

JIMMA UNIVERSITY

JIMMA INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

DEVELOPMENT OF TIGRINYA LANGUAGE INTERFACE TO

DATABASE USING RNN

BY:

Hagos Hailemaryam

A Thesis Submitted to School of Graduate Studies in Partial Fulfillment for the

Degree of Master of Science in Information Technology

 JANUARY, 2020

 JIMMA, ETHIOPIA

JIMMA UNIVERSITY

JIMMA INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

FACULTY OF COMPUTING

DEVELOPMENT OF TIGRINYA LANGUAGE INTERFACE TO

DATABASE USING RNN

BY:

Hagos Hailemaryam

ADVISOR:

1. Getachew Mamo(PhD)

CO-ADVISOR:

1. Mr. Teferi Kebebew (MSc.)

I | P a g e

II | P a g e

III | P a g e

ACKNOWLEDGNMENT

 First and foremost I praise the Almighty God, and St. Marry for giving me health and patience in

completing my thesis work.

 Next, I would like to express my deep gratitude to my advisor Dr. Getachew Mamo, for his

continuous support on this thesis. He motivated and recommended me to work on natural language

interface to database and his guidance helped me in all the time of the research work.

In addition, I would like to express my deep gratitude to my co-advisor Mr. Teferi kebebew for

his continuous support till the end of my research thesis. He was always with me in every minute

to support me. He was working on showing me different directions to accomplish this research

thesis.

Next, I would like to thank to my fellow Negassa Weyessa and Kebede Assefa for their support

and sharing of ideas on my research work.

Next, I would like to thank my family (mom, dad, brothers and sisters) for their continuous

support, motivation and patience.

Finally, I can’t call all, so I would like to express my sincere gratitude to all who had direct and

indirect contributions on my research work.

Dear all, I have no words to express your immense contributions’.

IV | P a g e

DECLARATION ... I

LIST OF TABLES .. IX

LIST OF FIGURES ... X

ACRONYMS AND ABREVIATIONS .. XI

ABSTRACT ... XII

Chapter One .. 1

Introduction ... 1

1.1 Statement of the Problem .. 3

1.2 Objectives ... 5

1.2.1 General objective .. 5

1.2.1 Specific objectives .. 5

1.3 Scope and Limitations ... 5

1.4 Methodologies ... 6

1.4.1 Literature Reviews .. 6

1.4.2 Data Collections ... 6

1.4.3 Development Requirements ... 6

1.4.4 Neural machine translation approach ... 7

1.4.5 Evaluations ... 7

1.5 Research Organization .. 7

Chapter Two.. 8

Literature Review.. 8

2.1 Natural Language Interface to Databases .. 8

2.2 History of NLIDB ... 8

2.2.1 Lunar: ... 8

2.2.2 Chat-80 ... 9

2.2.3 Team ... 9

2.3 Components of NLIDB ... 9

2.4 Approaches of NLIDB .. 10

2.4.1 Symbolic (Rule Based) Approach .. 10

V | P a g e

2.4.2 Empirical (Corpus Based) Approach .. 10

2.4.3 Connectionist (neural network) Approach ... 10

2.5 Architectures ... 11

2.5.1 Pattern matching systems ... 11

2.5.2 Syntax-based systems ... 11

2.5.3 Semantic Grammar Systems ... 13

2.5.4 Intermediate Representation Languages ... 14

Chapter Three.. 16

Tigrinya Language .. 16

3.1 Introduction ... 16

3.2 The Tigrinya Alphabets ... 16

3.3 Word Classes ... 16

3.3.1 Noun ... 16

3.3.2 Adjective ... 17

3.3.3 Preposition .. 17

3.3.4 Adverb .. 17

3.3.5 Verb .. 18

3.4 Punctuation Marks... 18

3.4.1 Preface Colon (፡-) ... 18

3.4.2 Full stop (።) .. 18

3.4.3 Colon (፤): .. 18

3.4.4 Comma (፣) .. 18

3.4.5 Question mark (?) ... 18

3.4.6 Exclamation mark (!) .. 19

3.5 Types of Phrases.. 19

3.5.1 Noun phrases .. 19

3.5.2 Verb phrases ... 19

3.5.3 Adjectival Phrases .. 19

3.5.4 Prepositional phrases .. 19

3.5.5 Adverbial phrases ... 19

VI | P a g e

3.6 Types of Sentences .. 19

3.6.1 Simple sentences... 20

3.6.2 Compound sentences .. 20

3.6.3 Complex sentences ... 20

3.6.4 Compound-Complex sentences .. 20

CHAPTER FOUR ... 22

Related Works ... 22

4.1 Introduction ... 22

4.2 Information Retrieval .. 22

4.3.1 Text summarization .. 23

4.4 NLIDB for different languages ... 23

4.4.1 Amharic Language ... 23

4.4.2 Afaan Oromo Language ... 24

4.4.3 Arabic language .. 24

4.4.4 Hindi Language .. 25

4.4.5 Punjabi Language ... 25

4.4.6 English Language ... 25

Chapter Five .. 28

Designing and Developing of TLIDB... 28

5.1 Introduction: .. 28

5.2 Types of Queries ... 29

5.3 Neural Network ... 31

5.3.1 Recurrent Neural Network.. 32

5.4 The General Architecture of TLIDB ... 33

5.4.1 Corpus: corpus .. 34

5.4.2 Input Query: .. 35

5.4.2 Tokenizer: ... 35

5.4.3 Cleaning: ... 35

5.4.4 Preparation of Dictionaries and specifying of the dimensions values: 35

5.4.5 Encoder-Decoder Model ... 35

VII | P a g e

5.4.5.1Word representation: ... 35

5.4.5.1.1 One-hot encoding .. 35

5.4.5.1.2 Word embedding ... 36

5.4.5.1.3 Word embedding layer .. 36

5.4.5.2 LSTM Model: .. 36

5.4.5.2.1 Encoder LSTM.. 36

5.4.5.2.2 Decoder LSTM ... 38

5.4.5.2.2.1 Training mode .. 38

5.4.5.2.2.2 Inference mode ... 40

5.4.6 Query executer: ... 41

5.3.7 Result displayer and manipulator ... 42

CHAPTER 6 ... 43

Experiment .. 43

6.1 General pipelines ... 43

6.2 Database Design .. 43

6.3 Queries .. 44

6.4 Model Training .. 47

6.5 Evaluation Result .. 49

6.5.1 Loss ... 50

6.5.2 Accuracy ... 51

6.6 Discussion ... 52

6.7 Contribution of the study... 53

CHAPTER 7 ... 55

Conclusion and Recommendation .. 55

7.1 Conclusion ... 55

7.2 Recommendation ... 56

REFERENCES ... 57

APPENDIX: .. 61

Appendix A: Approval Paper one ... 61

VIII | P a g e

Appendix B: Sample DB contents of Diseases table .. 62

Appendix C: Approval Paper two ... 63

Appendix D: Sample Dataset .. 64

Appendix E: Train Model ... 65

Appendix F: Encoder Model ... 66

Appendix G: Decoder Model .. 66

Appendix H: Summery of the model .. 67

IX | P a g e

LIST OF TABLES

Table 1: Summary of related works .. 26

Table 2: Sample table Names ... 29

Table 3: Samples attribute names of patients and employees ... 29

Table 4: keys ... 43

Table 5: Sample Queries ... 45

X | P a g e

LIST OF FIGURES

Figure 1: Pattern matching .. 11

Figure 2: Syntax based .. 12

Figure 3: Parse Tree .. 13

Figure 4: Semantic based .. 14

Figure 5: Semantically parsed Tree .. 14

Figure 6: Intermediate representation ... 15

Figure 7: RNN Architecture.. 32

Figure 8: General Architecture ... 34

Figure 9: Encoder .. 37

Figure 10: Training mode of decoder ... 39

Figure 11: Encoding input sequence into final state (thought vectors) .. 40

Figure 12: Decoder Lstm at t=1 .. 41

Figure 13: Decoder Lstm at t=7 .. 41

Figure 14: Persistent diagram ... 43

Figure 15: Output of the Prototype ... 46

Figure 16: Training and evaluation process .. 49

Figure 17: loss model .. 50

Figure 18: Accuracy model ... 51

XI | P a g e

ACRONYMS AND ABREVIATIONS

NLIDB: Natural Language Interface to Database

TLIDB: Tigrinya Language interface to database

SQL: Structured Query Language

Seq2seq: Sequence-to-sequence

LSTM: Long Short Term Memory

DB: Database

DBMS: Database Management System

XII | P a g e

ABSTRACT

Now a day, different organizations use database with local language written contents to manage

their work. These databases have huge information in an electronic format, and to access and

manipulate these information users expected to know the SQL. Also, using SQL to access and

manipulate the information written in local language is very difficult and tedious. So, instead of

knowing and using of the SQL, it is better to use natural language for users to access and

manipulate the contents of the database. Because using natural language is simple and

comfortable. And also, it is good to form conjunctions and negations query simply. Because of

the simplicity and comfortablity of the natural language for ordinary users many researches have

been carried out on natural language interfaces since 1970. Therefore, that’s why Tigrinya

language interface to database had been proposed.

The database contents have been accessed and manipulated using the developed Tigrinya

language interface to database (TLIDB) prototype without the knowledge of SQL. To carry out

this, first the input Tigrinya sentences have been translated into the corresponding SQL

statements and further the SQL statements were executed in the database. The TLIDB was

designed and developed using a robust and effective approach called neural machine translation.

The encoder-decoder long short term memory was used for the translation of the input Tigrinya

sentence to corresponding SQL statements. In the sequence to sequence problems the encoder-

decoder long short-term memory is a good technique. Also, word embedding technique was used

to estimate the similarity of words and to have a dense representation. This solved the sparse data

problem with the traditional approaches.

The developed TLIDB prototype was evaluated on healthcare database that has patients, diseases

and employees table. The record of diseases was prepared with health professionals. This

prototype handles list query, conditional queries, aggregate functions, complex queries (join,

union), update, delete and etc. To develop the prototype 6338 sentences were prepared with their

corresponding SQL statements. The model was trained with 80% and tested with 20% of the

dataset. This was done using the percentage split evaluation technique. Since, in percentage split

evaluation technique the model has been evaluated with the data that were not included during

the training. After the model had been evaluated, above 98.5% overall accuracy has been scored.

Keywords: TLIDB, Natural Language Interface to Database (NLIDB), Natural Language

Processing

1 | P a g e

Chapter One

Introduction

Natural language processing is one of the fields of computer science and this used to study how

machines can process the natural language to perform useful things. Obviously, the machines

required an input and processing to perform a useful task. So, natural language processing is the

studies how the machines can understand the natural language text, speech, image and etc to do

its task. So, to achieve this task many NLP researchers aim to gather knowledge on how human

being understand and use the natural language. So that, researchers should develop appropriate

tools and techniques that can help machines to process the natural languages. Besides this study,

there are also other prominent general purpose NLP applications such as: speech recognition,

information retrieval, information extraction and etc. [1].

Now a day, there is huge information in an electronic format stored in the database. Retrieving

and manipulating on that information are becoming more essential. Database is one of the major

sources of information. To retrieve and making operations on those information, writing SQL

statements is required. Since, computers can understand the SQL statements. However, everyone

is not able to write SQL queries. Because, to write the SQL query, knowing the structure of the

SQL query are required. Instead of writing SQL statements, using natural language to

retrieve, update and delete data from database is simple. This stimulated the development of

Natural Language Interface to Database Systems (NLIDB)[2].

 Natural Language Interface to Database Systems is one of the natural language processing

applications and this application contains two components. These are called, linguistic and

database components. The linguistic component is used to translate the natural language queries

to SQL queries and providing the natural language results retrieved from the database. The

database component is used to perform the traditional database management functions [9, 10,

12].

 In this study, a Tigrinya language interface to database (TLIDB) system was being proposed for

the native Tigrinya users. This system enables users to retrieving and manipulating the

information’s in database using Tigrinya plaintexts. Since NLIDB does not need to learn the

artificial communication (formal) languages and it required less training to users than other

forms of interfaces [11, 13].

2 | P a g e

Sequence to sequence approach was used to develop the TLIDB prototype. Because this

approach is robust and effective in translation problems from one-source to another-source. This

means translating from one domain to another domain. Therefore, the Tigrinya natural Language

interface to database is a translation problem which means a translation of the input Tigrinya

sentences to their corresponding SQL statements. As a result, the neural machine translation

approach was applied. Once the model was created using the neural machine translation

approach, it can be loaded and used without the need to retrain again. Even though, this

approach wants large datasets to train and test the model, it is very robust and effective [8].

It is clear that, words are symbols which represented objects in real world and are putting

together into a sentence that obeys well specified grammar rule [9]. So, stating all words of the

language with their corresponding SQL commands is very difficult. Even though, rule based

approach wants small dataset to test the prototype, it is very difficult on translating the Tigrinya

input sentences to SQL statements. Because, to translate that every words of Tigrinya language

must be written with their corresponding SQL statements. So, this takes time and storage spaces.

Obviously, no one is perfect with one language. So, this is very difficult to write every word of

the Tigrinya language and it is too tedious to use rule based approach for Tigrinya language

interface to database. That’s why the neural machine translation approach has been chosen for

development of Tigrinya language interface to database prototype.

As Tigrinya users are with none SQL backgrounds’, they couldn’t access and manipulate the

contents of the database using SQL. Even, Tigrinya users with SQL backgrounds’ got difficulty

to formulate the complex queries to access the database. For example: when Tigrinya users want

to formulate complex queries like conjunction and negations to access the database, they got

difficulty. Since, it is difficult to formulate that for the users with SQL backgrounds’ and

impossible to formulate that for the users with none SQL backgrounds’. For example as we have

seen in endadenagle hospital in shire indaslasaie town, the employees got difficulty to formulate

queries such as patients below 7 years or patients above 7 years or patients between 7 and 20

years and then like. Also, to formulate queries such as patients those who have only malaria or

patients those who have not malaria and etc. because, they are none SQL backgrounds’.

Therefore, accessing the database using Tigrinya language written form is simple and

comfortable for them. That’s why we proposed the TLIDB that enables them to access the

database using Tigrinya language. This can be accomplished by translating the Tigrinya

3 | P a g e

sentences to corresponding SQL statements. The TLIDB is an opportunity for the native Tigrinya

users. Because, they didn’t expect to learn the SQL, they can formulate queries such as

conjunctions’ and negations’, simple and comfortable. The problem of TLIDB is it did not

provide a message, when the input query is an incorrect.

1.1 Statement of the Problem

There are many database applications that have different language contents, have been developed

so far. Obviously, database applications have their own language that enabled users to access and

manipulate the contents. This language is called structured query language (SQL) and this

language has its own structures. So, if users want to access and manipulate the database they

should know and write the syntaxes and semantics of the SQL. Therefore, to access and

manipulate the database users were expected to know or learn SQL. SQL is not simple,

comfortable and flexible for users. Since, in the absence of one element it will not execute. For

example if users missed table name in the SQL statement it doesn’t work. Users don’t have

simple and comfortable alternatives that enabled them to access and manipulate the database.

That’s why users use SQL. So, to access or manipulate the database contents users are expected

to know the database tables, the relationship between the tables, the attributes used with each

table and the actual value stored with in each tables. Therefore, this is very difficult for them.

So, Instead of using SQL statements, users should use their native language to access and

manipulate the database contents. Because, using natural language plaintext is better than SQL.

So, NLIDB enables users to access and manipulate the database using the natural language

plaintexts. Natural language interface has been used for users to write using their native

language. A natural language interface is considered as a main goal for a database query

interface and many natural language interfaces have been developed for this goal [3, 4, 5]. Many

researches were conducted for Amharic, Afaan Oromo, Hindi, English, Arabic and etc. However,

to the best of the researchers’ knowledge, no work is done for Tigrinya that enables users to

query the database using Tigrinya language. Since, a model that developed for other languages

will not be applied to Tigrinya language and this happened because of the syntax and semantics

variation of the languages. Even though, both Amharic and Tigrinya belong to the Semitic

language family, they have different syntaxes and semantics. Therefore, a model that developed

for Amharic language will not be applied to Tigrinya language.

4 | P a g e

Hence, Tigrinya users need Tigrinya language interface to database that enabled them to access

and manipulate the database contents. For example if there is a healthcare database that contains

a table called DISEASES(ሕማማት) and attributes called symptom(ምልክት) and type(ዓይነት).

To get information about all diseases, the user expected to write the following statement.

 Select * from ሕማማት;

ሓበሬታ ሕማማት ኣርእየኒ።, In English this translated as ‘show me, information of diseases’

ሓበሬታ ሕማማት ኣምፅኣለይ።;

ሓበሬታ ሕማማት ኣውጽኣለይ።,

ሕማማት ኣርእየኒ።,

To get symptoms of malaria, the user expected to write:

 Select ምልክት from ሕማማት where ዓይነት=’ ዓሶ’;

ዓሶ ዓይነት ዝኮነ ሕማም ምልክት ኣርእየኒ።, In English this translated as’ show me the symptom of

malaria type disease’

ናይ ሕማም ዓሶ ዓይነት ምልክታት ኣምፅኣለይ።

ናይ ሕማም ዓሶ ዓይነት ምልክታት ኣርእየኒ።,

ናይ ሕማም ዓሶ ዓይነት ምልክታት ኣውጽኣለይ።,

To update (replace) the name of patients who have the identifier 4 by “ሃይለ”, the user

expected to write:

Update ሕሙማት set ሽም="ሃይለ" where መለለይ="4";

ባዓል 3 መለለይ ዝኮነ ሕሙም ሽሙ ብሃይለ ተክኣለይ። , in English this translated as replace the patients

name by “ሃይለ” who have an identifier of 4.

ባዓል 3 መለለይ ዝኮነ ሕሙም ሽሙ ብሃይለ ተክእ።

Therefore, the TLIDB is good for the Tigrinya users to access and manipulate the database

instead of writing SQL statements.TLIDB is easy to understand and allow users to write in

Tigrinya plaintexts when compared with formulating SQL statements. And also TLIDB doesn’t

require learning of the artificial languages. Again, as described above the natural language query

is too flexible when we compare with the SQL. The prototype developed using neural machine

translation technique and this enabled to handle the different variations of the linguistic queries.

The example below shows the variation of the linguistic queries.

ሓበሬታ ሕማማት ኣርእየኒ።, (Select * from ሕማማት;)

5 | P a g e

 ዓሶ ዓይነት ዝኮነ ሕማም ኣርእየኒ።,(select * from ሕማማት where ዓይነት=”ዓሶ”)

In this study, the following research questions have been addressed. Those are:

 How can be generated results from the database using Tigrinya statements without the

knowledge of SQL?

 How can be manipulated the contents of the database with Tigrinya statements without

the knowledge of SQL?

 How the performance of neural machine translation approach for translating Tigrinya

input-sentences to SQL statements can be designed and evaluated?

1.2 Objectives

1.2.1 General objective

The objective of this study is to explore and develop Tigrinya language interface to database

(TLIDB).

1.2.1 Specific objectives

To achieve the general objective, the following specific points have been performed:

 Different literatures were reviewed on NLIDB to understand better the NLIDB area

and the approaches and techniques which are used for NLIDB

 A dataset was prepared

 TLIDB prototype was designed and developed

 Finally, the performance of the prototype was evaluated

1.3 Scope and Limitations

Here, the main emphasis that the research study focused on is described as follows:

 This research has been studied the Select SQL statements and the Data manipulation

statements. The prototype should accept the input queries in Tigrinya language i.e. input

must be Tigrinya plain texts, Tigrinya speech and non Tigrinya languages won’t be

considered.

 A new healthcare database has been designed. This minimizes the efforts and time of the

researchers than using existing database. Because, to use the existing database requires

permission from the managements of the healthcare organization and this takes time and

efforts. And even, after long time process the managements could not be voluntary to

provide the database.

6 | P a g e

 Ambiguity issues were not handled completely: because as the language is

morphologically rich it is very difficult to completely avoid ambiguity issues.

 Tigrinya spelling checker, tagger, parser, morphology analyzer and etc were not included.

Since there are no publicly available tools to integrate to the work.

1.4 Methodologies

Generally, in order to accomplish this research, the following methodologies have been used:

1.4.1 Literature Reviews: different kinds of literatures have been reviewed from different

sources on natural language interface to database. This helped to get better understanding and to

have a detailed knowledge on the various approaches and techniques of NLIDB. Also, this

helped us to select an appropriate approach and technique to develop the Tigrinya language

interface to database prototype. And again, this showed us in detail the advantage of natural

language interface to database. Here, based on the popularity and time of development the

history of natural language interface to database was discussed.

1.4.2 Data Collections: a new database was designed to evaluate this prototype. Because,

requesting for an existing system from different organizations has many challenges. As a result,

this wastes much time and efforts. Therefore, instead of requesting to an existing database from

different organization, designing a new healthcare database is simple. That’s why we have

chosen to design a new database. And this healthcare database is created and filled an actual

data. The health professionals’ were requested to fill the database tables with Tigrinya texts. In

Tigrinya language the actual values of the database can be noun or phrase. After, they filled

actual values to the healthcare database, a Tigrinya language professionals’ were also requested

to prepare the corpus (Tigrinya sentences). The corpus (Tigrinya sentences) was prepared to train

and evaluate the model. It is possible to see the evidence in the appendixes’ A and C of this

work.

1.4.3 Development Requirements:

Keras 2.2.4 deep learning python library was used to develop the prototype. This library used

with Python 3.6.x and it uses tensorflow as its backend. Keras is a high level neural network API

which is very useful in fast prototyping and ignores the detail implementations of back

propagation (writing optimization procedures). This library is an open-source and has large

community support. Also, this library supports both types of neural networks (i.e convolutional

and recurrent) [42]. The prototype has been developed using python 3.6 and MySQL. Since,

7 | P a g e

Python is easy to use, more powerful for natural language processing, recommended for a single

developer and little number of modules. MySQL is more popular because it is free and open

sources. That’s why those tools have been chosen to use them.

Edraw max is one of the graphical representation tools which used to draw the graphical

representations. It is very easy and simple to draw diagrams in Edraw Max. Therefore, this helps

us to minimize our effort and saves our time.

1.4.4 Neural machine translation approach: This approach uses a deep neural network

to translate from one sequence to another sequence and this makes it a novel approach in

machine translation. To carry out an end to end translation, encoder and decoder components are

required. The former was used to encode the input Tigrinya sentences by reading one word at a

time and storing the hidden state into a vector representation. The decoder was used to visualize

the final hidden states as a representation of the input Tigrinya sentence which summarizes all

the information present in the complete Tigrinya input sentence [38].

1.4.5 Evaluations: the prototype was evaluated automatically using keras accuracy metrics,

on sample healthcare database. Because, this prototype is developed using keras deep learning

python library. In keras the metrics such as precision and recall are removed starting from keras

2.0 and this prototype is developed using keras 2.4. That’s why we use the keras accuracy metric

to evaluate automatically.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑄𝐿

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑄𝐿 𝑎𝑚𝑜𝑢𝑛𝑡
∗ 100%

1.5 Research Organization

The thesis report is organized as follows: chapter two introduces an overview of NLIDB and the

different approaches used in NLIDB researches. Moreover, the components of NLIDB and the

different architectures’ are also discussed. Chapter three deals with the word categories, types of

phrases, types of sentences and punction marks of Tigrinya language. Chapter four focused on

the related works of other languages to apply the NLIDB. Chapter five emphasized on the

general design and architecture of TLIDB. Chapter six discusses the developed prototype and it’s

evaluation. Finally, Chapter seven presents the conclusion and recommendation works of this

thesis.

8 | P a g e

Chapter Two

Literature Review

2.1 Natural Language Interface to Databases

NLIDB is a system that used to translate a natural language query into SQL, manipulates and

displays a result. NLIDB system is used for end user to query a database using their native

languages and obtained result also in the same language as they have queried [14]. This also

provides comfortablity for SQL professionals. NLIDB is proposed as a solution to the problem

for accessing and manipulating information in a simple way and allowing any type of users to

retrieve information from a database using natural language [15]. In the past many NLIDB

systems have been developed to interact with database in a more convenient and flexible way.

Due to this, NLIDB is still widely used today [16]. Because the NLIDB does not need learn

artificial languages such as SQL, does not need training for non-experienced, good for

formulating negations and conjunctions, it is simple and easy to use[7,11,12,13,14]. Different

NLIDB researches are conducted using different techniques and approaches for different

languages. In this chapter some systems, approaches and techniques of the NLIDB are described

as follows:

2.2 History of NLIDB

Natural Language interfaces had appeared in the late sixties and early seventies. Many of these

systems relied on pattern matching to directly mapping the user input to the database queries

[19]. The usages of the databases were spreading during the 1970’s and then this idea presented

new challenges to the designers. One approach was to use natural language processing, which

allowed the users to interactively query the data stored in database. The challenges of the design

of the NLIDB are the understanding of wide variety of input sequences (length of the input),

word variation (word synonymy), and user input variation (it may be ungrammatical input) and

etc. Different NLIDB systems were developed from time to time. Based on their development

period and popularity (acceptance), some existing systems are described as follows:

2.2.1 Lunar:

This was the first NLIDB and introduced in 1971. This system used to answer questions about

samples of rocks brought back from the moon. Lunar uses one database for chemical analysis

9 | P a g e

and another database for literature references. Lunar was developed using syntax-based

technique.

To process and retrieve the data of this system the geologists should learn the programming skill.

So, this is a waste of time and cost to teach those [21]. Lunar was used augmented transition

network parser and woods’ procedural semantics. Lunar handled 78% of requests without errors

and this performance was quite impressive. However, it had a limitation of linguistic capabilities

[20]. The augmented transition network parsers were not useful and not efficient to extract

information from ungrammatical sentences. Because, they are not handled well and not flexible

[12].

2.2.2 Chat-80

This was developed in 1980’s and took query in English language. This was implemented using

prolog. It was developed using dialog based approach and semantic grammar system. According

to [24], it was “remarkable, efficient and sophisticated system”. It’s database consisted of facts

such as oceans, major seas, major rivers and major cities of 150 countries in the world and

a small set of English language vocabulary that are enough for querying the database.

2.2.3 Team

 This was developed in 1987 and took the query in English language. It was developed using

semantic grammar system. It was designed to be easily configurable by database administrators

with no knowledge of NLIDBs [25, 26].

2.3 Components of NLIDB

NLIDB has two components. Namely, Linguistic and database components [9, 10, 11,]. We

described them in detail below:

The former component that means the linguistic component is responsible for processing and

translating natural language input into a formal query (SQL) and generating a natural language

response based on the results from the database search.

The later component that means the database component performs traditional Database

Management system functions. Users can enter a natural language question using the linguistic

component and the prototype translating the natural language statement into their corresponding

SQL statement. Once the entered natural language question translated into a statement of formal

query (SQL) language, the query can be processed by database management system in order to

10 | P a g e

produce the required result (output). And then the output passed back to the linguistic

component of the NLIDB.

2.4 Approaches of NLIDB

There are three approaches which are used to develop a natural language interface to database.

Several researchers applied different approaches to deal with natural language interface to

database [2, 16, 9]. Here, below are discussed in detail the three approaches of NLIDB.

2.4.1 Symbolic (Rule Based) Approach

Rule based approach sometimes called ‘if—then’ rules and those, takes actions when a condition

is satisfied. Every natural language has their own grammar rules. To develop a natural language

processing system, understandings of the grammatical rules of the specific language are required.

It is obvious that, one sentence in natural language can be formulated from different words that

obey the specified grammar rules’ of the natural language. The knowledge of language is

explicitly written in rules or other forms of representation. Rules are formed for every level of

linguistic analysis and try to obtain the meaning of the language based on these rules. This

approach is good for under resourced natural languages such as Amharic, Afaan Oromoo,

Tigrinya and etc. Again, in this approach it is possible to set a number of rules, add and remove

rules if necessary. However, it is very difficult and tedious to set all the rules’ (knowledge’s) of

one natural language as even one person is not perfect with one natural language.

2.4.2 Empirical (Corpus Based) Approach

Empirical approaches are based on statistical analysis of the input data (text corpora).

Researchers developed a number of techniques’ to enable the analysis of text corpora [16].

According to the different researches empirical methods are used to develop robust and efficient

natural language processing systems [17, 18] and this is before neural network. However, those

techniques have the problems of sparse data and those needs another technique (smoothing

techniques) to solve the problem.

2.4.3 Connectionist (neural network) Approach

This approach process information in a similar manner as human brain does. This approach

contains different components such as input, neurons, weights, bias, activation functions and etc.

The neurons can be interconnected to each other to process the information. The connection

(relation) is represented the weight (the stored knowledge). This approach is a self-organizing

11 | P a g e

and good in dealing with linguistic phenomena that are not well understood. Once we build a

model using this approach, it can predict for a new data input. This approach needs a large

dataset and if once we build the model we cannot restructure the data [8].

2.5 Architectures

This section describes the architectures adopted in the existing natural language interface to

database (NLIDB) systems [2, 8, 9, 14, 16].

2.5.1 Pattern matching systems

 Early NLIDBs uses pattern-matching techniques to answer the user’s queries. This works on the

bases that if the input matches one of the patterns then the system is able to build a query for the

database. This technique is simple and easy to implement and no need of elaborate parsing and

interpretation modules. But implementing pattern-matching in shallow would often lead to bad

failures and ELIZA is an example of these systems. The general architecture of pattern

matching systems of NLIDB is depicted below as follows:

Figure 1: Pattern matching

For example: pattern “Capital”… <country>

Action: report Capital of row where CONTRY=<country> of each row.

So, if a user asks “what is the capital of Ethiopia?”, the system can reply “Addisababa”. This is

based on matching a pattern.

2.5.2 Syntax-based systems

In this architecture, users query is first parsed and then the parsed tree is directly mapped to

an expression in some database query language. The advantages’ of syntax based technique is

that they provide detailed information about the structure of a sentence. The parse tree contains

a lot of information about the sentence structure. This shows us all the words and their part of

speech and how these words can be grouped together to form a phrases, how these phrases can

be grouped together to form a sentences. Having this information, we can map the semantic

meanings to certain nodes in a parse tree. However, not all nodes should be mapped and some

12 | P a g e

nodes have to be left just as they are without adding any meanings. And it is not always clear

which nodes should be mapped and which should not. In addition of the above problems the

same node in different parse trees is not necessarily going to be translated in all the trees. And

another problem is a sentence may have multiple correct parse trees that can be translated to

different queries. These different queries’ may have different results. In syntax based technique

it is difficult to directly map a parse tree into some general database query language, such

as SQL (Structured Query Language). There are some systems that are developed using this

architecture. Systems such as LUNAR and PHILIQA are developed using this architecture.

The general architecture of the syntax based NLIDB is depicted as follows:

Figure 2: Syntax based

It is obvious that a sentence(S) can formulated from a noun phrase (NP) and verb phrase (VP).

For example, “This shop has a candy”. Thus, S=NP+VP

Therefore, from this sentence “this shop” is NP and “has a candy” is VP. Also, the NP has a

determinant (DT) and a noun (N). From the NP the word “this” is DT and the word “shop” is a

N. The same is true; the VP has verb (V) and NP. Thus, “has” is a V and “a candy” is NP.

Again, the NP has a determinant and a noun. Therefore, “a” is a DT and “candy” is a N.

The syntactic analysis of the above sentence is described in figure 3 below[50]:

13 | P a g e

Figure 3: Parse Tree

2.5.3 Semantic Grammar Systems

A semantic grammar system is very similar to the syntax based system and the basic idea of a

semantic grammar system is to simplify the parse tree by removing unnecessary nodes or by

merging some nodes together. Therefore based on this idea the semantic grammar system can

better reflect the semantic representation without having complex parse tree structures.

Therefore, a node in the parse tree in a semantic grammar system does not necessarily relate to

the general syntactic concepts. This technique also provides a special way for assigning a name

to a certain node in the tree and thus resulting in less ambiguity compared to the syntax based

technique. The main weakness of semantic grammar is that it requires some prior- knowledge of

the elements in the domain and this making it difficult to port to other domains. In addition, a

parse tree in a semantic grammar system has specific structures and unique node labels, which

could hardly be useful for other applications. LADDER, CHAT-80 and TEAM are examples of

a system that were developed using this architecture. The general architecture of the semantic

grammar system of the NLIDB is depicted below as follows:

14 | P a g e

Figure 4: Semantic based

For example: “abebe highly suffering from dental infection”. From this sentence when we

analysis the semantic meaning it is about the health condition. And from the health condition

who is affected. And then, what part is affected and finally it’s severity. The semantic analysis of

the above sentence is described in figure 5 below [51]:

Figure 5: Semantically parsed Tree

2.5.4 Intermediate Representation Languages

This system was proposed, due to the drawback of syntax based technique that means in syntax

based technique it is difficult to directly translating a sentence into a general database query

languages. In this system the idea is first to map a sentence into a logical query language, and

then further translate this logical query language into a general database query language, such as

SQL. In the intermediate representation language approach, the system can be divided into two

parts. The first part starts from a sentence up to the generation of a logical query and the second

15 | P a g e

part starts from a logical query until the generation of a database query. The intermediate logical

query is described in figure 6 below:

Figure 6: Intermediate representation

Generally, the development of natural language interface to database has many problems, such

as robustness, domain-dependence, language-dependence and etc. Many researches were

conducted on natural language interface to database by different researchers for different natural

languages. However, still it is not successful. This is because of the complexities of the natural

languages. As the natural languages have their own syntax and semantics, a model that

developed for one natural language could not applied to another natural language.

There are a number of techniques and approaches that can be used to develop the natural

language interface to database. Those, also have their own weakness and strength as we

described above to develop the natural language interface to database. According to the

literatures’, neural machine translation is good on developing of a natural language interface to

database.

16 | P a g e

Chapter Three

Tigrinya Language

3.1 Introduction

There are different Semitic languages families in Ethiopia. Amharic (አማርኛ), Tigrinya (ትግሪኛ),

Ge’ez (ግእዝ) and Silt’e (ስልጤ) are examples of them [30]. As described in the above Tigrinya is

one of the Ethio-Semitic languages and it is spoken in Tigray-Ethiopia and Eritrea. It is also the

official language of Tigray regional government of Ethiopia and Eritrea. It is the second largest

of Ethiopian Semitic languages next to Amharic language. According to the traditional work of

[31], Tigrinya grammar has eight word classes. Those are noun, pronoun, conjunction,

preposition, verb, adjective, exclamation mark and adverb. But now according to his recent

work, the word classes of Tigrinya are reduced to five. Those are noun, adjective, verb, adverb

and preposition. Since he did by putting conjunctions and prepositions together in one class and

considers pronouns as subclass of nouns. Morphological analysis of Tigrinya is very complex

because as the language is highly inflected from gender, person and number.

3.2 The Tigrinya Alphabets

Tigrinya language writing system has thirty seven characters and each character’s has seven

forms. Those forms represent the combination of consonants and vowels [32]. The seven orders

represent the different forms of the symbol. There are also characters that are pronounced the

same but symbolically different, called homophones. For example, ሀ and ኅ, ጸ and ፀ are used

interchangeably since there is no clear rule when to use. They have similar sounds. For example

one can write ፀበል(tsebel) or ጸበል, ፀሓይ(sun) or ጸሓይ. Since, they have same meaning.

3.3 Word Classes

As we described before, Tigrinya words are categorized into five classes [30, 31, 32]. Those are

noun class, adjective class, adverb class, preposition class and verb class.

3.3.1 Noun: nouns are names given for people, places, or other thing. In Tigrinya, noun can be

concrete or abstract. Concrete nouns are used to represent things that can be touched and seen

whereas abstract nouns are used to represent things that can’t touch and seen. For example

ህዝባዊነት (populism), እንስሳነት (animalism), ሕዉነት (brotherhood) and etc. are examples of

17 | P a g e

the abstract class and ብዕራይ (ox), ላሕሚ (cow), ገመል (camel) and etc. are examples of

concrete class.

In Tigrinya, noun can be plural and singular. For example ብዕራይ(ox), ላሕሚ(cow),

ገመል(camel), ገረብ(forest), ተኽሊ(plant), መምህር(teacher) and etc. are examples of singular

nouns and ኣብዑር(oxen), ኣላሕም(cows), ኣግማል (camels), ኣግራብ(forests), ተኽልታት(plants),

መምህራን(teachers) and etc. are examples of plural nouns.

There are also common nouns which are used to call a group of things that share common

properties. For example እንስሳት(animals), ህዝቢ(population), ተኽልታት(plants) and etc. are

examples of common nouns. There are also pronouns which used to represent the proper nouns

such as, አነ(I), (he), ንሳ (she), ንሳቶም|ንሳተን (they), ንስኻ|ንስኺ|ንስኻትኩም (you) and etc.

When we bring to our work noun can represent table names, and actual values. However, the

actual values of the database can be phrases not only noun. Here below, is an example to show us

noun can represent tablenames and actual values. e.g. ሕሙማት (patients), ሓካይም (nurses),

ዓሶ (malaria), ኤችኣይቪ (HIV) and etc.

3.3.2 Adjective: the main advantages of adjective is to give a clear explanation for a noun

and to determine a noun itself. This means that, it can provide us more information about

people, animals or things represented by nouns and pronouns. For example ብዙሕ (many),

ቀይሕ (red), ነዊሕ (tall), ቀጢን (thin) and etc. are examples of adjectives. When we bring to our

work, they used to represent the በዝሒ(count), ማእከላይ(average), ዝለዓለ(maximum),

ዝተሓተ(minimum) and etc.

3.3.3 Preposition: they use to express relationship among things, person and events. They

show the relationship between the noun or pronoun and other words in a sentence. Those use to

describe the time when something happens or the way in which something is done. These are

commonly followed by a noun phrase or pronoun. For example ክሳብ|ናብ (to), ዉሽጢ(in),

ልዕሊ(on), ድሕሪ(after), ምስ(with), ምክንያቱ(because), ወይድማ(or), ይኹንእምበር(however)

and etc. are examples of prepositions. When we bring to our work, it used to represent ወይድማ

(or), ን-ን (and), ልዕሊ (greater), ትሕቲ (lower), and etc.

3.3.4 Adverb: adverbs are used to express and modify verbs, adjectives, sentences, clauses

and other adverbs [33]. All verb modifiers are usually express time, manner, and number. For

18 | P a g e

example ቀልጢፍካ (quickly), ብደምቢ (deeply), ብጥንቃቀ(carefully) and etc. are examples of

adverbs. When we bring to our work, it is used to represent ጸምቢርካ (jointly), ሰሪዒካ (orderly)

and etc. Those are used to join and group the queries in our work.

3.3.5 Verb: verb used to describe subject’s action or state within a sentence. Therefore,

without a verb any sentences can’t provide complete information. Most of the time, they are

found at the end of the sentences. For example በሊዑ (ate), ከይዱ (went), ሰትዩ (drank), ጎዩ

(runned), ደኪሙ (tired) and etc. are examples of verbs. When we bring to our work it is used to

represent ኣርኢ (select), ኣጥፍእ(delete), ተክእ(update) and etc.

3.4 Punctuation Marks

Tigrigna has its own punctuation marks which are used to indicate boundaries of a sentence, list

of words and the connection between sentences. There are many punction marks in Tigrinya.

Some of the most commonly used Tigrigna language punctuation marks are listed below [30]:

3.4.1 Preface Colon (፡-): colon is a punctuation mark which used to separate a small title

from it’s definition. We can write a small title and then we write a colon. After we written the

colon we can write the definition of the small titles. Most of the time, the definition of the small

title is written inline next to the colon.

3.4.2 Full stop (።): full stop is a punctuation mark which used to show the end of a sentence.

Full stop is always written at the end of the sentences. We can use this punctuation mark to

conveying meaningful information.

3.4.3 Colon (፤): colon is a punction mark which used to connect two sentences. Most of the

time we use with complex and compound complex sentences to separate one sentence from

another sentence.

3.4.4 Comma (፣): comma is a punctuation mark which used to separate a list of words from

each other. Always before the end of the last word of the list we must use connectors. We can

use this punction mark to separate a list of words.

3.4.5 Question mark (?): a question mark is a punctuation mark which used to indicate the

end of a question. This must write at the end of the questions. we can use this punction mark to

ask a question for others.

19 | P a g e

3.4.6 Exclamation mark (!): exclamation mark is a punction mark which used to show the

end of a forceful speech. This also must write at the end of the forceful speech. We can use this

punctuation mark to express our emotion to others.

3.5 Types of Phrases

A phrase in Tigrinya is a structure which is constructed from one or more words in Tigrinya

language. A phrase in Tigrinya language may or may not convey a meaning. In Tigrinya

language, there are five types of phrases which are described below [30, 31, 32]:

3.5.1 Noun phrases: it consists of noun (e.g.ኣበበ) or a pronoun (ንሱ (he), ንሳ (she),

ንስካትኩም (you) as a head. For example ኣበበ መጺኡ። (abebe came), here, ኣበበ (abebe) is an

example of simple noun phrases.

3.5.2 Verb phrases: it is composed of a verb as a head. For example ኣበበ መጺኡ። (abebe

came), Here, መጺኡ (came) is the verb phrase.

3.5.3 Adjectival Phrases: It is composed of an adjective as head, and other constituents

such as complements, modifiers and specifiers. For example እቶም ብጣዕሚ ነዋሕቲ(these very

tall) is an example of AdjP, Here, እቶም(those) are specifiers, ብጣዕሚ(very) is a modifier that

used to modify adjective(head) called ነዋሕቲ(tall).

3.5.4 Prepositional phrases: it can be constructed from a preposition head and other

constituents such as: nouns, noun phrases, verbs, verb phrases, etc. for example ብላዕሊ ኣቀምጦ

(put on top) is an example of P. Here, ብ(on) is a preposition which combined with ላዕሊ(top).

3.5.5 Adverbial phrases: it can be constructed from one or more adverbs in the language.

For example ቀልጢፉ መጺኡ። ([he] came quickly) is an example of Adverbial Phrases, Here,

ቀልጢፉ (quickly) is the head.

3.6 Types of Sentences

In Tigrinya language, a sentence is a group of words which conveys meaningful information.

Tigrinya language has its own forms of sentence construction system and rules. Tigrinya

sentences formulation follows the subject-object-verb (SOV) word orders. For example ኣበበ

እንጀራ በሊዑ። (abebe ate Injera.). Here, ኣበበ(abebe) is the subject (action performer),

20 | P a g e

እንጀራ(Injera) is the object (action receiver) and በሊዑ(ate) is the verb (action). Tigrinya

language has four major types of sentences and those are described below [30]:

3.6.1 Simple sentences: This type of sentences has a subject and a verb. This type of

sentences has independent clause. For example ኣበበ እንጀራ በሊዑ። (abebe ate Injera.). Or

ኣበበ በሊዑ። (abebe ate.) are examples of simple sentences.

3.6.2 Compound sentences: This type of sentences has two or more than two independent

clauses which are joined together using connectors’ words. These connectors can be alternative

or associative connectors. For example እንተደሊኻ ተምሃር እንተደሊኻ ግደፎ:: (either you learn

or leave it) is an example of the alternative connecter. This provides a choice either to learn or

leave the education and both alternatives are connected using “OR”. Again, ኣበበ ነዊሕን ጽቡቅን

እዩ። (abebe is tall and handsome) is an example of associative connecter. The connecters which

are used to connect these sentences are ወይድማ (or), ን-ን (and), ምስ (with) and etc.

3.6.3 Complex sentences: This type of sentences contains two or more clauses, and at a

least one clause should be dependent on the other clause. For example ሎምዓንቲ ድሕሪ ቤተ

ክርስትያን ምስዓምና ዕዮ ገዛና ሰሪሕና (we have done our homework, after we were prayed in

church today). In this example the clause ዕዮ ገዛና ሰሪሕና(we have done our homework) is a

dependent clause over the ሎምዓንቲ ድሕሪ ቤተ ክርስትያን ምስዓምና(after we were prayed in

church today) which is an independent clause.

3.6.4 Compound-Complex sentences: this type of sentences consists of at least two

independent and one or more dependent clauses. For example ኣደይ ናብ ዕዳጋ ክዳን ክትገዝእ ምስ

ከደት፥ እንጀራ በሊዐ ናብ ቤት ትምህርቲ ከይደ። (when my mother went to the market to buy a cloth,

I ate Injera and I went to school.) . In this example ኣደይ ናብ ዕዳጋ ክዳን ክትገዝእ ምስ ከደት (when

my mother went to the market to buy a cloth) has two independent clauses. ኣደይ ናብ ዕዳጋ ምስ

ከደት(when my mother went to the market) and ኣደይ ክዳን ክትገዝእ ምስ ከደት (when my mother

went to buy a cloth). The example እንጀራ በሊዐ ናብ ቤት ትምህርቲ ከይደ።(I ate Injera and I went

to school.) Are the two dependent clause on the independent clause and this has two dependent

clauses. Namely, እንጀራ በሊዐ(I ate Injera) and ናብ ቤት ትምህርቲ ከይደ።(I went to school).

21 | P a g e

Generally, this chapter has been discussed about Tigrinya language because it is necessary to the

work. In Tigrinya language interface to database the queries can be simple sentences, compound

sentences, complex and compound-complex sentences. Those types of sentences may have

different words those different words may have different word class such as noun, verb,

adjective, preposition and adverbs etc. Also, Tigrinya words are highly inflected from gender;

number, person and etc. Therefore, that’s why we discussed about Tigrinya language to make

clear for the readers. Anyone can read this to understand about Tigrinya language. However, this

is not enough to understand in detail about the language as Tigrinya is highly inflected and

derivated language. For detail and better knowledge of Tigrinya language anyone can refer to

Tigrinya books.

22 | P a g e

CHAPTER FOUR

Related Works

4.1 Introduction

A number of researches have been conducted on the natural language interface to database in

different natural languages such as Amharic, Afaan Oromo, Arabic, Hindi, Punjabi and English.

The researchers was used different techniques as discussed in chapter two, to develop the natural

language interface to database for the above listed natural languages. According to the literature

most of the researchers were focused on information retrieval. In this study, the approach and the

functionality of the database (support of the complex queries of natural language) were

considered as the baseline. This work considered the conducted researches on local languages

and on some international languages. Here, below the different natural language interface to

database of the above listed natural languages were discussed in the next sections:

4.2 Information Retrieval

Information retrieval defined as the process of finding information from a collection of

documents. This aims on retrieving relevant documents that can satisfy the information need of

users. However, still the IR system retrieves relevant and irrelevant documents or information’s

that can satisfy users or not. Therefore, to make the IR system to retrieve an exact answer to the

user query, Question Answering system was good [35]. This system aim’s to provide an exact

answer to the user query. By providing an exact answer to the user query, it makes a user to save

his/her time, effort and other resources. By having of the exact answer within a short time and

less effort a user can satisfied.

There is one attempt on Tigrinya question answering system for factoid questions by [35]. The

researcher developed the prototype using statistical approach on unstructured data. He prepared a

question with it’s corresponding answer and by calculating the similarity between the input

sentence with in the corpus (prepared questions), then he makes to return the answer. He scored

an overall accuracy of 87%. However, in his work updating and deleting of the contents is

impossible. Since, some facts may change from time to time. And also, when the size of corpus

is very large it can take long time as it is developed using the statistical approach. This means

that it may have a high computational time. Also, he considered only factoid questions. He

recommended to develop a question answering system for complex factoid questions and none

23 | P a g e

factoid questions. Again he recommended to develop a standard parallel corpora as the

performance of the question answering system is depend on the parallel corpora. Finally, he

recommended adding Tigrinya WordNet and Tigrinya spelling checker can also improve the

performance.

4.3.1 Text summarization

Retrieving of some relevant part of a document (unstructured text) to the user is called text

summarization. The data with in documents is very large and to read the whole is very difficult.

Because, it takes time. So, instead of reading manually, applying automatic text summarizer is

good [49].

 There is one attempt in Tigrinya automatic text summarizer by [49]. The researcher used term

frequency and topic modeling techniques to develop the prototype. The first technique used to

add a sentence that has the most frequent words in the documents to the summary and the second

identifies the topic word and it extracts the sentence that has the topic word from the documents

to add to the summary. The data sources used 30 news articles from Aiga forum and dmtsi

woyane Tigray websites to evaluate the prototype. The performance scored is an f-score of 46%.

The accuracy scored is to lower and the summary result is subjective. The researcher

recommends having a large prepared Tigrinya corpus and good Tigrinya stemmer can improve

the performance of the summarizer. He recommends topic modeling is better than term

frequency on selecting of the important sentences and it will be better if the title is supported by

sub topic of the input document [49].

Generally, question answering system and text summarizations are carried out on unstructured

data (documents). Those systems are impossible to apply to natural language interface to

database. Because, natural language interface has their own functionality and it is one application

area of NLP. For example: updating and deleting of information as information can modify from

time to time. In general, it has it’s own syntax. Therefore, natural language interface is required

to enable users to access and manipulate the database contents using native language.

4.4 NLIDB for different languages

4.4.1 Amharic Language

Modeling and Designing Amharic Query System to Bilingual (English-Amharic) Databases

has been developed by [2]. In her work she considered the natural language preprocessors, query

24 | P a g e

mapper, query generator and query executers. She used a dictionary to develop the system. She

evaluated the system from query success rate and user satisfaction and scored 76.5% and 65%

respectively. She recommends the database to be extended to include more tables and attributes,

extended the system to accept more complex query and the where clause to have Amharic

values.

 “Possibility of Amharic Query Processing in Database using Natural Language Interface”

has been developed by [8]. He developed an algorithm to efficiently map Amharic language into

Structured Query Language (SQL). He divides the algorithm into four parts an algorithm to

handle query selection, conditional query, aggregation and grouping and ordering queries. He

used rule based approach to develop the system. He has implemented the algorithm using java

and tasted on Human Resource Management (HRM) database which containing Employee,

Department and Employee on education tables. His experimental result shows that 91% overall

accuracy. He recommends extending his work with temporal queries.

4.4.2 Afaan Oromo Language

 “Designing Natural Language Interface to Database for Afaan Oromo” has been developed

by [36]. His prototype accepts the Afaan Oromoo language plaintexts and translates into the

corresponding SQL statements to further execute and retrieve the data stored in the database. He

used the pattern-matching techniques and rule based approach to develop the system. He

considered the preprocessing, spelling checker and auto-correction, checking word similarity,

database element extraction and etc. His system handled a single query, list query, multiple

conditional queries, aggregate and join query. He evaluated his system using 100 Afaan Oromoo

queries on student database and scored an average performance of 92.3%. Finally, he

recommended that applying neural network, machine learning and parsing techniques can

improve the success rate of natural language interface to database.

4.4.3 Arabic language

An Arabic Natural Language Interface System for a Database of the Holy Quran has been

developed by [6]. In his work he translated the natural Arabic requests such as question or

imperative sentences into SQL statements (commands) to retrieve answers from a Quran DB. He

performed parsing and little morphological processes according to a sub set of Arabic context-

free grammar rules to work as an interface layer between users and database. He recommends

25 | P a g e

the system to be extended to include more tables and attributes and to accept more complex

query.

4.4.4 Hindi Language

A ‘design and implementation of Hindi language interface to database’ has been developed

by [7]. In his work he accepted the query in Hindi, tokenized them into tokens and mapped the

Hindi words with their corresponding English words with the help of system dictionary

maintained. After mapping the sentences, the sentence has been checked whether it is data

retrieval, update, insert or delete type of sentences. This was done by analyzing the input Hindi

sentence. After analyzing, the input Hindi sentence, table names, column names, condition and

operators are searched in the dictionary. After mapping, SQL query is generated and executed on

database to display the result set to the user.

4.4.5 Punjabi Language

 A ‘Punjabi language interface to database’ has been developed by [33]. He used agriculture

domain which has farmer, crop and sale tables. This accepts query in Punjabi language that is

translated into SQL query, by mapping the Punjabi language words, with their

corresponding English words with the help of database maintained. Then, the query is

executed. The architecture of this system has three phases. Tokenizing the query, Mapping and

formation of SQL query and Execution of query. The researcher recommended that the

existing system can be extended to : execute Queries that involves joining of tables and

handle various clauses , made domain independent, handle more complex queries , Develop an

interface for administrator and accepts queries only in a particular format. So to make the

system to accept all the queries, they recommended to use Punjabi parser. They have been

tested for three types of queries: Queries for selection of all the columns , Queries for

selection of certain columns and Queries for selection of certain rows from certain

columns.

4.4.6 English Language

A ‘Pattern based Natural Language Interface to Database’ has been developed by [34]. They

developed a system for converting English language query into SQL query. They defined

patterns for simple query, aggregate function, relational operator, short-circuit logical

operator and join. They categorized the patterns into valid and invalid. Valid patterns are

directly used to translate natural language query into SQL query whereas an invalid pattern

26 | P a g e

assisted the query authoring service in generating options for user so that the query could be

framed correctly. Their system taken an English language query as input recognizes pattern in

the query, selects one of the above mentioned features of SQL based on the pattern, prepared an

SQL statement, fired it on database and displayed the result. They have been recommended that

their interface to include or aware of other features such as clauses (group by and order by),

keywords used in predicate like BETWEEN, NOT IN, IN etc., nested query, varieties of

join, union and much more.

Generally, the related works were developed using non robust approaches and their accuracy

were calculated manually. Therefore, to write all the grammar rules of one natural language and

to carry out the calculation, it was very tedious and not effective. Again, the queries of the

natural language that enabled users to access the database were also limited as it did not include

the functionality of the database. One natural language sentence can be described in different

forms that have same meaning. So, stating all the rules for one natural language is very difficult.

Again, those works were developed for non-Tigrinya language users. Therefore, this study

overcomes those problems by extending the functionality of the database and by using the robust

approach. This study considers complex queries and manipulation queries to enable the user to

access and manipulate the database. Again, this study developed for Tigrinya language users. As

this study was carried out using the existing tools and approaches, no algorithm was contributed

rather; it solved the existing problem using existing tools and approaches. Therefore, the general

contribution of this study was to enable Tigrinya language users to access and manipulate the

database contents using Tigrinya plaintexts. Generally, below table showed the summary of the

related works on NLIDB.

Table 1: Summary of related works

Author Language Approach/

technique

Evaluation Accuracy Domain Recommendation

Tihitina Amharic Rule based User

satisfaction

and query

success

rate

65% and

76.5%

Telecom Include more

tables, complex

queries and where

clause to include

 Amharic values

27 | P a g e

Smegne

w

Amharic Rule based query

success

rate

91% HRM include

manipulation and

temporal queries

Shumet Afaan

Oromoo

Rule based query

success

rate

92.3% Student Applying parsing,

Machine learning

and neural network

Khaled

Nasser

Arabic Parser query

success

rate

 Quran

DB

Include more

tables, attributes,

and more complex

queries

Ashish

Kumar

Hindi Rule based query

success

rate

 Indepen

dent

Suket et

al

Punjabi Rule based query

success

rate

 agricultu

re

Include clause(join

and union),

Complex queries

and parser

Niket

Choudha

ry

English Rule based Semantic

test(query

success

rate)

 Library Include clause(join

and group by) and

Predicates(IN,

BETWEEN, NOT)

and complex

queries

28 | P a g e

Chapter Five

Designing and Developing of TLIDB

5.1 Introduction

A new healthcare database was designed to develop the Tigrinya language interface to database.

Because, this can minimize the time and efforts of the researcher and also it can improve the

knowledge of the researcher on database design. To use existing database permission is required

from managements. So, to have permission it has many challenges and takes time. And even,

after long time process the managements could not be voluntary to provide the database. That’s

why a new database is designed.

In designing of Tigrinya language interface to database prototype, the name of the database,

tables, attributes and actual values are all in Tigrinya plaintexts. To translate (convert) the

Tigrinya plaintexts into SQL statements, neural machine translation has been used. The

prototype accepts the queries in Tigrinya plaintexts and translates it to SQL statements that can

be execute in database either to display or to manipulate the contents of the database based on

the Tigrinya input queries. The prototype translates the Tigrinya plaintexts into SQL statements

sequence by sequence using the encoder-decoder model. The encoder accepts the Tigrinya

plaintexts (input data) and converts into a vector of floats. The decoder accepts both the input

vector and the target vector and converts into vectors of floats.

As there is no prepared Tigrinya dataset for Tigrinya natural language interface to database, a

dataset was prepared from scratch by Tigrinya language professionals’. The dataset was

prepared, first a sample database that has three tables with four or seven attribute were designed.

After that, the healthcare database was created and filled records with health professionals. Then

the Tigrinya sentence was prepared based on those tables, attributes and values with the help of

Tigrinya language professionals and with a corresponding SQL.

To design and develop the Tigrinya language interface to database, a healthcare database that has

three tables each with four or seven attributes were considered. Here below, are described sample

table names in table 1 as follows:

29 | P a g e

Table 2: Sample table Names

Tablenames in Tigrinya Their meaning in English

ሕሙማት Patients

ሕማማት Diseases

ሰራሕተኛታት employees

The table holds the table names with their corresponding meaning in English. Again, here there

is a table named table 2 that holds the sample attributes of the employees and patients table

names. Most of the attributes are common for the two table names.

Table 3: Samples attribute names of patients and employees

Attribute names in

Tigrinya

Meaning in

English

data types

መለለይ Id Int

ሽም Name Nvarchar

ሽምኣቦ Fname Nvarchar

ዕድመ Age Int

ፆታ Sex Nvarchar

ዓይነት Type Nvarchar

ደሞዝ/መሃያ/ክፍሊት Salary Double

This table contains the sample attributes names with their meaning in English words and their

data types.

5.2 Types of Queries

Users may formulate different queries using the above information stored in the tables to query

the database. Generally, the types of queries are grouped into two. Namely, retrieval query and

manipulation query. One may ask a simple query and others may ask a complex query. So in this

work, some of the queries that can be formulated by users with their corresponding SQL

statements are discussed.

 ሓበሬታ ሕሙማት ኣርእየኒ። (select * from ሕሙማት;)

30 | P a g e

This is a simple query that shows all the details’ of the patients. This is the retrieval query.

ሕሙማት(patients) is a table name and ኣርእየኒ(select) is the retrieval and ሓበሬታ(information)

are stop words. A user can write this statement to view all the information of patients.

 ሽም ሕሙማት ኣርእየኒ። (select ሽም from ሕሙማት;)

This is also a simple query that shows the name of all patients. ሽም (name) is the attribute name,

ሕሙማት(patients) is a table name and ኣርእየኒ(select) is the retrieval. A user can write this

statement to view the name of all patients.

 ሽም ሕሙማት ዓሶ ኣርእየኒ(select ሽም from ሕሙማት where ዓይነት=’ ዓሶ’)

This query is more complex than the former queries. From this statement ሽም(name) is an

attribute, ሕሙማት(patients) is table name, ዓሶ(malaria) is an actual value, ኣርእየኒ(select) are a

retrieval. A user can write this statement to view the name of all patients of malaria.

 ዓሶ ወይድማ ሳምባ መንቀርሳ ዓይነት ሕሙማት ሽም ኣርእየኒ። (select ሽም from ሕሙማት

where ዓይነት=’ ዓሶ’ or ዓይነት=’ ሳምባ መንቀርሳ ’ ;)

This query is more complex than all the former queries. From this statement, ዓሶ(malaria) and

ሳምባ መንቀርሳ (tuberculosis) are actual values, ወይድማ(or) is a connecter, ዓይነት(type) is an

attribute name that has two values, ሕሙማት(patients) is a table name, ሽም(name) is also an

attribute name and ኣርእየኒ(select) is a retrieval query. The two actual values are connected using

the word ወይድማ(OR). A user can write this statement to view the name of all patients’ of

malaria or tv.

 ሽም ሕሙማትን ምልክታት ሕማማትን ጸምብር ኣርእየኒ። (Select ሕሙማት.ሽም,

ሕማማት.ምልክት from ሕሙማት JOIN ሕማማት ON ሕሙማት.ዓይነት

=ሕማማት.ዓይነት;)

This query is also more complex than the former queries. From this statement ሽም(name) and

ምልክታት(symptoms) are an attributes of the ሕሙማት(patients) and ሕማማት(diseases) table

names. ጸምብር(JOIN) is the word that we use to merge the contents from both tables.

ኣርእየኒ(Select) is shows as a retrieval query. The character ‘ን’ at the end of the table names

shows us to retrieve from both.

 All the above listed queries are an example of retrieval query.

Others may formulate a manipulation queries as follows:

31 | P a g e

 ባዓል 4 መለለይ ዝኮነ ሰራሕተኛ ሽሙ ብሃይለ ሽምኣብኡ ብግርማይ ተክእ/ተክኣለይ። (update

ሰራሕተኛታት set ሽም=’ ሃይለ’, ሽምኣቦ=’ ግርማይ’ where መለለይ =’4’ ;).

In this statement, ባዓል(owner) is a stopword, መለለይ(id) is an attribute name,4 is an actual value

of id, ዝኮነ(equal) is an equal operator, ሰራሕተኛ(employee) is not a real table name but it must be

changed to the table name ሰራሕተኛታት(employees) because the table name in database is

ሰራሕተኛታት(employees), ሽሙ(name of) is not a real attribute name but shows the name of the owner

and it must translate to ሽም(name), ሃይለ(Haile) and ግርማይ(Girmay) are actual values, ብ(by) is

a prefix in the two actual values, ሽምኣብኡ(name of father’s) are not also areal attribute name

but shows the father’s name of owner and must translate to ሽምኣቦ(father’s name) and

ተክእ/ተክኣለይ(update) shows manipulation query.

Users may write this to update the name and father’s name of a unique person based on his/her

id. This is an example of the manipulation type query. This is the simple query in manipulation

because the conditional clause has one attribute with it’s value. When it has two or more than

two it increases it’s complexities. Also, the attributes used for the update clause is two. This

makes also simple query. When it has three or more than three attributes, it increase it’s

complexities. Again, when it has one attribute for update and one attribute with it’s value for

conditional clause, it is the simplest query in manipulation.

 ባዓል 4 መለለይ ዝኮነ ሕሙም ኣጥፍእ።（DELETE FROM ሕሙማት WHERE

መለለይ="4";）

From this query the word ባዓል (owner) shows the owner of the value, 4(four) is the actual value

of the attribute መለለይ (id) which used to identify the required one. ዝኮነ(has) is an operator that

indicates the patient has the 4 መለለይ (id). ሕሙም (patient) which is a singular name of the

table name patients. ኣጥፍእ(DELETE) shows manipulation query.

5.3 Neural Network

Neural network have input, hidden and output layers. The input layer is used to feed the input

value to the network and the output layer is used to provide the output. The hidden layers are

used to provide the discrimination necessary to be able to separate our training data. The output

of a neuron is function of the weighted sum of the inputs plus the bias. The function of the entire

neural network is simply the computation of the outputs of all the neuron in the neural network.

32 | P a g e

An activation function is applied to the weighted sum of the inputs of neurons to produce the

output. The advantage of neural network is, it has the ability to learn and generalize [44].

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑁𝑁 = ∑ 𝑋𝑖𝑊𝑖 + 𝑏
𝑛

𝑖=1

In the above formula Xi represents the input vectors, Wi the weight vectors and b represents bias.

5.3.1 Recurrent Neural Network

This is a type of artificial neural network designed to recognize patterns in sequences of data.

And this is the most powerful and useful type of neural network. Figure 1 shows us the

architecture of the recurrent neural network.

 Figure 7: RNN Architecture

In recurrent neural network information are feeds in loop. This type of neural network takes as

its input just the current input example it see and also what it has perceived previously in time.

Therefore, the decision a recurrent neural network reached at time step t-1 affects the decision it

will reach one moment later at time step t.

The type of recurrent neural network that applied to develop the prototype is called LSTM. The

LSTM have both hidden state and cell state. LSTM used cell state to store and update the

information in LSTM. Vanilla has only hidden state and it used the hidden state to store the

information. In along sequence to sequence prediction LSTM has higher performance than

vanilla [48]. This mean in long sequence prediction LSTM is better than vanilla.

33 | P a g e

The LSTM has three gates called input gate, forget gate and output gate. The following equation

shows us how the LSTM gates work [46].

𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

Wx represents the weights of each gate, ht-1 represents the vector of the hidden states at t-1, xt

represents the input vectors at time t and bx represents the bias at each gates. Sigmoid function is

an activation function that used to show either the gates allows everything to pass through it or to

block. The output of the sigmoid is 0 or 1. 0 means the gate blocks everything and 1 means the

gate allows everything to pass through it.

5.4 The General Architecture of TLIDB

The system was trained by fetching input data from a file that contains Tigrinya sentences with

the corresponding SQL statements which was annotated by Tigrinya and SQL professionals. The

input data contains both Tigrinya sentences and SQL statements. This input data was splitted

into input Tigrinya sentences and SQL statements (target data). After that, the encoder-decoder

model was used to translate from input-Tigrinya sentences to their corresponding SQL

statements. The input Tigrinya sentences are translated to their corresponding SQL statements

sequence-by-sequence. Because, the natural language interface to database is a translation

problem, from input Tigrinya sentences to SQL statements. Therefore, the encoder-decoder

model is good in sequence-to-sequence translation problems [37].

This model has three layers. Namely input layer, hidden layer and output layer. There is an

interconnection between each layer. In this work the output layer uses an activation function

called ‘softmax’ to display the outputs. The softmax activation function is used to classify

multiple inputs into multiple outputs. The following formula shows how the probability

distribution can be calculated using the softmax activation function.

 𝑝 =
𝑒𝑖

∑ 𝑒𝑖𝑛
𝑖=1

34 | P a g e

In the above formula 𝑒 represents mathematical constant, 𝑖 represents inputs and 𝑛 represents

the vocabulary size. Based on these values the SQL statement (sequences) can be predicted and

for the translated (predicted) SQL statements by the encoder-decoder model, we have executed

on mysql database. Finally, when the predicted query is retrieval, an output can display to the

user and when the query is manipulation, changes can be made in the database contents.

The general architecture of Tigrinya language interface can be applied in any domain. Here,

figure 2 shows the system architecture starting from the dataset upto the final result which

displayed or manipulated from/in the database. The functions of each component are also

described as follows:

Figure 8: General Architecture

5.4.1 Corpus: corpus is a collection of texts. This corpus has a Tigrinya sentences with their

corresponding SQL statements separated by the word <BEGIN>. The Tigrinya sentences are the

input data and the SQL statements are the output (target) data. This corpus holds both the

training and testing data of our model. The input Tigrinya sentences are prepared by Tigrinya

language professionals’.

35 | P a g e

5.4.2 Input Query:

The input is Tigrinya plaintext that is used to access and manipulate the contents of the database.

In our work, this is used to accept a retrieval and manipulation queries.

5.4.2 Tokenizer:

Tokenizer is uses to split the input Tigrinya statement into character and words. To split into

words the tokenizer uses spaces. We have been applied splitting into words after cleaning and

into character before cleaning. Therefore, we did not consider that to include in the architecture

below cleaning. for example in the above Tigrinya statement ባባባ(owner) is a none relevant

word, ባባባባ (id) and ባባ(name) are attribute names, 6 and ባባባባ (teklay) are an actual

values ባ is a prefix, ባባባ(=) is an operator ሕሙም(patient) represents a table name but not a

real table name which is found in the database.

5.4.3 Cleaning:

Here, data cleaning is carried out. This means that the punction marks in input Tigrinya

sentences must be removed to split the sentences into words. After this, tokenization of the input

Tigrinya sentence can carry out.

5.4.4 Preparation of Dictionaries and specifying of the dimensions values:

On this vocabularies of both the source and the target have been prepared. And then, four

dictionaries have been prepared for both input Tigrinya sentence and the SQL statements. The

two dictionaries have been prepared for the input Tigrinya sentence which has words and their

indexes’ and vice versa. The two dictionaries also have been prepared for the target statements

which has words and their indexes and vice versa. Here also, the dimensions for the encoder and

decoder architecture have been specified and calculated from the given input data (corpus). And

also, generating of the data in batch has been carried out.

5.4.5 Encoder-Decoder Model

5.4.5.1Word representation:

Here, below word representation techniques have been discussed as follows:

5.4.5.1.1 One-hot encoding: this encoding mechanism is used to encode the words into a one-

hot vector. The one hot vector represents words in size equal with the vocabulary size of the

input data and it is a sequence of one and zero. If the word is available it assigns one, if not it

36 | P a g e

assigns all sequences zero. Those vectors are high dimensional and sparse. Therefore, this is not

used to create a low dimensionality model.

 5.4.5.1.2 Word embedding: is also used to convert words into their corresponding vectors.

Those techniques are used to create a low dimensionality model. Since, they are a low

dimensional and dense. Low dimensional means it is possible to specify the dimensionality size

and it is not the vocabulary size as in one-hot vectors. And dense means all the components

(features) of the vectors contains none zero numbers unlike one-hot vectors. For example

word2vector is used to convert input words into vectors (sequence of real numbers).

5.4.5.1.3 Word embedding layer: Word embedding layer of keras python library was used to

convert words into their corresponding vector representations [39]. Word embedding layer was

developed as part of deep learning in keras. This generates a random value to the first and

iteratively learns the representation of all words. This layer is used to build a low dimensionality

model and a dense representation like the embedding techniques such as word2vector. Therefore,

this layer was used to translate (embed) the dataset to the corresponding vector representations

and this vector representation is fed to the LSTM layer. That’s why we were used this layer to

represent words.

5.4.5.2 LSTM Model:

This model is a seq2seq recurrent neural network model which uses to translate one sequence to

another sequence. In old type of recurrent neural network, it was difficult to translate a variable

length input into a variable length output. However, with the use of recurrent neural network

which is the LSTM, the problem is solved. The LSTM has the capability to store past

information and this makes it a very powerful in sequence prediction problems [40]. As

described in the above, the translation of input Tigrinya sentences to their corresponding SQL

statements is a sequence problem. Therefore, the LSTM model is used to translate the input

Tigrinya sentences into their corresponding SQL statements.

5.4.5.2.1 Encoder LSTM

The encoder LSTM reads Tigrinya input sequences and summarizes information as hidden state

and cell state vectors called internal state vectors. The encoder reads Tigrinya input sentence

one word after the other from the sequences. For example in the following Tigrinya input

sentences: ሽም ሕሙማት ዓሶ ኣርእየኒ።. This sentence has a sequence of 4 words. First the

encoder reads the word ሽም, then ሽም ሕሙማት, then ሽም ሕሙማት ዓሶ and finally reads ሽም

37 | P a g e

ሕሙማት ዓሶ ኣርእየኒ. This has four (4) time steps (sequence length) to read the complete

Tigrinya input sentence. As described in figure 3 the encoder reads all sequence one after the

other until all the sequences is read. If the Tigrinya input data has a sequence of length n, the

encoder starts reading from zero up to n. Zero is the initial-state that the encoder starts reading

and n is the final step of the sequence.

As described in figure 3 the input to the encoders are: X1, X2, X3, ……Xn and the encoder state

vectors are: H0C0, H1C1, H2C2,……..HnCn.

The outputs (predicted) of the encoder’s are: Y1, Y2,….…Yn. and we should discard them.

From the above example of Tigrinya sentence:

The inputs to the encoder are: X1=ሽም, X2=ሕሙማት, X3=ዓሶ, X4=ኣርእየኒ.

The encoder internal state vectors are: H0C0=0, H1C1=ሽም, H2C2=ሽም ሕሙማት, H3C3=ሽም

ሕሙማት ዓሶ, H4C4=ሽም ሕሙማት ዓሶ ኣርእየኒ.

The encoder sets the initial vectors to zero (i.e H0C0 is set to zero as the encoder has not started

to read the input) and the final state vector(thought vector) is the final state that

encode(summarize) the complete input sequences[37].

Figure 9: Encoder

 From the above diagram the variables shows us: Xn=represents input data

HnCn=represents state vectors (hidden state and cell state respectively)

Yn=represents output (predictions) of the encoder at each time step (iteration)

The role of the internal states at each time step is to remember what the LSTM has learned (read)

till the current time step. For example the two vectors H2C2 will remember what the LSTM

network has learned till the time step two (2). At time step two the LSTM has learned ሽም

ሕሙማት. Generally, the summary of information till time step two is stored in vectors H2 and

C2. In the above input Tigrinya sentence the final state is H4C4. This contains the summary of

38 | P a g e

the complete (entire) input sentences which is ሽም ሕሙማት ዓሶ ኣርእየኒ. This step are also called

last time step and also called “thought vectors” as it summarizes the input sequences as

vectors. “The size of the internal state vectors (both hidden state and cell state) is equal to the

number of neurons used in LSTM cell”[37].

Yn is a probability distribution over the entire vocabulary of Tigrinya input sentence which

generated by softmax activation function. So, every Yn is a vector of size input Tigrinya

sentences words (all-Tigrinya words or vocabulary-size) which representing probability

distribution. The output of the encoder (Yi) must be discarded as we have started to generate the

output (predict), when the entire Tigrinya input sentence read.

Generally, the input Tigrinya sentence (sequence) was read word by word and preserves the

internal states of the LSTM network generated after the last time step of HnCn. The two vectors

(states) called HnCn are called as the encoding of the input Tigrinya sequence, as they encode

(summarize) the entire input in a vector form. Outputs of the encoder (Yn) are discarded at each

time step because we start to generate the output once the entire input Tigrinya sequence

(complete sentence) read. During the training and inference phases, the encoder LSTM has same

role.

5.4.5.2.2 Decoder LSTM

The training and inference phases of the Decoder LSTM has described below.

5.4.5.2.2.1 Training mode

The goal of the training phase is to train the decoder to display the target sentence of the

corresponding input Tigrinya sentence. In the target sequence two tokens must be added one for

starting of the sequence and one for ending of the sequence. Adding ‘<BEGIN>’ as the starting

token and ‘<END>’ as ending token in the target (output) sequence (simply SQL statement). For

example <BEGIN> SELECT ሽም FROM ሕሙማት WHERE ዓይነት=’ ዓሶ’; <END>

The above SQL statement is one of the output sequences (target sequence) of the input sequence

“ሽም ሕሙማት ዓሶ ኣርእየኒ።”

Figure 4 shows us how a decoder LSTM training on[37].

39 | P a g e

Figure 10: Training mode of decoder

From the above output sequence example and the diagram:

The start token is: <BEGIN>

Y1=SELECT, Y2=ሽም, Y3=FROM, Y4=ሕሙማት,Y5=Where, Y6=ዓይነት=’ ዓሶ’; ,

The final token: Y7=<END>

The initial states of the decoder (H0C0) are set to the final states of the encoder. Based on the

information summarized by the encoder the decoder learns (trains) to generate the output

sequence. The start token (<BEGIN>) given in the first time step makes the decoder to start

generating the next actual word of the SQL statement (output sequence). Next, at each time step

the actual output word are fed as an input to the decoder until the last word of SQL statement.

This means that the input at every time step is provided as an actual output not predicted output

from the previous time step. In the last time step the decoder trains to predict the “<END>”

token to indicate the end of the SQL statement. The decoder conditioned to predict the next word

in a given sequence (context, which is the thought vector). This calculates the probability of the

next word using the following formula [47]:

𝑝(𝑦/𝑥) =
𝑝(𝑥 𝑎𝑛𝑑 𝑦)

𝑝(𝑥)

In the above formula 𝑦 represents the next word and 𝑥 represents the previous words (thought

vectors). At the last, from the predicted outputs of each time step the loss is calculated. And then,

40 | P a g e

the errors are back propagated through time in order to update the parameters (weights) of the

network.

5.4.5.2.2.2 Inference mode

As described above the encoder LSTM plays the same role of reading input Tigrinya sentence

and generating the final states Hn,Cn. And then, having these final states the decoder has to

predict the entire SQL statement [37]. For example

Input Tigrinya sentence: ሽም ሕሙማት ዓሶ ኣርእየኒ።

Output SQL statement: SELECT ሽም FROM ሕሙማት WHERE ዓይነት=’ ዓሶ’;

Step 1: encode input Tigrinya sentence into thought vectors

Figure 11: Encoding input sequence into final state (thought vectors)

Step 2: Start generating the SQL statement (target sequence) in a loop word by word

The initial states of the decoder must set to the final states of the encoder. Then the decoder takes

input word by word. The first input token is fed to the decoder at a time. The states at that time

is fed as an input states to the next time and the output at that time is also fed as an input in the

next time until it gets the word <END>. Here, below is showed the decoder process at time one

and last time.

For example at time step (t) =1

The states at t=1(H1,C1) will fed as input states at t=2 and same is true the output at

t=1(SELECT) is also fed as input at t=2.

41 | P a g e

Figure 12: Decoder Lstm at t=1

At time step (t)=7

Figure 13: Decoder Lstm at t=7

The input at t=7(ዓይነት=’ ዓሶ’;) is the predicted output from t=6.

The predicted output at t=7 which is (<END>) indicates a stopping point and the states at

t=7(H7,C7) must discarded because we stop. Then finally it generates “SELECT ሽም FROM

ሕሙማት WHERE ዓይነት=’ ዓሶ’;” .

5.4.6 Query executer: this used to execute the generated (predicted) SQL statements on the

database. As described in section of the query types, the queries can be retrieval or manipulation

of contents in the database. Therefore, this used to execute for all types of sql queries generated

from Tigrinya plaintexts.

42 | P a g e

5.3.7 Result displayer and manipulator: this used to display the fetched result to the

user based on the matching of the retrieval queries. If the queries are retrieval this used to display

the actual contents. Also, if the queries are manipulation this makes changes in the database and

nothing can display.

43 | P a g e

CHAPTER 6

Experiment

6.1 General pipelines

The following pipelines were followed to carry out the experiment:

First, a dataset was prepared with the help of linguistic professional’s and health professionals.

Second, the functional RNN model was defined, because this model is used in multiple inputs

and multiple outputs. Third, the rmsprob (Root Mean Square Propagation) optimizer was

selected because it adjusts the learning rate automatically and the learning rate of this optimizer

is any real number greater than or equal to zero. This optimizer is faster and well known. Fourth,

the categorical cross-entropy loss function was selected to estimate the loss (error) of the model

during training. Categorical cross-entropy loss function is used to estimate the loss during multi-

class classification. Finally, we trained and evaluated the model.

6.2 Database Design

A sample database was designed in healthcare system. In the below persistent diagram of the

healthcare database we use English language to write the name of the table and attributes for the

sake of clarity but their real meaning which are written in the database is described keys on table

8. The edraw max software does not accept the Tigrinya language plaintexts. That’s why we use

English to draw the persistent diagram.

 Figure 14: Persistent diagram

Table 4: keys

44 | P a g e

English Tigrinya

Patients ሕሙማት

Employees ሰራሕተኛታት

Diseases ሕማማት

Id መለለይ

Name ሽም

Fname ሽምኣቦ

Age ዕድመ

Sex ፆታ

Salary ደሞዝ

Type ዓይነት

Symptom ምልክት

Cause ጠንቂ

Preventation-mechanism መከላኸሊ_መንገዲ

Patient-id መለለይ_ሕሙማት

Emp-id መለለይ_ሰራሕተኛታት

Dis-type ዓይነት_ሕማማት

The Tigrinya words are used to create the sample database as in many organizations use Tigrinya

language plaintexts to create their database.

6.3 Queries

As discussed in chapter five different queries may be formulated. These queries may be retrieval

or manipulation. The queries were grouped based on their query type’s retrieval (select) and

manipulation (update and delete). Also, the retrieval queries were grouped into different

subgroups based on their complexities and others are sub grouped based on their specific

commands. Table 4 shows the type of queries, their subgroups, Tigrinya queries of each

subgroup and their corresponding SQL statements. This table presents a sample of Tigrinya

queries for each subgroup and their corresponding SQL statements. This shows how the dataset

is prepared and how much the language is rich in variations of words.

45 | P a g e

Table 5: Sample Queries

Query_Types Subgroup of the

Queries

Tigrinya Queries Corresponding SQL statements

Select Select queries ሓበሬታ ሕሙማት ኣርእየኒ select * from ሕሙማት;

ሽምን ሽምኣቦን

ሕሙማት ኣርእየኒ

select ሽም, ሽምኣቦ from

ሕሙማት;

Conditional

queries

ምልክታት ሕማም ዓሶ

ኣርእየኒ

select ምልክት from diseases

where ዓይነት="ዓሶ";

 ዓሶ ወይድማ ቲቪ ዓይነት

ሕሙማት ሽም ኣርእየኒ

select ሽም from ሕሙማት where

ዓይነት="ዓሶ" or ዓይነት ="ቲቪ";

Aggregation በዝሒ ዓይነት ሕማማት

ኣርእየኒ

select count(ዓይነት) from

ሕማማት;

Group/order by

and asc/desc

ሕሙማት ብመለለይ

ማዕረ 2ን ትሕቲኡን

ብዕድመ ቅነሳ ጉጅለ

ኣቀምጥ/ኣቀምጠለይ

select * from ሕሙማት where

መለለይ<="2" group by ዕድመ

desc;

Join with it’s type

(inner,left,right)

and union

ሽም ሕሙማትን

ምልክታት ሕማማትን

ጸምብር ኣርእየኒ

Select ሕሙማት.ሽም,

ሕማማት.ምልክት from ሕሙማት

join ሕማማት ON ሕሙማት.ዓይነት

=ሕማማት.ዓይነት;

 ሽም ሕሙማትን ዓይነት

ሕማማትን ሕብረት

ኣርእየኒ

select ሽም from ሕሙማት

UNION select ዓይነት from

ሕማማት;

Between/Not and

In/Not

ኣብ መንጎ 2ን 10ን

መለለይ ዘለዉ ሕሙማት

ኣርእየኒ

select * from ሕሙማት where

መለለይ BETWEEN "2" and

"10";

46 | P a g e

Manipulation Update ባዓል 3 መለለይ ዝኮነ

ሕሙም ሽሙ ብሃይለ

ተክእ/ተክኣለይ

update ሕሙማት set ሽም="ሃይለ"

where መለለይ="4";

ባዓል 3 መለለይ ዝኮነ

ሕሙም ሽሙ ብሃይለ

ሽምኣብኡ ብግርማይ

ተክእ

update ሕሙማት set ሽም="ሃይለ",

ሽምኣቦ="ግርማይ" where

መለለይ="3";

Delete ባዓል 4 መለለይ ዝኮነ

ሕሙም ኣጥፍእ

delete from ሕሙማት where

መለለይ="4";

 Figure 15: Output of the Prototype

47 | P a g e

6.4 Model Training

The corpus was prepared by separating the input Tigrinya sentences and the corresponding SQL

statements using the word <BEGIN>. And then the file that contains the dataset was opened and

separating the corpus into input and target data using the separator (i.e <BEGIN>). The

maximum length of the input Tigrinya sentences has been calculated and the longest sentence

has 13 tokens. And again the maximum length of the target SQL statements has been calculated

and the longest SQL statement has 15 tokens. All the input and target sequences are sorted. And

then the number of encoder tokens and the number of decoder tokens have been calculated i.e the

length of all the Tigrinya words and the length of all SQL words which are 330 and 807

respectively.

After that the dataset was shuffled using the skylearn python library in order to mix it. After the

data has been shuffled, the dataset splitted 80 %(5070) for training and 20%(1268) for testing

data by using percentage split method of the skylearn python library. After that a batch size of

100 was provided to generate the batches of the training data using generate batch function. The

encoder input data takes the index of the input Tigrinya words in an array of the batch size with

the maximum length of the input Tigrinya sentences. This means that it takes the indexes of

input Tigrinya words in a two dimensional array of 100 by 13. The decoder input data takes the

indexes of the SQL words in an array of the batch size with the maximum length of the target

(SQL) statements. This means that it takes the indexes of the SQL words in a two dimensional

array of 100 by 15. The decoder target data takes the indexes of the SQL words in a an array of

the batch size, maximum length of the SQL statement and the total number of decoder

tokens(SQL words) and if the word is present it assigns one(1), if not it assigns zero(0). This

means that it takes the indexes of the target tokens in a three dimensional array of [100, 15, 807].

This excludes the start token (i.e <BEGIN>) and offset by one time step. And then the function

returns the input data (encoder input data and decoder input data) and the output data(decoder

target data). This means that it returns the result of [[[100, 13],[100, 15]],[100, 15,807]].

A latent dimension of 128 and an epoch of 120 were provided. After that the encoder-decoder

model was created and then a functional API model was defined with encoder-decoder data (the

encoder input, decoder input and decoder output). The shape (dimension) of these three arrays is

equal as the above arrays respectively. The encoder input takes in the place of the indexes of all

input Tigrinya words the embedding matrix of 330 by 128. This means that the matrix of the

48 | P a g e

total input Tigrinya words by the latent dimension. The decoder input and decoder output takes

in the place of the indexes of all SQL words the embedding matrix of 807 by 128. This means

that the matrix of the total SQL words by the latent dimension. And then the defined functional

API model was compiled with rmsprob optimizer, categorical cross entropy loss functions and

with the accuracy metrics of keras library. After that the created model was trained with the

fit_generator() of the keras python library by calling the function. The model fitted with the

parameters such as the batches of the training data, number of epochs, steps per epoch, batches

of validation data, validation steps, callbacks and verbose 2. Finally, the model was evaluated

with evaluate_generator() keras python library and scored an overall accuracy above 98.5% on

the testing data. Figure 10 shows how the model can be trained and its evaluation results.

49 | P a g e

Figure 16: Training and evaluation process

6.5 Evaluation Result

Keras uses batches. That’s why metrics such as precision, recall and f-measure were removed

from keras model [43]. Accuracy classification, which measured automatically, was used to

evaluate the prototype. To train and evaluate the prototype 6,338 Tigrinya sentences (queries)

were prepared by Tigrinya language professionals’. Those sentences have their own

corresponding SQL statements. Therefore, the dataset that holds the Tigrinya plaintexts must

provide as an input to the prototype. The prototype should understand the queries and provides a

response based on the queries. The dataset has splitted to train and testing using percentage split

of skylearn python library and it was provided 80% for training and 20% for testing (validating)

the model. This means that 5070 sentences of the dataset are used for training the model and

1268 sentences are used to test the model. To test the model, the percentage split evaluation

technique was used. Percentage split technique is good to test the model because the evaluation

carried out by the test data that are not included during training. That’s why the percentage split

evaluation technique has been chosen.

During the training of the model the loss, accuracy, validation-loss and validation-accuracy are

calculated automatically at each epoch (iteration).

50 | P a g e

6.5.1 Loss

 The loss function is also called objective function which used to calculate the loss value [41].

The losses on the training and validating data are showed in figure 11. We use the categorical

cross entropy loss function to calculate the loss value.

 𝐿𝑜𝑠𝑠 = − ∑ 𝑇𝑘𝐿𝑜𝑔𝑦𝑘
𝑘
𝑘=1

In the above equation Tk represents the actual target data (SQL statement) and yk represented the

predicted probability of the target. This is calculated after the softmax activation function

transformed the output to a vector. The minus (-) sign is used to improve the performance of the

model.

Figure 17: loss model

Figure 11 shows as the number of epoch is increasing, the loss value converges to zero. As the

first few epochs both lines are on the same line. This means both have same loss value. And in

51 | P a g e

the remaining many epochs the line of the validation data showed above the training data. This

shows the loss value of the validation data is higher than the loss value of the training data.

 6.5.2 Accuracy

The accuracy of the prototype is calculated by using the keras accuracy metrics that uses the

following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑄𝐿

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑄𝐿 𝑎𝑚𝑜𝑢𝑛𝑡
∗ 100%

The accuracy on the training and validation data is showed in figure 12. This shows how the

translation from the input Tigrinya sentences to their corresponding SQL statements is accurate.

If the input Tigrinya sentence is accurately translated to SQL statement, the DBMS can execute

the SQL statement on the database. So, the accuracy of the Tigrinya language interface to

database prototype can depend on the accuracy of the translator model.

Figure 18: Accuracy model

Figure 12 shows as the number of epoch is increasing, the accuracy value converges to one

(increasing). As the first few epochs both lines are on the same line. This means both have same

small accuracy value. And in the remaining many epochs the line of the validation data showed

below the line of the training data. This shows the accuracy value of the validation data is

52 | P a g e

smaller than the accuracy value of the training data. An overall accuracy was scored above

98.5%. This is remarkable compared with the accuracy of the related works on other natural

language interface to database prototypes which were developed by different researchers for

different local languages. However, only the accuracy score was compared nothing else as the

languages have their own syntaxes and semantics.

6.6 Discussion

The Tigrinya language interfaces to database prototype enabled users to write a query that can be

retrieval and manipulation of the contents of the database. As described above a dataset of 6338

sentences was prepared to train and test the model. To translate the Tigrinya sentences to the

corresponding SQL statements, neural machine translation approach was used. This approach

wants a large set of data and a long period of time to train. If the dataset is very large it may take

long time to train. However, the advantage is once trained the model we can use that to predict a

new data which means no need to train again. Again, the model is used to know which word is

less important and which word is more important. This means throwing stopwords of the input

Tigrinya language don’t expected. Here also, word embedding technique was used to represent

the similarity of words. It gives similar value for semantically similar words. Therefore, this

technique helped us to build a low dimensionality model that can preserve previous states. When

the model is trained in large dataset, it can have a good accuracy on predicting the SQL

statements. However, still there are no prepared Tigrinya language datasets for NLIDB. So, the

dataset was prepared from scratch with the help of Tigrinya language professionals’ to train and

test model. Therefore, the accuracy scored is good in the translator model as the dataset is small.

The accuracy of Tigrinya language interface to database prototype is extremely dependent on the

accuracy of the translator model. So, it is possible to conclude that the accuracy of the translator

is equal with the accuracy of the Tigrinya language interface to database prototype. The executer

can execute the predicted (generated) SQL statement and either to display an output to the user

or to make changes to the database based on the queries. Therefore, to accomplish that a new

database has been designed and tested. The prototype is evaluated using keras accuracy metric

automatically and an accuracy of above 98.5% has been scored. This showed the neural machine

translation approach is a good approach on the translation of Tigrinya sentence into their

corresponding SQL sequence by sequence. This accuracy showed the developed prototype is

good when we compare with the related works. If the model will be trained with large dataset, it

will have better performance. This means, the performance of the model is depend on the size of

53 | P a g e

the dataset. And again, 128 latent dimensions and 120 numbers of epochs have been given for

the model as there is no standard, randomly given by try and error. As both the number of latent

dimension and number of epochs are increasing and decreasing together the performance of the

model gets degraded. When the number of latent dimension and the number of epochs are

constant and increased respectively, the performance of the model increases. Therefore, the

performance of the model is depending on the size of the dataset, number of latent dimension

and the number of epochs. To prevent over and under fitting, early stop and model check point

has been used. A val-loss has been taken as a monitor and on its minimum mode. A good or

accurate model has an accuracy of 100% on both training and testing data. Therefore, the

developed model has accuracy nearest to that. The prototype enables Tigrinya users to retrieve

and manipulate the contents of the database without the knowledge of the SQL. This means that

using the Tigrinya language interface. The prototype has been taken the input Tigrinya sentence

and it has been translated into the SQL and further the SQL executed in the database. During this

time the native Tigrinya users did not have any knowledge about the SQL and the database

design. Instead, they have been expected to write Tigrinya text and the text can internally

processed by the system. This means it doesn’t mean that, to use Tigrinya texts instead of SQL

rather the input Tigrinya can be translated to SQL and further the SQL can execute on the

database. The developed prototype really achieved that. To conclude, that the developed

prototype enables users to retrieve and manipulate the contents of the database without the

knowledge of SQL. And additionally, the neural machine translation approach is appropriate on

the translation of the input Tigrinya sentence into SQL.

6.7 Contribution of the study

The general contribution of this study was:

 To enable Tigrinya users to retrieve and manipulate the contents of the database using

Tigrinya plaintexts’.

The specific contribution of this research study was:

 This work contributes a general architecture for Tigrinya language interface to database

(TLIDB) that developed using neural machine translation approach. Therefore, anyone

can use this architecture to work on TLIDB for different domains with different database

schema and the approach makes the natural language interface to database efficient and

robust.

54 | P a g e

 And another, specific contribution is a prepared dataset that has Tigrinya input sentences

with their corresponding SQL statements that would use for Tigrinya language interface

to database. Therefore, anyone can use this dataset to work on Tigrinya language

interface to database.

 After the prediction has been carried out a rule has been bootstrapped to differentiate the

queries either it is retrieval or manipulation

55 | P a g e

CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

Now a day, there are a number of databases that are developed in Tigrinya language contents.

However, accessing of them using Tigrinya natural language plaintext is not easy for ordinary

users. Therefore, this work was proposed Tigrinya language interface to database (TLIDB).

To accomplish this work different literature were reviewed in detail to understand the methods

and techniques that used for developing natural language interface to database. A dataset was

prepared and this contained Tigrinya language sentences with their corresponding SQL

statements. And then TLIDB architecture was designed and developed. For the translation of

Tigrinya plaintexts into SQL statements, a model was created and trained. Finally, the developed

prototype was evaluated on three tables of healthcare domain.

The prototype accepts queries (dataset) and cleans the input Tigrinya sentences. The dataset has

Tigrinya sentences with corresponding SQL statements. And then the dataset is splitting into

two. Namely, training and testing data. 80% of the dataset is used for training and 20% for

testing. Then, the model trained with 80% of the data and tested on the 20% of the dataset. For

the testing dataset the model predicts the SQL statements for the input Tigrinya texts. And then,

the predicted SQL statements executed on the database.

 If the queries are retrieval it provides the information’s from the database in a structured form. If

the queries are manipulation, changes are made in the database. Finally, the model was evaluated

on how it is accurate in the translation or mapping of the input Tigrinya sentences into the

corresponding SQL statements. The accuracy and loss of both the training and testing data was

showed in graph. the queries were grouped into two based on their query type as retrieval and

manipulation. The model was evaluated and an overall accuracy above 98.5% was scored.

Therefore, if this system is fully trained with very large dataset it will be used as an effective

querying interface between Tigrinya language and database. So, users can simply retrieve the

contents of the database; manipulate the contents of the database using their natural language

plaintexts. This does not need learning of the formal language (i.e SQL) syntaxes and semantics.

Also, users do not need training as in form based systems. Again, it is very important for some

56 | P a g e

questions such as negation and conjunctions. Because representing the negations and

conjunctions using Tigrinya language is very easy than the SQL statements and also it is very

difficult to represent in form based system.

7.2 Recommendation

Because of the limitations of time and resources, the features that were not included in our works

either that would improve, the accuracy or the functionality of the system were suggested below

as future works:

 The prototype performed some SQL commands such as the retrieval and manipulation

and then it should include all the SQL commands to fully include the functionality of the

database. For example it should include the creation of tables, altering of tables and

inserting contents into database.

 The prototype also included simple nested SQL statements and then it should include

more complex nested SQL statements. Since, we included a union query that uses the

simple nested select query. So, it should include more complex queries.

 The prototype did not include Tigrinya stemmer, Tigrinya spelling checker, tagger,

parser and etc. And then, if it includes Tigrinya stemmer, Tigrinya spelling checker,

tagger, parser and etc the machine can be improved the understanding of Tigrinya

language.

 As the prototype was developed using neural machine translation approach, it needs a

large dataset. So, the dataset used is too small and it should increase the dataset to have

the prototype better performance.

 The prototype has been developed for a single domain and it does not include auto

completion. And then making domain independent and including the auto completion can

improve the performance of the model.

 Applying attention based recurrent neural network to NLIDB would be improved the

performance of the prototype. As it was developed, with capability to validate the model

using long sequence that are not included during training.

 Therefore, the above stated ideas can be considered as a future work.

57 | P a g e

REFERENCES

1. Gobinda G. Chowdhury, Natural Language Processing, Dept. of Computer and

Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK

2. Tihitina Petros, Modeling and Designing Amharic Query System to Bilingual (English-

Amharic) Databases, department of computer science, Addisababa Univeristy, Ethiopia,

April 2014

3. I. androutso poulos et al, Natural language interfaces to databases – an introduction.

Natural Language Engineering, 1(1):29-81, 1995

4. A.-M. Popescu et al, towards a theory of natural language interfaces to databases, In IUI,

pages 149-157, 2003

5. Y. Li et al, Nalix: an interactive natural language interface for querying xml, In sigmod

Conference, pages 900-902, 2005

6. Khaled Nasser, An Arabic Natural Language Interface System for a Database of the Holy

Quran ,Computer Science Department, Umm AlQura University, (IJARAI) International

Journal of Advanced Research in Artificial Intelligence, Vol. 4, No.7, 2015

7. Ashish Kumar, design and implementation of Hindi language interface to database,

international journal of current engineering and scientific research (ijcesr), ISSN

(PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

8. Smegnew Asemie, Possibility of Amharic Query Processing in Database using Natural

Language Interface, International Journal of Engineering Research & Technology

(IJERT), ISSN: 2278-0181, Vol. 6 Issue 05, May - 2017

9. B.Sujatha et al, A Study of the Various Architectures for Natural Language Interface to

DBs, International Journal of Computer Science and Network (IJCSN),Volume 1, Issue

4, www.ijcsn.org, ISSN 2277-5420, Hyderabad,India, August 2012

10. Ana-Maria Popescu et al, “Towards a Theory of Natural Language Interfaces to

Database”, University of Washington, Computer Science Seattle, WA 98195, USA

11. Deepshikha1 et al., International Journal of Advanced Research in Computer Science and

Software Engineering 5(4), April- 2015, pp. 890-895

12. Joginder et al., Natural Language Interface to Database-An Introduction, Imperial Journal

of Interdisciplinary Research (IJIR), Vol.2, Issue-1 , 2016

13. Suket et al, Punjabi language interface to database: a brief review, Punjab Technical

University, June 2013

58 | P a g e

14. Ashish Kumar et al, Natural Language Interface to Databases: Development Techniques/

Elixir Comp. Sci. & Engg. 58 (2013) 14724-14727

15. Mrs. Neelu Nihalani et al, Natural language Interface to Database using Semantic

Matching, International Journal of Computer Application, Vol. 31, no.11, Oct. 2011

ISSN: 0975 – 8887.

16. Mrs. Neelu Nihalani et al, Natural language Interface for Database: A Brief review,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011

ISSN (Online): 1694-0814.

17. Charniak E. 1993, Statistical Language Learning, MIT Press.

18. Church K., Mercer R., Introduction to the special issue on computational linguistics using

large corpora, Computational Linguistics, 19 (1), pp. 1-24, 1993

19. Abrahams P. et al. The LISP 2 Programming Language and System, in proceedings of

FJCC, No. 29, USA, 1966, pp. 661– 676.

20. Woods, W., An experimental parsing system for transition network grammars. In Natural

language Processing, R. Rustin, Ed., Algorithmic Press, New York. 2, USA, Pages 105 –

147, 1973

21. Suket et al, Punjabi language interface to database: a brief review, Punjab Technical

University, June 2013

22. G. Hendrix, E. et al, Developing a natural language interface to complex data, ACM

Transactions on Database Systems, Volume 3, No. 2, USA, 1978, pp. 105 – 147.

23. D.L. Waltz., An English Language Question Answering System for a Large

Relational Database, Communications of the ACM, 21(7): (July 1978), pp 526– 539

24. Amble et al, A Natural Language Bus Route Oracle. 6th Applied Natural Language

Processing Conference, Seattle, Washington, USA

25. B.J. Grosz et al, TEAM: An Experiment in the Design of Transportable Natural-

Language Interfaces, Artificial Intelligence, 32: (1987), pp 173–243

26. B.J. Grosz, TEAM: A Transportable Natural-Language Interface System, In

Proceedings of the 1st Conference on Applied Natural Language Processing, Santa

Monica, California, (1983), pp 39–45

27. Ana-Maria Popescu et al, Modern Natural Language Interfaces to Databases: Composing

Statistical Parsing with Semantic Tractability, COLING (2004).

59 | P a g e

28. M. R. Joshi et al, Algorithms to Improve Performance of Natural Language Interface,

International Journal of Computer Science and Applications, vol. 5, No. 2, pp. 52-68,

2010.

29. Jen-Yuan Yea et al, Visitor Service Collection and Information Management National

Museum of Natural Science Taichung 40453, Dept. Of Operation, Taiwan one lab

Technology ltd. Taipei city 11494, Taiwan 2015.

30. ዳንኤል ተክሉ (ዶክተር), ዘመናዊ ስዋስው ቋንቋ ትግርኛ , 5ይ ሕታም

31. Teffera, Tsehaye (1979). Reference Grammar of Tigrigna. Washington, Dc, USA:

Georgetown University.

32. Tewelde, T. (2002). A Modern Grammar of Tigrigna. Savonarola, Roma: Tipografia U.

Dettivia G.

33. Suket et al, Punjabi language interface to database: a brief review, Punjab Technical

University, June 2013

34. Niket Choudhary, Sonal Gore, Pattern based approach for Natural Language Interface to

Database, Journal of Engineering Research and Application ISSN : 2248-9622, Vol. 5,

Issue 1(Part 2), January 2015, pp.105-110

35. Kibrom Haftu, Tigrigna question answering system for factoid questions, Thesis,

Computer Science, AAU, 17 JUNE 2016.

36. Shumet Walelign, Designing Natural Language Interface to Database for Afaan Oromoo,

school of computing, Jimma institute of technology, Jimma University, November, 2018

37. https://towardsdatascience.com/word-level-english-to-marthi-neural-machine-translation-

using-seq2seq-encoder-decoder-lstm-model-1a913f2dc4a7,8/25/2019

38. Ruchit Agrawal, towards efficient Neural Machine Translation for Indian Languages,

International Institute of Information Technology, Hyderabad (Deemed to be University)

Hyderabad - 500 032, INDIA, October 2017

39. https://www.quora.com/What-is-word-embedding-in-deep-learning, Jaron Collis, AI

PhD, Upvoted by Trideep Rath, MS Master of Science in Computer Science & Natural

Language Processing, Arizona State University, Updated Apr 20,

2017 ,9/18/2019,1:40PM

40. https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-

stock-prices.html,9/18/2019,2:58PM

41. https://keras.io/losses/,9/19/2019,2:01PM

https://towardsdatascience.com/word-level-english-to-marthi-neural-machine-translation-using-seq2seq-encoder-decoder-lstm-model-1a913f2dc4a7,8/25/2019
https://towardsdatascience.com/word-level-english-to-marthi-neural-machine-translation-using-seq2seq-encoder-decoder-lstm-model-1a913f2dc4a7,8/25/2019
https://www.quora.com/What-is-word-embedding-in-deep-learning
https://www.quora.com/profile/Jaron-Collis
https://www.quora.com/profile/Trideep-Rath
https://www.quora.com/What-is-word-embedding-in-deep-learning/answer/Jaron-Collis
https://www.quora.com/What-is-word-embedding-in-deep-learning/answer/Jaron-Collis
https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html,9/18/2019,2:58PM
https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html,9/18/2019,2:58PM
https://keras.io/losses/,9/19/2019,2:01PM

60 | P a g e

42. Kishan Athrey, Tutorial on Keras, cap 6412 - advanced computer vision, spring 2018

43. https://datascience.stackexchange.com/questions/45165/how-to-get-accuracy-f1-

precision-and-recall-for-a-keras-model,9/24/2019, 10:14 AM

44. Vincent cheung, kevin cannons, an introduction to neural networks, electrical and

computer engineering, university of Manitoba, Canada

45. https://brilliant.org/wiki/recurrent-neural-network,10/11/2019,6:01PM

46. https://medium.com/@divyanshu132/lstm-and-its-equations-

5ee9246d04af,10/12/2019,2:40PM

47. https://www.onlinemathlearning.com/Conditional Probability.html,12/28/2019,3:24PM

48. https://stats.stackexchange.com, 12/28/2019,4:47PM

49. Guesh Amiha Birhanu, Automatic Text Summarizer for Tigrinya Language, school of

information science, college of natural science, AAU, Ethiopia, February 2017.

50. https://www.tutorialspoint.com/natural_language_processing/natural_language_processin

g_syntactic_analysis.htm,1/17/2020,10:45AM

51. Lee M. Christensen, ONYX: A System for the Semantic Analysis of Clinical Text,

Department of Biomedical Informatics, University of Pittsburgh and Utah, Pittsburgh,

PA 15214, USA.

https://datascience.stackexchange.com/questions/45165/how-to-get-accuracy-f1-precision-and-recall-for-a-keras-model,9/24/2019,%2010:14
https://datascience.stackexchange.com/questions/45165/how-to-get-accuracy-f1-precision-and-recall-for-a-keras-model,9/24/2019,%2010:14
https://brilliant.org/wiki/recurrent-neural-network,10/11/2019,6:01PM
https://medium.com/@divyanshu132/lstm-and-its-equations-5ee9246d04af,10/12/2019,2:40PM
https://medium.com/@divyanshu132/lstm-and-its-equations-5ee9246d04af,10/12/2019,2:40PM
https://www.onlinemathlearning.com/Conditional
https://stats.stackexchange.com/

61 | P a g e

APPENDIX:

Appendix A: Approval Paper one

62 | P a g e

Appendix B: Sample DB contents of Diseases table

63 | P a g e

Appendix C: Approval Paper two

64 | P a g e

Appendix D: Sample Dataset

65 | P a g e

Appendix E: Train Model

66 | P a g e

Appendix F: Encoder Model

Appendix G: Decoder Model

67 | P a g e

Appendix H: Summery of the model

