

JIMMA UNIVERSITY JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF GRADUATE STUDIES FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING HIGHWAY ENGINEERING STREAM

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Flexible Pavement

Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirements for the Degree of Masters of Science in Civil Engineering (Highway Engineering)

By: Zinabu Hailu Bayisa

August, 2020 Jimma, Ethiopia

JIMMA UNIVERSITY JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF GRADUATE STUDIES FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING HIGHWAY ENGINEERING STREAM

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and

Conventional Flexible Pavement

By:

Zinabu Hailu

Approved by Board of Examiners:

Prof. Dr. -Ing. Alemayehu Gebissa

External Examiner

Eng. Markos Tsegaye (PhD Candidate)

Internal Examiner

Eng. Oluma Gudina (MSc)

Chairperson

Eng. Elmer C. Agon (Associate Prof.)

Main Advisor

Eng. BISHURILKERIM OUMER (Msc)

Co-Advisor

Signature

Date

09 / 2020

Signature

Date

01 / 02 / 2020

Signature

Date

August, 2020 Jimma, Ethiopia

Signature

uun

11/08/20

10812020

Date

Date

Signature

02

1

DECLARATION

Plagiarism may toss a work to threat. it is to use another's work and to imagine that it is one's own. The British Standard Numeric style commonly known as the 'Vancouver' style has been used for citation and referencing. All noteworthy contribution has been cited and referenced properly. And hence; I the under sign declare that this thesis report is my own work and it has been not submitted for the degree or any other award in another university. As much as I can; I have not permitted and will not permit anybody to duplicate this with the intention of passing it as his or her own work.

Name: Zinabu Hailu Bayisa

Signature _____

Date: August 12, 2020

DEDICATION

You know how it is. You search a document, flip to the dedication, and find that, once again, the author has dedicated a work to someone else and not you.

Not this time.

Because we haven't yet met/have only a glancing acquaintance/haven't seen each other in much too long/are in some related/will never meet, but will, I trust, despite that, always think fondly of each other...

This one's for you.

With you know what, and you probably know why.

ACKNOWLEDGEMENT

Say, "Indeed, my prayer, my rites of sacrifice, my living and my dying are for God, Lord of the world." Lord, you never fail to amaze me with your plans to prosper me and not to harm me, plans to give me hope and a future.

It is difficult to mention one person before the other. However, I undoubtedly owe much to my advisors. Eng. Elmer C. Agon was a main advisor. His insight, guidance, and support were extremely valuable to me during this study. Mr. Bishurilkerim Oumer (MSc.) was a co-advisor. His guidance, assistance, and supports were gratefully acknowledged. Together, I am highly indebted for their complete understanding of the objectives of this study, for their flexibility, availability, constant encouragement, continuous guidance, accumulated wisdom and support. Others, you've been so especial to me through all of this – thank you for taking me on.

Particular thanks go to Addis Ababa City Roads Authority; Road Asset Management and Maintenance department, Addis Ababa City Administration Road and Transport Bureau, Addis Ababa City Administration; Road Traffic Management Agency, Ethiopian Federal Police; Central Statistics and Crime Intelligence Directorate for providing me all the necessary information that was helpful in accomplishing this work.

It is for me a genuine honor to thank all authors whose works are cited for their wonderful contribution in the area and the Ethiopian Road Authority for launching this program. Gratitude fails to say it all.

I would like to use this opportunity to convey my gratitude to the academic staff of the School of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University and all faculty members who taught me during MSc. Program. Without their support and encouragement, this couldn't be possible. I also gratefully acknowledge the contributions of my friends and all those individuals who had contributed in the realization of this work.

Last and important is the unlimited inspiration and support by my family members at different stages of this study.

ABSTRACT

By the time the need for minimizing the costs of a road infrastructure became a necessity, LCCA had grown to be an accepted practice in the world. It was not a piece of cake for the National Cooperative Highway Research and Intermodal Surface Transportation Efficiency Act to perform a comprehensive and reliable LCCA at the time when the available information was not sufficient. Researches conducted in this area consistently confirmed that developed countries have a published Policy statement on LCCA, instructional LCCA workshop and resultant noteworthy technical bulletin outlining the best practice of LCCA methodology and related parameters. The revers is true in Ethiopia eventhough the country is about to be emerged out of road infrastructure problem, except from the challenges posed by new commitments to the economical consideration. This is because decisions have been based on a comparison of initial construction costs concept setting lowest initial construction cost option as the lowest total cost option.

As such, it was aimed to determine the overall cost of flexible pavement with and without geosynthetic material and evaluating its cost effectiveness. The true cost (LCCA) was adopted as it has the means to fulfill these requirements. This was achieved by determining the agency, user and environmental costs for the road segment under study. In this regard information like traffic data and pavement data was collected from concerned agencies. Design documents were taken from ACRA. Travel speed on the road segment, discount rate, design period, analysis period and base year were selected based on the experience of ACRA. An Indian department of transportation vehicle class were adopted and Percentages of Truck distribution were determined by conducting a sample of field survey. Accordingly, observation of sample field survey revealed that out of 100 vehicles on the road segment under study 65% were passenger cars, 20% were single unit trucks and 15% were combination trucks. Estimation of costs was done specific to each construction, maintenance and rehabilitation treatment. Two alternative methodologies were provided: one was using a per-lane length approach which incorporates updated market prices and contract data from design document and this was adopted in determining agency cost associated with maintenance and rehabilitation. The other approach was one that builds the costs from a developed model. This approach was adopted to determine the initial construction cost of both alternatives.

Accordingly, Agency cost was determined to be 3,182,653,893 and 1,580,443,895 ETB for Conventional and Geosynthesized pavement respectively. This conveys a message that using geosynthetic material in flexible pavement can reduce an Agency cost by 50.34 %. But using initial construction cost as a decision-making tool can eliminate this fact and leads to wrong direction. This is because of the fact that avoiding this fabric can reduce initial construction cost by 1.5%.

On behave of user costs, only work zone user costs were given prominent coverage in this paper and costs associated with noise, and pollution should not be a formidable concern as they are not expected to vary significantly by LCCA alternative. The seven user cost components associated to work zone operation (Travel Delay Costs & Vehicle Operating Costs) were determined. Accordingly, Inspection of analysis part in this paper reveals that, user cost was determined to be 14,178,855,923 & 4,120,182,985 ETB respectively putting the former one conventional FP. This implies that about 70.9% of user cost can be avoided when using a geosynthetic materials.

Finally, Economic evaluation of the two alternatives was carried out using the NPV as economic indicator. As such incorporating geosynthetic material in pavement was found more economical and most effective alternative pavement option.

Key words: Agency Costs, Economic Evaluation, Net Present Value, User Cost

CONTENTS

DECI	LARATIONI
DEDI	CATIONII
ACK	NOWLEDGEMENTIII
ABST	RACTIV
LIST	OF TABLES
LIST	OF FIGURES XI
LIST	OF EQUATIONSXII
LIST	OF APPENDICESXIII
LIST	OF ACRONYMS AND INITIALISMXIV
CHA	PTER I1
INTR	ODUCTION1
1.1.	Background of the study1
1.2.	Statement of the problem
1.3.	Research questions
1.5.	Scope of the study
1.6.	Significance of the study
CHA	PTER II
LITE	RATURE REVIEW
2.1.	Introduction
2.2.	Flexible Pavement
2.3.	Geosynthetics
2.4.	General Life cycle cost analysis (LCCA)
2.4.1.	Economic Indicator
2.4.2.	Selection of base year
2.4.3.	LCCA Procedures
2.5.	LCCA parameters
2.5.1.	Discount rate
2.5.2.	Interest rate
2.5.3.	Inflation15
2.5.4.	Analysis period

2.5.5.	Rehabilitation Timings	
2.5.6.	Remaining service life (RSL)	
2.6.	Costs in LCCA for pavement projects	19
2.6.1.	Agency cost	
2.6.2.	User cost	
2.6.3.	Environmental Cost	
2.7.	Construction Cost Estimation Models	
2.8.	Economic Evaluation	
2.9.	Past Studies	
CHAI	PTER III	31
RESE	EARCH METHODOLOGY	31
3.1.	Study Area	
3.2.	Research design	
3.3.	Target Population	
3.4.	Study Variables	
3.5.	Type and Sources of Data	
3.6.	Data Collection Methods and Instruments	
3.7.	Data processing and analysis	
3.8.	Measurements of Variables	
3.9.	Ethical Considerations	
CHAI	PTER IV	42
ANAI	LYSIS, RESULT AND DISCUSION	42
4.1.	Inflation and Inflation adjusted Rate	
4.2.	Selection of Discount Rate	
4.3.	Activity Parameters and Cost Schedules	
4.4.	Cost Determination	
4.4.1.	Determination of Agency Cost	44
4.4.2.	User Cost	
4.4.3.	Environmental cost	66
4.5.	Net present value calculation	66
CHAI	PTER V	69

CONCLUSION AND RECOMMENDATION		
5.1.	Conclusion	69
5.2.	Recommendation	70
<i>REFERENCES</i>		

LIST OF TABLES

Table 1: Data Type and Source of Data
Table 2: Design Period Error! Bookmark not defined.
Table 3: Activity Timing
Table 4: Agency Cost Summary
Table 5:Initial Construction Cost Summary 46
Table 6: maintenance quantity as percentage of consstruction quantity
Table 7: Routine maintenance cost of flexible pavement at the end of 2019
Table 8: Routine Maintenance Cost Summary for conventional pavement in the Analysis Period49
Table 9: Maintenance Cost Summary Arrived from Appendix B.2 50
Table 10: Speed Change Computations
Table 11: User Cost Summary Arrived from Appendix C 64
Table 12: Work Zone Vehicle Operating Cost Summary Arrived from Appendix C. 65
Table 13: Work Zone Travel Delay Cost Summary arrived from Appendix C
Table 14: Discounted Sum for Conventional Pavement in the Analysis Period Arrived from Appendix C.67
Table 15: Discounted Sum for Conventional Pavement in the Analysis Period Arrived from Appendix C.67
Table 16 : Net Present Values of the Two Alternatives
Table 17: Discounted Cost Components
Table 18 : Average Annual Daily Traffic (Source: Addis Ababa City Road Authority) 76
Table 19: Vehicle Groups, Classifications and Percentage of AADT (IDOT Classification Method)77
Table 20: Maximum mixed vehicle traffic capacities for trucks in the traffic stream (Source: HCM-1994)77
Table 21: Observed saturation flow rates per hour of green time (Source: Table 2-13, of the 1994 HCM). 78
Table 22: Measured Average Work Zone Capacities (Source: HCM - 1994)
Table 23: Added time and vehicle running cost/1,000 stops and idling costs (1996 \$). 78
Table 24: Added time and vehicle running cost/1,000 stops and idling costs (1996 ETB)79
Table 25: Activity Timings (Source: Addis Ababa City Road Authority Maintenance Manual) 80
Table 26 : Conventional Flexible pavement cost schedule in the 25 years analysis period (2019-2044)81
Table 27 : FPWGM cost schedule in the 25 years analysis period (2019-2044
Table 28: Routine maintenance cost of flexible pavement at the end of 2019 82
Table 29: Routine Maintenance Cost Summary for conventional pavement in the Analysis Period
Table 30: Routine Maintenance Cost Summary for FPWGM in the Analysis Period 83

Table 31 : Periodic maintenance cost of flexible pavement at the end of 2019 (85
Table 32:Periodic Maintenance Cost Summary for conventional flexible pave. in the Analysis Period	85
Table 33 : periodic Maintenance Cost Summary for FPWGM in the Analysis Period	86
Table 34 : Rehabilitation cost of flexible pavement at the end of 2019	87
Table 35 : Rehabilitation Cost Summary for conventional flexible pavement in the Analysis Period	87
Table 36 : Rehabilitation Cost Summary for FPWGM in the Analysis Period	88
Table 37: Future Year Traffic Demand (Forecasted Traffic)	89
Table 38: Default hourly distributions from MicroBENCOST (all functional classes).	90
Table 39: Outbound Work zone directional hourly demand (all vehicle classes) for year 2020	90
Table 40: Outbound Work zone directional hourly demand for years affected in analysis period-1	91
Table 41: Inbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-1	92
Table 42: Outbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-2.	93
Table 43: Inbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-2	94
Table 44: work zone analysis matrix of the year 2020	96
Table 45: work zone analysis matrix of the year 2038	96
Table 46: work zone analysis matrix of the year 2042	97
Table 47: Expanded Work Zone Matrix for the Year 2020	98
Table 48: Expanded Work Zone Matrix for The Year 2038	99
Table 49: Expanded Work Zone Matrix for The Year 2042	100
Table 50: Summary of Traffic Affected by Each Cost Component	100
Table 51: work zone reduced speed delay	101
Table 52: Queue Speed Summary for Each Year	102
Table 53: Average Queue Length for The Year 2020	103
Table 54: Average Queue Length for The Year 2038	104
Table 55: Average Queue Length for The Year 2042	104
Table 56: Summary of Average Queue Length for Each Year	105
Table 57: Summary of Average Queue Delay Time for Each Year	105
Table 58 : Added time and vehicle running cost/1,000 stops and idling costs (2019).	106
Table 59 : speed change computations	106
Table 60: value of travel time (ETB/Veh-Hr, 2019)	107
Table 61: Affected traffic by vehicle class and user cost component	107

Table 62: user cost component 1- speed change VOC (50-30-50) km/hr	109
Table 63: user cost component 2 - speed change delay cost (50-30-50) km/hr	113
Table 64: user cost component 3 – work zone reduced speed delay cost (50-0-50) km/hr	116
Table 65: user cost component 4 – stopping VOC (50-0-50) km/hr	119
Table 66: user cost component 5 – stopping delay cost (50-0-50) km/hr	121
Table 67: user cost component 6 – Idling VOC	124
Table 68: user cost component 7 – Queue reduced speed delay cost	127
Table 69: Master summary of present user cost components during routine maintenance for CFP	130
Table 70: Grand summary of user cost components during routine maintenance for conventional FP	133
Table 71 : Master summary of user cost components during periodic maintenance for CFP	136
Table 72: Grand summary of user cost components during periodic maintenance for CFP	137
Table 73: Master summary of user cost components during rehabilitation for CFP.	139
Table 74: Grand summary of user cost components during rehabilitation for CFP.	139
Table 75: Future Value User Cost Summary for conventional flexible pavement in the analysis period	140
Table 76: Master summary of user cost components during routine maintenance for FPWGM	140
Table 77: Grand summary of user cost components during routine maintenance for FPWGM	144
Table 78: master summary of user cost components during periodic maintenance for FPWGM	148
Table 79: Grand summary of user cost components during periodic maintenance for FPWGM	149
Table 80: Master summary of user cost components during rehabilitation for FPWGM	150
Table 81: Grand summary of user cost components during rehabilitation for FPWGM	151
Table 82: user cost summary for FP with geosynthetic materials in the analysis period	151
Table 83: Discounting Factors for Each Year in the Analysis Period for conventional FP	151
Table 84: Discounted Costs for Each Year in the Analysis Period for conventional FP	152
Table 85: Discounting Factors for Each Year in the Analysis Period for FP with geosynthetic materials.	153
Table 86: Discounted Costs for Each Year in The Analysis Period for FP with geosynthetic materials	154

LIST OF FIGURES

Figure 1: Performance Curve for Different Rehabilitation or Maintenance Strategies	12
Figure 2: Expenditure Diagram/Cash Flow Diagram	13
Figure 3: Conceptual Graph Representing the Serviceability of a Facility over Time	17
Figure 4: Calculation of Remaining Service Life	18
Figure 5: cost components frame work	20
Figure 6: Research design frame work	32
Figure 7: agency cost components	36
Figure 8: User cost categories and components	36
Figure 9: Cost Components Uncommon to Both Alternatives	44
Figure 10: Agency Cost Summary Comparison	45
Figure 11: Initial Construction Cost Summary Comparison.	46
Figure 12: Maintenance Cost Summary Comparison	50
Figure 13: Volume to Capacity Ratio for Corresponding Average Speed (Source: HCM-1994)	60
Figure 14: User Cost Summary Comparison	64
Figure 15: Work Zone Vehicle Operating Cost Summary (VOC) Arrived from Appendix C	65
Figure 16: Work Zone Travel Delay Cost Summary comparison.	66
Figure 17: Net Present Value Comparison	68
Figure 18: Discounted Cost Components comparison	68

LIST OF EQUATIONS

Equation 1: Net present value	11
Equation 2: Present worth of a future cost	14
Equation 3: Discount rate	15
Equation 4: The tailpipe emissions	27
Equation 5: Forcasted Future Year AADT	
Equation 6: Work Zone Directional Hourly Demand	
Equation 7: Service flow rate for LOS i under prevailing roadway	
Equation 8: Capacity of the facility to dissipate traffic from a standing queue Equation 9: Work zone delay	
Equation 10: Queue delay	
Equation 11: Vehicle operating cost	
Equation 12: Travel Time	40
Equation 13: Escalation factor	40
Equation 14: Crash costs	40
Equation 15: Inflation adjusted interest rate	42
Equation 16: Salvage value	52

LIST OF APPENDICES

Appendix A.1	Traffic data76
Appendix A.2	Living wages (Source: https://wageindicator.org/salary/living-wage/ethiopia-living-
wage-series-janua	ry-2018-countryoverview)79
Appendix B	Agency cost calculation
Appendix B.1	Maintenance cost calculation80
Appendix B 1.1	Routine maintenance Cost
Appendix B 1.2	Periodic maintenance cost
Appendix B 1.3	Rehabilitation cost
Appendix C	Road User Cost
Appendix C.1	Work zone operation user cost
Appendix C 1.1	Work zone operation user cost for conventional flexible pavement
Appendix C.1.1.1	Work zone operation user cost for CFP during routine maintenance
Appendix C.1.1.2	Work zone operation user cost for CFP during periodic maintenance136
Appendix C.1.1.3	Work zone operation user cost for CFP during rehabilitation
Appendix D	Net Present Value (NPV)151
Appendix D.1	Net Present Value for Conventional Flexible Pavement147
Appendix D.2	Net Present Value for Flexible Pavement with Geosynthetic Materials153
Appendix E	Glossary

LIST OF ACRONYMS AND INITIALISM

AADT	Average Annual Daily Traffic
ACPA	American Concrete Pavement Association
BOQ	Bill of Quantity
CBR	California Bearing Ratio
СРІ	Consumer Price Index
ERA	Ethiopian Roads Authority
ESA	Equivalent Standard Axle
ЕТВ	Ethiopian Birr
FHWA	Federal Highway Administration
FP	Flexible Pavement
HDM	High way Development Management
НСМ	Highway Capacity Manual
HMA	Hot Mix Asphalt
LCCA	Life Cycle Cost Analysis
LLP	Long Life Pavement
LOS	Level of Service
NBE	National Bank of Ethiopia
NCHRP	National Cooperative Highway Research Program
NPV	Net Present value
RSDP	Road Sector Development Program
SC	Subgrade strength class
TC	Traffic class
TDC	Travel Delay Cost
VOC	Vehicle Operating Cost
VPH	Vehicle Per Hour
WZ	Work Zone

CHAPTER I

INTRODUCTION

1.1. Background of the study

Budget tightening, escalating costs for maintaining public services, functioning at an acceptable level, and increased public scrutiny of government-related expenditures have focused the attention of all segments of our socioeconomic system on the importance of effective management of resources and assets. Transportation agencies are especially concerned in this pursuit due to many factors. To mention a few, they rank among the top sectors in public spending, and the impacts of their investment decisions touch upon every member of the society, which makes public scrutiny rather intense. Furthermore, an asset base of 3 trillion dollars (i.e. the value of the transportation system in the US as estimated by the FHWA) is under the influence of numerous natural and man-made dynamics, many of which are uncontrollable and/or uncertain [1].

Decision-making and management in the transportation sector must be based on informed and conversant support. One of the most recognized techniques that provide such informed support, when applied properly, is "Life Cycle Cost Analysis" (LCCA). It is an economic evaluation technique that has been particularly valuable when there is a need to compare competing alternatives for projects with entailing costs and benefits that stretch over long spans of time [1].Among different alternatives competing for economic worthiness in pavements, flexible pavement incorporating geosynthetic material and conventional one is consistently confirmed by many researchers as the high ranker.

It was determined that about 20% by weight of the subgrade soil when mixed into the aggregate will significantly reduce the bearing capacity of the base layer [2, 3, 4]. Geosynthetics have been used in pavements to either extend the service life of the pavement by avoiding intermixture of aggregate and subgrade soil or to reduce the total thickness of the pavement system. Based on the cost of the geosynthetic materials relative to additional thickness of the base layer, the use of the reinforcement geosynthetics attributed to cost savings up to 55% [5]. However, the complete life cycle cost of these materials is still not clear because most studies overlooked it. This document proposes a comprehensive life-cycle cost analysis of flexible pavement with and without geosynthetic materials. This study discussed the economic aspects of geosynthetic materials in flexible pavement.

Although the concept of life cycle costing was introduced in the early nineteenth century, it was not until the current day that life cycle cost analysis began to be used properly in determining which investment will allow

for the most economical allocation of limited resources. The infrastructural sector performed different attempts to create Life Cycle Cost Analysis (LCCA) frameworks [6, 7, 8], since there is increasing emphasis on service life design [8]. LCCA is an economic assessment of an item, system, or facility to compare design alternatives considering all significant costs over the design life, expressed in terms of equivalent currency units [7]. LCCA should be performed during early design phases of the project to be beneficial, even though there is little knowledge concerning the system [6]. LCCA is used to objectively underpin decisions concerning methods and materials that influence the service life of the asset, and therefore the life cycle costs [8]. Life cycle cost analysis allows state agencies to evaluate different alternatives concerning proposed highway projects. The selection of different pavement types, the initial quality and strength of design, maintenance and rehabilitation strategies, and the financial impact on the agency are all concerns that are evaluated when performing a life cycle cost analysis. LCCA has become increasingly common amongst state transportation agencies, and it is a focus of this study to analyze an LCC for flexible pavement with geosynthetic materials and conventional pavement. Net Present Value (NPV) calculations are used to compare alternatives as the final comparison indicator [9].

1.2. Statement of the problem

Studies indicate that pavement construction in Addis Ababa consumes too large budget to complete. This is because appropriate economic analysis not performed during investment decision making. One of the most practical economic analysis tools is life cycle cost analysis and most of the time agencies overlooked it so that they try to manage asset cost reactively adopting the minimum construction cost as standard. While they try to eliminate costs via design, unless cost management follows suit, it will be two paradigms fighting each other. Thus, the most established paradigm will usually prevail unless the challenger can present a convincing case. Regardless to the policy of avoiding future economic surprise, decisions made in any area of construction industry has been failed to avoid it. This is why failures occurred far before the intended service life, inflated future costs, being the major source and immediate cause of widespread public grievances have becoming the defining features of pavement structure. To do right from the beginning, a study considering the comprehensive LCCA of pavements with geosynthetic materials, including initial construction, future maintenance, rehabilitation, environmental, and user costs, is urgently needed.

If life cycle costs are not considered, then the myopic strategy is adopted to accept the lower up-front price despite higher present value. As a result, minimum construction-cost solutions will always be chosen. Design standards in common use have often been derived from considerations of custom and practice, and usually

provide only a minimum level of safety and engineering functionally. Such an approach fails to recognize that the only reason for constructing a highway is to provide a service over a period of time into the future. An appraisal philosophy which fails to recognize this is clearly flawed.

The fact that Life-Cycle Cost Analysis (LCCA) is used to evaluate the cost-efficiency of alternatives and a good approach to avoid future economic surprise makes their study an important. Geosynthetic materials have been used in road infrastructure either to extend the service life of the pavement or to make it more economical by reducing the total thickness of the pavement structures. Even though the usefulness of these materials in pavements have been recognized, their economic benefits were not well considered and documented. Therefore, a comprehensive Life Cycle Cost Analysis (LCCA) is needed to know whether they are cost effective or not.

Generally overlooking life cycle costs makes investment decisions become subjective and dependent on the application of standards that are often themselves based on historical precedent rather than objective analysis. Surprisingly, avoiding life cycle cost was presented in some research papers as a better option than analyzing it which leads to wrong direction.

1.3. Research questions

This study was seeking to answer the following three research questions.

- 1. How to estimate agency, user and environmental costs for flexible pavement with and without geosynthetic materials?
- 2. How to carry out the economic evaluation and determine the more economical and sustainable option from pavement with geosynthetic materials and conventional pavement?
- 3. What is the best and most effective alternative of pavement option from economic point of view?

1.4. Objective of the study

1.4.1 General objective

The general objective of this study was to identify economical pavement option by making life cycle cost comparisons and economic analysis of flexible pavement with and without geosynthetic materials in Addis Ababa.

1.4.2 Specific objectives

- To estimate agency, user and environmental costs for both flexible pavement with geosynthetic materials and without geosynthetic materials.
- To carry out economic evaluation of flexible pavement with geosynthetic materials and without geosynthetic materials on selected segments of roads in Addis Ababa and to determine which

pavement option is more economical.

• To draw conclusions and recommend the best and most effective alternative pavement option from economic point of view.

1.5. Scope of the study

In order to accomplish these objectives, a thorough review of the literature was completed first to identify the debates and gaps of previous studies on LCCA on flexible pavement with geosynthetic. In this study, parameters associated with cost components were identified. This study was also covering a procedure for using LCCA techniques to evaluate flexible pavement with and without geosynthetic materials. The practice also accommodated the remaining residual or salvage value. Economic indicator was limited to NPV as the concern of the study was comparison that relied on differential costs only.

1.6. Significance of the study

Performing LCCA to develop more economical strategies is becoming more important for transportation agencies as traffic volumes increase, highway infrastructure deteriorates, and their budgets tightens. In the face of scarce funds and limited budgets, transportation officials must constantly choose the most cost-effective project alternatives as they consistently rank among the top sectors in public spending, choosing the most cost-effective type and design of pavement. To be able to do this, the magnitude of different costs and their variations must be identified and investigated. Even though it is aimed to avoid future economic surprises, to "think first" and to make wise decisions; unfortunately, economic surprises arise in almost all road infrastructure projects. One of the main reasons for this is that when a new project is to be launched, it is common to treat only the cost construction true cost must be considered to evaluate the economical aspect of the projects. All factors must be considered in the analysis such as user-delay costs and salvage value.

With these limitations and concepts in mind, this study is significant in that it incorporates all cost components such as; the agency, environmental and user costs associated with flexible pavement to make a wise decision and avoid future economic surprise.

CHAPTER II LITERATURE REVIEW

2.1. Introduction

Transportation is essential for economic and social development. Because of this, countries advanced in development have devoted considerable resources to the development of high-quality transport networks which need to be adequately maintained. Current road construction methods lead to significant maintenance requirements, which can only be met at a very high cost. The continued growth in road traffic and axle loads and the pressure to restrain government spending put growing pressures on road authorities to come up with new solutions. Besides, the cost to economies due to congestion and disruption during road works on high volume roads has become unacceptably high [11].

This study focuses on the comprehensive LCCA of flexible pavement with and without geosynthetic materials and their impact on the decision-making process. To achieve this objective, the literature was compiled from the following sources:

- Textbooks covering area of interest
- > journal articles, articles in periodicals, conference proceedings, reports, and document from websites
- ➢ FHWA and USDOT publications
- Searches of internet-based National Transportation library systems (example, transportation research information services, national technical information services)
- > Published proceedings of ASCE, TRB, and other agencies.
- Works that have been done previously in the area concerned with this issue and need to be supplemented by this study.

2.2. Flexible Pavement

Flexible pavements are those, which are surfaced with bituminous (or asphalt) materials. These can be either in the form of pavement surface treatments or, HMA surface courses. These types of pavements are called "flexible" since the total pavement structure "bends" or "deflects" due to traffic loads. A flexible pavement structure is generally composed of several layers of materials, which can accommodate this "flexing". A flexible pavement is a structure that maintains intimate contact with and distributes loads to the sub grade and depends on aggregate interlock, particle friction, and cohesion for stability [4].

2.3. Geosynthetics

Geosynthetics are used in any application area to have technical benefits and/or the overall cost savings.

Their use may result in lower initial cost and/or greater durability and longer life, thus reducing maintenance costs. The cost analysis of a geosynthetic-related project needs careful handling when taking decisions for the acceptance or the rejection of the option of using geosynthetics in the project just only on the basis of its cost [12]. Geosynthetic materials are "fabric-like materials made from polymers such as polyvinyl chloride (PVC), polyethylene, polypropylene, and polyester". The term geosynthetics represents many types of construction materials that serve several purposes, but the two forms of geosynthetics that are most widely used in pavement systems are geogrids and geotextiles [13]. Although both of these reinforcements may contribute to pavement performance, it was found that the mechanisms by which the two types reinforced the pavement are different. The major product uses in this area are geotextiles, geogrids, geosynthetic clay liners, geo-composites, geomembrane, geofoam, geocells, and geonets. The main purpose of using geosynthetic materials is to have better performance and to save money [14].

There are four fundamental functions of geosynthetic materials in pavements; Separation (Inserting an adaptable permeable geosynthetic will keep layers of various measured particles isolated from each other), Drainage (Geosynthetics permit the entry of water either descending through the geosynthetic into the subsoil or laterally within the engineered material), Reinforcement (The geosynthetic can really fortify the earth or it can expand clear soil support. For instance, when put on sand, it disseminates the heap equitably to lessen rutting), Filtration (The texture enables water to travel through the soil while limiting the movement of soil particles) [15].

According to [16] Separation function was perceived as the primary function of geosynthetics in pavements, particularly when they are utilized to upgrade the road with low bearing capacity subgrade. At the point when a lean layer is set between two different materials to anticipate the intermixing of the two materials, each material can completely play out their unique function. In this situation, there are fundamentally two mechanisms occurring with the geosynthetics as a separator in the wet, soft, weak subgrade road. One is avoiding the intrusion of subgrade soil up into the base coarse aggregate. The other is that the base coarse aggregate tends to penetrate the subgrade soil, which influences the quality of the base layer [13].

Putting a proper geosynthetic layer at the subgrade base interface can decrease the upward plastic flow of subgrade soil since the geosynthetic layer can offer assistance to dissipate the excess pore water pressure [17].

However, in spite of the fact that the geosynthetic layer can offer assistance to dissipate pore water pressure, there are a few limitations for geosynthetic selection. They found that in spite of the fact that higher permeability geosynthetics can dissipate pore water pressure faster, this will moreover cause the erosion of

the subgrade surface and upward movement of the eroded material.

Thicker geosynthetic material can decrease critical hydraulic gradient at the boundary of the contact area between a subbase particle and subgrade soil and so can diminish pumping. Also, compressible geosynthetics cause higher cyclic pore pressure and thus cause higher pumping. In addition, the base course particles enter the subgrade soil. This comes about within the reduction of base course thickness. When mixes with subgrade soil; the base aggregate loses its original quality [18].

There are prerequisites which must be taken after when utilizing geosynthetic as a separator [15].

Burst resistance: The geosynthetic must stand up to the underneath soil entering the upper base layer. Traffic loads cause force which energizes this movement. These loads are transmitted to the stone, through the geotextile, and into the basic soil. The focused soil at that point tries to push the geosynthetic fabric up. **Tensile strength**: The geosynthetic fabric must stand up to horizontal or in-plane tensile stress which is mobilized when an upper piece of aggregate is constrained between two lower pieces that lies against the fabric.

Puncture resistance: The geosynthetic fabric must be solid sufficient to stand up puncture. During utilize, sharp stones, tree stumps, roots, and base course load seem puncture through the geotextile.

Impact resistance: The geosynthetic fabric must stand up to numerous impacts of different objects. Impacts as a rule come from free falling objects such as falling rock, construction equipment, or materials. **Water permeability**: On the off chance that the water level rises, it should not be conceivable for water pressure to construct up beneath a separation layer to such a degree that the structure steadiness is imperiled. Water within the base layer should deplete out through the geotextile. On the off chance that not, the base may get to be unsteady. For that reason, the water permeability of the geotextile should be more noteworthy, or at least equal to, that of the subgrade.

There's a boundary between the separation and the geosynthetics function. There's unmistakable relationship between the opening estimate of geosynthetics and weight of soil mass. Abundance pore water pressure expanded as the number of loadings increased. Separation was found to be the essential function when the proportion of vertical stress on the top of subgrade (σz) to the undrain shear strength of the subgrade(cu) less than eight and reinforcement was the essential function when it is more than eight [19].

The geosynthetic materials can placed between the subgrade and the base, between the base and the hot-mix asphalt (HMA) layer or between the HMA layers and overlays. All the applications pertained to soft clay subgrades. Strain gages within the subgrade, moisture sensors and falling weight deflectometer (FWD) measurements were used to monitor the performance of constructed roadways. FWD results from his studies

showed an increase in pavement stiffness in sections where geotextiles were placed as a separator. The inclusion of fabric provided an increase in pavement strength by improving load distribution and acting as a separating membrane. No analytical modeling was performed to predict the observed behavior [20].

2.4. General Life cycle cost analysis (LCCA)

Before Life Cycle Cost Analysis (LCCA), a very basic concept must be clarified, namely the life cycle. The interpretation of the term life cycle differs from decision-maker to decision-maker, as is evident from the literature. According to Jan Emblemsvag (2003), a marketing executive will most likely think in terms of the marketing perspective, which consists of at least four stages [21]:Introduction, Growth, Maturity and Decline. A manufacturer, on the other hand, will think in terms of the production perspective, which can be described using five main stages or processes: Product conception, Design, Product and process development, Production, and Logistics. When the product has reached the customer (user or consumer), a different perspective occurs: the customer perspective. This perspective often includes five stages or processes: Purchase, Operating, Support, Maintenance and Disposal.

In Highway engineering; the concept of economics in line with life cycle was introduced as early as the end of the nineteenth century, when Gillespie issued his "Manual of the Principles and Practices of Road Making" in 1847. Gillespie characterized the most cost-effective highway project as the one that has the highest returns as to the expenses associated with its construction and maintenance [1].

Life-cycle cost analysis is a process for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future cost, such as maintenance, user, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project [22, 23]. In simple terms, LCCA is an analysis technique that supports more informed and better investment decisions. It builds on well-founded principles of economic analysis that have been used to evaluate highway and other public works investment for years. It incorporates discounted long-term agency, user, and other relevant costs over the life of a highway or bridge to identify the best value for investment expenditures (i.e., the lowest long-term cost that satisfies the performance objective sought). LCCA can be applied to a wide variety of investment-related decision levels to evaluate the economic worth of various designs, projects, alternatives, or system strategies to get the best return on the funds. A usable project segment is defined as a portion of a highway that, when completed, could be opened to traffic independent of some larger overall project (Highway engineering economics was introduced as early as the end of the nineteenth century, when Gillespie issued his Manual of "the Principles and Practices of Road Making" in 1847. According to Gillespie, the most cost-effective highway project is the one that has the highest returns as to the expenses associated with its construction and maintenance [24].

Though seemingly, LCCA was present in the works of Gillespie, it was articulated especially in the 1930s as part of the federal legislation in relation to flood control. By the time the need for minimizing the costs of a transportation facility became a necessity, LCCA had grown to be an accepted practice in various disciplines of our society [1].

However, researches conducted in this area consistently confirmed that, this concept was not used in highway projects until the 1950s. The works of the economist Winfrey in the 60s and the American Association of State Highway Officials (AASHO'S) "Red Book" of 1960 ushered in the concept of Life Cycle Cost Analysis to the transportation domain [25]. At the time, the available information was not sufficient to perform a comprehensive and reliable LCCA that truly encapsulates all components. Extensive research started as a result. The research focused on issues like information gathering and integration and quantifying the user cost and vehicle operating cost [26].

In 1984, the National Cooperative Highway Research (NCHRP) commenced project number 20-5 FY 1983 with the aim of promoting LCCA [27]. The aim of the project was to investigate the practice of LCCA in transport agencies of that time and examine important aspects and parameters of the life cycle process. The AASHTO, in their "Pavement Design Guides of 1983 and 1993", endorsed the use of LCCA as a means for economic evaluation and as a tool to support decision making process.

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 called for "the use of life cycle costs in the design and engineering of bridges, tunnels, or pavement. Subsequently, the National Highway System (NHS) Designation Act of 1995 mandated the States to perform LCCA on NHS projects. In 1996, the Federal Highway Agency released its Final Policy statement on LCCA.

The Transportation Equity Act for the 21st Century (TEA-21) of 1998, which replaced the ISTEA 1991, had removed the requirement for State Highway Agencies to perform LCCA on NHS projects. However, the same act continues the endorsement of LCCA by requiring the Secretary of Transportation to authorize research and development for LCCA enhanced implementation. Demonstration Project 115 "Life-Cycle Cost Analysis in Pavement Design", carried out by FHWA in 1998, developed an instructional LCCA workshop that has since been presented in various states many times. In addition, a resultant noteworthy technical bulletin outlining the best practice of LCCA methodology and related parameters was published [1]. In the year 2000, within FHWA, LCCA came under the charge of the Office of Asset Management. Its most recent product (late 2002) is the development of an LCCA instructional software package for pavement. Research commissioned by the State Highway Agencies and other interested partners continues to be conducted on a broader scale. It covers LCCA in the context of planning and management for transportation

projects, as well as other aspects, such as data collection and integration, the element of uncertainty, and the boundless topic of related user costs [1].

In the current day, **Life-cycle cost analysis (LCCA)** is defined as an analysis technique, based on wellfounded economic principles, used to evaluate the overall long-term economic efficiency between competing alternate investment options. LCCA is typically used as a means to evaluate and then compare the cost to the agency of any number of alternate pavement alternatives, including variations of concrete and asphalt pavement solutions. When done correctly, a life-cycle cost analysis of pavement design or rehabilitation alternatives identifies the strategy that will yield the best value by providing the expected performance at the lowest cost over the analysis period.

2.4.1. Economic Indicator

In the economic evaluation of projects, there are several formats of economic indicators for the analysis results. The most common are Net Present Value (NPV), Cost-Benefit Ratio (B/C), Equivalent Uniform Annual Costs (EUAC), and Internal Rate of Return (IRR). The choice of the appropriate indicator depends largely on the level and context of the analysis. It may also depend on the degree of uncertainty in some parameters [1]

In principle, the choice of the economic indicator should cater to the following questions [28, 29]:

- 1. Are benefits included in the analysis?
- 2. What is the level of decision-making and/or analysis involved?
- 3. What methods suit the requirements of the particular agency involved?
- 4. How important is the initial capital investment in comparison to future expenditure?
- 5. What method of analysis is the most understandable to the decisionmaker?

Since the LCCA project-level secondary analysis aims at evaluating project alternatives that result in equal categorical benefits but entail unequal costs, the Net Present Value (NPV) is considered the appropriate (and the prevalent) indicator for comparing the differential economic worth of projects. The Net Present Value indicator, with its additive function, allows the analyst to account only for the differential costs (or benefits) and, at the same time, maintain consistency in the evaluation process. This characteristic reduces the computations needed in the analysis tremendously. The Uniform Equivalent Annual Cost (UEAC) indicator is also acceptable, but should be derived from NPV. Computation of Benefit/Cost (B/C) ratios are generally not recommended because of the difficulty in sorting out cost and benefits for use in the B/C ratios [29].

Net Present Value NPV is the discounted monetary value of expected net benefits (i.e., benefits minus costs). NPV is computed by assigning monetary values to benefits and costs, discounting future benefits

(PVbenefits) and costs (PVcosts)using an appropriate discount rate, and subtracting the sum of discounted costs from the sum of discounted benefits. Discounting benefits and costs transforms gains and losses occurring in different time periods to common unit of measurement. Programs with positive NPV value increase social resources and are generally preferred. Programs with negative NPV should generally be avoided. The basic formula for computing NPV is [29]:

NPV = PV benefits - PV costs

Because the benefits of keeping the roadway above some pre-established terminal level are the same for all design alternatives, the benefits component drops out and the formula reduces to:

$$NPV = IC + \sum_{k}^{N} MC \left[\frac{1}{1+d_r} \right]^{nk} + \sum_{k}^{N} RC \left[\frac{1}{1+d_r} \right]^{nk} + \sum_{k}^{N} UC \left[\frac{1}{1+d_r} \right]^{nk} - SV \left[\frac{1}{1+d_r} \right]^{n}$$
 Equation 1

Where;

IC = initial construction cost; MC= maintenance cost; RC= rehabilitation cost; UC= user cost; SV = salvage value; n= analysis period/lifetime of the project, years; nk = number of years from the initial construction to the *k*th expenditure; N= number of future costs incurred over the analysis period; dr = discount rate.

2.4.2. Selection of base year

The base year is the year to which all "future costs and benefits" are to be discounted. Future benefits and costs will be discounted back to the base year's price level to give an indication of the present value of these factors. The selection of the base year should be consistent with the price year used to value benefits and costs. The base year is generally the 'current year'.

2.4.3. LCCA Procedures

The LCCA structured approach can be outlined in the following steps [23]:

1. Define projects alternative

This is the first step in the LCCA procedure. Experts and experienced professionals suggest potential life cycle strategies for the project. Each pavement design strategy specifies initial design and performance, time-dependent rehabilitation/treatment activities, and the timings of these rehabilitation activities and respective performances. At this stage, common costs between different strategies can be identified. For example, in evaluating new pavement projects, right-of-way costs are common to all alternatives. Marginal costs, especially those occurring in the future, can be insignificant with respect to the total value of the project; thus, it is helpful to identify such costs beforehand [1, 23].

2. Decide on the approach that would be followed (Probabilistic vs. Deterministic)

Deciding on the approach to be followed at this time should be accomplished based on information and data available for the LCCA model parameters. In all cases, "most of the LCCA parameters" are uncertain, and it is generally recommended that the probabilistic approach be adopted. The deterministic approach uses point estimates for all input variables for the model, whereas the probabilistic approach uses probability distributions for all unsure variables and therefore treats the inherent uncertainty in the model [23, 1].

3. Choose general economic parameters

General economic parameters are the discount rate and the analysis periods. Both parameters should be equal for all options.

4. Establish expenditure stream for each alternative

Expenditure stream diagrams can be constructed as shown in (Figure2). The expenditure stream diagram (Figure2) helps to visualize the quantity and timing of expenditures over the life of the analysis period. Three kinds of elements would be presented in the expenditure stream diagram: initial and future activities, agency, environmental and user costs related to these activities, and the timing and costs of these activities. The upward arrows on the diagram are expenditures whereas the horizontal arrow and segments show the timing of work zone activities and the period of time between them. The "remaining service life (RSL) value (salvage value)" is presented as a downward arrow and reflects a negative cost at the end of the "analysis period" [1].

5. Compute Net Present Value for each alternative

After constructing the expenditure stream, computing the "Net Present Value" of each alternative becomes a straightforward calculation using Equation. It is advisable to compute the agency, user, and societal costs separately before computing the total value of a project, in order to better understand the exact contribution of each cost category to the total final worth [23].

Figure 1: Performance Curve for Different Rehabilitation or Maintenance Strategies

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

Figure 2: Expenditure Diagram/Cash Flow Diagram

6. Compare and interpret results/Sensitivity Analysis

Once NPV for each alternative is computed, with agency, user, and environmental costs presented distinctively, interpretation of these results can be made. Generally, an alternative is preferred if its NPV is a minimum of 10 percent less than the NPV of other competing alternatives. If the difference in NPV of alternatives is smaller than 10 percent, then such alternatives are considered similar or equivalent. A detailed discussion of the interpretation of results and the treatment of uncertainty is given in the next chapter, which presents the recommended probabilistic approach. On the contrary, if the deterministic approach is adopted in the analysis, SA should be conducted as a minimum. The sensitivity analysis should check the effect of variability in the main input parameters for the analysis of the overall results. This is done by performing the analysis over a range of possible values of a particular parameter under testing while holding all other parameters constant. This analysis can give the decision-maker a better representation of the comparison, and it can rule out bias toward certain alternatives to some extent [23, 1].

According to [1], the most significant parameters that should be tested for sensitivity in the analysis are:

- ✤ The discount rates
- Timing of future rehabilitation activities
- Traffic growth rate
- Unit costs of the major construction components and
- Analysis period

7. Re-evaluate design strategies if needed, report and give comments on the result.

Presenting results and analyzing them help the process of re-assessing the design strategies, whether in regards to scope, timing, or other factors. Sometimes minor alterations of the design strategies can lead to a better choice for the project [1].Figure 3 illustrates the LCCA structured approach

2.5. LCCA parameters

2.5.1. Discount rate

Choosing the appropriate discount rate for LCCA of a project under simulated environments remains the subject of international debates. Among the key features in the LCCA process, the most important is accounting for the future costs. The treatment of future costs is based on a well-established principle in economics according to which money has time value. That is to say, a dollar in the future year is worth less than the value of the dollar today. Therefore, to be able to make decisions regarding investments with different long-term time-lines, all future costs and benefits must be converted to a common time dimension. This procedure is referred to as discounting. Discounting is performed by employing a discount rate that represents the percent change in the value of the dollar per period of time. Similar to costs, LCCA can use discount rates. In the concept of the LCCA, the discount rate either real or nominal discount rate can be defined as a value in percent used as a mean for comparing the alternative uses of funds and costs over a period of time by reducing the future amounts to present worth. In that manner the economics of the different alternatives can be compared on a common basis [30, 1]. Real discount rates reflect the true-time value of money with no inflation premium and should be used in conjunction with non-inflated dollar cost estimates of future investments. Nominal discounts rates include an inflation component and should only be used in conjunction with inflated future dollar cost estimates of future investments. Data on the historical trends over a very long period indicate that the real value of money is approximately 4%. In 1995 and 1996, the FHWA Office of Engineering, Pavement Division, conducted a national pavement design review and found that the discount rates showed a distribution of values clustering in the 3-5% range. Good practice suggests using a real discount rate, one that does not reflect an inflation premium, of 3-5% in conjunction with real/constant dollar cost estimates. The following basic equation can represent the relationship of the future cost and its present value:

$$P = F \left[\frac{1}{1+dr}\right]^n \qquad Equation 2$$

where P is the present worth of a future cost, F is the future cost occurring after n time period from the present, n is the number of time periods at which F is incurred, and dr is the discount rate in decimal.

The discount rate used in roadway LCCA is a function of both the interest rate and the inflation rate. In general, the interest rate (often referred to as the market interest rate) is associated with the cost of borrowing money and represents the earning power of money. Low interest rates favor those alternatives that combine large capital investments with low maintenance or user costs, whereas high interest rates favor reverse combinations. The inflation rate is the rate of increase in the prices of goods and services (construction and upkeep of highways) and represents changes in the purchasing power of money. The discount rate used in roadway LCCA is approximately the difference of the interest rate minus inflation rates. Discount rate represents the real value of money over time. The exact mathematical relationship between the discount rate, the interest rate, and the inflation rate is as follows [31]:

$$d_r = \left[\frac{1+i}{1+f}\right] - 1$$
 Equation 3

Where: dr = discount rate, decimal

f = inflation rate, decimal

I = interest rate, decimal

Selection of an appropriate discount rate is highly debatable. The FHWA Office of Engineering, Pavement Division, conducted a pavement design review and found that the discount rates currently used by State Highway Agency to have a distribution of values clustering in the 3 to 5 percent range [31].

There are many factors that affect the time value of the money or the discount rate; the most significant of these are the earning capacity of the money and the inflation.

2.5.2. Interest rate

This represents the annual yield of the principal if invested in some form, such as bonds, treasury bills, or a bank savings account. When interest paid over a specific time unit is expressed as a percentage of the principal, the result is called the **interest rate** [32].

2.5.3. Inflation

Besides the above discussion of the effects of inflation on the discount rate in LCCA, inflation can be utilized for another purpose in LCCA. It is not uncommon to find that the available documented prices of construction, material, labor, or any LCCA-related components are dated. When this is the case, these unit prices must be converted to today's value by "inflating" them. This can be done by multiplying the dated price by the relative increase in the price index between the date of the price and the present. Price indexes can be a broad-based price index, such as the implicit deflator for Gross Domestic Product or the Consumer Price Index when the dated prices concern general items such as the value of time. Alternatively, a specific

price index such as the Highway Construction price index can be considered a better indicator for prices related to construction activities [1].

2.5.4. Analysis period

Like all transportation assets, highway pavements are aimed to be designed and constructed so that they can provide service for a longer period of time. The service life of a facility may generally be defined as the time (or cumulative value of some usage parameter such as loading) that elapses between initial construction and the next construction, and typically exceeds one decade for highway pavements. The facility service life depends on the minimum level of service and the rate of facility deterioration. The overall service life of a facility may be considered an aggregation (sometimes overlapping) of the service life of the pavement design (assuming zero maintenance) and the individual service lives of various rehabilitation and maintenance treatments that comprise the preservation strategy. Competing pavement design alternatives may vary in service life. As such, in order to make an impartial comparison between alternatives, it is useful to either express all costs and benefits in their equivalent annual value, or utilize a fixed time frame for all alternatives. In the latter case, such fixed time frame is referred to as the analysis period or time horizon [33].

The analysis period is the period chosen over which the facility performance will be analyzed in Life Cycle Cost Analysis [1]. Conceptually, this period should represent the useful life of the associated facilities/assets affected by the decision, or in other words, the period over which the project will be in operation [1]. In the ideal case, the analysis period is equal to the overall facility service life, but in many cases, is less or more than the service life [33].

Many of the public projects are expected to be in operation for as long as it is needed or for an indefinite period. When planning an interstate highway, we do not plan the project to be operational for some specific period after which the highway will be demolished and its right-of-way will be transferred to other uses. In such cases, the analysis period chosen when conducting LCCA has to be estimated by the service life of the most durable component of the facility, which is typically the component that carries the higher portion of the initial cost [1].

This period should be sufficiently long enough to reflect long-term differences between different design and rehabilitation strategies, and it may contain several maintenance and rehabilitation activities, as conceptualized in Figure 3 [1, 29].

When options involving facilities with different economic lives are being compared based on their life cycle cost, it is recommended that the analysis period is set the same for all options, and this period should be equal to the useful life of the most durable option. Also, the FHWA cautions that the analysis period should not

drive the decision, and asserts that a robust decision can be made only if the analysis period is of sufficient length. In other words, if a sufficiently long analysis period is used for the analysis, incremental changes in the analysis period are not likely to change the decision supported by the LCCA [33]. For assets having useful life remaining at the end of this timeframe, a residual value/salvage value should be estimated [1].

Figure 3: Conceptual Graph Representing the Serviceability of a Facility over Time/analysis period Analysis period, or the time horizon over which alternatives are evaluated, should be enough to reflect longterm cost differences associated with reasonable design strategies. While FHWA's LCCA Policy Statement recommends an analysis period should not be less than 75 years for major bridge, tunnel, or hydraulic system investment and 35 years for all pavement projects, including new or total reconstruction projects as well as rehabilitation, restoration, and resurfacing projects. an analysis period range of 30 to 40 years is not unreasonable. The following graphical representations of expenditures over time was developed to help visualize the extent and timing of expenditures [29].

One approach, favored by some economists, for deciding on the analysis period in long term public projects is to use a "floating" time period. A floating time period is determined as that point in the future where the costs and benefits, discounted to present-day terms, become negligible (i.e. they fall below some selected threshold). The discount rate used is then the prime factor in determining the extent of the floating time period [1].

The FHWA LCCA Interim Technical Bulletin published in 1998 [29], states that it might be appropriate to deviate from the recommended minimum 35-years analysis period for pavement projects when slightly shorter periods could simplify salvage value computations. It further recommends a shorter analysis period (i.e. ten years) when analyzing pavement rehabilitation/reconstruction projects. The recommended analysis period for new pavements is between 25 and 40 years and between 5 and 15 for rehabilitation alternatives.

However, factors such as geometry and traffic capacity may have a bearing on the analysis period. Walls and Smith [1998] argue that regardless of the analysis period selected, the analysis period used should be the same for all alternatives. However, this issue may be further investigated, because it seems that different analysis periods could be used in cases where EUAC is used as a measure of economic efficiency.

2.5.5. Rehabilitation Timings

This parameter is one of the highly uncertain and sensitive parameters in the LCCA model. Future activities can be classified as Cyclic activities and future activities that do not recur on a cyclical basis. The former one covers the activities that take place on a cyclical basis like annual maintenance and user costs/activities during normal operations. Generally, the timing of these activities corresponds to the time cycles, which is taken as incremental number of years in LCCA. The later covers all rehabilitation, restoration, and resurfacing activities. The main factor that should affect the timing of these activities is the pavement condition. Nevertheless, in practice, there are other exogenous factors that affect the actual timings of these activities such as resources constraints within the agency. For those reasons, the timings of these activities are among the most important yet uncertain parameters in LCCA [1].

2.5.6. Remaining service life (RSL)

In many cases, LCCA pavement design and preservation scenarios are such that there is some residual pavement level of service at the end of the analysis period. In other words, the pavement can still serve for some more years beyond the analysis period. Some literature refers to such extra service life as remaining service life. The FHWA cautions that failing to account for such remaining service lives can result in a biased LCCA output. Figure 4 shows how remaining service life is calculated [23].

Figure 4: Calculation of Remaining Service Life

The figure shows that at the end of the analysis period, there may be some remaining service life from rehabilitation number 2. The RSL is calculated by performing a straight-line depreciation of the cost of the last rehabilitation activity over the course of its expected service life. The RSL is considered as a benefit, or a negative cost that occurs at the end of the analysis period and is therefore discounted to present value and added to the present value of other cost streams. The application of the RSL concept to agency costs of pavement preservation treatments is generally straightforward and accepted. However, the user costs associated with such activities is not as intuitively obvious [FHWA, 1998]. User costs are less definitive than agency costs, but like agency costs, there is some "benefit" or "avoidance" of user cost due to an RSL: the remaining service life of a preservation activity has the effect of deferring the next expenditure of user costs. Without RSL for user costs, the decision supported by user costs can change as the analysis period changes unless very long analysis periods are used. The FHWA states that using RSL or user costs removes bias from the analysis. The FHWA argues that the user "pain and suffering" was fully experienced and cannot be assuaged at the end of the analysis period. The subsequent imposition of user costs due to the next work zone operations is simply being delayed and some LCCA "benefit" should be recognized and taken for such deferment. Also, the FHWA cautions that User Cost RSL is not User cost salvage value as the latter does not really exist in the true sense of the word.

2.6. Costs in LCCA for pavement projects

based on the bearing entity of the costs, costs in LCCA for pavement projects are classified into Agency, user, and social costs. Even though the theory behind LCCA does not implicate any differential treatment for these types of costs, LCCA practices have calculated them separately, since the provision that the decision-makers may weigh them differently.

Figure 5: Cost Components Frame Work [33]

2.6.1. Agency cost

Management of any civil infrastructure is associated with costs incurred by the responsible agency including initial costs associated with feasibility studies, engineering design, construction, operation of the facility, maintenance and rehabilitation, and disposal costs. In the context of LCCA for pavement design, preliminary costs such as feasibility and engineering studies are excluded, as they are typically common among all pavement alternatives and LCCA needs only consider differential costs between alternatives. Agency costs include all costs incurred directly by the agency over the life of the project. They typically include initial preliminary engineering, contract administration, construction supervision and construction costs, as well as future routine and preventive maintenance, resurfacing and rehabilitation cost, and the associated administrative cost. Agency costs also include the maintenance of traffic cost and can include operating costs such as pump station energy costs, tunnel lighting, and ventilation. Cost analysis is a cardinal element of any
LCCA study. Initial cost is no longer considered the sole criterion in evaluation of a pavement projects or the selection of project alternatives. In the current state of pavement design and management practice, all costs incurred over the life of the pavement are considered. These include rehabilitation and maintenance costs, and salvage value. However, the changing value of money over time means that some adjustment has to be made to bring all such costs to constant dollar [31].

According to FHWA, (2003) agency Costs are the costs that are assumed by the agency as a result of putting the facility in service at the outset and maintaining its function at an acceptable level. Agency costs consist of the costs of initial construction, rehabilitation and upgrading, periodic maintenance, engineering, and agency overhead. Initial construction, maintenance, and rehabilitation costs cover the costs of material, labor, machinery, traffic control, and any other contingencies. These costs can be estimated from recent bids and historic records, provided that inflation is considered. Most highway agencies keep detailed records of such data, and generally, acquiring these costs is a straightforward matter. Engineering judgment can assist in estimating such costs when new materials or technology is used in the project [1].

2.6.1.1. Capital cost

Capital costs represent the initial outlay of expenditure required to start up a project (planning, design and construction). There are a number of inputs and activities that make up the total capital costs for a road project. Each input and activity must be estimated as accurately as possible and a project plan is often required to determine the timing and duration of each task. The timing of capital cost expenditure must also be estimated. The makeup of capital expenditure can include; design and construction costs, earthworks, pavement and seal, intersection work, value of land resumptions or voluntary acquisitions, value of any land purchased at an earlier date even if the land has been in Crown ownership for several years, costs of environmental mitigation such as noise barriers, fencing, landscaping or drainage, project construction and design contingences, project management and other professional costs.

2.6.1.2. Maintenance cost

Maintenance costs include all Laboure, machinery and materials costs for routine, periodic and rehabilitation maintenance. Estimates of annual expenditure required to maintain and preserve road infrastructure can generally be determined based on historical expenditure levels. According to [23], Changes in maintenance costs commonly arise when:

- 1. pavement improvement reduces the need for maintenance costs
- the maintenance effort is reduced in line with declining traffic volumes. In this situation, the gain to
 a project from reduced maintenance may be offset by increases in user travel time and VOC, and
 decreased benefits from the lower amount of traffic using the road

3. maintenance costs may be higher in the project case due to an asset extension, e.g. the addition of an overtaking lane

4. maintenance effort is increased to improve service standards or to postpone the need for capital works. Consistent with FHWA methodology, maintenance costs are considered part of the 'cost' measurement in the LCCA. This recognizes an assumption that the road agency's objective is to efficiently utilize all resources, not only its capital budget. As such, any saving in maintenance costs as a result of a project, is considered as a reduction in costs in a whole-of-life context.

2.6.1.3. Salvage values

While many sources of literature consider the terms salvage value, residual value, and remaining service life to be synonymous, the FHWA appropriately makes a clear distinction between these terms. The FHWA attaches a physical connotation to the concept of salvage value and argues that it is strictly defined as the value of recovered, recycled or scrap materials, and can only be realized when the entire pavement structure is excavated at the end of the analysis period and the pavement materials are actually reclaimed. In that case, the value of the salvage is treated as a negative agency cost. It is the estimated remaining value of the project at the end of the analysis period. It represents the capacity of the asset to accrue benefits past the end of the evaluation period.

For example, a concrete bridge structure with a life of 100 years has a capital expenditure of \$10 million. If the evaluation period is 30 years and the project life is 100 years then this represents a 70% remaining life of the bridge. Using a straight-line depreciation method, the residual value would be \$7 million. The depreciated value of the new bridge after 30 years represents the minimum value that could be returned. The maximum value would be the present value of the benefits (road user cost savings) the project could produce between years 31 and 100. The residual value is treated as a negative value, reducing project capital costs When using a residual value, it is important that the method used to calculate it is appropriate and the value is justifiable. It is generally recommended that specialized economic advice be sought to calculate the residual value. The discounted salvage value is deducted from the total costs when calculating the net present value [1].

There is no general consensus on how to estimate the salvage value, primarily because infrastructure projects are never terminated at the end of analysis period. One approach to estimating this component is by accounting for the costs of demolition and removal as well as adding the value of the recycled project waste. Another approach is by calculating the relative value of the remaining serviceability of the alternative with respect to the cost of the last rehabilitation activity [34]. Each approach has its own critics, and one way to avoid such added dubious calculations is to adjust the analysis period slightly, so as that the remaining serviceability is the same for all alternatives and the salvage value can be omitted from calculations.

2.6.2. User cost

User costs are costs incurred by the highway user over the life of the project depend on the highway improvements and associated maintenance and rehabilitation strategies over the analysis period. User costs form a substantial part of the total transportation costs [Greenwood et al.,2001] for highway investments and can often be the major determining factor in life-cycle cost analysis.

In LCCA, highway user costs of concern are the differential costs incurred by the motoring public between competing alternative highway improvements and associated maintenance and rehabilitation strategies over the analysis period. In the pavement design arena, the user costs of interest are further limited to the differences in user costs resulting from differences in long-term pavement design decisions and the supporting maintenance and rehabilitation implications. User costs are an aggregation of three separate cost components: vehicle operating costs (VOC), user delay costs, and crash costs [22].

There are two dimensions of highway user cost [33]:

- $\boldsymbol{\diamond}$ user cost categories (work zone user costs and non-work zone user costs), and
- ✤ user cost components (vehicle operating costs, travel time costs, and crash/accident costs).

User costs are the costs encountered by the project users. These costs generally occur during the lifetime of the project.

- 1. The cost of travel delay time during normal operation and work-zone operation.
- 2. Vehicle operating costs during normal operation and work-zone operation (e.g. some LCCA literature considers this type of costs real or out-of-pocket costs). User costs are estimated differently during the normal operation of the facility and during work-zone operation.

2.6.2.1. Normal Operation/Non-Work Zone User Costs

According to [33], the main components of normal operation user costs are Vehicle operating costs, travel time costs, crash costs.

Vehicle operating costs are mileage-dependent costs of running automobiles, trucks, and other motor vehicles on the highway, including the expenses of fuel, tires, engine oil, maintenance and the portion of vehicle depreciation attributable to highway mileage traveled. Factors affecting vehicle operating costs include vehicle type, vehicle speed, speed changes, gradient, curvature, and pavement surface. Vehicle operating costs have long been of interest to engineers since they form a significant portion of road user costs. This has resulted in the development of a wide range of models for VOC computation.

Travel time costs refer to the value of time spent in travel and include costs to businesses of time by their employees, vehicles and goods, and costs to consumers of personal (unpaid) time spent on travel, including

time spent parking and walking to and from a vehicle. Travel-time savings is an important component of user benefits because savings in travel time are often the greatest potential benefit of transport improvement. Studies have shown that the value of time is sensitive to a variety of factors such as income level, type of trip made, time of day or amount of time saved and congestion. There are some popular approaches for estimating value of time. These approaches include modal choice approach, route choice approach, speed choice approach, travel demand approach and travel time budget approach. This section reviews four models used for valuing travel time.

Crash costs are costs related to motor vehicle traffic crashes. They include fatality, injury and Property Damage Only (PDO) costs. Usually these costs are estimated by multiplying the number of crashes for each crash type by the average cost per crash. The FHWA *Real-Cost* Software does not consider crash costs for LCCA obviously because an FHWA study (Construction Cost and Safety Impacts of Work-zone Traffic Control Strategies) concluded that there were no significant impacts on crash rates due to work zones. Nevertheless, various research efforts have attempted to provide models for crash costs estimation, particularly during normal operations. Some of the methodologies in use for computing crash costs are discussed in the following sections. As these are for normal operations, they do not vary be pavement design and preservation alternative and are therefore added here only for academic purposes.

2.6.2.1.1. Travel Delay Costs

The cost of travel delay time during normal operation is typically a function of the distance and the vehicle speed, which is dependent on the demand and capacity of the facility. All of these factors are expected to be equivalent for all alternatives in LCCA (i.e. project-level and secondary analysis), which leads to the exclusion of this type of costs. On the other hand, travel delay time during the work zone operation of rehabilitation activities depends on many other factors such as the work-zone plan (i.e. Number of lanes closed, time of day of operation, and number of days of operation),traffic volume and characteristics, and vehicle speed (during normal operation and during work-zone). Even though the calculations needed for this type of costs are cumbersome, some computer programs can be utilized to estimate them independently of LCCA such as Queue work zone, or as part of LCCA such as the FHWA Probabilistic LCCA program, which incorporates a sub-module for calculating the user costs during work zone operation. The importance of including user delay time during work-zone operation has been increasingly emphasized in all LCCA literature. These costs can exceed agency costs during rehabilitation activities by far, especially on highly traveled facilities in urban areas. Moreover, increasing scrutiny by the public of the unwarranted delay time costs they are incurring because of mismanaged work-zone activities makes these costs as relevant as agency

costs, if not more. The FHWA technical bulletin [29]provides a detailed eight-step procedure of how to estimate these costs.

2.6.2.1.2. Vehicle Operating Cost

At this level of the LCCA, Vehicle Operating Costs (VOC) is dependent on the facility serviceability (i.e. pavement roughness) and the traffic volume and characteristics only, since the roadway curvature and gradient are similar for all alternatives. The VOC includes fuel consumption, lubricant consumption, tire wear, labor and parts costs for vehicle maintenance, and depreciation. In order to estimate these costs, two types of models are needed; models that accurately predict facility serviceability (i.e., pavement performance models) and models that relate VOC of different types of vehicles (i.e., passenger cars, commercial vehicles) to pavement serviceability.

Academic literature contains many models that have been developed for this purpose. Highway agencies can either utilize general models that are appropriate to their relevance, calibrate available models to local conditions, or develop their own models from databases of their pavement management systems (PMS). The FHWA LCCA technical bulletin considers that vehicle-operating costs (VOC) are equivalent for different alternatives when the level of serviceability is maintained above the threshold (PSI is above 2.5), and accordingly suggests that VOC's during normal operation can be excluded from LCCA [29].

Other types of user costs include discomfort and reliability. In the LCCA literature there is no evidence that these costs had been included in the analysis mostly because it is not proven that such costs vary between different alternatives [1].

2.6.2.1.3. Accident Cost

Accident costs have been estimated as a dollar per unit length for different types of facilities (rural, urban, freeway, etc.). Some research has estimated accident rates as a function of skid resistance, but this is a special case in which aggregates used in the wearing surface might differ between alternatives. In general, there is not enough research that shows that the accident rate can vary among alternatives with different serviceability, neither is there research about the rates of accidents during work-zone operation even though such costs might vary among alternatives [1].

2.6.2.2. Work Zone User Costs

A work zone is defined in the Highway Capacity Manual (HCM) as a segment of highway in which maintenance and construction operations impinge on the number of lanes available to traffic or affect the operational characteristics of traffic flowing through the segment. Work zone is defined in the Manual on Uniform Traffic Control Devices (MUTCD) as an area of a highway with construction, maintenance, or

utility work activities. A work zone typically is marked by signs, channelizing devices, barriers, pavement markings, and/or work vehicles [35]. The practitioners can use their discretion in selecting appropriate work zone impacts to be used in WZ RUC analysis. Work zone operations results in three types of vehicle operating costs, which include speed change vehicle operating costs, stopping vehicle operating costs and idling vehicle operating costs [36].

2.6.2.2.1. Vehicle Operating Cost

VOC includes the consumption costs of the following resources:

- Fuel consumption.
- Engine oil consumption.
- Tire-wear.
- Repair and maintenance.
- Mileage-related depreciation.

In Work Zone Road User Cost analysis, VOC is an aggregation of the following components [35]:

- Speed Change Vehicle Operating Costs (VOC): This is the additional cost under unrestricted conditions associated with decelerating from the upstream approach speed to the work zone speed and then accelerating back to the approach speed after leaving the work zone.
- Stopping Vehicle Operating Costs (VOC): This is the additional cost under restricted conditions related with stopping from the upstream approach speed and accelerating back up to the approach speed after traversing work zone.
- Queue Idling Vehicle Operating Costs (VOC): This is the additional cost associated with stop-andgo driving in the queue. The idling cost rate multiplied by the additional time spent in the queue is an approximation of actual VOC associated with stop-and-go conditions. When a queue exists,
- stopping delay and VOC replace the free-flow speed change delay and VOC.
- Detour VOC is the additional cost associated with the excess distance to be traveled by selecting a detour route under unrestricted or restricted conditions.

2.6.2.2.2. Travel Delay Costs (TDC)

Travel delay costs constitute a significant proportion of road user costs. The NHCRP report 456 states that travel time savings is usually the primary user benefit for transportation projects. In quantifying travel delays for work-zone operations, four types of delay costs are considered. They include speed change delay, reduced speed delay, stopping delay and queue delays [FHWA, 1998]

- Speed Change Delay Costs (TDC): This is the additional time required to decelerate from the upstream approach speed to the work-zone speed and then accelerate back to the initial approach speed in the wake of crossing the work zone.
- Reduced Speed Delay Costs (TDC): This is the additional time required to traverse the work zone at the lower posted speed. It relies on the upstream and work zone speed differential and length of the work zone.
- Stopping Delay Costs (TDC): This is the additional time required to come to a complete stop from the upstream approach speed and accelerate back to the approach speed after traversing the work zone.
- Queue Reduced Speed Delay Costs (TDC): This is the additional time required to go through the queue that is formed as a result of the work-zone.

2.6.3. Environmental Cost

The environmental impacts could affect the air, water, biodiversity, natural resources, noise, and heritage. Among these, only the costs of air pollution and noise have been monetized up to date in transportation evaluation [1].

The environmental effects model of the HDM-4 is a more comprehensive model and was used in this study. It generates the environmental costs based on three major environmental effects: Air pollution from vehicle emissions and noise pollution. The HDM-4 model primarily estimates effect of the following air pollutants associated with vehicle emissions: Hydrocarbons (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitric Oxides (NOx), Sulphur Dioxide (SO2), Lead (Pb) and Particulate Matter (PM). The model predicts the emission rates (g/km) as follows [37]:

TPEi = EOEi * CPFi Equation 4

Where TPE_i is the tailpipe emissions in g/km for emission type *i*; EOE_i is the engine out emission in g/km for emission type *i* and CPF_i is the catalyst pass fraction for emission type *i*.

2.7. Construction Cost Estimation Models

Cost estimation of construction projects with accuracy at the early phase of project development is crucial for planning and feasibility studies. However, a number of difficulties arise when conducting cost estimation during the early phase. Major problems include lack of preliminary information, lack of database of works costs, lack of appropriate cost estimation methods, and the involvement of many environmental, political, social and external uncertainties. Given its significance, conventional tools such as regression analysis have been widely employed to tackle the problem [38].

Levinson et al., (2003) have developed a regression model to predict the cost of new links and expansion as a function of the year of completion, duration of, and the distance from the nearest downtown. According to (Sodikov, 2005) Regression models have been proven to be reliable and used for decades. Regression models have an advantage in that they can be defined by mathematical expression and explain relationship between dependent variable and independent variables. They are widely used and have been proven to be reliable in cost estimation for decades [38].

In the case of Ethiopia, a conceptual and preliminary cost estimating models was developed for asphalt road construction projects using historic data, statistical tools such as SPSS, and Rsoftware's by [38] based on sixteen sets of data collected in the Federal Road Projects. As a result, six regression cost estimating models which include bid quantities, and project size (i.e. road length and road width) as input variables were developed to estimate the total cost of road construction project.

Model №	Regression models
1	Total cost (ETB)= 26.58X1 + 119.4X2 + 97.62X 3
2	Total project cost =45.7 X1 + 151.4X2 +195.24X3
3	Total project $cost = 1067.57X3$
4	Total project cost = 7888.25X5
5	Total project cost = 747.85X4 *X5
	Total project $cost = Earthworks cost + Sub base and Base coarse works cost + Asphalt$
6	works $cost + Furniture cost$. Where; Earthworks $cost = 55.76X4X5$, Sub base and Base
U	works cost = 83.42X4X5, Asphalt works cost = 109.85X4X5, Furniture works cost =
	23.38X4X5.

Where,

X1 = Earthwork; cut, fill, and topping quantities (m3)

X2 = Sub base and Base coarse quantity (m3)

X3 = Asphalt quantity (m2)

X4 = Road width (m)

X5 = Road length (m)

4 of the above models include bid quantities as independent variables (models 1 through 4), while the other two models include road length and road width as independent variables (**Models 5 and 6**). It should be noticed that in the very early stages the bill of quantity (**BOQ**) is not available, meaning that the models using road width and length (Models 5 and 6) are easier and more fit to be used. Later, when the BOQ is

available, the models based on BOQ (models 1 through 4) may be used.

2.8. Economic Evaluation

In principle, economic evaluation is performed by accounting for all the monetary equivalency of costs and benefits resulting from project implementation, taking into account their respective times of occurrence. At times economic analysis is confused with financial analysis, so it is imperative to differentiate between these two types of analyses. This will eliminate any possible ambiguity in the theoretical basis of LCCA [1, 31]. Financial analysis comprises the comparison of revenues and expenses (initial investment, maintenance, and operating costs) recorded by the concerned fiscal agents in each project alternative (if relevant) and working out the corresponding financial return ratios. Economic analysis, on the other hand, consists of identifying and comparing fiscal as well as social benefits and costs accruing to the economy as a whole, setting aside, for example, monetary transfers between economic agents [1].

Life Cycle Cost Analysis is an economic evaluation technique that has been particularly valuable when there is a need to compare competing alternatives for projects with entailing costs and benefits that stretch over long spans of time. As a starting point, it is necessary to expound on three underlying principles that mold LCCA in the approach currently employed in transportation evaluation and recognized by its analysts. The three topics cover financial analysis and economic analysis, the systems method, and the levels of analysis [1].

2.9. Past Studies

Sprague et al. (1989) conducted a short-term and long-term field evaluation on using separation geosynthetic in a permanent road. A LCCA which included agency costs only was included in the study to examine the cost-effectiveness of using geosynthetic in the pavement. A 2.5 km trial section was built in Greenville County, Virginia. Three pavement cross-sections: 64mm full depth HMA, 38mm HMA over 76mm stone base, and a triple treatment surface course over 75mm stone base were evaluated. Approximately 150m each of three different types of geotextiles, 135 and 203 g/m2 needle-punched nonwoven geotextile and a 135 g/m2 silt film woven geotextile, were installed between the subgrade and each pavement section. The remaining length of the road was to act as a control section for the long-term evaluation of each pavement section. Periodically, an independent pavement visual surface inspection program was applied through the sections. A pavement management computer program, Micro Paver, was utilized in this study. The result shows that geotextiles provide subgrade/stone base interface stability which increases the life and reduces the maintenance cost of a pavement section [39]

When evaluating the use of geosynthetic materials as reinforcement in aggregate placed over soft subgrades,

the initial soil strength of the test area was too high for the research objectives, so the test site area was flooded for nearly eight months. The flooded area was drained, resulting in a CBR value of approximately 1% for the test site subgrade. The subgrade was covered with a geosynthetic materials, and then overlaid with an aggregate layer of varying thickness. It was found that geosynthetic materials improved the performance of the pavement [40].

Studies show that pavement sections with geosynthetic materials can carry three times the number of loads as conventional unreinforced pavements, and allowed up to 50% reduction in the base course thickness [41]. When evaluated in terms of effectiveness, geosynthetic materials can improve the performance of road. By reducing the undercut and thickness of base and subbase layers, geosynthetic materials can save initial construction cost of road also the life cycle cost by increasing the design life of the road. It is recommended to perform an economic evaluation of a proposed reinforced pavement with life-cycle cost analysis to conclude effectiveness of geosynthetic on permanent paved roads [42].

CHAPTER III RESEARCH METHODOLOGY

3.1. Study Area

This research was conducted in Addis Ababa the capital city of Ethiopia which had founded in 1886, it is the largest city in Ethiopia, with a population of 3,384,569 according to the 2014 population census with annual growth rate of 3.8%. Addis Ababa is located in geographic coordinates between 9° 1′ 48″ *N* and 38° 44′ 24″ E and elevation of 2,355 m above mean sea level. Due to large traffic the city administration construct and maintain the roads more highly than ever. The place where geosynthetic material application conducted was on National theater center and around Gandhi Hospital which is located in Kirkos sub-city in Addis Ababa city administration [43].

The total length of the road segment up on which geosynthetic material applied was around 1.25 km. Of this length a unit length was considered in this analysis since majority of the user costs are calculated per vehicle kilometer.

Figure 5: Map of Study Area

3.2. Research design

The present study utilized quantitative methodology. It employed an informal interview and field survey as the research instrument. The data collection was based on interview and field survey and these served as the primary instrument. The review of desk researches was conducted in order to accumulate enough information pertaining to the objectives of the study.

Figure 6: Designed Research design frame work

3.3. Target Population

The study targeted the Addis Ababa road project which have flexible pavement with geosynthetic materials along the stretch in general and to have optimum comparison to meet the desired objectives. The selected road project was particularly the road around the national theater in front of Gandhi hospital.

3.4. Study Variables

A variable is an empirically applicable concept that takes on two or more values.

✤ Dependent variables

These are the variable that are going to be explained and are the expected outcome of the independent variables. These are;

> Life cycle cost of flexible pavement with and without geosynthetic materials.

Independent variables

These are Explanatory variables and are the hypothesized cause of a dependent variables. In this study;

- Initial construction cost
- Maintenance/Rehabilitation cost
- Vehicle operating cost
- Travel time cost
- Traffic volume/AADT
- Design period
- Analysis period
- Road way capacity
- > Travel speed on the road segment
- > CBR

3.5. Type and Sources of Data

Collecting reliable and accurate data is the most determinant factor for any research as it determines the quality of research. The most important data for this research was design periods, analysis periods, pavement layers data, updated traffic data (AADT, traffic growth rate, percentage of passenger cars, percentage of single unit truck), travel speed on the road segment, traffic accident data, CBR of soil, market survey (unit rate), maintenance and rehabilitation strategies. To obtain these data secondary data sources were used. These are pavement design documents, manuals, internet, research reports, books, journals and other documents in governmental institutions.

No	Types of Data	Source of Data
1	Design and analysis period	ERA, Addis Ababa City Road Authority, FHWA.
2	Traffic data (AADT)	ERA, Addis Ababa City Road Authority, Road Transport Bureau
3	Vehicle growth rate	ERA, Addis Ababa City Road Authority, Road Transport Bureau
4	Material properties	ERA, Addis Ababa City Road Authority
5	Market survey data	ERA, Addis Ababa City Road Authority
6	Percentage of Vehicles	Field Survey Taking a Sample
7	Roadway Data	Field Measurement
8	Other relevant data	ERA, AACRATB, AASHTO, FHWA, HCM, websites

Table 1: Data Type and Source of Data

3.6. Data Collection Methods and Instruments

The specific techniques to be used in the collection of data was document review, websites, field measurement and manual review. The instrumentation to be used in data collection was internet and recommendation letter. The informal interview has also played a great role in collecting important data.

3.7. Data processing and analysis

The data gathered were analysed for the purpose of answering the research questions. They were presented narratively, tabularily and graphically. Demographic variables of the respondents were also collected to support data to understand the overall analysis. The data analysis utilized was the the excel spreade sheet. This was done through the following governing steps.

Selection of Analysis Period

As per the brief recommendation presented in chapter two of this document a period of 25 years was considered for the analysis assuming costs and benefits of the most durable option, discounted to present day terms, become negligible at this time.

Design Period

Since the road under consideration is a link road as it connects different major roads and hence the design period of 20 years for flexible pavement with geosynthetic materials and conventional pavement for reconstruction was taken from the design document of road under study.

Table 2: Design Period [46]

Road Classification	Design Period (years)
---------------------	-----------------------

Trunk Road	20
Link Road	20
Main Access Road	15
Other Roads	10

Interest Rate

In Ethiopia, interest rates decisions are taken by Monetary Committee of the National Bank of Ethiopia. The official rate is the bank's savings rate. The benchmark interest rate in Ethiopia was last recorded at 7 percent by the end of the first quarter 2019, according to Trading Economics global macro models and analysts' expectations which shown in figure 11 below. Looking forward, they estimated Interest Rate in Ethiopia to stand at 7.00 in 12 months' time. In the long-term, the Ethiopia Interest Rate is projected to trend around 7.00 percent in 2020, according to our econometric models. Interest Rate in Ethiopia averaged 5.21 percent from 1995 until 2019, reaching an all-time high of 11 percent in December of 1995 and a record low of 3 percent in April of 2002 [47]. Therefore, the interest rate adopted in this particular case was 7.00%

Agency cost determination

Step 1- Using CBR values of the subgrade adjusted for geosynthetic and traffic data; pavement thickness was determined using traffic class and subgrade strength class. Using this thickness and unit rate;

- ✤ Flexible pavement with geosynthetic materials will be taken as an experimental group
- Quantity Take off will be prepared, Cost break down will be done, and Initial construction cost will be estimated.

Step 2- Determining schedule (frequency) of activities

Having data such as analysis period, maintenance as well as rehabilitation schedule and frequency in a year, future costs to the agency will be determined.

Step 3- Determine agency cost by summing up initial construction cost and future maintenance cost.

Road User cost determination

According to Greenwood et al., 2001, the two broad categories of user cost will be adopted. Work-zone user costs and non -work-zone user costs. Consequently, LCCA with respect to transport usually considers the following user cost components in both categories: Vehicle operating cost, Travel time cost, and Accident/crash cost.

Figure 8: User cost categories and components [30]

1. Work Zone User Cost Determination

Step 1. Project Future Year Traffic Demand (forecasting traffic)

The value of vehicle classes (passenger cars, single unit trucks, and combination trucks) as percentage of AADT and project future year hourly traffic demand volumes for each vehicle class for the year the work zones will be in place, from current or base year AADT will be determined, using compound traffic growth factors. The following formula applies [22]:

 $AADT_F = AADT_B * VC (\%) * (1+G_r)^{(FY-BY)}$ Equation 5

Where: $AADT_F = Future Year AADT$, $AADT_B = Base Year AADT$, VC = Vehicle class, $G_r = growth rate$, ^{FY}

= Future Year, BY = Base Year

Step 2. Calculate Work Zone Directional Hourly Demand

Directional hourly traffic distribution was determined from agency traffic data on the roadway being analyzed. The following formula applies [22]:

WZ directional hourly demand = future year AADT * %ADT * directional factor % Equation 6

Step 3. Determine Roadway Capacity

There are three capacities that need to be determined in analyzing work zone user costs [22]:

- a) The free flow capacity of the facility under normal operating condition,
- b) The capacity of the facility when the work zone is in place, and
- c) The capacity of the facility to dissipate traffic from a standing queue.

1. The free flow capacity of the facility under normal operating condition

The real-world free-flow capacity of the facility is determined by applying the following formula [44]:

Sfi = MSFi * N * fw * fHV * fp Equation 7

Where;

SFi = service flow rate for LOS i under prevailing roadway and traffic conditions for N lanes in one direction in vehicles per hour (VPH),

MSFi = Maximum service flow rate for LOS i for N lanes in one direction (VPH)

N = number of lanes in one direction of the freeway,

fw= factor to adjust for the effects of restricted lane widths and lateral clearances,

fHV = factor to adjust for the effect of heavy vehicles on the traffic stream, and

fp= factor to adjust for the effect of recreational or unfamiliar driver populations.

Values for the above different factors will be taken from highway capacity manual.

2. The capacity of the facility when the work zone is in place

Traffic capacity in the work zone can be estimated from research on the capacity associated with various lane closures on multilane facilities [44].

3. The capacity of the facility to dissipate traffic from a standing queue.

Capacity during queue dissipation is less than the capacity for free-flow conditions, even though the lanes are unrestricted [44]. According to this manual, the following formula applies:

Capacity = Demand – Queue rate Equation 8

Step 4. Identify the User Cost Components

With the roadway capacities established, the fourth step is to compare the roadway capacity with the hourly demand for the facility. Using spreadsheet software program is a convenient way to compare capacity and hourly demand, and it forms the basis for determining the user cost components that come into play [44].

Step 5. Quantify Traffic Affected by Each Cost Component

The next step is to quantify the number of vehicles involved with each cost component. Total number of vehicles that [44]:

- \clubsuit traverse the work zone,
- \clubsuit stop for the queue, and
- those that merely must slow down over the 24- hour period will be determined.

Step 6. Compute Reduced Speed Delay

According to [44], the following formulas apply:

WZ delay $=$	WZ length WZ length WZ speed upstream speed	Equation 9
Queue delay =	Queue length Queue length queue speed upstream speed	Equation 10

Speed through the queue can be determined by using the Forced-Flow Average Speed versus Volume to Capacity (V/C) ratio graphs for level of service F contained in the Highway Capacity Manual. Using the volume through the queue and the Free-Flow capacity of the road, the V/C ratio was calculated for each period and used to find the corresponding speed. The queue length varies throughout the day with changes in directional hourly demand and capacity through the work zone section and hence it is in the hand of analysts to use the alternate approach [44].

Step 7. Select and Assign VOC Rates

The factors VOC associated with stopping vehicles from a particular speed and returning them to that speed for the three vehicle classes (for Passenger cars and both Single-Unit and Combination trucks) were obtained

from NCHRP report 133 and adjusted to ethiopian context. This factor will also be used to determine the cost and time factors associated with slowing down vehicles from certain speed to certain speed.

Step 8. Select and Assign Delay Cost Rates

These user delay cost rates were adopted as per the Ethiopian and Addis Ababa Road Authority perspective.

Step 9. Assign Traffic to Vehicle Classes

At this point the directional traffic affected by the various cost components was distributed to the appropriate vehicle classes for each cost component.

Step 10. Compute User Cost Components by Vehicle Class

Daily user costs by vehicle class for each cost component were computed by multiplying the affected traffic by the appropriate unit cost rates (either VOC or delay) for the various components.

Step 11. Total Work Zone User Costs

The dedetermined VOC and TDC for WZ operating condition were summed up to give the tota work zone user cost.

Step 12. Accident/Crash Cost

The highway safety community has replaced the term accident with the term crash because the term accident implies that they are unavoidable. In reality; highway crashes to a large extent are avoidable [44]. Since the core points of the study were cost comparison, accident cost was excluded from the analysis.

2. Non-work zone user cost determination (normal operation)

2.1. Vehicle operating cost

According to FHWA, this process was done in three steps, which include [45]:

- Constant speed operating cost which are calculated as a function of average speed, average grade, and pavement condition
- Excess operating costs due to speed change cycles
- Excess operating costs due to the road curvature. The results of these three steps are summed up to give the total vehicle operating costs.

$VOC = \Sigma(CSOPCSTvt + VSOPCSTvt + COPCSTvt)$ Equation 11

Where CSOPCSTvt is the constant speed operating cost for vehicle type vt; VSOPCSTvt is the excess operating cost due to speed change cycles or speed variability for vehicle type vt and COPCSTvt is the excess VOC due to curves for vehicle type vt. The model relies upon consumption rates & cost values.

2.2. Travel Time Costs

Travel Time was estimated using the HDM-4 models [45]. The models establish the number of hours per 1000 veh-km for passenger working and non-working time, crew time, and cargo time. The travel time is given as.

Travel Time = PWH + PNH + CH + CARGOH Equation 12

Where PWH is the annual number of working passenger hours per 1000 veh-km; PNH is the annual number of non-working passenger hours per 1000 veh-km; CH is the number of hours per crew member per 1000 veh-km; CARGOH is the annual number of cargo handling hours per1000 veh-km. These values will be multiplied by the appropriate unit cost for time to establish the total time cost. The escalation factor will be used if values of time are not up to date using the following formula [22].

Escalation Factor =
$$\frac{CPIcurrent year}{CPIbase year}$$
 Equation 13

where

CPIcurrent year - All Items Component of the CPI for current year

CPIbase year - All Items Component of the CPI for base year.

2.3. Crash Costs

According to the FHWA (1998), fatality, injury and Property Damage Only (PDO) costs must be calculated when analyzing LCC. Usually these costs are estimated by multiplying the number of crashes for each crash type by the average cost per crash. The crash cost function is given as follows [22]:

Crash costs =
$$\sum_{i=1}^{n} \sum_{j=1}^{m} (UACij * CRASH RATESij * LEN * AADT)$$
 Equation 14

Where UACij is the unit crash costs for crash type j of cost category i; Crashes Ratesij are the crash rates for crash type j of cost category i; i is the crash cost category, including highway segment, intersection /interchange, railroad crossing, and bridge; j is the crash type, including fatality, injury, and property damage only; LEN is the length of project.

2.4. Environmental Costs

The environmental effects model of the HDM-4 is a more comprehensive model and was used in this study. It generates the environmental costs based on three major environmental effects: Air pollution from vehicle emissions, noise pollution and energy effects. The HDM-4 model primarily estimates effect of the following air pollutants associated with vehicle emissions: Hydrocarbons (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitric Oxides (NOx), Sulphur Dioxide (SO2), Lead (Pb) and Particulate Matter (pm).

The model predicts the emission rates (g/km) as follows [37]:

TPEi = EOEi x CPFi

Where TPEi is the tailpipe emissions in g/km for emission type i; EOEi is the engine out emission in g/km for emission type i and CPFi is the catalyst pass fraction for emission type i. Once cost for both categories calculated, these values were summed up and discounted to present to give the net present value of road user cost.

Life Cycle Cost Determination (Net Present Value Calculation)

The life cycle cost calculation component takes the events and their timing and assigns a cost for each applicable component of each event. Net Present Value (NPV) was considered as the economic efficiency indicator of choice [22].

3.8. Measurements of Variables

From previous studies and standards, formulas or scales to be used in this study was adopted. Ethiopian road authority design manual, AASHTO standard specification, manual of federal highway administration, highway capacity manual 1994 and other relevant previous studies were used.

3.9. Ethical Considerations

The permission of the Jimma University Technology Institute and ERA must be acquired in order to conduct the research and must be approved by the ethics review committee to make sure the study is not violating any of the ethics consideration. The confidentiality of the data should be ensured & when reporting the result, only what observed and what done should be reported.

CHAPTER IV

ANALYSIS, RESULT AND DISCUSION

4.1. Inflation and Inflation adjusted Rate

Inflation Rate in Ethiopia is expected to be 19.10 percent by the end of the first quarter of 2019, according to Trading Economics global macro models and analysts' expectations [47]. Assuming that goods have higher opportunity to continue as it is Inflation rate f=19.10% Inflation adjusted interest rate if = i + f + if Equation 15 =0.07+0.191+(0.07) (0.191) = 0.27437 = 27.437%

4.2. Selection of Discount Rate

Even if calculation and selection of the discount rate is quite complex and is the subject of ongoing debate in academic circles, the exact mathematical relationship between the discount rate, the interest rate, and the inflation rate presented by [31] was employed in selecting a discount rate for this particular case. Recalling equation 3 presented in chapter two of this paper.

$$d_r = \left[\frac{1+i}{1+f}\right] - 1$$

Given; f = inflation rate in decimal = 0.186 I = interest rate in decimal = 0.070

$$d_r = \left[\frac{1+0.07}{1+0.186}\right] - 1 = \underline{-0.102}$$

A negative discount rate means that present value of a future liability is higher today than at the future date when that liability will have to be paid and this is due to a high inflation rate in Ethiopia. The discount rate is a function of risk and return, there is no such thing as negative risk and it is illogical. Every company has systemic and non-systemic risk inherent in its model. Therefore, it was found good to use the maximum allowable value presented in [36] in such case. Hence, a discount rate of 3.5% was adopted in this particular case.

4.3. Activity Parameters and Cost Schedules

As per the recommendation of ERA manual 2013, based on the number of ESALs, the following time-based pavement strategy was adopted.

Table 3: Activity Timing

Options	Remedial type	Activity Time	Cost Base Line	Remark
	Initial Construction	In 2019 G.C.		
ith	Routine Maintenance	Once Every Two Years		
nt w erial	Periodic Maintenance	Once Every 4 Years		oney
eme	Rehabilitation	Once Every 10 Years Of 25 Year		of m
pav hetic		(2029 and 2039)		ne value o
kible syntl	user cost	During Maintenance & Rehabilitation	U.U.	
Fley geo	salvage value	At 25 th Year (2044 G.C.)	019 (of tin
	Initial Construction	In 2019 G.C.	of 2(ion c
ment	Routine Maintenance	once every year	Cost	lerati
аvе	Periodic Maintenance	Once Every Three Years		onsid
nal p	Rehabilitation	Once Every 8 Years of 25 Year (2027,		th co
utio		2035, and 2043)		d wi
onve	user cost	During Maintenance & Rehabilitation		jecte
C	salvage value	At 25 th Year (2044 G.C.)		Pro

4.4. Cost Determination

Neglecting the components common to both alternatives; the following costs were determined in this particular case. This was done because of the fact that costs in normal operation are assumed to be equavalent for both alternatives in LCCA principles. The same principle applied to Environmental cost.

Figure 9: Cost Components Uncommon to Both Alternatives [36]

4.4.1.Determination of Agency Cost

As briefly presented in chapter two of this paper; preliminary costs such as feasibility and engineering studies, contract administration cost, the associated administrative cost, maintenance of traffic signal cost, operating costs such as pump station energy costs, tunnel lighting, and ventilation are excluded, as they are typically common among all pavement alternatives and LCCA needs only consider differential costs between alternatives. Therefore, agency costs determined in this case were initial construction cost, future rehabilitation cost, maintenance cost and salvage/disposal/residual/terminal/scrap value. This cost is the arthimetic sum of initial construction cost and future maintenance/rehabilitation costs and its summary is going to be tabulated below.

Table 4: Agency Cost Summary

Serial №	Description	Cost (ETB)	Difference
1	Conventional Flexible Pavement	3,182,653,893.00	1.602.209.998.00
2	Flexible Pavement with Geosynthetic Materials	1,580,443,895.00	1,002,207,770.00

Figure 10: Agency Cost Summary Comparison

4.4.1.1. Initial Construction Cost

The initial construction cost was calculated using the collected quantity data and the unit rate from recent market survey. A 1km road segment and 10-meter (taken from field measurement) road width on the typical road section were considered. The break down values include direct and indirect costs. Other costs like overhead, contingency and value added taxes are ignored since they have the same effect on comparison of the pavement costs [48].

Using the mean absolute percentage error (MAPE) as the method of Testing Accuracy of the Developed Models; model N_2 **6** is best suited to be used since it has better accuracy than others [38]. But in this case, the second model is best fit since relying on width and length is not logical in a case where thickness is the main issue. Therefore, Total project cost =45.7 X1 + 151.4X2 + 195.24X3 was adopted in this study.

X1 = Earthwork; cut, fill, and topping quantities (m3)

X2 = Sub base, Base coarse and capping layer quantity (m3)

X3 = Asphalt quantity (m2)

For conventional flexible pavement;

Width = 10.5m (one way), length = 1000m

Excavation and earth work = $X_1 = 10000m3$

Sub-Base Course = $X_2 = (2500 + 1500 + 7500) = 11500 \text{ m}^3$

Asphalt quantity = $X3 = 10.5 * 1000 = 10500 M^2$

Total Cost= 45.7 X1 + 151.4X2 + 195.24X3

=45.7(10000)+151.4(11500)+195.24(10500)

= 2,198,100+ 195.24 (10500) = <u>4,248,120</u> ETB

Similarly; for flexible pavement with geosynthetic materials

Width = 10.5m (one way), length = 1000m

Excavation and earth work = $5000m^3$

Sub-Base Course = $X_2 = (1750 + 750 + 4000) = 6500 \text{ m}^3$

Asphalt quantity = $X3 = 10.5 * 1000 = 10500 M^2$

Geomembrane = $10.5*1000* = 10500 \text{ M}^2$

Total Cost= 45.7 X1 + 151.4X2 + 195.24X3

=45.7(5000) + 151.4(6500) + 10500(100) + 195.24(10500)

= 2,262,600 + 195.24 (10500) = 4,312,620 ETB

Table 5:Initial Construction Cost Summary

Serial №	Description	Cost (ETB)	Difference (ETB)
1	Conventional Flexible Pavement	4,248,120	64 500
2	Flexible Pavement with Geosynthetic Materials	4,312,620	01,200

Figure 11: Initial Construction Cost Summary Comparison.

4.4.1.2. Maintenance Cost

Maintenance costs include all Laboure, machinery and materials costs for routine, periodic and rehabilitation maintenance. Consistent with FHWA methodology, maintenance costs are considered part of the 'cost'

measurement in the LCCA. This recognizes an assumption that the road agency's objective is to efficiently utilize all resources, not only its capital budget.

M= Mainline OS= Outside Shoulder IS= Inside Shoulder

Roadway Data:

Mainline: Length = 1000m, Width = 10.5m, IS = 1.22m, OS = 2.44m

Total width = 10.5 + 1.22 + 2.44 = 14.16m

Mainline Area = $10.5*1000 = 10500M^2$

Area ((1) 1.22m Inside Shoulders) = $1.22*1000 = 1220m^2$

Area ((1) 2.44m Outside Shoulders) = $2.44*1000 = 2440m^2$

Total Area = Mainline Area + Area ((1) 1.22m Inside Shoulders) + Area ((1) 2.44m Outside Shoulders) or

= Total width * Mainline Length

 $= 14.16 \text{ m} * 1000 \text{ m} = 14160 \text{ m}^2$

Datas in the following table were used in determining future maintenance cost and fixing maintenance cost ay the end of 2019 (*Source: Thesis Report on Cost and Benefit Analysis of Flexible and Rigid Pavement by Yonas Katema in JiT; 2015*)

Name of Activity	Unit	Quantity	
Routine maintenance	Unit	in % per Km	
Asphalt Patching (Seal Coat)	m2	5%	
Asphalt Patching (Single Surface Treatment)	m2	2%	
Asphalt Patching (Double Surface Treatment)	m2	2%	
Asphalt Patching (Hot-Mini Mix)	m3	5%	
Crack Sealing (Individual Cracks) (>3mm)	Lm	5%	
Pothole Reinstatement (Hot Mini-Mix) 150mm avg. thickness	m3	2%	
Pothole (Base Failure Repair) for 100mm avg. thickness	m3	2%	
Periodic Maintenance			
Sand seal coat	m2	10%	
Single Bituminous Surface Treatment (SBST)	m2	10%	
Name of Activity	Unit	Quantity	
Routine maintenance	0	in % per Km	
Double Bituminous Surface Treatment (DBST)	m2	10%	

Table 6: maintenance quantity as percentage of consstruction quantity.

Mix-In-Place Overlay (Cold Mix) for 50mm thickness	m3	10%
Asphaltic Concrete Overlay for 40mm thickness	m3	15%
Bitumen Prime Coat (0.3lt/m2)	Lt	60%
Bitumen Tack Coat (0.5lt/m2)	Lt	60%
Pavement Reconstruction (Aggregate Road base)	m3	10%
Rehabilitation		
Asphaltic Concrete Overlay for 50mm thickness	m3	100%
Bitumen Tack Coat (0.5lt/m2)	Lt	100%
Pavement Reconstruction (Aggregate Road base)	m3	100%

Routine maintenance cost of Flexible pavement at end of 2019

Asphalt Patching (Seal Coat) quantity for entire lane including shoulders (14.16m)

= 5% of the area $= 0.05(\text{length * width}) = 0.05(14.16\text{m * }1000\text{m}) = \frac{708 \text{ m}^2}{1000 \text{m}^2}$

Asphalt Patching (Single Surface Treatment) quantity for entire lane including shoulders (14.16m)

= 2% of the area = .02 (length * width) = .02 (14.16m * 1000m) = $283.2m^2$

Asphalt Patching (Double Surface Treatment) quantity for entire lane including shoulders (14.16m)

= 2% of the area = 0.02 (length * width) = 0.02 (14.16m * 1000m) = $283.2m^2$

Asphalt Patching (Hot-Mini Mix) quantity for entire lane (14.16m)

Crack Sealing (Individual Cracks) (>3mm)

= 5% of entire length = 0.05 * 1000m = 50m

Pothole Reinstatement (Hot Mini-Mix) 150mm avg. thickness for entire lane

= 2% of the entire quantity to a thickness of 150mm

 $= 0.02 (0.15m * 14.16m * 1000m) = 0.02 (2124) m^3 = 42.48m^3$

Pothole (Base Failure Repair) for 100mm avg. thickness quantity for entire lane (14.16m)

= 2% of the entire quantity =0.02 (0.1m * 14.16m * 1000m) = 0.02 (1416) $m^3 = 28.32m^3$

By using unite rates of 2019, Routine maintenance cost of flexible pavement at the end of 2019 was determined and tabulated in the following table.

Table 7: Routine maintenance cost of flexible pavement at the end of 2019

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

Name of Activity 775, 219.4888		Unit	Entire Lane	Amount
		Rate	Quantity	(ETB)
Asphalt Patching (Seal Coat)	m2	70.98	708	50253.8
Asphalt Patching (Single Surface Treatment)	m2	78.48	283.2	22225.5
Asphalt Patching (Double Surface Treatment)	m2	144.26	283.2	40854.4
Asphalt Patching (Hot-Mini Mix)	m3	4,650.10	70.8	329227
Crack Sealing (Individual Cracks) (>3mm)	Lm	60.31	50	3015.5
Pothole Reinstatement (hot mini-mix) 150mm avg. thickness	m3	7235.68	42.48	307372
Pothole (Base Failure Repair) for 100mm avg. thickness	m3	786.42	28.32	22271.4
Total Cost (ETB/KM)		775	5, 219.4888	

 Table 8: Routine Maintenance Cost Summary for conventional pavement in the Analysis Period

		ore 1 if (1 if)		Routine maintenance at the	Routine maintenance cost in
age n	ryears	1+11	(1+11) ^11	end of 2019 (PV)	analysis period (FV) = PV (1+if) ^n
0	2019				
1	2020	1.27437	1.27437	775219.4889	987916.46
2	2021	1.27437	1.62402	775219.4889	1258971.10
3	2022	1.27437		775219.4889	
4	2023	1.27437	2.63744	775219.4889	2044592.86
5	2024	1.27437	3.36107	775219.4889	2605567.80
6	2025	1.27437		775219.4889	
7	2026	1.27437	5.45844	775219.4889	4231491.34
8	2027	1.27437		775219.4889	
9	2028	1.27437		775219.4889	
10	2029	1.27437	11.2968	775219.4889	8757498.55
11	2030	1.27437	14.3963	775219.4889	11160293.42
12	2031	1.27437		775219.4889	
13	2032	1.27437	23.3799	775219.4889	18124527.42
14	2033	1.27437	29.7946	775219.4889	23097354.00
15	2034	1.27437		775219.4889	
16	2035	1.27437		775219.4889	

age in years		1+if	(1+if) ^n	Routine maintenance at the end of 2019 (PV)	Routine maintenance cost in analysis period (FV) = PV (1+if) ^n
17	2036	1.27437	61.6629	775219.4889	47802306.05
18	2037	1.27437		775219.4889	
19	2038	1.27437	100.142	775219.4889	77631848.35
20	2039	1.27437	127.618	775219.4889	98931698.58
21	2040	1.27437		775219.4889	
22	2041	1.27437	207.253	775219.4889	160666948.00
23	2042	1.27437	264.118	775219.4889	204749138.52
24	2043	1.27437		775219.4889	
25	2044	1.27437		775219.4889	
Gran	d Total ((ETB/KM)			662,050,152.44

The determination of this cost is quite wide and as such, the summary of its determination from appendix was summarized and tabulated in the following table.

Serial №	Description	Cost (ETB)	Total (ETB)		
1	Conventional	662050152			
1	Flexible Pavement	Periodic Maintenance	441293636	3,178,405,773.00	
		Rehabilitation 2075061985			
	Flexible Pavement with	Routine Maintenance	779,553,308		
2	Geosynthetic Material	Periodic Maintenance5826273832,0		2,097,665,531.89	
		Rehabilitation	735484839		

Table 9: Maintenance Cost Summary Arrived from Appendix B.2

Figure 12: Maintenance Cost Summary Comparison.

4.4.1.3. Salvage values

While many sources of literature consider the terms salvage value, residual value, and remaining service life to be synonymous, the FHWA appropriately makes a clear distinction between these terms. The FHWA attaches a physical connotation to the concept of salvage value and argues that it is strictly defined as the value of recovered, recycled or scrap materials, and can only be realized when the entire pavement structure is excavated at the end of the analysis period and the pavement materials are actually reclaimed. In that case, the value of the salvage is treated as a negative agency cost. It is the estimated remaining value of the project at the end of the analysis period. It represents the capacity of the asset to accrue benefits past the end of the evaluation period.

According to [22] salvage value represents value of an investment alternative at the end of the analysis period. The two fundamental components associated with salvage value are residual value and serviceable life.

Residual Value refers to the net value from recycling the pavement. The differential residual value between pavement design strategies is generally not very large, and, when discounted over 35 years, tends to have little effect on LCCA results.

Serviceable Life represents the more significant salvage value component and is the remaining life in a pavement alternative at the end of the analysis period. It is primarily used to account for differences in remaining pavement life between alternative pavement design strategies at the end of the analysis period. For example, over a 35-year analysis, Alternative A reaches terminal serviceability at year 35, while Alternative B requires a 10-year design rehabilitation at year 30. In this case, the serviceable life of Alternative B receives a 10-year design rehabilitation at year 30 and will have 5 years of serviceable life at year 35, the year the analysis terminates. The value of the serviceable life of Alternative B at year 35 could be calculated as a percent of design life remaining at the end of the analysis period (5 of 10 years or 50 percent) multiplied by the cost of Alternative B's rehabilitation at year 30.

There is no general consensus on how to estimate the salvage value, primarily because infrastructure projects are never terminated at the end of analysis period. One approach to estimating this component is by accounting for the costs of demolition and removal as well as adding the value of the recycled project waste. Another approach is by calculating the relative value of the remaining serviceability of the alternative with respect to the cost of the last rehabilitation activity [34]. Each approach has its own critics, and one way to avoid such added dubious calculations is to adjust the analysis period slightly, so as that the remaining serviceability is the same for all alternatives and the salvage value can be omitted from calculations.

According to [34], the following equation was adopted in this case to calculate salvage value.

 $\mathbf{sv} = LC \begin{bmatrix} \frac{ERL}{TEL} \end{bmatrix}$ Equation 16

Where, SV= salvage value, LC = Last Rehabilitation Cost of The Pavement, ERL = Expected Remaining Life of The Last Rehabilitation of The Pavement, TEL = Total Expected Life of The Last Rehabilitation of The Pavement. Therefore, SV for conventional flexible pavement is;

SV = cost of rehabilitation at year 43[(44-43)/(43-35)]

= 1,782,047,223.16[1/8] = <u>222,755,902.90 ETB</u>

In similar token, the SV for flexible pavement with geosynthetic material is;

SV = 675,673,757.55[(44-39)/10] = <u>337,836,878.78 ETB</u>

4.4.2. User Cost

User costs are costs incurred by the highway user over the life of the project depend on the highway improvements and associated maintenance and rehabilitation strategies over the analysis period. User costs form a substantial part of the total transportation costs [Greenwood et al.,2001] for highway investments and can often be the major determining factor in life-cycle cost analysis. Determined in this case using the following 11 steps under heading 4.7.2.2 below were work zone operation user costs ignoring costs in normal operation as they are a function of the differential pavement performance (roughness) of the alternatives [22, 49].

4.4.2.1. Normal Operation User Costs

4.4.2.1.1. Travel Delay Costs

As briefly presented in chapter two of this paper, the cost of travel delay time during normal operation is typically, a function of the distance and the vehicle speed, which is dependent on the demand and capacity of the facility. All of these factors are expected to be equivalent for all alternatives in LCCA which leads to the exclusion of this type of costs.

4.4.2.1.2. Vehicle Operating Cost

Considered factors at this level of the LCCA were facility serviceability (i.e. pavement roughness), the traffic volume and traffic characteristics only. This was because of similar roadway curvature and gradient for both alternatives (that is a gradient of 2.5% taken from ERA manual). In this sense VOC's during normal operation can be excluded from LCCA.

Besides, the FHWA LCCA technical bulletin considers that vehicle-operating costs (VOC) are equivalent for different alternatives when the level of serviceability is maintained above the threshold (PSI is above 2.5)

and accordingly suggests that VOC's during normal operation can be excluded from LCCA [10].

4.4.2.1.3. Accident Cost

Accident costs have been estimated as a dollar per unit length for different types of facilities (rural, urban, freeway, etc.). Some research has estimated accident rates as a function of skid resistance, but this is a special case in which aggregates used in the wearing surface might differ between alternatives [1]. In this particular case, aggregates used in the wearing surface are similar and hence accident cost in normal operation was excluded from LCCA.

4.4.2.2. Work Zone User Costs

It was assumed that the initial construction period for the flexible pavement with geosynthetic material and conventional flexible pavement is the same and therefore work zone user cost during the initial construction period was not considered [36]. As briefly presented in chapter two of this paper, work zone operation results in two types of user costs namely Vehicle Operating Cost and Travel Delay Cost. The following 11 steps are a foundation for determination of work zone user cost.

Step 1. Project Future Year Traffic Demand (Forecasting Traffic)

The value of vehicle classes (passenger cars, single unit trucks, and combination trucks) as percentage of AADT and project future year hourly traffic demand volumes for each vehicle class for the year the work zones in place, from current or base year AADT was determined, using compound traffic growth factors and the following formula.

Future Year AADT = Base Year AADT x Vehicle class % x (1 + growth rate) (Future Year. - Base Year)

Where base year = 2019, base year traffic (AADT₂₀₁₉) = 20739. Using these input data; the AADT on a facility in each year was determined from a 2019 base year AADT of 20739 by applying the growth rate factor of 5% for all classification.

AADT₂₀₂₀ for passenger cars = AADT₂₀₁₉ * % ge of passenger cars $(1+0.05)^{2020-2019}$

$$= 20739 * 0.65 (1.05)^1$$

AADT₂₀₂₀ for single unite truck = AADT₂₀₁₉ * % ge of single unite truck $(1+0.05)^{2020-2019}$

$$= 20739 * 0.20 * 1.05 = 4355$$

AADT₂₀₂₀ for combination truck = AADT₂₀₁₉ * % ge of combination truck $(1+0.05)^{2020-2019}$

$$= 20739 * 0.15 * 1.05 = 3267$$

Total AADT₂₀₂₀ = 14154 + 4355 + 3267 = 21776

Following similar procedures for the rest the years in analysis period, future forecasted traffic was determined

and summarized in table 37 of this paper in appendix C.1.1.1.

Based on these new numbers, total traffic in each year was as shown in column five of table 37 in appendix C.1.1.1 and because of the linear traffic growth rates for all classification, the future years vehicle mix was taken approximately 65 percent for passenger vehicles, 20 percent for single-unit trucks, and 15 percent for combination trucks.

Step 2. Calculate Work Zone Directional Hourly Demand

Using the future year AADT determined in step 1 above, the next is determining directional hourly traffic distribution which is determined from agency traffic data on the roadway being analyzed. Table 39 of this paper presented default hourly distributions from MicroBENCOST and they were adopted in determining Work zone directional hourly demand for future years. The following equation was used in determining demand for each respective hour.

WZ directional hourly demand = future year AADT * %ADT * directional factor %

WZ Directional Hourly Demand_{2020 (12-1)} = AAADT₂₀₂₀ * 0.012 * 0.53 = 138 Vph

WZ Directional Hourly Demand_{2020 (1-2)} = AAADT₂₀₂₀ * 0.008 * 0.57 = <u>99</u> Vph

In similar manner WZ Directional Hourly Demand of each year for each respective hour was determined and summarized in table 40 through and 43 of this paper in appendix for all vehicle classes.

Inspection of table 40 of this paper reveals that a.m. outbound demand for year 2020 peaks at 679 vehicles per hour in the 7 to 8 a.m. period, while the p.m. outbound demand peaks at 1111 vehicles per hour in the 5 to 6 p.m. time period.

Step 3. Determine Roadway Capacity

Briefly mentioned in literature part of this paper, there are three capacities that need to be determined in analyzing work zone user costs.

1. The free flow capacity of the facility under normal operating condition

According to the 1994 HCM, the maximum capacity for a 2-lane directional freeway under ideal conditions is 2,200 passenger cars per hour per lane (pcphpl) and 2,300 pcphpl for a 3- or more lane directional freeway. The 1994 HCM points out the need to reduce the above ideal condition capacities for such real-world factors as restricted lane widths, reduced lateral clearances, the presence of trucks and recreational vehicles, and the presence of a driver population unfamiliar with the area. But due to un availability of these factors, Maximum mixed vehicle traffic capacities for trucks in the traffic stream was adopted from 1994 HCM table 3-6 assuming a truck equivalency factor of 1.5. Therefore, for a truck equivalency factor of 1.5 and future year percent trucks of 15 percent, table 20 of this paper in appendix reveals a free-flow capacity of 2140 vehicles

per lane per hour, or 6420 vph for all 3 lanes.

2. The capacity of the facility when the work zone is in place

Traffic capacity in the work zone can be estimated from research on the capacity associated with various lane closures on multilane facilities [44]. Table 22 of this paper reflects observed work zone mixed vehicle flow capacities at several real-world work zones under several lane closure scenarios. But in Ethiopia, it is accustomed to work under one extra lane closure condition. That is closing two lanes if work zone operation is on one lane. Therefore, the capacity of the work zone was taken to be 1170 vph and 1170 vplph as the road under consideration is a three lanes directional facility and operates under one lane during work zone.

3. The capacity of the facility to dissipate traffic from a standing queue (Queue Dissipation Rates).

Table 21 of this paper reflects observed saturation flow rates. Using an average of 1,818, with a standard deviation of 144 from analysis of the traffic signal analogy adopted from 1994 HCM in table 16 of this paper, there is a 68 percent probability that the queue dissipation rate would be somewhere between 1,674 and 1,962. Alternately, there is a 95.5 percent probability that it would be somewhere between 1,530 and 2,106. Hence 95.5 percent probability and 50 percent reliability were adopted in this particular case.

The queue dissipation capacity selected here was therefore, (1530+2106)/2 = 1818 vehicles per lane.

With three lanes open, total dissipation capacity becomes 5454 vph.

Step 4. Identify the User Cost Components

With the roadway capacities established, the fourth step is to compare the roadway capacity with the hourly demand for the facility determined in step 2. The work zone analysis matrix presented in tables 44 through 46 of this paper provide a convenient way to compare capacity and hourly demand, and they formed the basis for determining the user cost components that come into play. The following table is a sample taken from appendix.

AADT of year 2042 = 63700			Queue	Num. of	Lanes	Operating	Cost
			Rate	Queued	Open	Conditions	Factors
hour	demand	capacity		Vehicles			
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
12-1	405	1170	-765	0	1		
1-2	290	1170	-880	0	1	free flow, work zone in	free flow only
2-3	241	1170	-929	0	1	place, no queue	costs
3-4	166	1170	-1004	0	1		

Table 48: work zone analysis matrix for year 2042

	Life Cycle C	Cost Analysis of	Flexible Pavement with	Geosynthetic	Materials and	Conventional I	Pavement
--	--------------	------------------	------------------------	--------------	---------------	----------------	----------

AADT of year 2042 = 63700		Queue Rate	Num. of Queued	Lanes Open	Operating Conditions	Cost Factors	
hour	demand	capacity	Rute	Vehicles	open	Conditions	
4-5	192	1170	-978	0	1	free flow, work zone in	free flow only
5-6	455	1170	-715	0	1	place, no queue	costs
6-7	1202	1170	32	32	1		
7-8	1987	1170	817	849	1		
8-9	1645	1170	475	1325	1		
9-10	1491	1170	321	1645	1		
10-11	1617	1170	447	2092	1		
11-12	1722	1170	552	2644	1	Formed Flow	WZ Delay
12-13	1784	1170	614	3258	1	WZ in place	and
13-14	1815	1170	645	3903	1	Oueue Exists	Queuing
14-15	1917	1170	747	4650	1	Queue Exists	(5 costs)
15-16	2236	1170	1066	5716	1		
16-17	2768	1170	1598	7313	1		
17-18	3249	1170	2079	9392	1		
18-19	2029	1170	859	10252	1		
19-20	1292	1170	122	10373	1		
20-21	1114	1170	-56	0	1		
21-22	945	1170	-225	0	1	free flow work zone in	free flow only
22-23	762	1170	-408	0	1	place no queue	costs
23-24	596	1170	-574	0	1		

Inspection of table 40 above shows the work zone is in place for 24 hours and that capacity is restricted to work zone capacity (1170 vph). As traffic demand is lower than capacity for the period from 12-1 to 5-6, the facility operates under free-flow conditions. There is no queue and no vehicles have to stop. Under these conditions the work zone results in three free-flow user costs: the VOC and delay cost of the speed change associated with slowing down (50-30-50) for the work zone, and the delay cost of traversing the work zone at a reduced speed (50-30-50).

During the period from 6-7 to 19-20 the demand exceeds the capacity. In this period a queue forms and the facility operates under forced flow condition. Therefore, there is a total of five user cost components. They
are the four forced-flow user costs associated with queuing (stopping VOC and delay costs, idling VOC, and delay cost of crawling through the queue) as well as the free-flow delay in traversing the work zone. The speed change delay and VOC cost factors have been replaced by the delay and VOC stopping cost factors. At 20-21 to 23-24. the demand falls below the capacity and hence there is no queue and no vehicles have to stop. Under these conditions the work zone results in three free-flow user costs: the VOC and delay cost of the speed change associated with slowing down for the work zone, and the delay cost of traversing the work zone at a reduced speed. Similar analysis can be made for the rest of the tables.

Step 5. Quantify Traffic Affected by Each Cost Component

The next step is to quantify the number of vehicles involved with each cost component. The tables 47 through 49 of this paper in appendix are a modification of tables 44 through 46 in appendix. The three columns that described operating conditions (f through h) have been replaced with four columns (f) through (i) that provide information on the number of vehicles. These four columns were used to identify the number of vehicles involved in the seven user cost components. The following table highlights this concept.

As provided in table 49 below, the traffic that traverses the work zone in column (f) is generally the traffic demand on the facility during the hours the work zone is in place. Although this is the case under free-flow operating conditions, under forced-flow conditions, the maximum number of vehicles that can traverse the work zone is limited to the capacity of the work zone.

During the period 12-1 to 5-6, the facility was identified to operate under free flow condition in step 4 above traffic that traverses the work zone is the demand during the period.

By the same token, during the period from 6-7 to 19-20 the facility is operating under forced flow condition and hence traffic that traverses the work zone is restricted to the capacity. Throughout 24 hours, the number of vehicles traversing the work zone is therefore **32901** vehicles.

AADT of year 2042 = 63700		2 = 63700	Queue	Num. of Number of Vehicles that				
Hour	Demand	Capacity	Rate	Queued Vehicles	Traverse WZ	Traverse Queue	Stop 50-0-50 (km/hr)	Slow Down 50- 30-50 (km/hr)
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
12-1	405	1170	-765	0	405	0	0	405
1-2	290	1170	-880	0	290	0	0	290
2-3	241	1170	-929	0	241	0	0	241
3-4	166	1170	-1004	0	166	0	0	166

Table 49: expanded work zone matrix for the year 2042

AADT of	f year 2042	2 = 63700	Queue	Num. of	Number o	f Vehicles	that	
Hour	Deman d	Capacit y	Rate	Queued Vehicles	Traverse WZ	Traverse Queue	Stop 50-0- 50 (km/hr)	Slow Down 50- 30-50 (km/hr)
4-5	192	1170	-978	0	192	0	0	192
5-6	455	1170	-715	0	455	0	0	455
6-7	1202	1170	32	32	1170	1170	1202	0
7-8	1987	1170	817	849	1170	1170	1987	0
8-9	1645	1170	475	1325	1170	1170	1645	0
9-10	1491	1170	321	1645	1170	1170	1491	0
10-11	1617	1170	447	2092	1170	1170	1617	0
11-12	1722	1170	552	2644	1170	1170	1722	0
12-13	1784	1170	614	3258	1170	1170	1784	0
13-14	1815	1170	645	3903	1170	1170	1815	0
14-15	1917	1170	747	4650	1170	1170	1917	0
15-16	2236	1170	1066	5716	1170	1170	2236	0
16-17	2768	1170	1598	7313	1170	1170	2768	0
17-18	3249	1170	2079	6926	3636	3636	3249	0
18-19	2029	1170	859	5320	3636	3636	2029	0
19-20	1292	1170	122	2975	3636	3636	1292	0
20-21	1114	1170	-56	453	3636	3636	1114	0
21-22	945	1170	-225	0	1399	613	159	786
22-23	762	1170	-408	0	1170	0	0	762
23-24	596	1170	-574	0	1170	0	0	596
24 hours	31919				32901	28027	28027	3892

All vehicles that approach the work zone when a physical queue exists must stop and work their way through the queue before entering the work zone. Throughout 24 hours t total of 28027 vehicles traversed the queue as shown at the bottom of column (g) above.

Every vehicle that encounters a physical queue must come to a complete stop before traversing the queue. A total of 28027 vehicles must stop over the 24-hour period, as shown at the bottom of column (h). Column (i) reveals that, only small portion of the daily traffic has to just slow down to traverse the work zone. The number of vehicles that just have to slow down prior to traversing the work zone (as opposed to coming to a

complete stop) are those vehicles encountering the work zone under free-flow conditions. Therefore, a total of 3892 vehicles must slow down over the 24-hour period, as shown at the bottom of column (i).

Table 50 in appendix has summarized the traffic affected for all years in the analysis period.

Step 6. Compute Reduced Speed Delay

Before computing actual user cost, it is important to know the number vehicles subjected to speed changes, the number of vehicles that stop, and the delay time through both the work zone and the queue. The number of vehicles that undergo speed changes and that stop is directly related to the affected traffic, which has already been determined in step 5. The amount of delay was computed from the work zone and queue area lengths and the speeds through them. The delay time through the work zone and through the queue was computed in the same manner. In each case, the delay was determined by subtracting the time it takes to traverse either the work zone or queue length when they are present from the time it takes to travel the same distance when they are not present. Both calculations depend on the length to be traversed and the appropriate travel speeds when a work zone and/or a queue are present and when they are not. Equations [9] and [10] presented in previous chapter were taken in this case.

Work Zone Reduced Speed Delay

Using the above formula, it was determined and summarized in table 60 of this paper in the appendix adopting the upstream and work zone speed of 55 km/hr and 30 km/hr respectively for a 1 km work zone length. Because it was assumed that upstream posted speed and work zone speed remains similar for all future years throughout the analysis period, the WZ reduced speed delay calculation reveals identical result i.e. 0.015152 hours/vehicle.

Queue Reduced Speed Delay

Queue reduced speed delay is computed in the same manner, however, in this case the queue speed and queue length were not known. It was therefore found necessary, in this case, to determine the queue speed and queue length for each of the analysis time periods where queues exist before calculating queue reduced speed delay.

Queue Speed Calculation

Speed through the queue can be determined by using the Forced-Flow Average Speed versus Volume to Capacity (V/C) ratio graphs for level of service F contained in the Highway Capacity Manual [44]. Using the volume through the queue and the Free-Flow capacity of the road, the V/C ratio was calculated for each period and used to find the corresponding speed. Using the graph in figure 14 below and a conversion rate of 1.6092 for miles per hour to kilometer per hour; the result was summarized in table 61 of this paper in

appendix. Accordingly, a zero km/hr queue speed for years 2020 through 2025, 3.2184 km/hr for years 2026 through 2029, 4.8276 km/hr for years 2030 through 2031 and 41.8392 for years 2038 through 2043.

Figure 13: Volume to Capacity Ratio for Corresponding Average Speed (Source: HCM-1994)

Queue Length Calculations

The queue length varies throughout the day with changes in directional hourly demand and capacity through the work zone section. Queue delay computations are generally based on the average queue length over the queue period. An average queue length was computed for each hour that a queue exists. The maximum queue length during the day occurs when the maximum number of vehicles are queued. Because the case under study does not reflect uniform queue growth or dissipation rates, the more detailed hour-by-hour analysis was found more appropriate. The first step is to determine the average number of vehicles queued in each hour. This is simply the arithmetic average of the number of queued vehicles at the beginning and end of each hour. Having the determined average number of queued vehicles, average number of queue length was obtained by dividing average number of queued vehicles to the density. The detailed summary of this step was presented in table 56 of this paper in appendix.

Inspection of table 56 reflects that the average queue length was zero for years 2020 through 2025 and largely deviated from the reality (a queue length of 1013.437 km in 2043). This was because of the effect of speed and it has no effect on the target result.

Finally, having average queue speed and average queue length, time in queue and upstream of the work zone has been determined using a relation between speed and length. That is from the definition; speed is a unit distance travelled in specific duration of time, that time is the duration it takes to travel unit distance with

this speed. Then the queue delay time was taken as the difference between time taken in queue and upstream as shown in column (g) of table 57 below.

	Average	Quana Space		Time (Hours) @		Avera	age Queue
Years	Queue	Queue spee	eu w	Time (Hours)@		Delay I	Per Vehicles
	Length	Queue	Upstream	Queue	Upstream	Hours	Minute
a	b	с	d	е	f	g= e-f	h=(e-f) *60
2020	0.0000	0	55	-	-	-	-
2022	0.0000	0	55	-	-	-	-
2023	0.0000	0	55	-	-	-	-
2024	0.0000	0	55	-	-	-	-
2025	0.0000	0	55	-	-	-	-
2026	0.3050	3.2184	55	0.094780302	0.00610082	0.09	5.32
2027	0.4386	3.2184	55	0.136294355	0.008773	0.13	7.65
2028	0.6368	3.2184	55	0.197865852	0.01273623	0.19	11.11
2029	0.8939	3.2184	55	0.277744639	0.01787787	0.26	15.59
2030	1.8970	4.8276	55	0.392951226	0.03794023	0.36	21.30
2032	4.5395	8.0460	55	0.564197861	0.09079072	0.47	28.40
2034	15.0501	12.874	55	1.169063701	0.30100117	0.87	52.08
2035	27.8599	16.092	55	1.731290439	0.55719851	1.17	70.45
2036	18.7703	24.138	55	0.777626208	0.37540683	0.40	24.13
2037	46.5880	28.966	55	1.608389239	0.93175919	0.68	40.60
2038	141.447	41.839	55	3.380738392	2.82894779	0.55	33.11
2039	76.9310	41.839	55	1.838729737	1.53861962	0.30	18.01
2040	243.157	41.839	55	5.811706836	4.86314329	0.95	56.91
2042	384.277	41.839	55	9.184625134	7.68554736	1.50	89.94
2043	1013.44	41.839	55	24.22219525	20.2687454	3.95	237.21

Table 57: Summary of Average Queue Delay Per Vehicles

Step 7. Select and Assign VOC Rates

Due to the unavailability of data in Ethiopia, table 5 of NCHRP (National Cooperative Highway Research Program) Report 133, Procedures for Estimating Highway User Costs, was used to determine VOC rates for

stopping/speed changes and idling, as well as associated delay times for stopping/speed changes. A compressed version of NCHRP 133 table 5 was reproduced as table 18 of this paper.

Table 18 of this paper shows additional hours of delay and additional VOC associated with stopping 1,000 vehicles from a particular speed and returning them to that speed. In addition, the table includes a vehicle operating cost associated with idling while stopped. The cost factors reflect 1996 prices based on ETB 18.9 (\$3) per hour value of time for passenger vehicles and ETB 31.5 (\$5) per hour for all trucks. To make these factors applicable to current analysis, the values shown have been escalated to reflect more current year dollars. The escalation factor for VOC is determined by using the transportation component of the Consumer Price Index (CPI) for the base year (1996) and the current year (2019). The transportation component of the CPI was 142.8 in 1996 and 153.9 in 2019 [47]. The VOC escalation factor used to escalate 1996 prices to 2019 prices is:

Escalation Factor (VOC) = $\frac{\text{CPI (2019)}}{\text{CPI (1996)}} = 153.90/142.80 = \underline{1.039}$

The table 58 of this paper was designed to determine stopping cost, but it can also be used to determine the speed change cost, which is additional cost (VOC and delay) of slowing from one speed to another and returning to the original speed. Speed change costs are calculated by subtracting the cost and time factors of stopping at one speed from the cost and time factors of stopping at another speed. Additionally, this table is designed to determine stopping cost, it can also be used to determine the cost and time factors associated with slowing from 50 km/hr to 30 km/hr. This is accomplished by subtracting the cost and time factors for stopping associated with each speed from one another. Since the value of added time for these speeds is not in the table, it can be found by interpolation from the values of 24, 32, 48, and 56 km/hr and tabulated below. Table 10: Speed Change Computations

Initial	Initial	Added Time (Hr/1,000 Stops)			Added Cost (ETB/1,000 Stops)		
Sneed	sneed	(Exclu	udes Idling Tir	me)	(Excludes Id	ling Time)	
(mi/h)	(km/hr)	Pass	Single-Unit	Combination	Pass	Single-Unit	Combination
(111/11)	(KIII/III)	Cars	Truck	Truck	Cars	Truck	Truck
15	24	2	2.2	3.48	27.02	60.41	231.67
19	30	2.36	2.73	4.41	35.57	79.25	309.71
20	32	2.49	2.93	4.76	38.76	86.27	338.78
30	48	3.46	4.4	7.56	64.35	143.02	585.05
31	55	3.56	4.56	7.91	67.39	149.38	613.93

Initial Speed	Initial	Added Time (Hr/1,000 Stops) (Excludes Idling Time)			Added Cost (Excludes Id	t (ETB/1,000 Stops) Idling Time)		
(mi/h)	speed (km/hr)	Pass Cars	Single-Unit Truck	Combination Truck	Pass Cars	Single-Unit Truck	Combination Truck	
35	56	3.94	5.13	9.19	78.54	172.68	719.86	
31-19-31	55-30-55	1.21	1.82	3.50	31.82	70.12	304.22	
31-0-31	55-0-55	3.56	4.56	7.91	67.39	149.38	613.93	
Idling Cost (ETB/Veh-Hr)			1.23	1.37	1.47			

Step 8. Select and Assign Delay Cost Rates

This user delay cost rates will be adopted as per Ethiopian perspective. According to [50], assuming 26 effective working days per month and 6 effective working hours per day, recommended value of travel time was taken and hence value of 18, 42, and 50 ETB/Veh-Hr) for passenger cars, single unit trucks and combination trucks respectively were used.

Step 9. Assign Traffic to Vehicle Classes

At this point the directional traffic affected by the various cost components will be distributed to the appropriate vehicle classes for each cost component. Table 61 of this paper in appendix lays out the overall traffic associated with each of the user cost components to the appropriate vehicle classes. The last column of this table is just a mathematical check to ensure that the traffic assigned to the vehicle classes totals back to the original traffic volume.

Step 10. Compute User Cost Components by Vehicle Class

By the same token, daily user costs by vehicle class for each cost component was computed by multiplying the affected traffic by the appropriate unit cost rates (either VOC or delay) for the various components and was summarized in table 62 through 68 of this paper in appendix.

Step 11. Total Work Zone User Costs

Table 69 through 82 of this paper in appendix show a master summary of all costs, and the percent distributions of those costs. The first three cost components (Speed Change VOC, Speed Change Delay Cost, Work Zone Reduced Speed Delay) represent the cost associated with free-flow, while the remaining four cost components (Stopping VOC, Stopping Delay Cost, Idling VOC, Queue Reduced Speed Delay Cost) represent the forced-flow queuing costs. Examination of these tables immediately reveals that the high user costs are not a LCCA problem, but are a traffic control problem.

Assuming the work zone to be in place for 10, 60, and 120 days for routine maintenance, periodic maintenance and rehabilitation respectively and considering activity timings for both options, the following table summarizes total user costs during each activity for each alternative.

Serial №	Descrip	tion	Cost (ETB/day)	Days WZ in place	Total cost (ETB)	Total Cost (ETB)
1	l Conventional Flexible	During Routine Maintenance	22,018,718.20	10	220,187,182	14 179 955 072
		During Periodic Maintenance	11,251,638.83	60	675,098,330	14,178,833,923
		During Rehabilitation	110,696,420.09	120	13,283,570,411	
	c nt	During Routine Maintenance	31,211,865.50	10	312,118,655	
Paveme	e Paveme	During Periodic Maintenance	59,711,980.17	60	3,582,718,810	4,120,182,985
	Flexible with Ge	During Rehabilitation	1,877,879.33	120	225,345,520	

Table 11: User Cost Summary Arrived from Appendix C

Figure 14: User Cost Summary Comparison

4.4.2.2.1. Vehicle Operating Cost

In Work Zone Road User Cost analysis, VOC is an aggregation of speed change vehicle operating cost, stopping vehicle operating cost, and queue idling vehicle operating cost [35]. VOC is about two times greater for conventional flexible pavement than that with geosynthetic material. The summary of these costs is listed in the following table from appendix C

Serial №	Description	Activity	VOC	Total VOC (ETB)	
	Conventional Flexible	Routine maintenance	161,610,467		
1	Pavement	Periodic maintenance	558,134,169	7,385,166,481	
		Rehabilitation (upgrading)	6,665,421,844		
	Flexible Pavement with	Routine maintenance	242,582,409		
2	Geosynthetic Material	Periodic maintenance	3,340,653,075	3,712,330,308	
		Rehabilitation (upgrading)	129,094,823		

Table 12: Work Zone Vehicle Operating Cost Summary Arrived from Appendix C.

4.4.2.2.2. Travel Delay Costs (TDC)

Unlike travel delay time in the normal operation, travel delay time during the work zone operation of rehabilitation activities depends on many other factors such as the work-zone plan (i.e. Number of lanes closed, time of day of operation, and number of days of operation), traffic volume and characteristics, and vehicle speed (during normal operation and during work-zone). Accordingly, four types of delay costs were considered in quantifying travel delays for work-zone operations. These are, Speed Change Delay Costs

(**TDC**), Reduced Speed Delay Costs (**TDC**), Stopping Delay Costs (**TDC**), and Queue Reduced Speed Delay Costs (**TDC**). The values for these costs were determined and summarized as in the following table.

Table 13: Work Zone Travel Delay Cost Summary arrived from Appendix C.

Serial №	Description	Activity	TDC	Total TDC (ETB)
1	Conventional Flexible	Routine maintenance	58,576,715	
	Pavement	Periodic maintenance	116,964,161	6,793,689,443
		Rehabilitation (upgrading)	6,618,148,567	
2	Flexible Pavement with	Routine maintenance	69536246	
	Geosynthetic Material	Periodic maintenance	242065735	407,852,679
		Rehabilitation (upgrading)	96,250,697	

Figure 16: Work Zone Travel Delay Cost Summary comparison.

4.4.3. Environmental cost

This is the most recognized, but rarely included in the analysis. The environmental impacts could affect the air, water, biodiversity, natural resources, noise, and heritage. Among these, only the costs of air pollution and noise have been monetized up to date in transportation evaluation [1]. In general, there is not enough research that shows the vary among alternatives with different serviceability. In the same token, recognizing unavailability of data this cost was excluded in this case from analysis.

4.5. Net present value calculation

As briefly presented in chapter two of this paper equation (1) was used in this particular case to determine the net present value of each alternatives. Recalling the equation; each of the values were determined in appendix C of this paper and summarized in the following tables.

$$NPV = IC + \sum_{k}^{N} MC \left[\frac{1}{1+d_r}\right]^{nk} + \sum_{k}^{N} RC \left[\frac{1}{1+d_r}\right]^{nk} + \sum_{k}^{N} UC \left[\frac{1}{1+d_r}\right]^{nk} - SV \left[\frac{1}{1+d_r}\right]^{nk}$$

Where;

IC = initial construction cost; MC= maintenance cost; RC= rehabilitation cost; UC= user cost; SV = salvage value; n= analysis period, years; nk = number of years from the initial construction to the *k*th expenditure; N= number of future costs incurred over the analysis period; dr = discount rate.

Table 14: Discounted Sum for Conventional Pavement in the Analysis Period Arrived from Appendix C

Cost	IC Cost (ETB)	Maintenance	Rehabilitation	User	Salvage
Components		Cost (ETB)	Cost (ETB)	Cost (ETB)	Value (ETB)
Discounted Sum	4,248,120.00	571,024,920	956,172,516	3,609,374,568	94,258,489

Table 15: Discounted Sum for Conventional Pavement in the Analysis Period Arrived from Appendix C

Cost	IC Cost (ETB)	Maintenance	Rehabilitation	User Cost	Salvage
Components		Cost (ETB)	Cost (ETB)	(ETB)	Value (ETB)
Discounted Sum	4,312,620	934,202,945	381,971,780	1,937,802,270	142,954,658

Using the values in above tables, net present values of each alternatives were determined and summarized in the following table considering salvage value as a negative cost.

NPV for conventional FP = 4,248,120.00 + 571024920.4 + 956172516.1 + 3609374568- 94258489.65

= <u>5,042,313,514.84 ETB</u>

NPV of FP with geosynthetic materials = 4,312,620 + 934,202,945 + 381,971,780 + 1,937,802,270

- 142,954,658

=<u>3,111,022,338.85 ETB</u>

Table 16 : Net Present Values of the Two Alternatives.

Serial №	Alternatives	Net Present Value (NPV)
1	Conventional Flexible Pavement	5,042,313,514.84 ETB
2	Flexible Pavement with Geosynthetic Materials	3,111,022,338.85 ETB

The core purpose of the life cycle cost analysis to compare the agency and user cots to draw a wise decision on investement selection. The following table summarizes the Discounted cost components of the two alternatives.

Table 17: Discounted Cost Components

Option	conventional flexible	flexible	pavement	with	geosynthetic			
					materials			
Cost component	Agency Cost (ETB)	User Cost (ETB)	Agency	Cost (ETB)	Use	er Cost (ETB)		
NPV	1,437,187,066.81	3,609,374,568.03	1,177,53	32,688.72	1,93	37,802,270.13		

CHAPTER V CONCLUSION AND RECOMMENDATION

5.1. Conclusion

Presented in this paper was a brief over view of the sustainable and economical pavement option by making life cycle cost comparisons and economic analysis of flexible pavement with and without geosynthetic materials in Addis Ababa.

Estimation of construction, maintenance and rehabilitation costs was done specific to each construction, maintenance and rehabilitation treatment. Two alternative methodologies were provided to determinine agency cost associated with maintenance and rehabilitation fixing the costs to 2019 dollars and the initial construction cost of both alternatives. The Agency costs determined for conventional flexible pavement and that with geosynthetic material was to be 3,182,653,893 and 1,580,443,895 ETB respectively. This conveys a message that using geosynthetic material in flexible pavement can reduce an Agency cost by 50.34 % which can outweigh the applicablity of using lower initial construction cost as standard. The seven user cost components associated to work zone operations (Travel Delay Costs & Vehicle Operating Costs) were determined. Only work zone user costs were given prominent coverage in this paper and costs associated with noise, and pollution should not be a formidable concern as they are not expected to vary significantly by LCCA alternative. Accordingly, Inspection of analysis part in this paper reveals that, user cost was determined to be 14,178,855,923 & 4,120,182,985 ETB respectively putting the former one conventional FP. This implies that about 70.9% of user cost can be avoided when using a geosynthetic materials.

Economic evaluation of flexible pavement with geosynthetic materials and without geosynthetic materials on selected road segment was carried out using the NPV as economic indicator. As such incorporating geosynthetic material in pavement was found more economical and most effective alternative pavement option.

Finnally; Overlooking life cycle cost analysis or wasting a budget on trying to avoiding it leads to managing asset cost reactively adopting the minimum construction cost as standard. Regardless to the policy of avoiding future economic surprise, decisions made in any area of construction industry has been failed to avoid it. To do right from the beginning, decision makers need to consider the comprehensive LCCA of pavements options including initial construction, future maintenance, rehabilitation, environmental, and user costs.

5.2. Recommendation

5.2.1. Recommendation for further studies

- One of the challenges faced in estimating future maintenance cost in this study is the absence of reliable data base in road asset management in Ethiopia. FHWA states that maintenance costs may be expressed as a function of pavement condition or may be expressed as a function of pavement age and maintenance costs increases as a structures age [23]. Therefore, pavement maintenance cost models which based on pavement condition (PSI) and traffic volumes should be developed for road infrastructures in Addis Ababa.
- 2. Due to the absence of some important data in ethiopia data from abroad such as directional factor was adopted in this study. This may have a significant effect on queue length calculation. There fore, more research needs to be done using an hour-by-hour roadway capacity, directional factor consistent to Ethiopia and traffic demand in Addis Ababa.
- 3. A formidable concern for detour was not given in this study. When work zone is in place, there is additional mileage that users travel, either voluntarily or involuntarily. This additional mileage is described by circuity. There fore, circuity costs should be determined in future study If traffic is forced to detour (formal detour is established.

5.2.2. Recommendation for Agencies

Inspection reveals that more than 90 percent of the user costs result from the forced flow queuing costs. Therefore, approximately 90 percent of the user costs can be avoided by not allowing the queues to develop in the first place. In the case under study, the queuing situation could be drastically reduced, if not completely avoided, if work zone operations could be limited to evening work between. By limiting the contractor to evening work hours only, the queue cost in queue period would be completely eliminated and the evening rush hour would not have to deal with the built-up queue from the midday work zone! The contractor's productivity rate would suffer dramatically during the midday use of the facility because the contractor's delivery vehicles would have to deal with the same delays as the general traffic stream. It is therefore not a large penalty on the contractor to evening work hours only.

REFERENCES

- [1] D. k. Ozbay, D. N. A.Parker, D. Jawad and S. Hussain, ""Guidelines for life cycle cost analysis"," FHWA, USDOT, Washington, D.C., 2003.
- [2] S. K. Pokharel, ""Exepremental Study on Geocell-Reinforced Bases Under Static and Dynamic Loading"," university of kansas, Kansas, 1997.
- [3] M. Tencate, ""Application of the Groud-Han Design Method for Geosynthetic Reinforced Unpaved Roads"," 2014.
- [4] E. yoder and M. witczcak, principle of pavement design, john wiley and sons, 1975.
- [5] D.K. Kipto & D. Kalumba, ""An Investigation of the Effect of Dynamic and Static Loading to Geosynthetic Reinforced Pavements Overlaying a Soft Subgrade"," university of cape town (UCT), cape town, 2016.
- [6] K. Wubbenhorst, "Life cycle costing for construction projects", 1986.
- [7] A. Zoeteman, ""Life cycle cost analysis for managing rail infrastructure"," EJTIR, pp. 391-413, 2001.
- [8] O. Ugwu and Et-al, ""Object-oriented framework for durability assessment and life cycle costing"," automation in construction, pp. 611-632, 2005.
- [9] d. G. woodward, ""Life cycle costing- theory, information acquisition and application"," international journal of project management, pp. 335-344, 1997.
- [10] mugenda, ""Guidelines on proposal and dissertation writing"," 1999.
- [11] Economics of highway Transport, "https://books.google.com.et,"2005.[Online]. Available at: https://books.google.com.et/books?id=5LuWEAnER5kC&pg=PA11&lpg=PA11&dq.[Accessed 24 july 2019].
- [12] S. K. Shakla and J.-H. Yin, "fundamental of geosynthetic engineering", print edition ed., Landon, UK: Taylor & Francis/Balkema, 2006.
- [13] I. Al-Qadi, T.L.Brandon, R.J.Valentine and T.E.Smith, ""Laboratory Evaluation of Geosynthetic Reinforced Pavement Sections"," journal of transportation research board, pp. 25-31, 1994.
- [14] C. Sprague, S. Allen and W. Tribbett., ""short term and long term field evaluation of using geosynthetic in permanent road"," journal of transportation research board, 1989.
- [15] R. Korner, ""Separation: Perhaps the most underestimated geotextile function"," Industrial Fabrics Association, 1994.
- [16] E. S. S. David, MNSE and MNICE, ""Everyday Article"," 2013. [Online]. Available: https://thearticle-updates.blogspot.com/#!. [Accessed 27 july 2019].
- [17] B. Christopher and R. Holtz, ""Geotextiles for Subgrade Stabilization in Permanent roads and highways"," IFAI, vol. 2, pp. 701-713, 1991.
- [18] I. Alobaidi and D. Hoare, ""The Development of Pore Water Pressure at the Subgrade Subbase Interface of a Highway Pavement and its Effect on the Pumping of fines"," journal of geotextile and geomembrane, vol. 14, pp. 111-135, 1996.

- [19] K. Nishida and T. Nishigata, ""The Evaluation of Separation Function for Geotextiles"," journal of geotextile, pp. 139-142, 1994.
- [20] T. Lee, ""The Effects of Engineering Fabric in Street Pavement On Low Bearing Capacity Soil in New Orleans"," Ph.D thesis, p. 431, 1982.
- [21] J. Emblemsvåg, Life-Cycle Costing Using Activity-Based Costing, first ed., Hoboken, New Jersey: John Wiley & Sons, Inc, 2003.
- [22] J. Walls and M. Smith, ""Life cycle cost analysis in pavement design"," USDOT: FHWA, 1998.
- [23] FHWA, ""Economic Analysis Primer, Office of Asset Management"," washington, DC, 2002.
- [24] D. Peterson, ""life cycle cost analysis of pavements" synthesis of highway practice 122"," NCHRP, 1985.
- [25] R. winfrey, economic analysis for highways, pennsylvania: international text book company, 1969.
- [26] W. Wilde, S. Waalkes and R. Harrison, ""life cycle cycle cost analysis of portland cement concrete pavements"," FHWA, washington DC., 1999.
- [27] D. Peterson, "Life Cycle Cost Analysis of Pavements", Synthesis of highway practice 122," NCHRP, washington, DC, 1985.
- [28] ACPA, ""Life Cycle Cost Analysis: A Guide for Alternate Pavement Designs, American Concrete Pavement Association", "ACPA, washington DC., 2002.
- [29] W. I. James and R. S. Michael, ""Life-Cycle Cost Analysis in Pavement Design —Interim Technical Bulletin"," USDOT:FHWA, Washington, DC, 1998.
- [30] S. K. Bagui and A. Ghosh, ""Road Project Investment Evaluation Using Net Present Value (NPV) at Risk Method"," jordan journal of civil engineering, vol. 6, no. 2, p. 245, 2012.
- [31] G. P. Demos, ""Life Cycle Cost Analysis and Discount Rate on Pavements for The Colorado Department of Transportation"," US Department of Transportation, Federal Highway Administration, washington D.C., 2006.
- [32] P. E. Leland Blank and P. E. Anthony Tarquin, "Engineering economy", Eighth Edition ed., New York: McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121., 2012.
- [33] G. Lamptey, M. Ahmad, S. Labi and K. C. Sinha, ""Life Cycle Cost Analysis for INDOT Pavement Design Procedures"," INDOT Research, West lafayette, Indiana, 2005.
- [34] s.-h. yang, j. liu and n. tran, "https://www.researchgate.net/publication," 2018. [Online]. Available: https://www.researchgate.net/publication. [Accessed 25 july 2018].
- [35] J. Mallela and S. Sadasivam, ""work zone road user cost- concepts and applications"," U.S. Department of Transportation Federal Highway Administration Office of Operations (HOP), Washington, DC, 2011.
- [36] FHWA, ""Life-Cycle Cost Analysis in Pavement Design- In Search of Better Investment Decisions. Pavement Division Interim Technical Bulletin"," FHWA, US DOT, Washington, D.C., 1998.

- [37] G. P. Demos, "Life Cycle Cost Analysis and Discount Rate on Pavements for The Colorado Department of Transportation," US Department of Transportation, Federal Highway Administration, 2006.
- [38] S. Alemayehu, ""Testing Regression Models To Estimate Costs"," Addis Ababa University, Addis Ababa, 2014.
- [39] S.-H. Yang, "https://www.academia.edu," 27 febrary 2006. [Online]. Available at: https://www.academia.edu/34861322/Effectiveness_of_using_Geotextiles_in_Flexible_Pavements_a nd_Life-Cycle_Cost_Analysis_International_Journal_for_Modern_Trends_in_Science_and_Technology. [Accessed 21 june 2019].
- [40] D. N. Austin and D. Coleman, ""A Field Evaluation of Geosynthetic-Reinforced Haul Roads over Soft Foundation Soils", " journal of geosynthetic, pp. 65-80, 1993.
- [41] S. Webester, "Technical report GL-93-6.86 pp. Geogridreinforced base courses for flexible pavements for lightaircraft: test section construction, behavior under traffic, laboratory tests, and design criteria," MS:USAE, Vicksburg, 1993.
- [42] M. Gurara, ""Effectiveness of using geosynthetic materials for improvement of road construction and performance- case study on Addis Ababa"," international journal of engineering research and technology, vol. 6, no. 02, febrary, p. 643, 2017.
- [43] "("Addis Ababa," n.d.)".
- [44] HCM, 1994.
- [45] G. Lamptey, M. Ahmad, S. Labi and K. C. Sinha, "Life Cycle Cost Analysis for INDOT Pavement Design Procedures," FHWA/IN/JTRP, West lafayette, Indiana, 2005.
- [46] ERA, "Pavement Design Manual Volume I, flexible pavement and gravel road", first ed., addis ababa: ethiopian road authority, 2002.
- [47] NBE, "Trading Economics," 2019. [Online]. Availablehttps://tradingeconomics.com/ethiopia/interestrate. [Accessed 19 september 2019].
- [48] G. Kebede, Y. Ketema and P. E. T. Quezon, ""cost and benefit analysis of rigid and flexible pavementa case study at Chancho –Derba-Becho Road Project"," International Journal of Scientific & Engineering Research, vol. 7, no. 10, p. 41, 2016.
- [49] R. J. Robinson, ""A road transport investment model for developing countries"," Department of the Environment, TRRL Transport and Road Laboratory, Christchurch, New Zealand, 1975.
- [50] NBE, "wageindicator.org,"2019.[Online].Available at: https://wageindicator.org/salary/livingwage/ethiopia-living-wage-series-january-2019-country-overview. [Accessed 2019].
- [51] ERA, Technical Specification for Road Maintenance works, Addis Ababa: ethiopian road authority, 2011.
- [52] Worldremit, "historical exchange rate," 2019. [Online]. Available at: https://www.finder.com/. [Accessed december 2019].

- [53] S.-H. Yang, J. Liu and N. Tran, Multi-Criteria Life Cycle Approach to Develop Weighting of Sustainability Indicators for Pavement, 10 ed., 10.3390/su10072325, 2018.
- [54] J. W. Delleur, The handbook of ground water engineering/edited by Jacques Delleur, fourth ed., West Lafayette, Indiana: CRC Press LCC, 1999.
- [55] R. D. Holtz, B. R. Christopher and R. R. Berg, "Geosynthetic design and construction guidelines," CED, washington D.C., 1998.
- [56] D. K. Kiptoo, ""An Investigation of the Effect of Dynamic and Static Loading to Geosynthetic Reinforced Pavements Overlying a Soft Subgrade"," University of Cape Town, cape town, 2016.
- [57] V. Bairagi and M. V. Munot, Research Methodology; A Practical and Scientific Approach, New York, NY 10017: Taylor & Francis Group, LLC, 2019.
- [58] Verginia Tech(VT), "https://guides.lib.vt.edu," 2018. [Online]. Available at: https://guides.lib.vt.edu/researchmethods/design-method. [Accessed 14 August 2019].
- [59] A. J. Wimsatt, C. M. Chang-Albitres, P. E. Krugler, T. scullion, T. J. Freeman and M. B. Valdovinos, ""consideration for rigid vs. flexible pavement designs when allowed as alternate bids: technical report"," Texas departement of transportation research and technology implementation office, Austin, Texas, 2009.
- [60] numbeo, "https://www.numbeo.com/," 2019. [Online]. Available at: https://www.numbeo.com/. [Accessed 09 december 2019].
- [61] Africargroup and smagethiopia, "Cargebeya.com," 2016. [Online]Available at: Https://www.cargebeya.com/buy-car=en-ET. [Accessed monday 11 December 2019].

Appendix A: Major data collected

Appendix A. 1: Pavement data

Nº	Description of	Flex	xible pavem	ent	Conventional flexible pavement		
	parameters	with geo	osynthetic m	aterial			
2	Design Life		20			20	
3	Traffic data (AADT)		41478			41478	
	Analysis Period		25			25	
4	Traffic Growth Rate	5%			5%		
5	California Bearing	penetration	load	CBR	penetration	load	CBR
	Ratio	2.54	290	93.34%	2.54	221	71.73
	Κάπο	5.08	457.5	97.73%	5.08	339	72.42
6	Design CBR	97.73% (ratio	@ 2.54mm	< 5.08mm)	72.42%		
7	Layer Thickness (mm)						
8	Capping Layer Under		400			750	
0	the Sub Base	400			750		
9	Sub-Base Course	175			250		
10	Base Course		75		150		

BOQ for flexible pavement of 1km and three lanes (as per the typical road section)

Item №	Description	Unit	Quantity	Rate	Amount
1.	Bituminous Surfacing				
1.1	Bituminous Prime Coat				
1.1.1.	MC-30 cut back bitumen applied at 1 liter per	litar	14160	15	637200
	square meter	iller	14100	45	037200
2.	Tack Coat				
2.1.	RC-70 cut back bitumen applied at 1 liter per	litar	14160	13	608880
	square meter	iller	14100	75	000000
3.	Asphaltic Surfacing				
3.1.	50mm asphaltic surfacing with penetration grade of	M^2	14160	218	3086880
	80/100 bitumen	111	14100	210	5000000
3.2.	Dense Bitumen Macadam (145mm)	M^3	2053	3259	6690727

Туре	Code	Name of Activity	Unit
	210	Asphalt Patching (Seal Coat)	m2
	211	Asphalt Patching (Single Surface Treatment)	m2
Doutino	212	Asphalt Patching (Double Surface Treatment)	m2
Maintenance	213	Asphalt Patching (Cold Mix)	<i>m3</i>
maintenance	214	Asphalt Patching (Hot-Mini-Mix)	<i>m3</i>
	215	Crack Sealing (Individual Cracks)	Lm
	219	Pothole (Base Failure Repair)	<i>m3</i>
	309	Sand seal coat m2	m2
	310	Single Bituminous Surface Treatment (SBST) m2	m2
	311	Double Bituminous Surface Treatment (DBST)	m2
Periodic	312	Mix-In-Place Overlay (Cold Mix)	<i>m3</i>
Maintenance	313	Asphaltic Concrete Overlay	<i>m3</i>
	314	Bitumen Prime Coat	Lt
	315	Bitumen Tack Coat	Lt
	316	Pavement Reconstruction (Aggregate Road base)	<i>m3</i>

Flexible pavement maintenance activities in Ethiopian context [51]

Appendix A.1 Traffic data

Table 18 : Average Annual Daily Traffic (Source: Addis Ababa City Road Authority)

1. Month	2. Total monthly volume (vehs)	4. ADT (vehs/day)
January	645840	21528
February	642960	21432
March	613950	20465
April	663690	22123
May	599610	19987
June	646380	21546
July	604350	20145
August	596910	19897
September	643710	21457
October	649620	21654
November	607350	20245
December	655350	21845
Total	7569720	-
AADT	2073	39

Vehicle Classification	Description	Volume &	% of AADT
1. passenger vehicles		65%	13480
Motorcycles	All two or three-wheeled motorized vehicles		
All Sedans, Coupes, and	Those cars pulling recreational/ other		
Station Wagons	light trailers		
Campers, Motorhomes,	Two-Axle, Four-Tire Single Unit		
Ambulances	Vehicles		
2. Single Unit Truck		20%	4148
Buses	Buses with 2 axles and 6 tires or 3 or more axles.		
Trucks, Recreational Vehicles,	<i>Two-Axle, Six-Tire, with dual rear</i>		
motors	wheels.		
Trucks, Recreational Vehicles,	All vehicles on a single frame with		
Motors	three axles.		
Trucks, Recreational Vehicles,	All trucks on a single frame with four or		
Motors	more axles.		
3. Combination Trucks		15%	3111
Single-Trailer Trucks	All vehicles with four or fewer axles,		
-	five-axle, six or more axles consisting of		
	two units, one of which is a tractor or		
	straight truck power unit.		
Multi-Trailer Trucks	All vehicles with five or fewer axles, six-		
	axle, seven or more axles consisting of		
	three or more units, one of which is a		
	tractor or straight truck power unit.		

Table 19: Vehicle Groups, Classifications and Percentage of AADT (IDOT Classification Method)

 Table 20: Maximum mixed vehicle traffic capacities for trucks in the traffic stream (Source: HCM-1994)

%	Truck Equivalency Factor									
Trucks	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5	5.5	6
0.0%	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300	2,300
2.0%	2,277	2,255	2,233	2,212	2,190	2,170	2,150	2,130	2,110	2,091
4.0%	2,255	2,212	2,170	2,130	2,091	2,054	2,018	1,983	1,949	1,917
5.0%	2,244	2,190	2,140	2,091	2,044	2,000	1,957	1,917	1,878	1,840
6.0%	2,233	2,170	2,110	2,054	2,000	1,949	1,901	1,855	1,811	1,769
8.0%	2,212	2,130	2,054	1,983	1,917	1,855	1,797	1,742	1,691	1,643
10.0%	2,190	2,091	2,000	1,917	1,840	1,769	1,704	1,643	1,586	1,533
12.0%	2,170	2,054	1,949	1,855	1,769	1,691	1,620	1,554	1,494	1,438
14.0%	2,150	2,018	1,901	1,797	1,704	1,620	1,544	1,474	1,411	1,353
15.0%	2,140	2,000	1,878	1,769	1,673	1,586	1,508	1,438	1,373	1,314
16.0%	2,130	1,983	1,855	1,742	1,643	1,554	1,474	1,402	1,337	1,278
18.0%	2,110	1,949	1,811	1,691	1,586	1,494	1,411	1,337	1,271	1,211

%	Truck	Truck Equivalency Factor								
Trucks	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5	5.5	6
20.0%	2,091	1,917	1,769	1,643	1,533	1,438	1,353	1,278	1,211	1,150
22.0%	2,072	1,885	1,729	1,597	1,484	1,386	1,299	1,223	1,156	1,095
24.0%	2,054	1,855	1,691	1,554	1,438	1,337	1,250	1,173	1,106	1,045
25.0%	2,044	1,840	1,673	1,533	1,415	1,314	1,227	1,150	1,082	1,022

Table 21: Observed saturation flow rates per hour of green time (Source: Table 2-13, of the 1994 HCM).

1,470	1,572	1,651	1,682	1,785	1,791
1,832	1,840	1,875	1,827	1,896	1,905
1,910	1,936	1,937	2,000	2,000	-
	1,818				
	Stan	dard Devia	ation		144

 Table 22: Measured Average Work Zone Capacities (Source: HCM - 1994)

Direction	al Lanes		Average Capacity			
Normal Operations	Work Zone Operations	Studies	Vehicles Per Hour	Vehicles per Lane per Hour		
3	1	7	1,170	1,170		
2	1	8	1,340	1,340		
5	2	8	2,740	1,370		
4	2	4	2,960	1,480		
3	2	9	2,980	1,490		
4	3	4	4,560	1,520		

Table 23: Added time and vehicle running cost/1,000 stops and idling costs (1996 \$).

Initial	А	dded Time (Hr/1,0) (Excludes Idling)	000 Stops) Time)	Added Cost (\$/1,000 Stops) (Excludes Idling Time)			
(mi/h)	Pass Cars	Single-Unit Truck	Combination Truck	Pass Cars	Single-Unit Truck	Combination Truck	
5	1.02	0.73	1.1	0.71	2.43	8.83	
10	1.51	1.47	2.27	2.32	5.44	20.35	
15	2	2.2	3.48	3.98	8.9	34.13	
20	2.49	2.93	4.76	5.71	12.71	49.91	
25	2.98	3.67	6.1	7.53	16.8	67.37	
30	3.46	4.4	7.56	9.48	21.07	86.19	
35	3.94	5.13	9.19	11.57	25.44	106.05	
40	4.42	5.87	11.09	13.84	29.93	126.63	
45	4.9	6.6	13.39	16.3	34.16	147.62	
50	5.37	7.33	16.37	18.99	38.33	168.7	
55	5.84	8.07	20.72	21.92	42.25	189.54	
60	6.31	8.8	27.94	25.13	47	209.82	

Initial	Added 7 (Exclude	Time (Hr/1,000 Stores Idling Time)	ops)	Added Cost (\$/1,000 Stops) (Excludes Idling Time)			
Speed (mi/h)	Pass Cars	Single-Unit Truck	Combination Truck	Pass Cars	Single-Unit Truck	Combination Truck	
65	6.78	9.53	NA	28.63	51.43	NA	
70	7.25	NA	NA	32.46	NA	NA	
75	7.71	NA	NA	36.64	NA	NA	
80	8.17	NA	NA	41.19	NA	NA	
	Id	ling Cost (\$/Veh-H	Ir)	0.1819	0.2017	0.2166	

Source: R. Winfrey, Economic Analysis for Highways, and table 5, NCHRP Report 133. Added Cost (\$/1,000 Stops) includes fuel, tires, engine oil, maintenance, and depreciation. Idling Cost (\$/Veh-Hr) includes fuel, engine oil, maintenance, and depreciation.

Between 1996 and 2000 the birr went from about 6.4 birr to 1 dollar, to 8.3 birr to 1 dollar [52]. Using 6.4 rate, table 18 above was adjusted to ETB as follow.

Table 24: Added time and vehicle running cost/1,000 stops and idling costs (1996 ETB).

Initial	Ad	Ided Time (Hr/1,0	000 Stops)	Added Cost (ETB/1,000 Stops)			
Speed		(Excludes Idling	(Time)	(Excludes Idling Time)			
(mi/h)	Pass	Single-Unit	Combination	Pass	Single-Unit	Combination	
(1111/11)	Cars	Truck	Truck	Cars	Truck	Truck	
5	1.02	0.73	1.1	4.47	15.31	55.63	
10	1.51	1.47	2.27	14.62	34.27	128.21	
15	2	2.2	3.48	25.07	56.07	215.02	
20	2.49	2.93	4.76	35.97	80.07	314.43	
25	2.98	3.67	6.1	47.44	105.84	424.43	
30	3.46	4.4	7.56	59.72	132.74	543.00	
35	3.94	5.13	9.19	72.89	160.27	668.12	
40	4.42	5.87	11.09	87.19	188.56	797.77	
45	4.9	6.6	13.39	102.69	215.21	930.01	
50	5.37	7.33	16.37	119.64	241.48	1062.81	
55	5.84	8.07	20.72	138.10	266.18	1194.10	
60	6.31	8.8	27.94	158.32	296.10	1321.87	
65	6.78	9.53	NA	180.37	324.01	NA	
70	7.25	NA	NA	204.50	NA	NA	
75	7.71	NA	NA	230.83	NA	NA	
80	8.17	NA	NA	259.50	NA	NA	
	Idling	g Cost (ETB/Veh-	-Hr)	1.1460	1.2707	1.3646	

Appendix A.2 Living wages (Source: <u>https://wageindicator.org/salary/living-wage/ethiopia-living-wage-</u> series-january-2018-countryoverview)

Wage indicators	Years			
wage indicators	2015	2016	2017	2018
Minimum wage	420	420	420	420
Living Wage - Single Adult	-	-	-	1960-3510
Living Wage - Typical Family	-	-	-	2670-4580
Real wage of low-skilled worker	1150-1720	1260-1780	1000-1530	2540-4110
Real wage of medium-skilled worker	1610-2490	1710-2510	1520-2400	3010-4880
Real wage of high-skilled worker	2200-3090	2570-3420	2490-3560	4370-6500

Appendix B Agency cost calculation

Table 25: Activity Timings (Source: Addis Ababa City Road Authority Maintenance Manual)

Opt	ions	Remedial type	Activity Time	cost base	remark
				line	
		Initial Construction	In 2019 G.C.		
ų	_	Routine Maintenance	Once Every Years		
t wit	rials	Periodic Maintenance	Once Every 4 Years		ney.
men	nate	Rehabilitation	Once Every 10 Years of 25 Year (2029 and		c mo
pave	etic 1		2039)		ue of
ible J	geosynthe	user cost	During Maintenance & Rehabilitation	C. G.C.	e val
Flexi		salvage value	At 25 th Year (2044 G.C.)	019	time
		Initial Construction	In 2019 G.C.	of 20	on of
		Routine Maintenance	once every year	Cost	eratio
ible		Periodic Maintenance	Once Every Three Years		lside
Flex		Rehabilitation	Once Every 8 Years of 25 Year (2027, 2035		n coi
onal	t		and 2043)		with
entic	men	user cost	During Maintenance & Rehabilitation		ected
conv	pave	salvage value	At 25 th Year (2039 G.C.)		proje

Appendix B.1 Maintenance cost calculation

Abbreviation:

M= Mainline **OS**= Outside Shoulder **IS**= Inside Shoulder **R**= Ramps **Roadway Data:** Mainline: Length = 1000m, Width = 10.5m, IS = 1.22m, OS = 2.44m, Total width = 10.5+1.22+2.44 = 14.16m, Area = $10.5*1000 = 10500M^2$ Area ((1) 1.22m Inside Shoulders) = $1.22*1000 = 1220m^2$

1	. Veere	Construction	Maint	enance	Dehebilitetion	Calara - Valara
Age	in rears	Construction	Routine	Periodic	Renabilitation	Salvage value
0	2019	ø				
1	2020		ø			
2	2021		×			
3	2022			ø		
4	2023		×			
5	2024		ø			
6	2025			ø		
7	2026		ø			
8	2027				×	
9	2028			×		
10	2029		×			
11	2030		×			
12	2031			Ř		
13	2032		×			
14	2033		×			
15	2034			X		
16	2035				×	
17	2036		×			
18	2037			ø		
19	2038		×			
20	2039		×			
21	2040			×		
22	2041		×			
23	2042		×			
24	2043				×	
25	2044					×

Area ((1) 2.44m Outside Shoulders) = $2.44*1000 = 2440m^2$ Table 26 : Conventional Flexible payement cost schedule in the 25 years analysis period (2019-2044)

Table 27 : Flexible pavement with geosynthetic materials cost schedule in the 25 years analysis period (2019-2044

Aga in Vaars		Construction	Mainte	enance	Dehabilitation	Salvaga Valua
Age	II Teals	Construction	Routine Periodic		Kellabilitatioli	Salvage value
0	2019	×				
1	2020		×			
2	2021		ø			
3	2022		ø			
4	2023			ø		
5	2024		ø			
6	2025		ø			
7	2026		×			
8	2027			×		

9	2028	×			
10	2029			×	
11	2030	ø			
12	2031		ø		
13	2032	×			
14	2033	×			
15	2034	ø			
16	2035		ø		
17	2036	×			
18	2037	×			
19	2038	×			
20	2039			ø	
21	2040	×			
22	2041	×			
23	2042	×			
24	2043		×		
25	2044				X

Appendix B 1.1Routine maintenance Cost

|--|

Code	Name of Activity	Unit	Unit Rate	Entire Lanes Quantity	Amount (ETB)
210	Asphalt Patching (Seal Coat)	m2	70.98	708	50253.8
211	Asphalt Patching (Single Surface Treatment)	m2	78.48	283.2	22225.5
212	Asphalt Patching (Double Surface Treatment)	m2	144.26	283.2	40854.4
214	Asphalt Patching (Hot-Mini Mix)	m3	4,650.10	70.8	329227
215	Crack Sealing (Individual Cracks) (>3mm)	Lm	60.31	50	3015.5
218	Pothole Reinstatement (Hot Mini-Mix) 150mm avg. thickness	m3	7235.68	42.48	307372
219	Pothole (Base Failure Repair) for 100mm avg. thickness	m3	786.42	28.32	22271.4
	Total Cost (ETB/KM)			775, 219.4888	

 Table 29: Routine Maintenance Cost Summary for conventional pavement in the Analysis Period

age i	ge in years 1+if		(1+if) ^n	Routine maintenance at the end of 2019 (PV)	Routine maintenance cost in analysis period (FV) = PV (1+if) ^n
0	2019				
1	2020	1.27437	1.27437	775219.4889	987916.46
2	2021	1.27437	1.62402	775219.4889	1258971.10
3	2022	1.27437		775219.4889	

age in	age in years 1+if		1+if (1+if) ^n	Routine maintenance at the end of 2010 (PV)	Routine maintenance cost in analysis period (EV) = $PV(1 + if) \Delta p$
4	2023	1 27437	2 63744	775219 4889	2044592.86
5	2023	1.27437	3.36107	775219.4889	2605567.80
6	2025	1.27437	0.00107	775219.4889	200207.00
7	2026	1.27437	5.45844	775219.4889	4231491.34
8	2027	1.27437		775219.4889	
9	2028	1.27437		775219.4889	
10	2029	1.27437	11.2968	775219.4889	8757498.55
11	2030	1.27437	14.3963	775219.4889	11160293.42
12	2031	1.27437		775219.4889	
13	2032	1.27437	23.3799	775219.4889	18124527.42
14	2033	1.27437	29.7946	775219.4889	23097354.00
15	2034	1.27437		775219.4889	
16	2035	1.27437		775219.4889	
17	2036	1.27437	61.6629	775219.4889	47802306.05
18	2037	1.27437		775219.4889	
19	2038	1.27437	100.142	775219.4889	77631848.35
20	2039	1.27437	127.618	775219.4889	98931698.58
21	2040	1.27437		775219.4889	
22	2041	1.27437	207.253	775219.4889	160666948.00
23	2042	1.27437	264.118	775219.4889	204749138.52
24	2043	1.27437		775219.4889	
25	2044	1.27437		775219.4889	
		Grand	l Total (ET	B/KM)	662,050,152.44

Table 30: Routine Maintenance Cost Summary for flexible pavement with geosynthetic materials in the

Analysis Period

n	Years	1+if	(1+if) ^n	Routine Maintenance at The End of 2019 (PV)	Routine Maintenance Cost in Analysis Period (FV) = PV (1+if) ^n
0	2019				-
1	2020	1.27437	1.27437	775219.4889	987916.4601
2	2021	1.27437	1.624018897	775219.4889	1258971.099
3	2022	1.27437	2.069600962	775219.4889	1604395.000
4	2023	1.27437		775219.4889	
5	2024	1.27437	3.361071071	775219.4889	2605567.798
6	2025	1.27437	4.28324814	775219.4889	3320457.434
7	2026	1.27437	5.458442933	775219.4889	4231491.340
8	2027	1.27437		775219.4889	
9	2028	1.27437	8.86461447	775219.4889	6872021.899

n	Years	1+if	(1+if) ^n	Routine Maintenance at	Routine Maintenance Cost in
			· · /	The End of 2019 (PV)	Analysis Period $(FV) = PV (1+if)^n$
10	2029	1.27437		775219.4889	
11	2030	1.27437	14.39630141	775219.4889	11160293.420
12	2031	1.27437		775219.4889	
13	2032	1.27437	23.37986554	775219.4889	18124527.420
14	2033	1.27437	29.79459925	775219.4889	23097354.000
15	2034	1.27437	37.96934345	775219.4889	29434575.02
16	2035	1.27437		775219.4889	
17	2036	1.27437	61.66293126	775219.4889	47802306.05
18	2037	1.27437	78.58138971	775219.4889	60917824.77
19	2038	1.27437	100.1417656	775219.4889	77631848.35
21	2040	1.27437	162.6321197	775219.4889	126075588.7
22	2041	1.27437	207.2534944	775219.4889	160666948
23	2042	1.27437	264.1176356	775219.4889	204749138.5
25	2044			775219.4889	
Grand Total (ETB/KM) 779,			779,553,308.83		

Appendix B 1.2 Periodic maintenance cost

Periodic maintenance cost of Flexible pavement at end of 2019

Sand seal coat quantity for entire lanes including shoulders (14.16m)

= 10% of the area = 0.10 (width * length) = 0.10 (14.16m * 1000m) $= 1416m^{2}$

Single Bituminous Surface Treatment quantity for entire lane including shoulders (14.16m)

= 10% of the area = 0.10 (width * length) = 0.10 (14.16m * 1000m) $= 1416m^{2}$

Double Bituminous Surface Treatment quantity for entire lanes including shoulders (14.16m)

= 10% of the area = 0.10 (width * length) = 0.10 (14.16m * 1000m) $= 1416m^{2}$

Mix-In-Place Overlay (Cold Mix) for 50mm thickness quantity for entire lanes (14.16m)

= 10% of the quantity = 0.10 (width * thickness * length) = 0.10 (14.16m * 0.05m * 1000m) = $\frac{70.8m^3}{1000m}$

Asphaltic Concrete Overlay for 40mm thickness quantity for entire lanes (14.16m)

= 15% of the quantity = 0.15 (width * thickness * length) = 0.15 (14.16m * 0.04m * 1000m) = $\underline{84.96m^3}$

Bitumen Prime Coat (0.3lt/m2) quantity for entire lanes (14.16m)

= 60% of the quantity $= 0.6 (0.3 \text{ liters/m}^2 * 14160 \text{m}^2) = \frac{2548.8 \text{ liters}}{2548.8 \text{ liters}}$

Bitumen Tack Coat (0.5lt/m2) quantity for entire lanes (14.16m)

= 60% of the quantity $= 0.6 (0.5 \text{ liters/m}^2 * 14160 \text{m}^2) = \frac{4248 \text{ liters}}{4248 \text{ liters}}$

Pavement Reconstruction (Aggregate Road base to 150mm) quantity for entire lanes (14.16m)

= 10% of the quantity = 0.10 (width * thickness * length) = 0.10 (14.16m * 0.15m * 1000m) = $212.4m^3$

Table 31 : Periodic maintenance cost of flexible pavement at the end of 2019 (Source: Thesis Report on Cost
and Benefit Analysis of Flexible and Rigid Pavement by Yonas Katema in JiT; 2015)

Code	Name of Activity		Unit Rate	Entire lane	Amount
Code	Name of Activity	Oint	(ETB/unit)	quantity	(ETB)
309	Sand seal coat	m2	49.3086	1416	69,820.98
310	Single Bituminous Surface treatment (SBST)	m2	51.6104	1416	73,080.26
311	Double Bituminous Surface Treatment (DBST)	m2	106.74	1416	151,143.59
312	Mix-in-place overlay (cold mix) of 50mm thick	m3	3972.2	70.8	281,231.51
313	Asphaltic concrete overlay for 40mm thickness	m3	4435.13	84.96	376,809.04
314	Bitumen Prime Coat (0.3lt/m2)	Lt	38.516	2548.8	98,169.45
315	Bitumen Tack Coat (0.5lt/m2)	Lt	42.8126	4248	181,867.71
316	Pavement Reconstruction (aggregate road base)	m3	842.297	212.4	178,903.94
	Total Cost	1,411,026.48			

Table 32:Periodic Maintenance Cost Summary for conventional flexible pave. in the Analysis Period

n	Years	1+if	(1+if) ^n	Periodic maintenance at the end of 2019 (PV)	Periodic maintenance cost in analysis period (FV) = PV (1+if) ^n
0	2019				
1	2020	1.27437		1,411,026.48	
2	2021	1.27437		1,411,026.48	
3	2022	1.27437	2.0696	1,411,026.48	2920261.76
4	2023	1.27437		1,411,026.48	
5	2024	1.27437		1,411,026.48	
6	2025	1.27437	4.28325	1,411,026.48	6043776.547
7	2026	1.27437		1,411,026.48	
8	2027	1.27437		1,411,026.48	
9	2028	1.27437	8.86461	1,411,026.48	12508205.75
10	2029	1.27437		1,411,026.48	
11	2030	1.27437		1,411,026.48	
12	2031	1.27437	18.3462	1,411,026.48	25886994.65
13	2032	1.27437		1,411,026.48	
15	2034	1.27437	37.9693	1,411,026.48	53575749.03
17	2036	1.27437		1,411,026.48	
18	2037	1.27437	78.5814	1,411,026.48	110880421.7
19	2038	1.27437		1,411,026.48	

n	Years	1+if	(1+if) ^n	Periodic maintenance at the end of 2019 (PV)	Periodic maintenance cost in analysis period (FV) = PV (1+if) ^n
21	2040	1.27437	162.632	1,411,026.48	229478227.4
22	2041	1.27437		1,411,026.48	
23	2042	1.27437		1,411,026.48	
24	2043	1.27437		1,411,026.48	
25	2044	1.27437		1,411,026.48	
		Gra	441,293,636.9		

 Table 33 : periodic Maintenance Cost Summary for flexible pavement with geosynthetic materials in the

 Analysis Period

Age in Years		1+if	(1+if) ^n	periodic maintenance at the end of 2019 (PV)	periodic maintenance cost in analysis period (FV) = PV (1+if) ^n
0	2019	1.27437			
1	2020	1.27437		1,411,026.48	-
2	2021	1.27437		1,411,026.48	-
3	2022	1.27437		1,411,026.48	-
4	2023	1.27437	2.63744	1,411,026.48	3,721,493.98
5	2024	1.27437		1,411,026.48	-
6	2025	1.27437		1,411,026.48	-
7	2026	1.27437		1,411,026.48	-
8	2027	1.27437	6.95608	1,411,026.48	9,815,207.32
9	2028	1.27437		1,411,026.48	-
10	2029	1.27437		1,411,026.48	-
11	2030	1.27437		1,411,026.48	-
12	2031	1.27437	18.3462	1,411,026.48	25,886,994.65
13	2032	1.27437		1,411,026.48	-
14	2033	1.27437		1,411,026.48	-
15	2034	1.27437		1,411,026.48	-
16	2035	1.27437	48.387	1,411,026.48	68,275,327.29
17	2036	1.27437		1,411,026.48	-
18	2037	1.27437		1,411,026.48	-
19	2038	1.27437		1,411,026.48	-
20	2039	1.27437		1,411,026.48	-
21	2040	1.27437		1,411,026.48	-
22	2041	1.27437		1,411,026.48	-
23	2042	1.27437		1,411,026.48	-
24	2043	1.27437	336.584	1,411,026.48	474,928,360.12
25	2044	1.27437		1,411,026.48	-

Grand Total (ETB/KM)

582,627,383.36

Appendix B 1.3Rehabilitation cost

Rehabilitation cost of flexible pavement at end of 2019

Asphaltic Concrete Overlay for 50mm thickness for entire lanes including shoulders (14.16m) = 100% of the quantity = 1 (width * thickness * length) = 14.16m * $0.05m * 1000m = \frac{708m^3}{1000m}$ Bitumen Tack Coat (0.5lt/m2) quantity for entire lane including shoulders (14.16m) = 100% of the area = 0.5liters/m² * 14.16m *1000m = $\frac{7080$ liters

Pavement Reconstruction (Aggregate Road base to 150mm) quantity for entire lanes (14.16m) = 100% of the quantity = $14.16m * 0.15m * 1000m = \underline{2124m^3}$

Table 34 : Rehabilitation cost of flexible pavement at the end of 2019

Asphaltic Concrete Overlay for 50mm thickness	m3	4435.13466	4435.13466 708.00	
Bitumen Tack Coat (0.5lt/m2)	Lt	51.61035	7,080.00	365,401.28
Pavement Reconstruction (Aggregate Road base)	m3	842.29728	2,124.00	1,789,039.42
Total Cost		5,	294,516.04	1

Table 35 : Rehabilitation Cost Summary for conventional flexible pavement in the Analysis Period

Age in Years		1+if	(1+if) ^n	Rehabilitation Cost at the end of 2019 (PV)	Rehabilitation Cost in analysis period (FV) = PV (1+if) ^n
0	2019				
1	2020	1.27437		5294516.04	-
2	2021	1.27437		5294516.04	-
3	2022	1.27437		5294516.04	-
4	2023	1.27437		5294516.04	-
5	2024	1.27437		5294516.04	-
7	2026	1.27437		5294516.04	-
8	2027	1.27437	6.95608	5294516.04	36,829,055.53
9	2028	1.27437		5294516.04	-
10	2029	1.27437		5294516.04	-
11	2030	1.27437		5294516.04	-
12	2031	1.27437		5294516.04	-
14	2033	1.27437		5294516.04	-
15	2034	1.27437		5294516.04	-
16	2035	1.27437	48.387	5294516.04	256,185,706.37
17	2036	1.27437		5294516.04	-
18	2037	1.27437		5294516.04	-
19	2038	1.27437		5294516.04	-

Age in Years		1+if	(1+if) ^n	Rehabilitation Cost at the end of 2019 (PV)	Rehabilitation Cost in analysis period (FV) = PV (1+if) ^n
21	2040	1.27437		5294516.04	-
22	2041	1.27437		5294516.04	-
23	2042	1.27437		5294516.04	-
24	2043	1.27437	336.584	5294516.04	1,782,047,223.16
25	2044	1.27437		5294516.04	-
		Gran	d Total (ET	2,075,061,985.06	

 Table 36 : Rehabilitation Cost Summary for flexible pavement with geosynthetic materials in the Analysis

 Period

Age in Years		1+if	(1+if) ^n	Rehabilitation cost at the end of 2019 (PV)	Rehabilitation cost in analysis period (FV) = PV (1+if) ^n
0	2019				
1	2020	1.27437		5,294,516.04	-
2	2021	1.27437		5,294,516.04	-
3	2022	1.27437		5,294,516.04	-
4	2023	1.27437		5,294,516.04	-
5	2024	1.27437		5,294,516.04	-
6	2025	1.27437		5,294,516.04	-
7	2026	1.27437		5,294,516.04	-
8	2027	1.27437		5,294,516.04	-
9	2028	1.27437		5,294,516.04	-
10	2029	1.27437	11.2968	5,294,516.04	59,811,082.14
11	2030	1.27437		5,294,516.04	-
12	2031	1.27437		5,294,516.04	-
13	2032	1.27437		5,294,516.04	-
14	2033	1.27437		5,294,516.04	-
15	2034	1.27437		5,294,516.04	-
16	2035	1.27437		5,294,516.04	-
17	2036	1.27437		5,294,516.04	-
18	2037	1.27437		5,294,516.04	-
19	2038	1.27437		5,294,516.04	-
20	2039	1.27437	127.618	5,294,516.04	675,673,757.55
21	2040	1.27437		5,294,516.04	-
22	2041	1.27437		5,294,516.04	-
23	2042	1.27437		5,294,516.04	-
24	2043	1.27437		5,294,516.04	-
25	2044	1.27437		5,294,516.04	-

Grand Total (ETB/KM)

735,484,839.70

Appendix CRoad User Cost

Appendix C.1 Work zone operation user cost

Appendix C 1.1 Work zone operation user cost for conventional flexible pavement

Appendix C.1.1.1 Work zone operation user cost for conventional flexible pavement during routine maintenance

Step 1. Project Future Year Traffic Demand (Forecasting Traffic)

 Table 37: Future Year Traffic Demand (Forecasted Traffic)

Fore	Passen	Single	Combi	Total	Class Percentage (%)			Total
casted	ger	Unit	nation	Sum	Dassangar	Single Unit	Combinatio	Percenta
Year	Cars	Truck	Trucks	Sum	Fassenger	Truck	n trucks	ge
1	2	3	4	5=2+3+4	6= (2/5) *100	7= (3/5) *100	8= (4/5) *100	9=6+7+8
2019	13480	4148	3111	20739	64.998	20.001	15.001	100
2020	14154	4355	3267	21776	64.998	20.001	15.001	100
2021	14862	4573	3430	22865	64.998	20.001	15.001	100
2022	15605	4802	3601	24008	64.998	20.001	15.001	100
2023	16385	5042	3781	25208	64.998	20.001	15.001	100
2024	17204	5294	3971	26469	64.998	20.001	15.001	100
2025	18064	5559	4169	27792	64.998	20.001	15.001	100
2026	18968	5837	4377	29182	64.998	20.001	15.001	100
2027	19916	6128	4596	30641	64.998	20.001	15.001	100
2028	20912	6435	4826	32173	64.998	20.001	15.001	100
2029	21957	6757	5067	33782	64.998	20.001	15.001	100
2030	23055	7094	5321	35471	64.998	20.001	15.001	100
2031	24208	7449	5587	37244	64.998	20.001	15.001	100
2032	25419	7822	5866	39106	64.998	20.001	15.001	100
2033	26689	8213	6160	41062	64.998	20.001	15.001	100
2034	28024	8623	6468	43115	64.998	20.001	15.001	100
2035	29425	9055	6791	45271	64.998	20.001	15.001	100
2036	30896	9507	7130	47534	64.998	20.001	15.001	100
2037	32441	<i>9983</i>	7487	49911	64.998	20.001	15.001	100
2038	34063	10482	7861	52406	64.998	20.001	15.001	100
2039	35766	11006	8254	55027	64.998	20.001	15.001	100
2040	37555	11556	8667	57778	64.998	20.001	15.001	100
2041	39433	12134	9100	60667	64.998	20.001	15.001	100
2042	41404	12741	9556	63700	64.998	20.001	15.001	100
2043	43474	13378	10033	66885	64.998	20.001	15.001	100
2044	45648	14047	10535	70230	64.998	20.001	15.001	100

Step 2. Calculate Work Zone Directional Hourly Demand

Table 38: Default hourly distributions from MicroBENCOST (all functional classes).

		Rural		Urban			
Hour $(24 - U = C + 1 = ab)$	%	Direc	ction %	%	Direc	ction %	
нгс юск)	AADT	Inbound	Outbound	AADT	Inbound	Outbound	
12-1	1.8	48	52	1.2	47	53	
1-2	1.5	48	52	0.8	43	57	
2-3	1.3	45	55	0.7	46	54	
3-4	1.3	53	47	0.5	48	52	
4-5	1.5	53	47	0.7	57	43	
5-6	1.8	53	47	1.7	58	42	
6-7	2.5	57	43	5.1	63	37	
7-8	3.5	56	44	7.8	60	40	
8-9	4.2	56	44	6.3	59	41	
9-10	5	54	46	5.2	55	45	
10-11	5.4	51	49	4.7	46	54	
11-12	5.6	51	49	5.3	49	51	
12-13	5.7	50	50	5.6	50	50	
13-14	6.4	52	48	5.7	50	50	
14-15	6.8	51	49	5.9	49	51	
15-16	7.3	53	47	6.5	46	54	
16-17	9.3	49	51	7.9	45	55	
17-18	7	43	57	8.5	40	60	
18-19	5.5	47	53	5.9	46	54	
19-20	4.7	47	53	3.9	48	52	
20-21	3.8	46	54	3.3	47	53	
21-22	3.2	48	52	2.8	47	53	
22-23	2.6	48	52	2.3	48	52	
23-24	2.3	47	53	1.7	45	55	

Table 39: Outbound Work zone directional hourly demand (all vehicle classes) for year 2020

AADT of year 2020 = 21776		Oı	utbound Urban I		Inbound Urban Interstate			
(24-Hr Clock)	% AADT		Directional Factor %		Demand	Directio Facto	onal or	Demand
12-1	1.20	0.01	53.00	0.53	138	47.00	0.47	123
1-2	0.80	0.01	57.00	0.57	99	43.00	0.43	75
2-3	0.70	0.01	54.00	0.54	82	46.00	0.46	70
3-4	0.50	0.01	52.00	0.52	57	48.00	0.48	52
4-5	0.70	0.01	43.00	0.43	66	57.00	0.57	87

AADT of year 2020 = 21776	Outbo	ound Urba	n Interstate		Inbound Urban Interstate			
(24-Hr Clock)	% AADT		Directional Factor %		Demand	Directional Factor		Demand
5-6	1.70	0.02	42.00	0.42	155	58.00	0.58	215
6-7	5.10	0.05	37.00	0.37	411	63.00	0.63	700
7-8	7.80	0.08	40.00	0.40	679	60.00	0.60	1019
8-9	6.30	0.06	41.00	0.41	562	59.00	0.59	809
9-10	5.20	0.05	45.00	0.45	510	55.00	0.55	623
10-11	4.70	0.05	54.00	0.54	553	46.00	0.46	471
11-12	5.30	0.05	51.00	0.51	589	49.00	0.49	566
12-13	5.60	0.06	50.00	0.50	610	50.00	0.50	610
13-14	5.70	0.06	50.00	0.50	621	50.00	0.50	621
14-15	5.90	0.06	51.00	0.51	655	49.00	0.49	630
15-16	6.50	0.07	54.00	0.54	764	46.00	0.46	651
16-17	7.90	0.08	55.00	0.55	946	45.00	0.45	774
17-18	8.50	0.09	60.00	0.60	1111	40.00	0.40	740
18-19	5.90	0.06	54.00	0.54	694	46.00	0.46	591
19-20	3.90	0.04	52.00	0.52	442	48.00	0.48	408
20-21	3.30	0.03	53.00	0.53	381	47.00	0.47	338
21-22	2.80	0.03	53.00	0.53	323	47.00	0.47	287
22-23	2.30	0.02	52.00	0.52	260	48.00	0.48	240
23-24	1.70	0.02	55.00	0.55	204	45.00	0.45	167
		Tota	10912			10864		

Table 40: Outbound Work zone directional hourly demand for years affected in analysis period-1

		Average Annual Daily Traffic of Work Zone Periods (AADT)										
Outbound Urban Interstate			2020 = 21776	2023 = 25208	2024 = 26469	2026 = 29182	2030 = 35471	2032 = 39106	2036 = 47534	2038 = 52406	2039 = 55027	2042 = 63700
(24-Hr Clock)	% ADT	Direct. Factor %	Demand	Demand								
12-1	1.2	53	138	160	168	186	226	249	302	333	350	405
1-2	0.8	57	99	115	121	133	162	178	217	239	251	290
2-3	0.7	54	82	95	100	110	134	148	180	198	208	241
3-4	0.5	52	57	66	69	76	92	102	124	136	143	166
4-5	0.7	43	66	76	80	88	107	118	143	158	166	192
5-6	1.7	42	155	180	189	208	253	279	339	374	393	455
6-7	5.1	37	411	476	499	551	669	738	897	989	1038	1202
Average Annual Daily Traffic of Work Zone Periods (AADT)												

Outboun Interstat	nd Urba re	an	2020 = 21776	2023 = 25208	2024 = 26469	2026 = 29182	2030 = 35471	2032 = 39106	2036 = 47534	2038 = 52406	2039 = 55027	2042 = 63700
(24-Hr Clock)	% ADT	Direct. Factor %	Demand									
7-8	7.8	40	679	786	826	910	1107	1220	1483	1635	1717	1987
8-9	6.3	41	562	651	684	754	916	1010	1228	1354	1421	1645
9-10	5.2	45	510	590	619	683	830	915	1112	1226	1288	1491
10-11	4.7	54	553	640	672	741	900	993	1206	1330	1397	1617
11-12	5.3	51	589	681	715	789	959	1057	1285	1417	1487	1722
12-13	5.6	50	610	706	741	817	993	1095	1331	1467	1541	1784
13-14	5.7	50	621	718	754	832	1011	1115	1355	1494	1568	1815
14-15	5.9	51	655	759	796	878	1067	1177	1430	1577	1656	1917
15-16	6.5	54	764	885	929	1024	1245	1373	1668	1839	1931	2236
16-17	7.9	55	946	1095	1150	1268	1541	1699	2065	2277	2391	2768
17-18	8.5	60	1111	1286	1350	1488	1809	1994	2424	2673	2806	3249
18-19	5.9	54	694	803	843	930	1130	1246	1514	1670	1753	2029
19-20	3.9	52	442	511	537	592	719	793	964	1063	1116	1292
20-21	3.3	53	381	441	463	510	620	684	831	917	962	1114
21-22	2.8	53	323	374	393	433	526	580	705	778	817	945
22-23	2.3	52	260	301	317	349	424	468	569	627	658	762
23-24	1.7	55	204	236	247	273	332	366	444	490	515	596
Total			10911	12631	10912	12631	13263	14623	17774	19595	23818	26260

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

Table 41: Inbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-1

			Average Annual Daily Traffic of Work Zone Periods (AADT)									
Inbound Urban Interstate			2020 = 21776	2023 = 25208	2024 = 26469	2026 = 29182	2030 = 35471	2032 = 39106	2036 = 47534	2038 = 52406	2039 = 55027	2042 = 63700
(24-Hr Clock)	% ADT	Directional Factor %	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand
12-1	1.2	47	123	142	6593	165	200	221	268	296	310	359
1-2	0.8	43	75	87	6488	100	122	135	164	180	189	219
2-3	0.7	46	70	81	6575	94	114	126	153	169	177	205
3-4	0.5	48	52	60	6607	70	85	94	114	126	132	153
4-5	0.7	57	87	101	6488	116	142	156	190	209	220	254
5-6	1.7	58	215	249	6448	288	350	386	469	517	543	628
6-7	5.1	63	700	810	6170	938	1140	1256	1527	1684	1768	2047
Average Annual Daily Traffic of Work Zone Periods (AADT)												
Inbound Interstat	l Urban te		2020 = 21776	2023 = 25208	2024 = 26469	2026 = 29182	2030 = 35471	2032 = 39106	2036 = 47534	2038 = 52406	2039 = 55027	2042 = 63700
----------------------	---------------	-------------------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	--------------
(24-Hr Clock)	% ADT	Directional Factor %	Demand	Demand								
7-8	7.8	60	1019	1180	6353	1366	1660	1830	2225	2453	2575	2981
8-9	6.3	59	809	937	6403	1085	1318	1454	1767	1948	2045	2368
9-10	5.2	55	623	721	6551	835	1014	1118	1359	1499	1574	1822
10-11	4.7	46	471	545	6575	631	767	845	1028	1133	1190	1377
11-12	5.3	49	566	655	6615	758	921	1016	1234	1361	1429	1654
12-13	5.6	50	610	706	6617	817	993	1095	1331	1467	1541	1784
13-14	5.7	50	621	718	6617	832	1011	1115	1355	1494	1568	1815
14-15	5.9	49	630	729	6615	844	1025	1131	1374	1515	1591	1842
15-16	6.5	46	651	754	6575	873	1061	1169	1421	1567	1645	1905
16-17	7.9	45	774	896	6551	1037	1261	1390	1690	1863	1956	2265
17-18	8.5	40	740	857	6353	992	1206	1330	1616	1782	1871	2166
18-19	5.9	46	591	684	6575	792	963	1061	1290	1422	1493	1729
19-20	3.9	48	408	472	6607	546	664	732	890	981	1030	1192
20-21	3.3	47	338	391	6593	453	550	607	737	813	853	988
21-22	2.8	47	287	332	6593	384	467	515	626	690	724	838
22-23	2.3	48	240	278	6607	322	392	432	525	579	607	703
23-24	1.7	45	167	193	6551	223	271	299	364	401	421	487
	Total		10911	12631	10864	12577	156718	14559	17697	19511	23716	26146

Table 42: Outbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-2

.7	1 7 7 1		Averag	e Annual I	Daily Tro	uffic of We	ork Zone .	Periods	(AADT)			
outboun Interstat	d Urbai te	n	2022 = 24008	2025 = 27792	2027 = 30641	2028 = 32173	2029= 33782	2034 = 43115	2035 = 45271	2037 = 49911	2040 = 57778	2043 = 66885
(24-Hr Clock)	% ADT	Directional Factor %	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand
12-1	1.2	53	153	177	195	208	215	274	288	317	367	425
1-2	0.8	57	109	127	140	149	154	197	206	228	263	305
2-3	0.7	54	91	105	116	124	128	163	171	189	218	253
3-4	0.5	52	62	72	80	85	88	112	118	130	150	174
4-5	0.7	43	72	84	92	99	102	130	136	150	174	201
5-6	1.7	42	171	198	219	234	241	308	323	356	413	478
			Averag	e Annual I	Daily Tro	uffic of We	ork Zone	Periods	(\overline{AADT})			

outboun Interstat	d Urbai te	n	2022 = 24008	2025 = 27792	2027 = 30641	2028 = 32173	2029= 33782	2034 = 43115	2035 = 45271	2037 = 49911	2040 = 57778	2043 = 66885
(24-Hr Clock)	% ADT	Directional Factor %	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand
6-7	5.1	37	453	524	578	619	637	814	854	942	1090	1262
7-8	7.8	40	749	867	956	1023	1054	1345	1412	1557	1803	2087
8-9	6.3	41	620	718	791	847	873	1114	1169	1289	1492	1728
9-10	5.2	45	562	650	717	767	790	1009	1059	1168	1352	1565
10-11	4.7	54	609	705	778	832	857	1094	1149	1267	1466	1698
11-12	5.3	51	649	751	828	886	913	1165	1224	1349	1562	1808
12-13	5.6	50	672	778	858	918	946	1207	1268	1398	1618	1873
13-14	5.7	50	684	792	873	934	963	1229	1290	1422	1647	1906
14-15	5.9	51	722	836	922	986	1017	1297	1362	1502	1739	2013
15-16	6.5	54	843	975	1075	1151	1186	1513	1589	1752	2028	2348
16-17	7.9	55	1043	1208	1331	1424	1468	1873	1967	2169	2510	2906
17-18	8.5	60	1224	1417	1563	1672	1723	2199	2309	2545	2947	3411
18-19	5.9	54	765	885	976	1044	1076	1374	1442	1590	1841	2131
19-20	3.9	52	487	564	621	665	685	874	918	1012	1172	1356
20-21	3.3	53	420	486	536	573	591	754	792	873	1011	1170
21-22	2.8	53	356	412	455	486	501	640	672	741	857	<i>993</i>
22-23	2.3	52	287	332	366	392	404	516	541	597	691	800
23-24	1.7	55	224	260	286	307	316	403	423	467	540	625
	Total		12030	13926	15354	16426	16927	21604	22684	25009	28951	33515

Table 43: Inbound Work Zone Directional Hourly Demand for Years Affected in Analysis Period-2

			Ave	rag	e An	nual I	Daily	Tra	ıffic o	of We	ork Z	lone .	Peric	ods	(AA	DT)						
Inbound	l Urba	n Interstate	2022 :	24008	2025	27792	2027 :	30641	2028	32173	2029=	33782	2034 :	43115	2035	45271	2037 :	49911	: 070	57778	2043	66885
(24-Hr Clock	% AADT	Directional Factor %	Demand		Domand	Demana	Demand		Demand		Demand		Demand		Demand		Demand		Demand		Demand	
12-1	1.2	47	135		157	7	173		181		191		243		255	5	281	1	326)	377	7
1-2	0.8	43	83		96		105		111	1	116	5	148)	156)	172	•	199)	230)
2-3	0.7	46	77		89		99		104	!	109)	139)	146	Ó	161	1	186	Ó	215	5

		Average Annual Daily Traffic of Work Zone Periods (AADT)										
Inbound Intersta	l Urba te	n	2022 = 24008	2025 = 27792	2027 = 30641	2028 = 32173	2029= 33782	2034 = 43115	2035 = 45271	2037 = 49911	2040 = 57778	2043 = 66885
(24-Hr Clock)	% AADT	Directional Factor %	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand	Demand
3-4	0.5	48	58	67	74	77	81	103	109	120	139	161
4-5	0.7	57	96	111	122	128	135	172	181	199	231	267
5-6	1.7	58	237	274	302	317	333	425	446	492	570	659
6-7	5.1	63	771	893	984	1034	1085	1385	1455	1604	1856	2149
7-8	7.8	60	1124	1301	1434	1506	1581	2018	2119	2336	2704	3130
8-9	6.3	59	892	1033	1139	1196	1256	1603	1683	1855	2148	2486
9-10	5.2	55	687	795	876	920	966	1233	1295	1427	1652	1913
10-11	4.7	46	519	601	662	696	730	932	979	1079	1249	1446
11-12	5.3	49	623	722	796	836	877	1120	1176	1296	1500	1737
12-13	5.6	50	672	778	858	901	946	1207	1268	1398	1618	1873
13-14	5.7	50	684	792	873	917	963	1229	1290	1422	1647	1906
14-15	5.9	49	694	803	886	930	977	1246	1309	1443	1670	1934
15-16	6.5	46	718	831	916	962	1010	1289	1354	1492	1728	2000
16-17	7.9	45	853	988	1089	1144	1201	1533	1609	1774	2054	2378
17-18	8.5	40	816	945	1042	1094	1149	1466	1539	1697	1964	2274
18-19	5.9	46	652	754	832	873	917	1170	1229	1355	1568	1815
19-20	3.9	48	449	520	574	602	632	807	847	934	1082	1252
20-21	3.3	47	372	431	475	499	524	669	702	774	896	1037
21-22	2.8	47	316	366	403	423	445	567	596	657	760	880
22-23	2.3	48	265	307	338	355	373	476	500	551	638	738
23-24	1.7	45	184	213	234	246	258	330	346	382	442	512
Total	L	1	11978	13866	15287	16052	16855	21511	22587	24902	28827	33370

Step 4. Identify the User Cost Component

	AADT d	of Year 2020) = 21776	Queue	<i>№ of</i>	Lanes	Operating	Cost
Remark	Hour	Demand	Capacity	Rate	Vehicles	Open	Condition	Factors
	<i>(a)</i>	<i>(b)</i>	(<i>c</i>)	<i>(d)</i>	(e)	(f)		
Mid Night	12-1	138	1170	-1032	0	1		
	1-2	99	1170	-1071	0	1		
	2-3	82	1170	-1088	0	1		
	3-4	57	1170	-1113	0	1		
	4-5	66	1170	-1104	0	1	Free	
	5-6	155	1170	-1015	0	1	Flow.	Free Flow
Morning	6-7	411	1170	-759	0	1	WZin	Only Costs
	7-8	679	1170	-491	0	1	wZ in place	(3).
	8-9	562	1170	-608	0	1	piace.	
	9-10	510	1170	-660	0	1	No	
	10-11	553	1170	-617	0	1	Queue.	
	11-12	589	1170	-581	0	1		
Mid-Day	12-13	610	1170	-560	0	1		
	13-14	621	1170	-549	0	1		
Afternoon	14-15	655	1170	-515	0	1		
	15-16	764	1170	-406	0	1		
	16-17	946	1170	-224	0	1		
	17-18	1111	1170	-59	0	1		
	18-19	694	1170	-476	0	1		
Night	19-20	442	1170	-728	0	1		
	20-21	381	1170	-789	0	1		
	21-22	323	1170	-847	0	1		
	22-23	260	1170	-910	0	1]	
	23-24	204	1170	-966	0	1		

Table 44: work zone analysis matrix of the year 2020

Table 45: work zone analysis matrix of the year 2038

AAD	T of year 2 52406	2038 =	Queue Rate	Num. of Queued	Lanes Open	Operating Conditions	Cost Factors
hour	demand	capacity		Vehicles	-		
<i>(a)</i>	<i>(b)</i>	(c)	<i>(d)</i>	<i>(e)</i>	(f)	<i>(g)</i>	<i>(h)</i>
12-1	333	1170	-837	0	1		
1-2	239	1170	-931	0	1		
2-3	198	1170	-972	0	1	free flow work zone in	free flow only
3-4	136	1170	-1034	0	1	place no queue	costs
4-5	158	1170	-1012	0	1		
5-6	374	1170	-796	0	1		

AADT og 52406	f year 2038	8 =	Queue Rate	Num. of Queued	Lanes Open	Operating Conditions	Cost Factors
hour	demand	capacity		<i>Vehicles</i>	•		
6-7	989	1170	-181	0	1		
7-8	1635	1170	465	465	1		
8-9	1354	1170	184	649	1		
9-10	1226	1170	56	705	1		
10-11	1330	1170	160	865	1		
11-12	1417	1170	247	1112	1		WZ Delay
12-13	1467	1170	297	1409	1	Forced Flow	and
13-14	1494	1170	324	1733	1	Oueue Exists	Queuing
14-15	1577	1170	407	2139	1	Queue Exisis	$(5 \ costs)$
15-16	1839	1170	669	2809	1		
16-17	2277	1170	1107	3916	1		
17-18	2673	1170	1503	5419	1		
18-19	1670	1170	500	5918	1		
19-20	1063	1170	-107	0	1		
20-21	917	1170	-253	0	1	(6
21-22	778	1170	-392	0	1	Jree Jlow work zone in	Jree flow only
22-23	627	1170	-543	0	1	ριατε πο queue	00313
23-24	490	1170	-680	0	1		

Table 46: work zone analysis matrix of the year 2042

AADT of	f year 2042	2 = 63700	Queue Rate	Num. of Queued	Lanes Open	Operating Conditions	Cost Factors
hour	demand	capacity		Vehicles			
<i>(a)</i>	<i>(b)</i>	(c)	<i>(d)</i>	(<i>e</i>)	(f)	(g)	<i>(h)</i>
12-1	405	1170	-765	0	1		
1-2	290	1170	-880	0	1		
2-3	241	1170	-929	0	1	free flow work zone in	free flow only
3-4	166	1170	-1004	0	1	place no queue	costs
4-5	192	1170	-978	0	1		
5-6	455	1170	-715	0	1		
6-7	1202	1170	32	32	1		
7-8	1987	1170	817	849	1		
8-9	1645	1170	475	1325	1	Forced Flow	WZ Delay
9-10	1491	1170	321	1645	1	WZ in place	and Ouguing
10-11	1617	1170	447	2092	1	Queue Exists	(5 costs)
11-12	1722	1170	552	2644	1		(2 20202)
12-13	1784	1170	614	3258	1		

AADT of	year 2042	2 = 63700	Queue Rate	Num. of Queued	Lanes Open	Operating Conditions	Cost Factors
hour	demand	capacity		Vehicles			
13-14	1815	1170	645	3903	1	Forced Flow, WZ in	WZ Delay
14-15	1917	1170	747	4650	1	place, Queue Exists	& Queuing
15-16	2236	1170	1066	5716	1		
16-17	2768	1170	1598	7313	1	Forced Flow	WZ Delay
17-18	3249	1170	2079	9392	1	WZ in place	ana
18-19	2029	1170	859	10252	1	Queue Exists	(5 costs)
19-20	1292	1170	122	10373	1		(2 2000)
20-21	1114	1170	-56	0	1		
21-22	945	1170	-225	0	1	free flow work zone in	free flow only
22-23	762	1170	-408	0	1	place no queue	costs
23-24	596	1170	-574	0	1		

Step 5. Quantify Traffic Affected by Each Cost Component

Table 47: Expanded Work Zone Matrix for the Year 2020

AADT of	year 2020	= 21776	Quana	Num. of		Number	r of Vehicles	that
hour	demand	capacity	Queue Rate	Queued Vehicles	Traverse WZ	Traverse Queue	Stop 50-0- 50 (km/hr)	Slow Down 50- 30-50 (km/hr)
<i>(a)</i>	<i>(b)</i>	(<i>c</i>)	(<i>d</i>)	(<i>e</i>)	(f)	<i>(g)</i>	<i>(h)</i>	<i>(i)</i>
12-1	138	1170	-1032	0	138	0	0	138
1-2	99	1170	-1071	0	99	0	0	99
2-3	82	1170	-1088	0	82	0	0	82
3-4	57	1170	-1113	0	57	0	0	57
4-5	66	1170	-1104	0	66	0	0	66
5-6	155	1170	-1015	0	155	0	0	155
6-7	411	1170	-759	0	411	0	0	411
7-8	679	1170	-491	0	679	0	0	679
8-9	562	1170	-608	0	562	0	0	562
9-10	510	1170	-660	0	510	0	0	510
10-11	553	1170	-617	0	553	0	0	553
11-12	589	1170	-581	0	589	0	0	589
12-13	610	1170	-560	0	610	0	0	610
13-14	621	1170	-549	0	621	0	0	621
14-15	655	1170	-515	0	655	0	0	655
15-16	764	1170	-406	0	764	0	0	764
16-17	946	1170	-224	0	946	0	0	946
17-18	1111	1170	-59	0	1111	0	0	1111
18-19	694	1170	-476	0	694	0	0	694

AADT of	year 2020	= 21776	Quana	Num. of	Number o	f Vehicles t	hat	
hour	demand	capacity	Queue Rate	Queued Vehicles	Traverse WZ	Traverse Queue	Stop 50-0- 50 (km/hr)	Slow Down 50- 30-50 (km/hr)
19-20	442	1170	-728	0	442	0	0	442
20-21	381	1170	-789	0	381	0	0	381
21-22	323	1170	-847	0	323	0	0	323
22-23	260	1170	-910	0	260	0	0	260
23-24	204	1170	-966	0	204	0	0	204
24-hrs	10912				10912	0	0	10912

	Table 48: Expanded	Work Zone Matrix	for The	Year 2038
--	--------------------	------------------	---------	-----------

AADT of year 2038 = 52406			Quana	Num. of	Number of Vehicles that					
hour	domand	canacity	Queue Rate	Queued	Traverse	Traverse	Stop 50-0-	Slow Down 50-		
nour	aemana	capacity	Raic	Vehicles	WZ	Queue	50 (km/hr)	30-50 (km/hr)		
<i>(a)</i>	<i>(b)</i>	(c)	(d)	(<i>e</i>)	(f)	(g)	<i>(h)</i>	<i>(i)</i>		
12-1	333	1170	-837	0	333	0	0	333		
1-2	239	1170	-931	0	239	0	0	239		
2-3	198	1170	-972	0	198	0	0	198		
3-4	136	1170	-1034	0	136	0	0	136		
4-5	158	1170	-1012	0	158	0	0	158		
5-6	374	1170	-796	0	374	0	0	374		
6-7	989	1170	-181	0	989	0	0	989		
7-8	1635	1170	465	465	1170	1170	1635	0		
8-9	1354	1170	184	649	1170	1170	1354	0		
9-10	1226	1170	56	705	1170	1170	1226	0		
10-11	1330	1170	160	865	1170	1170	1330	0		
11-12	1417	1170	247	1112	1170	1170	1417	0		
12-13	1467	1170	297	1409	1170	1170	1467	0		
13-14	1494	1170	324	1733	1170	1170	1494	0		
14-15	1577	1170	407	2139	1170	1170	1577	0		
15-16	1839	1170	669	2809	1170	1170	1839	0		
16-17	2277	1170	1107	3916	1170	1170	2277	0		
17-18	2673	1170	1503	2953	3636	3636	2673	0		
18-19	1670	1170	500	986	3636	3636	1670	0		
19-20	1063	1170	-107	0	2049	1394	407	655		
20-21	917	1170	-253	0	1170	0	0	917		
21-22	778	1170	-392	0	1170	0	0	778		
22-23	627	1170	-543	0	1170	0	0	627		
23-24	490	1170	-680	0	1170	0	0	490		
24 hours	26260				28129	20366	20366	5894		

AADT of	year 2042	= 63700	Quana	Num. of		Numbe	r of Vehicles th	hat
Hour	Demand	Capacity	Rate	Queued Vehicles	Traverse WZ	Traverse Queue	Stop 50-0- 50 (km/hr)	Slow Down 50- 30-50 (km/hr)
<i>(a)</i>	<i>(b)</i>	<i>(c)</i>	(d)	(<i>e</i>)	(f)	<i>(g)</i>	<i>(h)</i>	<i>(i)</i>
12-1	405	1170	-765	0	405	0	0	405
1-2	290	1170	-880	0	290	0	0	290
2-3	241	1170	-929	0	241	0	0	241
3-4	166	1170	-1004	0	166	0	0	166
4-5	192	1170	-978	0	192	0	0	192
5-6	455	1170	-715	0	455	0	0	455
6-7	1202	1170	32	32	1170	1170	1202	0
7-8	1987	1170	817	849	1170	1170	1987	0
8-9	1645	1170	475	1325	1170	1170	1645	0
9-10	1491	1170	321	1645	1170	1170	1491	0
10-11	1617	1170	447	2092	1170	1170	1617	0
11-12	1722	1170	552	2644	1170	1170	1722	0
12-13	1784	1170	614	3258	1170	1170	1784	0
13-14	1815	1170	645	3903	1170	1170	1815	0
14-15	1917	1170	747	4650	1170	1170	1917	0
15-16	2236	1170	1066	5716	1170	1170	2236	0
16-17	2768	1170	1598	7313	1170	1170	2768	0
17-18	3249	1170	2079	6926	3636	3636	3249	0
18-19	2029	1170	859	5320	3636	3636	2029	0
19-20	1292	1170	122	2975	3636	3636	1292	0
20-21	1114	1170	-56	453	3636	3636	1114	0
21-22	945	1170	-225	0	1399	613	159	786
22-23	762	1170	-408	0	1170	0	0	762
23-24	596	1170	-574	0	1170	0	0	596
24 hours	31919				32901	28027	28027	3892

Table 49: Expanded Work Zone Matrix for The Year 2042

Table 50: Summary of Traffic Affected by Each Cost Component

year	Number of Vehicles That							
	Traverse WZ	Traverse Queue	Stop 50-0-50	Slow 50-30-50				
2020	10,912	-	-	10,912				
2021	11,457	-	-	11,457				
2022	12,030	-	-	12,030				

vear	Number of Vehicl	Number of Vehicles That							
yeur	Traverse WZ	Traverse Queue	Stop 50-0-50	Slow 50-30-50					
2023	12,631	1,539	1,539	11,093					
2024	13,263	1,814	1,814	11,449					
2025	13,926	3,512	3,512	10,417					
2026	14,623	3,866	3,866	10,756					
2027	15,354	4,278	4,278	11,075					
2028	16,426	4,926	4,926	11,500					
2029	16,927	6,432	6,432	10,496					
2030	17,774	7,102	7,102	10,672					
2031	18,662	7,775	7,775	10,887					
2032	19,595	11,207	11,207	8,388					
2033	20,575	12,854	12,854	7,730					
2034	21,567	13,795	13,795	8,128					
2035	22,479	14,840	14,840	7,844					
2036	23,818	20,438	20,438	3,380					
2037	25,009	22,116	22,116	2,893					
2038	28,129	20,366	20,366	5,894					
2039	29,301	21,835	21,835	5,738					
2040	28,951	25,645	25,645	3,306					
2041	30,399	25,046	25,046	5,353					
2042	32,901	28,027	28,027	3,892					
2043	35550	30424	30424	3090					

Step 6. Compute Reduced Speed Delay

Work Zone Reduced Speed Delay

Table 51: work zone reduced speed delay

upstream		WZ		WZ WZ		WZ delav/vehicle	
Year	speed	length	WZ speed	length/upstream	length/WZ	,, <u>2</u> actay, remete	
	(km/hr)	(km)	(km/hr)	speed (hr)	speed (hr)	hours	min
2020	55	1	30	0.018181818	0.03333333	0.015152	0.909091

2021	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2022	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2023	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2024	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2025	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2026	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2027	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2028	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2029	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2030	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2031	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2032	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2033	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2034	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2035	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2036	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2037	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2038	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2039	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2040	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2041	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2042	55	1	30	0.018181818	0.03333333	0.015152	0.909091
2043	55	1	30	0.018181818	0.03333333	0.015152	0.909091

Table 50		Cread	C	fam	E a ala	Vaar
Table 52	: Queue	Speed	Summary	IOr	Each	rear

Year Daily T	Daily Time	Volume	Capacity (Free	V/C	Speed	Speed
	Daily Time	(Queue)	Flow)	V/C	(Mi/Hr)	(Km/Hr)
2020	-	0	6141	0.0	0	0
2021	-	0	6141	0.0	0	0
2022	-	0	6141	0.0	0	0
2023	5рт-6рт	116	6141	0.0	0	0

Year	Daily Time	Daily TimeVolume (Queue)Capacity (Free Flow)		<i>V/C</i>	Speed (Mi/Hr)	Speed (Km/Hr)
2024	4рт-6рт	180	6141	0.0	0	0
2025	5рт-6рт	285	6141	0.0	0	0
2026	6рт-6рт	416	6141	0.1	2	3.2184
2027	7pm-6pm	554	6141	0.1	2	3.2184
2028	8pm-6pm	756	6141	0.1	2	3.2184
2029	Зрт-брт	866	6141	0.1	2	3.2184
2030	4рт-брт	1085	6141	0.2	3	4.8276
2031	3pm-7pm	1332	6141	0.2	3	4.8276
2032	2pm-7pm	1639	6141	0.3	5	8.0460
2033	7am-7pm	2124	6141	0.3	5	8.046
2034	6am-7pm	2503	6141	0.4	8	12.8736
2035	5am-7pm	3091	6141	0.5	10	16.092
2036	10am-7pm	4119	6141	0.7	15	24.138
2037	7am-7pm	4970	6141	0.8	18	28.9656
2038	8am-7pm	5919	6141	1.0	26	41.8392
2039	9am-7pm	6916	6141	1.1	26	41.8392
2040	7am-8pm	7966	6141	1.3	26	41.8392
2041	7am-8pm	6378	6141	1.0	26	41.8392
2042	6am-8pm	10374	6141	1.7	26	41.8392
2043	7am-8pm	10272	6141	1.7	26	41.8392

Table 53: Average	Queue	Length for	The	Year 2020
U	•	0		

	Va	olume	Speed		Density				Average	Average
Time Hour	Thro ugh Queu e	Up Stream Of Queue	In Queue	Up Stream Of Queue	In Queue (B/D)	Up Stream Of Queue (C/E)	Chang e (F-G)	№ Of Queued Vehicles	No. of Queued Vehicles	Queue Length (Km)(J/H)
<i>(a)</i>	<i>(b)</i>	(<i>c</i>)	(d)	(<i>e</i>)	(f)	(g)	<i>(h)</i>	<i>(i)</i>	(j)	<i>(k)</i>
Averag	Average for The Entire Period								0	0.000
Over A	Over All Queue Length for Entire Period									0.000

	Va	olume	Spe	red		Density			Auerage	averag
Time Hour	throug h queue	up stream of queue (demand)	in queue	up stream of queue	in queue (b/d)	up stream of queue (c/e)	cha nge (f-g)	№ of queued vehicles	Average No. of Queued Vehicles	e queue length (km)j/h
<i>(a)</i>	<i>(b)</i>	<i>(c)</i>	<i>(d)</i>	(<i>e</i>)	(f)	(g)	(<i>h</i>)	<i>(i)</i>	(j)	(<i>k</i>)
7-8	1170	1635	41.8392	50	28	33	-5	465	233	0
8-9	1170	1354	41.8392	50	28	27	1	649	557	625
9-10	1170	1226	41.8392	50	28	25	3	705	677	197
10-11	1170	1330	41.8392	50	28	27	1	865	785	576
11-12	1170	1417	41.8392	50	28	28	0	1112	988	0
12-13	1170	1467	41.8392	50	28	29	-1	1409	1260	0
13-14	1170	1494	41.8392	50	28	30	-2	1733	1571	0
14-15	1170	1577	41.8392	50	28	32	-4	2139	1936	0
15-16	1170	1839	41.8392	50	28	37	-9	2809	2474	0
16-17	1170	2277	41.8392	50	28	46	-18	3916	3362	0
Average	for the 7	-17 Period							1384	1398
Over All	l Queue L	ength For 7	-17 Period	!						140

Table 54: Average Queue Length for The Year 2038

Table 55: Average Queue Length for The Year 2042

	Volume		Speed			Density			Average	average
Time Hour	through queue	up stream of queue (demand)	in queue	up stream of queue	in queue (b/d)	up stream of queue (c/e)	change (f-g)	№ of queued vehicle	No. of Queued Vehicle	queue length (km)j/h
<i>(a)</i>	<i>(b)</i>	(c)	<i>(d)</i>	(<i>e</i>)	(f)	(g)	<i>(h)</i>	(<i>i</i>)	<i>(j)</i>	(<i>k</i>)
6-7	1170	1202	41.8392	50	28	24	4	32	16	4
7-8	1170	1987	41.8392	50	28	40	-12	849	441	0
8-9	1170	1645	41.8392	50	28	33	-5	1325	1087	0
9-10	1170	1491	41.8392	50	28	30	-2	1645	1485	0
10-11	1170	1617	41.8392	50	28	32	-4	2092	1869	0
11-12	1170	1722	41.8392	50	28	34	-6	2644	2368	0
1213	1170	1784	41.8392	50	28	36	-8	3258	2951	0
13-14	1170	1815	41.8392	50	28	36	-8	3903	3580	0
14-15	1170	1917	41.8392	50	28	38	-10	4650	4276	0
15-16	1170	2236	41.8392	50	28	45	-17	5716	5183	0
16-17	1170	2768	41.8392	50	28	55	-27	7313	6514	0
Average	Average for the 6-17 Period									
Over All	Queue Le	ngth For 6-	17 Period							0.371

Years	Average Queue Length	Years	Average Queue Length
2020	0.000000000	2032	4.539535988
2021	0.000000000	2033	5.000000000
2022	0.00000000	2034	15.05005846
2023	0.000000000	2035	27.85992574
2024	0.00000000	2036	18.77034142
2025	0.00000000	2037	46.58795933
2026	0.305040925	2038	141.4473897
2027	0.438649753	2039	76.93098119
2028	0.636811458	2040	243.1571647
2029	0.893893345	2041	283.987564
2030	1.897011338	2042	384.2773679
2031	2.4578965	2043	1013.437271

Table 56: Summary	y of Average	Queue Length	1 for Each Y	Tear
	U U	\sim		

Then the average queue delay time is summarized in the following table.

 Table 57: Summary of Average Queue Delay Time for Each Year

Years	Average Queue	Queue Speed @		Time (H	ours)@	Averag Delay Pe	e Queue r Vehicles
	Length	Queue	Upstream	Queue	Upstream	Hours	Minute
а	b	С	d	e	f	e-f	(e-f) *60
2020	0.0000	0	50	-	-	-	-
2022	0.0000	0	50	-	-	-	-
2023	0.0000	0	50	-	-	-	-
2024	0.0000	0	50	-	-	-	-
2025	0.0000	0	50	-	-	-	-
2026	0.3050	3.2184	50	0.094780302	0.00610082	0.09	5.32
2027	0.4386	3.2184	50	0.136294355	0.008773	0.13	7.65
2028	0.6368	3.2184	50	0.197865852	0.01273623	0.19	11.11
2029	0.8939	3.2184	50	0.277744639	0.01787787	0.26	15.59
2030	1.8970	4.8276	50	0.392951226	0.03794023	0.36	21.30
2032	4.5395	8.0460	50	0.564197861	0.09079072	0.47	28.40
2034	15.0501	12.874	50	1.169063701	0.30100117	0.87	52.08
2035	27.8599	16.092	50	1.731290439	0.55719851	1.17	70.45
2036	18.7703	24.138	50	0.777626208	0.37540683	0.40	24.13
2037	46.5880	28.966	50	1.608389239	0.93175919	0.68	40.60
2038	141.447	41.839	50	3.380738392	2.82894779	0.55	33.11
2039	76.9310	41.839	50	1.838729737	1.53861962	0.30	18.01
2040	243.157	41.839	50	5.811706836	4.86314329	0.95	56.91
2042	384.277	41.839	50	9.184625134	7.68554736	1.50	89.94
2043	1013.44	41.839	50	24.22219525	20.2687454	3.95	237.21

Step 7. Select and Assign VOC Rates

		Addee	d Time (Hr	/1,000 Stops)	Adde	ed Cost (ETB/1,0	000 Stops)
Initial	Initial	(E	xcludes Id	ling Time)	(Excludes Idling	Time)
Speed (mi/h)	Speed (km/h)	Pass Cars	Single- Unit Truck	Combination Truck	Pass Cars	Single-Unit Truck	Combination Truck
5	8	1.02	0.73	1.1	4.82	16.49	59.94
10	16	1.51	1.47	2.27	15.75	36.93	138.13
15	24	2	2.2	3.48	27.02	60.41	231.67
20	32	2.49	2.93	4.76	38.76	86.27	338.78
25	40	2.98	3.67	6.1	51.11	114.04	457.30
30	48	3.46	4.4	7.56	64.35	143.02	585.05
35	56	3.94	5.13	9.19	78.54	172.68	719.86
40	64	4.42	5.87	11.09	93.94	203.16	859.55
45	72	4.9	6.6	13.39	110.64	231.87	1002.03
50	80	5.37	7.33	16.37	128.90	260.18	1145.12
55	89	5.84	8.07	20.72	148.79	286.79	1286.58
60	97	6.31	8.8	27.94	170.58	319.03	1424.24
65	105	6.78	9.53	NA	194.34	349.10	NA
70	113	7.25	NA	NA	220.34	NA	NA
75	121	7.71	NA	NA	248.71	NA	NA
80	129	8.17	NA	NA	279.59	NA	NA
	Idling	Cost (E	ETB/Veh-H	r)	1.23	1.37	1.47

Table 58 : Added time and vehicle running cost/1,000 stops and idling costs (2019).

Table 59 : Speed Change Computations

Initial	Initial	Add	led Time (Hr/	1,000 Stops)	Added Cost (ETB/1,000 Stops)			
Speed	sneed		(Excludes Idli	ng Time)	(E)	ccludes Idling T	ime)	
(mi/h)	(km/hr)	Pass	Single-Unit	Combination	Pass	Single-Unit	Combination	
(m/n)	(KIII/III)	Cars	Truck	Truck	Cars	Truck	Truck	
15	24	2	2.2	3.48	27.02	60.41	231.67	
19	30	2.36	2.73	4.41	35.57	79.25	309.71	
20	32	2.49	2.93	4.76	38.76	86.27	338.78	
30	48	3.46	4.4	7.56	64.35	143.02	585.05	
31	50	3.56	4.56	7.91	67.39	149.38	613.93	
35	56	3.94	5.13	9.19	78.54	172.68	719.86	
31-19-31	50-30-50	1.21	1.82	3.50	31.82	70.12	304.22	
	Idling	Cost (E	TB/Veh-Hr)	1.23	1.37	1.47		

Step 8. Select and Assign Delay Cost Rates

Table 60: value of travel time (ETB/Veh-Hr, 2019)

Vehicle Class	Wage Indicator	Value of time (ETB/Veh-Hr)
Passenger Cars	Real wage of medium skilled worker	18
Single Unit Trucks	Real wage of high skilled worker	42
Combination Trucks	Real wage of high skilled worker	50

Step 9. Assign Traffic to Vehicle Classes

Table 61: Affected traffic by vehicle class and user cost component.

		Affected	Passenger	Тл	rucks	Total
years	cost component	vehicles	vehicles 65%	Single-unit 20%	Combination15%	Total
	speed change (50-30-50)	10912	7093	2182	1637	10912
2020	Traverse WZ	10912	7093	2182	1637	10912
2020	Stopping (50-0-50)	0	0	0	0	0
	Queue Delay	0	0	0	0	0
	speed change (50-30-50)	11457	7447	2291	1719	11457
2021	Traverse WZ	0	0	0	0	0
2021	Stopping (50-0-50)	0	0	0	0	0
	Queue Delay	11457	7447	2291	1719	11457
	speed change (50-30-50)	12030	7819	2406	1804	12030
2022	Traverse WZ	0	0	0	0	0
2022	Stopping (50-0-50)	0	0	0	0	0
	Queue Delay	12030	7819	2406	1804	12030
	<i>speed change (50-30-50)</i>	11093	7210	2219	1664	11093
2022	Traverse WZ	12631	8210	2526	1895	12631
2023	Stopping (50-0-50)	1539	1000	308	231	1539
	Queue Delay	1539	1000	308	231	1539
	<i>speed change (50-30-50)</i>	11449	7442	2290	1717	11449
2024	Traverse WZ	13263	8621	2653	1989	13263
2024	Stopping (50-0-50)	1814	1179	363	272	1814
	Queue Delay	1814	1179	363	272	1814
	<i>speed change (50-30-50)</i>	13926	9052	2785	2089	13926
2025	Traverse WZ	3512	2283	702	527	3512
2023	Stopping (50-0-50)	3512	2283	702	527	3512
	Queue Delay	10417	6771	2083	1563	10417
	speed change (50-30-50)	10756	6991	2151	1613	10756
2026	Traverse WZ	14623	9505	2925	2193	14623
2020	Stopping (50-0-50)	3866	2513	773	580	3866
	Queue Delay	3866	2513	773	580	3866
2027	<i>speed change (50-30-50)</i>	15354	9980	3071	2303	15354
2027	Traverse WZ	4278	2781	856	642	4278

			D	Trucks		
years	cost component	Affected vehicles	vehicles 65%	Single-unit 20%	Combination15%	Total
	Stopping (50-0-50)	4278	2781	856	642	4278
	Queue Delay	11075	7199	2215	1661	11075
	speed change (50-30-50)	16426	10677	3285	2464	16426
2028	Traverse WZ	4926	3202	985	739	4926
2028	Stopping (50-0-50)	4926	3202	985	739	4926
	Queue Delay	11500	7475	2300	1725	11500
	speed change (50-30-50)	16927	11003	3385	2539	16927
2020	Traverse WZ	6432	4180	1286	965	6432
2029	Stopping (50-0-50)	6432	4180	1286	965	6432
	Queue Delay	10496	6822	2099	1574	10496
	speed change (50-30-50)	10672	6937	2134	1601	10672
2020	Traverse WZ	17774	11553	3555	2666	17774
2030	Stopping (50-0-50)	7102	4616	1420	1065	7102
	Queue Delay	7102	4616	1420	1065	7102
	speed change (50-30-50)	18662	12130	3732	2799	18662
2021	Traverse WZ	7775	5054	1555	1166	7775
2031	Stopping (50-0-50)	7775	5054	1555	1166	7775
	Queue Delay	10887	7077	2177	1633	10887
	speed change (50-30-50)	8388	5452	1678	1258	8388
2022	Traverse WZ	19595	12737	3919	2939	19595
2032	Stopping (50-0-50)	11207	7285	2241	1681	11207
	Queue Delay	11207	7285	2241	1681	11207
	speed change (50-30-50)	20575	13374	4115	3086	20575
2022	Traverse WZ	12854	8355	2571	1928	12854
2033	Stopping (50-0-50)	12854	8355	2571	1928	12854
	Queue Delay	7730	5024	1546	1159	7730
	speed change (50-30-50)	21567	14018	4313	3235	21567
2034	Traverse WZ	13795	8967	2759	2069	13795
2034	Stopping (50-0-50)	13795	8967	2759	2069	13795
	Queue Delay	8128	5283	1626	1219	8128
	speed change (50-30-50)	22479	14612	4496	3372	22479
2035	Traverse WZ	14840	9646	2968	2226	14840
2033	Stopping (50-0-50)	14840	9646	2968	2226	14840
	Queue Delay	7844	5099	1569	1177	7844
	speed change (50-30-50)	3380	2197	676	507	3380
2026	Traverse WZ	23818	15482	4764	3573	23818
2030	Stopping (50-0-50)	20438	13285	4088	3066	20438
	Queue Delay	20438	13285	4088	3066	20438

Life (Cycle	Cost Analysis o	of Flexible Pavement	with Geosynthetic	Materials and	Conventional	Pavement
--------	-------	-----------------	----------------------	-------------------	---------------	--------------	----------

			D	Trucks		
years	cost component	Affected vehicles	Passenger vehicles 65%	Single-unit 20%	Combination15%	Total
2027	speed change (50-30-50)	25009	16256	5002	3751	25009
2037	Traverse WZ	22116	14375	4423	3317	22116
	Stopping (50-0-50)	22116	14375	4423	3317	22116
	Queue Delay	2893	1881	579	434	2893
	speed change (50-30-50)	5894	3831	1179	884	5894
2020	Traverse WZ	28129	18284	5626	4219	28129
2038	Stopping (50-0-50)	20366	13238	4073	3055	20366
	Queue Delay	20366	13238	4073	3055	20366
	speed change (50-30-50)	5738	3730	1148	861	5738
2020	Traverse WZ	29301	19046	5860	4395	29301
2039	Stopping (50-0-50)	21835	14193	4367	3275	21835
	Queue Delay	21835	14193	4367	3275	21835
	speed change (50-30-50)	28951	18818	5790	4343	28951
2040	Traverse WZ	25645	16669	5129	3847	25645
2040	Stopping (50-0-50)	25645	16669	5129	3847	25645
	Queue Delay	3306	2149	661	496	3306
	speed change (50-30-50)	30399	19759	6080	4560	30399
20.41	Traverse WZ	25046	16280	5009	3757	25046
2041	Stopping (50-0-50)	25046	16280	5009	3757	25046
	Queue Delay	5353	3479	1071	803	5353
	speed change (50-30-50)	3892	2530	778	584	3892
20.42	Traverse WZ	32901	21386	6580	4935	32901
2042	Stopping (50-0-50)	28027	18218	5605	4204	28027
	Queue Delay	28027	18218	5605	4204	28027
	speed change (50-30-50)	35550	23108	7110	5333	35550
	Traverse WZ	30424	19776	6085	4564	30424
	Stopping (50-0-50)	30424	19776	6085	4564	30424
2043	Queue Delay	3090	2009	618	464	3090

Step 10. Compute User Cost Components by Vehicle Class

Table 62: user cost component 1- speed change VOC (50-30-50) km/hr

Years	Valiala Class		Added VOC (50-30-50),	Cost Per Day
	venicie Ciuss	Affected venicies	ETB/1000 Vehicles	(ETB)
	Passenger Cars	7092.486752	31.82	226
2020	Single Unit Truck	2182.303616	70.12	153
2020	Combination Truck	1636.727712	304.22	498
	Total Speed Change VOC	10911.51808		877

Years	Vehicle Class	Affected Vehicles	Added VOC (50-30-50), ETB/1000 Vehicles	Cost Per Day (ETB)
2021	Passenger Cars	7447.17623	31.82	237
	Single Unit Truck	2291.43884	70.12	161
2021	Combination Truck	1718.57913	304.22	523
	Total Speed Change VOC	11457.1942		920
	Passenger Cars	7819.453616	31.82	249
2022	Single Unit Truck	2405.985728	70.12	169
2022	Combination Truck	1804.489296	304.22	549
	Total Speed Change VOC	12029.92864		966
	Passenger Cars	7210.149448	31.82	229
2023	Single Unit Truck	2218.507523	70.12	156
2025	Combination Truck	1663.880642	304.22	506
	Total Speed Change VOC	11092.53761		891
	Passenger Cars	7441.683527	31.82	237
2024	Single Unit Truck	2289.748778	70.12	161
2024	Combination Truck	1717.311583	304.22	522
	Total Speed Change VOC	11448.74389		920
	Passenger Cars	6770.969375	31.82	215
2025	Single Unit Truck	2083.375192	70.12	146
2025	Combination Truck	1562.531394	304.22	475
	Total Speed Change VOC	10416.87596		837
	Passenger Cars	6991.668927	31.82	222
2026	Single Unit Truck	2151.282747	70.12	151
2020	Combination Truck	1613.46206	304.22	491
	Total Speed Change VOC	10756.41373		864

Years	Vehicle Class	Affected Vehicles	Added VOC (50-30-50), ETB/1000 Vehicles	Cost Per Day (ETB)
2027	Passenger Cars	7198.916367	31.82	229
	Single Unit Truck	2215.05119	70.12	155
2027	Combination Truck	1661.288392	304.22	505
	Total Speed Change VOC	11075.25595		890
	Passenger Cars	7475.1796	31.82	238
2028	Single Unit Truck	2300.055262	70.12	161
2028	Combination Truck	1725.041446	304.22	525
	Total Speed Change VOC	11500.27631		924
	Passenger Cars	6822.379881	31.82	217
2020	Single Unit Truck	2099.19381	70.12	147
2029	Combination Truck	1574.395357	304.22	479
	Total Speed Change VOC	10495.96905		843
	Passenger Cars	6936.668499	31.82	221
2020	Single Unit Truck	2134.359538	70.12	150
2030	Combination Truck	1600.769654	304.22	487
	Total Speed Change VOC	10671.79769		857
	Passenger Cars	7076.797078	31.82	225
2021	Single Unit Truck	2177.476024	70.12	153
2031	Combination Truck	1633.107018	304.22	497
	Total Speed Change VOC	10887.38012		875
	Passenger Cars	5452.480245	31.82	173
2022	Single Unit Truck	1677.686229	70.12	118
2032	Combination Truck	1258.264672	304.22	383
	Total Speed Change VOC	8388.431146		674
	Passenger Cars	5024.414818	31.82	160
2022	Single Unit Truck	1545.97379	70.12	108
2033	Combination Truck	1159.480343	304.22	353
	Total Speed Change VOC	7729.868951		621

Years	Vehicle Class	Affected Vehicles	Added VOC (50-30-50), ETB/1000 Vehicles	Cost Per Day (ETB)
2034	Passenger Cars	5282.945623	31.82	168
	Single Unit Truck	1625.52173	70.12	114
2034	Combination Truck	1219.141298	304.22	371
	Total Speed Change VOC	8127.60865		653
	Passenger Cars	5098.546225	31.82	162
2025	Single Unit Truck	1568.783454	70.12	110
2033	Combination Truck	1176.58759	304.22	358
	Total Speed Change VOC	7843.917269		630
	Passenger Cars	2197.068324	31.82	70
2036	Single Unit Truck	676.0210228	70.12	47
2030	Combination Truck	507.0157671	304.22	154
	Total Speed Change VOC	3380.105114		272
	Passenger Cars	1880.767407	31.82	60
2037	Single Unit Truck	578.6976638	70.12	41
2037	Combination Truck	434.0232479	304.22	132
	Total Speed Change VOC	2893.488319		232
	Passenger Cars	3831.056005	31.82	122
2038	Single Unit Truck	1178.786463	70.12	83
2030	Combination Truck	884.0898474	304.22	269
	Total Speed Change VOC	5893.932316		474
	Passenger Cars	3729.481427	31.82	119
2030	Single Unit Truck	1147.532747	70.12	80
2039	Combination Truck	860.64956	304.22	262
	Total Speed Change VOC	5737.663733		461
	Passenger Cars	2149.1562	31.82	68
2010	Single Unit Truck	661.2788308	70.12	46
2040	Combination Truck	495.9591231	304.22	151
	Total Speed Change VOC	3306.394154		266

Years	Vehicle Class	Affected Vehicles	Added VOC (50-30-50), ETB/1000 Vehicles	Cost Per Day (ETB)
	Passenger Cars	3479.270695	31.82	111
2041	Single Unit Truck	1070.544829	70.12	75
2041	Combination Truck	802.9086219	304.22	244
	Total Speed Change VOC	5352.724146		430
	Passenger Cars	2529.801584	31.82	80
2012	Single Unit Truck	778.4004875	70.12	55
2042	Combination Truck	583.8003656	304.22	178
	Total Speed Change VOC	3892.002438		313
	Passenger Cars	2008.777342	31.82	64
20/13	Single Unit Truck	618.0853361	70.12	43
2045	Combination Truck	463.5640021	304.22	141
	Total Speed Change VOC	3090.42668		248

Table 63: user cost component 2 - speed change delay cost (50-30-50) km/hr

Years	Vehicle Class	Affected vehicles	Added time (50- 30-50), Hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	7092.486752	1.21	14	120
2020	Single Unit Truck	2182.303616	1.82	42	167
2020	Combination Truck	1636.727712	3.50	50.4	288
	Total Speed Change DC	10911.51808			575
	Passenger Cars	7447.17623	1.21	14	126
2021	Single Unit Truck	2291.43884	1.82	42	176
2021	Combination Truck	1718.57913	3.50	50.4	303
	Total Speed Change DC	11457.1942			604
	Passenger Cars	7819.453616	1.21	14	132
2022	Single Unit Truck	2405.985728	1.82	42	184
2022	Combination Truck	1804.489296	3.50	50.4	318
	Total Speed Change DC	12029.92864			634
	Passenger Cars	7210.149448	1.21	14	122
2022	Single Unit Truck	2218.507523	1.82	42	170
2023	Combination Truck	1663.880642	3.50	50.4	293
	Total Speed Change DC	11092.53761			585

Years	Vehicle Class	Affected vehicles	Added time (50- 30-50), Hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	7441.683527	1.21	14	126
	Single Unit Truck	2289.748778	1.82	42	175
2024	Combination Truck	1717.311583	3.50	50.4	303
	Total Speed Change DC	11448.74389			604
	Passenger Cars	6770.969375	1.21	14	114
2025	Single Unit Truck	2083.375192	1.82	42	160
2025	Combination Truck	1562.531394	3.50	50.4	275
	Total Speed Change DC	10416.87596			549
	Passenger Cars	6991.668927	1.21	14	118
2026	Single Unit Truck	2151.282747	1.82	42	165
2026	Combination Truck	1613.46206	3.50	50.4	284
	Total Speed Change DC	10756.41373			567
	Passenger Cars	7198.916367	1.21	14	122
2025	Single Unit Truck	2215.05119	1.82	42	170
2027	Combination Truck	1661.288392	3.50	50.4	293
	Total Speed Change DC	11075.25595			584
	Passenger Cars	7475.1796	1.21	14	126
	Single Unit Truck	2300.055262	1.82	42	176
2028	Combination Truck	1725.041446	3.50	50.4	304
	Total Speed Change DC	11500.27631			606
	Passenger Cars	6822.379881	1.21	14	115
2020	Single Unit Truck	2099.19381	1.82	42	161
2029	Combination Truck	1574.395357	3.50	50.4	277
	Total Speed Change DC	10495.96905			554
	Passenger Cars	6936.668499	1.21	14	117
2020	Single Unit Truck	2134.359538	1.82	42	164
2030	Combination Truck	1600.769654	3.50	50.4	282
	Total Speed Change DC	10671.79769			563
	Passenger Cars	7076.797078	1.21	14	119
2021	Single Unit Truck	2177.476024	1.82	42	167
2031	Combination Truck	1633.107018	3.50	50.4	288
	Total Speed Change DC	10887.38012			574
	Passenger Cars	5452.480245	1.21	14	92
2022	Single Unit Truck	1677.686229	1.82	42	129
2032	Combination Truck	1258.264672	3.50	50.4	222
	Total Speed Change DC	8388.431146			442

Years	Vehicle Class	Affected vehicles	Added time (50- 30-50), Hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	5024.414818	1.21	14	85
2022	Single Unit Truck	1545.97379	1.82	42	118
2033	Combination Truck	1159.480343	3.50	50.4	204
	Total Speed Change DC	7729.868951			408
	Passenger Cars	5282.945623	1.21	14	89
2024	Single Unit Truck	1625.52173	1.82	42	125
2034	Combination Truck	1219.141298	3.50	50.4	215
	Total Speed Change DC	8127.60865			429
	Passenger Cars	5098.546225	1.21	14	86
2025	Single Unit Truck	1568.783454	1.82	42	120
2035	Combination Truck	1176.58759	3.50	50.4	207
	Total Speed Change DC	7843.917269			414
	Passenger Cars	2197.068324	1.21	14	37
2026	Single Unit Truck	676.0210228	1.82	42	52
2036	Combination Truck	507.0157671	3.50	50.4	89
	Total Speed Change DC	3380.105114			178
	Passenger Cars	1880.767407	1.21	14	32
2027	Single Unit Truck	578.6976638	1.82	42	44
2037	Combination Truck	434.0232479	3.50	50.4	76
	Total Speed Change DC	2893.488319			153
	Passenger Cars	3831.056005	1.21	14	65
2020	Single Unit Truck	1178.786463	1.82	42	90
2038	Combination Truck	884.0898474	3.50	50.4	156
	Total Speed Change DC	5893.932316			311
	Passenger Cars	3729.481427	1.21	14	63
2020	Single Unit Truck	1147.532747	1.82	42	88
2039	Combination Truck	860.64956	3.50	50.4	152
	Total Speed Change DC	5737.663733			303
	Passenger Cars	2149.1562	1.21	14	36
20.40	Single Unit Truck	661.2788308	1.82	42	51
2040	Combination Truck	495.9591231	3.50	50.4	87
	Total Speed Change DC	3306.394154			174
	Passenger Cars	3479.270695	1.21	14	59
20.41	Single Unit Truck	1070.544829	1.82	42	82
2041	Combination Truck	802.9086219	3.50	50.4	141
	Total Speed Change DC	5352.724146			282

Years	Vehicle Class	Affected vehicles	Added time (50- 30-50), Hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	2529.801584	1.21	14	43
2042	Single Unit Truck	778.4004875	1.82	42	60
2042	Combination Truck	583.8003656	3.50	50.4	103
	Total Speed Change DC	3892.002438			205
	Passenger Cars	2008.777342	1.21	14	34
2012	Single Unit Truck	618.0853361	1.82	42	47
2043	Combination Truck	463.5640021	3.50	50.4	82
	Total Speed Change DC	3090.42668			163

Table 64: user cost component 3 - work zone reduced speed delay cost (50-0-50) km/hr

Years	Vehicle Class	Affected vehicles	Added time (50-0-50), hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	0	3.56	14	0
2020	Single Unit Truck	0	4.56	42	0
2020	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0
	Passenger Cars	0	3.56	14	0
2021	Single Unit Truck	0	4.56	42	0
2021	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0
	Passenger Cars	0	3.56	14	0
2022	Single Unit Truck	0	4.56	42	0
2022	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0
	Passenger Cars	1000.146568	3.56	14	50
2023	Single Unit Truck	307.7374055	4.56	42	59
2025	Combination Truck	230.8030541	7.91	50.4	92
	Total Reduced Speed DC	1538.687027			201
	Passenger Cars	1179.322711	3.56	14	59
2024	Single Unit Truck	362.8685263	4.56	42	69
2024	Combination Truck	272.1513947	7.91	50.4	108
	Total Reduced Speed DC	1814.342632			237
	Passenger Cars	2282.589167	3.56	14	114
2025	Single Unit Truck	702.3351282	4.56	42	134
2023	Combination Truck	526.7513461	7.91	50.4	210
	Total Reduced Speed DC	3511.675641			458

Years	Vehicle Class	Affected vehicles	Added time (50-0- 50), hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	2512.966837	3.56	14	125
2026	Single Unit Truck	773.2205653	4.56	42	148
2020	Combination Truck	579.915424	7.91	50.4	231
	Total Reduced Speed DC	3866.102827			504
	Passenger Cars	2780.918615	3.56	14	139
2027	Single Unit Truck	855.6672662	4.56	42	164
2027	Combination Truck	641.7504496	7.91	50.4	256
	Total Reduced Speed DC	4278.336331			558
	Passenger Cars	3201.983364	3.56	14	160
2029	Single Unit Truck	985.2256505	4.56	42	189
2028	Combination Truck	738.9192379	7.91	50.4	295
	Total Reduced Speed DC	4926.128252			643
	Passenger Cars	4180.485083	3.56	14	209
2020	Single Unit Truck	1286.303102	4.56	42	246
2029	Combination Truck	964.7273268	7.91	50.4	385
	Total Reduced Speed DC	6431.515512			839
	Passenger Cars	4616.307143	3.56	14	230
2020	Single Unit Truck	1420.402198	4.56	42	272
2030	Combination Truck	1065.301648	7.91	50.4	425
	Total Reduced Speed DC	7102.01099			927
	Passenger Cars	5053.64821	3.56	14	252
2031	Single Unit Truck	1554.96868	4.56	42	298
2031	Combination Truck	1166.22651	7.91	50.4	465
	Total Reduced Speed DC	7774.8434			1015
	Passenger Cars	7284.400314	3.56	14	363
2032	Single Unit Truck	2241.353943	4.56	42	429
	Combination Truck	1681.015457	7.91	50.4	670
	Total Reduced Speed DC	11206.76971	2.56	1.4	1462
	Passenger Cars	8354.833847	3.56	14	417
2033	Single Unit Truck	25/0./1810/	4.50	42	492
	Combination Truck	1928.03858	7.91	50.4	/69
	Total Reduced Speed DC	12855.59053	2 56	1 /	10//
	rassenger Cars	8900.914306	3.30	14	44/
2034	Single Unit Truck	2759.050556	4.50	42	528
	Combination Truck	2069.287917	7.91	50.4	825
	Total Reduced Speed DC	13795.25278			1800

Years	Vehicle Class	Affected vehicles	Added time (50-0- 50), hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	9646.309017	3.56	14	481
	Single Unit Truck	2968.095082	4.56	42	568
2035	Combination Truck	2226.071312	7.91	50.4	887
	Total Reduced Speed DC	14840.47541			1937
	Passenger Cars	13284.85054	3.56	14	663
2026	Single Unit Truck	4087.646321	4.56	42	782
2030	Combination Truck	3065.734741	7.91	50.4	1222
	Total Reduced Speed DC	20438.23161			2667
	Passenger Cars	14375.34511	3.56	14	717
2027	Single Unit Truck	4423.183112	4.56	42	846
2037	Combination Truck	3317.387334	7.91	50.4	1322
	Total Reduced Speed DC	22115.91556			2886
	Passenger Cars	13237.68301	3.56	14	660
2020	Single Unit Truck	4073.133233	4.56	42	779
2038	Combination Truck	3054.849925	7.91	50.4	1218
	Total Reduced Speed DC	20365.66616			2658
	Passenger Cars	14192.92253	3.56	14	708
2020	Single Unit Truck	4367.053085	4.56	42	836
2039	Combination Truck	3275.289814	7.91	50.4	1306
	Total Reduced Speed DC	21835.26543			2849
	Passenger Cars	16669.25396	3.56	14	831
20.40	Single Unit Truck	5129.001217	4.56	42	982
2040	Combination Truck	3846.750913	7.91	50.4	1533
	Total Reduced Speed DC	25645.00609			3346
	Passenger Cars	16280.09254	3.56	14	812
2041	Single Unit Truck	5009.259243	4.56	42	959
2041	Combination Truck	3756.944432	7.91	50.4	1498
	Total Reduced Speed DC	25046.29621			3268
	Passenger Cars	18217.41582	3.56	14	909
20.42	Single Unit Truck	5605.358712	4.56	42	1073
2042	Combination Truck	4204.019034	7.91	50.4	1676
	Total Reduced Speed DC	28026.79356			3657
	Passenger Cars	19775.80093	3.56	14	986
20.42	Single Unit Truck	6084.861824	4.56	42	1164
2043	Combination Truck	4563.646368	7.91	50.4	1819
	Total Reduced Speed DC	30424.30912			3970

Years	Vehicle Class	Affected vehicles	Added VOC (50-0-50), ETB/1000 vehicles	Cost per day (ETB)
	Passenger Cars	0	67.39	-
2020	Single Unit Truck	0	149.38	-
2020	Combination Truck	0	613.93	-
	Total Stopping VOC	0		-
	Passenger Cars	0	67.39	-
2021	Single Unit Truck	0	149.38	-
	Combination Truck	0	613.93	-
	Total Stopping VOC	0		-
	Passenger Cars	0	67.39	-
2022	Single Unit Truck	0	149.38	-
	Combination Truck	0	613.93	-
	Total Stopping VOC	0		-
2022	Passenger Cars	1000.146568	67.39	67.40
	Single Unit Truck	307.7374055	149.38	45.97
2025	Combination Truck	230.8030541	613.93	141.70
	Total Stopping VOC	1538.687027		255.07
	Passenger Cars	1179.322711	67.39	79.47
2024	Single Unit Truck	362.8685263	149.38	54.20
2024	Combination Truck	272.1513947	613.93	167.08
	Total Stopping VOC	1814.342632		300.76
	Passenger Cars	2282.589167	67.39	153.82
2025	Single Unit Truck	702.3351282	149.38	104.91
2023	Combination Truck	526.7513461	613.93	323.39
	Total Stopping VOC	3511.675641		582.12
	Passenger Cars	2512.966837	67.39	169.35
2026	Single Unit Truck	773.2205653	149.38	115.50
2020	Combination Truck	579.915424	613.93	356.03
	Total Stopping VOC	3866.102827		640.88
	Passenger Cars	2780.918615	67.39	187.40
2027	Single Unit Truck	855.6672662	149.38	127.82
2027	Combination Truck	641.7504496	613.93	393.99
	Total Stopping VOC	4278.336331		709.21

Table 65: user cost component 4 – stopping VOC (50-0-50) km/hr

Years	Vehicle Class	Affected vehicles	Added VOC (50-0-50), ETB/1000 vehicles	Cost per day (ETB)
	Passenger Cars	3201.983364	67.39	215.78
2028	Single Unit Truck	985.2256505	149.38	147.17
2028	Combination Truck	738.9192379	613.93	453.65
	Total Stopping VOC	4926.128252		816.60
	Passenger Cars	4180.485083	67.39	281.72
2020	Single Unit Truck	1286.303102	149.38	192.14
2029	Combination Truck	964.7273268	613.93	592.28
	Total Stopping VOC	6431.515512		1,066.14
	Passenger Cars	4616.307143	67.39	311.09
2020	Single Unit Truck	1420.402198	149.38	212.18
2030	Combination Truck	1065.301648	613.93	654.02
	Total Stopping VOC	7102.01099		1,177.29
	Passenger Cars	5053.64821	67.39	340.56
2031	Single Unit Truck	1554.96868	149.38	232.28
	Combination Truck	1166.22651	613.93	715.99
	Total Stopping VOC	7774.8434		1,288.82
	Passenger Cars	7284.400314	67.39	490.89
2022	Single Unit Truck	2241.353943	149.38	334.81
2032	Combination Truck	1681.015457	613.93	1,032.03
	Total Stopping VOC	11206.76971		1,857.73
	Passenger Cars	8354.833847	67.39	563.02
2022	Single Unit Truck	2570.718107	149.38	384.01
2055	Combination Truck	1928.03858	613.93	1,183.69
	Total Stopping VOC	12853.59053		2,130.72
	Passenger Cars	8966.914306	67.39	604.27
2024	Single Unit Truck	2759.050556	149.38	412.14
2034	Combination Truck	2069.287917	613.93	1,270.41
	Total Stopping VOC	13795.25278		2,286.82
	Passenger Cars	9646.309017	67.39	650.06
2025	Single Unit Truck	2968.095082	149.38	443.36
2035	Combination Truck	2226.071312	613.93	1,366.66
	Total Stopping VOC	14840.47541		2,460.08
	Passenger Cars	13284.85054	67.39	895.25
2026	Single Unit Truck	4087.646321	149.38	610.60
2030	Combination Truck	3065.734741	613.93	1,882.16
	Total Stopping VOC	20438.23161		3,388.01

Years	Vehicle Class	Affected vehicles	Added VOC (50-0-50), ETB/1000 vehicles	Cost per day (ETB)
	Passenger Cars	14375.34511	67.39	968.74
2027	Single Unit Truck	4423.183112	149.38	660.72
Years 2037 2038 2039 2040 2041 2042 2043	Combination Truck	3317.387334	613.93	2,036.66
	Total Stopping VOC	22115.91556		3,666.12
2038 2039	Passenger Cars	13237.68301	67.39	892.07
	Single Unit Truck	4073.133233	149.38	608.43
	Combination Truck	3054.849925	613.93	1,875.48
	Total Stopping VOC	20365.66616		3,375.98
	Passenger Cars	14192.92253	67.39	956.45
2039	Single Unit Truck	4367.053085	149.38	652.34
	Combination Truck	3275.289814	613.93	2,010.81
	Total Stopping VOC	21835.26543		3,619.59
	Passenger Cars	16669.25396	67.39	1,123.32
2010	Single Unit Truck	5129.001217	149.38	766.15
2040	Combination Truck	3846.750913	613.93	2,361.65
	Total Stopping VOC	25645.00609		4,251.13
	Passenger Cars	16280.09254	67.39	1,097.10
2039 2040 2041	Single Unit Truck	5009.259243	149.38	748.27
2041	Combination Truck	3756.944432	613.93	2,306.52
	Total Stopping VOC	Affected vehiclesAdded VOC (50-0-30), ETB/1000 vehiclesCost per day (ETB)14375.3451167.39968.744423.183112149.38660.723317.387334613.932,036.6622115.915563,666.1213237.6830167.39892.074073.133233149.38608.433054.849925613.931,875.4820365.666163,375.9814192.9225367.39956.454367.053085149.38652.343275.289814613.932,010.8121835.265433,619.5916669.2539667.391,123.325129.001217149.38766.153846.750913613.932,306.5225645.006094,251.1316280.0925467.391,097.105009.259243149.38748.273756.944432613.932,306.5225046.296214,151.8818217.4158267.391,227.655605.358712149.38837.314204.019034613.932,580.9928026.793564,645.9519775.8009367.391,332.676084.861824149.38908.944563.646368613.932,801.7830424.309125,043.392,801.78		
	Passenger Cars	18217.41582	67.39	1,227.65
2012	Single Unit Truck	5605.358712	149.38	837.31
2042	Combination Truck	4204.019034	613.93	2,580.99
	Total Stopping VOC	28026.79356		4,645.95
	Passenger Cars	19775.80093	67.39	1,332.67
2012	Single Unit Truck	6084.861824	149.38	908.94
2043	Combination Truck	4563.646368	613.93	2,801.78
	Total Stopping VOC	30424.30912		5,043.39

Table 66: user cost component 5 – stopping delay cost (50-0-50) km/hr

Years	Vehicle Class	Affected vehicles	Added time (50-0- 50), hrs./1000 vehicles	Delay cost rate (ETB/Veh-Hr)	Cost per day (ETB)
	Passenger Cars	0	3.56	14	0
2020	Single Unit Truck	0	4.56	42	0
2020	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0

Years	Vehicle Class	Affected vehicles	Added time (50- 0-50), hrs./1000 vehicles	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
	Passenger Cars	0	3.56	14	0
2021	Single Unit Truck	0	4.56	42	0
2021	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0
2022	Passenger Cars	0	3.56	14	0
	Single Unit Truck	0	4.56	42	0
	Combination Truck	0	7.91	50.4	0
	Total Reduced Speed DC	0			0
	Passenger Cars	1000.146568	3.56	14	50
2022	Single Unit Truck	307.7374055	4.56	42	59
2023	Combination Truck	230.8030541	7.91	50.4	92
	Total Reduced Speed DC	1538.687027			201
	Passenger Cars	1179.322711	3.56	14	59
2024	Single Unit Truck	362.8685263	4.56	42	69
2024	Combination Truck	272.1513947	7.91	50.4	108
	Total Reduced Speed DC	1814.342632			237
	Passenger Cars	2282.589167	3.56	14	114
2025	Single Unit Truck	702.3351282	4.56	42	134
2023	Combination Truck	526.7513461	7.91	50.4	210
	Total Reduced Speed DC	3511.675641			458
	Passenger Cars	2512.966837	3.56	14	125
2026	Single Unit Truck	773.2205653	4.56	42	148
2020	Combination Truck	579.915424	7.91	50.4	231
	Total Reduced Speed DC	3866.102827			504
	Passenger Cars	2780.918615	3.56	14	139
2027	Single Unit Truck	855.6672662	4.56	42	164
2027	Combination Truck	641.7504496	7.91	50.4	256
	Total Reduced Speed DC	4278.336331			558
	Passenger Cars	3201.983364	3.56	14	160
2028	Single Unit Truck	985.2256505	4.56	42	189
2020	Combination Truck	738.9192379	7.91	50.4	295
	Total Reduced Speed DC	4926.128252			643

Years	Vehicle Class	Affected vehicles	Added time (50- 0-50), hrs./1000 vehicles	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
	Passenger Cars	4180.485083	3.56	14	209
2020	Single Unit Truck	1286.303102	4.56	42	246
2029	Combination Truck	964.7273268	7.91	50.4	385
	Total Reduced Speed DC	6431.515512			839
	Passenger Cars	4616.307143	3.56	14	230
2030	Single Unit Truck	1420.402198	4.56	42	272
2030	Combination Truck	1065.301648	7.91	50.4	425
	Total Reduced Speed DC	7102.01099			927
	Passenger Cars	5053.64821	3.56	14	252
2021	Single Unit Truck	1554.96868	4.56	42	298
2031	Combination Truck	1166.22651	7.91	50.4	465
	Total Reduced Speed DC	7774.8434			1015
	Passenger Cars	7284.400314	3.56	14	363
2022	Single Unit Truck	2241.353943	4.56	42	429
2052	Combination Truck	1681.015457	7.91	50.4	670
	Total Reduced Speed DC	11206.76971			1462
	Passenger Cars	8354.833847	3.56	14	417
2022	Single Unit Truck	2570.718107	4.56	42	492
2055	Combination Truck	1928.03858	7.91	50.4	769
	Total Reduced Speed DC	12853.59053			1677
	Passenger Cars	8966.914306	3.56	14	447
2024	Single Unit Truck	2759.050556	4.56	42	528
2034	Combination Truck	2069.287917	7.91	50.4	825
	Total Reduced Speed DC	13795.25278			1800
	Passenger Cars	9646.309017	3.56	14	481
2025	Single Unit Truck	2968.095082	4.56	42	568
2055	Combination Truck	2226.071312	7.91	50.4	887
	Total Reduced Speed DC	14840.47541			1937
	Passenger Cars	13284.85054	3.56	14	663
2026	Single Unit Truck	4087.646321	4.56	42	782
2030	Combination Truck	3065.734741	7.91	50.4	1222
	Total Reduced Speed DC	20438.23161			2667
	Passenger Cars	14375.34511	3.56	14	717
2027	Single Unit Truck	4423.183112	4.56	42	846
2037	Combination Truck	3317.387334	7.91	50.4	1322
	Total Reduced Speed DC	22115.91556			2886

Years	Vehicle Class	Affected vehicles	Added time (50- 0-50), hrs./1000 vehicles	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
	Passenger Cars	13237.68301	3.56	14	660
2020	Single Unit Truck	4073.133233	4.56	42	779
2038	Combination Truck	3054.849925	7.91	50.4	1218
	Total Reduced Speed DC	20365.66616			2658
	Passenger Cars	14192.92253	3.56	14	708
2020	Single Unit Truck	4367.053085	4.56	42	836
2039	Combination Truck	3275.289814	7.91	50.4	1306
	Total Reduced Speed DC	21835.26543			2849
	Passenger Cars	16669.25396	3.56	14	831
20.40	Single Unit Truck	5129.001217	4.56	42	982
2040	Combination Truck	3846.750913	7.91	50.4	1533
	Total Reduced Speed DC	25645.00609			3346
	Passenger Cars	16280.09254	3.56	14	812
2041	Single Unit Truck	5009.259243	4.56	42	959
2041	Combination Truck	3756.944432	7.91	50.4	1498
	Total Reduced Speed DC	25046.29621			3268
	Passenger Cars	18217.41582	3.56	14	909
2012	Single Unit Truck	5605.358712	4.56	42	1073
2042	Combination Truck	4204.019034	7.91	50.4	1676
	Total Reduced Speed DC	28026.79356			3657
	Passenger Cars	19775.80093	3.56	14	986
2012	Single Unit Truck	6084.861824	4.56	42	1164
2043	Combination Truck	4563.646368	7.91	50.4	1819
	Total Reduced Speed DC	30424.30912			3970

Table 67: user cost component 6 – Idling VOC

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Idle VOC rates (ETB/1000 Veh-Hr)	Cost per day (ETB)
	Passenger Cars	0	0.000	1234.72	0
2020	Single Unit Truck	0	0.000	1369.12	0
2020	Combination Truck	0	0.000	1470.26	0
	Total Idling VOC	0			0
	Passenger Cars	0	0.000	1234.72	0
2021	Single Unit Truck	0	0.000	1369.12	0
2021	Combination Truck	0	0.000	1470.26	0
	Total Idling VOC	0			0

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Idle VOC rates (ETB/1000 Veh- Hr)	Cost per day (ETB)
	Passenger Cars	0	0.000	1234.72	0
2022	Single Unit Truck	0	0.000	1369.12	0
	Combination Truck	0	0.000	1470.26	0
	Total Idling VOC	0			0
	Passenger Cars	1000	0.000	1234.72	0
2022	Single Unit Truck	308	0.000	1369.12	0
2023	Combination Truck	231	0.000	1470.26	0
	Total Idling VOC	1,539			0
	Passenger Cars	1179	0.000	1234.72	0
2024	Single Unit Truck	363	0.000	1369.12	0
2024	Combination Truck	272	0.000	1470.26	0
	Total Idling VOC	1,814			0
	Passenger Cars	2,283	0.000	1234.72	0
2025	Single Unit Truck	702	0.000	1369.12	0
2023	Combination Truck	527	0.000	1470.26	0
	Total Idling VOC	3512			0
	Passenger Cars	2513	0.09	1234.72	275
2026	Single Unit Truck	773	0.09	1369.12	94
2020	Combination Truck	580	0.09	1470.26	76
	Total Idling VOC	3,866			445
	Passenger Cars	2,781	0.13	1234.72	438
2027	Single Unit Truck	856	0.13	1369.12	149
2027	Combination Truck	642	0.13	1470.26	120
	Total Idling VOC	4278			708
	Passenger Cars	3,202	0.19	1234.72	732
2028	Single Unit Truck	985	0.19	1369.12	250
2020	Combination Truck	739	0.19	1470.26	201
	Total Idling VOC	4926			1183
	Passenger Cars	4,181	0.26	1234.72	1341
2020	Single Unit Truck	1,286	0.26	1369.12	458
2029	Combination Truck	965	0.26	1470.26	369
	Total Idling VOC	6432			2168
	Passenger Cars	4616	0.36	1234.72	2024
2030	Single Unit Truck	1420	0.36	1369.12	690
2030	Combination Truck	1065	0.36	1470.26	556
	Total Idling VOC	7,102			3270

Idle VOC rates

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Idle VOC rates (ETB/1000 Veh- Hr)	Cost per day (ETB)
	Passenger Cars	5054	0.48	1234.72	3024
2031	Single Unit Truck	1555	0.48	1369.12	1032
2031	Combination Truck	1166	0.48	1470.26	831
	Total Idling VOC	7775			4887
	Passenger Cars	7285	0.47	1234.72	4258
2022	Single Unit Truck	2241	0.47	1369.12	1453
2032	Combination Truck	1681	0.47	1470.26	1170
	Total Idling VOC	11,207			6881
	Passenger Cars	8355	0.52	1234.72	5379
2022	Single Unit Truck	2571	0.52	1369.12	1835
2033	Combination Truck	1928	0.52	1470.26	1478
	Total Idling VOC	12854			8692
	Passenger Cars	8,967	0.87	1234.72	9611
2024	Single Unit Truck	2,759	0.87	1369.12	3279
2034	Combination Truck	2,069	0.87	1470.26	2641
	Total Idling VOC	13795			15531
	Passenger Cars	9,646	1.17	1234.72	13984
2025	Single Unit Truck	2,968	1.17	1369.12	4771
2035	Combination Truck	2,226	1.17	1470.26	3843
	Total Idling VOC	14840			22597
	Passenger Cars	13285	0.40	1234.72	6598
2026	Single Unit Truck	4088	0.40	1369.12	2251
2030	Combination Truck	3066	0.40	1470.26	1813
	Total Idling VOC	20,438			10661
	Passenger Cars	14,375	0.68	1234.72	12010
2027	Single Unit Truck	4,423	0.68	1369.12	4098
2037	Combination Truck	3,317	0.68	1470.26	3300
	Total Idling VOC	22116			19408
	Passenger Cars	13238	0.55	1234.72	9019
2020	Single Unit Truck	4073	0.55	1234.72	2775
2038	Combination Truck	3055	0.55	1234.72	2081
	Total Idling VOC	20,366			13875
	Passenger Cars	14193	0.30	1234.72	5259
2020	Single Unit Truck	4367	0.30	1234.72	1618
2039	Combination Truck	3275	0.30	1234.72	1214

21,835

Total Idling VOC

8091

Life C	ycle	Cost Analysis of	Flexible Pavement with	Geosynthetic	Materials and	Conventional	Pavement
--------	------	------------------	------------------------	--------------	---------------	--------------	----------

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Idle VOC rates (ETB/1000 Veh- Hr)	Cost per day (ETB)
	Passenger Cars	16,669	0.95	1234.72	19523
2040	Single Unit Truck	5,129	0.95	1369.12	6661
2040	Combination Truck	3,847	0.95	1470.26	5365
	Total Idling VOC	25645			31549
	Passenger Cars	16280	1.12	1234.72	22581
2041	Single Unit Truck	5009	1.12	1369.12	7704
2041	Combination Truck	3757	1.12	1470.26	6205
	Total Idling VOC	25046			36490
	Passenger Cars	18218	1.50	1234.72	33720
20.42	Single Unit Truck	5605	1.50	1234.72	10375
2042	Combination Truck	4204	1.50	1234.72	7781
	Total Idling VOC	28,027			51876
	Passenger Cars	19775.6	3.95	1234.72	96533
2012	Single Unit Truck	6084.8	3.95	1369.12	32935
2043	Combination Truck	4563.6	3.95	1470.26	26526
	Total Idling VOC	30424			155994

Table 68: user cost component 7 – Queue reduced speed delay cost

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
2020	Passenger Cars	0	0.000	14	0
	Single Unit Truck	0	0.000	42	0
	Combination Truck	0	0.000	50.4	0
	Total Queue RSDC	0			0
2021	Passenger Cars	0	0.000	14	0
	Single Unit Truck	0	0.000	42	0
	Combination Truck	0	0.000	50.4	0
	Total Queue RSDC	0			0
2022	Passenger Cars	0	0.000	14	0
	Single Unit Truck	0	0.000	42	0
	Combination Truck	0	0.000	50.4	0
	Total Queue RSDC	0			0
2023	Passenger Cars	1000	0.000	14	0
	Single Unit Truck	308	0.000	42	0
	Combination Truck	231	0.000	50.4	0
	Total Queue RSDC	1,539			0

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
2024	Passenger Cars	1179	0.000	14	0
	Single Unit Truck	363	0.000	42	0
	Combination Truck	272	0.000	50.4	0
	Total Queue RSDC	1,814			0
2025	Passenger Cars	2,283	0.000	14	0
	Single Unit Truck	702	0.000	42	0
	Combination Truck	527	0.000	50.4	0
	Total Queue RSDC	3512			0
2026	Passenger Cars	2513	0.09	14	3
	Single Unit Truck	773	0.09	42	3
	Combination Truck	580	0.09	50.4	3
	Total Queue RSDC	3,866			9
	Passenger Cars	2,781	0.13	14	5
2027	Single Unit Truck	856	0.13	42	5
2027	Combination Truck	642	0.13	50.4	4
	Total Queue RSDC	4278			14
2028	Passenger Cars	3,202	0.19	14	8
	Single Unit Truck	985	0.19	42	8
	Combination Truck	739	0.19	50.4	7
	Total Queue RSDC	4926			23
2029	Passenger Cars	4,181	0.26	14	15
	Single Unit Truck	1,286	0.26	42	14
	Combination Truck	965	0.26	50.4	13
	Total Queue RSDC	6432			42
2030	Passenger Cars	4616	0.36	14	23
	Single Unit Truck	1420	0.36	42	21
	Combination Truck	1065	0.36	50.4	19
	Total Queue RSDC	7,102			63
2031	Passenger Cars	5054	0.485	14	34
	Single Unit Truck	1555	0.485	42	32
	Combination Truck	1166	0.485	50.4	28
	Total Queue RSDC	7775			94
2032	Passenger Cars	7285	0.47	14	48
	Single Unit Truck	2241	0.47	42	45
	Combination Truck	1681	0.47	50.4	40
	Total Queue RSDC	11,207			133
Years	Vehicle Class	Affected vehicles	Added time (Hours)	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
-------	-------------------	-------------------	-----------------------	----------------------------------	-----------------------
	Passenger Cars	8355	0.521	14	61
2022	Single Unit Truck	2571	0.521	42	56
2033	Combination Truck	1928	0.521	50.4	51
	Total Queue RSDC	12854			168
	Passenger Cars	8,967	0.87	14	109
2024	Single Unit Truck	2,759	0.87	42	101
2034	Combination Truck	2,069	0.87	50.4	91
	Total Queue RSDC	13795			300
	Passenger Cars	9,646	1.17	14	159
2025	Single Unit Truck	2,968	1.17	42	146
2035	Combination Truck	2,226	1.17	50.4	132
	Total Queue RSDC	14840			437
	Passenger Cars	13285	0.40	14	75
2026	Single Unit Truck	4088	0.40	42	69
2036	Combination Truck	3066	0.40	50.4	62
	Total Queue RSDC	20,438			206
	Passenger Cars	14,375	0.68	14	136
2027	Single Unit Truck	4,423	0.68	42	126
2037	Combination Truck	3,317	0.68	50.4	113
	Total Queue RSDC	22116			375
	Passenger Cars	13238	0.55	14	102
2020	Single Unit Truck	4073	0.55	42	94
2038	Combination Truck	3055	0.55	50.4	85
	Total Queue RSDC	20,366			282
	Passenger Cars	14193	0.30	14	60
2020	Single Unit Truck	4367	0.30	42	55
2039	Combination Truck	3275	0.30	50.4	50
	Total Queue RSDC	21,835			164
	Passenger Cars	16,669	0.95	14	221
20.40	Single Unit Truck	5,129	0.95	42	204
2040	Combination Truck	3,847	0.95	50.4	184
	Total Queue RSDC	25645			610
	Passenger Cars	16280	1.123	14	256
20.41	Single Unit Truck	5009	1.123	42	236
2041	Combination Truck	3757	1.123	50.4	213
	Total Queue RSDC	25046			705

Years	Vehicle Class	Affected vehicles	Added time (Hours)	Delay cost rate (ETB/Veh- Hr)	Cost per day (ETB)
	Passenger Cars	18218	1.50	14	382
2042	Single Unit Truck	5605	1.50	42	353
	Combination Truck	4204	1.50	50.4	318
	Total Queue RSDC	28,027			1053
2043	Passenger Cars	19775.6	3.95	14	1095
	Single Unit Truck	6084.8	3.95	42	1010
	Combination Truck	4563.6	3.95	50.4	909
	Total Queue RSDC	30424			3014

Step 11. Total Work Zone User Costs

Table 69: Master summary of present user cost components during routine maintenance for CFP

Vears	User Cost Components	Passenger	Trı	Total (FTR)	
rears	User Cosi Components	Cars	Single Unit	Combination	101 <i>a</i> l (E1B)
	Speed Change VOC	236.969	160.676	522.826	920.471
	Speed Change Delay Cost	125.723	175.597	302.871	604.191
	Work Zone Reduced Speed Delay	0.000	0.000	0.000	0.000
2021	Stopping VOC	0.000	0.000	0.000	0.000
2021	Stopping Delay Cost	0.000	0.000	0.000	0.000
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	362.692	336.273	825.698	1524.662
	Speed Change VOC	229.437	155.568	506.207	891.212
	Speed Change Delay Cost	121.726	170.015	293.244	584.986
	Work Zone Reduced Speed Delay	49.897	58.904	92.023	200.824
2022	Stopping VOC	67.413	45.978	141.727	255.117
2023	Stopping Delay Cost	49.897	58.904	92.023	200.824
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	518.370	489.369	1125.223	2132.962
	Speed Change VOC	236.800	160.561	522.452	919.813
	Speed Change Delay Cost	125.633	175.471	302.655	603.759
	Work Zone Reduced Speed Delay	58.813	69.429	108.466	236.708
2024	Stopping VOC	79.458	54.194	167.051	300.704
	Stopping Delay Cost	58.813	69.429	108.466	236.708
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	559.518	529.084	1209.091	2297.693

Trucks Passenger Years User Cost Components Total (ETB) Cars Combination Single Unit Speed Change VOC 222.466 150.842 490.829 864.137 Speed Change Delay Cost 118.028 164.850 284.335 567.214 Work Zone Reduced Speed Delay 125.343 147.967 231.164 504.474 Stopping VOC 169.342 115.498 356.020 640.860 2026 Stopping Delay Cost 231.164 125.343 147.967 504.474 Idling VOC 412.722 140.815 113.413 666.949 Queue Reduced Speed Delay Cost 3.888 4.680 4.320 12.887 1710.811 Total 1177.925 872.259 3760.995 478.964 Speed Change VOC 217.089 147.196 843.249 Speed Change Delay Cost 160.865 277.462 115.175 553.503 Work Zone Reduced Speed Delay 208.538 246.178 384.595 839.310 Stopping VOC 281.740 192.158 592.323 1066.222 2029 Stopping Delay Cost 208.538 246.178 384.595 839.310 Idling VOC 731.900 249.713 201.120 1182.733 Queue Reduced Speed Delay Cost 15.210 14.040 12.636 41.887 Total 1256.329 2331.696 5366.214 1778.190 Speed Change VOC 149.664 486.995 857.388 220.729 Speed Change Delay Cost 117.107 163.563 282.115 562.784 Work Zone Reduced Speed Delay 424.657 926.739 230.260 271.821 Stopping VOC 311.088 212.175 654.024 1177.287 2030 926.739 Stopping Delay Cost 271.821 230.260 424.657 Idling VOC 2941.124 1820.029 620.966 500.129 Queue Reduced Speed Delay Cost 19.049 17.144 56.830 20.637 Total 2950.110 1709.060 2789.721 7448.890 Speed Change VOC 173.489 117.633 382.770 673.892 92.044 Speed Change Delay Cost 128.557 221.737 442.338 Work Zone Reduced Speed Delay 363.352 428.935 670.111 1462.399 490.899 1032.053 Stopping VOC 334.813 1857.765 2032 Stopping Delay Cost 670.111 363.352 428.935 1462.399 Idling VOC 4658.371 1589.366 1280.082 7527.818 Queue Reduced Speed Delay Cost 52.819 48.756 43.881 145.457 Total 6194.327 3076.997 4300.745 13572.069 Speed Change VOC 159.877 108.404 352.737 621.018 Speed Change Delay Cost 84.822 118.471 204.339 407.632 Work Zone Reduced Speed Delay 416.738 491.957 768.567 1677.262 2033 Stopping VOC 563.024 384.006 1183.688 2130.718 Stopping Delay Cost 416.738 491.957 1677.262 768.567 Idling VOC 5378.970 1478.096 8692.290 1835.223

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

V	User Cost Components	Passenger	Trucks	Total (ETR)	
rears	User Cost Components	Cars	Single Unit	Combination	Iotal (EIB)
	Queue Reduced Speed Delay Cost	60.990	56.299	50.669	167.957
	Total	7081.159	3486.316	4806.664	15374.140
	Speed Change VOC	69.909	47.401	154.240	271.549
	Speed Change Delay Cost	37.090	51.803	89.350	178.243
	Work Zone Reduced Speed Delay	662.639	782.242	1222.069	2666.950
2026	Stopping VOC	895.243	610.593	1882.137	3387.973
2030	Stopping Delay Cost	662.639	782.242	1222.069	2666.950
	Idling VOC	26069.025	8894.358	7163.552	42126.936
	Queue Reduced Speed Delay Cost	295.587	272.849	245.564	814.000
	Total	28692.131	11441.488	11978.982	52112.602
	Speed Change VOC	121.906	82.657	268.961	473.524
	Speed Change Delay Cost	64.676	90.334	155.808	310.818
	Work Zone Reduced Speed Delay	660.305	779.486	1217.764	2657.555
2020	Stopping VOC	892.089	608.442	1875.506	3376.037
2038	Stopping Delay Cost	660.305	779.486	1217.764	2657.555
	Idling VOC	8912.109	2742.187	2056.641	13710.937
	Queue Reduced Speed Delay Cost	101.051	93.278	83.950	278.279
	Total	11412.441	5175.870	6876.395	23464.706
	Speed Change VOC	118.679	80.470	261.842	460.991
	Speed Change Delay Cost	62.965	87.943	151.684	302.592
	Work Zone Reduced Speed Delay	707.933	835.710	1305.602	2849.245
2020	Stopping VOC	956.436	652.329	2010.787	3619.551
2039	Stopping Delay Cost	707.933	835.710	1305.602	2849.245
	Idling VOC	2649.091	815.105	611.329	4075.525
	Queue Reduced Speed Delay Cost	30.037	27.726	24.954	82.717
	Total	5233.073	3334.993	5671.799	14239.865
	Speed Change VOC	110.710	75.067	244.261	430.038
	Speed Change Delay Cost	58.737	82.038	141.499	282.274
	Work Zone Reduced Speed Delay	812.049	958.619	1497.618	3268.286
20.41	Stopping VOC	1097.100	748.267	2306.515	4151.882
2041	Stopping Delay Cost	812.049	958.619	1497.618	3268.286
	Idling VOC	22580.548	7704.143	6204.948	36489.638
	Queue Reduced Speed Delay Cost	256.032	236.337	212.704	705.073
	Total	25727.225	10763.090	12105.163	48595.478
	Speed Change VOC	80.498	54.581	177.604	312.683
20.42	Speed Change Delay Cost	42.708	59.650	102.885	205.243
2042	Work Zone Reduced Speed Delay	908.689	1072.702	1675.846	3657.237
	Stopping VOC	1227.663	837.317	2581.008	4645.988

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

Years	User Cost Components	Passenger	Trucks	Total (ETD)	
		Cars	Single Unit	Combination	101 <i>a</i> l (E1B)
	Stopping Delay Cost	908.689	1072.702	1675.846	3657.237
	Idling VOC	32.547	10.015	7.511	50.073
	Queue Reduced Speed Delay Cost	382.333	352.923	317.631	1052.887
	Total	3583.128	3459.891	6538.331	13581.350

Table 70: Grand summary of user cost components during routine maintenance for conventional FP.

Years	User Cost Components	Total (ETB)	п	1+If	(1+If) ^n	$FV = e^*b$
	a	b	С	d	е	f
	Speed Change VOC	920.471	2	1.274	1.624019	1494.862269
	Speed Change Delay Cost	604.191	2	1.274	1.624	981.218
	Work Zone Reduced Speed Delay	0.000	2	1.274	1.624	0.000
2021	Stopping VOC	0.000	2	1.274	1.624	0.000
2021	Stopping Delay Cost	0.000	2	1.274	1.624	0.000
	Idling VOC	0.000	2	1.274	1.624	0.000
	Queue Reduced Speed Delay Cost	0.000	2	1.274	1.624	0.000
	Total	1524.662	2	1.274	1.624	2476.080
	Speed Change VOC	891.212	4	1.274	2.637	2350.515
	Speed Change Delay Cost	584.986	4	1.274	2.637	1542.863
	Work Zone Reduced Speed Delay	200.824	4	1.274	2.637	529.660
2022	Stopping VOC	255.117	4	1.274	2.637	672.856
2025	Stopping Delay Cost	200.824	4	1.274	2.637	529.660
	Idling VOC	0.000	4	1.274	2.637	0.000
	Queue Reduced Speed Delay Cost	0.000	4	1.274	2.637	0.000
	Total	2132.962	4	1.274	2.637	5625.555
	Speed Change VOC	919.813	5	1.274	3.361	3091.556
	Speed Change Delay Cost	603.759	5	1.274	3.361	2029.278
	Work Zone Reduced Speed Delay	236.708	5	1.274	3.361	795.594
2024	Stopping VOC	300.704	5	1.274	3.361	1010.687
2024	Stopping Delay Cost	236.708	5	1.274	3.361	795.594
	Idling VOC	0.000	5	1.274	3.361	0.000
	Queue Reduced Speed Delay Cost	0.000	5	1.274	3.361	0.000
	Total	2297.693	5	1.274	3.361	7722.708
	Speed Change VOC	864.137	7	1.274	5.458	4716.843
	Speed Change Delay Cost	567.214	7	1.274	5.458	3096.106
2026	Work Zone Reduced Speed Delay	504.474	7	1.274	5.458	2753.640
	Stopping VOC	640.860	7	1.274	5.458	3498.099
	Stopping Delay Cost	504.474	7	1.274	5.458	2753.640

Years	User Cost Components	Total (ETB)	n	1+If	(1+If) ^n	$FV = e^*b$
	a	b	с	d	e	f
	Idling VOC	666.949	7	1.274	5.458	3640.503
	Queue Reduced Speed Delay Cost	12.887	7	1.274	5.458	70.344
	Total	3760.995	7	1.274	5.458	20529.175
	Speed Change VOC	843.249	10	1.274	11.297	9526.010
	Speed Change Delay Cost	553.503	10	1.274	11.297	6252.813
	Work Zone Reduced Speed Delay	839.310	10	1.274	11.297	9481.520
2020	Stopping VOC	1066.222	10	1.274	11.297	12044.892
2029	Stopping Delay Cost	839.310	10	1.274	11.297	9481.520
	Idling VOC	1182.733	10	1.274	11.297	13361.097
	Queue Reduced Speed Delay Cost	41.887	10	1.274	11.297	473.187
	Total	5366.214	10	1.274	11.297	60621.041
	Speed Change VOC	857.388	11	1.274	14.396	12343.223
	Speed Change Delay Cost	562.784	11	1.274	14.396	8102.014
	Work Zone Reduced Speed Delay	926.739	11	1.274	14.396	13341.607
2020	Stopping VOC	1177.287	11	1.274	14.396	16948.571
2030	Stopping Delay Cost	926.739	11	1.274	14.396	13341.607
	Idling VOC	2941.124	11	1.274	14.396	42341.302
	Queue Reduced Speed Delay Cost	56.830	11	1.274	14.396	818.142
	Total	7448.890	11	1.274	14.396	107236.467
	Speed Change VOC	673.892	13	1.274	23.380	15755.502
	Speed Change Delay Cost	442.338	13	1.274	23.380	10341.813
	Work Zone Reduced Speed Delay	1462.399	13	1.274	23.380	34190.695
2022	Stopping VOC	1857.765	13	1.274	23.380	43434.305
2032	Stopping Delay Cost	1462.399	13	1.274	23.380	34190.695
	Idling VOC	7527.818	13	1.274	23.380	175999.381
	Queue Reduced Speed Delay Cost	145.457	13	1.274	23.380	3400.759
	Total	13572.069	13	1.274	23.380	317313.151
	Speed Change VOC	621.018	14	1.274	29.795	18502.973
2033	Speed Change Delay Cost	407.632	14	1.274	29.795	12145.235
	Work Zone Reduced Speed Delay	1677.262	14	1.274	29.795	49973.361
	Stopping VOC	2130.718	14	1.274	29.795	63483.887
	Stopping Delay Cost	1677.262	14	1.274	29.795	49973.361
	Idling VOC	8692.290	14	1.274	29.795	258983.294
	Queue Reduced Speed Delay Cost	167.957	14	1.274	29.795	5004.220
	Total	15374.140	14	1.274	29.795	458066.330
2036	Speed Change VOC	271.549	17	1.274	61.663	16744.520

Years	User Cost Components	Total (ETB)	n	1+If	$(1+If)^n$	$FV = e^*b$
	a	b	с	d	e	f
	Speed Change Delay Cost	178.243	17	1.274	61.663	10990.997
	Work Zone Reduced Speed Delay	2666.950	17	1.274	61.663	164451.981
	Stopping VOC	3387.973	17	1.274	61.663	208912.324
	Stopping Delay Cost	2666.950	17	1.274	61.663	164451.981
	Idling VOC	42126.936	17	1.274	61.663	2597670.348
	Queue Reduced Speed Delay Cost	814.000	17	1.274	61.663	50193.642
	Total	52112.602	17	1.274	61.663	3213415.793
	Speed Change VOC	473.524	19	1.274	100.142	47419.525
	Speed Change Delay Cost	310.818	19	1.274	100.142	31125.878
	Work Zone Reduced Speed Delay	2657.555	19	1.274	100.142	266132.266
2020	Stopping VOC	3376.037	19	1.274	100.142	338082.339
2038	Stopping Delay Cost	2657.555	19	1.274	100.142	266132.266
	Idling VOC	13710.937	19	1.274	100.142	1373037.451
	Queue Reduced Speed Delay Cost	278.279	19	1.274	100.142	27867.339
	Total	23464.706	19	1.274	100.142	2349797.064
	Speed Change VOC	460.991	20	1.274	127.618	58830.583
	Speed Change Delay Cost	302.592	20	1.274	127.618	38616.025
	Work Zone Reduced Speed Delay	2849.245	20	1.274	127.618	363613.943
2020	Stopping VOC	3619.551	20	1.274	127.618	461918.632
2039	Stopping Delay Cost	2849.245	20	1.274	127.618	363613.943
	Idling VOC	4075.525	20	1.274	127.618	520108.983
	Queue Reduced Speed Delay Cost	82.717	20	1.274	127.618	10556.197
	Total	14239.865	20	1.274	127.618	1817258.305
	Speed Change VOC	430.038	22	1.274	207.253	89126.849
	Speed Change Delay Cost	282.274	22	1.274	207.253	58502.303
	Work Zone Reduced Speed Delay	3268.286	22	1.274	207.253	677363.705
0.41	Stopping VOC	4151.882	22	1.274	207.253	860492.075
041	Stopping Delay Cost	3268.286	22	1.274	207.253	677363.705
	Idling VOC	36489.638	22	1.274	207.253	7562605.086
	Queue Reduced Speed Delay Cost	705.073	22	1.274	207.253	146128.893
	Total	48595.478	22	1.274	207.253	10071582.616
	Speed Change VOC	312.683	23	1.274	264.118	82585.169
	Speed Change Delay Cost	205.243	23	1.274	264.118	54208.385
	Work Zone Reduced Speed Delay	3657.237	23	1.274	264.118	965940.916
2042	Stopping VOC	4645.988	23	1.274	264.118	1227087.451
	Stopping Delay Cost	3657.237	23	1.274	264.118	965940.916
	Idling VOC	50.073	23	1.274	264.118	13225.031

Queue Reduced Speed Delay Cost	1052.887	23	1.274	264.118	278086.078		
Total	13581.350	23	1.274	264.118	3587073.945		
Grand	Grand Total (ETB)						

Appendix C.1.1.2 Work zone operation user cost for CFP during periodic maintenance

	Гable 71 : Master summar	y of user cost com	ponents during p	periodic mai	ntenance for CFP.
--	--------------------------	--------------------	------------------	--------------	-------------------

Vegus	User Cost Components	Passenger	Trucks		Total (FTR)
Tears	User Cost Components	Cars	Single Unit	Combination	10101 (E1D)
	Speed Change VOC	248.816	168.709	548.965	966.490
	Speed Change Delay Cost	132.008	184.376	318.014	634.398
	Work Zone Reduced Speed Delay	0.000	0.000	0.000	0.000
2022	Stopping VOC	0.000	0.000	0.000	0.000
2022	Stopping Delay Cost	0.000	0.000	0.000	0.000
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	380.825	353.085	866.979	1600.888
	Speed Change VOC	215.455	146.088	475.359	836.902
	Speed Change Delay Cost	114.309	159.655	275.374	549.337
2025	Work Zone Reduced Speed Delay	113.866	134.418	209.996	458.280
	Stopping VOC	153.836	104.922	323.420	582.178
	Stopping Delay Cost	113.866	134.418	209.996	458.280
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	711.331	679.501	1494.146	2884.977
	Speed Change VOC	237.855	161.276	524.780	923.910
	Speed Change Delay Cost	126.193	176.253	304.003	606.449
	Work Zone Reduced Speed Delay	159.710	188.537	294.545	642.793
2028	Stopping VOC	215.773	147.166	453.636	816.575
2020	Stopping Delay Cost	159.710	188.537	294.545	642.793
	Idling VOC	731.900	249.713	201.120	1182.733
	Queue Reduced Speed Delay Cost	8.299	7.660	6.894	22.853
	Total	1639.439	1119.143	2079.523	4838.105
	Speed Change VOC	225.184	152.685	496.824	874.692
	Speed Change Delay Cost	119.470	166.864	287.808	574.142
	Work Zone Reduced Speed Delay	252.075	297.574	464.889	1014.538
2031	Stopping VOC	340.560	232.276	715.986	1288.823
	Stopping Delay Cost	252.075	297.574	464.889	1014.538
	Idling VOC	3024.029	1031.753	830.978	4886.760
	Queue Reduced Speed Delay Cost	34.288	31.651	28.486	94.425
	Total	4247.682	2210.376	3289.860	9747.917

	Speed Change VOC	168.111	113.987	370.905	653.004
	Speed Change Delay Cost	89.191	124.573	214.864	428.627
	Work Zone Reduced Speed Delay	447.260	527.988	824.858	1800.107
2024	Stopping VOC	604.261	412.131	1270.383	2286.774
2054	Stopping Delay Cost	447.260	527.988	824.858	1800.107
	Idling VOC	9610.678	3279.018	2640.935	15530.631
	Queue Reduced Speed Delay Cost	108.972	100.589	90.530	300.092
	Total	11475.73	5086.275	6237.333	22799.341
	Speed Change VOC	59.836	40.571	132.016	232.424
	Speed Change Delay Cost	31.746	44.339	76.477	152.561
	Work Zone Reduced Speed Delay	717.043	846.465	1322.404	2885.912
2037	Stopping VOC	968.744	660.724	2036.664	3666.132
2037	Stopping Delay Cost	717.043	846.465	1322.404	2885.912
	Idling VOC	7170.432	8464.654	13224.037	28859.123
	Queue Reduced Speed Delay Cost	136.176	125.701	113.130	375.007
	Total	9801.020	11028.919	18227.132	39057.071
	Speed Change VOC	68.378	46.363	150.863	265.604
	Speed Change Delay Cost	36.278	50.669	87.394	174.341
2040	Work Zone Reduced Speed Delay	831.460	981.534	1533.417	3346.411
	Stopping VOC	1123.324	766.154	2361.650	4251.128
	Stopping Delay Cost	831.460	981.534	1533.417	3346.411
	Idling VOC	19523.175	6661.013	5364.807	31548.995
	Queue Reduced Speed Delay Cost	221.366	204.338	183.904	609.607
	Total	22635.44	9691.605	11215.451	43542.497

Table 72: Grand summary of user cost components during periodic maintenance for CFP.

Years	User Cost Components	Total (ETB)	n	l+If	(1+If) ^n	FV= b*e
	Α	b	с	d	e	f
	Speed Change VOC	966.490	3	1.27437	2.069601	2000.249047
	Speed Change Delay Cost	634.398	3	1.27437	2.069601	1312.950894
	Work Zone Reduced Speed Delay	0.000	3	1.27437	2.069601	0.00000
2022	Stopping VOC	0.000	3	1.27437	2.069601	0.00000
2022	Stopping Delay Cost	0.000	3	1.27437	2.069601	0.00000
	Idling VOC	0.000	3	1.27437	2.069601	0.00000
	Queue Reduced Speed Delay Cost	0.000	3	1.27437	2.069601	0.00000
	Total	1600.888	3	1.27437	2.0696	3313.199941
	Speed Change VOC	836.902	6	1.27437	4.283248	3584.657993
2025	Speed Change Delay Cost	549.337	6	1.27437	4.283248	2352.94696
	Work Zone Reduced Speed Delay	458.280	6	1.27437	4.283248	1962.92764

	Stopping VOC	582.178	6	1.27437	4.283248	2493.614087
	Stopping Delay Cost	458.280	6	1.27437	4.283248	1962.92764
	Idling VOC	0.000	6	1.27437	4.283248	0.000000
	Queue Reduced Speed Delay Cost	0.000	6	1.27437	4.283248	0.000000
	Total	2884.977	6	1.27437	4.28325	12357.07432
	Speed Change VOC	923.910	9	1.27437	8.864614	8190.105955
	Speed Change Delay Cost	606.449	9	1.27437	8.864614	5375.934037
	Work Zone Reduced Speed Delay	642.793	9	1.27437	8.864614	5698.109728
2028	Stopping VOC	816.575	9	1.27437	8.864614	7238.619701
2028	Stopping Delay Cost	642.793	9	1.27437	8.864614	5698.109728
	Idling VOC	1182.733	9	1.27437	8.864614	10484.47218
	Queue Reduced Speed Delay Cost	22.853	9	1.27437	8.864614	202.5868461
	Total	4838.105	9	1.27437	8.86461	42887.93818
	Speed Change VOC	874.692	12	1.27437	18.34621	16047.28935
	Speed Change Delay Cost	574.142	12	1.27437	18.34621	10533.3398
	Work Zone Reduced Speed Delay	1014.538	12	1.27437	18.34621	18612.92676
2021	Stopping VOC	1288.823	12	1.27437	18.34621	23645.01647
2031	Stopping Delay Cost	1014.538	12	1.27437	18.34621	18612.92676
	Idling VOC	4886.760	12	1.27437	18.34621	89653.54554
	Queue Reduced Speed Delay Cost	94.425	12	1.27437	18.34621	1732.336041
	Total	9747 917	12	1 27437	18 3462	178837 3807
	20000	7747,717	14	1.2/43/	10.3402	170057.5007
	Speed Change VOC	653.004	15	1.27437	37.96934	24794.11492
	Speed Change VOC Speed Change Delay Cost	653.004 428.627	12 15 15	1.27437 1.27437 1.27437	37.96934 37.96934	24794.11492 16274.70109
	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay	653.004 428.627 1800.107	12 15 15 15	1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025
2024	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay Stopping VOC	653.004 428.627 1800.107 2286.774	12 15 15 15 15	1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993
2034	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay Stopping VOC Stopping Delay Cost	653.004 428.627 1800.107 2286.774 1800.107	12 15 15 15 15 15	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025
2034	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay Stopping VOC Stopping Delay Cost Idling VOC	653.004 428.627 1800.107 2286.774 1800.107 15530.631	12 15 15 15 15 15 15 15	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759
2034	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay Stopping VOC Stopping Delay Cost Idling VOC Queue Reduced Speed Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092	12 15 15 15 15 15 15 15 15	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955
2034	Speed Change VOC Speed Change Delay Cost Work Zone Reduced Speed Delay Stopping VOC Stopping Delay Cost Idling VOC Queue Reduced Speed Delay Cost Total	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341	12 15	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112
2034	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOC	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424	12 15 18	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106
2034	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561	12 15 18 18	1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437 1.27437	37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.96934 37.9693 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701
2034	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912	12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18	1.27437 1.27437	37.96934 37.96935 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992
2034	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping VOC	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132	12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18	1.27437 1.27437	37.96934 37.96935 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368
2034 2037	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping VOCStopping VOCStopping VOCStopping Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912	12 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18	1.27437 1.27437	37.96934 37.96935 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992
2034 2037	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping VOCStopping VOCStopping Delay CostIdling VOCStopping Delay CostIdling VOC	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912 2885.912	12 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18	1.27437 1.27437	37.96934 37.96935 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992 226778.9992
2034 2037	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping VOCStopping Delay CostIdling VOCStopping Delay CostIdling VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostIdling VOCQueue Reduced Speed Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912 2885.912 28859.123 375.007	12 15 15 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	1.27437 1.27437	37.96934 37.9693 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992 2267789.992 29468.5411
2034 2037	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostIdling VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostIdling VOCQueue Reduced Speed Delay CostIdling VOCQueue Reduced Speed Delay CostTotal	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912 2885.912 2885.9123 375.007 39057.071	12 15 15 15 15 15 15 15 15 15 15 15 15 15 18	1.27437 1.27437	37.96934 37.9693 78.58139 78.58139 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992 2267789.992 29468.5411 3069158.927
2034 2037	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed DelayStopping Delay CostIdling VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOC	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912 2885.912 2885.912 2885.912 375.007 39057.071 265.604	12 15 15 15 15 15 15 15 15 15 15 15 15 15 18	1.27437 1.27437	10.5432 37.96934 37.9693 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992 2267789.992 2267789.992 29468.5411 3069158.927 43195.74803
2034 2037 2040	Speed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change Delay CostWork Zone Reduced Speed DelayStopping VOCStopping Delay CostIdling VOCSpeed Change Delay CostIdling VOCStopping Delay CostIdling VOCStopping Delay CostIdling VOCStopping Delay CostIdling VOCQueue Reduced Speed Delay CostTotalSpeed Change VOCSpeed Change VOCSpeed Change VOCSpeed Change Delay Cost	653.004 428.627 1800.107 2286.774 1800.107 15530.631 300.092 22799.341 232.424 152.561 2885.912 3666.132 2885.912 28859.123 375.007 39057.071 265.604 174.341	12 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 21 21 21	1.27437 1.27437	10.5402 37.96934 37.9693 78.58139 78.58139 78.58139 78.58139	24794.11492 16274.70109 68348.87025 86827.2993 68348.87025 589687.8759 11394.27955 865676.0112 18264.17106 11988.48701 226778.9992 288089.7368 226778.9992 2267789.992 29468.5411 3069158.927 43195.74803 28353.41732

Ta	otal (ETB)	Total (ETB)							
Total	43542.497	21	1.27437	162.632	7081408.566				
Queue Reduced Speed Delay Cost	609.607	21	1.27437	162.6321	99141.73653				
Idling VOC	31548.995	21	1.27437	162.6321	5130879.911				
Stopping Delay Cost	3346.411	21	1.27437	162.6321	544233.8797				
Stopping VOC	4251.128	21	1.27437	162.6321	691369.9932				

Appendix C.1.1.3 Work zone operation user cost for conventional flexible pavement during rehabilitation

|--|

Vears	User Cost Components	Passenger	Tri	ıcks	Total (ETR)
rears	User Cost Components	Cars	Single Unit	Combination	10iai (E1D)
	Speed Change VOC	229.084908	155.329824	505.431108	889.8458
	Speed Change Delay Cost	121.539938	169.754724	292.7945506	584.0892
2027	Work Zone Reduced Speed Delay	138.700984	163.7357062	255.7986516	558.2353
	Stopping VOC	187.388653	127.8068313	393.9613305	709.1568
2027	Stopping Delay Cost	138.700984	163.7357062	255.7986516	558.2353
	Idling VOC	437.829509	149.3808298	120.3119276	707.5223
	Queue Reduced Speed Delay Cost	4.96438105	4.582505587	4.124255029	13.6711
	Total	1258.20936	934.3261272	1828.220475	4020.7560
	Speed Change VOC	162.237452	110.004256	357.945252	630.1870
	Speed Change Delay Cost	86.0743295	120.21994	207.3564875	413.6508
	Work Zone Reduced Speed Delay	481.141329	567.9845443	887.3426811	1936.4686
2035	Stopping VOC	650.034504	443.3504855	1366.616677	2460.0017
2035	Stopping Delay Cost	481.141329	567.9845443	887.3426811	1936.4686
	Idling VOC	13983.546	4770.975124	3842.562761	22597.0838
	Queue Reduced Speed Delay Cost	158.55407	146.3576029	131.7218426	436.6335
	Total	16002.729	6726.876497	7680.888382	30410.4938
	Speed Change VOC	63.9104700	43.33416000	141.0059700	248.2506
	Speed Change Delay Cost	33.9074041	47.35844143	81.68428687	162.9501
	Work Zone Reduced Speed Delay	986.404568	1164.444864	1819.172084	3970.0215
2012	Stopping VOC	1332.65834	908.928246	2801.748368	5043.3350
2043	Stopping Delay Cost	986.404568	1164.444864	1819.172084	3970.0215
	Idling VOC	96532.5671	32935.45697	26526.35094	155994.375
	Queue Reduced Speed Delay Cost	1094.54579	1010.349961	909.3149653	3014.2107
	Total	101030.398	37274.31751	34098.4487	172403.164

Table 74: Grand summary of user cost components during rehabilitation for CFP.

Years	User Cost Components	Total (ETB)	п	1+If	(1+If) ^n	$FV = b^*e$
	A	b	С	d	e	f
2027	Speed Change VOC	889.8458	8	1.27437	6.956076	6189.83522

	Smood Change Delay Cost	584 0802	8	1 27/27	6.056076	4062 068007	
	Speed Change Delay Cost	550 2252	0	1.2/43/	0.930070	4002.900907	
	Work Zone Reduced Speed Delay	558.2353 700.1569	<u>ð</u>	1.2/43/	0.930070	3883.12/421	
	Stopping VOC	/09.1568	8	1.2/43/	0.9500/0	4932.948643	
	Stopping Delay Cost	558.2353	8	1.27437	6.9560/6	3883.12/421	
	Idling VOC	707.5223	8	1.27437	6.956076	4921.578602	
	Queue Reduced Speed Delay Cost	13.6711	8	1.27437	6.956076	95.09749936	
	Total	4020.7560	8	1.27437	6.95608	27968.68371	
	Speed Change VOC	630.1870	16	1.27437	48.38699	30492.85152	
	Speed Change Delay Cost	413.6508	16	1.27437	48.38699	20015.31595	
	Work Zone Reduced Speed Delay	1936.4686	16	1.27437	48.38699	93699.88886	
2025	Stopping VOC	2460.0017	16	1.27437	48.38699	119032.0815	
2033	Stopping Delay Cost	1936.4686	16	1.27437	48.38699	93699.88886	
	Idling VOC	22597.0838	16	1.27437	48.38699	1093404.92	
	Queue Reduced Speed Delay Cost	436.6335	16	1.27437	48.38699	21127.3825	
	Total	30410.4938	16	1.27437	48.387	1471472.329	
	Speed Change VOC	248.2506	24	1.27437	336.5836	83557.0785	
	Speed Change Delay Cost	162.9501	24	1.27437	336.5836	54846.34079	
	Work Zone Reduced Speed Delay	3970.0215	24	1.27437	336.5836	1336244.1	
20.42	Stopping VOC	5043.3350	24	1.27437	336.5836	1697503.791	
2043	Stopping Delay Cost	3970.0215	24	1.27437	336.5836	1336244.1	
	Idling VOC	155994.3750	24	1.27437	336.5836	52505146.96	
	Oueue Reduced Speed Delay Cost	3014.2107	24	1.27437	336.5836	1014533.869	
	Z Total	172403.1644	24	1.27437	336.584	58028076.23	
		Total (ETB)				59,527,517.25	
Table 7:	5: Future Value User Cost Summary	for conventional	flexible	pavement	in the analysi	is period	
N₫	Description			,	Total Cost (E	TB)	
1	Routine maintenance			22,018,718.	23		
2	Periodic maintenance				11,253,639.	10	
3	Rehabilitation (upgrading)				59,527,517.2		
	Total (ETB)				82,024,516.	03	

Appendix C 1.2 WZ operation user cost for flexible pavement with geosynthetic materials

Appendix C.1.2.1 WZ operation user cost for FP with geosynthetic material during routine maintenance

Table 76: Master summary of user cost components during routine maintenance for Flexible Pavement with geosynthetic materials

Voars	User Cost Components	Passenger	Tr	Total	
Teurs	User Cosi Components	Cars	Single Unit	Combination	(ETB)

	Smood Change VOC	225 6020	153 0200	107 0173	876 6701
	Speed Change VOC	110 7403	153.0299	288 4502	575 4407
	Wark Zana Badwaad Snaad Dalmy	0.0000	0.0000	0.0000	0,0000
	Storming VOC	0.0000	0.0000	0.0000	0.0000
2020	Stopping VOC	0.0000	0.0000	0.0000	0.0000
	Stopping Delay Cost	0.0000	0.0000	0.0000	0.0000
	Idling VOC	0.0000	0.0000	0.0000	0.0000
2021	Queue Reduced Speed Delay Cost	245 4222	0.0000	0.0000	0.0000
		345.4332	320.2711	/80.4005	1452.1108
	Speed Change VOC	236.9691	160.6757	522.8261	920.4710
	Speed Change Delay Cost	125.7229	175.5970	302.8714	604.1914
	Work Zone Reduced Speed Delay	0.0000	0.0000	0.0000	0.0000
2021	Stopping VOC	0.0000	0.0000	0.0000	0.0000
	Stopping Delay Cost	0.0000	0.0000	0.0000	0.0000
	Idling VOC	0.0000	0.0000	0.0000	0.0000
	Queue Reduced Speed Delay Cost	0.0000	0.0000	0.0000	0.0000
	Total	362.6920	336.2727	825.6976	1524.6623
	Speed Change VOC	248.8165	168.7087	548.9650	966.4902
	Speed Change Delay Cost	132.0084	184.3761	318.0136	634.3981
	Work Zone Reduced Speed Delay	0.0000	0.0000	0.0000	0.0000
2022	Stopping VOC	0.0000	0.0000	0.0000	0.0000
2022	Stopping Delay Cost	0.0000	0.0000	0.0000	0.0000
	Idling VOC	0.0000	0.0000	0.0000	0.0000
	Queue Reduced Speed Delay Cost	0.0000	0.0000	0.0000	0.0000
	Total	380.8249	353.0848	866.9786	1600.8883
	Speed Change VOC	236.7997	160.5608	522.4522	919.8127
	Speed Change Delay Cost	125.6330	175.4715	302.6548	603.7592
2020 2021 2022 2024 2025	Work Zone Reduced Speed Delay	58.8134	69.4288	108.4663	236.7085
	Stopping VOC	79.4584	54.1939	167.0514	300.7037
	Stopping Delay Cost	58.8134	69.4288	108.4663	236.7085
	Idling VOC	0.0000	0.0000	0.0000	0.0000
	Oueue Reduced Speed Delay Cost	0.0000	0.0000	0.0000	0.0000
	Total	559.5178	529.0838	1209.0910	2297.6926
	Speed Change VOC	215.4548	146.0880	475.3590	836.9018
	Speed Change Delay Cost	114.3086	159.6547	275.3739	549.3371
	Work Zone Reduced Speed Delay	113.8658	134.4179	209.9965	458.2802
	Stopping VOC	153.8357	104.9223	323.4203	582.1783
2025	Stopping Delay Cost	113.8658	134.4179	209.9965	458.2802
	Idling VOC	0.0000	0.0000	0.0000	0.0000
2022 2024 2025	Oueue Reduced Speed Delay Cost	0.0000	0.0000	0.0000	0.0000
	Total	711.3306	679.5008	1494.1461	2884.9775

	Speed Change VOC	222.4663	150.8421	490.8285	864.1370
	Speed Change Delay Cost	118.0285	164.8503	284.3353	567.2141
	Work Zone Reduced Speed Delay	125.3432	147.9669	231.1635	504.4735
2026	Stopping VOC	169.3419	115.4982	356.0202	640.8603
2020	Stopping Delay Cost	125.3432	147.9669	231.1635	504.4735
	Idling VOC	412.7220	140.8145	113.4126	666.9491
	Queue Reduced Speed Delay Cost	4.6797	4.3197	3.8877	12.8872
	Total	1177.9247	872.2586	1710.8115	3760.9947
	Speed Change VOC	237.8545	161.2760	524.7795	923.9100
	Speed Change Delay Cost	126.1926	176.2531	304.0030	606.4487
	Work Zone Reduced Speed Delay	159.7104	188.5372	294.5452	642.7927
2020	Stopping VOC	215.7729	147.1661	453.6357	816.5747
2028	Stopping Delay Cost	159.7104	188.5372	294.5452	642.7927
	Idling VOC	731.8998	249.7132	201.1200	1182.7330
	Queue Reduced Speed Delay Cost	8.2987	7.6604	6.8943	22.8534
	Total	1639.4393	1119.1431	2079.5229	4838.1053
	Speed Change VOC	220.7290	149.6641	486.9954	857.3885
	Speed Change Delay Cost	117.1067	163.5629	282.1148	562.7844
	Work Zone Reduced Speed Delay	230.2605	271.8212	424.6569	926.7385
2020	Stopping VOC	311.0879	212.1749	654.0237	1177.2865
2030	Stopping Delay Cost	230.2605	271.8212	424.6569	926.7385
	Idling VOC	1820.0285	620.9663	500.1288	2941.1236
	Queue Reduced Speed Delay Cost	20.6366	19.0492	17.1443	56.8300
2030	Total	2950.1098	1709.0597	2789.7206	7448.8901
	Speed Change VOC	173.4890	117.6333	382.7696	673.8919
	Speed Change Delay Cost	92.0438	128.5575	221.7372	442.3384
2026 2028 2030 2032	Work Zone Reduced Speed Delay	363.3525	428.9355	670.1111	1462.3991
	Stopping VOC	490.8987	334.8133	1032.0534	1857.7654
	Stopping Delay Cost	363.3525	428.9355	670.1111	1462.3991
	Idling VOC	4658.3707	1589.3659	1280.0817	7527.8184
	Queue Reduced Speed Delay Cost	52.8195	48.7564	43.8808	145.4567
	Total	6194.3267	3076.9974	4300.7450	13572.069
	Speed Change VOC	159.8769	108.4037	352.7371	621.0177
	Speed Change Delay Cost	84.8219	118.4707	204.3394	407.6321
	Work Zone Reduced Speed Delay	416.7381	491.9569	768.5674	1677.2624
2022	Stopping VOC	563.0241	384.0058	1183.6881	2130.7179
2033	Stopping Delay Cost	416.7381	491.9569	768.5674	1677.2624
	Idling VOC	5378.9700	1835.2235	1478.0965	8692.2899
	Queue Reduced Speed Delay Cost	60.9901	56.2985	50.6687	167.9573
	Total	7081.1592	3486.3160	4806.6645	15374.139

_					
	Speed Change VOC	168.1114	113.9871	370.9050	653.0035
	Speed Change Delay Cost	89.1907	124.5726	214.8640	428.6274
	Work Zone Reduced Speed Delay	447.2604	527.9883	824.8580	1800.1067
2024	Stopping VOC	604.2605	412.1307	1270.3826	2286.7738
2034	Stopping Delay Cost	447.2604	527.9883	824.8580	1800.1067
	Idling VOC	9610.6780	3279.0185	2640.9348	15530.631
	Queue Reduced Speed Delay Cost	108.9718	100.5894	90.5304	300.0916
	Total	11475.7333	5086.2749	6237.3328	22799.341
	Speed Change VOC	69.9085	47.4011	154.2395	271.5492
	Speed Change Delay Cost	37.0897	51.8031	89.3504	178.2432
	Work Zone Reduced Speed Delay	662.6393	782.2418	1222.0694	2666.9504
2026	Stopping VOC	895.2429	610.5928	1882.1369	3387.9726
2036	Stopping Delay Cost	662.6393	782.2418	1222.0694	2666.9504
	Idling VOC	26069.0250	8894.3584	7163.5524	42126.935
	Queue Reduced Speed Delay Cost	295.5867	272.8492	245.5643	814.0003
	Total	28692.1313	11441.488	11978.9824	52112.602
	Speed Change VOC	59.8359	40.5714	132.0163	232.4236
	Speed Change Delay Cost	31.7457	44.3391	76.4766	152.5614
	Work Zone Reduced Speed Delay	717.0432	846.4654	1322.4037	2885.9123
2027	Stopping VOC	968.7441	660.7237	2036.6640	3666.1319
2037	Stopping Delay Cost	717.0432	846.4654	1322.4037	2885.9123
	Idling VOC	7170.4324	8464.6538	13224.0369	28859.123
	Queue Reduced Speed Delay Cost	136.1756	125.7005	113.1305	375.0066
2036	Total	9801.0202	11028.919	18227.1316	39057.071
	Speed Change VOC	121.9056	82.6575	268.9609	473.5240
	Speed Change Delay Cost	64.6765	90.3335	155.8082	310.8181
2034 2036 2037 2038	Work Zone Reduced Speed Delay	660.3049	779.4861	1217.7642	2657.5552
	Stopping VOC	892.0891	608.4418	1875.5064	3376.0373
	Stopping Delay Cost	660.3049	779.4861	1217.7642	2657.5552
	Idling VOC	8912.1091	2742.1874	2056.6406	13710.937
	Queue Reduced Speed Delay Cost	101.0510	93.2778	83.9501	278.2789
	Total	11412.4410	5175.8702	6876.3945	23464.705
	Speed Change VOC	68.3780	46.3633	150.8627	265.6040
	Speed Change Delay Cost	36.2776	50.6689	87.3943	174.3408
	Work Zone Reduced Speed Delay	831.4602	981.5339	1533.4166	3346.4108
20.40	Stopping VOC	1123.3245	766.1539	2361.6499	4251.1282
2040	Stopping Delay Cost	831.4602	981.5339	1533.4166	3346.4108
2037 2038 2040	Idling VOC	19523.1749	6661.0130	5364.8070	31548.994
	Queue Reduced Speed Delay Cost	221.3658	204.3377	183.9039	609.6074
	Total	22635.4412	9691.6047	11215.4510	43542.496

	Speed Change VOC	110.7104	75.0666	244.2609	430.0379
	Speed Change Delay Cost	58.7369	82.0378	141.4995	282.2741
	Work Zone Reduced Speed Delay	812.0491	958.6192	1497.6178	3268.2861
2041	Stopping VOC	1097.0995	748.2674	2306.5152	4151.8821
	Stopping Delay Cost	812.0491	958.6192	1497.6178	3268.2861
	Idling VOC	22580.5480	7704.1427	6204.9478	36489.638
	Queue Reduced Speed Delay Cost	256.0322	236.3374	212.7037	705.0732
	Total	25727.2251	10763.090	12105.1626	48595.477
	Speed Change VOC	80.4982	54.5814	177.6036	312.6833
	Speed Change Delay Cost	42.7080	59.6502	102.8852	205.2433
	Work Zone Reduced Speed Delay	908.6892	1072.7023	1675.8459	3657.2375
2042	Stopping VOC	1227.6629	837.3170	2581.0085	4645.9883
2042	Stopping Delay Cost	908.6892	1072.7023	1675.8459	3657.2375
	Idling VOC	32.5471	10.0145	7.5109	50.0725
	Queue Reduced Speed Delay Cost	382.3333	352.9231	317.6308	1052.8872
	Total	3583.1280	3459.8908	6538.3308	13581.349

Table 77: Grand summary of user cost components during routine maintenance for FP with geosynthetic material.

Years	User Cost Components	Total (ETB)	п	l+If	(1+If) ^n	FV= b*e
	a	b	С	d	e	f
	Speed Change VOC	876.6701	1	1.27437	1.27437	1117.20205
	Speed Change Delay Cost	575.4407	1	1.27437	1.27437	733.3243988
	Work Zone Reduced Speed Delay	0.0000	1	1.27437	1.27437	0.00000
2020	Stopping VOC	0.0000	1	1.27437	1.27437	0.00000
2020	Stopping Delay Cost	0.0000	1	1.27437	1.27437	0.00000
	Idling VOC	0.0000	1	1.27437	1.27437	0.00000
	Queue Reduced Speed Delay Cost	0.0000	1	1.27437	1.27437	0.00000
	Total	1452.1108	1	1.27437	1.27437	1850.526449
	Speed Change VOC	920.4710	2	1.27437	1.624019	1494.862269
	Speed Change Delay Cost	604.1914	2	1.27437	1.624019	981.2181912
	Work Zone Reduced Speed Delay	0.0000	2	1.27437	1.624019	0.00000
2021	Stopping VOC	0.0000	2	1.27437	1.624019	0.00000
2021	Stopping Delay Cost	0.0000	2	1.27437	1.624019	0.00000
	Idling VOC	0.0000	2	1.27437	1.624019	0.00000
	Queue Reduced Speed Delay Cost	0.0000	2	1.27437	1.624019	0.00000
	Total	1524.6623	2	1.27437	1.62402	2476.08046
2022	Speed Change VOC	966.4902	3	1.27437	2.069601	2000.249047

I		624 2001	2	107/07	0.00001	1212 050004
	Speed Change Delay Cost	634.3981	3	1.27437	2.069601	1312.950894
	Work Zone Reduced Speed Delay	0.0000	3	1.27437	2.069601	0.00000
	Stopping VOC	0.0000	3	1.27437	2.069601	0.00000
	Stopping Delay Cost	0.0000	3	1.27437	2.069601	0.00000
	Idling VOC	0.0000	3	1.27437	2.069601	0.00000
	Queue Reduced Speed Delay Cost	0.0000	3	1.27437	2.069601	0.00000
	Total	1600.8883	3	1.27437	2.0696	3313.199941
	Speed Change VOC	919.8127	5	1.27437	3.361071	3091.555722
	Speed Change Delay Cost	603.7592	5	1.27437	3.361071	2029.277731
	Work Zone Reduced Speed Delay	236.7085	5	1.27437	3.361071	795.5940503
2024	Stopping VOC	300.7037	5	1.27437	3.361071	1010.686533
2024	Stopping Delay Cost	236.7085	5	1.27437	3.361071	795.5940503
	Idling VOC	0.0000	5	1.27437	3.361071	0.000000
	Queue Reduced Speed Delay Cost	0.0000	5	1.27437	3.361071	0.000000
	Total	2297.6926	5	1.27437	3.36107	7722.708087
	Speed Change VOC	836.9018	6	1.27437	4.283248	3584.657993
	Speed Change Delay Cost	549.3371	6	1.27437	4.283248	2352.94696
	Work Zone Reduced Speed Delay	458.2802	6	1.27437	4.283248	1962.92764
2025	Stopping VOC	582.1783	6	1.27437	4.283248	2493.614087
2025	Stopping Delay Cost	458.2802	6	1.27437	4.283248	1962.92764
	Idling VOC	0.0000	6	1.27437	4.283248	0.000000
	Queue Reduced Speed Delay Cost	0.0000	6	1.27437	4.283248	0.000000
	Total	2884.9775	6	1.27437	4.28325	12357.07432
	Speed Change VOC	864.1370	7	1.27437	5.458443	4716.842719
	Speed Change Delay Cost	567.2141	7	1.27437	5.458443	3096.105894
	Work Zone Reduced Speed Delay	504.4735	7	1.27437	5.458443	2753.640065
	Stopping VOC	640.8603	7	1.27437	5.458443	3498.099226
2026	Stopping Delay Cost	504.4735	7	1.27437	5.458443	2753.640065
	Idling VOC	666.9491	7	1.27437	5.458443	3640.503349
	<i>Queue Reduced Speed Delay Cost</i>	12.8872	7	1.27437	5.458443	70.34384553
	Total	3760.9947	7	1.27437	5.45844	20529.17516
	Speed Change VOC	923.9100	9	1.27437	8.864614	8190.105955
	Speed Change Delay Cost	606.4487	9	1.27437	8.864614	5375.934037
	Work Zone Reduced Speed Delay	642.7927	9	1.27437	8.864614	5698.109728
	Stopping VOC	816.5747	9	1.27437	8.864614	7238.619701
2028	Stopping Delay Cost	642.7927	9	1.27437	8.864614	5698.109728
	Idling VOC	1182.7330	9	1.27437	8.864614	10484.47218
	Oueue Reduced Speed Delay Cost	22.8534	9	1.27437	8.864614	202.5868461
	Total	4838.1053	9	1.27437	8.86461	42887.93818
2030	Speed Change VOC	857.3885	11	1.27437	14.3963	12343.22299

	Speed Change Delay Cost	562.7844	11	1.27437	14.3963	8102.013935
	Work Zone Reduced Speed Delay	926.7385	11	1.27437	14.3963	13341.6071
	Stopping VOC	1177.2865	11	1.27437	14.3963	16948.57148
	Stopping Delay Cost	926.7385	11	1.27437	14.3963	13341.6071
	Idling VOC	2941.1236	11	1.27437	14.3963	42341.30194
	Queue Reduced Speed Delay Cost	56.8300	11	1.27437	14.3963	818.1423604
	Total	7448.8901	11	1.27437	14.3963	107236.4669
	Speed Change VOC	673.8919	13	1.27437	23.37987	15755.50248
	Speed Change Delay Cost	442.3384	13	1.27437	23.37987	10341.81273
	Work Zone Reduced Speed Delay	1462.3991	13	1.27437	23.37987	34190.69503
2022	Stopping VOC	1857.7654	13	1.27437	23.37987	43434.30549
2032	Stopping Delay Cost	1462.3991	13	1.27437	23.37987	34190.69503
	Idling VOC	7527.8184	13	1.27437	23.37987	175999.3811
	Queue Reduced Speed Delay Cost	145.4567	13	1.27437	23.37987	3400.758657
	Total	13572.0691	13	1.27437	23.3799	317313.1506
	Speed Change VOC	621.0177	14	1.27437	29.7946	18502.97265
	Speed Change Delay Cost	407.6321	14	1.27437	29.7946	12145.23487
	Work Zone Reduced Speed Delay	1677.2624	14	1.27437	29.7946	49973.36077
2022	Stopping VOC	2130.7179	14	1.27437	29.7946	63483.88696
2033	Stopping Delay Cost	1677.2624	14	1.27437	29.7946	49973.36077
	Idling VOC	8692.2899	14	1.27437	29.7946	258983.2938
	Queue Reduced Speed Delay Cost	167.9573	14	1.27437	29.7946	5004.220313
	Total	15374.1397	14	1.27437	29.7946	458066.3301
	Speed Change VOC	653.0035	15	1.27437	37.96934	24794.11492
	Speed Change Delay Cost	428.6274	15	1.27437	37.96934	16274.70109
	Work Zone Reduced Speed Delay	1800.1067	15	1.27437	37.96934	68348.87025
2024	Stopping VOC	2286.7738	15	1.27437	37.96934	86827.2993
2034	Stopping Delay Cost	1800.1067	15	1.27437	37.96934	68348.87025
	Idling VOC	15530.6314	15	1.27437	37.96934	589687.8759
	Queue Reduced Speed Delay Cost	300.0916	15	1.27437	37.96934	11394.27955
	Total	22799.3411	15	1.27437	37.9693	865676.0112
	Speed Change VOC	271.5492	17	1.27437	61.66293	16744.51965
	Speed Change Delay Cost	178.2432	17	1.27437	61.66293	10990.99738
	Work Zone Reduced Speed Delay	2666.9504	17	1.27437	61.66293	164451.9808
2026	Stopping VOC	3387.9726	17	1.27437	61.66293	208912.3244
2030	Stopping Delay Cost	2666.9504	17	1.27437	61.66293	164451.9808
	Idling VOC	42126.9358	17	1.27437	61.66293	2597670.348
	Queue Reduced Speed Delay Cost	814.0003	17	1.27437	61.66293	50193.64197
	Total	52112.6020	17	1.27437	61.6629	3213415.793
2037	Speed Change VOC	232.4236	18	1.27437	78.58139	18264.17106

	Speed Change Delay Cost	152.5614	18	1.27437	78.58139	11988.48701
	Work Zone Reduced Speed Delay	2885.9123	18	1.27437	78.58139	226778.9992
	Stopping VOC	3666.1319	18	1.27437	78.58139	288089.7368
	Stopping Delay Cost	2885.9123	18	1.27437	78.58139	226778.9992
	Idling VOC	28859.1230	18	1.27437	78.58139	2267789.992
	Queue Reduced Speed Delay Cost	375.0066	18	1.27437	78.58139	29468.5411
	Total	39057.0711	18	1.27437	78.5814	3069158.927
	Speed Change VOC	473.5240	19	1.27437	100.1418	47419.52541
	Speed Change Delay Cost	310.8181	19	1.27437	100.1418	31125.87823
	Work Zone Reduced Speed Delay	2657.5552	19	1.27437	100.1418	266132.266
2020	Stopping VOC	3376.0373	19	1.27437	100.1418	338082.3388
2038	Stopping Delay Cost	2657.5552	19	1.27437	100.1418	266132.266
	Idling VOC	13710.9371	19	1.27437	100.1418	1373037.451
	Queue Reduced Speed Delay Cost	278.2789	19	1.27437	100.1418	27867.33859
	Total	23464.7058	19	1.27437	100.142	2349797.064
	Speed Change VOC	265.6040	21	1.27437	162.6321	43195.74803
2040	Speed Change Delay Cost	174.3408	21	1.27437	162.6321	28353.41732
2040	Work Zone Reduced Speed Delay	3346.4108	21	1.27437	162.6321	544233.8797
	Stopping VOC	4251.1282	21	1.27437	162.6321	691369.9932
	Stopping Delay Cost	3346.4108	21	1.27437	162.6321	544233.8797
	Idling VOC	31548.9949	21	1.27437	162.6321	5130879.911
	Queue Reduced Speed Delay Cost	609.6074	21	1.27437	162.6321	99141.73653
	Total	43542.4969	21	1.27437	162.632	7081408.566
	Speed Change VOC	430.0379	22	1.27437	207.2535	89126.84877
	Speed Change Delay Cost	282.2741	22	1.27437	207.2535	58502.30296
	Work Zone Reduced Speed Delay	3268.2861	22	1.27437	207.2535	677363.7051
2041	Stopping VOC	4151.8821	22	1.27437	207.2535	860492.0746
2041	Stopping Delay Cost	3268.2861	22	1.27437	207.2535	677363.7051
	Idling VOC	36489.6385	22	1.27437	207.2535	7562605.086
	Queue Reduced Speed Delay Cost	705.0732	22	1.27437	207.2535	146128.8929
	Total	48595.4779	22	1.27437	207.253	10071582.62
	Speed Change VOC	312.6833	23	1.27437000	264.1176	82585.17
	Speed Change Delay Cost	205.2433	23	1.27437	264.1176	54208.38525
	Work Zone Reduced Speed Delay	3657.2375	23	1.27437	264.1176	965940.9158
20.42	Stopping VOC	4645.9883	23	1.27437	264.1176	1227087.451
2042	Stopping Delay Cost	3657.2375	23	1.27437	264.1176	965940.9158
	Idling VOC	50.0725	23	1.27437	264.1176	13225.03078
	Queue Reduced Speed Delay Cost	1052.8872	23	1.27437	264.1176	278086.0778
	Total	13581.3496	23	1.27437	264.118	3587073.945

Grand Total (ETB)

31211865.57

Appendix C.1.2.2Work zone operation user cost for flexible pavement with geosynthetic material during

periodic maintenance

Table 78: master summary of user cost components during periodic maintenance for FP with geosynthetic materials

Vogna	User Cost Components	Passenger	Tr	ucks	Total (FTR)
Tears	User Cosi Components	Cars	Single Unit	Combination	101 <i>a</i> 1 (E1B)
	Speed Change VOC	229.437	155.568	506.207	891.212
	Speed Change Delay Cost	121.726	170.015	293.244	584.986
	Work Zone Reduced Speed Delay	49.897	58.904	92.023	200.824
2022	Stopping VOC	67.413	45.978	141.727	255.117
2023	Stopping Delay Cost	49.897	58.904	92.023	200.824
	Idling VOC	0.000	0.000	0.000	0.000
	Queue Reduced Speed Delay Cost	0.000	0.000	0.000	0.000
	Total	518.370	489.369	1125.223	2132.962
	Speed Change VOC	229.085	155.330	505.431	889.846
	Speed Change Delay Cost	121.540	169.755	292.795	584.089
	Work Zone Reduced Speed Delay	138.701	163.736	255.799	558.235
2027	Stopping VOC	187.389	127.807	393.961	709.157
2027	Stopping Delay Cost	138.701	163.736	255.799	558.235
	Idling VOC	437.830	149.381	120.312	707.522
	Queue Reduced Speed Delay Cost	4.964	4.583	4.124	13.671
	Total	1258.209	934.326	1828.220	4020.756
	Speed Change VOC	225.184	152.685	496.824	874.692
	Speed Change Delay Cost	119.470	166.864	287.808	574.142
	Work Zone Reduced Speed Delay	252.075	297.574	464.889	1014.538
2031	Stopping VOC	340.560	232.276	715.986	1288.823
2031	Stopping Delay Cost	252.075	297.574	464.889	1014.538
	Idling VOC	3024.029	1031.753	830.978	4886.760
	Queue Reduced Speed Delay Cost	34.288	31.651	28.486	94.425
	Total	4247.682	2210.376	3289.860	9747.917
	Speed Change VOC	162.237	110.004	357.945	630.187
	Speed Change Delay Cost	86.074	120.220	207.356	413.651
	Work Zone Reduced Speed Delay	481.141	567.985	887.343	1936.469
2035	Stopping VOC	650.035	443.350	1366.617	2460.002
	Stopping Delay Cost	481.141	567.985	887.343	1936.469
	Idling VOC	13983.546	4770.975	3842.563	22597.084
	Queue Reduced Speed Delay Cost	158.554	146.358	131.722	436.634

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

	Total	16002.729	6726.876	7680.888	30410.494
	Speed Change VOC	63.910	43.334	141.006	248.251
	Speed Change Delay Cost	33.907	47.358	81.684	162.950
	Work Zone Reduced Speed Delay	986.405	1164.445	1819.172	3970.022
2012	Stopping VOC	1332.658	908.928	2801.748	5043.335
2043	Stopping Delay Cost	986.405	1164.445	1819.172	3970.022
	Idling VOC	96532.567	32935.457	26526.351	155994.375
	Queue Reduced Speed Delay Cost	1094.546	1010.350	909.315	3014.211
	Total	101030.398	37274.318	34098.449	172403.164

Table 79: Grand summary of user cost components during periodic maintenance for FP with geosynthetic materials

Years	User Cost Components	Total (ETB)	п	1+If	(1+If) ^n	$FV = b^*e$
	a	b	С	d	е	f
	Speed Change VOC	891.212	4	1.27437	2.637437	2350.514838
	Speed Change Delay Cost	584.986	4	1.27437	2.637437	1542.863156
	Work Zone Reduced Speed Delay	200.824	4	1.27437	2.637437	529.660181
2022	Stopping VOC	255.117	4	1.27437	2.637437	672.8562286
2023	Stopping Delay Cost	200.824	4	1.27437	2.637437	529.660181
	Idling VOC	0.000	4	1.27437	2.637437	0.000000
	Queue Reduced Speed Delay Cost	0.000	4	1.27437	2.637437	0.000000
	Total	2132.962	4	1.27437	2.63744	5625.554584
	Speed Change VOC	889.846	8	1.27437	6.956076	6189.83522
	Speed Change Delay Cost	584.089	8	1.27437	6.956076	4062.968907
	Work Zone Reduced Speed Delay	558.235	8	1.27437	6.956076	3883.127421
2027	Stopping VOC	709.157	8	1.27437	6.956076	4932.948643
2027	Stopping Delay Cost	558.235	8	1.27437	6.956076	3883.127421
	Idling VOC	707.522	8	1.27437	6.956076	4921.578602
	Queue Reduced Speed Delay Cost	13.671	8	1.27437	6.956076	95.09749936
	Total	4020.756	8	1.27437	6.95608	27968.68371
	Speed Change VOC	874.692	12	1.27437	18.34621	16047.28935
	Speed Change Delay Cost	574.142	12	1.27437	18.34621	10533.3398
	Work Zone Reduced Speed Delay	1014.538	12	1.27437	18.34621	18612.92676
2031	Stopping VOC	1288.823	12	1.27437	18.34621	23645.01647
	Stopping Delay Cost	1014.538	12	1.27437	18.34621	18612.92676
	Idling VOC	4886.760	12	1.27437	18.34621	89653.54554
	Queue Reduced Speed Delay Cost	94.425	12	1.27437	18.34621	1732.336041

	Total	9747.917	12	1.27437	18.3462	178837.3807
	Speed Change VOC	630.187	16	1.27437	48.38699	30492.85152
	Speed Change Delay Cost	413.651	16	1.27437	48.38699	20015.31595
	Work Zone Reduced Speed Delay	1936.469	16	1.27437	48.38699	93699.88886
2035	Stopping VOC	2460.002	16	1.27437	48.38699	119032.0815
2033	Stopping Delay Cost	1936.469	16	1.27437	48.38699	93699.88886
	Idling VOC	22597.084	16	1.27437	48.38699	1093404.92
	Queue Reduced Speed Delay Cost	436.634	16	1.27437	48.38699	21127.3825
	Total	30410.494	16	1.27437	48.387	1471472.329
	Speed Change VOC	248.251	24	1.27437	336.5836	83557.0785
	Speed Change Delay Cost	162.950	24	1.27437	336.5836	54846.34079
	Work Zone Reduced Speed Delay	3970.022	24	1.27437	336.5836	1336244.1
2012	Stopping VOC	5043.335	24	1.27437	336.5836	1697503.791
2043	Stopping Delay Cost	3970.022	24	1.27437	336.5836	1336244.1
	Idling VOC	155994.375	24	1.27437	336.5836	52505146.96
	Queue Reduced Speed Delay Cost	3014.211	24	1.27437	336.5836	1014533.869
	Total	172403.164	24	1.27437	336.584	58028076.23
						59,711,980.18

Appendix C.1.2.3 Work zone operation user cost for flexible pavement with geosynthetic material during rehabilitation

Table 80: Master summary of user cost components during rehabilitation for FP with geosynthetic materials

Vegus	User Cost Components	Passenger	Tri	Total	
rears	User Cost Components	Cars	Single Unit	Combination	(ETB)
	Speed Change VOC	217.0888	147.1959	478.9640	843.2486
	Speed Change Delay Cost	115.1754	160.8654	277.4622	553.5031
	Work Zone Reduced Speed Delay	208.5378	246.1777	384.5949	839.3104
2020	Stopping VOC	281.7400	192.1584	592.3233	1066.2217
2029	Stopping Delay Cost	208.5378	246.1777	384.5949	839.3104
	Idling VOC	731.8998	249.7132	201.1200	1182.7330
	Queue Reduced Speed Delay Cost	15.2103	14.0403	12.6363	41.8869
	Total	1778.1900	1256.3285	2331.6956	5366.2141
	Speed Change VOC	118.6791	80.4697	261.8422	460.9909
	Speed Change Delay Cost	62.9646	87.9426	151.6843	302.5915
2039	Work Zone Reduced Speed Delay	707.9327	835.7104	1305.6016	2849.2447
	Stopping VOC	956.4355	652.3287	2010.7867	3619.5510
	Stopping Delay Cost	707.9327	835.7104	1305.6016	2849.2447

Life Cycle Cost Analysis of Flexible Pavement with Geosynthetic Materials and Conventional Pavement

Idling VOC	2649.0913	815.1050	611.3288	4075.5251
Queue Reduced Speed Delay Cost	30.0370	27.7265	24.9538	82.7174
Total	5233.0729	3334.9934	5671.7989	14239.8652

Table 81: Grand summary of user cost components during rehabilitation for FP with geosynthetic materials

Years	User Cost Components	Total (ETB)	n	1+if	$(1+if)^n$	$FV = b^*e$
	a	b	с	d	e	f
	Speed Change VOC	843.2486	10	1.27437	11.2968	9526.010176
	Speed Change Delay Cost	553.5031	10	1.27437	11.2968	6252.813165
	Work Zone Reduced Speed Delay	839.3104	10	1.27437	11.2968	9481.52022
2020	Stopping VOC	1066.2217	10	1.27437	11.2968	12044.89249
2029	Stopping Delay Cost	839.3104	10	1.27437	11.2968	9481.52022
	Idling VOC	1182.7330	10	1.27437	11.2968	13361.09682
	Queue Reduced Speed Delay Cost	41.8869	10	1.27437	11.2968	473.18748
	Total	5366.2141	10	1.27437	11.2968	60621.04056
	Speed Change VOC	460.9909	20	1.27437	127.6177	58830.58334
	Speed Change Delay Cost	302.5915	20	1.27437	127.6177	38616.02488
	Work Zone Reduced Speed Delay	2849.2447	20	1.27437	127.6177	363613.9426
2020	Stopping VOC	3619.5510	20	1.27437	127.6177	461918.6317
2039	Stopping Delay Cost	2849.2447	20	1.27437	127.6177	363613.9426
	Idling VOC	4075.5251	20	1.27437	127.6177	520108.9833
	Queue Reduced Speed Delay Cost	82.7174	20	1.27437	127.6177	10556.19651
	Total	14239.8652	20	1.27437	127.618	1817258.305
	Gran	d Total (ETB)				1,877,879.35

Table 82: user cost summary for FP with geosynthetic materials in the analysis period.

$\mathcal{N}_{\mathcal{O}}$	Description	Total Cost (ETB)
1	Routine maintenance	3081516.001
2	Periodic maintenance	59533142.8
3	Rehabilitation (upgrading)	1877879.346
	Total (ETB)	64492538.15

Appendix D Net Present Value (NPV)

Appendix E.1 Net Present Value for Conventional Flexible Pavement.

Table 83: Discounting Factors for Each Year in the Analysis Period for conventional FP.

Year	Activities	nk	Activity Cost	User Cost	<i>l</i> + <i>Dr</i>	(1/(1+Dr)) ^nk
2019	Construction	0	4,248,120.00	0.000	1.035	1
2020	Routine Maintenance	1	987,916.46	1850.526	1.035	0.966183575
2021	Routine Maintenance	2	1,258,971.10	0.00000	1.035	0.9335107

2022	Periodic Maintenance	3	2,920,261,76	3313,200	1.035	0.901942706
2023	Routine Maintenance	4	2,044,592.86	5625.555	1.035	0.871442228
2024	Routine Maintenance	5	2,605,567.80	7722.708	1.035	0.841973167
2025	Periodic Maintenance	6	6,043,776.55	12357.074	1.035	0.813500644
2026	Routine Maintenance	7	4,231,491.34	20529.175	1.035	0.785990961
2027	Rehabilitation	8	36,829,055.53	27968.684	1.035	0.759411556
2028	Periodic Maintenance	9	12,508,205.75	42887.938	1.035	0.733730972
2029	Routine Maintenance	10	8,757,498.55	60621.041	1.035	0.708918814
2030	Routine Maintenance	11	11,160,293.42	107236.467	1.035	0.684945714
2031	Periodic Maintenance	12	25,886,994.65	0.000	1.035	0.661783298
2032	Routine Maintenance	13	18,124,527.42	317313.151	1.035	0.639404153
2033	Routine Maintenance	14	23,097,354.00	0.000	1.035	0.61778179
2034	Periodic Maintenance	15	53,575,749.03	865676.011	1.035	0.596890619
2035	Rehabilitation	16	256,185,706.37	1471472.329	1.035	0.576705912
2036	Routine Maintenance	17	47,802,306.05	3213415.793	1.035	0.557203779
2037	Periodic Maintenance	18	110,880,421.71	3069158.927	1.035	0.53836114
2038	Routine Maintenance	19	77,631,848.35	2349797.064	1.035	0.52015569
2039	Routine Maintenance	20	98,931,698.58	1817258.305	1.035	0.502565884
2040	Periodic Maintenance	21	229,478,227.41	7081408.566	1.035	0.485570903
2041	Routine Maintenance	22	160,666,948.00	0.000	1.035	0.469150631
2042	Routine Maintenance	23	204,749,138.52	3587073.945	1.035	0.453285634
2043	Rehabilitation	24	1,782,047,223.16	58028076.23	1.035	0.437957134
2044	Salvage Value	25	222,755,902.90	0.000	1.035	0.423146989

Table 84: Discounted Costs for Each	Year in the Analysis Period for c	onventional FP
-------------------------------------	-----------------------------------	----------------

Years	Activity Cost	User Cost	$(1/(1+dr))^n k$	$cost^* ((1/(1+dr))^nk)$	<i>user cost *</i> ((1/(1+dr)) ^nk)
2019	4312620	0	1	4312620	0
2020	987916.4601	1452.111	0.966183575	954508.6571	1403.005797
2021	1258971.099	1524.662	0.9335107	1175262.993	1423.288291
2022	1604395	1600.888	0.901942706	1447072.367	1443.909254
2023	3721493.979	2132.962	0.871442228	3243067.003	1858.753157
2024	2605567.798	2297.693	0.841973167	2193818.17	1934.595852
2025	3320457.434	2884.977	0.813500644	2701194.262	2346.930648
2026	4231491.34	3760.995	0.785990961	3325913.944	2956.108073
2027	9815207.32	4020.756	0.759411556	7453781.866	3053.408571
2028	6872021.899	4838.105	0.733730972	5042215.309	3549.867485
2029	59811082.14	5366.214	0.708918814	42401201.4	3804.210063
2030	11160293.42	7448.89	0.684945714	7644195.145	5102.085278

2031	25886994.65	9747.917	0.661783298	17131580.71	6451.008664
2032	18124527.42	13572.07	0.639404153	11588898.1	8678.037922
2033	23097354	15374.14	0.61778179	14269124.71	9497.863733
2034	29434575.02	22799.34	0.596890619	17569221.69	13608.71216
2035	68275327.29	30410.49	0.576705912	39374784.87	17537.90936
2036	47802306.05	52112.6	0.557203779	26635625.6	29037.33768
2037	60917824.77	39057.07	0.53836114	32795789.56	21026.80871
2038	77631848.35	23464.71	0.52015569	40380647.67	12205.30243
2039	675673757.6	14239.87	0.502565884	339570579.6	7156.472861
2040	77631848.35	43542.5	0.485570903	37695766.69	21142.97104
2041	77631848.35	48595.48	0.469150631	36421030.62	22798.60009
2042	77631848.35	13581.35	0.453285634	35189401.56	6156.23084
2043	474928360.1	172403.2	0.437957134	207998263.4	75505.21135
2044	337836878.8	0	0.423146989	142954658.1	0

Appendix E.2 Net Present Value for Flexible Pavement with Geosynthetic Materials

Table 85: Discounting Factors for Each Year in	the Analysis Period for F	P with geosynthetic materials
--	---------------------------	-------------------------------

Age in years	activity	nk	activity cost	user cost	1+Dr	1/(1+Dr) ^nk
2019	Initial Construction	0	4,312,620	0.0000	1.035	1
2020	Routine Maintenance	1	987916.4601	1452.111	1.035	0.96618357
2021	Routine Maintenance	2	1258971.099	1524.662	1.035	0.9335107
2022	Routine Maintenance	3	1604395.000	1600.888	1.035	0.90194271
2023	Periodic Maintenance	4	3721493.979	2132.962	1.035	0.87144223
2024	Routine Maintenance	5	2605567.798	2297.693	1.035	0.84197317
2025	Routine Maintenance	6	3320457.434	2884.977	1.035	0.81350064
2026	Routine Maintenance	7	4231491.340	3760.995	1.035	0.78599096
2027	Periodic Maintenance	8	9815207.32	4020.756	1.035	0.75941156
2028	Routine Maintenance	9	6872021.899	4838.105	1.035	0.73373097
2029	Rehabilitation	10	59811082.14	5366.214	1.035	0.70891881
2030	Routine Maintenance	11	11160293.42	7448.89	1.035	0.68494571
2031	Periodic Maintenance	12	25886994.65	9747.917	1.035	0.6617833
2032	Routine Maintenance	13	18124527.42	13572.07	1.035	0.63940415
2033	Routine Maintenance	14	23097354	15374.14	1.035	0.61778179
2034	Routine Maintenance	15	29434575.02	22799.34	1.035	0.59689062
2035	Periodic Maintenance	16	68275327.29	30410.49	1.035	0.57670591
2036	Routine Maintenance	17	47802306.05	52112.6	1.035	0.55720378
2037	Routine Maintenance	18	60917824.77	39057.07	1.035	0.53836114
2038	Routine Maintenance	19	77631848.35	23464.71	1.035	0.52015569
2039	Rehabilitation	20	675673757.6	14239.87	1.035	0.50256588
2040	Routine Maintenance	21	77631848.35	43542.5	1.035	0.4855709

2041	Routine Maintenance	22	77631848.35	48595.48	1.035	0.46915063
2042	Routine Maintenance	23	77631848.35	13581.35	1.035	0.45328563
2043	Periodic Maintenance	24	474928360.1	172403.2	1.035	0.43795713
2044	Salvage Value	25	337,836,878.78	0.00000	1.035	0.42314699

Table 86: Discounted Costs for Each Year in The Analysis Period for FP with geosynthetic materials

NZ				Activity Cost*	User Cost *
Years	Activity Cost	User Cost	(1/(1+dr)) 'nk	((1/(1+dr)) ^nk)	$((1/(1+dr))^nk)$
2019	4,312,620	0.0000	1	4,312,620.00	0
2020	987916.4601	1452.111	0.966183575	954,508.66	1403.0058
2021	1258971.099	1524.662	0.9335107	1,175,262.99	1423.28829
2022	1604395.000	1600.888	0.901942706	1,447,072.37	1443.90925
2023	3721493.979	2132.962	0.871442228	3,243,067.00	1858.75316
2024	2605567.798	2297.693	0.841973167	2,193,818.17	1934.59585
2025	3320457.434	2884.977	0.813500644	2,701,194.26	2346.93065
2026	4231491.340	3760.995	0.785990961	3,325,913.94	2956.10807
2027	9815207.32	4020.756	0.759411556	7,453,781.86	3053.40857
2028	6872021.899	4838.105	0.733730972	5,042,215.31	3549.86748
2029	59811082.14	5366.214	0.708918814	42,401,201.41	3804.21006
2030	11160293.42	7448.89	0.684945714	7,644,195.15	5102.08528
2031	25886994.65	9747.917	0.661783298	17,131,580.69	6451.00866
2032	18124527.42	13572.07	0.639404153	11,588,898.10	8678.03792
2033	23097354	15374.14	0.61778179	14,269,124.70	9497.86373
2034	29434575.02	22799.34	0.596890619	17,569,221.70	13608.7122
2035	68275327.29	30410.49	0.576705912	39,374,784.89	17537.9094
2036	47802306.05	52112.6	0.557203779	26,635,625.58	29037.3377
2037	60917824.77	39057.07	0.53836114	32,795,789.59	21026.8087
2038	77631848.35	23464.71	0.52015569	40,380,647.64	12205.3024
2039	675673757.6	14239.87	0.502565884	339,570,579.28	7156.47285
2040	77631848.35	43542.5	0.485570903	37,695,766.70	21142.971
2041	77631848.35	48595.48	0.469150631	36,421,030.64	22798.6001
2042	77631848.35	13581.35	0.453285634	35,189,401.60	6156.23085
2043	474928360.1	172403.2	0.437957134	207,998,263.44	75505.2114
2044	337,836,878.78	0.00000	0.423146989	142,954,658.03	0

Appendix F Glossary

- Analysis Period- The analysis period is the time period used when evaluating projects economically. For example, in pavement projects, the Federal Highway Administration (FHWA) recommends that the analysis period chosen should contain at least one rehabilitation project, but may or may not contain maintenance activities during the life cycle of the evaluated pavement. The analysis period should be of sufficient time for predicting future costs so as to capture all the significant costs. One important note is that the analysis period must be the same for all alternatives under evaluation when LCCA is used for comparing various design alternatives.
- Constant Dollars or Real Dollars—Economic units measured in terms of constant purchasing power. The constant dollars are un-inflated and represent the prevailing price for all elements at the base year for the analysis. Real values can be estimated by deflating nominal values with a general price index, such as the implicit deflator for Gross Domestic Product (GDP) or the Consumer Price Index (CPI).
- Cost-Effectiveness A systematic quantitative method for comparing the costs of alternative means of achieving the same stream of benefits for a given objective.
- Current Dollars or Nominal Dollars—Economic units measured in terms of purchasing power of the date in question. Current dollars are inflated and represent the price levels that may exist at some future date when costs are incurred. The uncertainty associated with predicting future rates of inflation, and incorporating price changes into the economic analysis, is extremely complex. An accepted approach of dealing with this issue is using constant dollars and a discount rate.
- Deterministic Approach The deterministic approach considers applying procedures and methodologies without regard for the variability or uncertainty of the input parameters.
- Discount Factor—The factor that translates expected costs and benefits in any given future year into the present terms. The discount factor is equal to 1/(1 + i)t where *i* is the interest rate and *t* is the number of years from the date of commencement for the project until the given year.
- Discount rates -- A value in percent used in calculating the present value of future costs and benefits when comparing the alternative uses of funds over a period of time. A detailed discussion about discount rates is presented in Chapter 4.
- Inflation The proportionate rate of change in the general price level, as opposed to the proportionate increase in a specific price. Inflation is usually measured by a broad-based price index, such as the Consumer Price Index (CPI) or the implicit deflator for Gross Domestic Product.
- Initial Cost—The total investment required to construct a project. For example, in highway projects

the initial cost will include the estimated cost of pavement construction and may include other costs such as preliminary engineering, traffic control, and construction engineering. The initial costs used in the analysis should be the most current and accurate data available. If costs for the same project elements are identical in different alternatives, it should be noted and these costs may not be included in the analysis.

- Maintenance Costs—The cost of preserving an existing facility and keeping it functioning above the minimum acceptable level of service. These costs include the unavoidable routine maintenance costs that are incurred annually.
- Net Present Value (NPV) -- It is the net cumulative present worth of difference between a series of benefits and costs that are encountered in the life time (analysis period) of a project. The PV method involves the conversion of all present and future expenses and benefits to a base of today's costs. The present worth of planned future funds is equivalent to the amount of money needed to be invested now at a given compound interest rate for the original investment plus interest, to equal the expected cost at the time needed.
- Nominal Interest Rate—An interest rate that is not adjusted to remove the effects of actual or expected inflation. Market interest rates are generally nominal interest rates.
- Probabilistic Approach This approach applies the recognized procedures but taking into account the uncertainty of the input variables. The results of this approach will be an entire range of outcomes with probability distribution.
- Real Interest Rate An interest rate that has been adjusted to remove the effect of expected or actual inflation.
- Rehabilitation Costs—The cost for the activities associated with restoring or rehabilitating the facility to function at an acceptable level of service.
- Sunk Cost A cost incurred in the past that will not be affected by any present or future decision.
 Sunk costs should be ignored in determining whether a new investment is worthwhile.
- Treasury Rates Rates of interest on marketable Treasury debt. Such debt is issued in maturities ranging from ninety-one days to thirty years.
- Unit Value of Time—In transportation projects this term refers of the cost of time attributed to one hour of travel, which is usually different for cars and trucks.
- User Costs—Indirect or non-agency (soft) costs which are accrued by the facility user and the excess costs incurred by those who cannot use the facility because of some agency requirement. In highway project, these costs should include time delays, vehicle operating and crash costs associated with using a

facility under normal and forced operation.

- Value of Travel Time—Vehicle travel time multiplied by the average unit value of time.
- Vehicle Operating Cost—The mileage-dependent cost of driving cars, trucks, and other motor vehicles on the highway. This includes the expense of fuel, oil, tires, maintenance, and vehicle depreciation attributable to highway miles.
- Vehicle Travel Time—The total hours traveled by a specific vehicle.
- Accident or crash costs costs associated with damage to the user's vehicle and/or other vehicles and/or public or private property, as well as injury to the user and others.
- Activity a specific action performed by the highway agency or the contractor, such as initial construction or a preservation/rehabilitation.
- Administrative Costs cost incurred in contract management administration overhead expenses.
- Agency a government organization responsible for initiating and carrying forward a highway program for the general public. May be federal, state department of transportation (DOT), metropolitan planning organization, local government, etc.
- Agency costs costs incurred by the agency over the analysis period.
- Alternatives the complete set of initial and future activities that will satisfy established pavement performance objectives of a project.
- Analysis period the timeframe over which the strategy alternatives are compared.
- Annual worth or equivalent uniform annual cost (EUAC) all costs over the analysis period expressed in terms of an equivalent annual value that is the same for every year of the analysis period.
- Benefit-cost analysis an analysis in which all consequences of the investment are measured in or converted to economic terms.
- Benefit-cost ratio (B/C) the ratio of a project's benefits (to the public) to its costs (to the government).
- Concrete pavement preservation (CPP) a set of non-overlay techniques that repair isolated sections of deteriorated pavement, or prevent or slow overall deterioration, as well as reduce the impact of traffic loadings on the pavement; also known as preservation.
- Constant dollars costs of items as if they were incurred in the year in which the life-cycle cost analysis is conducted.
- Consumer Price Index (CPI) An inflation index compiled by the U.S. Department of Labor's Bureau of Labor Statistics (BLS) to reflect the change in retail prices for a selected set, or "market

basket," of purchases of clothing, food, housing, transportation, medical care, entertainment, education, and other items.

- Delay costs costs to motorists due to reduced speeds and/or the use of alternate routes.
- Design period (**design life**)— the period of time for which either a new pavement or a rehabilitation treatment is designed to serve. It is the time from original construction to a terminal condition for a pavement structure. A terminal condition refers to a state where the pavement needs reconstruction.
- Discount rate in banking, the rate that commercial banks and other depository institutions are charged on loans from the Federal Reserve. In life-cycle cost analysis, the rate that reflects both the time value of money (interest rate) and the decrease in purchasing power (inflation rate) over time; also called the real discount rate.
- Equivalent Uniform Annual Cost (EUAC) see Annual worth.
- Future costs costs incurred after the beginning of the analysis period.
- Incremental benefit-cost analysis process by which a project is judged more favorable than another if the additional increment of benefit to be gained exceeds the incremental increase in cost.
- Inflation rate the rate of increase in prices; a measure of the decline of purchasing power.
- Initial costs costs incurred at the beginning of the analysis period.
- Interest rate the rate of return on an investment.
- Life-cycle cost analysis a procedure for evaluating the economic consequences of mutually exclusive project alternatives over a period of time.
- Maintenance and operation costs the daily costs associated with keeping the pavement at a given level of service.
- Net present value (NPV) The net value of all present and future costs and benefits converted to a single point in time using a real discount rate factor.
- Network-level analysis analysis of the condition and needs of an entire network of roadway sections.
- Performance period The best estimate of the expected life of a pavement or a rehabilitation treatment. For a newly constructed or reconstructed pavement, the performance period is the design period. For some rehabilitation treatments that are not designed for a specific time period or number of traffic loadings, the performance period must be estimated from field performance observations or empirical models developed from field performance data.
- Present worth (PW) the equivalent value at the present, based on the time value of money; the

monetary sum equivalent to a future sum or sums when interest is compounded at a given rate; the discounted value of future sums.

- Preservation see Rehabilitation.
- Private entity a private owner of a roadway, such as a concessionaire.
- Probabilistic analysis an analysis in which the variability of each input is taken into account and used to generate a probability distribution for the calculated life-cycle cost.
- Producer Price Index (PPI) a family of Bureau of Labor Statistics indices that reflect changes over time in the prices received by domestic producers for a variety of goods and services.
- Project-level analysis analysis of the condition and needs of a single roadway section.
- Public entity a government (local, State, or Federal) owner of a roadway.
- Real discount rate see Discount rate.
- Rehabilitation the act of restoring a pavement to former condition. To restore to near original condition.
- **Reconstruction** to comprehensively rebuild to a new condition with current criteria.
- Residual value the cost recovered or that could be recovered from a used property when removed, sold, scrapped, or reused. It refers to the net value from recycling the pavement. The differential residual value between pavement design strategies is generally not very large, and, when discounted over 35 years, tends to have little effect on LCCA results.
- Salvage Value represents value of an investment alternative at the end of the analysis period. The two fundamental components associated with salvage value are residual value and serviceable life.
- Serviceable Life represents the more significant salvage value component and is the remaining life in a pavement alternative at the end of the analysis period. It is primarily used to account for differences in remaining pavement life between alternative pavement design strategies at the end of the analysis period. For example, over a 35-year analysis, Alternative A reaches terminal serviceability at year 35, while Alternative B requires a 10-year design rehabilitation at year 30. In this case, the serviceable life of Alternative B receives a 10-year design rehabilitation at year 30 and will have 5 years of serviceable life at year 35, the year the analysis terminates. The value of the serviceable life of Alternative B at year 35 could be calculated as a percent of design life remaining at the end of the analysis period (5 of 10 yrs or 50%) multiplied by the cost of Alternative B's Rehabilitation.