〈α(t)〉ss = 0,

〈α2(t)〉ss = Aρ
(0)
ac

µ
,

and

〈α∗(t)α(t)〉ss = Aρ
(0)
aa

µ
.

On the basis of Eq. (2.36), we can write

d

dt
α(t) = −µ

2
α(t) + f(t), (2.39)
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where f(t) is a noise force vanishing mean. It can be readily established that

〈f(t)f(t
′
)〉 = Aρ̂(0)ac δ(t− t

′
), (2.40)

and

〈f ∗(t)f(t
′
)〉 = Aρ̂(0)aa δ(t− t

′
). (2.41)

Now we introduce a new variable

α±(t) = α∗(t)± α(t). (2.42)

This implies that

d

dt
α±(t) = −µ/2α± (t) + f ∗(t)± f(t). (2.43)

We observe that this equation has no well behaved soluion for

κ < A(ρ̂aa−ρ̂cc). Therefore we can write the solution for κ > A(ρ̂aa−ρ̂cc) by setting

κ = A(ρ̂aa − ρ̂cc) as a threshold condition. The formal solution of Eq.(2.43) can

be written as

α±(t) = α±(0)e−µ/2 +

∫ t

0

e−µ(t−t
′
)/2

(
f ∗(t)± f(t)

)
dt
′
.

(2.44)

In a view of Eq.(2.42), we find

α(t) = A+(t)α(0) +B+(t)−B−(t), (2.45)

A+(t) = e−µ/2,

B±(t) = 1/2
∫ t
0
e−µ(t−t

′
)/2

(
f ∗(t)± f(t)

)
dt
′
.
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Assuming the cavity mode initially to be in a vacuum state, the expectation

value of Eq.(2.45) can be written as

〈α(t)〉 = 〈B+(t)〉 − 〈B−(t)〉

=

∫ t

0

e−µ(t−t
′
)/2〈f(t)〉dt′ . (2.46)

In a view of Eqs.(2.36),(2.39) along with Eq.(2.46),it can be easily verified that

〈α(t)〉 = 0.

(2.47)

We see that α(t) is a Gaussian variable with zero mean.

2.2 The Q function

Now we seek to obtain the Q-function for a light produced by degenerate three

level laser. The Q-function can be expressed by using the anti-normally ordered

characteristic function as

Q(α∗, α, t) =
1

π2

∫
d2zφa(z

∗, z, t)ez
∗α−zα∗, (2.48)

where φa(z∗, z, t) is the anti-normally ordered characteristic function. It can be

defined as

φa(z
∗, z, t) = Tr(ρ̂e−z

∗âezâ
†
).

Employing the identity

eÂeB̂ = eB̂eÂe[Â,B̂],

we obtain

φa(z
∗, z, t) = e−zz

∗
Tr(ρ̂ezâ

†
e−z

∗â). (2.49)
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Since α is a Gaussian variable with zero mean Eq. (49) can be

written in the form of

φa(z
∗, z, t) = e−zz

∗
exp(〈α∗2〉z2/2 + 〈α2〉z∗2/2− zz∗〈αα∗〉).

(2.50)

Now we define a new parameter as follows

ρ̂
(0)
aa = 1− η/2

ρ̂
(0)
aa + ρ̂

(0)
cc = 1,

and

|ρ̂(0)ac |2 = ρ̂
(0)
aa ρ̂

(0)
cc ,

one easily find,

ρ̂
(0)
cc = 1 + η/2.

and

|ρ̂(0)ac | =
√

1− η2/2,

up on setting ρ̂(0)ac = |ρ̂(0)ac |eiθ. By taking into account the above relations,we see

that

φa(z
∗, z, t) = exp[−azz∗ + (z2b∗ + z∗2b)/2], (2.51)
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a1 = 1 +
A(1− η)

2(Aη + κ)
, (2.52)

and

b1 =
A(1− η)

2(Aη + κ)
eiθ. (2.53)

Hence, introducing Eq. (51) into Eq. (48) and carrying out the integration, the

Q-function for the cavity mode formed at a steady state to be

Q(α∗, α, t) =
(u2 − vv∗)1/2

π
exp(−uαα∗ + (α2v∗ + α∗2v)/2), (2.54)

in which

u =
a1

a21 − b1b∗1
(2.55)

and

v =
b1

a21 − b1b∗1
(2.56)

By setting θ = 00, then v∗ = v, hence we see

Q(α∗, α, t) =
(u2 − v2)1/2

π
exp(−uα∗α− v

2
(α2 + α∗2), (2.57)

where

v =
b1

a21 − b21
, (2.58)

with b1 = b∗1

2.3 Photon Statistics

The statistical properties of a light beam is described in-terms of the mean pho-

ton number,the variance photon number,quadrature variance and the photon

number distribution.Hence, we calculate the mean photon number, the variace

photon number of the light generated by degenerate squeezed three level laser

employing the Q- function [18].



2.3 Photon Statistics 15

2.3.1 The mean Photon number

The mean photon number for the degenerate three level laser in-terms of Q-

function can be defined as

n =

∫
d2αQ(α∗, α)

(
α∗α− 1

)
. (2.59)

Performing integration over Eq. (2.59) using the identity∫
d2z

π
exp

(
azz∗ + bz + cz∗ + A

′
z2 +B

′
z∗2
)

=

[
1

a2 − 4A′B′

] 1
2

exp

[
abc+ A

′
c2 +B

′
b2

a2 − 4A′B′

]
, a > 0 (2.60)

we readly obtain

n =
u

u2 − v2
− 1. (2.61)

The mean photon number at steady state turns out to be

n =
A(1− η)

2(Aη + κ)
(2.62)

2.3.2 The Variance of photon number

The variance of the photon number can be given by

(∆n)2 = 〈n̂2〉 − n2. (2.63)

It then follows

(∆n)2 = n+ n2 + 〈α(t)〉ss〈α(t)〉ss, (2.64)

so that using and its complex conjugate, the variance the photon number at

steady state can be written as

(∆n)2ss =
A(1− η)(A+ Aη + κ)

2(Aη + κ)2
(2.65)
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(∆n)2ss = n̄(1 +
A

Aη + κ
) (2.66)

2.4 Quadrature fluctuation

Next we calculate the quadrature variance and squeezing.

2.4.1 Quadrature variance

The quadrature variance of single mode light is described by the minus and plus

quadrature operator as,

â+ = â+ â† (2.67)

â− = i(â† − â), (2.68)

where â+ and â− are Hermitian operators representing the physical quantities

called plus and minus quadratures, respectively.Therefore the quadrature can

be expressed interms of the quadrature operators as

(∆â±)2 = 〈â2±〉 − 〈â±〉2. (2.69)

Then tends to

(∆â+)2 = 1 + 〈â2〉+ 〈â†2〉+ 2〈â†â〉, (2.70)

and

(∆â−)2 = 1 + 2〈â†â〉+ 〈â†2〉 − 〈â2〉. (2.71)

Then we can evaluate the expectation value of â2 using the Q-function of Light

beam as
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〈â2〉 =
∫
d2αQ(α, α∗)α2,

where α2 is the c-number variable corresponding to the operator â2. Using

Eq.(2.54),we have

〈â2〉 = (u2 − v2)
1
2

∫
d2α

π
exp

(
− uαα∗ + v

(α2 + α∗2)

2

)
α2. (2.72)

Upon carrying the integration, we readily get

〈â2〉 =
v

(u2 − v)2
. (2.73)

By substituting Eqs. (2.69),(2.70) and (2.71) into (2.67),the quadrature variance

becomes

(∆a±)2 = 1 + 2n+
2v

(u2 − v2)2
. (2.74)

Hence

(∆a±)2 =

κ+ A

(
1± (1− η2) 1

2 cos θ

)
Aη + κ

[
1− e(Aη+κ)t

]
. (2.75)

2.4.2 Quadrature squeezing

One can obtain the squeezing as

S+ = 1− (∆a+)2. (2.76)

In a view of Eq.(2.74), the squeezing can be written as

S+ = 1−
κ+ A

(
1± (1− η2) 1

2 cos θ

)
Aη + κ

[
1− e(Aη+κ)t

]
. (2.77)
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Figure 2.2: Plots of (∆a±)2 at steady state versus η for κ = 0.8, θ = 0, and for

A = 5, 25, 75

.

At a steady state it turns out

S+ = 2 + 2n+
2v

(u2 − v2)2
. (2.78)



3

One Mode Sub-harmonic Light

We first describe the Hamiltonian of the system. Using the Hamiltonian, we

calculate c-number Langavin equation and the Q-function for the signal mode

produced by one mode sub-harmonic generator coupled to a vacuum reservoir

via a single port mirror.

Figure 3.1: Schematic diagram of one mode subharmonic generator

19
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3.1 C-number Langavin equation

In one mode sub-harmonic generator, a pump photon of frequency 2ω is down

converted into a pair of single photons each of frequency ω [19,20].

Ĥ = i
ε

2

(
â2 − â†2

)
, (3.1)

where ε = λβ and â is the annihilation operator for the signal mode and λ is

coupling constant between signal mode and driving mode. On the other hand

the master equation for a one mode subharmonic generator coupled to vacuum

reservoir can be put in the form [17].

d

dt
ρ̂(t) =

ε

2
(â†2ρ̂(t)− â2ρ̂(t)− ρ̂(t)â†2 + ρ̂(t)â

2)

+
k

2
(2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â). (3.2)

Employing the relation

d

dt
〈Â(t)〉 = Tr(

d

dt
ρ̂(t)Â), (3.3)

with the commutation relation

[â, â†] = 1, (3.4)

we readily find

d

dt
〈â(t)〉 = −κ

2
〈â(t)〉 − ε〈â(t)†〉, (3.5)

and

d

dt
〈â(t)â(t)〉 = −κ〈â2〉 − 2ε(〈â(t)†â(t)〉)− ε. (3.6)

d

dt
〈â†(t)â(t)〉 = −ε〈â2(t)〉 − ε〈â†2(t)〉 − κ〈â†(t)â(t)〉. (3.7)



3.1 C-number Langavin equation 21

The c-number Langavin equation corresponding to operators in normal order-

ing can be put in the form

d

dt
〈α(t)〉 = −κ

2
〈α(t)〉 − ε〈α(t)∗〉, (3.8)

d

dt
〈α(t)α(t)〉 = −κ〈α(t)2〉 − 2ε〈α(t)∗α(t)〉 − ε, (3.9)

d

dt
〈α(t)∗α(t)〉 = −κ〈α(t)∗α(t)〉 − ε〈α(t) ∗2 α〉 − ε〈α(t)2〉, (3.10)

On the basis of Eq. (3.7), one can write

d

dt
α(t) = −κ

2
α(t)− εα∗(t) + f(t), (3.11)

where f(t) is a noise force, the properties of which remains to be determined.We

note that Eq.(3.7) and the expectation value of Eq.(3.10) will have identical form

if

〈f(t)〉 = 0 (3.12)

applying the relation

d

dt
〈A(t)A(t)〉 = 〈A(t)

d

dt
A(t)〉+ 〈 d

dt
A(t)A(t)〉, (3.13)

we have

d

dt
〈α(t)α(t)〉 = −κ〈α(t)2〉 − 2ε〈α(t)∗α(t)〉+ 2〈α(t)(f(t))〉. (3.14)

Compression of Eqs.(3.8) and (3.13) shows that

〈α(t)f(t)〉 = − ε
2
. (3.15)

The formal solution of Eq.(3.10)

α(t) = α(0)e−κt/2 +

∫ (t)

0

e−κ(t−t
′
)/2

(
− εα∗(t) + f(t

′
)

)
dt
′
. (3.16)
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Multiplying from the left at both sides by f(t), we find

〈α(t)f(t)〉 =

∫ t

0

e
−k(t−t

′
)

2

(
〈f(t)f(t

′
)〉
)
dt
′
= (
−ε
2

). (3.17)

∫ t

0

ea(t− t′)[〈f(t)g(t
′
)〉]dt′ = D, (3.18)

we assert that

〈f(t)g(t
′
)〉 = 2Dδ(t− t′), (3.19)

where D is a constant or some function of time t, we see that

〈f(t)f(t
′
)〉 = −εδ(t− t′). (3.20)

Following the same procedure, one can readily obtain the correlation properties

of the noise force as in the form

〈f(t)f ∗(t
′
)〉 = 〈f ∗(t)f(t

′
)〉 = 0 (3.21)

It worth that Eqs.(3.11),(3.17) and (3.19) describe the correlation properties of

the noise force f(t) associated with the normal ordering . In order to obtain the

formal solution of Eq.(3.10) we introduce a new variable defined by

α+(t) = α(t)∗ ± α(t). (3.22)

It can then be verified employing Eq.(3.10) and its complex conjugate

d

dt
α+(t) = −λ±

2
α± (t) + f ∗(t)± f(t), (3.23)

Where

λ± = κ± 2ε. (3.24)
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According to Eq.(3.23) and (3.24),the equation of evolution of α− does not have

a well-behaved solution for k < 2ε. We then identify k = 2ε as the threshold

condition. For 2ε < k, the solution of Eq.(3.23), can be written as

α+(t) = α±(0)e−1/2λ±t +

∫ t

0

eλ±(t−t
′)/2

(
f ∗(t′)± f(t′)

)
dt
′
. (3.25)

Now with the aid of Eqs.(3.22) and (3.25) we readily get

α(t) = A+(t)α(0) + A−(t)α(0)∗ +B+(t)−B−(t), (3.26)

in which

A±(t) =
1

2

(
e
−1
2
λ+t ± e

−1
2
λ−t

)
(3.27)

B±(t) =
1

2

∫ t

0

e
−1
2
λ±(t−t′)

[
f ∗(t′)− f(t′)

]
dt′, (3.28)

3.2 The Q function

We now proceed to calculate the Q function for the signal mode applying the

anti-normally ordered characteristic function in the Heisenberg picture.

Q(α∗, α, t) =
1

π2

∫
d2zφa(z

∗, z, t)ez
∗α−zα∗, (3.29)

The characteristic function is defined as

φa(z, t) = Tr
(
ρ̂(0)e

z∗â(t)ezâ
†(t)
)
. (3.30)

By applying the identity

eÂeB̂ = eÂeB̂e[Â,B̂], (3.31)

we find

φa(z, t) = ez
∗zTr

(
ρ̂(0)ez

∗â(t)ezâ
†(t)

)
. (3.32)
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Replacing the cavity mode operators by a c-number function in Eq.(3.32), we

obtain

φa(z, t) = ez
∗z

〈
exp(zα∗ − z∗α)

〉
. (3.33)

We have shown that α(t) is a Gaussian variable with zero mean. One can easily

establish

φa(z, t) = ez
∗zex(

1

2

〈
(zα∗ − z∗α)2

〉
). (3.34)

It can be verified that

〈α2〉 = 〈β2〉

〈α∗2〉 = 〈β∗2〉

〈α∗2α〉 = 〈β∗2β〉,

β = β+ − β−, (3.35)

〈β2〉 = 〈β2
+〉+ 〈β2

−〉 − 2〈β+β−〉, (3.36)

〈β∗2〉 = 〈β2
+〉+ 〈β2

−〉+ 2〈β+β−〉, (3.37)

〈β∗β〉 = 〈β2
+〉 − 〈β2

−〉,

In a view of Eq.(3.25) one can check that

〈β±〉 = 1/2
∫ t
0
eλ/2±(t− t′)/2[f ∗(t

′
)± f(t

′
)dt

′
]
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〈β2
+〉 = 1/4

∫ t
0
e−λ/2+(t−t′ )/2dt

′
dt
′′
[〈f ∗(t′)f ∗(t′′)〉

+〈f ∗(t′)f(t
′′
)〉+ f(t

′′
)f(t

′
) + f ∗(t

′
)∗(t

′′
) + 〈f(t

′′
)f(t

′
)〉]

〈β2
+〉 = 1/4

∫ t
0
e−λ/2+(t−t′ )/2[〈f ∗(t′)f ∗(t′′)〉

+〈f(t
′
)f(t

′′
)〉]dt′dt′′

〈β2
+〉 = 1/4

∫ t
0
e−λ/2+(t−t′ )/2[−εδ(t− t′)− εδ(t− t′)]dt′dt′′

Further more integrating by using the identity

∫
dαδ(x− y)ey

This implies that

〈β2
+〉 = −ε

2λ+
(1− eλ−t)

Similarly

〈β2
−〉 = −ε

2λ−
(1− eλ−t)

〈β+β−〉 = 0

We recall that

〈β2〉 = 〈β∗2〉 = 〈β2
+〉+ 〈β2

−〉 − 2〈β+β−〉 (3.38)
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〈β2〉 = −ε
2λ+

(1− eλ−t)− −ε
2λ−

(1− eλ−t)

〈β∗β〉 = 〈β2
+〉+ 〈β2

−〉

〈β∗β〉 =
−ε
2λ+

(1− eλ−t) +
−ε
2λ−

(1− eλ−t). (3.39)

In a view of Eqs. (3.38) and (3.39), Eq. (3.30) takes the form

φa(z, t) = e−z
∗zexp[

1

2
z2
−ε
2λ+

(1− eλ−t)− −ε
2λ−

(1− eλ−t))

+z∗2
−ε
2λ+

(1− eλ−t)− −ε
2λ−

(1− eλ−t))

−2z∗zα∗(
−ε
2λ+

(1− eλ−t) +
−ε
2λ−

(1− eλ−t)). (3.40)

This expression leads to

φa(z, t) = exp[−a2z∗z +
b2(z

2 + z∗2)

2
], (3.41)

a2 = 1− ε

2λ+
(1− eλ−t) +

−ε
2λ−

(1− eλ−t) (3.42)

b2 = −(
−ε
2λ+

(1− eλ−t) +
−ε
2λ−

(1− eλ−t)) (3.43)

Finally, substituting Eq.(3.41) into Eq.(3.29) and carrying out the integration, the

Q-function for the signal mode turns out

Q(α∗, α, t) =
1

π
[l2 −m2]

1
2 exp(

lαα∗ +m(α2 + α∗2)

2
), (3.44)

where

l =
a2

(a22 − b22)
, (3.45)

m =
b2

(a22 − b22)
. (3.46)
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3.3 Photon statistics

Here we wish to calculate the mean photon number and quadrature variance

for single light beam produced by one mode sbharmonic generator.

3.3.1 The mean photon number

The mean photon number of the signal mode is can be defined as

〈n̂〉 =

∫
d2αQ(α∗, α)n̂(α∗, α). (3.47)

where

n̂a(α
∗, α) = α∗, α− 1, (3.48)

is the c-number function corresponding to the operator function n̂(â†, â) in the

anti-normal order. On account of Eqs (3.44) and (3.48) Eq. (3.47) can be written

as

n =
(
l2 −m2

) 1
2

∫
d2α

π
exp
[
− lαα∗ +m(α∗2 + α2)/2

]
(α∗, α− 1). (3.49)

This can be put in the form

n =
(
l2 −m2

) 1
2
d2

dndm

∫
d2α

π

exp
[
− lαα∗ + nα +mα∗ +m(α∗2 + α2)/2

]
n=m=0

− 1, (3.50)

Therefore, carrying out the integration using Eq.(2.60) and appling the condi-

tion n = m = 0, we get

n =
l

l2 −m2
− 1. (3.51)

Now on account Eq.(3.45)and Eq.(3.46), we easily find

n = a− 1 (3.52)
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and in view of Eq. (3.42), the mean photon number takes the form

n = − ε

2λ+

(
1− eλ+t

)
+

ε

2λ−

(
1− eλ−t

)
. (3.53)

Thus at steady state, we see that

n =
2ε2

k2 − 4ε2
. (3.54)

3.3.2 The variance of the photon number

The variance of photon number for the signal mode can be defined as

(4n)2 = 〈(â†â)2〉 − n2. (3.55)

Using the Commutation relation, we see that

(4n)2 = 〈â2â†2〉 − n2 − 3n− 2. (3.56)

So that employing the Q-function, we have

〈â2â†2〉 =

∫
d2αQ(α, t)α∗2α2. (3.57)

This can be put in the form

〈â2â†2〉 =
(
l2 −m2

) 1
2

d4

dp2dq2

∫
d2α

π

exp
[
− lαα∗ + pα + qα∗ +m(α∗2 + α2)/2

]
p=q=0

− 1. (3.58)

Upon carrying out the integration using Eq.(2.60),we get

〈â2â†2〉 =
d4

dp2dq2
exp
[−lpq +m(p2 + q2)/2

l2 −m2

]
p=q=0

− 1. (3.59)

Performing the differentiation and applying the condition z=η=0, one easily finds

〈â2â†2〉 =
2l2 +m2

(l2 −m2)2
. (3.60)
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Thus taking into account Eqs.(3.45) and (3.46), we readily find

〈â2â†2〉 = 2a2 + b2. (3.61)

Now with the aid of Eqs.(3.52) and (3.61), Eq.(3.56) can be put in the form

(4n)2 = a2 + b2 − a. (3.62)

Finally, applying Eqs.(3.42)and (3.43), the variance of the photon number turns

out to be

(4n)2 =
ε2

2λ2+

[
1− e−λ+t

]2
+

ε2

2λ2−

[
1− e−λ−t

]2
+

ε

2λ−

(
1− eλ−t

)
− ε

2λ+

(
1− eλ+t

)
. (3.63)

At a steady state takes the form

(4n)2 =
( εk

k2 − 4ε2
)2

+ n2 + n. (3.64)

We assert that the photon statistics of the light produced by one mode subhar-

monic generator is superpoissonian.

3.4 Quadrature fluctuation

In this section we will calculate the quadrature variance and quadrature squeez-

ing for a single light mode.

3.4.1 Quadrature variance

Now we proceed to calculate the quadrature variance for the signal mode pro-

duced by one mode subharmonic generator.

(∆a±)2 = 1 + 〈: (â± ((t), (â± ((t)) :〉. (3.65)
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where :: stands for normal ordering. The two quadratures are given by

â+ = (â† + â) (3.66)

and

â− = i(â† − â). (3.67)

This quadrature variance can be written in-terms of c-number variables associ-

ated with normal ordering as

(4a+)2 = 1+〈α+(t), α+(t)〉, (3.68)

in which

α+(t) = α∗+α. (3.69)

Eq.(3.68) can be written as

(4a+)2 = 1+〈α2
+〉+〈α+〉2. (3.70)

We note that

〈α+(t)〉. = 0. (3.71)

Hence Eq.(3.70) can be put in the form

(4a+)2 = 1+〈α2
+〉. (3.72)

In addition, using Eq. (3.23),we easily see

d

dt
〈α2

+(t)〉 = −λ+〈α2
+(t)〉+ 2〈α+(t)f

∗(t)〉+2〈α+(t)f(t)〉. (3.73)

In view of Eqs. (3.12), (3.15) and (3.15), we note that

〈α(t)f ∗(t)〉 = 〈α(t)∗f(t)〉 = 0. (3.74)
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Now with the aid of Eq.(3.71) along with Eqs. (3.15) and (3.74), we readily find

〈α+(t)f
∗(t)〉 = −ε

2
(3.75)

and

〈α+(t)f(t)〉 = +
ε

2
. (3.76)

Therefore, in view of the results Eq. (3.73) can be rewritten as

d

dt
〈α2

+(t)〉 = −λ+〈α2
+(t)〉 − 2ε. (3.77)

A formal solution of this can be written as

〈α2
+(t)〉 = 〈α2

+(0)〉e−λ+t+

∫ t

0

e−λ+(t−t′)[−2ε]dt′, (3.78)

with the cavity mode initially in a vacuum state, this equation turns out to be

〈α+(t)〉 = − 2ε

λ+
[1− e−λ+t]. (3.79)

Now combination of Eq.(3.72) and Eq. (3.79) yields

(4a+(t))2 = 1+
2ε

λ+
[1− e−λ+t]. (3.80)

Moreover, taking into account Eq.(3.76),at steady state and at threshold, we see

that

(4a+(t))2 =
1

2
. (3.81)

3.4.2 Quadrature squeezing

Quadrature squeezing is defined by

S+ = 1− (∆a+)2. (3.82)
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In a view of equations (3.81) and (3.82), we have

S+ = 1− 1

2
. (3.83)

We observe that the signal mode is in squeezed state and the squeezing occurs

in the plus quadrature. The squeezing increases with time and reaches its max-

imum value at steady state.

We note that at steady state and at threshold there is a 50% squeezing of the

signal mode
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The Superposition of Degenerate Squeezed Three

Laser with Subharmonic Light

Here we seek to study the statistical and squeezing properties of the superposed

light mode produced by degenerate three level laser and one-mode subhar-

monic generator. To this end, first we determine the Q function for this light

mode. With the aid of the resulting Q function, we calculate the photon Statis-

tics and quadrature squeezing.

4.1 The Q function

The Q-function is used to describe the superposition of the two light beams with

the same frequency. The Q function, defined by

Q(α∗, α, t) =
1

π
〈α|ρ̂2|α〉, (4.1)

where Q is the c-number function corresponding to normally ordered density

operator divided by π. Suppose ρ̂(â†, â) is the density operator for a certain light

beams. Then upon expanding it in the normal order and applying the com-

pleteness relation for a coherent states, one easily finds[20].

33
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ρ̂′ =
1

π

∫
d2β

∑
kl

Cklβ
∗k|β〉〈β|al, (4.2)

where

|β〉〈β|al = (β +
∂

∂β∗
)l|β〉〈β|. (4.3)

There follows

ρ̂1 =
1

π

∫
d2β

∑
kl

Cklβ
∗k(β +

∂

∂β∗
)l|β〉〈β|. (4.4)

This expression for the density operator can be put in the form

ρ̂1 =
1

π

∫
d2β

∑
kl

Cklβ
∗k(β +

∂

∂β∗
)lD̂(β)|0〉〈0|D̂(−β). (4.5)

We now realize that the density operator for the superposition of the first light

beam and another one is expressible as

ρ̂2 =
1

π

∫
d2γ

∑
mn

γ∗m(γ +
∂

∂γ∗
)nD̂(γ)ρ̂01D̂(−γ), (4.6)

so that in a view of Eq. (4.5),we have

ρ̂2 =
1

π

∫
d2βd2γ

∑
kl

Cklβ
∗k(β +

∂

∂β∗
)l
∑
mn

γ∗m(γ +
∂

∂γ∗
)n × e(α−β−γ)

×e−α∗α+α∗β+α∗γ. (4.7)

Introducing Eq. (4.7) into (4.1) and carrying uot the integration, the Q function

for a pair of superposed single-mode beams can be given by

Q(α∗, α) =
1

π

∫
d2βd2γQ(β∗, α− γ)Q(γ∗, α− β),

exp[−α∗α− β∗β − γ∗γ + α∗β + αβ∗ + α∗γ +

αγ∗ − β∗γ − βγ∗]. (4.8)
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where

Q′(β∗, α− γ, t) =
1

π

∑
kl

Cklβ
∗k(α− γ)l (4.9)

and

Q′′(γ∗, α− β, t) =
1

π

∑
mn

Cmnβ
∗m(α− γ)n. (4.10)

Up on setting θ = 0 into Eq. (2.53), we note that v∗ = v. Therefore the Q-fuction

for the degenerate squeezed three level laser can be written as

Q(β∗, α− γ) =
[u2 − v2]1/2

π
exp

[
− uβ∗α + uβ∗γ − v

2
α2 + vαγ − v

2
γ2 − v

2
β∗
]
,(4.11)

On the hand, the Q function for the one mode sub harmonic light is written as

Q(γ∗, α− β) =
[l2 −m2]1/2

π

exp

[
− lγ∗α + lγ∗β − m

2
α2 +mαβ − m

2
β2 − m

2
γ∗2
]
. (4.12)

Now introducing Eqs. (4.11), (4.12) in to Eq. (4.8), we have

Q(α∗, α, t) =
[u2 − vv∗]1/2[l2 −m2]1/2

π

exp

[
α∗α +

v

2
α2 − v

2
α∗2
]
× I1 × I2, (4.13)

in which

I1 =

∫
d2β

π
exp

[
− β∗β − uαβ∗ +

v

2
β∗2 − m

2
β2 +mαβ + αβ∗ + α∗β

]
(4.14)

and

I2 =

∫
d2γ

π
exp

[
− γ∗γ +

v∗

2
γ2 + uβ∗γ − v∗αγ − lαγ∗ + lβγ∗ − m

2
γ∗2 + α∗γ + αγ∗

−β∗γ − βγ∗
]
. (4.15)
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Thus performing the integration over γ, we have

Q(α∗, α, t) =

[
(u2 − v2)1/2(l2 −m2)1/2a

π

]
exp

[
− laα∗α + (vm2 −m+ l2v)

aα2

2
− 1

2
maαα2

]
×I3, (4.16)

where

I3 =

∫
d2β

π
exp

[
− (u+ l − ul + vm)aβ∗β +

(
(−l2v +m+ lv + vm2)αaβ + (l + vm)α∗aβ

)
+

(
(l − ul)αaβ∗ + (m− um)α∗aβ∗

)
+

(
2vl − vm2vl2 + v −m)aβ2

)
+

(
− 2mu−mv2 −mu2 + v −m

)
aβ2

]
, (4.17)

where

a = exp

[
1

(1− vm)

]
. (4.18)

Upon carrying out the integration over β, we readly find

Q(α∗, α, t) =
(u2 − v2)1/2(m2 − l2)1/2

πr(t)1/2
exp

[
−p(t)
r(t)

α∗α− q(t)

2r(t)
α2 − q(t)

2r(t)
α∗2
]
,(4.19)

p(t) = u2(l2 − l −m2) + u(m2 − l2) + v2(l − l2 +m2), (4.20)

q(t) = v2m+m2v − l2v − u2m (4.21)

r(t) = v2 − 2lv2 + l2(v2 − 1) + 2vm+m2 − v2m2

+2u(l2 − l −m2) + u2(2l − l2 +m2 − 1). (4.22)

4.2 Photon Statistics

In this section we calculate the mean photon number and the variance of the

photon number for the superposition of degenerate three level laser and one

mode subharmonic light beams.
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4.2.1 The mean photon number

Next we seek to calculate the mean photon number for the superposition of

degenerate squeezed three level laser and one mode sub-harmonic light beams.

To this end, the mean photon number is expressible interms of the Q function

as

〈â†â〉 =
1

π

∫
d2αQ(α∗, α, t)[α∗, α− 1]. (4.23)

Upon substituting Eq. (4.19) Eq.(4.23), we find

〈â†â〉 =
(u2 − v2)1/2(m2 − l2)1/2

r1/2

[
d

dz

d

dw

∫
d2exp

(
−p
r
α∗α +

q

2r
α2

− q

2r
α∗2 + wα + zα∗

)
− 1

]
(4.24)

Upon performing the integration over α, we find

〈â†â〉 =
d

dw

d

dz
exp

[ p
r
wz − q

2r
w2 − q

2r
z2

p2

r2
− q2

r2

]
, (4.25)

in which [
(u2 − v2)(m2 − l2)r

p2 − q2

]1/2
= 1,

(4.26)

is the normalization constant which is equal to unity

Upon carrying out the differentiation with respect to w and z we readly obtain

〈â†â〉 =
rp

p2 − q2
− 1.

(4.27)

Substituting Eqs. (4.20), (4.21) and (4.22) into (4.27), we see that

〈â†â〉 =

[
u

u2 − v2
+

l

l2 −m2
− 2

]
(4.28)
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Then introducing Eqs. (2.52) and (3.44), we get

〈â†â〉 =

[
a1 − 1 + a2 − 1

]
.

(4.29)

Finally, putting the values of a1 and a2 Eq. (4.29) the mean photon number tuns

out as

n̄ =
A(1− η)

2(Aη + κ)
+

2ε2

κ2 − 4ε2
. (4.30)

From this we see that the superposed mean photon number is the sum of the

mean numbers.

4.2.2 The variance of the photon number

Next we proceed to obtain the variance of the photon number for the light mode

produced by degenerate three level laser and one-mode subharmonic genera-

tor.

(∆n)2 = 〈(ĉ†ĉ)2〉 − 〈ĉ†ĉ〉2. (4.31)

Employing the commutation relation

[ĉ, ĉ†] = 2, (4.32)

we have

(∆n)2 = 〈ĉ†2ĉ2〉+ 2〈ĉ†ĉ〉 − 〈ĉ†ĉ〉2. (4.33)

(∆n)2 = 〈ĉ†2〉〈ĉ2〉+ 2〈ĉ†ĉ〉 − 〈ĉ†ĉ〉2. (4.34)

〈ĉ†2〉〈ĉ2〉 = 4〈ĉ†1c
†
2)〉〈(ĉ1ĉ2)〉 (4.35)
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〈ĉ†1c
†
2)〉〈(ĉ1ĉ2)〉 = 〈(ĉ†1 + c†2)

2〉〈(ĉ1 + ĉ2)
2〉, (4.36)

where

c† = c†1 + c†2 (4.37)

c = c1 + c2 (4.38)

Employing the the Q function, one can write

〈ĉ†1c
†
2)〉 =

[
(u2 − v2)(l2 −m2)

r

]1/2 ∫
d2αd2β

π
exp(
−p
r
α∗α− q

2r
(α2 + α2

−α∗α− β∗β + α∗β + αβ∗)α∗β∗ (4.39)

Integrating Eq. (4.40)with respect to β, we obtain

〈ĉ†1c
†
2)〉 =

[
(u2 − v2)(l2 −m2)

r

]1/2
d2

dxdy

∫
exp

[
−p
r
α∗α

+α∗α + yα∗ − q

2r
(α2 + α∗2 − α∗α− xα∗)

]
x=y=0

. (4.40)

Upon integrating Eq. (4.40) with respect to α , we see that

〈ĉ†1c
†
2)〉 =

[
(u2 − v2)(l2 −m2)

r

]1/2
(

r2

p2 + q2
)1/2

d2

dxdy
exp

[
−rq(x+ y)

p2 + q2

]
(4.41)

Taking out differentiation, we readily get

〈ĉ†1c
†
2)〉 =

[
(u2 − v2)(l2 −m2)r

p2 − q2

]1/2 −2rq

p2 + q2
(4.42)

In a view of Eq. (4.26) Eq.(4.42) can be written as

〈(ĉ†1c
†
2)〉 =

−2rq

p2 + q2
. (4.43)

Employing Eqs. (4.20), (4.21) and (4.22), we see that

〈ĉ†1c
†
2)〉 =

2m1

l21 −m12
+

2m2

l22 −m2
2

. (4.44)
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Using Eqs. (2.55), (256),(3.45) and (3.46) yields

〈ĉ†1c
†
2)〉 = 8(a1 + a2) (4.45)

By substituting the value of a1 and a2, the variance of the photon number turns

out

(∆n)2 = 8

[
A(1− η)

2(Aη + κ)
+

2ε2

κ2 − 4ε2

]2
+ 2

[
A(1− η)

2(Aη + κ)
+

2ε2

κ2 − 4ε2

]
+

[
A(1− η)

2(Aη + κ)
+

2ε2

κ2 − 4ε2

]2
(4.46)

Unlike the mean photon number, the variance of the photon number is not the

sum of the mean photon number of the individual light beams.

4.3 Quadrature Fluctuation

Employing the Q function, we seek to calculate, the quadrature variances and

squeezing.

4.3.1 The quadrature variance

The quadrature variance is given by

(∆c±)2 = 〈ĉ2±, ĉ±〉, (4.47)

where

ĉ+ = ĉ+ + ĉ (4.48)

and

ĉ− = i(ĉ+ − ĉ), (4.49)
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in which ĉ is the annihilation operator for the superposed twin light modes.

Since â and b̂ are Gaussian variables with zero mean , ĉ is also a Gaussian vari-

ables with zero mean.Therefore, we readily find

〈ĉ±〉 = 0. (4.50)

Upon introducing Eq.(4.50) into Eq.(4.47), we get

(∆c±)2 = 〈ĉ2±〉, (4.51)

then we see that

(∆c±)2 = 2 + 2〈ĉ†ĉ〉 ± 2〈ĉ†2〉. (4.52)

where

〈ĉ†2〉 = 〈ĉ2〉 (4.53)

and

[ĉ, ĉ†] = 2. (4.54)

Substituting Eqs. (4.37) and (4.38), we have

(∆c±)2 =
κ+ A(1± (1− η2)1/2)

Aη + κ

+1∓ 2ε

κ± 2ε
(4.55)

4.4.2 The quadrature squeezing

Quadrature squeezing for a superposed light beams can be defined as

S+ = 1− (∆c+)2 (4.56)
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In a view of Eqs. (4.55) and (4.56) We obtain

S+ =
Aη − A(1 + (1− η2)1/2)

Aη + κ

+1− 2ε

κ+ 2ε
(4.57)

Here we note that, squeezing occurs at the plus quadrature.
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Conclussion

In this thesis we have considered degenerate squeeezed three-level laser and

one mode Subharmonic Light. Taking into account the interaction of degen-

erate three level atoms with cavity mode and the damping of the cavity mode

by a vacuum reservoir, we obtained the equations of evolution of cavity opera-

tors. We use the master equation for a light produced by degenerate squeezed

three-level laser and one mode Sub-harmonic Light from which we obtained

the of c-number Langevin equations. Employing these solutions of c-number

Langevin equations, we found the antinormally ordered characteristic function

which was used to find the Q-function of a light beam generated by degenerate

squeeezed three-level laser and one mode Subharmonic Light Coupled to vac-

uum reservoir

Employing this Q function, we calculated the mean photon number,the vari-

ance of the photon number and the quadrature variance. We have carried out

our analysis by putting the vacuum noise operators in normally order and ap-

plying the adiabatic approximation scheme, which establishs nearly exact rela-

tion for systems operating close to steady state.

Finally, we superposed the two Q-functions. Applying the superposed Q-function,

43
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we calculated photon statistics and quadrature squeezing of the superposed

light beams.From the result we have seen that the squeezing occurs in the plus

quadrature and squeezing is enhanced.
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