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ABSTRACT

This thesis considers the problem of using approximate methods for realizing the

neural controllers for nonlinear SISO systems. In this thesis, we introduce the non-

linear autoregressive-moving average (NARMA-L2) model which are approximations

to the NARMA model. The nonlinear autoregressive-moving average (NARMA-L2)

model is an exact representation of the input–output behavior of finite-dimensional

nonlinear discrete time dynamical systems in a neighborhood of the equilibrium state.

However, it is not convenient for purposes of neural networks due to its nonlinear de-

pendence on the control input. In this thesis, nerves system based arm position sensor

device is used to measure the exact arm position for nerve patients using the pro-

posed systems. In this thesis, neural network controller is designed with NARMA-L2

model, neural network controller is designed with NARMA-L2 model system iden-

tification based predictive controller and neural network controller is designed with

NARMA-L2 model based model reference adaptive control system. Hence, quite of-

ten, approximate methods are used for realizing the neural controllers to overcome

computational complexity. Comparison have been made between the neural network

controller with NARMA-L2 model, neural network controller with NARMA-L2 model

system identification based predictive controller and neural network controller with

NARMA-L2 model based model reference adaptive control for the desired input arm

position (step, sine wave and random signals). The comparative simulation result

shows the effectiveness of the system with a neural network controller with NARMA-

L2 model based model reference adaptive control system.

Keywords Nonlinear autoregressive moving average, Neural network, Model refer-

ence adaptive control, Predictive controller
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CHAPTER 1

INTRODUCTION

1.1 Background

The neural network pattern tins be used in dominion strategies that require a global

creation of the diagram forward or inverse dynamics, and these form are available in

the example of neural networks, which have been trained using neural based design

discovery techniques. Papers by: Narandra & Parthasarathy [23, 8] are some of those

that can be referred to as the offer of neural networks for gruppe identification. The

generalized teaching dresser attempts to crops the inverse of a fortification over the

entire kingdom crack using off-line training while in the specialized configuration the

convention is on-line and uses incorrectness back dispersal through the movement to

learn the protocol inverse liveliness over a small operating region. Behera et al [24] in

their paper are concerned with the formatting of a loan blend evaluator’s succession

consisting of the adaptive skillfulness statute and neural network based education trick

for plagiarism of time replacing director parameters. The global firmness of the closed-

loop response design is guaranteed provided the arrangement of the robot-manipulator

action phrase is exact. Generalization of the director over the desired path breach

has been established using an on-line weight education scheme. The advantage of a

neuron-adaptive hybrids mastery scheme is the high accuracy and computationally

less intensive proficiency scheme. Also for Self-Tuning Control (STC), Chen [21] used

back-propagation trained neural network within a self-tuning mastery synopsis to

autonomy Single-Input Single- Output (SISO) critique linearizable system. Another

approach is given in [28], where a neural network is used to appearance the parameters

of a conventional director in an on-line way.
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The remarkable teaching talent of neural networks is leading to their submissiveness

in spotting and adaptive control of dynamical systems. A neural network is basi-

cally composed of many neurons and interconnections with a particular architecture.

Neural networks with relatively complex architectures tend to be more powerful in

education functional mapping but are more difficult to train. The execution that a

multilayer meal striker network (MMSN) is widely used is due to the chasing two

reasons: (i) it can easily be trained by the generalized delta rule; (ii) it able to learn

any office with arbitrary desired accuracy [27,25].

In fact, the chasing four logs of neural networks type them the best emulators for

identifying and controlling the nonlinear dynamic agency [26,28]:

• Parallel tuning with a large record of information: it known that the dominion

bureau have a large amount of information through the sensors at any moment.

Therefore, to carry out an accurate control, the load for rapid modifying of this

idiot is vital; neural networks are capable of presentation so.

• Neural network has the resources of generalizing nonlinear functions to any

desired amounts of accuracy.

• Learning Ability: As it known, there are uncertainties in the region of a set of

organization and include a intrigue of un-known parameters. Parameters must

be identified to solve this problem, and neural networks with high education

proficiency can do this job.

• High reliability: It is known that in a neural network a complex funeral is divided

into small parts, and each company profits up one segment of the problem, so

the mastery design is not affected by the occurrences of one or more tendon

cells. It is very useful control for a control system.

Given the mentioned advantages, neural networks would be the best messenger for

identifying the nonlinear dynamic systems. The remarkable teaching proficiency of

2
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neural networks is leading to their humility in discovery and adaptive control of

dynamical systems. A neural network is basically composed of many neurons and

interconnections with a particular architecture. Neural networks with relatively com-

plex architectures tend to be more powerful in teaching functional mapping but are

more difficult to van [23,21].

The basic of controlling a mechanism can be conveniently divided into the direction

and tracking problems. In the former, the main purpose is to stabilize the tanning

around a fixed operating point. In the later, the motif is to makes the capacity of the

reinforcement follow a specified indication asymptotically. While our ultimate inten-

tion is to determine the domain input, u, based only on exponent measurement for

both command and tracking. The testament confine of our consideration in this thesis

to the problem of tracking when the multivariable design is unknown and only resolve

and ability values are available. One form arrangement that is used to represent gen-

eral discrete-time nonlinear prevalence is the nonlinear autoregressive-moving average

(NARMA) model. In [22], it is shown that NARMA-L1 and NARMA-L2 miniature

were introduced as approximations of the NARMA model for the furnishing of SISO

nonlinear dynamical systems. It was found that the openness of a NARMA example

for a SISO (single input-single output) nonlinear mechanism does not automatically

imply a chamber of establishing the dominion power to phantom a desired output.

If a neural network is used as a controller, the parameters of the latter have to be

adjusted to achieve on-line control. This involves dynamic pile facilities that are com-

putationally intensive. In contrast to that, since the self-reliance inputs u(k) occurs

linearly in the NARMA-L1 and NARMA-L2 models, it can be computed directly

from the sighting model, which use static gradients. Even though the NARMA pat-

terns consequences in better discovery of the unknown plant, the NARMA-L1 and

NARMA-L2 ideal may actually result in better control.

3
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Because (i) capacity of the consequences reported in all the literatures of the adaptive

dominion of nonlinear dynamical bureau are related to a single post single capacity

dresser [22], [20,19]; (ii) most practical founding have multiple-inputs and multiple

output (MIMO). Then our interest in this paper is to study the problem of controlling

multivariable systems.

In [22] it was shown that NARMA-L1 and NARMA-L2 pattern were introduced

as approximations of the NARMA pattern for the attainment of SISO nonlinear

dynamical systems. It was found that the openness of a NARMA patterns for a SISO

nonlinear beating does not automatically imply a office of foundation the mastery role

to hint a desired output. If a neural network is used as a controller, the parameters of

the latter have to be adjusted to achieve on-line control. This involves dynamic slope

funds that are computationally intensive. In antithesis to that, since the dominion

bravery u(k) occurs linearly in the NARMA-L1 and NARMA-L2 models, it can be

computed directly from the discovery model, which use static gradients.

In this thesis the discovery and control of unknown non-linear dynamic basis using

NARMA-L2 configuration is investigated.

1.2 Statement of the Problem

The proposed problem is how to use the approximate methods for realizing the neural

controllers for nonlinear SISO systems. The nonlinear autoregressive-moving average

(NARMA-L2) model is an exact representation of the input–output behavior of dis-

crete time dynamical systems in a neighborhood of the equilibrium state. However, it

is not convenient for purposes of using neural networks alone due to its nonlinear de-

pendence on the control input. To overcome this condition, an approximate way are

used including the neural network controller with NARMA-L2 model, neural network

controller with NARMA-L2 model system identification based predictive controller

and neural network controller with NARMA-L2 model based model reference adaptive

4
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control to overcome system complexity.

1.3 Objectives of the research

1.3.1 General Objective

The general objective of this thesis is to design a nerve system simulator device and

test the performance of the systems using three input signals.

1.3.2 Specific Objective

The specific objective of this study is

1. To develop Mathematical models for the neural network based nerve system

simulator

2. To design NARMA-L2, predictive and model reference controllers and test the

performance of the systems using three input signals.

3. To develop Matlab Simulink for the three systems and compare the results.

1.4 Contribution of the Thesis Work

Specifically the give aways of this thesis is:

• To design a neural network based nerve system simulator device to diagnosis a

nerve patient arm with simple controllers with small cost.

1.5 Scope and Limitation

The scope of this thesis is studying, designing and simulating of NARMA-L2, predic-

tive and model reference controllers for a neural network based nerve system simulator

device and analyzing the systems by testing it with three input signals and comparing

the results.

The limit of this study is no NARMA-L2 and model reference controllers in our

laboratory, so the work of this thesis couldnot implemented.

5
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1.6 Outline of the Thesis

This thesis includes six chapters. The first chapter presents the background of the

NARMA-L2 system, problem statment and the objective as well as the contribution

of the thesis.

In chapter two, it presents the basic literature review that help us to direction our

thesis work.

In chapter three the key opinion and general types of neural network and narma shape

approximations are presented.

In chapter four, the methodology which includes the designing of the nerves system

based arm position sensor device and the proposed controllers are presented.

Simulation result and discussion of the proposed systems are presented and discussed

in end of chapter five.

Finally, chapter six presents conclusions and recommendation.
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CHAPTER 2

LITERATURE REVIEW

T. A. Al-Zohary et al. [1] have presented the problem of using approximate methods

for realizing the neural supervisor for nonlinear multivariable systems. The NARMA-

L1 and NARMA-L2 ideal were introduced as approximations of the NARMA model

used for the execution of a SISO nonlinear dynamical systems. The odds obtained

from using NARMA-L1 and NARMA-L2 ideal is that control capacity u (k) occurs

linearly and then it tins be computed directly from the spotting model. In contrast

to the NARMA configuration that is not convenient for aim of adaptive mastery

using neural networks due to its nonlinear dependence on the control capacity and

the workout direction involves dynamic gradient methods which are computation-

ally intensive. In his paper, the two SISO approximate paragon NARMA-L1 and

NARMA-L2 and extend them to be in keep with the multivariable systems. The

two new extended template are called NARMA-L3 and NARMA-L4. These two new

template simplify both identification and control of the multivariable systems. In his

paper the problem with the argument when the schemes is unknown and the control

has to be generated using only the values of the power and output. Simulation results

are included toward the last of the paper to complement the study.

Yousif Al-Dunainawi et al. [2] have presented a new nonlinear autoregressive agitating

average, NARMA-L2 controller, which is based on an adaptive neuro-fuzzy inference

system, ANFIS architecture. The new mastery configuration employs Sugeno-type

fuzzy inference intrigue FIS sub models to map input characteristics to the powers

of a dynamic and nonlinear system. The default hybrid education algorithm (Back

propagation and Least Square Error) has been carried out as well as grains crowd

optimization approach, in order to select the optimal parameters of the ANFIS sub
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models. Once the design has been modelled efficiently and accurately, the proposed

controller was designed by rearranging the generalized FIS sub models. The controller

merit is evaluated by imitation conducted on a binary distillation column, which is

characterized by a nonlinear and dynamic behavior. The obtained results show that

the PSO-ANFIS based NARMA-L2 achieved more efficient modelling and control

act when compared with other controllers. These supervisor include ANN-based

NARMA-L2, (PD, PI and PID like) fuzzy-tuned by GA and PSO and traditional

PID, which are also implemented to the rod for comparison. Stability and robustness

of the proposed controller regarding system power variance have also been tested by

employment asynchronous set points of both processes.

Cidambaram Vijay Nagaraj et al. [3] have presented the mathematical model of coun-

tryside gap equations have been developed for boost converter in open bill system.

The set point tracing and the regulatory responses over the entire operating inven-

tion is controlled by PID controller, and also the characteristic of boost converter and

startup distribution has been analyzed for open flap response using PID controller.

The neuro supervisor is designed using NARMA-L2 control and the achievement

of proposed supervisor has been analyzed for erroneousness convergence, validation

data, training data, experimenting intelligence in the fortification model. The pro-

posed system was implemented in dSPACE software. Finally, the attainment of the

proposed diagram was evaluated by with and without conventional PID controller.

Mehdi Ramezani et al. [4] have presented a nonlinear technique based on NARMA

L2 neuro-controller is applied to mastery a nonlinear inverted pendulum. Inverted

pendulum is oscillated from its unaffected standpoint and stabilized at the desired

position. The presented NARMA L2 controller is first trained to eliminate both the

nonlinearity and dynamic of the inverted pendulum. Then, it is used as a controller.

The proposed system is successfully applied to control the inverted pendulum. Mat-

lab is used to simulate and answer the performance of the mastery schemes. The
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simulation results shows the probability of the proposed NARMA L2 method.

NgocKhoat Nguyen et al. [5] have presented the formatting of 3 intelligent control

strategies employment fuzzy logic (FL) and artificial neural network (ANN) tech-

niques is investigated to affair with network frequency maintenance against burden

deviation in a large- scale multi area interconnected force system. These intelligent

frequency supervisor proposed in this study include FL-PI, ANN-NARMA-L2, and

ANN-RMC (reference model control). In principle, they are designed depending upon

the main control method, which has been applied efficiently for damping frequency

oscillations. A mathematical form of an n-control-area interconnected force design

with different generation apparatus is built first to apply the dominion methodolo-

gies in order to maintain the grid frequency at its nominal value (50 Hz or 60 Hz).

Such a patterns is considered to be typical runner of a complicated large-scale power

outline in reality. Numerical imitation with various matter of role conditions are also

implemented in this study using the MATLAB/Simulink package to demonstrate the

feasibility and effectiveness of the proposed control strategies. It is found that the

3 intelligent controllers presented in this paper are capable of acquiring supremacy

over the conventional integral regulators in system frequency stabilization. The main

dynamic dominion indicator obtained, especially the overshoot and colonization time,

are highly committing to effectively extinguish the dynamic responses of the frequency

and tie-line bravery deviations. Thus, the steady shore of the power network can be

restored more quickly after task variation occurrence. In that way, the stability,

reliability, and thrift of an electric power grid are able to be guaranteed effectively.

Dhanraj Suman et al. [6] have presented the design of critique linearization and

neural network based feedback linearization (NARMA-L2) controller for a magnetic

levitation system. The magnetic levitation schemes is one of the classical nonlin-

ear systems. The paper provides simulation consequence to validate the theoretical

design.

9



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

Pratik Ghutke et al. [7] have presented two intelligent control schemes based on arti-

ficial neural network for fever control in a jacketed Continuous Stirred Tank Reactor.

The intention was to regulate the reactor fever for an exothermic reaction taking post

in the CSTR by manipulating the thermal condition of jacket. PID based NARMA-

L2 and PID based ANFIS controller are designed and their presentation are analyzed

and compared. The simulation consequence bazaar the response of ANFIS control is

better than NARMA-L2 control.

Priyanka Sharma et al. [9] have presented the load-frequency control (LFC) based

on neural network for shining bravery system dynamic performance. In the paper an

Artificial Neural Network (ANN) based controller is presented for the Load Frequency

Control (LFC) of a five domain interconnected force system. The controller is adaptive

and is based on a nonlinear auto regressive moving average (NARMA-L2) algorithm.

The surgery of the conventional controller and ANN based NARMA L2 supervisor is

simulated using MATLAB/SIMULINK package. The Simulink link consequence of

both the controllers are compared.

Razika Zamoum Boushaki et al. [10] have presented the consequences from an ex-

aminations on a nonlinear compressor control. The useful rank of implementation

of turbo compressors is limited by choking at high rate flows and by the beginning

of inconstancy known as eruption at low rate flows. Traditionally, this instability

has been avoided by using control organization that prevent the operating essence of

the compressor to enter in the unstable region. It is not efficient to apply classical

controllers, such as simple P, PI and PID when the parameters of compression plot

innovations frequently. The import of our occupation is to design and simulate an

intelligent controller. A imitation part is clearly presented with the advantages of the

intelligent system.

Aminreza Riahi et al. [11] have presented a new bureau based on PI and Nonlin-

ear Auto regressed mixing average is used to develop the controller strategy with a
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minimum struggle for the manipulator motors.

Priyanka Sharma et al. [12] have presented the load-frequency control (LFC) based

on neural network for improving bravery schemes dynamic performance. In their

paper an Artificial Neural Network (ANN) based controller is presented for the Auto-

matic Generation Control (AGC) of a five region interconnected might system. The

proposed control have been designed for a five-area interconnected bravery diagram

using artificial neural network (ANN) controller, which controls the capacity of each

realms in the bravery system together. The controller is adaptive and is based on

a nonlinear autoregressive-moving average (NARMA-L2) algorithm. The surgery of

the controllers is simulated using MATLAB/SIMULINK package.

Ahmed M. Kassem et al. [13] have presented the voltage and frequency control of an

isolated self-excited introduction generator, driven by ambience turbine, is developed

with emphasis on nonlinear autoregressive moving average (NARMA-L2) based on

neural networks approach. This has the advantage of observance constant terminal

voltage and frequency irrespective of wind speed and task variations. Two NARMA

L2 controller are used. The first one is dedicated for regulating the terminal voltage of

the initiation creator to a system essence by controlling the thyristor firing angle of a

static reactive might compensator. The aide one is designed to control the mechanical

power force to the generator via tuning the bat throw angle of the appearance turbine.

In this application, an indirect data-based technique is taken, where a model of the

action is identified on the basis of input-output intelligence and then used in the

model-based design of a neural network controller. The proposed system has the

advantages of robustness against ideal uncertainties and external disturbances. The

robustness of the wind-energy scheme has been certified through step innovations in

appearance speed. Moreover, the design is tested also during a step change in burden

impedance. Simulation output show that high dynamic characteristic of the proposed

air intestines devices has been achieved.

11



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

Ahmed. M. Kassem et al. [14] have presented the optimization of a photovoltaic

(PV) water pumping outline using maximum power core tracking method (MPCT).

The optimization is suspended to respect optimal power. This optimization method

is developed to assure the optimum chopping ratio of buck-boost converter. The

presented MPCT way is used in photovoltaic water pumping design in order to opti-

mize its efficiency. An adaptive controller with emphasis on Nonlinear Autoregressive

Moving Average (NARMA) based on artificial neural networks approach is applied in

lineup to optimize the duty ratio for PV maximum bravery at any irradiation level. In

this application, an indirect data-based method is taken, where a ideal of the works is

identified on the basis of input-output information and then used in the model-based

design of a neural network controller. The proposed controller has the advantages

of robustness, fast critique and good performance. The PV creator DC motor pump

plot with the proposed controller has been tested through a step innovations in ra-

diance level. Simulation results exhibition that accurate MPPT tracking virtue of

the proposed diagram has been achieved. Further, the characteristic of the proposed

artificial neural network (ANN) controller is compared with a PID supervisor through

imitation studies. Obtained results demonstrate the impressiveness and superiority

of the proposed approach.

Mahdi Vaezi et al. [15] have presented a new neural networks and time set prediction

based office has been discussed to dominion the complex nonlinear multi variable

robotic tongs movement system in 3d environment without engaging the complicated

and voluminous dynamic equations of robotic firearms in controller design stage,

the proposed bureau gives such compatibility to the manipulator that it could have

significant changes in its dynamic properties, like getting mechanical loads, without

poverty to change designs of the controller.

Yang, C et al. [16] have investigated the ability feedback adaptive control for a castes

of nonlinear organization in output-feedback ideal with unknown control gains. To
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construct exponent feedback control, the design is transformed into the ideal of the

NARMA (nonlinear-auto-regressive-moving-average) model, based on which future

authority prediction is carried out. With convention of the predicted future output,

a constructive ability feedback adaptive control is given with the discrete Nussbaum

gain exploited to overcome the controversy due to unknown control directions. Under

the global Lipchitz requirement of the diagram functions, the roundedness of all the

closed-loop signals and asymptotical output tracking are achieved by the proposed

control. Simulation results are presented to fairs the productivity of the proposed

approach.

Leila Fallah Araghi et al. [17] have presented a new office for two link- robotic

manipulator method dominion using Neural Network, The first agency is based on

Proportional-Integral-Derivative controller, and the assistant method is based on arti-

ficial Neural Network by PID supervisor for two link- automaton control with different

load.

S.S. Mokri et al. [18] have presented a neural network dominion scheme, NARMA-

L2 Control is adopted and implemented in actuality time for controlling a DC motor

driven single link manipulator with unknown dynamics. However, the real time trying

showed that the proposed system consequences in chattering of the control signal.

Hence, the plot also chatters within the desired trajectory. As a solution, real time

Smoothed NARMA-L2 Control scheme is implemented. Physical results showed that

the improved control scheme has not only reduced the chattering but has successfully

controlled the single link manipulator for both point-to-point and continuous path

motion control.

Zhongsheng Hou et al. [19] have presented a so called model-free adaptive control

(MFAC) method, which is based on some new dynamical linearization configuration

and concept, the partial ideal linearization (PIL) and the pseudo-partial derivative

(PPD) of a SISO nonlinear discrete time system. The model-free measure that the
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supervisor design is only based on the I/O data of the controlled plant, no practice

process, no structure information and no mold are needed. Rigorous analysis and

extensive simulations have shown that it has BIBO firmness and performs very well.

Martin T. Hagan et al. [20] have presented the multilayer perceptron neural network

and describe how it tins be used for capacity approximation. The back generation

algorithm (including its variations) is the control system for workout multilayer per-

ceptron’s; it is briefly described here. Care must be taken, when training perceptron

networks, to ensure that they do not over attraction the workout data and then fail

to generalize well in new situations. Several techniques for shining generalization

are discussed. The paper also presents three dominion architectures: configuration

thought adaptive control, model predictive control, and feedback linearization control.

These supervisor demonstrate the compound of progress in which multilayer percep-

tron neural networks tins be used as basic structure blocks. He demonstrate the

practical application of these controllers on three applications: a continuous stirred

tank reactor, a robot arm, and a magnetic levitation system.

The gap of this study the author T. A. Al-Zohary have presented the problem of

using approximate methods for realizing the neural supervisor for nonlinear multi-

variable systems and the author Yousif Al-Dunainawi have presented a new nonlinear

autoregressive agitating average, NARMA-L2 controller, which is based on an adap-

tive neuro-fuzzy inference system, ANFIS architecture while the author Cidambaram

Vijay Nagaraj have presented the mathematical model of countryside gap equations

have been developed for boost converter in open bill systemis and the author Mehdi

Ramezani have presented a nonlinear technique based on NARMA L2 neuro-controller

is applied to mastery a nonlinear inverted pendulum while the author NgocKhoat

Nguyen have presented the formatting of 3 intelligent control strategies employment

fuzzy logic (FL) and artificial neural network (ANN) techniques is investigated to

affair with network frequency maintenance against burden deviation in a large- scale
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multi area interconnected force system and the author Dhanraj Suman have presented

the design of critique linearization and neural network based feedback linearization

(NARMA-L2) controller for a magnetic levitation system while the author Priyanka

Sharma have presented the load-frequency control (LFC) based on neural network

for shining bravery system dynamic performance and the author Razika Zamoum

Boushaki have presented the consequences from an examinations on a nonlinear com-

pressor control and the author Aminreza Riahi have presented a new bureau based on

PI and Nonlinear Auto regressed mixing average is used to develop the controller strat-

egy with a minimum struggle for the manipulator motors while the author Ahmed M.

Kassem have presented the voltage and frequency control of an isolated self-excited

introduction generator, driven by ambience turbine, is developed with emphasis on

nonlinear autoregressive moving average (NARMA-L2) based on neural networks ap-

proach and the author Ahmed. M. Kassem have presented the optimization of a pho-

tovoltaic (PV) water pumping outline using maximum power core tracking method

(MPCT) while the author Mahdi Vaezi have presented a new neural networks and

time set prediction based office has been discussed to dominion the complex nonlinear

multi variable robotic tongs movement system in 3d environment without engaging

the complicated and voluminous dynamic equations of robotic firearms in controller

design stage and the author Yang, C have investigated the ability feedback adaptive

control for a castes of nonlinear organization in output-feedback ideal with unknown

control gains and the author Leila Fallah Araghi have presented a new office for two

link- robotic manipulator method dominion using Neural Network while the author

S.S. Mokri have presented a neural network dominion scheme, NARMA-L2 Control

is adopted and implemented in actuality time for controlling a DC motor driven sin-

gle link manipulator with unknown dynamics and the author Zhongsheng Hou have

presented a so called model-free adaptive control (MFAC) method, which is based

on some new dynamical linearization configuration and concept, the partial ideal
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linearization (PIL) and the pseudo-partial derivative (PPD) of a SISO nonlinear dis-

crete time system finally the author Martin T. Hagan have presented the multilayer

perceptron neural network and describe how it tins be used for capacity approxima-

tion. There is no design of nerves system based arm position sensor device using a

neural network controller based NARMA-L2 model, neural network controller based

NARMA-L2 model including system identification based predictive controller and

neural network controller based NARMA-L2 model including model reference adap-

tive control for comparing the actual and desired arm position of a nerve patient arm

using three test input signals.
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CHAPTER 3

NEURAL NETWORK AND NARMA SHAPE APPROXIMATIONS

3.1 Neural Networks

Neural networks are complex non-linear models, built from constituent that individ-

ually behave similarly to a regression model. They tins be visualized as graphs1, and

some sub-graphs may exist with dealing similar to that of logic gates [11]. Although

the structure of a neural network is explicitly designed beforehand, the treating that

the network does in lineup to crops a deliberation (and therefore, the various logic

gates and other treating construction within the network) evolves during the educa-

tion process. This allows a neural network to be used as a solver that “programs

itself”, in contrast to typical algorithms that must be designed and coded explicitly.

Evaluating the hypothesis defined by a neural network may be achieved via feed-

forward, which amounts to scenes the input nodes, then propagating the values

through the connections in the network until all capability complication have been

calculated completely. The education can be accomplished by using gradient descent,

where the inaccuracies in the authority complication is pushed back through the net-

work via back-propagation, in order to estimate the incorrectness in the hidden nodes,

which allows estimation of the mound of the cost-function.

Figure 3.1: An information adapting unit, visualized as a graph [29]
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3.2 Regression Visualized as a Building Block

Linear regression may be visualized as a graph. The capability is simply the weighted

sum of the inputs:

Figure 3.2: Linear regression [30]

Similarly, logistic regression may be visualized as a graph, with one extra complication

to represent the transfer function. A logistic regression element may also be described

using a linear regression element and a trick node, by recognizing that the first two

stages of a logistic regression element ideal a linear regression element.

Figure 3.3: Logistic regression [31]

Since the vitality three stages of the pipeline are dependent only on the first stage,

the evidence of condense them into one non-linear association performance at the

18



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

output:

Figure 3.4: Simplified anatomy of a logistic regression process [32]

Using this notation, a network that performs position via many one-vs.-all classifiers

has the following form, where the parameter vectors have been combined to mold a

parameter matrix, with a separate column to group each column of the ability vector:

Figure 3.5: Simplified anatomy of a multi-class position network [33]

3.3 Hidden Layers

Logistic regression is a powerful willingness but it tins only mold simple hypotheses,

since it operates on a linear union of the input values (albeit applying a non-linear

role as soon as possible). Neural networks are constructed from layers of such non-

linear association elements, allowing outgrowth of more complex hypotheses. This is

19



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

achieved by stacking 4 logistic regression networks to produce more complex behavior.

The inclusion of extra non-linear intermingling stages between the strength and the

ability swelling can augmentation the sophistication of the network, allowing it to

develop more advanced hypotheses. This is relatively simple:

Figure 3.6: A simple neural network with one hidden layer [34]

Although bed of linear regression bulge could be used in the network there is no point

since each logistic regression element transforms a linear combination of the inputs,

and a linear union of a linear combination is itself a linear combination.

3.4 Notation for Neural Network Elements

The input value to the j ’th node (or neuron) of the i ’th layer in a network with L

layers is denoted zlj and the output value (or activation) of the node is denoted al

j = g (zlj). The parameter matrix for the l’th layer (which produces zl from al−1)

is denoted Θl−1. The activation of the first (or input) layer is given by the network

input values: al = −→x . The activation of the last (or output) layer is the output of

the network: al = −→y .

20



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

Figure 3.7: The parameter matrix Θ and the activation of the first (or input) layer a
in a neural network element [35]

3.5 Bias Nodes

Typically, each layer contains an offset term which is set to some constant value (e.g.

1). For convenience, this will be given index 0, such that al0 = 1. There is a separate

parameter vector for each layer, so the system now have a set of Θ matrices. A

biased network with several hidden layers is shown below to illustrate the structure

and notation for such a network:

Figure 3.8: Example of the annotation used to number the complication of a neural
network [36]
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3.6 Multilayer Perceptron (MLP)

The multilayer perceptron neural network is built up of simple components. It was

begin with a single-input neuron, which it was evidence then extend to multiple

inputs. It was next stack these neurons together to whip layers. Finally, it was

testament cascade the covering together to example the network.

A single-input neuron is shown in Fig 3.9. The scalar input p is multiplied by the

scalar weight w to form wp; one of the terms that is sent to the summer. The other

input, 1, is multiplied by a bias b and then passed to the summer. The summer

output n; often referred to as the net input, goes into a transfer function f ; which

produces the scalar neuron output a. The neuron output is calculated as:

a = f (wp+ b) (3.1)

Note that w and b are both adjustable scalar parameters of the neuron by some

learning rule so that the neuron input/output relationship meets some specific goal.

The substitution capacity in Fig. 3.9 (a) may be a linear or a nonlinear role of n:

One of the most commonly used functions is the log-sigmoid substitution function,

which is shown in Fig. 3.9 (b).

This transfer function proceeds the capacity (which may have any worth between plus

and minus infinity) and squashes the powers into the inclination 0–1, according to

the expression

a =
1

1 + e−n
(3.2)
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Figure 3.9: (a) Single-input neuron, and (b) Log-sigmoid Transfer Function [37]

The log-sigmoid replacement function is commonly used in multilayer networks that

are trained using the back-propagation algorithm, in sliver because this function is

differentiable.

Typically, a neuron has more than one input. A neuron with R inputs is shown in

Fig. 3.10 (a). The individual inputs p1,p2,...,pR are each weighted by corresponding

elements w1,1,w1,2,...,w1,R of the weight matrix W.

The neuron has a bias b; which is summed with the weighted inputs to form the net

input n:

n = w1,1p1 + w1,2p2 + .......+ w1,RpR (3.3)

This expression can be written in matrix form

n = wp+ b (3.4)

Where the matrix W for the single neuron case has only one row.

Now the neuron output can be written as

a = f (n) (3.5)
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Figure 3.10: (a) Multiple-input neuron, (b) Neuron with R inputs, form notation.
[38]

Commonly one neuron, even with many inputs, is not sufficient. We might need 5

or 10, operating in parallel, in what is called a layer. A single-layer network of S

neurons is shown in Fig. 3.11 (a). Note that each of the R inputs is connected to

each of the neurons and that the weight matrix now has S rows. The layer includes

the weight matrix W; the summers, the bias vector b; the transfer function boxes and

the output vector a: Some authors refer to the inputs as another layer, but we will

not do that here. It is common for the number of inputs to a layer to be different

from the number of neurons (i.e. R=S). The S-neuron, R-input, one-layer network

also can be drawn in matrix notation, as shown in Fig. 3.11 (b).
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Figure 3.11: (a) Layer of S neurons, and (b) mold notation. [39]

Now consider a network with several layers. Each layer has its own weight matrix

W; its own bias vector b; a net input vector n and an output vector a: It will need

to introduce some additional notation to distinguish between these layers. It will

use superscripts to identify the layers. Thus, the weight matrix for the first layer is

written as W1; and the weight matrix for the second layer is written as W2: This

notation is used in the three-layer network shown in Fig. 3.12. As shown, there are

R inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc. As noted,

different layers can have different numbers of neurons. The outputs of layers one

and two are the inputs for layers two and three. Thus, layer 2 can be viewed as a

one-layer network with R=S1 inputs, S=S2 neurons, and a S2 × S1 weight matrix

W2: The input to layer 2 is a1; and the output is a2: A layer whose output is the

network output is called an output layer. The other layers are called hidden layers.

The network shown in Fig. 3.12 has an output layer (layer 3) and two hidden layers

(layers 1 and 2).
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Figure 3.12: Three-layer network. [40]

3.7 Error Back Generation (EBP) Training

Now that it will be known that the multilayer networks are universal approxima-

tors, the next step is to determine a procedure for picking the network parameters

(weights and biases) that evidence best approximate a given function. The organi-

zation for pilfering the parameters for a given funeral is called training the network.

In this chapter, it will become the evidence synopsis a drills procedure called back-

propagation [11,12], which is based on incline descent. More efficient algorithms than

pile descent are often used in neural network practice [13].

As discussed earlier, for multilayer networks the capability of one layer becomes the

power to the chasing tiers (see Fig. 3.12). The equations that describe this perfor-

mance are:

am+1 = fm+1
(
wm+1am + bm+1

)
form = 0, 1, 2, ....,M − 1 (3.6)

Where M is the quantity of stratum in the network. The neurons in the first layer

receive external inputs:
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a0 = p (3.7)

Which provides the starting point for Equation (3.6). The outputs of the neurons in

the last layer are considered the network outputs:

a = aM (3.8)

The back-propagation algorithm for multilayer networks is a gradient births optimiza-

tion organization in which it will minimize a mean square error achievement index.

The algorithm is provided with a system of pattern of proper network behavior:

{p1, t1} , {p2, t2} , ..., {pQ, tQ} (3.9)

Where pq is a power to the network and tq is the corresponding target output. As

each input is applied to the network, the network exponent is compared to the target.

The algorithm should adjust the network parameters in order to minimize the sum-

squared error:

F (x) =

Q∑
q=1

e2q =

Q∑
q=1

(tq − aq)2 (3.10)

Where x is a vector containing all network weights and biases. If the network has

multiple outputs this generalizes to

F (x) =

Q∑
q=1

eTq eq =

Q∑
q=1

(tq − aq)T (tq − aq) (3.11)

Using a stochastic approximation, it will replace the sum-squared error by the inac-

curacies on the latest target:

F̂ (x) = (t (k)− a (k))T (t (k)− a (k)) = eT (k) e (k) (3.12)

where the expectation of the squared error has been replaced by the squared error at

iteration k. The steepest descent algorithm for the approximate mean square error

is:
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wm
i,j (k + 1) = wm

i,j (k)− α ∂F̂

∂wm
i,j

(3.13)

bmi (k + 1) = bmi (k)− α ∂F̂

∇bmi
(3.14)

where a is the learning rate.

For a single-layer linear network, these partial derivatives in Equations (3.13) and

(3.14) are conveniently computed, since the error can be written as an explicit linear

function of the network weights. For the multilayer network, the error is not an

explicit function of the weights in the hidden layers; therefore, these derivatives are

not computed so easily. Because the error is an indirect function of the weights in

the hidden layers, it will be use the chain rule of calculus to calculate the derivatives

in Equations (3.13) and (3.14):

∂F̂

∂wm
i,j

=
∂F̂

∂nm
i

× ∂nm
i

∂wm
i,j

(3.15)

∂F̂

∂bmi
=

∂F̂

∂nm
i

× ∂nm
i

∂bmi
(3.16)

The second term in each of these equations can be easily computed, since the net

input to layer m is an explicit function of the weights and bias in that layer: The

second term in each of these equations can be easily computed, since the net input

to layer m is an explicit function of the weights and bias in that layer:

nm
i =

sm−1∑
j=1

wm
i,ja

m−1
j + bmi (3.17)

Therefore

∂nm
i

∂wm
i,j

= am−1
j ,

∂nm
i

∂bmi
(3.18)

If it is now define:

smi =
∂F̂

∂nm
i

(3.19)
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(the sensitivity of ˆF to changes in the itˆh element of the net input at layer m),

then Equations (3.15) and (3.16) can be simplified to:

∂F̂

∂wm
i,j

= smi a
m−1
j (3.20)

It can be now express the approximate steepest descent algorithm as:

wm
i,j (k + 1) = wm

i,j (k)− αsmi am−1
j (3.21)

bmi (k + 1) = bmi (k)− αsmi (3.22)

In matrix form, this becomes:

Wm (k + 1) = Wm (k)− αsm
(
am−1

)T
(3.23)

bm (k + 1) = bm (k)− αsm (3.24)

where the individual elements of sm are given by Equation (3.19).

In some procedure it is unfortunate that the algorithm that can be usually refer to as

back-propagation, given by Equations (3.23) and (3.24), is indeed simply a steepest

lineage algorithm. There are dozens other optimization algorithms that can use the

back-propagation procedure, in which derivatives are processed from the vitality rank

of the network to the first. For example, conjugate heap and quasi-Newton algorithms

[14,16] are generally more efficient than steepest descent algorithms, and yet they tins

use the same back-propagation procedure to compute the necessary derivatives. The

Levenberg Marquardt algorithm is very efficient for training small to medium-size

networks [6].

3.8 Nonlinear Organization Discovery Using Neural Networks

In the adaptive control of unknown and non-linear systems, the schemes must firstly

be identified, that is, considering a configuration for the intrigue and guess its pa-

rameters in which it relates the system’s input and authority with minimum error.
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With glance to the capabilities of neural networks in general approximation, the main

thing here is to use them in identifying nonlinear systems.

In this sub-section, four models, which were introduced in [6] for the representation

of a single-input single output (SISO) nonlinear plant, are presented. These models

were chosen both for their generality as well as for analytical tractability. The models

are motivated by corresponding models, which have been used in the adaptive sys-

tems literature for the identification of linear systems and can be considered as their

generalizations to nonlinear systems. Since back-propagation is the principal method

that we shall use for the adjustment of parameters of the identification model, the pa-

rameterization of the plant (and hence the model) is such as to make the application

of the procedure relatively straightforward.

The replica of the four classes of plants introduced here can be described by the

following nonlinear difference equations:

MODELI : yp (k + 1) =

n−1∑
i=0

aiyp (k − i) + g [u (k) , u (k − 1) , ...., u (k −m+ 1)] (3.25)

MODELII : yp (k + 1) = f [yp (k) , yp (k − 1) , ..., yp (k − n+ 1)] +

m−1∑
i=0

βu (k − i) (3.26)

MODELIII : yp (k + 1) = f [yp (k) , yp (k − 1) , ..., yp (k − n+ 1)]+g [u (k) , u (k − 1) , ...., u (k −m+ 1)]
(3.27)

MODELIV : yp (k + 1) = f [yp (k) , yp (k − 1) , ..., yp (k − n+ 1) , u (k) , u (k − 1) , ...., u (k −m+ 1)]
(3.28)

Where [(k), (k)] represents the input-output pair of the SISO plant at time k. The

functions f and g are assumed to be differentiable functions of their arguments. It is

evident that Model IV subsumes Models I-III. However, Model IV is analytically the

least tractable and hence for practical applications, some of the other models might

prove more attractive. In this chapter, each of these models is briefly described.
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Model I: The capability of the unknown nonlinear fortification in this argument is

assumed to depend linearly on its past values and nonlinearly on the past values of

the input. The latter is realized as shown in Fig. 3.13 and consists of tapped delay

lines at the input and the critique path.

Figure 3.13: Structure of the plant for Model I [41]

Model II: This model is realized as shown in Fig. 3.14. In this case, the output

depends linearly on the input (k) and its past values but nonlinearly on its own past

values. The advantage of this model is that it lends itself readily to control in practical

situation.
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Figure 3.14: Structure of the plant for Model II [42]

Model III: The unknown plant in this box is described by a nonlinear unlikeness

equation of the form:

x (k + 1) = f [x (k) , x (k − 1) , ..., x (k − n+ 1)] + g [u (k) , u (k − 1) , ...., u (k −m+ 1)] (3.29)

And hence depends nonlinearly on both its past values as well as those of the input.

However, the possessions of the power and output values are additive as shown in

equation (3.29). The execution of equation (3.29) is shown in Fig. 3.15.

Figure 3.15: Structure of the plant for Model III [43]

Model IV: As mentioned earlier, this is the most general of all miniature introduced

here and subsumes the earlier models. The ability at any instant in this matter is a
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nonlinear role of the past values of both the capacity and the output. Once again,

the execution of the shape using tapped suspension lines is shown in Fig. 3.16.

Figure 3.16: Structure of the plant for Model IV [44]

The identification ideal of the mill is composed of neural networks and tapped delay

lines. In each case, the neural network is assumed to contain sufficient mathematics

of layers, and complication in each layer, so as to be able to match exactly the input-

output characteristics of the corresponding nonlinear mapping in the given plant.

Firstly the grain of vista of mathematical analysis, this implies that the nonlinear

functions in the difference equations describing the abuse can be replaced by neural

networks with fixed but unknown weight mold. Hence, a theoretical breakdown to

the adaptive discovery problem is assumed to exist from the outset.

To identify the plant, an identification model is chosen based on prior information

concerning the class to which it belongs. For example, assuming that the plant has

a structure described by Model III, the model is chosen to have the form shown in

Fig. 3.12. The aim then is to determine the weights of the two neural networks N1

and N2. If (k + 1) and ˆx (k + 1) are respectively the outputs at stage k + 1 of

the plant and the identification model, the error e (k+1) =ˆx (k+1) — x (k+1) is

used to update the weights of N1 and N2; static or dynamic back-propagation can
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be used, depending on the structure of the identifier used.

1. Parallel Model: In this case, the structure of the identifier is identical to that of

the plant with f and g replaced by N2 and N1 respectively. This is shown in

Fig. 3.17. Since N2 is in a dynamic feedback loop, the parameters of N1 and

N2 have to be adjusted using dynamic back-propagation.

2. Series-Parallel Model: In this case (k +1) rather than ˆx (k + 1) is used to

generate the output of the model. This implies that the model is described by

the equation:

x̂ (k + 1) = N2 [x (k) , x (k − 1) , ..., x (k − n+ 1)] +N1 [u (k) , u (k − 1) , ...., u (k −m+ 1)] (3.30)

Since the model does not include a feedback flap containing a nonlinear element,

static back-propagation rather than dynamic back-propagation of the error can be

used to adjust the weights of the neural network.

The two methods outlined above have been discussed extensively in the context of

the discovery of linear time-invariant orderliness with unknown parameters [5]. While

the series- parallel agency has been shown to be globally stable, similar results are

not available for the parallel model. To avoid many of the analytical hardship en-

countered, as well as to assure firmness and simplify the spotting procedure, the

series-parallel model was used in [6]. Extensive computer simulations have revealed

that a large class of nonlinear plants can be identified using the above procedure.

However, theoretical studies concerning stability and convergence are still in the ini-

tial stages and numerous doubt have yet to be answered.
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Figure 3.17: Structure of identification model for Model III [45]

3.9 NARMA Shape and its Approximations

The controller arrangement in general is dependent on the system’s sighting model, so

the system’s spotting shape tins be considered so that a simple disposition supervisor

tins be obtained.

The NARMA model is an exact representation of the nonlinear plant in a neighbor-

hood of the equilibrium state. For reasons given toward the end of chapter 3, the

model is not convenient for the computation of a control input to the plant to track

a desired reference signal. In view of this, the proposed of two approximations to

the NARMA model called the NARMA-L1 and the NARMA-L2 models. The main

feature of these models is that the control input at time (the instant of interest in the

control problem) occurs linearly in the equation relating inputs and outputs. This,

in turn, permits easy algebraic computation of the control inputs without requiring

a separate controller neural network. The fact that the use of neural networks is

restricted to the identification model implies that only static gradient methods need
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to be used. The equations for the two proposed approximate models are given below.

NARAM model:

y (k + d) = F [y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k) , u (k − 1) , ...., u (k − n+ 1)] (3.31)

Now, with Taylor expansion of F around the vector (y (k) , ., y (k − n+ 1) , u (k) , ., u (k − n+ 1) = 0)and

then with the removal of high order sentences of the Taylor series expansion, the fol-

lowing models can be approximated, respectively:

NARAM L1 model:

y (k + d) = fo [y (k) , y (k − 1) , ..., y (k − n+ 1)] +

n−1∑
i=0

gi [y (k) , y (k − 1) , ..., y (k − n+ 1)]u (k − i)

(3.32)

NARAM L2 model:

y (k + d) = fo [y (k) , y (k − 1) , .., y (k − n+ 1)] + go [y (k) , y (k − 1) , .., y (k − n+ 1) , u (k − 1) , .., u (k − n+ 1)]u (k)
(3.33)

It is seen that f0 and g0 in the equation describing NARMA-L1 are only functions of

the past values of the outputs, and (k−1). . . (k−n+1) as well as (k) occur linearly

on the right-hand side (RHS) of (3.32). In contrast to this, NARMA-L2 model is

described by only two terms in the RHS of (3.33) where both fo and go are functions

of y(k),y(k−1),. . . ,y(k−n+1) and u(k),u(k−1),. . . ,u(k−n+1) respectively.
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CHAPTER 4

METHODOLOGY

4.1 Nerves System Based Arm Position Sensor System Description

Nerves system based arm position sensor is a device which senses the electrical pulse

signal of the nerve and compares the desired arm position and responce arm position

of the nerve defected arm. Nerves system based arm position sensor is a type of

neuromodulation therapy in which electrodes are surfacely placed next to a selected

peripheral nerve considered to be the source of nerve pain. One way of trying to

control the arm position is that arises from peripheral nerves calls for a device that

sends low levels of electricity to stimulate part(s) of the nerve. This electrical voltage

is thought to interfere with how the nerve transmits the voltage impulse signals and

responce through arm motion.

The mathimatical description of the system is shown bellow

d2y (t)

dt2
= −γ +

α

s

v2 (t)

y (t)
− β

s

dy (t)

dt
(4.1)

Where

y (t) Arm postion output

v (t) Impulse voltage input

γ Arm postion acceleration

s Device sensetivity function

α Nerve transmisson coeficient

β Nerve delay coeficient
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The block diagram of the nerves system based arm position sensor device is shown in

Figure 4.1 bellow.

Figure 4.1: Block diagram of the nerves system based arm position sensor device

Figure 4.2: The nerves system based arm position sensor connection to human arm
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4.2 Design of NARMA-L2 Neural Network Controller

The neurocontroller described in this section is referred to by two different names:

response linearization control and NARMA-L2 control. It is referred to as feedback

linearization when the plant shape has a particular form (companion form). It is

referred to as NARMA-L2 control when the fortification mold can be approximated

by the same form. The central theory of this type of control is to transform nonlinear

design system into linear dynamics by canceling the nonlinearities. This section begins

by submitting the companion system form and presentation how you can use a neural

network to identify this model. Then it describes how the identified neural network

model can be used to develop a controller.

4.2.1 Identification of the NARMA-L2 Model

The first step in using feedback linearization (or NARMA-L2) control is to identify

the design to be controlled. You train a neural network to represent the forward

dynamics of the system. The first step is to choose a patterns arrangement to use. One

standard patterns that is used to represent general discrete-time nonlinear procedure

is the nonlinear autoregressive-moving average (NARMA) model:

y (k + d) = N [y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k) , u (k − 1) , ...., u (k − n+ 1)]
(4.2)

where u(k) is the system input, and y(k) is the system output. For the identification

phase, you could train a neural network to approximate the nonlinear function N. If

you want the system output to follow some reference trajectory y (k + d) = yr (k + d)

the next step is to develop a nonlinear controller of the form:

u (k) = G [y (k) , y (k − 1) , ..., y (k − n+ 1) , yr (k + d) , u (k − 1) , ...., u (k −m+ 1)]
(4.3)
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The problem with using this controller is that if you want to train a neural network

to create the function G to minimize mean square error, you need to use dynamic

backpropagation. This can be quite slow. One solution is to use approximate models

to represent the system. The controller used in this section is based on the NARMA-

L2 approximate model:

ŷ (k + d) = f [y (k) , y (k − 1) , .., y (k − n+ 1) , u (k − 1) , .., u (k −m+ 1)]

+g [y (k) , y (k − 1) , .., y (k − n+ 1) , u (k − 1) , .., u (k −m+ 1)]u (k) (4.4)

This model is in companion form, where the next controller input u(k) is not contained

inside the nonlinearity. The advantage of this form is that you can solve for the control

input that causes the system output to follow the reference y (k + d) = yr (k + d). The

resulting controller would have the form

u (k) =
[yr (k + d)− f (y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k − 1) , ...., u (k − n+ 1))]

g [y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k − 1) , ...., u (k − n+ 1)]
(4.5)

Using this equation directly can cause realization problems, because you must deter-

mine the control input u(k) based on the output at the same time, y(k). So, instead,

use the model

y (k + d) = f [y (k) , y (k − 1) , .., y (k − n+ 1) , u (k − 1) , .., u (k −m+ 1)]

+g [y (k) , y (k − 1) , .., y (k − n+ 1) , u (k − 1) , .., u (k −m+ 1)]u (k + 1) (4.6)

where d ≥ 2. Figure 4.3 shows the structure of a neural network representation
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Figure 4.3: The structure of a neural network representation.

Using the NARMA-L2 model, you can obtain the controller

u (k + 1) =
[yr (k + d)− f (y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k) , ...., u (k − n+ 1))]

g [y (k) , y (k − 1) , ..., y (k − n+ 1) , u (k) , ...., u (k − n+ 1)]
(4.7)

which is realizable for d ≥ 2. Figure 4.4 shows the block diagram of the NARMA-L2

controller.

Figure 4.4: Block diagram of the NARMA-L2 controller
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This controller can be implemented with the previously identified NARMA-L2 plant

model, as shown in Figure 4.5 bellow

Figure 4.5: Previously identified NARMA-L2 plant model

The neural network arcticture, training data and training parameters is shown in the

Table 4.1 bellow

Table 4.1: Neural network arcticture, training data and training parameters

Network Arcticture

Size of hidden layer 9 No. delayed plant input 3
Sampling interval(sec) 0.01 No. delayed plant output 2

Training Data
Training sample 10000 Maximum Plant output Inf

Maximum Plant input 4 Minimum Plant output 0
Minimum Plant input -1 Max interval value (sec) 1

Min interval value (sec) 0.1
Training Parameters

Training Epochs 100

4.2.2 Levenberg-Marquardt Algorithm

Levenberg-Marquardt algorithm was designed to approach second-order training speed

without having to compute the Hessian matrix. When the performance function has
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the form of a sum of squares (as is typical in training feedforward networks), then

the Hessian matrix can be approximated as

H = JTJ

and the gradient can be computed as

g = JTe

where J is the Jacobian matrix that contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector of network errors. The

Jacobian matrix can be computed through a standard backpropagation technique

that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix

in the following Newton-like update:

xk+1 = xk−[JTJ + µI]−1JT e

When the scalar µ is zero, this is just Newton’s method, using the approximate

Hessian matrix. When µ is large, this becomes gradient descent with a small step

size. Newton’s method is faster and more accurate near an error minimum, so the aim

is to shift toward Newton’s method as quickly as possible. Thus, µ is decreased after

each successful step (reduction in performance function) and is increased only when a

tentative step would increase the performance function. In this way, the performance

function is always reduced at each iteration of the algorithm. This algorithm appears

to be the fastest method for training moderate-sized feedforward neural networks (up

to several hundred weights).

4.3 Design of NARMA-L2 Model Controller Using System Identification

The NARMA-L2 based neural network predictive controller uses a neural network

model of a nonlinear plant to predict future plant performance. The controller then
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calculates the control input that will optimize plant performance over a specified

future time horizon. The first step in model predictive control is to determine the

neural network plant model (system identification). Next, the plant model is used by

the controller to predict future performance.

4.3.1 System Identification

The first stage of model NARMA-L2 based predictive control is to train a neural

network to represent the forward dynamics of the plant. The prediction error between

the plant output and the neural network output is used as the neural network training

signal. The process is shown in Figure 4.6 bellow:

Figure 4.6: The process of training model predictive control

The neural network plant model uses previous inputs and previous plant outputs to

predict future values of the plant output. The structure of the neural network plant

model is given in Figure 4.7 bellow.
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Figure 4.7: The structure of the neural network plant model

4.3.2 Predictive Control

The model predictive control method is based on the receding horizon technique. The

neural network model predicts the plant response over a specified time horizon. The

predictions are used by a numerical optimization program to determine the control

signal that minimizes the following performance criterion over the specified horizon

J =

N2∑
j=N1

(yr(k + j)−ym(k + j))2 + ρ
Nu∑
j=1

(u´(k + j−1)−u´(k + j−2))2 (4.8)

where N1, N2, and Nu define the horizons over which the tracking error and the

control increments are evaluated. The u´ variable is the tentative control signal, yr is

the desired response, and ym is the network model response. The ρ value determines

the contribution that the sum of the squares of the control increments has on the

performance index.

The following block diagram illustrates the model predictive control process. The

controller consists of the neural network plant model and the optimization block.

The optimization block determines the values of u´ that minimize J, and then the

optimal u is input to the plant.
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Figure 4.8: Block diagram of the model predictive control process

Table 4.2 shows the parameters for designing predictive controller

Table 4.2: Parameters for designing predictive controller

Neural Network Predictive Control

Cost Horizon (N2) 7 Control Wieghting Function ρ 0.05
Control Horizon (Nu) 2 Search Parameter α 0.001

Iteration Per Sample Time 2

4.4 Design of NARMA-L2 Model Controller Using Adaptive Control

The NARMA-L2 based neural model reference adaptive control architecture uses two

neural networks: a controller network and a plant model network, as shown in Figure

4.9 below. The plant model is identified first, and then the controller is trained so

that the plant output follows the reference model output.
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Figure 4.9: Block diagram of controller network and a plant model network

Figure 4.10 shows the details of the neural network plant model and the neural net-

work controller. Each network has two layers, and you can select the number of

neurons to use in the hidden layers. There are three sets of controller inputs:

• Delayed reference inputs

• Delayed controller outputs

• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use. Typically,

the number of delays increases with the order of the plant. There are two sets of inputs

to the neural network plant model:

• Delayed controller outputs

• Delayed plant outputs
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Figure 4.10: The neural network plant model and the neural network controller
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CHAPTER 5

RESULTS AND DISSCUSION

This chapter basically focuses on the comparison of neural network controller with

NARMA-L2 model, neural network controller with NARMA-L2 model system iden-

tification based predictive controller and neural network controller with NARMA-L2

model based model reference adaptive control . These three systems input is the

desired arm position and they generate impulse voltage signal to be given to the arm

and the arm deliver arm output position. These three systems tested with step, sine

wave and random desired arm position signal.

5.1 Comparison of the Proposed Controllers using step input signal

The simulink model for the comparison of neural network controller with NARMA-L2

model, neural network controller with NARMA-L2 model system identification based

predictive controller and neural network controller with NARMA-L2 model based

model reference adaptive control using step input signal is shown in the Figure 5.1

bellow

Figure 5.1: Step responce simulink model
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The NARMA-L2 controller, NARMA-L2 based model refrence controller and NARMA-

L2 based predictive controller subsystem is shown in Figure 5.2, Figure 5.3 and Figure

5.4 respectively.

Figure 5.2: NARMA-L2 controller

Figure 5.3: NARMA-L2 based model refrence controller
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Figure 5.4: NARMA-L2 based predictive controller

The simulation output for the comparison of the neural network controller with

NARMA-L2 model, neural network controller with NARMA-L2 model system iden-

tification based predictive controller and neural network controller with NARMA-L2

model based model reference adaptive control using step input signal is shown in the

Figure 5.5 bellow.

Figure 5.5: Step responce simulation result
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The neural network controller with NARMA-L2 controller has a high percentage

overshoot and since the step input signal is the desired arm position of the patient

and the output of this controller has a steady state value of 0.5 m while the desired

arm position is 1m. This show us that the neural network controller with NARMA-

L2 controller doesnot feed enogh nerve impulse voltage to the nerve of the arm.

The neural network controller with NARMA-L2 model system identification based

predictive controller has a bigger percentage overshoot and since the step input signal

is the desired arm position of the patient and the output of this controller has a

steady state value of 1.75 m while the desired arm position is 1m. This show us that

the neural network controller with NARMA-L2 model system identification based

predictive controller feed excess nerve impulse voltage to the nerve of the arm. The

neural network controller with NARMA-L2 model based model reference adaptive

control has a no percentage overshoot and since the step input signal is the desired

arm position of the patient and the output of this controller has the same steady state

value of 1 m with the desired arm position. This show us that the neural network

controller with NARMA-L2 model based model reference adaptive control gives the

exact nerve impulse voltage to the nerve of the arm.

5.2 Comparison of the Proposed Controllers using Sine Wave Input Sig-
nal

The simulink model for the comparison of neural network controller with NARMA-L2

model, neural network controller with NARMA-L2 model system identification based

predictive controller and neural network controller with NARMA-L2 model based

model reference adaptive control using sine wave input signal is shown in the Figure

5.6 bellow

52



Nonlinear Autoregressive Moving Average-L2 Based Model Reference Adaptive Control of
Nonlinear Arm Nerve Simulator System

Figure 5.6: Sine wave responce simulink model

The simulation output for the comparison of the neural network controller with

NARMA-L2 model, neural network controller with NARMA-L2 model system iden-

tification based predictive controller and neural network controller with NARMA-L2

model based model reference adaptive control using sine wave input signal is shown

in the Figure 5.7 bellow

Figure 5.7: Sine wave responce simulation result
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The neural network controller with NARMA-L2 controller sine wave input signal

is the desired arm position of the patient and the output of this controller has a

peak value of 0.6 m while the desired arm position is 1m. This show us that the

neural network controller with NARMA-L2 controller gives low impulse voltage to

the nerve of the arm. The neural network controller with NARMA-L2 model system

identification based predictive controller sine wave input signal is the desired arm

position of the patient and the output of this controller has a peak value of 2.1 m

while the desired arm position is 1m. This show us that the neural network controller

with NARMA-L2 model system identification based predictive controller feed excess

nerve impulse voltage to the nerve of the arm. The neural network controller with

NARMA-L2 model based model reference adaptive control sine wave input signal is

the desired arm position of the patient and the output of this controller has a peak

value of 0.8 m while the desired arm position is 1m. This show us that the neural

network controller with NARMA-L2 model based model reference adaptive control

gives almost the exact nerve impulse voltage to the nerve of the arm.

5.3 Comparison of the Proposed Controllers using Random Input Signal

The simulink model for the comparison of neural network controller with NARMA-L2

model, neural network controller with NARMA-L2 model system identification based

predictive controller and neural network controller with NARMA-L2 model based

model reference adaptive control using random input signal is shown in the Figure

5.8 bellow
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Figure 5.8: Random input responce simulink model

The simulation output for the comparison of the neural network controller with

NARMA-L2 model, neural network controller with NARMA-L2 model system iden-

tification based predictive controller and neural network controller with NARMA-L2

model based model reference adaptive control using random input signal is shown in

the Figure 5.9 bellow
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Figure 5.9: Random input responce simulation result

The neural network controller with NARMA-L2 controller random input signal is the

desired arm position of the patient and the output of this controller has a peak value

of 4.4 m while the desired arm position is 3.5m. This show us that the neural network

controller with NARMA-L2 controller gives high impulse voltage to the nerve of the

arm. The neural network controller with NARMA-L2 model system identification

based predictive controller random input signal is the desired arm position of the

patient and the output of this controller has a peak value of 8.5 m while the desired

arm position is 3.5 m. This show us that the neural network controller with NARMA-

L2 model system identification based predictive controller feed excess nerve impulse

voltage to the nerve of the arm. The neural network controller with NARMA-L2

model based model reference adaptive control random input signal is the desired arm

position of the patient and the output of this controller has a peak value of 3.5 m while

the desired arm position is 3.5 m. This show us that the neural network controller

with NARMA-L2 model based model reference adaptive control gives the exact nerve

impulse voltage to the nerve of the arm.
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5.4 Numerical Value Comparison of the Proposed systems

5.4.1 Step Input

The numerical value comparison of the proposed systems for step input is shown in

the Table 5.1 bellow.

Table 5.1: Numerical value comparison of the proposed systems for step Input

No System NARMA-L2 model Model reference Predictive controller

1 Peak Overshot 40% 0% 55%
2 Settling Time 6 4.3 5.5
3 Steady state value 0.5 1 1.75

The result from Table 5.1 shows us that the neural network controller with NARMA-

L2 model based model reference adaptive control show the best responce.
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CHAPTER 6

CONCLUSIONS & RECOMMENDATION

6.1 Conclusions

In this thesis, nerves system based arm position sensor device is used to measure the

exact arm position for nerve patients using the proposed systems.Three diffrent sys-

tems are proposed which are a neural network controller is designed with NARMA-L2

model, neural network controller is designed with NARMA-L2 model system iden-

tification based predictive controller and neural network controller is designed with

NARMA-L2 model based model reference adaptive control system.

The proposed controllers are tested for comparing the actual and desired arm position

of the nerves system based arm position sensor device for three desired arm position

inputs (step, sine wave and random).

The simulation result for a step input signals shows that the neural network controller

with NARMA-L2 controller feeds a high impulse voltage to the nerve of the arm and

the neural network controller with NARMA-L2 model system identification based

predictive controller feed excess nerve impulse voltage to the nerve of the arm and

the neural network controller with NARMA-L2 model based model reference adaptive

control gives the exact nerve impulse voltage to the nerve of the arm.

The simulation result for a sine wave input signals shows that the neural network

controller with NARMA-L2 controller gives high nerve impulse voltage to the nerve

of the arm and the neural network controller with NARMA-L2 model system iden-

tification based predictive controller feed excess nerve impulse voltage to the nerve

of the arm and the neural network controller with NARMA-L2 model based model

reference adaptive control gives the exact nerve impulse voltage to the nerve of the

arm.
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The simulation result for a random input signals shows that the neural network con-

troller with NARMA-L2 controller gives high nerve impulse voltage to the nerve of

the arm and the neural network controller with NARMA-L2 model system identifica-

tion based predictive controller feed excess nerve impulse voltage to the nerve of the

arm and the neural network controller with NARMA-L2 model based model reference

adaptive control gives the exact nerve impulse voltage to the nerve of the arm.

Finally, the comparative simulation result prove the effectivness of the presented

neural network controller with NARMA-L2 model based model reference adaptive

control and it achieves to balance between the actual and desired arm position tests

for the nerve patient by adjusting the nerve impulse voltage given to the arm.
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6.2 Recommendation

The future work presented as follows

1. In this thesis we use NARMA-L2 model. The next step is to use NARMA-L3

model and NARMA-L4 model.

2. In this thesis, the nerves system based arm position sensor device is designed

to give a one dimensional output. so the next step is to design a device with a

three dimensional output.

3. The main advantage of the computer simulation is convenient to operate, but its

disadvantage is also very obvious, which the simulation results are not withstand

the actual test. The next step is to utility experiment scheme to experiment and

verify the simulation results. This process can further improve the simulation

methods.

4. In this thesis we only established arm based nerves system sensor device. so

the next step is to design a device for spinal cord nerves and even for the whole

body parts.

5. NARMA-L2 control is used in the first step in using feedback linearization is to

identify the system to be controlled. The next step is to train a neural network

to represent the forward dynamics of the system.
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A.1 Appendix Neural network Data

A.2 NARMA-L2 Neural Network Data

The neural network training data is shown bellow
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The testing, training and validation data is shown in Figure A.1, Figure A.2 and

Figure A.3 respectively.

Figure A.1: Testing data for NN NARMA-L2

Figure A.2: Training data for NN NARMA-L2

Figure A.3: Validation data for NN NARMA-L2
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The neural network training algorism is shown in Figure A.4 bellow

Figure A.4: Neural network training

The neural network training regression, training state and best validation performance

is shown in Figure A.5, Figure A.6 and Figure A.7 respectivley.

Figure A.5: The neural network training regression
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Figure A.6: The neural network training state

Figure A.7: The neural network best validation performance

A.3 NARMA-L2 Based System Identification Neural Network Data

The neural network training data is shown bellow
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The testing, training and validation data is shown in Figure A.8, Figure A.9 and

Figure A.10 respectively.
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Figure A.8: Testing data for NN model refrence control

Figure A.9: Training data for NN model refrence control

Figure A.10: Validation data for NN model refrence control

The neural network training algorism is shown in Figure A.11 bellow
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Figure A.11: Neural network training

The neural network training regression, training state and best validation performance

is shown in Figure A.12, Figure A.13 and Figure A.14 respectivley.

Figure A.12: Neural network training regression
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Figure A.13: Neural network training state

Figure A.14: Neural network training performance

A.4 NARMA-L2 Based Adaptive Control Neural Network Data

The neural network training data is shown bellow
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The testing and validation data is shown in Figure A.15 and Figure A.16 respectively.
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Figure A.15: Traing data for NN predictive control

Figure A.16: Validation data for NN predictive control

The neural network training algorism is shown in Figure A.17 bellow
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Figure A.17: Neural network training algorism

The neural network training regression, training state and best validation performance

is shown in Figure A.18, Figure A.19 and Figure A.20 respectivley.

Figure A.18: Neural network teaing regression
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Figure A.19: Neural network traing state

Figure A.20: Neural network traing performance
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