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Abstract

More recent literature reviews point out that most galaxies, especially early type galaxies

with Active Galactic Nuclei (AGNs), contain Massive Black Holes (MBHs) considered to be

comparable to the masses of high redshift quasars to the evolution of early galaxies. Some of

these sources seem to accrete matter at a very high rate as reported. As a result it is believed

that Electromagnetic (EM) spectrum observations are required to provide information on

black holes in the centers of active galaxies. On the other hand, Gravitational Wave (GW)

observations are considered to provide the complementary information about the capture

of particles including compact objects like Black Holes (BHs) that are mostly invisible to

EM observations. Thus, the astrophysical study of AGNs in its full relativistic effect is

active and fresh research. For example, the efficient mechanisms to describe the energy

- momentum and particles flow of the accretion system that could be exploited to match

observations are important and open to research. Motivated by this, we were proposing

to study on the dynamics of accretion flow around AGNs. The method we used to derive

relevant dynamical parameters from the Lagrangian and Hamiltonian of general relativistic

(GR) particle geodesy in the Schwarzschild - de Sitter (SdS) geometry where the classical

analogy is adopted by the correspondence principle (CP). The analytically derived equations

were used to generate numerical values computationally, where the results discussed and

summarized to remark for observational validity.

Key words: Accretion, AGN, BH, CP, GR, SdS.
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Chapter 1

Introduction

1.1 Background

In 1915 Einstein developed the general theory of relativity in which he considered objects

accelerated with respect to one another. He developed this theory to explain apparent

conflicts between the laws of relativity and the law of gravity. To resolve these conflicts

he developed an entirely new approach to the concept of gravity, based on the principle of

equivalence [37].

Likewise, after completing his theory of GR, Einstein was interested to find a static solution

of his field equations with the idea of incorporating Mach’s principle [37]. But Einstein soon

noticed that his original field equations yield a non - static solution. As the consequence,

Einstein himself after a year, in 1917 introduced a positive cosmological constant, Λ with

the belief of constructing a static solution. But at the same year that Einstein introduced

the cosmological term, de Sitter presented solutions to static ”Einstein universe”, which had

both static and dynamic features. On the other hand, in 1922, 1924 Freidmann constructed

a matter dominated expanding universe without a cosmological constant. Moreover, the

discovery of expanding universe by Hubble and contemporaries led Einstein to abandon

the idea of a static universe misfortunately including the cosmological constant. However,

a number of researchers were entailed to construct models with cosmological constant to

1
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explain measurements of the spectra of spiral nebulae that showed redshifted to construct

an expanding model which originated from such an asymptotically static state (”static Ein-

stein universe”) in the distant past. Since then, the cosmological constant has remained

with debate where it was being cast out at a time and reintroduced at other time. How-

ever, a firm considerate of Λ is triggered in the 1960’s when an excess quasi-stellar objects

(QSOs) near the redshift z u 1.95 were observed. Then a number of authors emerged with

models containing the cosmological constant in explaining the observed QSOs that was in

agreement with the predicted inflationary scenario of the early universe. But the general

perception is that owing to its tiny value,Λ does not lead to any significant observable ef-

fects in a local gravitational phenomenon. However, the recent discoveries on astrophysical

phenomena favor a Cold Dark Matter with positive cosmological constant (ΛCDM) model

that is consistent with observations.

Furthermore, the presence of a repulsive cosmological constant (positive) the spacetime

geometry exterior to a static spherically symmetric gravitating system is Schwarzschild-de

Sitter (SdS), in a spatially inflated Universe, rather than Schwarzschild. Motivated by this

scientific rationale, we are interested to study the dynamics of accretion process around Ac-

tive Galactic Nuclei (AGN) in Schwarzschild de Sitter Geometry.The paper is organized as

follow: the Einstein GR ,Einstein field equation with cosmological constant and the solution

of this field equation(in SdS space)of spherically symmetric are introduced. In section 2,

the historical discovery and research development of AGN, and dynamic accretion around

AGN in the case of high energy source are given. In section 3, the Newtonian analogue of

SdS spacetime of a dynamic parameters from the Lagrangian and Hamiltonian of GR of

particles motion is derived.In section 4,
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1.2 Literature Review

The success of general theory of relativity (GR) in the observation of deflection of light[11],

radar echo delay [27],precession of planetary motion[9] and gravitational redshift[20] by

gravity are the manifestation of progress in astronomy and astrophysical studies. The

discovery of the expanding universe at an accelerating phase[22],[23] and the direct confir-

mation of gravitational wave detection[5] are other astounding progresses in astronomy and

astrophysics. There are great deals of progress in the subject both theoretically and obser-

vationally with direct and indirect detections. Whilst, there are encouraging past success

of GR and the hopes ahead there is an outstanding debates on GR field equations dated

back to their origin. After completing his theory of GR, Einstein was interested to find

a static solution of his field equations with the idea of incorporating Mach’s principle[37].

But Einstein noticed that his original field equations:

Rµν −
1

2
gµνR = kTµν (1.2.1)

yields a non - static solution. Where, Rµν is the Ricci curvature tensor, R is the scalar

curvature, gµν is the metric tensor, k scalar constant and Tµν is the energy - momentum

source tensor.

As the consequence, Einstein himself introduced a positive cosmological constant Λ with the

belief of constructing a static solution. The idea is that, the constant introduces a repulsive

force which can counterbalance the attractive force of gravity leading to the ”static Einstein

universe”. The modified Einstein’s field equations with the cosmological constant is

Rµν −
1

2
gµνR+ gµνΛ = kTµν (1.2.2)

But at the same year that Einstein introduced the cosmological term, de Sitter presented

solutions to static Einstein universe, with Tµν = 0 and Λ > 0, which had both static and

dynamic features, that allows a redshift-distance relation. The de Sitter’s prediction is
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considered as the first step towards the theoretical discovery of expanding universe.

On the other hand, in 1922 Freidman constructed a matter dominated expanding universe

without a cosmological constant. Then, the possibility that the universe is expanding

led Einstein to abandon the idea of a static universe including the cosmological constant.

However, a number of researchers were entailed to construct models with cosmological

constant. For example, Lemaitre constructed an expanding model which originated from

such an asymptotically static state (”static Einstein universe”) in the distant past. Since

then, the cosmological constant has remained with debate where it was being cast out at

a time and reintroduced at other time. A firm considerate of Λ is triggered in the 1960’s

when an excess quasi-stellar objects (QSO’s) near the redshift Z u 1.95 were observed.

Then a number of authors, for instance [13] emerged with Lemaitre’s model in explaining

the observed QSO’s that was in agreement with the predicted inflationary scenario of the

early universe.

In general, according to current understanding a flat low density Cold Dark Matter with

dark energy in the form of cosmological constant ( CDM +Λ) universe with Ωm = 0.3(m=

dark matter) and ΩΛ = 0.7(dark energy), with an approximately flat metric is favored

over a wide range of observational data ranging from large and intermediate angle Cosmic

Microwave Background Radiation (CMBR) anisotropies to observations of galaxy clustering

on large scales [5],[18],[22]and[23].

In the presence of a repulsive cosmological constant (positive) the spacetime geometry

exterior to a static spherically symmetric gravitating system in a spatially inflated Universe

is Schwarzschild-de Sitter (SdS) (rather than Schwarzschild, contrary to previous percep-

tions), whose line element is first derived by Kottler [19] given as :

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2 (1.2.3)
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where

f(r) = 1− 2M

r
− Λ

3
r2 (1.2.4)

M is source of mass and dΩ2 is the spherical solid angle element. But the general

perception is that owing to its tiny value, cosmological constant does not lead to any

significant observable effects in a local gravitational phenomenon. However, the contribution

of repulsive Λ could be significant (larger than the second order term) even in a local

gravitational phenomenon when kiloparsecs to megaparsecs-scale distances are involved,

such as the gravitational bending of light by cluster of galaxies [17].

Probably, a local effect of cosmological constant is claimed to be observable from rela-

tivistic accretion phenomena around massive BHs which involve distance-scale of the order

of hundreds of parsecs or even more [16] and the references therein. However, a few studies

have been carried out so far to investigate the effect of Λ in astrophysical jet/accretion flow

paradigm [12],[34]. So the effect of Λ on the dynamics of kiloparsecs to megaparsecs scale

astrophysical objects including jets need investigations. So far all the works on the effect

of Λ on accreting systems were carried out under some restricted conditions. The obvious

reason is to avoid the complex general relativistic magnetohydrodynamic (MHD) equations

in a strong gravitational field regime. Owing to the complex and nonlinear character of the

equations in GR regime, analytical/quasi numerical treatment of the problem is virtually

discarded; see for example [35] and the references therein. Several early works on accretion

related phenomena were based on pure Newtonian gravity. So the current standard ΛCDM

model that is consistent with observation shall be exploited to study the effect of cosmo-

logical constant on dynamical systems including MHD instabilities around massive objects

like BHs where they are mostly hosted by AGNs.
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1.3 Statement of the problem

The ΛCDM model is more or less consistent with all the current cosmological observations[3].

The effect of cosmological constant at large scale is well considered. However, its local effect

like perihelion shift of the orbits of gravitationally bound systems [18],etc are at debate.

On the other hand, there is a plethora of evidences that claim its effect at the local size.

Probably, a local effect of cosmological constant is claimed to be observable from relativis-

tic jets dynamics and accretion phenomena around massive BHs hosted by AGN (or QSO)

which involve distance-scale of the order of hundreds of parsecs or even more. However,

a few studies have been carried out so far to investigate the effect of Λ in astrophysical

jet/accretion flow paradigm [12],[34]. The obvious reason is to avoid the complex general

relativistic (GR) magnetohydrodynamic (MHD) equations in a strong gravitational field

regime. Owing to the complex and nonlinear character of the equations in GR regime,

analytical/quasi numerical treatment of the problem is virtually discarded; see for example

[35] and the references therein. To this end several early works on motion of objects (in-

cluding accretion process) and related phenomena were based on pure Newtonian gravity or

alternative GR theories. However, on the other hand, the recently confirmed gravitational

wave presence shines on the matter to study high precision astrophysical phenomena at

small scale level including cosmological effect. So the current standard ΛCDM model that

is consistent with observation shall be exploited to study the dynamics accretion process

around massive objects like BHs hosted by AGN.

1.4 Research Questions

� How a massive compact object curves spacetime around? And how the geometry

influences the dynamics of objects around it?

� What is the significance of cosmological constant in the dynamics and observables of
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accretion system around massive compact objects?

� How the ΛCDM model incorporates accretion process near AGN?

1.5 Objectives

1.5.1 General Objective

To study the dynamics of accretion process around Active Galactic Nuclei in Schwarzschild

de Sitter Geometry

1.5.2 Specific Objectives

� To derive dynamical equations from the GR equations in the SdS background.

� To derive dynamical observable parameters, like momentum, energy of accretion flow

around AGN with the SdS metric.

� To study the contents of the dynamical observable parameters of accretion flow around

AGN.

1.6 Methodology

The general method is to derive relevant dynamical parameters such as energy and mo-

mentum from the Lagrangian and Hamiltonian of general relativistic (GR) particle geodesy

from Einstein static field equations in the Schwarzschild-de Sitter (SdS) geometry where the

classical analogy is adopted by the correspondence principle (CP). The analytically derived

equations are used to generate numerical values computationally with MATHEMATICA.

Then, the results would be discussed and summarized to remark energy and momentum.

The steps are:

� Provide preliminary boundary conditions to derive the relevant set of dynamical equa-

tions from the GR equations in the SdS background.
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� Study and examine the effects of the relevant parameters derived from the equations.

� Numerically generate some theoretical data from the formalism using computation.

� Discussion of the generates data.

� Summary and conclusion.



Chapter 2

Einstein Theory of General
Relativity

2.1 Introduction to Einstein General Relativity

After many years of development Einstein presented his general theory of relativity in 1915,it

was then published the following year in [2]. General relativity is an extension of special

relativity which includes a modification of Newton’s law of gravity. It provides a relativis-

tic description of the gravitational field exerted by a massive object and its effects on the

geometric structure of the surrounding spacetime. The theory states that the gravitational

interaction due to the presence of matter causes spacetime to curve hence distorting the

path of a nearby object. This differs from the original foundations of Newton’s laws of grav-

itation, where gravity is an attractive force between two massive objects which interacts

instantaneously. In this description, planetary orbits are a consequence of this gravitational

pull emanating from the sun, therefore in this theory the suns gravitational field interacts

directly with the planet as opposed to the surrounding spacetime. However given certain

circumstances Newtonian theory provides an accurate description of the gravitational in-

teraction, this includes a weaker gravitational field. This is known as the Newtonian limit

in which spacetime is asymptotically flat and the field equations can be approximated with

Newton’s laws of motion. General relativity is required for a more significant gravitational

9
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field, when Newtonian gravity no longer agrees with observation. For instance, the obser-

vation of the precession of the perihelion of Mercury deviated slightly from the predictions

of Newton’s equations, whereas solutions in general relativity describe this orbit correctly

2.1.1 The Metric Tensor

The geometry of curved space was studied in 19th century by Gauss, Riemann and other.

Riemann realized that Euclidean geometry was just a particular choice suited to flat space

and Mach realized that one had to abandon the concept of absolute space altogether .

Einstein learned about tensors from his friend Marcel Grossmann, and used these key

quantities to go from flat space Euclidean three-dimension space to curved Minkowskian

four-dimension space in which physical quantities are described by invariants. Tensors

are quantities which provide generally valid relations between different four-vectors. The

quantities that consists contravariants indices with corresponding Lorenz transformation

are tensor. In tensor notation the Minkowski metric includes the coordinate dx0 = cdt and

so that the invariant line element can be:

ds2 = gµνdx
µdxν (2.1.1)

where,ds2 is the Minkowski line element, and gµν is the metric tensor used to determine the

proper time interval between two events with a given infinitesimal coordinate separation

and the gravitation potential, given by:

gµν = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
(2.1.2)

Where ηαβ special relativistic metric, ξα(x) Minkowskian coordinates and xµ general coor-

dinate.

2.1.2 Christoffel Tensor

One of the invariant ranks three tensor derived from the metric tensor gµν(x) its first

derivative is the so called Christoffel tensor which plays the role of gravitation. Affine
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connection(Γλµν) is the field that determines the gravitational force and used to represent

the gravitational field. It also call as christoffel second symbol which denoted as {µν, λ} or

Γλµν .

The mathematical definition of Γλµν as,

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν

where ξα and ξβ are local coordinates. The infinitesimal line element and the motion of

particle in a gravitational field can be written as,

Γλµν =
1

2
gλρ(gρµ,ν + gρν,µ − gµν,ρ) (2.1.3)

Now differentiating metric tensor equ(1.1.2) in gravitational field with respect to xλ,

∂gµν
∂xλ

=
∂

∂xλ

[
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ

]
∂gµν
∂xλ

=
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
ηαβ +

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
ηαβ (2.1.4)

The above equation can be derived as,

∂gµν
∂xλ

=
∂xρ

∂ξα
∂ξα

∂xρ
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
ηαβ +

∂xρ

∂ξβ
∂ξβ

∂xρ
∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
ηαβ

After rearranging,

∂gµν
∂xλ

= gρνΓρλµ + gµρΓ
ρ
λν (2.1.5)

The two Γρλµ and Γρλν are the affine connections. If we are considering a freely falling

particle of affine connection is the field that determine the gravitational force. Now using the

symmetry property of affine connection with the exchange of lower indices ,i.e Γρλµ = Γρµλ. To

solve for the affine connection ,it is a matter of adding to equation (1.1.5) the same equation

with µ and λ inter changed and subtract the same equation with ν and λ interchanged,it

shows

∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

= Γρλµgρν + Γρλνgρµ + Γρµλgρν + Γρµνgρλ − Γρνµgρλ − Γρνλgρµ (2.1.6)
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From the symmetry property of affine connection Γρµν and the metric tensor, gµν , then

∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

= 2Γρλµgρν (2.1.7)

Now let us define metric gρσ as the inverse of gρν ,

gρσg
ρν = δσν = 1

for σ = ν and else zero. Therefore,

Γρλµ =
1

2
gρν
(
∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)
(2.1.8)

Equation (1.1.8) is the relation developed between the metric tensor and affine connection

in a gravitational field. Here both of them represent the presence of gravitational effect.

2.1.3 The Riemann-Christoffel Curvature Tensor

One of the other invariant tensor derived from the metric gµν is the four rank tensor called

the Riemann curvature tensor from the metric itself, first and second derivative. The

Riemann curvature tensor plays an important role in specifying the geometrical properties

of spacetime. The spacetime is considered flat, if the tensor vanishes everywhere. It is also

possible to denote the Riemann curvature tensor in its fully covariant form as:

Rλµλκ = Γλµκ,λ − Γλµλ,κ + ΓηµκΓληλ − ΓηµλΓληκ (2.1.9)

Ricci Tensor

An important tool related to curvature, the second rank Ricci tensor,Rµν obtained from

Riemann tensor by a summing operation over repeated Indies, called contraction

Rµκ = gαβg
λαRβµλκ (2.1.10)
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Ricci scalar

By further contracting the Ricci tensor with contracting components of the metric, one can

express curvature scalar as;

R = gµκRµκ = Rµµ = Rκκ (2.1.11)

2.2 Einstein Field Equation

The Einstein tensor, Gµν is a measure of the curvature of spacetime. Mass is merely a

form of energy and, as such, we denote the stress-energy tensor,Tµν , containing all of the

information of the energy of a system. Thus, these two tensors must be in balance, which

is represented in the Einstein field equations (EFE)

Gµν = 8π
G

c2
Tµν (2.2.1)

where we include the constants c,G to present the EFE in their usual form. Recall that we

are using units such that c = G = 1. In Newtonian theory, gravity can only exist where

there exists matter. However Einstein showed that matter and energy are only different

faces of the same coin[10]. This encouraged him to make the conclusion that gravity is not

only created by the presence of matter, it is in fact the product of the presence of energy.

General relativity must present appropriate analogues of the two parts of the dynamics,one

how particles move in response to gravity,and secondly,how particles generate gravitational

effects [32]. The analogue of the poisson equation of the second idea can be,

∇2φ = 4πGρ(x) (2.2.2)

Now we start to derive Einstein field equation under the approximation of a weak static

field produced by a non-relativistic mass density ρ [24][33]. Therefore,the energy density

for non-relativistic matter is,

T 00 = ρ = T00
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One can write the poisson equation as,

∇2φ = 4πGT00 (2.2.3)

When the metric to be close to the Minkowski metric ηµν :

gµν = ηµν + hµν

This equation for 00 components will be

g00 = −1 + h00

And we get

∇2φ =
1

2
∇2g00 (2.2.4)

Therefore poison equation result,

1

2
∇2g00 = 4πGT00

∇2g00 = 8πGT00 (2.2.5)

From this fact the weak field equation for a general distribution of energy and momentum

Tαβ will take the form,

Gαβ = 8πGT00 (2.2.6)

Where,Gαβ is a linear combination of the metric tensor and its first and second derivatives.

The principle of equivalence that the equation which govern gravitational fields of arbitrary

strength must take the form,

Gµν = 8πGTµν (2.2.7)

Therefore, equ(2.2.6)is the approximated form of equ(2.2.7) in a weak static gravitational

field as equivalence principle states. Here is a tensor which reduce to Gαβ for a weak fields

and since Tµν is symmetric, Gµν also. To go further consider the nature of Gµν;
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1. By definition Gµν is a tensor

2. By assumption Gµν contain terms that are linear in the second derivative of the metric

tensor or quadratic in the first derivative of the metric

3. Since Tµν is symmetric so does Gµν

4. Since Tµν is conserved in the absence of external forces,so does Gµν .

5. For a weak stationary field produced by non-relativistic matter ,the 00 component

must satisfy

G00 ≈ ∇2g00 (2.2.8)

Hence(1) and (2) required Gµν to take the form

G00 = C1Rµν + C2gµνR (2.2.9)

where,C1 and C2 are constants.Since this is symmetric condition(3) is automatically satis-

fied. It follows from the above relation that.

gσµGµν = C1g
σµRµν + C2g

σµgµνR (2.2.10)

Equivalent to,

Gσν = C1R
σ
ν + C2δ

σ
νR (2.2.11)

This follow as

Gσν;σ = C1R
σ
ν;σ + C2δ

σ
νR;σ (2.2.12)

Using this result, Rσν;σ = 1
2δ
σ
νR;σ into the above equation and it follows,

Gσν;σ =
1

2
C1δ

σ
νR;σ + C2δ

σ
νR;σ (2.2.13)
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If ν = σ

Gσν;σ =
1

2
C1R;σ + C2R;σ

Gσν;σ =

(
C1

2
+ C2

)
R;σ (2.2.14)

By the conservation of Gµν we have Gσν;σ = 0 and this yield the relation,(
C1

2
+ C2

)
R;σ = 0

C1

2
+ C2 = 0

C1

2
= −C2 (2.2.15)

Therefore, we can write Gµν as,

Gµν = C1Rµν −
C1

2
gµνR

Gµν = C1(Rµν −
1

2
gµνR) (2.2.16)

To fix the constant C1,use the property [15] . A non relativistic system always has ‖Tij‖ �

‖T00‖ and here look the case where ‖Gij‖ � ‖G00‖ thus,

Gij ≈ 0 (2.2.17)

From equ(1.2.16) we can write as

Rij −
1

2
gijR = 0

Rij =
1

2
gijR (2.2.18)

Since we deal here with a weak field approximation (i.e gαβ ≈ ηαβ) as well as gij ≈ ηij .

Therefore, this lead to write as,

Rij ≈
1

2
ηijR (2.2.19)
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By applying the property of metric tensor ηij = 1; for i = j = 1; 2; 3 and taking the sum

over each indices,

Rij =
3∑

i,j=1

1

2
ηijR ≈

3

2
R

Rkk =
3

2
R (2.2.20)

The curvature scalar is therefore given by,

R ≈ Rkk −R00 =
3

2
−R00

R ≈ 2R00 (2.2.21)

Thus in the weak field approximation we have the following information,

R ≈ 2R00

gαβ ≈ ηαβ

Gµν = C1(Rµν −
1

2
gµνR)

For the 00 component of Gµν equals to,

G00 = C1(R00 −
1

2
g00R = C1(R00 −

1

2
η00R)

G00 = 2C1R00 (2.2.22)

Now the task is to calculate R00. Recall the expression given by the Riemann curvature

tensor Rλµνκ that is,

Rλµνκ =
1

2

[
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

]
+ gησ

[
ΓηνλΓσµκ − ΓηκλΓσµν

]
Since we are looking for a weak field approximation,it is better to use the linear part of

Rλµνκ ,given by

Rλµνκ =
1

2

[
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

]
(2.2.23)
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When the field is static all the time derivatives vanish,and the components that we need

are,

R0000 ≈ 0

Ri0j0 ≈
1

2

∂2g00

∂xi∂xj
=

1

2
∇2g00 (2.2.24)

where ∂2g00

∂xi∂xj
= ∇2g00 From the contraction of curvature tensor over the two indices

R00 = gλνRλ0ν0

R00 = Ri0j0 −R0000 (2.2.25)

By using this relation in the equation into equ(2.2.22) for Gµν ,

G00 = 2C1(Ri0j0 −R0000)

G00 = 2C1(
1

2
∇2g00 − 0) = C1∇2g00 (2.2.26)

Comparing equation (2.2.8) and (2.2.26),

G00 = C1∇2g00 = ∇2g00 (2.2.27)

The value of C1 = 1, and therefore, we can write the equation for Gµν as,

Gµν = (Rµν − 1

2
gµνR) = 8πGTµν

(Rµν − 1

2
gµνR) = 8πGTµν (2.2.28)

Equation (1.2.28) is Einstein field equation. In this EFE, the expression on the left repre-

sents the curvature of spacetime as determined by the metric and the expression on the right

represents the matter/energy content of spacetime. The EFE can then be interpreted as a

set of equations dictating how the curvature of spacetime is related to the matter/energy

content of the universe.
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2.3 Introduction of Cosmological Constant into Einstein Field
Equations

After completing his theory of GR, Einstein was interested to find a static solution of his

field equations with the idea of incorporating Mach’s principle, for details see [1]. But

Einstein soon noticed that his original field equations yield a non - static solution. As

the consequence, Einstein himself after a year, in 1917 introduced a positive cosmological

constant with the belief of constructing a static solution,Eq (2.3.1). But at the same year

that Einstein introduced the cosmological term, de Sitter presented solutions to static Ein-

stein universe , which had both static and dynamic features. The de Sitter’s prediction is

considered as the first step towards the theoretical discovery of expanding universe. On

the other hand, in 1922 Freidmann constructed a matter dominated expanding universe

without a cosmological constant.Then, the possibility that the universe may be expanding

led Einstein to abandon the idea of a static universe and, along with it, the cosmological

constant. However, other groups sustained supporting a model with cosmological constant.

For example, Weyl in 1923 recommended de Sitter’s model to explain measurements of the

spectra of spiral nebulae that showed redshifted; Lemaitre constructed an expanding model

which originated from such an asymptotically static state ( static Einstein universe ) in

the distant past. Since then, the cosmological constant has remained with debate where

it is being cast out at a time and reintroduced at other time. Einstein field equation with

cosmological constantΛ became,

(Rµν − 1

2
gµνR) + gµνΛ = kTµν (2.3.1)

Where k = 8πG and G is gravitational constantRecent observational data and results

in modern cosmology revealed that the dark energy which is described in majority by

the cosmological constant is of dominant importance in the dynamics of our Universe.

Measurements conducted by Wilkinson Microwave Anisotropic Probe (WMAP) indicate
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that almost three fourth of total mass-energy in the Universe is Dark Energy and the leading

theory of dark energy is based on the cosmological constant characterized by repulsive

pressure which was introduced by Einstein in 1917 to obtain a static cosmological model.

Later on Zeldovich [30] interpreted this quantity physically as a vacuum energy of quantum

fluctuation whose size is of the order of ∼ 3 ∗ 10−56cm−2

2.4 Schwarzschild de Sitter Metric

A de Sitter universe is a cosmological solution to the Einstein field equation of general

relativity named after Willian de Sitter. If a model of the universe as special flat and

neglects ordinary matter. So the dynamic of the universe is dominated by the cosmological

constant(Λ). And it also describes the specially symmetric solution to Einstein vacuum

equation with a positive cosmological constant, as shown in eq(2.3.1)can be again defined

as, by setting Tµν=0

Rµν −
1

2
Rgµν + Λgµν = 0

But

R = gµνRµν

Substituting instead of Ricci the solution will be

Rµν −
1

2
gµνgµνRµν + Λgµν = 0

hence,

Rµν − 2Rµν + Λgµν = 0

Rµν = Λgµν (2.4.1)

Now Schwarzschild metric,

ds2 = −B(r)dt2 +A(r)dr2 + r2dθ2 + r2 sin2 θdφ2
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Now for spherical coordinate system (t,r,θ, φ)for vacuum EFE,

Rtt = Λgtt, Rrr = Λgrr, Rθθ = Λgθθ, Rφφ = Λgφφ

And using the definition of Ricci tensor from contraction of Reimann curvature,

Rσµσν = Rµν = Γλµλ,ν − Γλµν,λ + ΓηµλΓλην − ΓηµνΓληλ

Rrr =
B”r

2Br
− 1

4

(
B′(r)

B(r)

)(
A′(r)

A(r)
+
B′(r)

B(r)

)
− 1

r

(
A′(r)

A(r)

)
Rθθ = −1 +

r

2A(r)

(
−A′(r)
A(r)

+
B′(r)

B(r)

)
+

1

A(r)

Rφφ = sin2 θRθθ

Rtt = −B”(r)

2A(r
+

1

4

B′(r)

A(r)

(
A′(r)

A(r)
+
B′(r)

B(r)

)
− 1

r

(
B′(r)

A(r)

)
Rµν = 0 for µ 6= ν

If we follow through the original derivation of the Schwarzschild metric with,

ds2 = −B(r)dt2 +A(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (2.4.2)

Where, A(r) = grr, B(r) = gtt, r
2 = gθθ, r

2 sin2 θ = gφφ and as a starting point ,then we

get the equation

∂A(r)

∂t
= 0 (2.4.3)

Because A(r) is not expressed explicitly with time using the component of Ricci tensor

(non-vanishing), it become

A(r)

B(r)
+Rrr =

2B′(r)

r
+

2B(r)∂A(r)

rA(r)
(2.4.4)

Hence,

Rθθ = r2Λ (2.4.5)

where,r2 = gθθ

Rθθ =
−rB′(r)

2A(r)B(r)
+
rA′(r)

2A2
+ 1− 1

A
(2.4.6)
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Substituting equ(2.4.2) into equ(2.4.5) we get

A

B
(Λgtt) + Λgrr =

2B′(r)

r
+

2B(r)∂A(r)

rA(r)

A

B
(−BΛ) +AΛ =

2B′(r)

r
+

2B(r)∂A(r)

rA(r)
(2.4.7)

It yield,

0 =
2B′(r)

r
+

2B(r)A′(r)

rA(r)
(2.4.8)

Multiply both side by r
2B(r) ,

B′(r)

B(r)
= −A

′(r)

A(r)
(2.4.9)

Thus non-zero Λ doesn’t change this equation. The only difference come from substituting

equ(2.4.9) into equ(2.4.7) and rearranging terms,

Rθθ =
rA′

2A2
+ 1− 1

A

r2Λ− 1 =
rA′

2A2
− 1

A
d

dr
(
r

A
) = 1− r2Λ (2.4.10)

Integrate this equation the result will be,

r

A(r)
= r − r3Λ

3
+ C (2.4.11)

where C is some constant and is called ” mass” parameter.

1

A(r)
= 1− r2Λ

3
+
C

r

And also

1

A(r)
= B(r)

B(r) = 1− r2Λ

3
+
C

r
(2.4.12)

A(r) =

(
1− r2Λ

3
+
C

r

)−1

(2.4.13)
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Note that Λ is the cosmological constant which using the value of |Λ| 6 10−56m−2 is so

very small that C
r �

Λ
3 r

2 for the value of r on the scale of intergalactic distance (million of

light years), then for this distances the cosmological constant term can be neglected and the

requirement that we reclaim Newton’s law of gravity for this distances give us the condition

C = −2GM

c

r
=
−2GM

r

Equations (1.4.12) and (1.4.13) will be ,

B = 1− 2GM

r
− r2Λ

3
(2.4.14)

and

A =

(
1− 2GM

r
− r2Λ

3

)−1

(2.4.15)

And metric,

gtt = −
(

1− 2GM

r
− r2Λ

3

)

grr =

(
1− 2GM

r
− r2Λ

3

)−1

Now the Schwarzschild -de Sitter metric with cosmological constant in EFE becomes

ds2 =

[
1− 2GM

r
− r2Λ

3

]
dt2 +

[
1− 2GM

r
− r2Λ

3

]−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (2.4.16)



Chapter 3

AGN and Dynamic Accretion
Process Around AGN in sds
Geometry

3.1 Historical Discovery and Research Development about
AGN

Early photographic observations of nearby galaxies detected some characteristic signatures

of AGN emission, although there was not yet a physical understanding of the nature of the

AGN phenomenon. Some early observations included the first spectroscopic detection of

emission lines from the nuclei of NGC 1068 and Messier 81 by Edward Fath (published in

1909),[14] and the discovery of the jet in Messier 87 by Heber Curtis (published in 1918)[7].

After this first spectrum, more such emission line galaxies were discovered. In 1943, Carl

Seyfert published a paper in which he described observations of nearby galaxies having

bright nuclei that were sources of unusually broad emission lines[8]. Galaxies observed as

part of this study included NGC 1068, NGC 4151, NGC 3516, and NGC 7469. Active galax-

ies such as these are known as Seyfert galaxies in honor of Seyfert’s pioneering work.Seyfert

galaxies are essentially normal spiral galaxies, with strong nuclear emission. The develop-

ment of radio astronomy was a major catalyst to understanding AGN. Some galaxies with

active nuclei are also strong radio emitters. Almost all of these radio galaxies are elliptical

24
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galaxies[4]. The radio emission is not constrained to the nucleus alone but also appears

in extended jets which emanate from the nucleus. In photographic images, some of these

objects were nearly point-like or quasi-stellar in appearance, and were classified as quasi-

stellar radio sources (later abbreviated as ”quasars”). Schmidt noted that if this object was

extragalactic (outside the Milky Way, at a cosmological distance) then its large redshift of

0.158 implied that it was the nuclear region of a galaxy about 100 times more powerful than

other radio galaxies that had been identified. Shortly afterward, optical spectra were used

to measured the redshifts of a growing number of quasars including 3C 48, even more distant

at redshift 0.37[28]. The enormous luminosities of these quasars as well as their unusual

spectral properties indicated that their power source could not be ordinary stars. Accretion

of gas onto a supermassive black hole was suggested as the source of quasars’ power in

papers by Edwin Salpeter and Yakov Zel’Dovich in 1964.[29] In 1969 Donald Lynden-Bell

proposed that nearby galaxies contain supermassive black holes at their centers as relics

of ”dead” quasars, and that black hole accretion was the power source for the non-stellar

emission in nearby Seyfert galaxies[21]. In the 1960s and 1970s, early X-ray astronomy

observations demonstrated that Seyfert galaxies and quasars are powerful sources of X-ray

emission, which originates from the inner regions of black hole accretion disks.

The study of Active Galactic Nuclei (AGN) has become a major astrophysical topic in the

last decade, both observationally and theoretically[6]. AGN, in particular quasars, are the

most luminous objects in the Universe and can thus be seen to the highest redshifts. Thus,

they represent ideal probes for testing directly the physical conditions at large look back

times. Although a general qualitative understanding exists about the nature of the central

machines, namely accretion onto supermassive black holes, a detailed knowledge about the

mechanisms of the actual physical emission processes and about the cosmological evolution

of the objects is still missing[6].

However,the ROSAT instrument provided, for the first time, the opportunity to study a
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very large number of AGN in X-rays and more than 20000 AGN are expected to be detected

in the Survey. Using recently available large scale sensitive radio surveys for a correlation

with the RASS source catalogue, we obtained a list of several thousand radio/X-ray objects

of which more than two thirds are currently optically unidentified.

Considerable effort has been put into the construction of these large AGN - samples, into

the discussion of their class - specific statistical properties, and into the optical identification

of hundreds of these sources.

In addition,AGN are important because they are a source of what we call ”feedback”.

”Feedback” in a galaxy is any process that heats or disrupts the gas.

Moreover, all the works on the effect of Λ on accreting systems are carried out under some

restricted conditions. This is because the study of accreting BH systems involves solving

general relativistic (GR) MHD equations in a strong gravitational field regime. Owing to

the complex and nonlinear character of the underlying equations in GR regime, analytical

quasi numerical treatment of the problem is virtually discarded. Even numerical simulation

is complicated by several issues such as different characteristic time scales for propagating

modes of general relativity and relativistic hydrodynamics. Several early works on these

accretion related phenomena were based on pure Newtonian gravity. After the seminal

work of Paczy’nski and Witta[25], most of the authors treated accretion and its related

processes around BHs using MHD equations in the Newtonian framework by using some

PNPs which are essentially modification of Newtonian gravitational potential developed

with the objective to reproduce (certain) features of relativistic gravitation. This is to avoid

GR gas dynamical equations, which in most occasions become inconceivable in practice

in describing a complex physical system like accreting plasma. Consequently, adopting

PNPs, one can comprehensively construct more realistic accretion flow models in simple

Newtonian paradigm, while the corresponding PNP would capture the essential GR effects

in the vicinity of the compact objects.
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3.2 Dynamic of Accretion Process Around AGN in sds Ge-
ometry

In astronomy, accretion assumes the increase in the mass of a celestial object by collect-

ing of the surrounding gas and objects(of a small size)by gravity. Accretion is served as

a source of energy in many astrophysical objects, including different types of binary stars,

binary X-ray sources, most probably quasars and active galactic nuclei (AGN). While first

development of accretion theory started long time ago, the intensive development of this

theory began after discovery of first X-ray sources and quasars[31]. We may be sure in this

case, that all gravitational energy of the falling matter will be transformed into heat and

radiated outward. Situation is quite different for sources containing black holes, which are

discovered in some binary X-ray sources in the galaxy, as well as in many AGN. Accretion

flow surrounding a black hole was the subject of many theoretical studies in Astrophysics

for last half a century[25]. Particularly after emergence of AGN model, where black hole

accretion is supposed to be the central power house, as the unifying scheme [25] to ex-

plain the behaviour of exotic astronomical objects like Seyfart galaxies, Quasars, Blazars

etc. According to this idea accretion dynamics around black hole should bear the signa-

ture of the surrounding space-time structure and hence properties of the black hole itself.

Schwarzschild de Sitter (SdS) space-time with positive cosmological constant may be con-

sidered to be a plausible model of accelerating Universe with a centrally located spherical

mass distribution [36]. Hence it is expected that for a sufficiently massive black hole, accre-

tion dynamics over a large length scale should bear the signature of SdS space and hence

the effect of the cosmological constant at large length scale too.

The accretion dynamics in general relativistic (GR) set up is quite complex to handle an-

alytically. An alternative approach [25] is to handle the problem in Newtonian framework

with an effective potential (pseudo-potential) which may mimic the general relativistic mo-

tion at least in a region much away from the event horizon. For SdS space such pseudo
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potential has recently been prescribed [38] in literature. In this work using the prescribed

potential [38]) we have explored the accretion dynamics around a centrally located non-

rotating black hole in the accelerating Universe model and compared it with the same in

the non-accelerating one. In the present context, the cosmological horizon is obviously far

away from the region where accretion flow takes place but the signature of the non-zero

cosmological constant remains present, however small, in the space-time curvature of the

accretion region.



Chapter 4

Particle Dynamics in Schwarzschild
De -Sitter Geometry

4.1 Lagrangian and Hamiltonian Dynamic of Particles Mo-
tion

The main difference between particle theory and field theory is that the variables qi no longer

describe the motion of anything, that is, they are no longer functions of time. Rather, they

become fixed labels for points in space. The position variables qi become independent

variables in the same way that the time (t) is independent. Taken together, they label

points in spacetime. A field is some quantity that has a value for each point in spacetime,

and it is this quantity that can change as we move from place to place or forward in time.

For a scalar field such as temperature or density, the field consists of a single value φ (qµ)

attached to each point in spacetime, where we now use the notation qµ to represent the

space components together with time. (That is, qµ is a four-vector in special relativity, with

q0 = t, q1 = x and so on.) A vector field, such as the electric field E, is actually composed

of three separate fields, one for each spatial coordinate. Each of these fields again has a

single value for each point qµ. To work out the Euler-Lagrange equations for classical field

theory, we need to think about what is meant by a path that the system follows. Because

the spacetime coordinates qµ are no longer dynamical variables, it doesnt make sense to

29
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ask how qµ changes with time. What does change is the value of the field φ (or φr if we

have more than one field, as with the electric field, in which case the index r ranges over all

the fields), so it is the field φ that is the dynamical variable. As such, the path followed is

determined by a function of the field values. By analogy with the Lagrangian in the particle

case, we define the Lagrangian density L
(
φr, φr,µ, q

µ
)
. The notation φr,µ is defined as

φr,µ ≡
∂φr

∂qµ
(4.1.1)

The Lagrangian density is the Lagrangian per unit volume, and each infinitesimal volume

element d3x = dq1dq2dq3 follows a path through time, so the action element of this volume

element between times t1 and t2 is

dS =

∫ t2

t1

L
(
φr, φr,µ, q

µ
)
dt (4.1.2)

The total action of the entire system is the integral of this over some spacetime volume Ω

that encloses the entire system spatially during the time interval, so

S =

∫
Ω
L
(
φr, φr,µ, q

µ
)
d4q (4.1.3)

The idea now is to apply the calculus of variations to this integral and require δS = 0 as

in the particle case. Remember that were varying the fields at each spacetime point and

not the coordinates qµ. Therefore (Ill drop the superscript r to avoid confusion with the

summation convention, so the following should be taken to apply to each field φr separately.

A summation over µ is implied):

δS =

∫
Ω

[
∂L
∂φ

δφ+
∂L
∂φ,µ

δφ,µ

]
d4q (4.1.4)

To work out the second term, we write out the derivative explicitly:

∂L
∂φ,µ

δφ,µ =
∂L
∂φ,µ

∂ (δφ)

∂qµ
(4.1.5)

=
∂

∂qµ

[
∂L
∂φ,µ

δφ

]
− ∂

∂qµ

[
∂L
∂φ,µ

]
δφ (4.1.6)
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where the last line follows from the product rule. We therefore get

δS =

∫
Ω

[
∂L
∂φ
− ∂

∂qµ

(
∂L
∂φ,µ

)]
δφd4q +

∫
Ω

∂

∂qµ

[
∂L
∂φ,µ

δφ

]
d4q (4.1.7)

The last term is the integral of a 4-d divergence over a 4-d volume and we can use a 4-d

analog of Gausss theorem to convert this to a surface integral over a 3-d surface Σ that

bounds Ω. Making the usual assumption that this surface can be removed to infinity and

that our system is finite so that L → 0 at infinity, this integral goes to zero. Were left with

δS =

∫
Ω

[
∂L
∂φ
− ∂

∂qµ

(
∂L
∂φ,µ

)]
δφd4q = 0 (4.1.8)

The requirement that this is valid for all variations δφ in the field gives us the field theory

version of the Euler-Lagrange equations (where Ive restored the index r indicating which

field were talking about; note that µ is still summed):

∂L
∂φr
− ∂

∂qµ

(
∂L
∂φr,µ

)
= 0 (4.1.9)

Because test particles follow geodesics in a fixed metric, the orbits of those particles may be

determined using the calculus of variations, also called lagrangian approach. Geodesics in

spacetime are defined as curves for which small local variations in their coordinates(while

holding the endpoints events fixed )make no significant change in their overall lengths.

This may be expressed mathematically using the calculus of variations by adopting the

terminology of classical mechanics,

0 = δ

∫
ds = δ

∫ √
gµνdxµdxνdτ = δ

∫ √
2Ldτ

Where τ is the proper time , s = cτ is the arc length in space-time and τ is defined as

2L = c2 =

(
ds

dτ

)2

= gµν
dxµ

dτ

dxν

dτ
(4.1.10)

Hence

2L =

(
ds

dτ

)2

(4.1.11)
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the simpler Lagrangian

L =
1

2
gµν

dxµ

dλ

dxν

dλ
(4.1.12)

the canonical momentum conjugate to xµ equals the momentum one-form of the particle:

pµ =
∂L

∂
(
dxµ

dτ

) = gµν
dxν

dτ
(4.1.13)

4.2 Derive Dynamic parameters by Corresponding Principle
in sds Geometry

For a general class of static spherically symmetric spacetimes of the form (in the standard

coordinates system)

ds2 = −f(r)c2dt2 + f(r)−1dr2 + r2dΩ2 (4.2.1)

Where, dΩ2 = r2dθ2 + r2sin2θdφ2 and f(r) is the generic metric function, the Lagrangian

density of a particle of mass m is given by

2L = −f(r)c2

(
dt

dτ

)2

+ f(r)−1

(
dr

dτ

)2

+ r2

(
dΩ

dτ

)2

(4.2.2)

From the symmetries, one obtains two constants of motion corresponding to two ignorable

coordinates t and Ω as given by

pt =
∂L
∂t̃

= constant = −ε (4.2.3)

and

pΩ =
∂L
∂Ω̃

= r2dΩ

dτ
= constant = λ (4.2.4)

Where, ε and λ are specific energy and generalized specific angular momentum of the

orbiting particle, respectively. Here, t̃ and φ̃ represents the derivative of ’t’ and ′φ′ with

respect to proper time τ . It needs to be mentioned that from now onwards, throughout the

paper, the terms related to momentum, energy/Hamiltonian, potential and frequency, all
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of which are in fact their specific quantities, would be addressed without the using of word

’specific’. Using Eq.(4.2.3) we can derive

dt

dτ
=

ε

c2

1

f(r)
(4.2.5)

by using eq (4.1.12) 2L = gαβp
αpβ = −m2c2 and substituting eq (4.2.3) and eq(4.2.4) in

eq(4.2.2) we obtain (
dr

dτ

)2

=

(
ε2

c2
− c2

)
− c2[f(r)− 1]− f(r)

λ2

r2
(4.2.6)

By considering a locally inertial frame for a test particle motion, we write EGN = ( ε
2−c4
2c2

)

(’GN’ symbolizes ’GR-Newtonian’). Second term in the above definition of EGN is the rest

mass energy of the particle which is subtracted from relativistic energy owing to low energy

limit. from eq(4.2.5) and (4.2.6) and using eq(4.2.4) we get

dτ =
c2

ε
f(r)dt

and also

λ2 =
ε2r4

c4

Ω̇2

f(r)2

Then,

dr

dτ
=

ε

c2f(r)

dr

dt

By using these above equations , drdτ will be

dr

dt
= f(r)

c2

ε

√
2EGN − c2[f(r)− 1]− Ω̇2

r2

f(r)
(4.2.7)

Where, Ω̇ is the derivative with respect to coordinate time ’t’. Using the condition for low

energy limit ε
c2
∼ 1 as we prefer to, EGN is given by

EGN =
1

2

(
dr

dt

)2 1

f(r)2
+
r2Ω̇2

2f(r)
+
c2

2
[f(r)− 1] (4.2.8)

In the asymptotic non-relativistic limit EGN reduces to the Newtonian mechanical energy

(= Hamiltonian of the motion). The generalized Hamiltonian EGN in the low energy limit
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should then be equivalent to the Hamiltonian in Newtonian regime. The Hamiltonian in

the Newtonian regime with the generalized analogous potential in spherical polar geometry

will then be equivalent to EGN in Eq. (4.2.8). Thus

EGN ≡
1

2
(ṙ2 + r2Ω̇2) + VGN − ṙ

∂VGN
∂ṙ

− Ω̇
∂VGN

∂Ω̇
(4.2.9)

Where, T = 1
2(ṙ2 + r2Ω̇2) is the non-relativistic kinetic energy of the test particle. ṙ is the

derivative with respect to coordinate time ’t’. VGN is the analogous potential which would

then be given by

VGN =
c2[f(r)− 1]

2
− [1− f(r)]

2f(r)

[
1 + f(r)

f(r)
ṙ2 + r2Ω̇2

]
(4.2.10)

VGN , thus, is the generalized three dimensional potential in spherical geometry in Newtonian

analogue, corresponding to any generalized static GR metric given in eq.(4.2.1), with test

particle motion in the low energy limit. Note that , the first term on the right hand side

of the potential contains the explicit information of the source. For a purely spherically

symmetric gravitational mass with zero charge and without any external effects, the classical

Newtonian gravitational potential −GMr will be recovered from this term . The second term

is the explicit velocity dependent and contains information of the test particle motion ,

thus contributing to the modification of Newtonian gravity. For sds metric the metric

function f(r) = 1− 2rs
r −

Λ
3 r

2 , where Λ is the cosmological constant. Λ > 0 represents the

sds metric with spatially inflated Universe,where Λ < 0 represents a Schwarzschild anti-de

Sitter metric corresponding to negative vacuum energy density for contracting universe.

rs = GM
c2

. From Eq. (4.2.10) we then obtain the three dimensional generalized Newtonian

analogous potential in spherical geometry, corresponding to sds geometry in the low energy

limit,

Vds = −
(
GM

r
+

Λc2r2

6

)
−

(
2rs + Λr3

3

r − 2rs − Λr3

3

)(
r − rs − Λr3

6

r − 2rs − Λr3

3

ṙ2 +
r2Ω̇2

2

)
(4.2.11)

where, subscript ’ds’ denotes Schwarzschild de-Sitter.With Λ = 0 the above potential re-

duces to the potential corresponding to the simplest static Schwarzschild geometry [26].M ≡
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MBH is the mass of the BH/central object. The denominator in the second term of the

potential contains the exact metric function f(r) of sds geometry, and hence the poten-

tial Vds would reproduce the exact location of the event horizon and cosmological hori-

zon and other horizon properties, as that in full general relativity.Introducing a dimen-

sional parameter or cosmological parameter ζ = Λr2
s

3 , the vanishing cubic polynomial f(r)

with repulsive cosmological constant (Λ > 0) would give two real positive roots represent-

ing the locations of two horizons, namely the BH horizon and the cosmological horizon.

The locations of these two horizons are then given by rH = 2√
3ζ
cos
[
π
3 + cos−1(3

√
3ζ)

3

]
and

rCM = 2√
3ζ
cos
[
π
3 −

cos−1(3
√

3ζ)
3

]
, respectively.

4.3 Orbital Dynamics Around sds Spacetime

In the Newtonian framework, the Lagrangian of a particle in the presece of the sds analogous

potential Vds per unit mass using eq(4.2.8) is given by,

Lagrangian function

Lds = T − Vds

Lagrangial density will be

Lds =
1

2

ṙ2(
1− 2rs

r −
Λr2

3

)2 +
r2Ω̇2

2
(

1− 2rs
r −

Λr2

3

) − c2

2

[
−2rs

r
− Λr2

3

]

Hence

Lds =
1

2

 r2ṙ2(
r − 2rs − Λr3

3

)2 +
r3Ω̇2

r − 2rs − Λr3

3

+
GM

r
+

Λc2r2

6
(4.3.1)

Where, Ω̇2 = θ̇2 + sin2θφ̇2. Here over dots show that, the derivative with respect to

coordinate time’t’. we compute the conserved angular momentum and Hamiltonian using

Vds , given by

λds =
r3Ω̇

r − 2rs − Λr3

3

(4.3.2)
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and

Eds =
1

2

 r2ṙ2(
r − 2rs − Λr3

3

)2 +
r3Ω̇2

r − 2rs − Λr3

3

− GM

r
− Λc2r2

6
(4.3.3)

respectively.

Using Eqs. (4.3.2) and (4.3.3), we obtain ṙ that uniquely describes the test particle motion,

which is given by

dr

dt
=
r − 2rs − Λ

3 r
2

r

√
2Eds +

2GM

r
+

Λc2r2

3
−
(
r − 2rs −

Λr3

3

)
λ2
ds

r3
(4.3.4)

which is exactly equivalent to ṙ in general relativity in low energy limit. Replacing Ω̇ and

ṙ in Eq (4.2.11) using Eqs (4.3.2) and (4.3.4) respectively, sds analogous potential can be

written in terms of conserved Hamiltonian Eds and angular momentum λds, given by

Vds =

(
GM

r
+

Λc2r2

6

)
−
(

2rs +
Λr3

3

)[(
r − 2rs −

Λr3

3

)
λ2
ds

r4

(
1

2
−
r − rs − Λr3

6

r

)]

−
(

2rs +
Λr3

3

)[
1

r2

(
r − rs −

Λr3

6

)(
2Eds +

GM

r
+

Λc2r2

3

)]
(4.3.5)



Chapter 5

Result and Discussion

Table 5.1: Comparing angular momentum numerical data in sds and sw geometry in below
table

λsw(1025Hz) 0.707107 12.5743 2.23607 39.7635

λsds(1025Hz) 0.7071 12.5704 22.1359 24.1068

We show the variation of Vds in the form given in eq(3.3.5)with radial r, corresponding

to Λ > 0 with Λr2
s = 1 ∗ 10−27 in the low energy limit of test particle motion. The stated

value of Λr2
s corresponding to Λ = 10−56cm−2 for MBH ∼ 109M⊙ .The profile of Vds clearly

shows both the BH event horizon as well as the cosmological horizon .With Λr2
s ∼ 1∗10−27,

cosmological horizon extends up to ∼ 5.5 ∗ 1013rs. For a BH of ∼ 109M⊙, it gives a radius

of 5.5 ∗ 103 megaparsec.Although the locations of BH event horizon as well as cosmological

horizon remain unaltered with the increase in test particle energy, nevertheless, there is

a noticeable change in the magnitude of Vds at both horizon radii. It is found that λds

has no effect on the nature of potential just beyond ∼ 100rs. These indicate that with

the increase in the value λds, inner horizon shifts to larger radii. The variation of effective

potential V eff
ds = Vds +

λ2
ds

2r4

(
r − 2rs − Λr3

3

)
for the same value of Λ corresponding to sds

spacetime. However V eff
ds attains a higher peak as compared to Vds in the vicinity of

inner horizon for values of λds & 3.5. For any arbitrary physical quantity F , the relative

deviation (ξi) is defined as ξi = 2
∣∣∣Fds−FSWFds+FSW

∣∣∣ which essentially implies deviation between

37
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Figure 5.1: angular momentum of λsw and λsd

the analogous potential for sds and Schwarzschild geometry relative to the their average

value.The subscript SW represents corresponding quantities in Schwarzschild geometry.At

smaller distances ξi is very small, and detecting such small deviations experimentally does

not seem to be possible at present or in near future.[26]The relative deviation may be

considered to be non-negligible with the corresponding distance r ∼ 8.4 ∗ 107rs. With

this consideration, this then implies that beyond such radius the influence of Λ cannot be

neglected. At r & 8.4 ∗ 108rs the relative deviation becomes substantial with (ξi & 10)

percent. ξi increases rapidly up to certain radius r ∼ 9 ∗ 109rs, beyond which it mostly

remains constant.Around this particular radius, the Λ effects become too dominating, which

renders VSW to become negligible in compare to that of Vds. We describe this radius

r ∼ 9 ∗ 109rs as some upper bound (xmax). For MBH ∼ 109M⊙, in accordance with the

BH massin many AGNs/quasars or in massive galaxies, the lower bound in r(xmin) gives a

radius of ∼ 8 kiloparsec, whereas the upper bound xmax gives a radius of ∼ 900 kiloparsec.

Thus, the region between xmin and xmax or a region approximately existing between few

kiloparsecs to a few 100 kiloparsecs would be strongly affected by cosmological constant Λ,

thereby, directly influencing the kiloparsecs-scale structure in massive galaxies, in the local

observable Universe. With a similar BH mass, the region beyond 80 kiloparsec would have
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most significant Λ effects,where ξi would be greater than ∼ 10percent. Next we obtain the

equation of the orbital trajectory using Eqs. (3.3.2) and (3.3.4), as given by(
dr

dΩ

)2

=
r4

λ2
ds

[
2Eds +

2GM

r
+

Λc2r2

3
−
(
r − 2rs −

Λr2

3

)
λ2
DS

r3

]
(5.0.1)

Although Eq. (3.3.6) is derived with the condition of low energy limit, yet it is exactly the

same as that in full general relativity which one can easily obtain using Eqs. (3.2.4) and

(3.2.7) with relevant f(r). To furnish a complete behavior of the particle dynamics in sds

background, we obtain the equations of motion of the test particle in the presence of Vds

from the Euler-Lagrange equations in spherical geometry which are given by

r̈ =

(
−GM

r2
+

Λc2r

3

)(
r − 2rs − Λr3

3

r

)2

+
2
(
rs − Λr3

3

)
r
(
r − 2rs − Λr3

3

) ṙ2 + (r − 3rs)(θ̇
2 + sin2θφ̇2)

(5.0.2)

φ̈ =
2ṙφ̇

r

(
r − 3rs

r − 2rs − Λr3

3

)
− 2cotθφ̇θ̇ (5.0.3)

and

θ̈ =
2ṙθ̇

r

(
r − 3rs

r − 2rs − Λr3

3

)
+ sinθcosθφ̇2 (5.0.4)

respectively.φ̇ and θ̇ equations are exactly the same to that in general relativity. Whereas r̈

eq(3.3.7) corresponds to that in general relativity in the low energy limit. The corresponding

r̈ equation in general relativity given by

r̈ =

(
−GM

r2
+

Λc2r

3

)(
r − 2rs − Λr2

3

r

)2
c4

ε2
+

2
(
rs − Λr3

3

)
r(r − 2rs − Λr2

3 )
ṙ2 + (r− 3rs)(θ̇

2 + sin2 θφ̇2)

(5.0.5)

It needs to be mentioned that previously a PNP has been prescribed in [26] corresponding

to sds geometry based on a method adopted by [30-32], which has been formulated by

considering a Keplerian rotation profile of the test particle motion. The form of the PNP

is given by

Φ(r) =
r3 Λ

3 − 3r(Λ
3 )1/3 + 2

2
[
1− 3(Λ

3 )1/3
]

(2− r + r3 Λ
3 )

(5.0.6)
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which is derived on the premise that Φ(r) = 0 at the static radius, preserving the analogy

that the gravitational potential tends to zero in asymptotically flat spacetime. This po-

tential does not have any dependence on test particle velocity. With Λ = 0, the PNP in

Eq. (4.0.6) reduces to that of Paczy’nski-Witta potential corresponding to Schwarzschild

geometry. The corresponding GR behavior is mimicked through this PNP by intending

only to reproduce the marginally stable and bound orbits for circular orbital trajectory.

This is in sharp contrast with the velocity dependent potential Vds, which, a priori, focused

on to replicate the general relativity by resembling the geodesic equations of motion. This

ensures that most of the GR features could be reproduced accurately.

5.1 Particle dynamics along circular orbit

In order to compare the behavior of the particle motion in presence of Vds and those in

general relativity, we compute the dynamical variables for the simplest circular orbit trajec-

tory. With the conditions for the circular orbits ṙ = 0 and r̈ = 0, we obtain corresponding

angular momentum λcds, we obtain corresponding angular momentum Ecds, and the orbital

angular velocity Ω̇c
ds with Vds using eqs(3.3.2), (3.3.4) and (3.3.7) given by

λcds = r

√
GM − Λc2r3

r − 3rs
(5.1.1)

then,

Ecds = −GM
2r

(
r − 4rs
r − 3rs

)
+

[
Λc2r3

6(r − 3rs)

](
Λr2

3
+

4rs
r
− 2

)
(5.1.2)

and

Ω̇c
ds =

r − 2rs − Λr3

3

r2

√
GM − Λc2r3

r − 3rs
(5.1.3)

When Λ = 0 all above equation reduced into Schwarzschild geometry . To compute with

sds geometry we use corresponding GR effective potential ; given by

V GR
eff (r) =

(
1− 2rs

r
− Λr3

3

)(
c2 +

λ2

r2

)
(5.1.4)
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In GR, circular orbit of dr
dτ = 0 and

∂V GReff

∂r = 0 . We found energy ε for the particle motion

in circular orbit,

ε

c2
=

(
r − 2rs − Λr3

3

)
√
r(r − 3rs)

(5.1.5)

Angular momentum (λC) and the equivalent Hamiltonian Ec = ε2−c4
2c2

for circular orbits in

general relativity then exactly resemble the corresponding values obtained with Vds, given

by Eqs. (3.4.1) and (3.4.2) respectively. The orbital angular velocity in general relativity is

then given by

Ω̇2 =

√
GM

r3
− Λc2

3
(5.1.6)

whose analytical expression is not exactly equivalent to in Eq. (3.4.3). Note that the circular

orbit corresponding to sds metric exists down to 3rs in similarity to that in Schwarzschild

geometry which represents the null hypersurface.

The appropriate comparison of the nature of potential Vds in Eq. (3.2.11) and that

of PNP in Eq.(4.0.6), corresponding to test particle motion in circular orbit. In the very

inner and outer regions near to both the BH and cosmological horizons, the behavior of

these potentials differ significantly. One of the major distinctive features of the PNP in Eq.

(4.0.6) is that it becomes zero at the static radius (∼ 1.4 ∗ 109rs) , whereas Vds attains a

value of ∼ −10−9c2. In the intermediate region, the nature of the potentials remain mostly

similar. It is seen that at r & 108rs, where the effect of Λ is prominent, the PNP in Eq.

(4.0.6) differs significantly as compared to Vds. This radius approximately resembles xmin.

The variation of λcds corresponding to Vds which exactly coincides with that in general rela-

tivity, for the entire spatial regime. we compare the nature of λcds with that corresponding to

the PNP in Eq. (4.0.6) at the outer radii. For sds spacetime, there is a clear static radius at

the outer radii where angular momentum abruptly falls to zero value.For BH of ∼ 109M⊙,

with Λ = 10−56cm−2, the static radius will be located at ∼ 140 kiloparsec.Although the

angular momentum for circular orbit trajectory corresponding to Vds as well as for the PNP
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in Eq. (4.0.6) behaves quite similarly at the outer radii, and coincides near the static radius.

However, due to the profound effect of Λ on the outer radii, the nature of λcds at the outer

radii differs significantly from that corresponding to VSW , especially beyond 4 ∗ 108rs. In

the inner radii, where the effect of Λ is negligible, λcds show appreciable deviation from the

angular momentum profile corresponding to the PNP in Eq. (4.0.6).

The variation of conserved Hamiltonian Ecds with r, which is compared with the Hamilto-

nian corresponding to the PNP in Eq. (4.0.6) and the Hamiltonian corresponding to VSW .

It needs to be noted that Ecds corresponding to Vds exactly resembles the corresponding

expression in general relativity. In the outer region of the test particle motion in circular

orbit, where the effect of repulsive Λ is prominent, there is a marked difference between the

profile of conserved Hamiltonian corresponding to Vds and that corresponding to the PNP

in Eq. (4.0.6), especially at r & 5 ∗ 107rs .



Chapter 6

Conclusion

General theory of relativity is the theory of gravitation and geometry of spacetime.It gener-

alizes the spacial theory of relativity and Newton’s law of universal gravitation. The mat-

ter and geometry of spacetime are related by the Einstein field equations (Gµν + Λgµν =

8πGTµν), where Gµν is Einstein field tensor that tells geometry of spacetime and Tµν is

energy-momentum tensor that is matter.

Generally, the spacetime geometry and gravitation described by tensors specially second

rank like metric,Ricci tensor,Ricci scalar,Einstein field tensor and energy-momentum tensor

. But energy-momentum tensor is vanished in vacuum Einstein field equation with cosmo-

logical constant. Although for this equation derive a solution such as Schwarzschild -de

Sitter metric that is known as a line element which contain repulsive(positive cosmological

constant).Farthermore, by corresponding principle of classical analogous used to Lagrangian

and Hamiltonian of general relativistic particle from a line element in Schwarzschild geom-

etry, drive symmetrically two constant of motion like specific energy and angular momen-

tum. Finally, from that point of view general angular momentum,λds = r3Ω̇

r−2rs−Λr3

3

and

energy/Hamiltonian Eds = 1
2

[
r2ṙ2(

r−2rs−Λr3

3

)2 + r3Ω̇2

r−2rs−Λr3

3

]
− GM

r −
Λc2r2

6 analytical derived

from Lagrangian equation in sds geometry. And also for this dynamic analytical equation

found numerical values
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