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ABSTRACT

Now a day, different organizations use database with local language written contents to manage
their work. These databases have huge information in an electronic format, and to access and
manipulate these information users expected to know the SQL. Also, using SQL to access and
manipulate the information written in local language is very difficult and tedious. So, instead of
knowing and using of the SQL, it is better to use natural language for users to access and
manipulate the contents of the database. Because using natural language is simple and
comfortable. And also, it is good to form conjunctions and negations query simply. Because of
the simplicity and comfortablity of the natural language for ordinary users many researches have
been carried out on natural language interfaces since 1970. Therefore, that’s why Tigrinya

language interface to database had been proposed.

The database contents have been accessed and manipulated using the developed Tigrinya
language interface to database (TLIDB) prototype without the knowledge of SQL. To carry out
this, first the input Tigrinya sentences have been translated into the corresponding SQL
statements and further the SQL statements were executed in the database. The TLIDB was
designed and developed using a robust and effective approach called neural machine translation.
The encoder-decoder long short term memory was used for the translation of the input Tigrinya
sentence to corresponding SQL statements. In the sequence to sequence problems the encoder-
decoder long short-term memory is a good technique. Also, word embedding technique was used
to estimate the similarity of words and to have a dense representation. This solved the sparse data

problem with the traditional approaches.

The developed TLIDB prototype was evaluated on healthcare database that has patients, diseases
and employees table. The record of diseases was prepared with health professionals. This
prototype handles list query, conditional queries, aggregate functions, complex queries (join,
union), update, delete and etc. To develop the prototype 6338 sentences were prepared with their
corresponding SQL statements. The model was trained with 80% and tested with 20% of the
dataset. This was done using the percentage split evaluation technique. Since, in percentage split
evaluation technique the model has been evaluated with the data that were not included during
the training. After the model had been evaluated, above 98.5% overall accuracy has been scored.

Keywords: TLIDB, Natural Language Interface to Database (NLIDB), Natural Language
Processing

Xll|Page



Chapter One

Introduction
Natural language processing is one of the fields of computer science and this used to study how
machines can process the natural language to perform useful things. Obviously, the machines
required an input and processing to perform a useful task. So, natural language processing is the
studies how the machines can understand the natural language text, speech, image and etc to do
its task. So, to achieve this task many NLP researchers aim to gather knowledge on how human
being understand and use the natural language. So that, researchers should develop appropriate
tools and techniques that can help machines to process the natural languages. Besides this study,
there are also other prominent general purpose NLP applications such as: speech recognition,

information retrieval, information extraction and etc. [1].

Now a day, there is huge information in an electronic format stored in the database. Retrieving
and manipulating on that information are becoming more essential. Database is one of the major
sources of information. To retrieve and making operations on those information, writing SQL
statements is required. Since, computers can understand the SQL statements. However, everyone
is not able to write SQL queries. Because, to write the SQL query, knowing the structure of the
SQL query are required. Instead of writing SQL statements, using natural language to
retrieve, update and delete data from database is simple. This stimulated the development of

Natural Language Interface to Database Systems (NLIDB)[2].

Natural Language Interface to Database Systems is one of the natural language processing
applications and this application contains two components. These are called, linguistic and
database components. The linguistic component is used to translate the natural language queries
to SQL queries and providing the natural language results retrieved from the database. The
database component is used to perform the traditional database management functions [9, 10,
12].

In this study, a Tigrinya language interface to database (TLIDB) system was being proposed for
the native Tigrinya users. This system enables users to retrieving and manipulating the
information’s in database using Tigrinya plaintexts. Since NLIDB does not need to learn the
artificial communication (formal) languages and it required less training to users than other

forms of interfaces [11, 13].
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Sequence to sequence approach was used to develop the TLIDB prototype. Because this
approach is robust and effective in translation problems from one-source to another-source. This
means translating from one domain to another domain. Therefore, the Tigrinya natural Language
interface to database is a translation problem which means a translation of the input Tigrinya
sentences to their corresponding SQL statements. As a result, the neural machine translation
approach was applied. Once the model was created using the neural machine translation
approach, it can be loaded and used without the need to retrain again. Even though, this

approach wants large datasets to train and test the model, it is very robust and effective [8].

It is clear that, words are symbols which represented objects in real world and are putting
together into a sentence that obeys well specified grammar rule [9]. So, stating all words of the
language with their corresponding SQL commands is very difficult. Even though, rule based
approach wants small dataset to test the prototype, it is very difficult on translating the Tigrinya
input sentences to SQL statements. Because, to translate that every words of Tigrinya language
must be written with their corresponding SQL statements. So, this takes time and storage spaces.
Obviously, no one is perfect with one language. So, this is very difficult to write every word of
the Tigrinya language and it is too tedious to use rule based approach for Tigrinya language
interface to database. That’s why the neural machine translation approach has been chosen for

development of Tigrinya language interface to database prototype.

As Tigrinya users are with none SQL backgrounds’, they couldn’t access and manipulate the
contents of the database using SQL. Even, Tigrinya users with SQL backgrounds’ got difficulty
to formulate the complex queries to access the database. For example: when Tigrinya users want
to formulate complex queries like conjunction and negations to access the database, they got
difficulty. Since, it is difficult to formulate that for the users with SQL backgrounds’ and
impossible to formulate that for the users with none SQL backgrounds’. For example as we have
seen in endadenagle hospital in shire indaslasaie town, the employees got difficulty to formulate
queries such as patients below 7 years or patients above 7 years or patients between 7 and 20
years and then like. Also, to formulate queries such as patients those who have only malaria or
patients those who have not malaria and etc. because, they are none SQL backgrounds’.
Therefore, accessing the database using Tigrinya language written form is simple and
comfortable for them. That’s why we proposed the TLIDB that enables them to access the

database using Tigrinya language. This can be accomplished by translating the Tigrinya
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sentences to corresponding SQL statements. The TLIDB is an opportunity for the native Tigrinya
users. Because, they didn’t expect to learn the SQL, they can formulate queries such as
conjunctions’ and negations’, simple and comfortable. The problem of TLIDB is it did not

provide a message, when the input query is an incorrect.

1.1 Statement of the Problem

There are many database applications that have different language contents, have been developed
so far. Obviously, database applications have their own language that enabled users to access and
manipulate the contents. This language is called structured query language (SQL) and this
language has its own structures. So, if users want to access and manipulate the database they
should know and write the syntaxes and semantics of the SQL. Therefore, to access and
manipulate the database users were expected to know or learn SQL. SQL is not simple,
comfortable and flexible for users. Since, in the absence of one element it will not execute. For
example if users missed table name in the SQL statement it doesn’t work. Users don’t have
simple and comfortable alternatives that enabled them to access and manipulate the database.
That’s why users use SQL. So, to access or manipulate the database contents users are expected
to know the database tables, the relationship between the tables, the attributes used with each
table and the actual value stored with in each tables. Therefore, this is very difficult for them.

So, Instead of using SQL statements, users should use their native language to access and
manipulate the database contents. Because, using natural language plaintext is better than SQL.
So, NLIDB enables users to access and manipulate the database using the natural language
plaintexts. Natural language interface has been used for users to write using their native
language. A natural language interface is considered as a main goal for a database query
interface and many natural language interfaces have been developed for this goal [3, 4, 5]. Many
researches were conducted for Amharic, Afaan Oromo, Hindi, English, Arabic and etc. However,
to the best of the researchers’ knowledge, no work is done for Tigrinya that enables users to
query the database using Tigrinya language. Since, a model that developed for other languages
will not be applied to Tigrinya language and this happened because of the syntax and semantics
variation of the languages. Even though, both Amharic and Tigrinya belong to the Semitic
language family, they have different syntaxes and semantics. Therefore, a model that developed

for Amharic language will not be applied to Tigrinya language.
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Hence, Tigrinya users need Tigrinya language interface to database that enabled them to access
and manipulate the database contents. For example if there is a healthcare database that contains

a table called DISEASES(h“99%F) and attributes called symptom(9®Ah+) and type(%£7+).

To get information about all diseases, the user expected to write the following statement.
Select * from 394,

ANeF AT+ ACAPL:, In English this translated as ‘show me, information of diseases’

ANGF MM+ AIPERAL:;

AN hTTYH ADRAALE,

A+ ACAPLE,

To get symptoms of malaria, the user expected to write:

Select AR+ from ™™+ where G L1+=" GN’;

Gh LYt HNY ATR9® 92ANT ACAPL:, In English this translated as’ show me the symptom of

malaria type disease’

TR TR N GRYE TPANFF ATRERAR:
TR TR G GRYE TPANFF ACAPLE,
TR AT G AR TPANFT AD-RAARS,

To update (replace) the name of patients who have the identifier 4 by “Y2A", the user
expected to write:

Update sa™mF set AgR="YLA" where GPAAL="'4";

N34 3 aAAL Hhy haege Ao NYLA +hAAL:, in English this translated as replace the patients
name by “1.2A” who have an identifier of 4.

N9A 3 AAAL Hhy Ad>-ge RA™ Y LA +hA:

Therefore, the TLIDB is good for the Tigrinya users to access and manipulate the database
instead of writing SQL statements. TLIDB is easy to understand and allow users to write in
Tigrinya plaintexts when compared with formulating SQL statements. And also TLIDB doesn’t
require learning of the artificial languages. Again, as described above the natural language query
is too flexible when we compare with the SQL. The prototype developed using neural machine
translation technique and this enabled to handle the different variations of the linguistic queries.
The example below shows the variation of the linguistic queries.

ANGF ATt ACAPL:, (Select * from TR, )
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9Qh 9L2Y5%F HhY ATIIR ACAPL:, (select * from AT+ where GL7+="94N")
In this study, the following research questions have been addressed. Those are:
% How can be generated results from the database using Tigrinya statements without the
knowledge of SQL?
% How can be manipulated the contents of the database with Tigrinya statements without
the knowledge of SQL?
% How the performance of neural machine translation approach for translating Tigrinya
input-sentences to SQL statements can be designed and evaluated?

1.2 Objectives
1.2.1 General objective

The objective of this study is to explore and develop Tigrinya language interface to database
(TLIDB).

1.2.1 Specific objectives
To achieve the general objective, the following specific points have been performed:
% Different literatures were reviewed on NLIDB to understand better the NLIDB area

and the approaches and techniques which are used for NLIDB

R/
L X4

A dataset was prepared

DS

» TLIDB prototype was designed and developed
% Finally, the performance of the prototype was evaluated

1.3 Scope and Limitations

Here, the main emphasis that the research study focused on is described as follows:

0,

% This research has been studied the Select SQL statements and the Data manipulation
statements. The prototype should accept the input queries in Tigrinya language i.e. input
must be Tigrinya plain texts, Tigrinya speech and non Tigrinya languages won’t be
considered.

% A new healthcare database has been designed. This minimizes the efforts and time of the

researchers than using existing database. Because, to use the existing database requires

permission from the managements of the healthcare organization and this takes time and
efforts. And even, after long time process the managements could not be voluntary to

provide the database.
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s Ambiguity issues were not handled completely: because as the language is
morphologically rich it is very difficult to completely avoid ambiguity issues.
% Tigrinya spelling checker, tagger, parser, morphology analyzer and etc were not included.

Since there are no publicly available tools to integrate to the work.

1.4 Methodologies

Generally, in order to accomplish this research, the following methodologies have been used:
1.4.1 Literature Reviews: different kinds of literatures have been reviewed from different
sources on natural language interface to database. This helped to get better understanding and to
have a detailed knowledge on the various approaches and techniques of NLIDB. Also, this
helped us to select an appropriate approach and technique to develop the Tigrinya language
interface to database prototype. And again, this showed us in detail the advantage of natural
language interface to database. Here, based on the popularity and time of development the

history of natural language interface to database was discussed.

1.4.2 Data Collections: a new database was designed to evaluate this prototype. Because,
requesting for an existing system from different organizations has many challenges. As a result,
this wastes much time and efforts. Therefore, instead of requesting to an existing database from
different organization, designing a new healthcare database is simple. That’s why we have
chosen to design a new database. And this healthcare database is created and filled an actual
data. The health professionals’ were requested to fill the database tables with Tigrinya texts. In
Tigrinya language the actual values of the database can be noun or phrase. After, they filled
actual values to the healthcare database, a Tigrinya language professionals’ were also requested
to prepare the corpus (Tigrinya sentences). The corpus (Tigrinya sentences) was prepared to train
and evaluate the model. It is possible to see the evidence in the appendixes’ A and C of this
work.

1.4.3 Development Requirements:

Keras 2.2.4 deep learning python library was used to develop the prototype. This library used
with Python 3.6.x and it uses tensorflow as its backend. Keras is a high level neural network API
which is very useful in fast prototyping and ignores the detail implementations of back
propagation (writing optimization procedures). This library is an open-source and has large
community support. Also, this library supports both types of neural networks (i.e convolutional

and recurrent) [42]. The prototype has been developed using python 3.6 and MySQL. Since,
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Python is easy to use, more powerful for natural language processing, recommended for a single
developer and little number of modules. MySQL is more popular because it is free and open
sources. That’s why those tools have been chosen to use them.

Edraw max is one of the graphical representation tools which used to draw the graphical
representations. It is very easy and simple to draw diagrams in Edraw Max. Therefore, this helps
us to minimize our effort and saves our time.

1.4.4 Neural machine translation approach: This approach uses a deep neural network
to translate from one sequence to another sequence and this makes it a novel approach in
machine translation. To carry out an end to end translation, encoder and decoder components are
required. The former was used to encode the input Tigrinya sentences by reading one word at a
time and storing the hidden state into a vector representation. The decoder was used to visualize
the final hidden states as a representation of the input Tigrinya sentence which summarizes all

the information present in the complete Tigrinya input sentence [38].

1.4.5 Evaluations: the prototype was evaluated automatically using keras accuracy metrics,

on sample healthcare database. Because, this prototype is developed using keras deep learning
python library. In keras the metrics such as precision and recall are removed starting from keras
2.0 and this prototype is developed using keras 2.4. That’s why we use the keras accuracy metric
to evaluate automatically.

h amount of correct predicted SQL 100%
= *
ceuracy Total predicted SQL amount 0

1.5 Research Organization

The thesis report is organized as follows: chapter two introduces an overview of NLIDB and the
different approaches used in NLIDB researches. Moreover, the components of NLIDB and the
different architectures’ are also discussed. Chapter three deals with the word categories, types of
phrases, types of sentences and punction marks of Tigrinya language. Chapter four focused on
the related works of other languages to apply the NLIDB. Chapter five emphasized on the
general design and architecture of TLIDB. Chapter six discusses the developed prototype and it’s
evaluation. Finally, Chapter seven presents the conclusion and recommendation works of this

thesis.
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Chapter Two

Literature Review

2.1 Natural Language Interface to Databases

NLIDB is a system that used to translate a natural language query into SQL, manipulates and
displays a result. NLIDB system is used for end user to query a database using their native
languages and obtained result also in the same language as they have queried [14]. This also
provides comfortablity for SQL professionals. NLIDB is proposed as a solution to the problem
for accessing and manipulating information in a simple way and allowing any type of users to
retrieve information from a database using natural language [15]. In the past many NLIDB
systems have been developed to interact with database in a more convenient and flexible way.
Due to this, NLIDB is still widely used today [16]. Because the NLIDB does not need learn
artificial languages such as SQL, does not need training for non-experienced, good for
formulating negations and conjunctions, it is simple and easy to use[7,11,12,13,14]. Different
NLIDB researches are conducted using different techniques and approaches for different
languages. In this chapter some systems, approaches and techniques of the NLIDB are described

as follows:

2.2 History of NLIDB

Natural Language interfaces had appeared in the late sixties and early seventies. Many of these
systems relied on pattern matching to directly mapping the user input to the database queries
[19]. The usages of the databases were spreading during the 1970’s and then this idea presented
new challenges to the designers. One approach was to use natural language processing, which
allowed the users to interactively query the data stored in database. The challenges of the design
of the NLIDB are the understanding of wide variety of input sequences (length of the input),
word variation (word synonymy), and user input variation (it may be ungrammatical input) and
etc. Different NLIDB systems were developed from time to time. Based on their development

period and popularity (acceptance), some existing systems are described as follows:

2.2.1 Lunar:

This was the first NLIDB and introduced in 1971. This system used to answer questions about

samples of rocks brought back from the moon. Lunar uses one database for chemical analysis

8|Page



and another database for literature references. Lunar was developed using syntax-based
technique.

To process and retrieve the data of this system the geologists should learn the programming skill.
So, this is a waste of time and cost to teach those [21]. Lunar was used augmented transition
network parser and woods’ procedural semantics. Lunar handled 78% of requests without errors
and this performance was quite impressive. However, it had a limitation of linguistic capabilities
[20]. The augmented transition network parsers were not useful and not efficient to extract
information from ungrammatical sentences. Because, they are not handled well and not flexible
[12].

2.2.2 Chat-80

This was developed in 1980’s and took query in English language. This was implemented using
prolog. It was developed using dialog based approach and semantic grammar system. According
to [24], it was “remarkable, efficient and sophisticated system”. It’s database consisted of facts
such as oceans, major seas, major rivers and major cities of 150 countries in the world and

a small set of English language vocabulary that are enough for querying the database.

2.2.3 Team

This was developed in 1987 and took the query in English language. It was developed using
semantic grammar system. It was designed to be easily configurable by database administrators
with no knowledge of NLIDBs [25, 26].

2.3 Components of NLIDB

NLIDB has two components. Namely, Linguistic and database components [9, 10, 11,]. We

described them in detail below:

The former component that means the linguistic component is responsible for processing and
translating natural language input into a formal query (SQL) and generating a natural language

response based on the results from the database search.

The later component that means the database component performs traditional Database
Management system functions. Users can enter a natural language question using the linguistic
component and the prototype translating the natural language statement into their corresponding
SQL statement. Once the entered natural language question translated into a statement of formal

query (SQL) language, the query can be processed by database management system in order to
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produce the required result (output). And then the output passed back to the linguistic
component of the NLIDB.

2.4 Approaches of NLIDB

There are three approaches which are used to develop a natural language interface to database.
Several researchers applied different approaches to deal with natural language interface to
database [2, 16, 9]. Here, below are discussed in detail the three approaches of NLIDB.

2.4.1 Symbolic (Rule Based) Approach

Rule based approach sometimes called ‘if—then’ rules and those, takes actions when a condition
is satisfied. Every natural language has their own grammar rules. To develop a natural language
processing system, understandings of the grammatical rules of the specific language are required.
It is obvious that, one sentence in natural language can be formulated from different words that
obey the specified grammar rules’ of the natural language. The knowledge of language is
explicitly written in rules or other forms of representation. Rules are formed for every level of
linguistic analysis and try to obtain the meaning of the language based on these rules. This
approach is good for under resourced natural languages such as Amharic, Afaan Oromoo,
Tigrinya and etc. Again, in this approach it is possible to set a number of rules, add and remove
rules if necessary. However, it is very difficult and tedious to set all the rules’ (knowledge’s) of

one natural language as even one person is not perfect with one natural language.

2.4.2 Empirical (Corpus Based) Approach

Empirical approaches are based on statistical analysis of the input data (text corpora).
Researchers developed a number of techniques’ to enable the analysis of text corpora [16].
According to the different researches empirical methods are used to develop robust and efficient
natural language processing systems [17, 18] and this is before neural network. However, those
techniques have the problems of sparse data and those needs another technique (smoothing
techniques) to solve the problem.

2.4.3 Connectionist (neural network) Approach

This approach process information in a similar manner as human brain does. This approach
contains different components such as input, neurons, weights, bias, activation functions and etc.
The neurons can be interconnected to each other to process the information. The connection

(relation) is represented the weight (the stored knowledge). This approach is a self-organizing
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and good in dealing with linguistic phenomena that are not well understood. Once we build a
model using this approach, it can predict for a new data input. This approach needs a large
dataset and if once we build the model we cannot restructure the data [8].

2.5 Architectures

This section describes the architectures adopted in the existing natural language interface to
database (NLIDB) systems [2, 8, 9, 14, 16].

2.5.1 Pattern matching systems

Early NLIDBs uses pattern-matching techniques to answer the user’s queries. This works on the
bases that if the input matches one of the patterns then the system is able to build a query for the
database. This technique is simple and easy to implement and no need of elaborate parsing and
interpretation modules. But implementing pattern-matching in shallow would often lead to bad

failures and  ELIZA is an example of these systems. The general architecture of pattern

matching systems of NLIDB is depicted below as follows:

Input .l Pattern | B - -
Sentence | . Matcher /| sSQL 4’{ DB ‘

Figure 1: Pattern matching

For example: pattern “Capital”... <country>
Action: report Capital of row where CONTRY=<country> of each row.
So, if a user asks “what is the capital of Ethiopia?”, the system can reply “Addisababa”. This is

based on matching a pattern.

2.5.2 Syntax-based systems

In this architecture, users query is first parsed and then the parsed tree is directly mapped to
an expression in some database query language. The advantages’ of syntax based technique is
that they provide detailed information about the structure of a sentence. The parse tree contains
a lot of information about the sentence structure. This shows us all the words and their part of
speech and how these words can be grouped together to form a phrases, how these phrases can
be grouped together to form a sentences. Having this information, we can map the semantic

meanings to certain nodes in a parse tree. However, not all nodes should be mapped and some
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nodes have to be left just as they are without adding any meanings. And it is not always clear
which nodes should be mapped and which should not. In addition of the above problems the
same node in different parse trees is not necessarily going to be translated in all the trees. And
another problem is a sentence may have multiple correct parse trees that can be translated to
different queries. These different queries’ may have different results. In syntax based technique
it is difficult to directly map a parse tree into some general database query language, such
as SQL (Structured Query Language). There are some systems that are developed using this
architecture. Systems such as LUNAR and PHILIQA are developed using this architecture.

The general architecture of the syntax based NLIDB is depicted as follows:

Sentence - analyzer) / Tree

Figure 2: Syntax based

It is obvious that a sentence(S) can formulated from a noun phrase (NP) and verb phrase (VP).

For example, “This shop has a candy”. Thus, S=NP+VP

Therefore, from this sentence “this shop” is NP and “has a candy” is VP. Also, the NP has a
determinant (DT) and a noun (N). From the NP the word “this” is DT and the word “shop” is a
N. The same is true; the VP has verb (V) and NP. Thus, “has” is a V and “a candy” is NP.

Again, the NP has a determinant and a noun. Therefore, “a” isa DT and “candy” is a N.

The syntactic analysis of the above sentence is described in figure 3 below[50]:
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NP VP
7\ : NP
e . | V * .
DT N
DT N
* ¥ 1-' Jr !
This shop has a candy

Figure 3: Parse Tree

2.5.3 Semantic Grammar Systems

A semantic grammar system is very similar to the syntax based system and the basic idea of a
semantic grammar system is to simplify the parse tree by removing unnecessary nodes or by
merging some nodes together. Therefore based on this idea the semantic grammar system can
better reflect the semantic representation without having complex parse tree structures.
Therefore, a node in the parse tree in a semantic grammar system does not necessarily relate to
the general syntactic concepts. This technique also provides a special way for assigning a name
to a certain node in the tree and thus resulting in less ambiguity compared to the syntax based
technique. The main weakness of semantic grammar is that it requires some prior- knowledge of
the elements in the domain and this making it difficult to port to other domains. In addition, a
parse tree in a semantic grammar system has specific structures and unique node labels, which
could hardly be useful for other applications. LADDER, CHAT-80 and TEAM are examples of
a system that were developed using this architecture. The general architecture of the semantic

grammar system of the NLIDB is depicted below as follows:
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o Parser e
Input . Parse -
Sentence | ! (Semantic Tree saL 4’{ DB ‘

_analyzer)

Figure 4: Semantic based

For example: “abebe highly suffering from dental infection”. From this sentence when we
analysis the semantic meaning it is about the health condition. And from the health condition
who is affected. And then, what part is affected and finally it’s severity. The semantic analysis of

the above sentence is described in figure 5 below [51]:

Healthcondition
,ff“‘m
“ affected
who part
! ¢ severity
person Dental -.
|I )
|
| high
|
abebe

Figure 5: Semantically parsed Tree

2.5.4 Intermediate Representation Languages

This system was proposed, due to the drawback of syntax based technique that means in syntax
based technique it is difficult to directly translating a sentence into a general database query
languages. In this system the idea is first to map a sentence into a logical query language, and
then further translate this logical query language into a general database query language, such as
SQL. In the intermediate representation language approach, the system can be divided into two

parts. The first part starts from a sentence up to the generation of a logical query and the second
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part starts from a logical query until the generation of a database query. The intermediate logical

query is described in figure 6 below:

Input " Parser ) Parse B Semantic
Sentence . Tree Interpreter

Logical
| Generated [/ DBQuery Query
SQL ' Generator ! Language

Figure 6: Intermediate representation

Generally, the development of natural language interface to database has many problems, such
as robustness, domain-dependence, language-dependence and etc. Many researches were
conducted on natural language interface to database by different researchers for different natural
languages. However, still it is not successful. This is because of the complexities of the natural
languages. As the natural languages have their own syntax and semantics, a model that
developed for one natural language could not applied to another natural language.

There are a number of techniques and approaches that can be used to develop the natural
language interface to database. Those, also have their own weakness and strength as we
described above to develop the natural language interface to database. According to the
literatures’, neural machine translation is good on developing of a natural language interface to

database.
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Chapter Three
Tigrinya Language

3.1 Introduction
There are different Semitic languages families in Ethiopia. Amharic (A99C%), Tigrinya (F9145),

Ge’ez (7AH) and Silt’e (NAms) are examples of them [30]. As described in the above Tigrinya is
one of the Ethio-Semitic languages and it is spoken in Tigray-Ethiopia and Eritrea. It is also the
official language of Tigray regional government of Ethiopia and Eritrea. It is the second largest
of Ethiopian Semitic languages next to Amharic language. According to the traditional work of
[31], Tigrinya grammar has eight word classes. Those are noun, pronoun, conjunction,
preposition, verb, adjective, exclamation mark and adverb. But now according to his recent
work, the word classes of Tigrinya are reduced to five. Those are noun, adjective, verb, adverb
and preposition. Since he did by putting conjunctions and prepositions together in one class and
considers pronouns as subclass of nouns. Morphological analysis of Tigrinya is very complex

because as the language is highly inflected from gender, person and number.

3.2 The Tigrinya Alphabets

Tigrinya language writing system has thirty seven characters and each character’s has seven
forms. Those forms represent the combination of consonants and vowels [32]. The seven orders

represent the different forms of the symbol. There are also characters that are pronounced the
same but symbolically different, called homophones. For example, U and 77, & and 6 are used
interchangeably since there is no clear rule when to use. They have similar sounds. For example

one can write 8Na\(tsebel) or AN4, 64 L(sun) or AAH L. Since, they have same meaning.

3.3 Word Classes

As we described before, Tigrinya words are categorized into five classes [30, 31, 32]. Those are

noun class, adjective class, adverb class, preposition class and verb class.

3.3.1 Noun: nouns are names given for people, places, or other thing. In Tigrinya, noun can be
concrete or abstract. Concrete nouns are used to represent things that can be touched and seen
whereas abstract nouns are used to represent things that can’t touch and seen. For example

UHN®TT (populism), AThATF (animalism), 14 (brotherhood) and etc. are examples of
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the abstract class and N6& L (0x), Adh®, (cow), 79®A (camel) and etc. are examples of
concrete class.

In Tigrinya, noun can be plural and singular. For example N&&£(0x), AT, (cow),
a0 A (camel), 7ZN(forest), +hA, (plant), AFRUC (teacher) and etc. are examples of singular
nouns and AN10-C( oxen), AAAI®(cows), A1 A (camels), A9 (forests), +AAF T (plants),
angny &j(teachers) and etc. are examples of plural nouns.

There are also common nouns which are used to call a group of things that share common
properties. For example A7hA%*(animals), UHN,(population), +AAF*(plants) and etc. are
examples of common nouns. There are also pronouns which used to represent the proper nouns
such as, A1(I), (he), 10 (she), TAFI°| 1A+ (they), TNH| TN R|ThHFN9 (you) and etc.
When we bring to our work noun can represent table names, and actual values. However, the
actual values of the database can be phrases not only noun. Here below, is an example to show us
noun can represent tablenames and actual values. e.g. Ah@™aF (patients), ANLI™ (nurses),
9 (malaria), FAEN, (HIV) and etc.

3.3.2 Adjective: the main advantages of adjective is to give a clear explanation for a noun
and to determine a noun itself. This means that, it can provide us more information about
people, animals or things represented by nouns and pronouns. For example 1k (many),
$ L (red), 1R (tall), m,? (thin) and etc. are examples of adjectives. When we bring to our
work, they used to represent the MHdv(count), “™AhAL(average), HAFA(maximum),
HtA+(minimum) and etc.

3.3.3 Preposition: they use to express relationship among things, person and events. They
show the relationship between the noun or pronoun and other words in a sentence. Those use to
describe the time when something happens or the way in which something is done. These are
commonly followed by a noun phrase or pronoun. For example hAN|§N (to), ™AM,(in),
AOA.(on), Bhé(after), =N (with), Ih Y P+ (because), L LM (or), T TAT*NC (however)
and etc. are examples of prepositions. When we bring to our work, it used to represent 2 £

(or), %= (and), AOA, (greater), et (lower), and etc.

3.3.4 Adverb: adverbs are used to express and modify verbs, adjectives, sentences, clauses

and other adverbs [33]. All verb modifiers are usually express time, manner, and number. For
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example ¢Am,& N (quickly), NLI™N, (deeply), NP+ (carefully) and etc. are examples of
adverbs. When we bring to our work, it is used to represent A9=N.Ch (jointly), A% (orderly)
and etc. Those are used to join and group the queries in our work.

3.3.5 Verb: verb used to describe subject’s action or state within a sentence. Therefore,
without a verb any sentences can’t provide complete information. Most of the time, they are
found at the end of the sentences. For example NA,0- (ate), h28. (went), N*+€ (drank), 1€

(runned), £h,a™ (tired) and etc. are examples of verbs. When we bring to our work it is used to

represent ACh, (select), A& A(delete), +hA(update) and etc.

3.4 Punctuation Marks

Tigrigna has its own punctuation marks which are used to indicate boundaries of a sentence, list
of words and the connection between sentences. There are many punction marks in Tigrinya.
Some of the most commonly used Tigrigna language punctuation marks are listed below [30]:

3.4.1 Preface Colon (:-): colon is a punctuation mark which used to separate a small title

from it’s definition. We can write a small title and then we write a colon. After we written the
colon we can write the definition of the small titles. Most of the time, the definition of the small

title is written inline next to the colon.
3.4.2 Full stop (): full stop is a punctuation mark which used to show the end of a sentence.

Full stop is always written at the end of the sentences. We can use this punctuation mark to

conveying meaningful information.
3.4.3 Colon (Z): colon is a punction mark which used to connect two sentences. Most of the

time we use with complex and compound complex sentences to separate one sentence from

another sentence.
3.4.4 Comma (¥): comma is a punctuation mark which used to separate a list of words from

each other. Always before the end of the last word of the list we must use connectors. We can
use this punction mark to separate a list of words.
3.4.5 Question mark (?): a question mark is a punctuation mark which used to indicate the

end of a question. This must write at the end of the questions. we can use this punction mark to

ask a question for others.
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3.4.6 Exclamation mark (!): exclamation mark is a punction mark which used to show the

end of a forceful speech. This also must write at the end of the forceful speech. We can use this

punctuation mark to express our emotion to others.

3.5 Types of Phrases

A phrase in Tigrinya is a structure which is constructed from one or more words in Tigrinya
language. A phrase in Tigrinya language may or may not convey a meaning. In Tigrinya

language, there are five types of phrases which are described below [30, 31, 32]:
3.5.1 Noun phrases: it consists of noun (e.g.ANN) or a pronoun (% (he), A (she),
Thh+h-9° (you) as a head. For example ANN a2 R k== (abebe came), here, ANN (abebe) is an

example of simple noun phrases.

3.5.2 Verb phrases: it is composed of a verb as a head. For example ANN a2 k= (abebe

came), Here, @™ & k (came) is the verb phrase.

3.5.3 Adjectival Phrases: It is composed of an adjective as head, and other constituents
such as complements, modifiers and specifiers. For example A#9® NNMO, 1PA+(these very
tall) is an example of AdjP, Here, A¥9™(those) are specifiers, ImMda,(very) is a modifier that
used to modify adjective(head) called 1Pht(tall).

3.5.4 Prepositional phrases: it can be constructed from a preposition head and other
constituents such as: nouns, noun phrases, verbs, verb phrases, etc. for example NNAOA, A+ m

(put on top) is an example of P. Here, 1(on) is a preposition which combined with A A, (top).

3.5.5 Adverbial phrases: it can be constructed from one or more adverbs in the language.
For example PAM,% @& k== ([he] came quickly) is an example of Adverbial Phrases, Here,
+Am,4% (quickly) is the head.

3.6 Types of Sentences

In Tigrinya language, a sentence is a group of words which conveys meaningful information.
Tigrinya language has its own forms of sentence construction system and rules. Tigrinya
sentences formulation follows the subject-object-verb (SOV) word orders. For example ANN

A18¢4 NA0-: (abebe ate Injera). Here, ANN(abebe) is the subject (action performer),
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A8 (Injera) is the object (action receiver) and NA.0-(ate) is the verb (action). Tigrinya

language has four major types of sentences and those are described below [30]:

3.6.1 Simple sentences: This type of sentences has a subject and a verb. This type of
sentences has independent clause. For example ANN A7€4 NA.0-:= (abebe ate Injera.). Or

ANN NA,0-= (abebe ate.) are examples of simple sentences.

3.6.2 Compound sentences: This type of sentences has two or more than two independent
clauses which are joined together using connectors” words. These connectors can be alternative
or associative connectors. For example A7+2Ah +9°YC A1+LA T 91LE:: (either you learn
or leave it) is an example of the alternative connecter. This provides a choice either to learn or
leave the education and both alternatives are connected using “OR”. Again, ANN TRhT XM-P7
ARz (abebe is tall and handsome) is an example of associative connecter. The connecters which

are used to connect these sentences are @2 £ (or), - (and), =N (with) and etc.

3.6.3 Complex sentences: This type of sentences contains two or more clauses, and at a
least one clause should be dependent on the other clause. For example A>9®%47+ £hé N+
ACAT LT °NA9°T 6 THT NZAST (we have done our homework, after we were prayed in
church today). In this example the clause € TH§ NAZAhS(we have done our homework) is a
dependent clause over the A>92% 1t £ N+ ACHAT LT 92N Y9G (after we were prayed in

church today) which is an independent clause.

3.6.4 Compound-Complex sentences: this type of sentences consists of at least two
independent and one or more dependent clauses. For example A22 5N 657 h87% AT7HA 9°h
Ne+: A184 NA0 7N Nt F9°UCE &L (when my mother went to the market to buy a cloth,
| ate Injera and | went to school.) . In this example 2.2 9 687 h8% A+7HA 9°N "L+ (when
my mother went to the market to buy a cloth) has two independent clauses. A£.2 51 089 9°N
N2+ (when my mother went to the market) and A28 187 A+7HA 9N L+ (when my mother
went to buy a cloth). The example A7€4 NA.0 §N N+ +92UCE N L:( | ate Injera and | went

to school.) Are the two dependent clause on the independent clause and this has two dependent

clauses. Namely, A78¢ NA.0(1 ate Injera) and N N+ +92UC L L:(1 went to school).
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Generally, this chapter has been discussed about Tigrinya language because it is necessary to the
work. In Tigrinya language interface to database the queries can be simple sentences, compound
sentences, complex and compound-complex sentences. Those types of sentences may have
different words those different words may have different word class such as noun, verb,
adjective, preposition and adverbs etc. Also, Tigrinya words are highly inflected from gender;
number, person and etc. Therefore, that’s why we discussed about Tigrinya language to make
clear for the readers. Anyone can read this to understand about Tigrinya language. However, this
is not enough to understand in detail about the language as Tigrinya is highly inflected and
derivated language. For detail and better knowledge of Tigrinya language anyone can refer to

Tigrinya books.
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CHAPTER FOUR
Related Works

4.1 Introduction

A number of researches have been conducted on the natural language interface to database in
different natural languages such as Amharic, Afaan Oromo, Arabic, Hindi, Punjabi and English.
The researchers was used different techniques as discussed in chapter two, to develop the natural
language interface to database for the above listed natural languages. According to the literature
most of the researchers were focused on information retrieval. In this study, the approach and the
functionality of the database (support of the complex queries of natural language) were
considered as the baseline. This work considered the conducted researches on local languages
and on some international languages. Here, below the different natural language interface to
database of the above listed natural languages were discussed in the next sections:

4.2 Information Retrieval

Information retrieval defined as the process of finding information from a collection of
documents. This aims on retrieving relevant documents that can satisfy the information need of
users. However, still the IR system retrieves relevant and irrelevant documents or information’s
that can satisfy users or not. Therefore, to make the IR system to retrieve an exact answer to the
user query, Question Answering system was good [35]. This system aim’s to provide an exact
answer to the user query. By providing an exact answer to the user query, it makes a user to save
his/her time, effort and other resources. By having of the exact answer within a short time and

less effort a user can satisfied.

There is one attempt on Tigrinya question answering system for factoid questions by [35]. The
researcher developed the prototype using statistical approach on unstructured data. He prepared a
question with it’s corresponding answer and by calculating the similarity between the input
sentence with in the corpus (prepared questions), then he makes to return the answer. He scored
an overall accuracy of 87%. However, in his work updating and deleting of the contents is
impossible. Since, some facts may change from time to time. And also, when the size of corpus
is very large it can take long time as it is developed using the statistical approach. This means
that it may have a high computational time. Also, he considered only factoid questions. He

recommended to develop a question answering system for complex factoid questions and none

22| Page



factoid questions. Again he recommended to develop a standard parallel corpora as the
performance of the question answering system is depend on the parallel corpora. Finally, he
recommended adding Tigrinya WordNet and Tigrinya spelling checker can also improve the

performance.

4.3.1 Text summarization

Retrieving of some relevant part of a document (unstructured text) to the user is called text
summarization. The data with in documents is very large and to read the whole is very difficult.
Because, it takes time. So, instead of reading manually, applying automatic text summarizer is
good [49].

There is one attempt in Tigrinya automatic text summarizer by [49]. The researcher used term
frequency and topic modeling techniques to develop the prototype. The first technique used to
add a sentence that has the most frequent words in the documents to the summary and the second
identifies the topic word and it extracts the sentence that has the topic word from the documents
to add to the summary. The data sources used 30 news articles from Aiga forum and dmtsi
woyane Tigray websites to evaluate the prototype. The performance scored is an f-score of 46%.
The accuracy scored is to lower and the summary result is subjective. The researcher
recommends having a large prepared Tigrinya corpus and good Tigrinya stemmer can improve
the performance of the summarizer. He recommends topic modeling is better than term
frequency on selecting of the important sentences and it will be better if the title is supported by
sub topic of the input document [49].

Generally, question answering system and text summarizations are carried out on unstructured
data (documents). Those systems are impossible to apply to natural language interface to
database. Because, natural language interface has their own functionality and it is one application
area of NLP. For example: updating and deleting of information as information can modify from
time to time. In general, it has it’s own syntax. Therefore, natural language interface is required

to enable users to access and manipulate the database contents using native language.

4.4 NLIDB for different languages

4.4.1 Amharic Language
Modeling and Designing Amharic Query System to Bilingual (English-Amharic) Databases

has been developed by [2]. In her work she considered the natural language preprocessors, query
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mapper, query generator and query executers. She used a dictionary to develop the system. She
evaluated the system from query success rate and user satisfaction and scored 76.5% and 65%
respectively. She recommends the database to be extended to include more tables and attributes,
extended the system to accept more complex query and the where clause to have Amharic

values.

“Possibility of Amharic Query Processing in Database using Natural Language Interface”
has been developed by [8]. He developed an algorithm to efficiently map Amharic language into
Structured Query Language (SQL). He divides the algorithm into four parts an algorithm to
handle query selection, conditional query, aggregation and grouping and ordering queries. He
used rule based approach to develop the system. He has implemented the algorithm using java
and tasted on Human Resource Management (HRM) database which  containing Employee,
Department and Employee on education tables. His experimental result shows that 91% overall

accuracy. He recommends extending his work with temporal queries.

4.4.2 Afaan Oromo Language

“Designing Natural Language Interface to Database for Afaan Oromo” has been developed
by [36]. His prototype accepts the Afaan Oromoo language plaintexts and translates into the
corresponding SQL statements to further execute and retrieve the data stored in the database. He
used the pattern-matching techniques and rule based approach to develop the system. He
considered the preprocessing, spelling checker and auto-correction, checking word similarity,
database element extraction and etc. His system handled a single query, list query, multiple
conditional queries, aggregate and join query. He evaluated his system using 100 Afaan Oromoo
queries on student database and scored an average performance of 92.3%. Finally, he
recommended that applying neural network, machine learning and parsing techniques can
improve the success rate of natural language interface to database.

4.4.3 Arabic language

An Arabic Natural Language Interface System for a Database of the Holy Quran has been
developed by [6]. In his work he translated the natural Arabic requests such as question or
imperative sentences into SQL statements (commands) to retrieve answers from a Quran DB. He
performed parsing and little morphological processes according to a sub set of Arabic context-

free grammar rules to work as an interface layer between users and database. He recommends
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the system to be extended to include more tables and attributes and to accept more complex

query.

4.4.4 Hindi Language

A ‘design and implementation of Hindi language interface to database’ has been developed
by [7]. In his work he accepted the query in Hindi, tokenized them into tokens and mapped the
Hindi words with their corresponding English words with the help of system dictionary
maintained. After mapping the sentences, the sentence has been checked whether it is data
retrieval, update, insert or delete type of sentences. This was done by analyzing the input Hindi
sentence. After analyzing, the input Hindi sentence, table names, column names, condition and
operators are searched in the dictionary. After mapping, SQL query is generated and executed on
database to display the result set to the user.

4.4.5 Punjabi Language

A ‘Punjabi language interface to database’ has been developed by [33]. He used agriculture
domain which has farmer, crop and sale tables. This accepts query in Punjabi language that is
translated into SQL query, by mapping the Punjabi language words, with their
corresponding English words with the help of database maintained. Then, the query is
executed. The architecture of this system has three phases. Tokenizing the query, Mapping and
formation of SQL query and  Execution of query. The researcher recommended that the
existing system can be extended to : execute Queries that involves joining of tables and
handle various clauses , made domain independent, handle more complex queries , Develop an
interface for administrator and accepts queries only in a particular format. So to make the
system to accept all the queries, they recommended to use Punjabi parser. They have been
tested for three types of queries: Queries for selection of all the columns , Queries for
selection of certain columns and Queries for selection of certain rows from certain
columns.

4.4.6 English Language

A ‘Pattern based Natural Language Interface to Database’ has been developed by [34]. They
developed a system for converting English language query into SQL query. They defined
patterns for simple query, aggregate function, relational operator, short-circuit logical
operator and join. They categorized the patterns into valid and invalid. Valid patterns are

directly used to translate natural language query into SQL query whereas an invalid pattern
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assisted the query authoring service in generating options for user so that the query could be
framed correctly. Their system taken an English language query as input recognizes pattern in
the query, selects one of the above mentioned features of SQL based on the pattern, prepared an
SQL statement, fired it on database and displayed the result. They have been recommended that
their interface to include or aware of other features such as clauses (group by and order by),
keywords used in predicate like BETWEEN, NOT IN, IN etc.,, nested query, varieties of

join, union and much more.

Generally, the related works were developed using non robust approaches and their accuracy
were calculated manually. Therefore, to write all the grammar rules of one natural language and
to carry out the calculation, it was very tedious and not effective. Again, the queries of the
natural language that enabled users to access the database were also limited as it did not include
the functionality of the database. One natural language sentence can be described in different
forms that have same meaning. So, stating all the rules for one natural language is very difficult.
Again, those works were developed for non-Tigrinya language users. Therefore, this study
overcomes those problems by extending the functionality of the database and by using the robust
approach. This study considers complex queries and manipulation queries to enable the user to
access and manipulate the database. Again, this study developed for Tigrinya language users. As
this study was carried out using the existing tools and approaches, no algorithm was contributed
rather; it solved the existing problem using existing tools and approaches. Therefore, the general
contribution of this study was to enable Tigrinya language users to access and manipulate the
database contents using Tigrinya plaintexts. Generally, below table showed the summary of the
related works on NLIDB.

Table 1: Summary of related works

Author | Language | Approach/ | Evaluation | Accuracy | Domain | Recommendation

technique
Tihitina | Amharic | Rule based | User 65% and | Telecom | Include more
satisfaction | 76.5% tables,  complex
and query queries and where
success clause to include
rate

Ambharic values
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Smegne | Amharic | Rule based | query 91% HRM include
w success manipulation and
rate temporal queries
Shumet | Afaan Rule based | query 92.3% Student | Applying parsing,
Oromoo success Machine learning
rate and neural network
Khaled | Arabic Parser query Quran Include more
Nasser success DB tables, attributes,
rate and more complex
queries
Ashish Hindi Rule based | query Indepen
Kumar success dent
rate
Suket et | Punjabi Rule based | query agricultu | Include clause(join
al success re and union),
rate Complex queries
and parser
Niket English Rule based | Semantic Library | Include clause(join
Choudha test(query and group by) and
ry success Predicates(IN,
rate) BETWEEN, NOT)
and complex
queries
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Chapter Five
Designing and Developing of TLIDB

5.1 Introduction

A new healthcare database was designed to develop the Tigrinya language interface to database.
Because, this can minimize the time and efforts of the researcher and also it can improve the
knowledge of the researcher on database design. To use existing database permission is required
from managements. So, to have permission it has many challenges and takes time. And even,
after long time process the managements could not be voluntary to provide the database. That’s

why a new database is designed.

In designing of Tigrinya language interface to database prototype, the name of the database,
tables, attributes and actual values are all in Tigrinya plaintexts. To translate (convert) the
Tigrinya plaintexts into SQL statements, neural machine translation has been used. The
prototype accepts the queries in Tigrinya plaintexts and translates it to SQL statements that can
be execute in database either to display or to manipulate the contents of the database based on
the Tigrinya input queries. The prototype translates the Tigrinya plaintexts into SQL statements
sequence by sequence using the encoder-decoder model. The encoder accepts the Tigrinya
plaintexts (input data) and converts into a vector of floats. The decoder accepts both the input

vector and the target vector and converts into vectors of floats.

As there is no prepared Tigrinya dataset for Tigrinya natural language interface to database, a
dataset was prepared from scratch by Tigrinya language professionals’. The dataset was
prepared, first a sample database that has three tables with four or seven attribute were designed.
After that, the healthcare database was created and filled records with health professionals. Then
the Tigrinya sentence was prepared based on those tables, attributes and values with the help of

Tigrinya language professionals and with a corresponding SQL.

To design and develop the Tigrinya language interface to database, a healthcare database that has
three tables each with four or seven attributes were considered. Here below, are described sample

table names in table 1 as follows:

28| Page



Table 2: Sample table Names

Tablenames in Tigrinya

Their meaning in English

a9 Patients
haqani Diseases
Aghtd employees

The table holds the table names with their corresponding meaning in English. Again, here there
is a table named table 2 that holds the sample attributes of the employees and patients table

names. Most of the attributes are common for the two table names.

Table 3: Samples attribute names of patients and employees

Attribute names in | Meaning in | data types
Tigrinya English

BAAL Id Int

Ago Name Nvarchar
AIRAN Fname Nvarchar
4 e an Age Int

e Sex Nvarchar
Q.e,5F Type Nvarchar
LqPH/aDY P/AGAT Salary Double
This table contains the sample attributes names with their meaning in English words and their
data types.

5.2 Types of Queries

Users may formulate different queries using the above information stored in the tables to query
the database. Generally, the types of queries are grouped into two. Namely, retrieval query and
manipulation query. One may ask a simple query and others may ask a complex query. So in this
work, some of the queries that can be formulated by users with their corresponding SQL

statements are discussed.

% ANSIF hT>MF RCAPL: (select * from Aae-a9;)
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This is a simple query that shows all the details’ of the patients. This is the retrieval query.
A} (patients) is a table name and ACA®RL(select) is the retrieval and ANé&J-(information)

are stop words. A user can write this statement to view all the information of patients.

% A9® ha-aqt RCAPL: (select g™ from ha>a9t;)
This is also a simple query that shows the name of all patients. fig® (name) is the attribute name,
™} (patients) is a table name and ACAP%(select) is the retrieval. A user can write this

statement to view the name of all patients.

% AR haaqit gn KCAPL(select fig® from ha™a%F where G L7F=" GN°)
This query is more complex than the former queries. From this statement fig®(name) is an
attribute, sha™a9%(patients) is table name, 9N (malaria) is an actual value, ACAPL(select) are a

retrieval. A user can write this statement to view the name of all patients of malaria.

< 9h ML eM ARN AYeCA GLTTFT  hI™amF B9 ACAPL: (select g™ from ha>ayt
where 4 27F=" 90’ or 4L1F=" AGPN AY$CA ;)

This query is more complex than all the former queries. From this statement, %f(malaria) and

AgeN aoy$CA (tuberculosis) are actual values, @2 L (or) is a connecter, %&7%(type) is an

attribute name that has two values, ha™mF(patients) is a table name, fig®(name) is also an

attribute name and ACAP1L(select) is a retrieval query. The two actual values are connected using

the word @2 £(OR). A user can write this statement to view the name of all patients’ of

malaria or tv.

% 9™ oty ARGt AMMET APPNC  ACAPL:  (Select ho™>aF fHige,
AM®F+ Aht  from Aot JOIN A+ ON 4>t 9e%
=h™M T 9 LTF;)

This query is also more complex than the former queries. From this statement fig®(name) and
o AhJT(symptoms) are an attributes of the @™+ (patients) and /™ +(diseases) table
names. &R9°NC(JOIN) is the word that we use to merge the contents from both tables.
ACAPL(Select) is shows as a retrieval query. The character ‘%" at the end of the table names
shows us to retrieve from both.

All the above listed queries are an example of retrieval query.

Others may formulate a manipulation queries as follows:
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< NGA 4 AAL HDT ALh+E RO NYLA BAFPANA NIC™ME +hA/+hRAL: (update
Néht§ 3T set A= YLA’, AIPAN=" 1L L’ where TPAAL =4’ ;).

In this statement, N%A(owner) is a stopword, ®AAL(id) is an attribute name,4 is an actual value
of id, Hhi(equal) is an equal operator, Né-s+&(employee) is not a real table name but it must be
changed to the table name A& +& F+(employees) because the table name in database is
Néht+8 FF(employees), fid™(name of) is not a real attribute name but shows the name of the owner
and it must translate to ig®(name), Y2A(Haile) and s1¢™2(Girmay) are actual values, N(by) is
a prefix in the two actual values, ig® AN A( name of father’s) are not also areal attribute name
but shows the father’s name of owner and must translate to TA9®AN(father’s name) and
+hA/+hhAL(update) shows manipulation query.
Users may write this to update the name and father’s name of a unique person based on his/her
id. This is an example of the manipulation type query. This is the simple query in manipulation
because the conditional clause has one attribute with it’s value. When it has two or more than
two it increases it’s complexities. Also, the attributes used for the update clause is two. This
makes also simple query. When it has three or more than three attributes, it increase it’s
complexities. Again, when it has one attribute for update and one attribute with it’s value for

conditional clause, it is the simplest query in manipulation.

% N%A 4 @AAL  Hh1 He™9® xm&hz (DELETE FROM ma™~mF WHERE
mAAL="4";)

From this query the word N%A (owner) shows the owner of the value, 4(four) is the actual value
of the attribute ™AA £ (id) which used to identify the required one. Hh%(has) is an operator that
indicates the patient has the 4 @®AAL (id). Aa™9™ (patient) which is a singular name of the

table name patients. A& A(DELETE) shows manipulation query.

5.3 Neural Network

Neural network have input, hidden and output layers. The input layer is used to feed the input
value to the network and the output layer is used to provide the output. The hidden layers are
used to provide the discrimination necessary to be able to separate our training data. The output
of a neuron is function of the weighted sum of the inputs plus the bias. The function of the entire

neural network is simply the computation of the outputs of all the neuron in the neural network.
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An activation function is applied to the weighted sum of the inputs of neurons to produce the

output. The advantage of neural network is, it has the ability to learn and generalize [44].
n
Output of NN = Z XW;+b
i=1

In the above formula Xi represents the input vectors, Wi the weight vectors and b represents bias.

5.3.1 Recurrent Neural Network
This is a type of artificial neural network designed to recognize patterns in sequences of data.
And this is the most powerful and useful type of neural network. Figure 1 shows us the

architecture of the recurrent neural network.

Figure 7: RNN Architecture

In recurrent neural network information are feeds in loop. This type of neural network takes as
its input just the current input example it see and also what it has perceived previously in time.
Therefore, the decision a recurrent neural network reached at time step t-1 affects the decision it

will reach one moment later at time step t.

The type of recurrent neural network that applied to develop the prototype is called LSTM. The
LSTM have both hidden state and cell state. LSTM used cell state to store and update the
information in LSTM. Vanilla has only hidden state and it used the hidden state to store the
information. In along sequence to sequence prediction LSTM has higher performance than

vanilla [48]. This mean in long sequence prediction LSTM is better than vanilla.
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The LSTM has three gates called input gate, forget gate and output gate. The following equation
shows us how the LSTM gates work [46].

input gate = sigmoid(W;[h;_1, x; | + bi)
forget gate = sigmoid(Wy[h,_1,x; | + bf)
output gate = sigmoid(W,[h;_1,x; | + bo)

Wy represents the weights of each gate, ht1 represents the vector of the hidden states at t-1, Xt
represents the input vectors at time t and by represents the bias at each gates. Sigmoid function is
an activation function that used to show either the gates allows everything to pass through it or to
block. The output of the sigmoid is 0 or 1. 0 means the gate blocks everything and 1 means the

gate allows everything to pass through it.

5.4 The General Architecture of TLIDB

The system was trained by fetching input data from a file that contains Tigrinya sentences with
the corresponding SQL statements which was annotated by Tigrinya and SQL professionals. The
input data contains both Tigrinya sentences and SQL statements. This input data was splitted
into input Tigrinya sentences and SQL statements (target data). After that, the encoder-decoder
model was used to translate from input-Tigrinya sentences to their corresponding SQL
statements. The input Tigrinya sentences are translated to their corresponding SQL statements
sequence-by-sequence. Because, the natural language interface to database is a translation
problem, from input Tigrinya sentences to SQL statements. Therefore, the encoder-decoder

model is good in sequence-to-sequence translation problems [37].

This model has three layers. Namely input layer, hidden layer and output layer. There is an
interconnection between each layer. In this work the output layer uses an activation function
called ‘softmax’ to display the outputs. The softmax activation function is used to classify
multiple inputs into multiple outputs. The following formula shows how the probability

distribution can be calculated using the softmax activation function.

el

P=<n

i
i=1€
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In the above formula e represents mathematical constant, i represents inputs and n represents
the vocabulary size. Based on these values the SQL statement (sequences) can be predicted and
for the translated (predicted) SQL statements by the encoder-decoder model, we have executed
on mysql database. Finally, when the predicted query is retrieval, an output can display to the

user and when the query is manipulation, changes can be made in the database contents.

The general architecture of Tigrinya language interface can be applied in any domain. Here,
figure 2 shows the system architecture starting from the dataset upto the final result which
displayed or manipulated from/in the database. The functions of each component are also
described as follows:

|

Tokenization — —

+
Cleaning

i

— Y - -
L ~ [ Corpus 1

Preparing Dictionaries and
calculating dimensions

Encoder-Decoder
Model

| Embedding Layer |

v
| LSTM-layer |
1

|  Dense-Layer |

v — _
Query Execution [ Database

— _

Y

Displaying resuits |

Figure 8: General Architecture

5.4.1 Corpus: corpus is a collection of texts. This corpus has a Tigrinya sentences with their
corresponding SQL statements separated by the word <BEGIN>. The Tigrinya sentences are the
input data and the SQL statements are the output (target) data. This corpus holds both the
training and testing data of our model. The input Tigrinya sentences are prepared by Tigrinya

language professionals’.
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5.4.2 Input Query:

The input is Tigrinya plaintext that is used to access and manipulate the contents of the database.

In our work, this is used to accept a retrieval and manipulation queries.

5.4.2 Tokenizer:

Tokenizer is uses to split the input Tigrinya statement into character and words. To split into
words the tokenizer uses spaces. We have been applied splitting into words after cleaning and
into character before cleaning. Therefore, we did not consider that to include in the architecture
below cleaning. for example in the above Tigrinya statement [J[1[J(owner) is a none relevant

word, (10000 (id) and [J1(name) are attribute names, 6 and (1)1 (teklay) are an actual
values [J is a prefix, [J[J[J(=) is an operator @™ 9™ (patient) represents a table name but not a

real table name which is found in the database.

5.4.3 Cleaning:

Here, data cleaning is carried out. This means that the punction marks in input Tigrinya
sentences must be removed to split the sentences into words. After this, tokenization of the input

Tigrinya sentence can carry out.

5.4.4 Preparation of Dictionaries and specifying of the dimensions values:

On this vocabularies of both the source and the target have been prepared. And then, four
dictionaries have been prepared for both input Tigrinya sentence and the SQL statements. The
two dictionaries have been prepared for the input Tigrinya sentence which has words and their
indexes’ and vice versa. The two dictionaries also have been prepared for the target statements
which has words and their indexes and vice versa. Here also, the dimensions for the encoder and
decoder architecture have been specified and calculated from the given input data (corpus). And

also, generating of the data in batch has been carried out.

5.4.5 Encoder-Decoder Model

5.4.5.1Word representation:
Here, below word representation techniques have been discussed as follows:

5.4.5.1.1 One-hot encoding: this encoding mechanism is used to encode the words into a one-
hot vector. The one hot vector represents words in size equal with the vocabulary size of the

input data and it is a sequence of one and zero. If the word is available it assigns one, if not it
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assigns all sequences zero. Those vectors are high dimensional and sparse. Therefore, this is not

used to create a low dimensionality model.

5.4.5.1.2 Word embedding: is also used to convert words into their corresponding vectors.
Those techniques are used to create a low dimensionality model. Since, they are a low
dimensional and dense. Low dimensional means it is possible to specify the dimensionality size
and it is not the vocabulary size as in one-hot vectors. And dense means all the components
(features) of the vectors contains none zero numbers unlike one-hot vectors. For example

word2vector is used to convert input words into vectors (sequence of real numbers).

5.4.5.1.3 Word embedding layer: Word embedding layer of keras python library was used to
convert words into their corresponding vector representations [39]. Word embedding layer was
developed as part of deep learning in keras. This generates a random value to the first and
iteratively learns the representation of all words. This layer is used to build a low dimensionality
model and a dense representation like the embedding techniques such as word2vector. Therefore,
this layer was used to translate (embed) the dataset to the corresponding vector representations
and this vector representation is fed to the LSTM layer. That’s why we were used this layer to

represent words.

5.4.5.2 LSTM Model:
This model is a seq2seq recurrent neural network model which uses to translate one sequence to

another sequence. In old type of recurrent neural network, it was difficult to translate a variable
length input into a variable length output. However, with the use of recurrent neural network
which is the LSTM, the problem is solved. The LSTM has the capability to store past
information and this makes it a very powerful in sequence prediction problems [40]. As
described in the above, the translation of input Tigrinya sentences to their corresponding SQL
statements is a sequence problem. Therefore, the LSTM model is used to translate the input

Tigrinya sentences into their corresponding SQL statements.

5.4.5.2.1 Encoder LSTM
The encoder LSTM reads Tigrinya input sequences and summarizes information as hidden state

and cell state vectors called internal state vectors. The encoder reads Tigrinya input sentence
one word after the other from the sequences. For example in the following Tigrinya input

sentences: A9 Ao™amF on KCAPL=.  This sentence has a sequence of 4 words. First the
encoder reads the word fige, then fig® haeaqF, then A9™ a3+ on and finally reads fige
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™t gn RCAPL. This has four (4) time steps (sequence length) to read the complete
Tigrinya input sentence. As described in figure 3 the encoder reads all sequence one after the
other until all the sequences is read. If the Tigrinya input data has a sequence of length n, the
encoder starts reading from zero up to n. Zero is the initial-state that the encoder starts reading
and n is the final step of the sequence.

vectors are: HoCo, H1Cy, H2Co,...... ... HnCh.

The outputs (predicted) of the encoder’s are: Y1, Y2,....... Yn. and we should discard them.

From the above example of Tigrinya sentence:

The inputs to the encoder are: X1=Ag®, Xo-s @™, X3-%40, X,-ACAPL.

The encoder internal state vectors are: HoCo=0, HiCi-19®, H.C,-ig® am-amit, HyCz=hgo
o oh H,Cu-A9® ha™aqF G0 ACAPY.

The encoder sets the initial vectors to zero (i.e HoCo is set to zero as the encoder has not started
to read the input) and the final state vector(thought vector) is the final state that

encode(summarize) the complete input sequences[37].

v, 2 '
A

HoCTo— Haq &g HzCo» . . HAC o

— .
|

initial states
initialized to T
Fero |

|
T Final states
encode entire
P iNpLt seqguence
n (words)

-

Figure 9: Encoder

From the above diagram the variables shows us: Xn=represents input data

HnCn=represents state vectors (hidden state and cell state respectively)

Yn=represents output (predictions) of the encoder at each time step (iteration)

The role of the internal states at each time step is to remember what the LSTM has learned (read)
till the current time step. For example the two vectors H>C, will remember what the LSTM
network has learned till the time step two (2). At time step two the LSTM has learned fige
Aot Generally, the summary of information till time step two is stored in vectors Hz and

Co. In the above input Tigrinya sentence the final state is HsC4. This contains the summary of
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the complete (entire) input sentences which is ig® ha>aF qn KCAPL. This step are also called

last time step and also called “thought vectors” as it summarizes the input sequences as

vectors. “The size of the internal state vectors (both hidden state and cell state) is equal to the

number of neurons used in LSTM cell”[37].

Yn is a probability distribution over the entire vocabulary of Tigrinya input sentence which
generated by softmax activation function. So, every Yn is a vector of size input Tigrinya
sentences words (all-Tigrinya words or vocabulary-size) which representing probability
distribution. The output of the encoder (Yi) must be discarded as we have started to generate the

output (predict), when the entire Tigrinya input sentence read.

Generally, the input Tigrinya sentence (sequence) was read word by word and preserves the
internal states of the LSTM network generated after the last time step of HiCh. The two vectors
(states) called HnCy are called as the encoding of the input Tigrinya sequence, as they encode
(summarize) the entire input in a vector form. Outputs of the encoder (Yn) are discarded at each
time step because we start to generate the output once the entire input Tigrinya sequence
(complete sentence) read. During the training and inference phases, the encoder LSTM has same
role.

5.4.5.2.2 Decoder LSTM
The training and inference phases of the Decoder LSTM has described below.

5.4.5.2.2.1 Training mode

The goal of the training phase is to train the decoder to display the target sentence of the
corresponding input Tigrinya sentence. In the target sequence two tokens must be added one for
starting of the sequence and one for ending of the sequence. Adding ‘<BEGIN>’ as the starting
token and ‘<END>’ as ending token in the target (output) sequence (simply SQL statement). For
example <BEGIN> SELECT fig® FROM o>ait WHERE 4 £7%="9n’; <END>

The above SQL statement is one of the output sequences (target sequence) of the input sequence
“fge haa9t g h KCAPY ="

Figure 4 shows us how a decoder LSTM training on[37].
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the previous time step.

Figure 10: Training mode of decoder
From the above output sequence example and the diagram:

The start token is;: <BEGIN>
Y1=SELECT, Y2=f19®, Y3=FROM, Ys=rha™m% Ys=Where, Yo=4LT7F="aN’;
The final token: Y7=<END>

The initial states of the decoder (HoCo) are set to the final states of the encoder. Based on the
information summarized by the encoder the decoder learns (trains) to generate the output
sequence. The start token (<BEGIN>) given in the first time step makes the decoder to start
generating the next actual word of the SQL statement (output sequence). Next, at each time step
the actual output word are fed as an input to the decoder until the last word of SQL statement.
This means that the input at every time step is provided as an actual output not predicted output
from the previous time step. In the last time step the decoder trains to predict the “<END>”
token to indicate the end of the SQL statement. The decoder conditioned to predict the next word
in a given sequence (context, which is the thought vector). This calculates the probability of the
next word using the following formula [47]:

p(x and y)

p(y/x) = o

In the above formula y represents the next word and x represents the previous words (thought

vectors). At the last, from the predicted outputs of each time step the loss is calculated. And then,

39| Page



the errors are back propagated through time in order to update the parameters (weights) of the

network.

5.4.5.2.2.2 Inference mode
As described above the encoder LSTM plays the same role of reading input Tigrinya sentence
and generating the final states Hn,Cn. And then, having these final states the decoder has to

predict the entire SQL statement [37]. For example

Input Tigrinya sentence: A9™ ha™aqF G RCAPYL:
Output SQL statement: SELECT fig® FROM o9 WHERE 4 271F=" af’;
Step 1: encode input Tigrinya sentence into thought vectors

Discard outpuis
- final states
| ({thought vectors)

Encoder LSTM
5} o — | , - >
H'IIC' with time step= 4 HnCn

-
initial vectors T
(Zero vectors) TAID Jhoeaq i oyt R CRP Y

Figure 11: Encoding input sequence into final state (thought vectors)

Step 2: Start generating the SQL statement (target sequence) in a loop word by word

The initial states of the decoder must set to the final states of the encoder. Then the decoder takes
input word by word. The first input token is fed to the decoder at a time. The states at that time
is fed as an input states to the next time and the output at that time is also fed as an input in the
next time until it gets the word <END>. Here, below is showed the decoder process at time one
and last time.

For example at time step (t) =1

The states at t=1(H1,C1) will fed as input states at t=2 and same is true the output at
t=1(SELECT) is also fed as input at t=2.
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Figure 12: Decoder Lstm at t=1

At time step (t)=7

expected output at t=7,
indicates STOF point

=<EMND >
-

states at t=7_ discard these
states

Decoder LSTM

Ha?a = 7

e

HrCr

- T
states from t=6
e F=" %nN’;

ol

Input at t=7

Figure 13: Decoder Lstm at t=7

The input at t=7(%2'1F=" a4n’;) is the predicted output from t=6.

The predicted output at t=7 which is (KEND>) indicates a stopping point and the states at
t=7(H7,C7) must discarded because we stop. Then finally it generates “SELECT fig® FROM

Mha-aq} WHERE @25%=" a0’ .

5.4.6 Query executer: this used to execute the generated (predicted) SQL statements on the

database. As described in section of the query types, the queries can be retrieval or manipulation
of contents in the database. Therefore, this used to execute for all types of sql queries generated

from Tigrinya plaintexts.
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5.3.7 Result displayer and manipulator: this used to display the fetched result to the

user based on the matching of the retrieval queries. If the queries are retrieval this used to display
the actual contents. Also, if the queries are manipulation this makes changes in the database and

nothing can display.
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CHAPTER 6

Experiment

6.1 General pipelines

The following pipelines were followed to carry out the experiment:

First, a dataset was prepared with the help of linguistic professional’s and health professionals.
Second, the functional RNN model was defined, because this model is used in multiple inputs
and multiple outputs. Third, the rmsprob (Root Mean Square Propagation) optimizer was
selected because it adjusts the learning rate automatically and the learning rate of this optimizer
is any real number greater than or equal to zero. This optimizer is faster and well known. Fourth,
the categorical cross-entropy loss function was selected to estimate the loss (error) of the model
during training. Categorical cross-entropy loss function is used to estimate the loss during multi-
class classification. Finally, we trained and evaluated the model.

6.2 Database Design

A sample database was designed in healthcare system. In the below persistent diagram of the
healthcare database we use English language to write the name of the table and attributes for the
sake of clarity but their real meaning which are written in the database is described keys on table
8. The edraw max software does not accept the Tigrinya language plaintexts. That’s why we use

English to draw the persistent diagram.

Employees-Patients |

Patients | -
P
T . emp-pat-idint pk ST
idin tient-idtint fk
name:varchar(30) p:mp idint fk \\\ Employees
fname:varchar(30) = J —~ idint pk
age:int 3

name:varchar(30)

sex:varchar(10) fname:varchar(30)

date:varchar(30)

- Patients-Diseases age:int
type:varchar(50) fk — sex:varchar(10)
}d:ln! pk date:varchar(30)
patient-id-int fk salary:double

dis-type:varchar(50) &

< |
Diseases | /

type:varchar(50) pk
symptom:varchar(50)
cause:varchar(50)
‘preventation_mechanism:varchar(50)

Figure 14: Persistent diagram

Table 4: keys
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English Tigrinya

Patients Jhao-an 3
Employees Néhtg ot
Diseases AT+

Id AN L

Name Age

Fname ATRAN

Age o gan

Sex 9

Salary fqoH

Type %07t

Symptom RNt

Cause My
Preventation-mechanism mnATHA,_a®778,
Patient-id MAAL haoagit
Emp-id MAAL_Al-h+E
Dis-type 985%_hTagFt

The Tigrinya words are used to create the sample database as in many organizations use Tigrinya

language plaintexts to create their database.

6.3 Queries

As discussed in chapter five different queries may be formulated. These queries may be retrieval

or manipulation. The queries were grouped based on their query type’s retrieval (select) and

manipulation (update and delete). Also, the retrieval queries were grouped into different

subgroups based on their complexities and others are sub grouped based on their specific

commands. Table 4 shows the type of queries, their subgroups, Tigrinya queries of each

subgroup and their corresponding SQL statements. This table presents a sample of Tigrinya

queries for each subgroup and their corresponding SQL statements. This shows how the dataset

is prepared and how much the language is rich in variations of words.
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Table 5: Sample Queries

Query_Types

Subgroup of the

Queries

Tigrinya Queries

Corresponding SQL statements

Select

Select queries

hN&d Ma>MF ACAPY

select * from Ahde-ag+-:;

ATy ATRANT

A% RCAPL

select A9®, A9PAN from

haant,

Conditional

queries

goAnFT AR GN
RCAPTL

select 9°Ah+ from diseases

where 927t ="gA"

9h ML 4R, 9LyF
ha-agt {oD {CAPL

select Ag9™ from Aa™a93 where
9Ly +="9A" or ¥ LYF ="+

Aggregation

NHh, 9L7F AT+
RCAPTL

select  count(%27%) from

I

Group/order by

and asc/desc

Aae-ag: NMPAAL

@yl 27 rhthY
Nogae  $4 TEA

APIPM/APIPMAL

select * from a3t where
mAAL<="2" group by o¢ga

desc;

Join with it’s type
(inner,left,right)

and union

Age a9+

RN Gt Aty

AFPNC ACAPY,

Select ha-agt Ago

At goAht  from Ad-agt
join AT+ ON Ade-a9+.9 24+

=hT+.%L7%,

ngn AOe-anty q ey
Fhaganty AhNF

RCAPL

select A9® from AHO™anFt

UNION
ATt

select 929+ from

Between/Not and
In/Not

AN d®%y 2% 107
MAAL HAQ. Ade-a9t

RCAPL

select * from A0+ where

mAA2  BETWEEN "2" and

"10",;
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Manipulation | Update N%A 3 aoAAe  Hhy | update Aa™a9t set Age="YLA"
havge fax NYEA | where dRAAL="4",;
+hA/TNRAAL

N%d 3 d®AAR  Hhy | update ha™at set AFR="YLA",
Aarge  Fa> YA | AgRAN="9CL" where
ATPA N A NoICTML | aPAAL="3";

+hA
Delete NG 4 dAAL  Hhy | delete from Ad®>m+  where
hamgn RMmER AAR="4";

Input tigrinya sentence: AM®MT NPART MO/ €4 ¢4 PNA Hhy NA®hARA ONR  $L9PAGN hePp:
Actual sql Translation: SELECT * FROM A™MTT WHERE f"Aht="¢4 €4 9°NA" ORDER BY @hARA, asc;
Predicted sql Translation: SELECT * FROM AhMM% WHERE "Ah+="€/ €4 °NA" ORDER

MySQLCursor: (Nothing executed yet)

Error while connecting to mysql 1064 (42000): Erreur de syntaxe prés de '' & la ligne 1

Input tigrinya sentence: ACNOt MAAL MLE®M AFALM, 9L HENAP AIME KCKPL:

Actual sql Translation: SELECT * FROM AO™M% WHERE TPAAR!="4" OR GRY%!="RFhLM,";
Predicted sql Translation: SELECT * FROM O™t WHERE TPAAL!="4" OR GRIF!="hFA2MN";
MySQLCursor: (Nothing executed yet)

Error while connecting to mysql Use multi=True when executing multiple statements

Input tigrinya sentence: +N0F2 §3 MEEM 14 HAA AP HAPP AO™MF KCAPY:
Actual sql Translation: SELECT * FROM AO™M% WHERE P="+NbFR" OR N9P="11L";
Predicted sql Translation: SELECT * FROM MO™M% WHERE f&="+N0FL" oR APP="1NL";
MySQLCursor: (Nothing executed yet)

Error while connecting to mysql Use multi=True when executing multiple statements
Input tigrinya sentence: N&ZN M1¢ MEhS A%A 923 HAPP AM®T KCKPY:

Actual sql Translation: SELECT * FROM AMT¥ WHERE MT¢="N2LN" OR GL¥r="A%G4Ar;
Predicted sql Translation: SELECT * FROM ATM% WHERE M7$="NLZN" OR 9Ly ="AGAr;
MySQLCursor: (Nothing executed yet)

Error while connecting to mysql Use multi=True when executing multiple statements
Input tigrinya sentence: 20 027 3 MAALT HEAAP AIMF KCAPYL:

Actual sql Translation: SELECT * FROM Af™M% WHERE 0£d0!=u20" AND @DAAL!=n3n;
Predicted sql Translation: SELECT * FROM AO™M% WHERE 0£d0!=r20" AND GPAAR!="3";
MySQLCursor: (Nothing executed yet)

Error while connecting to mysql Use multi=True when executing multiple statements

Figure 15: Output of the Prototype
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6.4 Model Training

The corpus was prepared by separating the input Tigrinya sentences and the corresponding SQL
statements using the word <BEGIN>. And then the file that contains the dataset was opened and
separating the corpus into input and target data using the separator (i.e <BEGIN>). The
maximum length of the input Tigrinya sentences has been calculated and the longest sentence
has 13 tokens. And again the maximum length of the target SQL statements has been calculated
and the longest SQL statement has 15 tokens. All the input and target sequences are sorted. And
then the number of encoder tokens and the number of decoder tokens have been calculated i.e the
length of all the Tigrinya words and the length of all SQL words which are 330 and 807

respectively.

After that the dataset was shuffled using the skylearn python library in order to mix it. After the
data has been shuffled, the dataset splitted 80 %( 5070) for training and 20%(1268) for testing
data by using percentage split method of the skylearn python library. After that a batch size of
100 was provided to generate the batches of the training data using generate batch function. The
encoder input data takes the index of the input Tigrinya words in an array of the batch size with
the maximum length of the input Tigrinya sentences. This means that it takes the indexes of
input Tigrinya words in a two dimensional array of 100 by 13. The decoder input data takes the
indexes of the SQL words in an array of the batch size with the maximum length of the target
(SQL) statements. This means that it takes the indexes of the SQL words in a two dimensional
array of 100 by 15. The decoder target data takes the indexes of the SQL words in a an array of
the batch size, maximum length of the SQL statement and the total number of decoder
tokens(SQL words) and if the word is present it assigns one(1), if not it assigns zero(0). This
means that it takes the indexes of the target tokens in a three dimensional array of [100, 15, 807].
This excludes the start token (i.e <BEGIN>) and offset by one time step. And then the function
returns the input data (encoder input data and decoder input data) and the output data(decoder
target data). This means that it returns the result of [[[100, 13],[100, 15]],[100, 15,807]].

A latent dimension of 128 and an epoch of 120 were provided. After that the encoder-decoder
model was created and then a functional APl model was defined with encoder-decoder data (the
encoder input, decoder input and decoder output). The shape (dimension) of these three arrays is
equal as the above arrays respectively. The encoder input takes in the place of the indexes of all

input Tigrinya words the embedding matrix of 330 by 128. This means that the matrix of the
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total input Tigrinya words by the latent dimension. The decoder input and decoder output takes

in the place of the indexes of all SQL words the embedding matrix of 807 by 128. This means

that the matrix of the total SQL words by the latent dimension. And then the defined functional

API model was compiled with rmsprob optimizer, categorical cross entropy loss functions and

with the accuracy metrics of keras library. After that the created model was trained with the

fit_generator() of the keras python library by calling the function. The model fitted with the

parameters such as the batches of the training data, number of epochs, steps per epoch, batches

of validation data, validation steps, callbacks and verbose 2. Finally, the model was evaluated

with evaluate_generator() keras python library and scored an overall accuracy above 98.5% on

the testing data. Figure 10 shows how the model can be trained and its evaluation results.

Using TensorFlow backend.
Length of input(tigrinya sentences)= 6338

Length target (SQL
number of encoder
number of decoder
maximum length of
maximum length of
Batch Size= 100

Latent Dimension=

statements)= 6338

tokens (length of all tigrinya words)= 330
tokens (length of all sql words)= BO7

source (tigrinya sentence):

target (SQL statement): 15

128

Length of Training Samples= 5070
Length of Testing Samples= 1268
Steps per Epoch= 50

Validation Steps=
Number of epoches:
Epoch 1/120

12
120

13

- 38s - loss: 3.6314 - acc: 0.4388 - wval loss: 2.7753 - val_acc: 0.5276

Epeoch 00001: val loss improved from

Epoch 2/120

- 355 - loss: 2.4641 - acc: 0.5503

Epoch 00002: val loss improved from

Epoch 3/120

- 35s - loss: 1.9508 - acc: 0.6187

Epoch 00003: val loss improved from

Epoch 4/120

- 35s - loss: 1.6451 - acc: 0.6537

Epoch 00004: val loss improved from
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inf to 2.77530,

saving model to model.h5

- val _loss: 2.2029 - val_acc: 0.6085

2.77530 to

- val_;oss:

2.20291 to

- val_;oss:

1.78725 to

2.20291,

saving model to model.h5

1.7873 - val_gcc: 0.6235

1.78725,

saving model to model.h5

1.5651 - val_gcc: 0.6802

1.565086,

saving model to model.hb



Epoch 00075: val loss improved from 0.07544 to 0.07463, saving model to model.h5
Epoch 76/120
- 32s - loss: 0.0078 - acc: 0.9993 - val loss: 0.0758 - val acc: 0.9874

Epoch 00076: val loss did not improve from 0.07463
Epoch 77/120
- 29s - loss: 0.0065 - acc: 0.9996 - val loss: 0.0811 - val acc: 0.9859

Epoch 00077: val loss did not improve from 0.07463
Epoch 78/120
- 30s - loss: 0.0058 - acc: 0.9995 - val loss: 0.1002 - val_acc: 0.9800

Epoch 00078: val loss did not improve from 0.07463
Epoch 79/120
- 30s - loss: 0.0057 - acc: 0.9995 - val loss: 0.0777 - val _acc: 0.9868

Epoch 00079: val loss did not improve from 0.07463
Epoch 00079: early stopping

Evaluation of the model before Loading:
Test Data: 0.07770349644124508 acc: 98.68%
Evaluation of a New Model After Loading:
Test Data: 0.07770349644124508 acc: 98.68%

Figure 16: Training and evaluation process

6.5 Evaluation Result
Keras uses batches. That’s why metrics such as precision, recall and f-measure were removed
from keras model [43]. Accuracy classification, which measured automatically, was used to

evaluate the prototype. To train and evaluate the prototype 6,338 Tigrinya sentences (queries)
were prepared by Tigrinya language professionals’. Those sentences have their own
corresponding SQL statements. Therefore, the dataset that holds the Tigrinya plaintexts must
provide as an input to the prototype. The prototype should understand the queries and provides a
response based on the queries. The dataset has splitted to train and testing using percentage split
of skylearn python library and it was provided 80% for training and 20% for testing (validating)
the model. This means that 5070 sentences of the dataset are used for training the model and
1268 sentences are used to test the model. To test the model, the percentage split evaluation
technique was used. Percentage split technique is good to test the model because the evaluation
carried out by the test data that are not included during training. That’s why the percentage split
evaluation technique has been chosen.

During the training of the model the loss, accuracy, validation-loss and validation-accuracy are

calculated automatically at each epoch (iteration).
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6.5.1 Loss
The loss function is also called objective function which used to calculate the loss value [41].
The losses on the training and validating data are showed in figure 11. We use the categorical

cross entropy loss function to calculate the loss value.
Loss = — Yj_; T Logy

In the above equation Tk represents the actual target data (SQL statement) and yx represented the
predicted probability of the target. This is calculated after the softmax activation function
transformed the output to a vector. The minus (-) sign is used to improve the performance of the

model.

Model loss

—— Train

3517 Test

3.0 ~

2.5 7

2.0

Loss

L5

1.0 1

0.5

0.0 A

T
0 20 40 60 80 100
Epoch

Figure 17: loss model

Figure 11 shows as the number of epoch is increasing, the loss value converges to zero. As the

first few epochs both lines are on the same line. This means both have same loss value. And in
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the remaining many epochs the line of the validation data showed above the training data. This

shows the loss value of the validation data is higher than the loss value of the training data.

6.5.2 Accuracy
The accuracy of the prototype is calculated by using the keras accuracy metrics that uses the
following formula:

amount of correct predicted SQL

1009
Total predicted SQL amount ’ o

Accuracy =

The accuracy on the training and validation data is showed in figure 12. This shows how the
translation from the input Tigrinya sentences to their corresponding SQL statements is accurate.
If the input Tigrinya sentence is accurately translated to SQL statement, the DBMS can execute
the SQL statement on the database. So, the accuracy of the Tigrinya language interface to

database prototype can depend on the accuracy of the translator model.

Model accuracy

1.0 1 —— Train
Test

0.9 +
0.8

o/

0.6 +

Accuracy

0.5

0'4 T T T T T T
0 20 40 a0 80 100

Epoch

Figure 18: Accuracy model

Figure 12 shows as the number of epoch is increasing, the accuracy value converges to one
(increasing). As the first few epochs both lines are on the same line. This means both have same
small accuracy value. And in the remaining many epochs the line of the validation data showed

below the line of the training data. This shows the accuracy value of the validation data is
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smaller than the accuracy value of the training data. An overall accuracy was scored above
98.5%. This is remarkable compared with the accuracy of the related works on other natural
language interface to database prototypes which were developed by different researchers for
different local languages. However, only the accuracy score was compared nothing else as the

languages have their own syntaxes and semantics.

6.6 Discussion

The Tigrinya language interfaces to database prototype enabled users to write a query that can be
retrieval and manipulation of the contents of the database. As described above a dataset of 6338
sentences was prepared to train and test the model. To translate the Tigrinya sentences to the
corresponding SQL statements, neural machine translation approach was used. This approach
wants a large set of data and a long period of time to train. If the dataset is very large it may take
long time to train. However, the advantage is once trained the model we can use that to predict a
new data which means no need to train again. Again, the model is used to know which word is
less important and which word is more important. This means throwing stopwords of the input
Tigrinya language don’t expected. Here also, word embedding technique was used to represent
the similarity of words. It gives similar value for semantically similar words. Therefore, this
technique helped us to build a low dimensionality model that can preserve previous states. When
the model is trained in large dataset, it can have a good accuracy on predicting the SQL
statements. However, still there are no prepared Tigrinya language datasets for NLIDB. So, the
dataset was prepared from scratch with the help of Tigrinya language professionals’ to train and
test model. Therefore, the accuracy scored is good in the translator model as the dataset is small.
The accuracy of Tigrinya language interface to database prototype is extremely dependent on the
accuracy of the translator model. So, it is possible to conclude that the accuracy of the translator
is equal with the accuracy of the Tigrinya language interface to database prototype. The executer
can execute the predicted (generated) SQL statement and either to display an output to the user
or to make changes to the database based on the queries. Therefore, to accomplish that a new
database has been designed and tested. The prototype is evaluated using keras accuracy metric
automatically and an accuracy of above 98.5% has been scored. This showed the neural machine
translation approach is a good approach on the translation of Tigrinya sentence into their
corresponding SQL sequence by sequence. This accuracy showed the developed prototype is
good when we compare with the related works. If the model will be trained with large dataset, it

will have better performance. This means, the performance of the model is depend on the size of
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the dataset. And again, 128 latent dimensions and 120 numbers of epochs have been given for
the model as there is no standard, randomly given by try and error. As both the number of latent
dimension and number of epochs are increasing and decreasing together the performance of the
model gets degraded. When the number of latent dimension and the number of epochs are
constant and increased respectively, the performance of the model increases. Therefore, the
performance of the model is depending on the size of the dataset, number of latent dimension
and the number of epochs. To prevent over and under fitting, early stop and model check point
has been used. A val-loss has been taken as a monitor and on its minimum mode. A good or
accurate model has an accuracy of 100% on both training and testing data. Therefore, the
developed model has accuracy nearest to that. The prototype enables Tigrinya users to retrieve
and manipulate the contents of the database without the knowledge of the SQL. This means that
using the Tigrinya language interface. The prototype has been taken the input Tigrinya sentence
and it has been translated into the SQL and further the SQL executed in the database. During this
time the native Tigrinya users did not have any knowledge about the SQL and the database
design. Instead, they have been expected to write Tigrinya text and the text can internally
processed by the system. This means it doesn’t mean that, to use Tigrinya texts instead of SQL
rather the input Tigrinya can be translated to SQL and further the SQL can execute on the
database. The developed prototype really achieved that. To conclude, that the developed
prototype enables users to retrieve and manipulate the contents of the database without the
knowledge of SQL. And additionally, the neural machine translation approach is appropriate on

the translation of the input Tigrinya sentence into SQL.

6.7 Contribution of the study

The general contribution of this study was:
% To enable Tigrinya users to retrieve and manipulate the contents of the database using
Tigrinya plaintexts’.

The specific contribution of this research study was:

% This work contributes a general architecture for Tigrinya language interface to database
(TLIDB) that developed using neural machine translation approach. Therefore, anyone
can use this architecture to work on TLIDB for different domains with different database
schema and the approach makes the natural language interface to database efficient and

robust.
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“ And another, specific contribution is a prepared dataset that has Tigrinya input sentences
with their corresponding SQL statements that would use for Tigrinya language interface
to database. Therefore, anyone can use this dataset to work on Tigrinya language
interface to database.

%+ After the prediction has been carried out a rule has been bootstrapped to differentiate the

queries either it is retrieval or manipulation
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CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion
Now a day, there are a number of databases that are developed in Tigrinya language contents.
However, accessing of them using Tigrinya natural language plaintext is not easy for ordinary

users. Therefore, this work was proposed Tigrinya language interface to database (TLIDB).

To accomplish this work different literature were reviewed in detail to understand the methods
and techniques that used for developing natural language interface to database. A dataset was
prepared and this contained Tigrinya language sentences with their corresponding SQL
statements. And then TLIDB architecture was designed and developed. For the translation of
Tigrinya plaintexts into SQL statements, a model was created and trained. Finally, the developed

prototype was evaluated on three tables of healthcare domain.

The prototype accepts queries (dataset) and cleans the input Tigrinya sentences. The dataset has
Tigrinya sentences with corresponding SQL statements. And then the dataset is splitting into
two. Namely, training and testing data. 80% of the dataset is used for training and 20% for
testing. Then, the model trained with 80% of the data and tested on the 20% of the dataset. For
the testing dataset the model predicts the SQL statements for the input Tigrinya texts. And then,

the predicted SQL statements executed on the database.

If the queries are retrieval it provides the information’s from the database in a structured form. If
the queries are manipulation, changes are made in the database. Finally, the model was evaluated
on how it is accurate in the translation or mapping of the input Tigrinya sentences into the
corresponding SQL statements. The accuracy and loss of both the training and testing data was
showed in graph. the queries were grouped into two based on their query type as retrieval and
manipulation. The model was evaluated and an overall accuracy above 98.5% was scored.

Therefore, if this system is fully trained with very large dataset it will be used as an effective
querying interface between Tigrinya language and database. So, users can simply retrieve the
contents of the database; manipulate the contents of the database using their natural language
plaintexts. This does not need learning of the formal language (i.e SQL) syntaxes and semantics.

Also, users do not need training as in form based systems. Again, it is very important for some
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questions such as negation and conjunctions. Because representing the negations and

conjunctions using Tigrinya language is very easy than the SQL statements and also it is very

difficult to represent in form based system.

7.2 Recommendation

Because of the limitations of time and resources, the features that were not included in our works

either that would improve, the accuracy or the functionality of the system were suggested below

as future works:

R/
A X4

The prototype performed some SQL commands such as the retrieval and manipulation
and then it should include all the SQL commands to fully include the functionality of the
database. For example it should include the creation of tables, altering of tables and
inserting contents into database.

The prototype also included simple nested SQL statements and then it should include
more complex nested SQL statements. Since, we included a union query that uses the
simple nested select query. So, it should include more complex queries.

The prototype did not include Tigrinya stemmer, Tigrinya spelling checker, tagger,
parser and etc. And then, if it includes Tigrinya stemmer, Tigrinya spelling checker,
tagger, parser and etc the machine can be improved the understanding of Tigrinya
language.

As the prototype was developed using neural machine translation approach, it needs a
large dataset. So, the dataset used is too small and it should increase the dataset to have
the prototype better performance.

The prototype has been developed for a single domain and it does not include auto
completion. And then making domain independent and including the auto completion can
improve the performance of the model.

Applying attention based recurrent neural network to NLIDB would be improved the
performance of the prototype. As it was developed, with capability to validate the model

using long sequence that are not included during training.

Therefore, the above stated ideas can be considered as a future work.
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APPENDIX:

Appendix A: Approval Paper one




Appendix B: Sample DB contents of Diseases table
ad  C7] Server: mysql wampserver » @ Database: 4AP+09 » [ Table: A™90%

[F Browse 4 Structure L] SQL 4 Search ¥ Insert [& Export [ Import

o Showing rows 0 - 4 (5 total, Query took 0.0018 sec)

SELECT * FROM ~ATHTT"

Number of rows: |25 ¥

Sort by key:| Mone v |
+ Options
+— T — v 987t goAhTt me mhATIA,
[] & Edit %2 Copy @ Delete Agen avaern |gonag fesh B4t FohAD.
| g Edit %cCopy @ Delete hag i fgsh KhAT 2330 2h
[ g7 Edit 32Copy @ Delete somn @85t TCTHP | 6T FohAR
|| o Edit cCopy @ Delete nxem 7] NAht 16T 42T NAAT 1746F T $ae
[] & Edit e Copy @ Delete ap &7 &4 FoN4 | MIM: OBC ML ToELE

t [ CheckAll  Withselected: 7 Change @ Delete [ Export

Number of rows: |25 ¥
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Appendix C: Approval Paper two

L HAP DOS HIRANE TAh AAYE 30T 9
NFPUHTNL AN RAACNE BT NANLH &
TIAA HHAY Al dPLhN R1% FICF 90 TN
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Appendix D: Sample Dataset

MNéF ATTT RCEPE:
MMéF ATIT RCEP:

<BEGIN>
<BEGIN>

SELECT * FROM AT+ ;
SELECT * FROM Ao=o9%;

MléF MehtTr+ sChf <BEGIN>  SELECT * FROM feht&st;
manst AT hCAP <BEGIN>  SELECT faht FROM A™o9+;
M+ ATTT wCAP: <BEGIN> SELECT M FROM A%399%;
B8 ATTT wCAP (BEGIN> SELECT %2 FROM A
mnATA, AT+ KCRP= (BEGIN> SELECT o®hafia FROM Ao+,
MmAAE A0+ RCAPL <BEGIN> SELECT mAAE FROM A0™09%;

AOD hO™093 KRy
AGORN hO-09F HCEPYs

<BEGIN>
<{BEGIN>

g4 A0 kCEPL: SBEGIND
gt AOmmt RS SBEGIN
0Evt ATt wCEF {BEGIN>

MAAE AdhtEdtF RCAPL
Aoe AehtEaF RLEPY
AIERN AdhtET RCEPE
OFME Adhtist RCRPE
R NhtEt WCRPLE
AEAT Adhtidt KCEPLE
ot féehtist wCAP <BEGIN>
ARASTY MTEFTT AT RCEPYS
MEFH anF+7 AMT9E kR
RARNFFY LEIFEY ATIORE RCEPY
BEIFFY GUARSTY ATITRE RCAPY
mehnATIAFY
LEYFFY  MERATIA ST

<BEGIN>

<BEGIN>

<BEGIN>

<BEGIN>
<BEGIN>

<BEGIN>

<BEGIN>
<BEGIN>
0EFHY ATt RCEPLS
ATITHE KA

SELECT %9 FROM Aowmt,

SELECT #gean FROM Aowo9t

SELECT #+ FROM Ao=05;

SELECT oA+ FROM mo=o9%;
SELECT @&+ FROM mf=m%;

SELECT mare FROM fémtTat;
SELECT A9® FROM figit@at;

SELECT #gman FROM fightG;

SELECT 0&m FROM fehtaaT;
SELECT 2+ FROM fiehtSFt;

SELECT 294 FROM fémtTat;

SELECT oA+ FROM f&htfat;
<BEGIN> SELECT ah%, mi® FROM Amm™%;
<BEGIN> SELECT m%%,9mah* FROM Ao+,
SELECT man®, o2+ FROM ATiow;
SELECT =&, mah+ FROM A®o5%;
<BEGIN> SELECT @hAhA,%&% FROM ho5o97
<BEGIN> SELECT =& ,mmhafia, FROM A3

MiEF+T ENANAFY AT F wChPr= <BEGIN> SELECT mi#,22% FROM A5T9;
MAANAATY MEFTY AT+ wChP: <BEGIN> SELECT =24, m: FROM AT399%;
mRARAFHY RaRATY AT sCAP <BEGIN> SELECT oohafa, fman+ FROM Ao
ANFTY ERNATAFTY AT ’CAP <BEGIN> SELECT mah+,mhAfia. FROM Amos:
MAAET ASEY AOT9F RCEPL: <BEGIN> SELECT Aas,fi9® FROM hoe-m3%;

RO MDAAST AO09E K(APYS
Ao ROUANT AOOE R(APYS

<BEGIN>
<BEGIN>

SELECT %40, mAA2 FROM Hovavs
SELECT %g®, Reoan FROM mO=o3%;

Agny gEany howmt sCkP <BEGIN>  SELECT ®9m,d020r FROM mom-o5%
0Emy REy mOw09E CRPL: <BEGIN>  SELECT ofme, g FROM momo9t;
0Emy RN MO RChP: <BEGIN> SELECT 6g@,#+ FROM Ho™03%;
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Appendix E: Train Model
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| mput: | (None, 13)
tput_L: TnpufLayer
oufput: | (None, 13)
mput: | (None, 13 iput: | (None, None
embedding 1: Fubedding | L) mput 2: TaputLaver all )
oufput. | (Noge, 13, 126) oufput: | (None, None)
iput one, 13, 118 mput: | (None, None
lstm 1 LSTM l i ) ebeddmg 2: Fubedding i )
oufput: | [(None, 13, 126), (Noue, 128), (None, L26)] oufput: | (None, Noe, 126)
iput. | [(None, None, 128), (None, 128), (None, 126)
lstm 2: LSTM
output: | [(None, None, 126), (None, 128), (Noue, 126)]
iput: | (None, None, 128)
dense 1: Dense
oufput. | (None, None, 507)




Appendix F: Encoder Model

_ mput: | (None, 13)
mput_1: InputLayer
output: | (None, 13)
] ] mnput: (None, 13)
embeddmg 1: Embedding
output: | (None, 13, 128)

'

lstm 1: LSTM

mput:

(None, 13, 128)

output:

[(None, 13, 128), (None, 128), (None, 128)]

Appendix G: Decoder Model

. taput: | (None, Noe)
uput 2: TnputLaver
output: | (None, None)
Y
tput one, None iput. | (Nong, 128 iput. | (Nong, 128
embedding 2: Fmbeddig 1 a ) put 3: TnpulLayer | Mo 2 tput 4 TnpulLayer | o 1)
oufput. | (None, None, 128) output: | (Noxe, 126) output: | (None, 126)
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! /

lstm 2:LSTM

{put

[(None, None, 128), (None, 128), (None, 125)]

aufput:

[(None, None, 128), (None, 125), (None, 126)]

Y

tput:

(Nong, None, 128)

dense 1: Dense

aufpuf.

(None, None, 807)




Appendix H: Summery of the model

Layer (type) OQutput Shape Param # Connected to
input 1 (Inputlayer) (None, 13) 0
input_2 (InputLayer) (None, None) 0
embeddinq_l (Embedding) (None, 13, 128) 42240 input_l[O][O]
embedding 2 (Embedding) (None, None, 128) 103296 input 2[0]1[0]

l1stm 1 (LSTM) [(None, 13, 128), (N 131584 embedding 1[0][0]
l1stm 2 (LSTM) [(None, None, 128), 131584 embedding 2[0] [0]
lstm 1[0][1]
lstm 1[0][2]
dense_1 (Dense) (None, None, B807) 104103 1stm 2[0][0]

Total params: 512,807
Trainable params: 512,807
Non-trainable params: 0

None
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