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Abstract

In future wireless networks, there is an increasing demand of high quality of service,

high data rates, network coverage and low latency. However, the existing network is

limited in capacity to address the requirements of the data rate in the order of gigabits.

Massive MIMO and small cells are the foremost technologies to address such chal-

lenges for the next generation (5G) wireless systems. Massive MIMO is a technique that

deploying a large number of antennas at the base station, and thus, improving energy

efficiency and spectral efficiency of wireless networks. Small cell provides high data rate

and good coverage with reduced transmit power by reducing the distance between base

station and user. Since, the number of users are increasing, which give a rise to a lot of

problems like increased interference, complexity and power consumption in the processing

and transmission.

This can be analyzed to enhance the data rate and EE by combining massive MIMO

base station and small cell base stations with higher spatial reuse. To provide resource

aware energy saving technique with a low complexity algorithm based on classical regu-

larized zero force (RZF) beamforming is used and compared with optimal solution cases.

The simulation result is conducted to prove that, the total power consumption can

be greatly improved more than 1.2 % by combining massive MIMO and small cells, this

is possible with both optimal beamforming and low-complexity beamforming.

Based on the result obtained, it is better to use the heterogeneous system of massive

MIMO macro cell with low power complementary small cells can achieve a greater EE

(EE) than massive MIMO macro cell alone.

KEY WORDS: 5G, Beamforming, HetNet, Massive MIMO, RZF, Small

cell
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Chapter 1

Introduction

1.1 Motivation

In today’s globalized world, wireless communication systems play a key role in fields

such as education centers, economics, science, company, healthcare, transportation and

our social and cultural lives. Some techniques have been developed to assist us interact

with each other and make it easier at anytime and anywhere to access data.

Accordingly, global mobile data traffic will grow at a compound annual growth rate

(CAGR) of 63 % from 2017 to 2022, nearly 12-fold from 22 petabytes per month in 2017,

to 254 petabytes per month in 2022 as shown bellow in the Figure 1.1.

Figure 1.1: Source: Cisco VNI mobile, February 2019 [1]
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1.2 Capacity scaling dimension of future cellular net-

works

It is essential to know, the different aspects of how capacity can be enhanced when

targeting order of magnitude improvements in network capacity. In a simplified form,

the Shannon-Hartley theorem [2].

C = BwLog2(1 + S/N) (1.1)

provides an insight into what are the variables that influence the amount of information

capacity (C) one can transmit over a communication channel of a specified bandwidth

Bw with a signal received with power S in the presence of white Gaussian noise with

power N .

The capacity can be scaled by increasing the bandwidth Bw per user and increasing

the SNR, or the SINR in a multi-user network [3]. Addressing the bandwidth is a more

promising approach since this result in a linear scaling compared to the logarithmic scaling

when increasing spectral efficiency by improving the SINR. In a network with multiple

users, the bandwidth per user can be scaled by either increasing the frequency resources,

or by network densification based on the reduction of cell size.

The efficiency of a wireless network may be improve in three basic ways wireless

channel capacity densification, bandwidth and spectral efficiency contributed to capacity

gains as mentioned by Mallinson [4],

• 56× from densifying to smaller cells

• 6× by improving spectral efficiency such as coding, medium access control and

modulation techniques.

• 3× by using more spectrum bandwidth,

From this, it is clear that the majority of the gain was achieved by increasing the spatial

frequency reuse though densifying the network to small cells.

1.2.1 Densification

In a multiuser network, users in the coverage of a cell share the available bandwidth.

Through this methode, the bandwidth per user can be increased until each cell serves

[ Page - 2 -]
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only a few user [2, 3]. When further densifying, only the SINR is improved by reducing

the range between the base station and the user.

The other aspect of densification is that the required transmit power reduces to an

extent where its contribution to the total energy consumption becomes insignificant, and

the processing power becomes the dominant factor.

1.2.2 Bandwidth

A second dimension to increase capacity is increasing the bandwidth, where it can

achieve linear scaling from the Shannon Hartley theorem, Eq.1.1. However, there are

several challenges with this approach as well. First, the available bandwidth at lower

frequencies is limited. Second, the required transmit power increases significantly when

increasing bandwidth due to the higher path loss at higher frequency bands and the fact

that more carriers need to be allocated [2]. Although increasing spectrum availability can

provide high capacity gains, bandwidth is already used up at lower carrier frequencies.

More bandwidth is available at higher carrier frequencies, but is mainly applicable to

smaller cells due to the increasing transmit power requirements [3].

1.2.3 Spectral efficiency

The third dimension for increasing capacity is increasing the spectral efficiency, for

example, by signal processing through error correction coding, increasing the SINR using

interference mitigation, or with multiple antennas. The progress in signal processing have

already led to near-saturation of gains in this dimension. Current coding schemes already

operate close to the Shannon Hartley capacity limit, and further signal processing gains

require significant overhead like MIMO [2]. Multiple antennas can be used to increase

SINR through beamforming or for spatial multiplexing, but the low number of antennas

at the user equipment (UE) at cellular bands and issues with channel state information

acquisition limit the gain for traditional MIMO systems [3]. As mentioned in Mallinson

[2], an increase capacity of 1000× is required to support this increasing demand. High

capacity can be achieve by improving spectral efficiency, employing more spectrum and

increasing network density.

Improving spectral efficiency and employing more spectrum are related to enhance-

ments of the link level, radical gains cannot be expected above the current networks that

are already functioning at near optimal.

[ Page - 3 -]
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In the next Figure 1.2 shows, the major gains are expect through increasing network

density by installing an overlay network of small cells over the macrocell coverage area.

Figure 1.2: Quantitative prediction about capacity enhancement for future wireless net-

works [3]

The cellular networks are developed into heterogeneous networks by deploying small

cells over the entire macrocells to support the increasing traffic demands. Heterogeneous

networks are an encouraging result having met the ever-increasing demand for higher

data rates. For network operators however, it is scheduled to face much better challenges

in the future. Mobile broadband data is highly localized as the majority of current traffic

is generate indoors and in hotspot such as universities, shopping malls and convention

centers. Therefore, it makes sense to enhance the capacity where it is needed by using

an overlay of small cell in those domain of the macro cell coverage area, which generates

higher data request.

Any wireless network’s quality restriction will always be on the physical layer because,

basically spectrum availability, electromagnetic propagation rules restrict the amount of

data that can be transferred between two locations. Mobile broadband data is highly

localized as the majority of current traffic is generated indoors and in hotspots such as

malls and convention centers. Therefore, it makes sense to add capacity where it is needed

by deploying an overlay of small cells in those regions of the macro coverage area which

generates high data demand [3].

One of the most challenging problems for future broadband wireless systems is pro-

viding a comprehensive range of service areas with different quality of service (QoS) and

[ Page - 4 -]
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taking priority given limited resource availability [2]. Implementing mathematical in-

struments such as convex optimization and stochastic optimization in resource allocation

design increases the network’s performance. However, it is a major challenge to improve

performance and practical use of resources.

Massive MIMO and small cell networks are both analyzed as critical technologies in

future 5G wireless systems due to the capacity to realize the impacted network coverage

and restricted system resources throughput trends. Besides improving network capacity,

small cells also address the second concern of operators, cost reduction. A small cell-based

heterogeneous network is much more energy efficient than a macrocell network [2, 3].

Generations of cellular technology

The 1G uses analog technology for voice communication only and 2G provides digital

modulation for voice, encrypted text (including SMS, and low rate data GSM, CDMA)

and low data rate . The 3G offers minimum data rate of 384 Kbps for highly mobile and

2 Mbps for stationary users; Enables wireless internet access, video conferencing, mobile

TV and location-based services. 4G provides data rate up to 100 Mbps for high mobility

and 1 Gbps for low mobility users; Cellular network is an all IP network; Supports IP

telephony and high definition mobile TV. Finally, the 5G wireless network addresses the

evolution beyond mobile internet to massive IoT (Internet of Things) from 2019/2020

forwards as shown in the Figure 1.3, bellow. The main evolution compared with today’s

4G and LTE advanced is that beyond data speed improvements, new IoT and critical

communication use cases will require new types of improved performance.

Figure 1.3: Generations of cellular technology [5]

[ Page - 5 -]
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The expectation of 5G wireless technologies

In order to support the exponential growth of existing mobile traffic and the emer-

gence of new wireless applications and services, researchers and standardization bodies

worldwide have set out to develop a 5G of wireless networks. Some of the stringent re-

quirements for this next generation of wireless networks are listed in Table 1.1. To meet

these challenging requirements, a mere evolution of the current networks is not sufficient.

Table 1.1: Requirements for 5G wireless communication systems [6].

Figure of merit 5G requirement Comparison with 4G

Peak data rate 10 Gb/s 100 times higher

Guaranteed data rate 50 Mb/s −
Mobile data volume 10 Tb/s/km2 1000 times higher

End-to-end latency Less than 1 ms 25 times lower

Number of devices 1 M/km2 1000 times higher

Total number of human-oriented terminals ≥ 20 billion −
Total number of IoT terminals ≥1 trillion −

Reliability 99.999% 99.99%

Energy consumption − 90% less

Peak mobility support ≥ 500 km/h −
Outdoor terminal location accuracy ≤ 1 m −

1.2.4 Massive MIMO systems

MIMO systems have established significant consideration due to the rising number

of served users and increasing demand for large amount of data. Multi-user MIMO

systems can provide an innovation technique to enhance wireless communications spectral

efficiency. Massive MIMO systems are described as an operation of MIMO scheme in

which large amounts of antenna elements are installed at BSs and large amounts of

antennas at terminals. In massive MIMO systems, large quantities of antennas associated

to BS at the same time work for significantly fewer terminals using similar time and carrier

frequency resources [7].

Massive MIMO systems can increase the capacity of 10× or more wireless communi-

cation systems due to their characteristics and about 100× in EE. The capacity increase

supported by massive MIMO systems is due to the large number of antennas that are

[ Page - 6 -]
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applied. However, using a large number of antennas causes interference problems, which

can be mitigated by design beamforming antennas rather than conventional antennas

[7, 8].

Beamforming is a signal processing system used on the transmitter side and the re-

ceiver side with multiple antenna arrays to independently transmit or identify signals

from different required terminals to increase the system’s capacity and efficiency.

1.2.5 Massive MIMO and small cell networks

Massive MIMO and small cell network have been recognized an encouraging tech-

nologies for satisfying the objectives of future high data rate wireless networks. Small

cell networks corresponds to a high-density cellular network where the cell radius is small

[8]. Traditional WLAN APs typically have a coverage radius of tens of meters. However,

large cell sizes may result in a high possibility of poor coverage and low data rates, mostly

at the cell boundaries. Particularly for indoor environments, the walls and other large

obstacles may strongly attenuate the radio signals, deteriorating the user experience of

the WLAN service. By reducing the cell size, a number of benefits can be obtained.

1.3 Statement of problem

Energy efficiency in wireless communication networks appears to be one of the

most significant and important issues in 5G systems. Currently, there is an increasing

demand of high quality of service, high data rates, network coverage and lesser processing

time. Since, the number of users are increasing, which give arise to a lot of problems

like increased interference, complexity and significant amount of power consumption in

the processing and transmission. Any wireless network’s performance limitation will

always be on the physical layer because, basically the availability of spectrum, the laws

of electromagnetic propagation and the principles of information theory limit the amount

of information that can be transferred between the transmitter and the receiver.

Some of the problems are verified to be with the arrival of massive MIMO in the

wireless field however, adding small cell networks to making low cost and low precision

components for successful cooperation, effective exploitation extra degrees of freedom

which have resulted in an excess of service antennas, resource allocation and reducing

internal power consumption for achieving total EE reductions.

Among these issues, this thesis is given a strong attention to compute the required

[ Page - 7 -]
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power to be transmitted by both MBS and SBS, that is finding the power allocated

by the system in order to satisfy the peak power constraints considering total power

consumption. The level of interference at the SBS depends upon its transmission power.

Thus, the optimal power allocation to meet the system requirement is desirable criteria

to enhance the system performance.

[ Page - 8 -]



Power Optimization of Massive MIMO in Heterogeneous Network for 5G System

1.4 Objectives

1.4.1 General objective

The main objective of this, thesis work is to optimize the power of massive MIMO in

heterogeneous network by reducing the total power consumption in the downlink system.

1.4.2 Specific objectives

The specific objectives are:

• To analyze mathematical model that resolves the non-convexity of the original

optimization problem by convex approximations for power consumption in order to

improve system performance.

• To analyze the system performance, using low complexity algorithm and multiflow

regularized ZF beamforming techniques.

• To analyze the required backhaul and received power in terms of antenna number.

• To evaluate energy efficiency in the single cell downlink system.

• To compare the power consumption of homogeneous and heterogeneous networks

in a single cell environment.

• To show the effect of number antenna for both MBS and SBS in the system .

• To evaluate the radiated power of MBS and SBS in the downlink system.

1.5 Methodology

In this thesis work, it has been investigated the potential improvements in power

optimization by modifying the classical macro-cell with massive MIMO at the BS, which

is overlaid with small cell BS. This can be achieved certainly, assigning each user to the

optimal transmitter of BS or small cell BS. To combine these small cell BSs to massive

MIMO have been proved as one of an efficient way to achieve the maximum EE. The

methods used to achieve the desired objectives of this thesis were as follows. First, related

literature about massive MIMO BS offers higher data rates due to spatial multiplexing

and robustness against fading due to spatial diversity with the same time and frequency
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resources and small cell BS an efficient way to provide local capacity enhancements, which

reduces the average distance among users and transmitters, correspondingly results in

lower propagation losses and higher EE. Second, spatial coordination of MBS and SBSs

this comes at the cost of highly HetNet topology, it is possible to improve the capacity

of the network, with the features like EE and high coverage. Finally, provide using

MATLAB simulation results shows the total power consumption can be greatly improved

by combining massive MIMO and small cell BSs, this is possible with both optimal and

low complexity beamforming.

1.6 Scope of this thesis

This thesis paper contains two basic tasks which, have been accomplished, the first

task is to focus massive MIMO and small cell BS, due to the overall performance and

coordination issue in the total power consumption, which is the dynamic and static power

consumption to analyze the EE, information rate and minimize the transmitted power.

Based on that concept using this combination compare different number of antennas in

the MBS and SBSs, control the interference between them, non coherent multi flow regu-

larized ZF as beamforming direction and adding low complexity beamforming algorithm

to minimize the total power consumption to validate all these by simulation.

The second task is, to analyze static part of power consumption from the total power,

which have small and constant value. To maximize the EE optimize the number of SBSs

(λSBSs), number of antennas(N) per SBS, the number of users (K) per cell and optimized

the transmitted power (Ptx) as the required parameters, perfect channel knowledge and

zero forcing precoding. Here in this part analyze only SBSs using Lambert function for

mathematical problem which have shown using MATLAB simulation.

1.7 Significance of the study

The significance of this paper comprises of the use of massive MIMO and small SBSs

scheme for power optimization.

• In this thesis work, analyzing the potential of massive MIMO and small site BS

from an EE perspective.

• Adding small cells to the network and large number of antennas at the macro site

BSs to satisfy the user’s in future 5G networks.
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• This thesis explores future improvements in power optimization by modifying the

existing macro site BS with massive MIMO and overlaying it with small site BSs

while maintaining a low complexity.

• The other significance is using a geometric approach that analyzes the feasible

region governed by the constraints, which gives rise to the optimal radiated power

control solution.

1.8 Thesis organization

This thesis work contains six different chapters. These are, chapter one, which in-

cludes introduction, capacity scaling dimension of future cellular networks, technological

overview of the topic, the statement of problems and objective, methodology, scope and

significance of the study. Chapter two is the literature review. Chapter three about mas-

sive MIMO and heterogeneous network which contains point to point MIMO , MU MIMO

, massive MIMO ,massive MIMO precoding techniques, HetNet components, HetNet de-

ployment. Chapter four is about the proposed system model which includes the analysis

and downlink description, channel model, EE, power optimization, Optimal beamform-

ing, SDP, low complexity, stochastic model and performance metrics of SBSs. Chapter

five contains simulation results and discussion. And finally, the conclusion of this thesis

work and recommendations for the future work are given in Chapter six.
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Chapter 2

Litreture Review and Related Work

2.1 Introduction

Massive MIMO is advanced MIMO system used for EE, SE has been expected that

multiple users are using single base station or multiple base stations with multiple antenna

arrays spatial multiplexing.

Recently, attempts have been made in co-channel deployment techniques, where the

available spectrum is fully used during both macro and small cells phase. To explain

the underlying ideas, the co-channel TDD and the co-channel reverse TDD modes [25].

However, quality of interference estimation and rejection varies significantly between the

co-channel TDD and the co-channel reverse TDD, also it requires tight timing synchro-

nization of all devices.

In addition, spatial blanking techniques are more resource-efficient than interference

mitigation techniques, such as almost blank subframes and fractional frequency reuse,

which are proposed under the enhanced Inter Cell Interference Coordination (eICIC) in

the current LTE standards [27]. This is because spatial blanking techniques avoid the

need for orthogonalizing time-frequency resources by spatially blanking out the domi-

nating interference subspace during each time-frequency slot. However, covariance-based

blanking relies on quasi-static channels and very sensitive to pilot contamination.

2.2 Related works

Massive MIMO is advanced MIMO system used for EE, spectral efficiency and throughput

optimizations. Since, multiple antennas exists at the base station and at the UE side,

it has been expected that multiple users are using single base station or multiple base

stations with multiple antenna arrays spatial multiplexing.

Recently, attempts have been made in co-channel deployment techniques, where the

available spectrum is fully used during both macro and small cells phase. To explain

the underlying ideas, the co-channel TDD and the co-channel reverse TDD modes [25].

However, quality of interference estimation and rejection varies significantly between the

co-channel TDD and the co-channel reverse TDD, also it requires tight timing synchro-
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nization of all devices.

In addition, spatial blanking techniques are more resource-efficient than interference

mitigation techniques, such as almost blank subframes and fractional frequency reuse,

which are proposed under the enhanced inter cell interference coordination (eICIC) in

the current LTE standards [27]. This is because spatial blanking techniques avoid the

need for orthogonalizing time-frequency resources by spatially blanking out the domi-

nating interference subspace during each time-frequency slot. However, covariance-based

blanking relies on quasi-static channels and very sensitive to pilot contamination.

Lastly, EE-maximization in massive MIMO HetNets has also been attempted through

the use of appropriate user association techniques. Conventional user association tech-

niques based on reference signal received power or reference signal received quality may

not be suitable for massive MIMO HetNets because these techniques do not perform well

for cells with asymmetric transmission powers, number of antennas, and load distributions

[25].

Additionally, biasing techniques, which artificially scale the by a bias term to offload

traffic from macro-cells to small cells, may not be effective because these methods do not

balance traffic within each network tier and are generally based on average performance

metrics. Generally, the joint optimization problem of user association, precoding design,

and power allocation is known to be non-deterministic polynomial-time hard. Fortu-

nately, in the massive MIMO regime, this problem is decoupled because the asymptotic

UE rates are independent of each others cell association. Thanks to this simpliffication,

studies such as propose optimal user association algorithms which achieve efficient load

balancing, both within and across network tiers [27].
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Chapter 3

Massive MIMO based Heterogeneous Net-

works

3.1 Introduction

MIMO technology has extensively studied during the last two decades and applied to

many wireless standards because of its ability to significantly improve the capacity and

reliability of wireless systems. It is the multiple antenna technology that develops and

provides a significant stay in wireless broadband requirements such as LTE and Wi-Fi

for wireless communications.

The primary aspect of MIMO is the use of multiple antennas on the transmitter and

receiver sides to provide numerous acceptable signal routes, which will enhance efficiency

in terms of data rate and reliability of connections, but at the expense of increased

hardware complexity and energy consumption of both ends of signal processing.

Due to the popularity of smart phones, cellular network operators have faced chal-

lenges in recent years to meet the exponential traffic growth. This exponential growth

in data traffic and the continuous growth of various services and applications started the

investigation of the 5G for future cellular systems [9]. In the future, 5G wireless net-

work users will require more data traffic and additional services compared to the current.

Massive MIMO and HetNets are both deliberate as critical technologies in the future 5G

wireless system due to the ability to achieve massive improvements in network coverage

and throughput within restricted system resources. Small cells can be used in combi-

nation with macro cells to develop multi tier or HetNets capable of delivering higher

capacity and quality than conventional homogeneous networks[10].

To meet future high traffic demands, 5G networks need to be built to enhance network

performance in terms of ability, EE, latency, network security and overall robustness

[9, 11]. However, a mere evolution of the legacy network architecture could not achieve

the dramatic network performance enhancement targeted by 5G. Therefore, the future

architecture of the cellular network is requested to incorporate various technologies for

radio access. Thus, 5G is not only envision as an evolution of LTE, but it should also

consider new potential technologies that were not included in the previous networks.
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To address this challenge, a factor of 1000 over the next ten years requires an increase

in network capacity. Since spectral resources are scarce, there is universal agreement that

can be achieved by densifying the network which, is deploying more antennas per unit

area into the network.

3.2 MIMO downlink transmission

Spatial multiplexing, a spatial diversity allows a MIMO BS to transmit different

data streams on the same resource block at the same time [15, 23]. If technique, all

the transmitted data streams belong to one user, the system is known to operate in

the singleuser MIMO (SU-MIMO) mode, where as if the data streams are intended for

different users, the system is known to operate in the multiuser MIMO (MU-MIMO)

mode. SU-MIMO makes it possible to achieve substantial peak data rates for a single

user and MU-MIMO offers good performance trade-off.

As one of the most effective means to improve the system spectrum efficiency, trans-

mission reliability and data rate. As the MIMO implementations, the most modern stan-

dard, LTE-Advanced, allows for up to eight antenna ports at the base station and the

corresponding improvement is relatively modest. MIMO technology is classify into three

categories, whose development occurred during roughly disjoint epochs: Point-to-point

MIMO, multiuser MIMO and massive MIMO [7, 8].

3.3 Point-to-point MIMO

Point-to-point MIMO emerged in the late 1990s and represents the simplest form of

MIMO. In Point-to-point MIMO, a BS equipped with an antenna array serves a terminal

equipped with an antenna array, with both arrays connected by a channel such that every

receive antenna is subject to the combined action of all transmit antennas [7].

Consider a narrowband point-to-point MIMO communication system equipped with

Nt antennas at the transmitter and Nr antennas at the receiver, as shown in Figure 3.1.

Different terminals are orthogonally multiplexed, for example via a combination of time

and frequency division multiplexing. In each channel use, a vector is transmitted and

a vector is received. In the presence of additive white Gaussian noise at the receiver,
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Shannon theory yields the following formula for the link SE (in b/s/Hz):

CDL = log2

∣∣∣∣IK + ρDL
N
GGH

∣∣∣∣ (3.1)

where, G is an N × K matrix that represents the frequency response of the channel

between the BS array and the terminal array and ρDL is downlink SNR, which is propor-

tional to the corresponding total radiated powers, N is the number of BS antennas and

K is the number of terminal antennas.

Figure 3.1: point to point MIMO [8]

3.4 Multiuser MIMO

A multiuser MIMO concept is for a BS to serve a multiplicity of terminals using

the same time-frequency resources, which illustrated in the Figure 3.1. Effectively, the

multiuser MIMO scenario is obtained from the point-to-point MIMO setup by breaking up

the K antenna terminal into multiple autonomous terminals. MIMO, technology relies

on multiple antennas to simultaneously transmit multiple streams of data in wireless

communication systems.

MU-MIMO in cellular systems brings improvements on, increased data rate, because

the more antennas, the more independent data streams can be sent out and the more

terminals can be served simultaneously, improved EE and reduced interference. Hence,

in the setup in Figure 1.3 the BS serves K terminals. Let G be an N × K matrix

corresponding to the frequency response between the BS array and the K terminals. The
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Figure 3.2: Multi User MIMO [8]

downlink spectral efficiency of MU MIMO is given as

CDL = max
(vk≥0,

∑K
k=1 vk≤1)

log2

∣∣∣∣IN + ρDLGDvGH

∣∣∣∣ (3.2)

v = [v 1, , , , , , , , vK ]T , ρDL is the downlink SNR. The computation of downlink capacity

according to Eq.3.2 requires the solution of a convex optimization problem.

Note that the terminal antennas in the point-to-point case can cooperate, whereas the

terminals in the multiuser case cannot. Multiuser MIMO has two fundamental advantages

over Point-to-Point MIMO. First, it is much less sensitive to assumptions about the propa-

gation environment. For example, LoS conditions are stressing for Point-to-Point MIMO,

but not for Multiuser MIMO. Second, Multiuser MIMO requires only single-antenna ter-

minals. Notwithstanding these virtues, two factors seriously limit the practicality of

multiuser MIMO in its originally conceived form.

3.5 Massive MIMO

The next generation mobile networks alliance believes that 5G should be brought

out by 2020 to satisfy the continuously increasing demand for higher data rates, higher

EE, larger network capacity and higher mobility required by new wireless applications.

The industry generally believe that compared to 4G, the 5G network should increase

the system capacity by 1000 times, enhance the SE, EE and data rates by 10 times and

increase the average cell throughput by 25 times [9].

Massive MIMO is an emerging technology, which scales up MIMO by possibly orders

of magnitude compared to current state-of-the-art. Massive MIMO relies on spatial mul-
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tiplexing that in turn relies on the base station having good enough channel knowledge,

on both the uplink and the downlink.

Massive MIMO have many advantages, which comprises of the use of inexpensive low

power components and reduced latency. First, only the base station gets CSI. Thanks to

channel hardening, no channel estimation is required at the terminals. By operating in

TDD mode and exploiting reciprocity of the propagation channel, the amount of resources

needed for pilots only depends on the number of simultaneously served terminals, K.

This renders massive MIMO entirely scalable with respect to the number of base station

antennas, N. When N is large, linear processing at the base station is nearly optimal[7, 8].

The asymptotic Shannon capacities on the downlink (CDL) for a multiuser MIMO

channel under favourable propagation are given by [8]

CDL = max
(ak≥0,

∑
ak≤1)

log2(1 + pd,kNakβk) (3.3)

where pd,k is the downlink signal to noise ratios (SNRs) for the kth UE, βk represents the

large-scale fading coefficient for the kth UE, and ak, k = 1, 2, .......K is an optimization

vector to obtain (CDL).

Figure 3.3: Example of a downlink massive MIMO system where the base station an-

tenna number N is larger than the number of UEs K. Data streams are simultaneously

transmitted to all UEs in the cell [12]

It is a form of multi-user MIMO where BS deploys an antenna array with hundreds

of active elements to serve tens of active UEs in the same time frequency resource block

[12, 13]. Figure 3.3, illustrates the concept of a typical downlink massive MIMO system,

where multiple data streams for different intended UEs are precoded using CSI estimated

from training phase, and sent out simultaneously from the BS. It has been shown that as
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the BS antenna array scales up, beams steered at different UEs will eventually be almost

orthogonal to each other. In this regard, massive MIMO enables each of its UEs to enjoy

a wireless channel which, have high power gain and small crosstalk.

3.5.1 Massive MIMO challenges

Massive MIMO technology depends on phase-coherent but computationally very simple

processing of transmissions from all the base station antennas. Large amounts of data are

generated in typical massive MIMO systems with large antenna arrays. The data needs to

be processed in an efficient manner and simple processing methods are therefore required.

The simple methods can preferably be linear, but performance of linear processing may

not be accurate enough in some cases [14]. This presents a need for fast converging

non-linear precoding or beamforming algorithms.

Since massive MIMO relies on the law of large numbers, the large number of RF

chains required presents increased costs and energy consumption. Thus the equipment

is likely to be low cost and hence relatively inaccurate. This means that massive MIMO

systems are more prone to errors in CSI acquisition due to hardware impairments. In

addition, operation with the TDD scheme requires reciprocity calibration, which has

to be performed regularly. In order to address these challenges, the concept of hybrid

beamforming has been proposed for massive MIMO systems. Hybrid transceivers use

analog beamformers in the RF chains, coupled with digital beamforming in the baseband

through up/down converters [15].

In a multi-cell massive MIMO system the number of available orthogonal pilot se-

quences used for channel estimation can easily be exhausted. The negative effects that

result from the reuse of pilot sequences in adjacent cells in a multi-cell network are

termed pilot contamination [16]. Using contaminated channel estimate results for down-

link beamforming results in users using the same pilots experiencing interference. Some

pilot contamination coordination techniques for large-scale antenna systems are based on

BS coordination and applying pilot contamination precoding [17–20].

3.5.2 Massive MIMO for interference elimination techniques

There are some linear precoding techniques for downlink transmission in massive

MIMO system.
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ZF precoding

The ZF precoding method eliminates inter-user interference by transferring the signal to

the expected user and forcing zeros into the direction of other users. By assuming perfect

CSI at the transmitter, the ZF precoding scheme ensures zero interference, although this

comes at a cost of reduced power received by each user [17]. This results in the users

having low QoS in terms of data transmission rate. The ZF precoding scheme makes

use of a pseudo-inverse of the channel matrix to determine the precoding matrix, WZF ,

which is given by [14],

WZF = HH(HHH)−1 (3.4)

Where HH is the is the Hermitian inverse of the channel matrix H.

MMSE precoding

MMSE precoding is an optimal precoding technique that obtains the precoding matrix

by minimizing the MSE subject to power constraint [18]. By applying the Lagrangian

method with the average power constraint at each transmit antenna, the optimal MMSE

precoding matrix is

WMMSE = HH(HHH + αIK)−1 (3.5)

α =
K

pb
with K being the number of users served by the BS with power limit pb and IK

being a K ×K identity matrix. It is concluded that the precoding technique of MMSE

provides optimal precoding through a trade-off between suppression of interference and

EE.

MRT precoding

MRT is a linear precoding technique that maximizes SNR for the users, and it is best

suited to application in massive MIMO with low signal power transmission [19]. MRT has

an additional advantage over ZF in that it can be implemented in a distributed massive

antenna system. It was shown that by increasing the number of antennas at the BS while

keeping the number of users fixed.

WMRT = αIMRTHH (3.6)

Where αIMRT is a normalization constant, which ensures that the BS transmit power

constraint, is satisfied.
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Regularized zero forcing

RZF was developed with the aim of achieving the near optimal performance of ZF in

practical applications [20]. It is a precoding technique that is applicable to distributed

massive MIMO systems, where the overall beamforming calculations are broken down

into smaller, less complex calculations carried out in groups [20]. RZF is different from

ZF which introduces a regularizing parameter and a set of linear precoders can achieve

an RZF framework by choosing this parameter correctly. The precoding matrix for the

RZF method is provided by

WRZF = (HHH + Fdh + βIM)−1H (3.7)

Where Fdh is a deterministic Hermitian non negative matrix and for the considered

setups, to derive the effective SINR at a given UE for the RZF precoder as N, K −→∞,

while the ratio N
K

= β is fixed regularizing parameter value 2, IM being aM×M identity

matrix. It has been shown that by reducing the multiuser interference, RZF significantly

outperforms MRT and they both achieve the same performance when RZF have an order

of magnitude fewer antennas per user terminal.

3.5.3 Backhauling

Backhauling is the transmission of data back to the basic core network from the base

station, either through a direct link to the core network or via online connection [21]. It

is possible to provide point-to-multipoint wireless backhaul from the MBS to a fraction

of the SBSs with massive MIMO infrastructure in place.

Support the backhaul traffic from radio switch to cell site wirelessly becomes popular

due to the viability and cost-efficiency. Wireless backhaul allows operators to control

their network an end-to-end principle instead of leasing wired backhaul connections from

third parties [22]. However, the optimal selection among wireless backhaul solution de-

pends on several factors that includes cell site location, propagation environment, desired

traffic volume, interference conditions, cost efficiency, EE, hardware requirements and

the availability of spectrum [23].

Massive MIMO BS ensure coverage and serve highly mobile UEs while the SBSs

provide high capacity for indoor and outdoor hotspots. The unrestrained small cell

deployment "where needed" rather than "where possible" requires a high-capacity and

easily accessible backhaul network [22].

[ Page - 21 -]



Power Optimization of Massive MIMO in Heterogeneous Network for 5G System

Massive MIMO for wireless backhaul

Massive MIMO plays a key role in HetNets to ensure coverage over large areas and to

serve fast-moving UEs. A two tier network consisting of massive MIMO BS and SBSs

together with a synchronized TDD protocol allows the BSs to use their excess antennas

to reduce intratier interference. Massive MIMO is also a promising solution for wireless

backhaul provisioning to a large number of SBSs, without the need for LoS links [23].

Massive MIMO for wireless backhaul have the following additional advantages:

• No standardization or backward compatibility required for backhauling, manufac-

turers can use proprietary solutions and rapidly integrate technological innovations.

• The MBS - SBS channels vary very slowly with time, due to the fixed deployment.

• In wireless backhaul links, SBSs only require a power connection to be operational.

• Line of sight not necessary if operated at low frequencies.

Consider the massive MIMO cellular network with a single cell BS having N anten-

nas, that operate according to a synchronous TDD protocol. Additionally, simplifying

assumption that a BS have N antennas and serve S SBSs each and that perfect CSI is

available.

A power minimization algorithm from [24], which allows to fix a desired SINR target

γts for each backhaul link in each cell and to find the precoding vectors wts and transmit

powers ηts that achieve the minimum necessary total transmit power.

In other words, to solve the optimization problem, wts is the beamforming vector of BS

t towards SBS s in its cell, γts is the target SINR of the backhaul link to SBS s in cell t,

SINRDL
ts is the donlink SINR of the backhaul link to SBS s in cell t : where hmts ∈ CN×1

is the channel from BS to SBS s in cell t and L is the number of of BSs.

minimize
{ηts,wts}

L∑
t=1

S∑
s=1

subject to SINRDL
ts ≥ γts t = 1, ..., L, s = 1, ..., S

‖wts‖ = 1 t = 1, ..., L, s = 1, ..., S

(3.8)

Where ηts,wts denotes the set of transmit powers and precoding vectors respectively

, and
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SINRDL
ts =

ηts|wH
tsh

t
ts|2∑L

l=1

(∑S
i=1(l,i) 6=(t,s) ηli|wH

li h
t
ts|2
)

+ σ2
DL

(3.9)

is the instantaneous SINR of SBS s in cell t. The solution to 3.8 is provided by the

following proposition.

Proposition 3.1([24]). The solution to 3.8, if it exists, is given by ηts and

w∗ts =
u∗ts
‖u∗ts‖

for t = 1, . . . ,L, s = 1, . . . , S, where

u∗ts =

( L∑
l=1

S∑
i=1

ζ∗lih
t
li(h

t
li)
H + IM

)−1

htts (3.10)

This solution can be computed by a standard fixed-point algorithm which iteratively

updates ζ∗ts starting from some random initial values.

ζ∗ts =

(
1 +

1

γts

)−1

(
htts

)H(∑L
l=1

∑S
i=1 ζ

∗
lih

t
li(h

t
li)
H + IM

)−1

htts

(3.11)

for t = 1,...,L and s = 1,...,S, where η∗ts s are the unique solutions to the set of equations

η∗ts
γts

∣∣∣∣(w∗ts)Hhtts∣∣∣∣2 − S∑
i=1,i 6=s

η∗ti

∣∣∣∣(w∗ti)Hhtts∣∣∣∣2 − L∑
l=1,l 6=t

S∑
i=1

η∗li

∣∣∣∣(w∗li)Hhtts∣∣∣∣2 = σ2
DL (3.12)

Eq. 3.12, can be written in a matrix form and solved through matrix inversion. Note,

that if 3.8 is infeasible, no solution to 3.11 is found or the fixed-point algorithm does not

converge.

3.6 Heterogeneous network

In modern wireless system devices, such as smartphones, tablets and laptops, are

generating more indoor traffic than outdoor, leading to an inhomogeneous data demand

across the entire network. However, the conventional cellular networks are designed

to cover large areas and optimized under homogeneous traffic profile, thus facing the

challenge to meet such unbalanced traffic profile from different geographical areas [25].

HetNets comprise of macro cell coverage overlaid with the small cell having different

transmit power, coverage and capabilities. A promising solution for the future generation

wireless networks to manage with the demands for better coverage and higher data rates

is the deployment of heterogeneous network, which consists of smaller, cheaper and less

energy consuming base stations. The use of HetNets have the potential to provide both

the required coverage and increase the data rates of the end users [26].
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3.6.1 Heterogeneous network deployment

There are two different approaches to heterogeneous deployment both of which provide

support for excessive range expansion [27].

• Resource partitioning and

• Shared cells (Soft-cell) schemes

Resource partitioning

To enable resource coordination among base stations, two different sets of resources

may be allocated for the two classes of nodes; namely high power (MBS) and low power

base stations (SBSs) [27]. By limiting the transmission of macro cells from using the same

time-frequency resources as the low power node, can be protected from the low power

node to the terminal [28]. .

Resource partitioning can be implemented also, into two ways

• Frequency domain partitioning.

The resources can be frequency domain (groups of sub-carriers) in a synchronous system.

By installing control signaling from the macro and low power nodes on separate carriers,

this technique protects downlink control signaling from the low power node in the range

expansion region. Assuming low-power node transmissions are synchronized with the

overlying macro, there is no major interference from the macro node to the control sig-

naling on the carrier in the range-expansion area. At the same time, data transmissions

can still benefit from the complete bandwidth of both carriers by using carrier aggregation

[27, 28].

• Time domain partitioning.

The resources can be time domain (slots or sub-frames) in a synchronous system. By

reducing macro transmission activity in certain subframes, this technique prevents down-

link control-signaling from the low-power node [28].

In both, frequency and time domain partitioning schemes, low power nodes create

new cells, with individual cells identities that differ from the macro cell identity. As a
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consequence, each low power node transmits unique system information and synchroniza-

tion signals; that is to say, each of these cells has separate broadcast channel, cell-specific

reference signal, primary synchronization signal and secondary synchronization signal

[27].

The soft cell approach

In the shared cells approach, low power nodes and the macro station do not create

new cells; therefore, they are all part of the same cell. This fact leads to a cell with

a unique cell identity and synchronization signals but with more than one transmission

points. As a result, different types of information can come from different sites, or in

other words, different transmission point, which are transparent to the UE [27].

So coordination between low power nodes and the macro station is one of the most

important issues in this approach. A terminal can derive the cell-specific reference signal

structure from the cell with the cell identity information and get the system information

it needs to access the network. On the other side, a transmission point is also just one or

more collocated antennas from which a terminal can receive transmissions of data [28].

This technique has some important benefits compared to the previous resource par-

titioning technique. Since there is only one cell formed by low power nodes and the

macro site, the deployment is easier because careful cell planning is not needed. Specified

that low power nodes can turn off their transmissions when they are not necessary, it is

possible to say that this technique is energetically efficient.

The soft cell scheme also allows an efficient use of the spectrum as there is no problem

with cell-specific reference signal interference. In addition, to these advantages, due to the

fact that transmission nodes are transparent to UE, soft cells can provide greater mobility

robustness than deployments with separate cells [27]. Traditional, handover procedure

is not required when moving between macro and low power nodes, so the probability

of dropped connections is lower, which further enhance the performance of the soft-cell

system.

In practice, this link should use high-speed microwave or optical fiber as it needs low

latency and a relatively high-capacity connection for tight coupling between macro and

low power nodes, where control and data signaling originate from different transmission

points [28]. With the exception of avoiding much of interfering with cell-specific refer-

ence signal transmissions, heterogeneous deployments using soft cells can provide greater

robustness of mobility than separate cell deployments [27, 28].
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3.6.2 Classification of heterogeneous network

Classical macro cell topology is inadequate to handle exponential growth of users and

their demand for data. Hence, need to gratify such a large number of users brings the

concept of heterogeneity in a cellular network. HetNets consist of macro cell coverage

overlaid with the small cell having different transmit power, coverage and capabilities

[21]. Therefore, this subsection briefly discuss about different types of small cell. Table

3. 1 summarizes the classification and various features of small cells.

Table 3.1: Specification of different nodes in HetNet[21].

Type Range Tx.Power Backhaul Applications Capacity

Macrocell BS Few km 46 dBm Dedicated wired outdoor < 1000 users

Pico cell BS 100m 33 dBm Wired indoor/outdoor 10 − 50 users

Femto cell BS 10 - 30m 20dBm Wired/wireless Indoor <5 users

Relay 100m 33dBm wireless indoor/outdoor 10 − 50 users

RRH Few km 46 dBm Optical fiber outdoor < 1000 users

Pico cell

Picocell BS is a low power, operator-deployed wireless access point using the same

backhaul and access features compliant with classical macroce. It has small physical

dimensions, in which an antenna radiating a transmit power ranging from 23 to 30 dBm

is usually integrated [29]. It should be noted that omnidirectional antenna is typically

installed, different from the directional antenna used for macrocell BSs. By covering a

radio range of 300 m and serving a few tens of mobile users, picocell can be deployed to fill

the macrocell coverage hole, or provide extra data service in the wireless hot spot areas.

Furthermore, through the capacity data offloading effect, more frequency-time resources

of the macrocell networks can be released, which is beneficial to macrocell terminals as

well [26].

Femto cell

Being an important part of HetNet, femtocell BS in the 3GPP standard, is usually

defined as a low power device operating in the licensed spectrum. Backhauled onto the

operator’s network via the wired internet connection, such as digital subscriber line, cable
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broadband access, or fiber, femtocells are designed to provide voice and high data-rate

sustained services for indoor environments, where a majority of user traffic comes from

[30].

Because of offloading indoor traffic from the macrocells to femtocells and employing

smaller cell sizes, femtocells bring a multitude of benefits, including more efficient spatial

reuse of spectrum, enhanced coverage and capacity for indoor applications, reduced cap-

ital costs and operational costs, better user experiences, and lower churn of subscribers.

Aiming to cover a range less 30 m, the femtocell BS is operated with a transmit power

less than 23 dBm [30].

Relay

Relay nodes have almost same transmission power and range as those of pico cells, but

connected to the core network through wireless backhauling. The major purpose of its

deployment is to improve edge performance and provide coverage to a dead zone users in

the macro cell. Relay nodes are armed with directional antennas to establish backhaul

links and with omni-directional antennas for access link establishment.

Remote radio head

RRH are high power, compact, low weight units mounted outside the macro BSs and

connected through a fiber optic cable. The central macro BS takes charge of the control

and signal processing. RRHs reduces power consumption and eliminate power losses

in antenna cable as some radio circuitry are moved to the remote antennas [16]. It

provides flexibility to the operators in deploying networks especially for those facing

physical limitations or site acquisition problems.
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Chapter 4

Proposed System Model

4.1 Introduction

The traditional radio coverage network is a macrocell topology, this network is used

to provide the large area coverage for mobile network. However, it could not manage the

extremely surging mobile users and quality of service which includes EE, capacity of the

network. Now, mobile users want faster data rate and more reliable service. In order

to deal with the explosive increase in mobile data traffic, the 5G communication system

have been at the head of theoretical research in wireless communications [8].

According to the expectations of 5G networks, it can be anticipated that energy

consumption is one important concern. Among these problems, this section focus on

optimizing the power consumption. Massive MIMO and HetNets are currently the two

known promising and efficient solutions for achieving high data rates, coverage gain and

addressing the continuous demand for ubiquitous mobile broadband services. The most

important need of massive MIMO is channel acquirement which uses time-division du-

plexing for the exploitation of channel reciprocity. Time division duplexing limits the

accuracy of channel estimation by the number of users and not with the number of BS an-

tennas [8]. HetNet deployments are an other promising alternatives that improve network

capacity, to expand coverage and improve spectrum and EE at low cost of deployment.

4.1.1 Combination of massive MIMO and small cell base stations

Complementing high-power massive MIMO macro cell BS with lower-power SBSs is

an interesting way to meet the expected demands for higher data rates and additional

capacity [28]. Here, the two network combination of multiple antenna system motivated

from massive MIMO and small cell at the BSs by minimizing the total power consumption

(static and dynamic) and satisfying QoS constraints , simultaneously [31].

The first and the primary method is to develop a massive MIMO network by deploying

large number of antennas in the form of antenna arrays at existing macro base stations

which helps in precise focusing of emitted energy on the specific users [31]. The second

technique in this chapter’s mainly stay, which helps in optimizing power. An overlaid

layer of small cell BS is deployed in this method that helps to offload traffic from BS.

28
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Small cells are an efficient means of improving local capacity such as urban hotspots

,campus, super market and other public areas. Therefore, most data traffic is sited and

demanded by users with low mobility, which reduces the average distance between users

and transmitters, leading to lower propagation losses and higher EE [32]. But, this comes

at the cost of highly heterogeneous network topology, which is difficult to control and

coordinate and thus give rise to inter-user interference. To meet this challenge, researchers

around the globe are now flowing their interest from small cells deployed by the user and

emphasizing small cell access points deployed by the operator. The key objective behind

the emphasis is that small cell access points depends on reliable backhaul connectivity

and coordination of base station and small cell access points.

In HetNets, gains in spatial reuse are utilized through the deployment of small cells

through extreme network densification [33]. Small cell base stations are relatively low-

power nodes with one or very few antennas and higher performance and expanded cov-

erage is obtained by substantially reducing the distance between small cell users (SUEs)

and SBSs. By exploiting the channel vectors spatial directionality in massive MIMO,

very effective inter tier interference management with comparatively low complexity can

be obtained [32].

Small cell deployment improves coverage and SE, as mobile devices are closer to base

stations. In addition, high SE and EE are achieved by base station equipped with a large

number of antennas [34]. Heterogeneous networks with massive MIMO are therefore

viewed as a powerful 5G architecture. While both small cell network and massive MIMO

are considered as important techniques for achieving high SE and EE. The two key

challenges are backhauling and interference management while deploying small cells in

the real world. Massive MIMO systems have remarkable properties to reduce or almost

eliminate interference in the heterogeneous network as they are more targeted and nullify

interference from the use of beamforming by small cell users. As it provides wireless

backhaul to small cell and can serve the active users simultaneously and thus improves

the backhaul capacity and overall performance of the cellular network.

4.1.2 Single cell downlink system model

In today’s wireless networks, due to several factors and limits like restricted resource,

bandwidth and energy is an important technical problem. Also due to coexisting and shar-

ing of same spectrum by several wireless networks leads to interference between different

networks. These problems can be tackled by using various techniques of optimization
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Figure 4.1: System model of massive MIMO macro cell base station combined with spatial

distribution of SBSs having NSBS = 4 antennas per SBS and K = 3 UEs uniformly

distributed within each cell.

such as linear, convex, semi-definite approximations.

Convex optimization has appeared in recent history as the most suitable methods

for algorithm design and study of wireless communication systems. Convex optimization

techniques are a great achievement due to some unique features. It has established to

be the most suitable methods for designing algorithms and studying wireless communi-

cation systems in the past. Because of some distinctive features, convex optimization

methodologies is a tremendous success. The first and most important reason that makes

it easy to use in wireless communication systems implemented is its fast and efficient

algorithms that solve convex problems. The second reason helps to achieve sight in the

ideal buildings of the solution, which exposes the nature of the wireless communication

problems. The last reason for its achievement is that it is already relatively well known

and makes it interesting for engineering applications [35].

Power optimization can be obtained from both the static and the dynamic part where

the static part depends on the transceiver hardware and a dynamic part is connected

to the emitted signal power [36]. In the dynamic part, massive MIMO and small cell

network promise potential progress, but at the cost of extra hardware. So it’s a better
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alternative to intensify the static part. In addition, it is essential that the dense network

topologies should be properly deployed and optimized for real improvement in the overall

EE.

At the BS, massive MIMO uses hundreds of antenna elements to serve tens of users

simultaneously at the same time as the time-frequency resource block (RB)[32]. Not only

does the large size of the transmit antenna array considerably increase the capacity with

excessive spatial dimensions, it also averages the impact of fast channel fading and offers

extremely sharp beamforming focused in small areas [36]. Besides from these, the high

degrees-of-freedom offered by massive MIMO can also reduce the transmit power.

On the other side, densely deploying low power access points into traditional high

power macrocells, a small cell improves the system capacity [42]. In this way, the dis-

tance between the transmitter and receiver can be significantly reduced, which results in

remarkably enhanced rate gains. Since small cells do not always have direct links to the

macro BS, they can be wisely deployed in accordance with the demand for traffic without

much cost on the fiber usage.

Massive MIMO is implemented in macro cells, where each MBS have N antennas and

communicates with K users simultaneously over the same time and frequency band,

N � K ≥ 1, whereas each SBS and user is a single antenna node [43]. To transmit K

data streams with equal power assignment, each MBS uses linear zero force beamforming.

Consider the perfect downlink CSI and reuse of universal frequency so that all levels share

the same bandwidth. All the channels undergo independent and identically distributed

(i.i.d.) quasi-static rayleigh fading.

4.1.3 System model analysis and downlink description

The system model consists of the combination of both massive MIMO and small cell

base stations such that the power constraints at the SBS and macro base station (MBS)

are fulfilled without compromising on QoS constraints. This work analyzes the power

optimization by employing massive MIMO at the base station and overlaying with small

cell base stations [44].

Consider a two-tier massive MIMO, HetNet downlink system model where macro BS

is overlaid with small BSs. There are S number of SBSs, where S ≥ 0, which are deployed

in a macro cell’s coverage area as shown in above Figure 4.1. The MBS and SBSs use non-

coherent joint transmission coordinated multipoint beamforming to deliver information

for K single antenna users.
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In this way, the MBS and SBSs cooperate in transferring data to the users, but every

BS sends a separate stream of data. The MBS is equipped with N antennas and SBSs

are equipped with NSBS antennas each, typically 1 ≤ NSBS ≤ 4, characterized by strict

power constraints that limit their coverage area. In comparison, the MBS has large power

constraints that can support high QoS targets in a large coverage area. The number of

antennas, NMBS in the macro site BS which N � K and the number of antennas in the

one of small cell BS or jth SBS is defined as Nj. The TDD protocol is considered to be

a primary enabler for estimating channel reciprocity without additional overhead [44].

4.1.4 Channel model

Channel models are the most important and desirable part of communication system.

Its importance in wide range of applications like in modulation, coding and multi antenna

system design. It is also useful in the selection of channel estimation method and channel

equalization. Since radio, propagation has a substantial impact on the performance of

future broadband systems so channel models have to be accurate. This point is suitable for

massive MIMO radio communication systems in which degrees of radio channel freedom

in space, time, frequency, and polarization can be used to satisfy the user’s requirements

in terms of bit rate, spectrum efficiency, and cost [44].

For the structure model, assuming that the channel conditions are known at both

sides of the channel. The channels between users and access points are consider as block

at fading, while for base station and small cell access points, the access points and users

are perfectly synchronized and coordinated with the TDD protocol, which perfect CSI is

available at the BSs. Each channel is equivalent to the combination of small scale fading

and large scale fading.

Consider the fading distribution of rayleigh as small scale fading. The large scale

fading include path loss, shadowing, penetration loss and the antenna correlation loss in

massive MIMO BS [44].

There are some parts of channel parameters in the macro site BS and small cell BSs

[45].

Path and penetration loss within 40 m from SBS point PLSBS−40,

PLSBS−40 = 127 + 30log10d(km) (4.1)

[ Page - 32 -]



Power Optimization of Massive MIMO in Heterogeneous Network for 5G System

Path and penetration loss at distance d (km) PLMBS

PLMBS = 148.1 + 37.6log10d(km) (4.2)

Noise floor (NF) in dBm,

NF(dBm) = −174 + 10log10(Bs) + Nf (4.3)

where d is the distance(km), Bs, is subcarrier bandwidth, Nf = -127dBm, is noise figure

and the pass loss (PL) = 20dB and Standard deviation (SD) = 7dB respective order.

4.2 Power consumption model

The main objectives of this section are to maximize EE by minimizing total power

consumption while supporting each user’s QoS constraints.

Considering that the channel matrix hk,j presented, before it is perfectly known at

transmitters and receivers by channel estimation [45]. The channel between the kth user

and the MBS and between the kth user and the jth SBS is denoted by hk,0 ∈ CNMBS×1

and hk,j ∈ CNSBS×1 , respectively.

So the total received signal at kthuser is model as

yk = hHk,0wk,jxk,j +
K∑

k=1,j 6=k

( S∑
j=0

hHk,jxk,jwk,j

)
+ bk (4.4)

where xk,j is the data transmitted from antenna j to user k, and W indicates the beam-

forming matrix. The last term in Eq.4.4 where bk ∼ CN(0, σ2
k) is refers to the symmetric

complex Gaussian receiver noise received unwanted signal with zero-mean and variance

σ2
k which is expressed in milliwatts(mW).

In this paper, multiflow regularized zero-forcing (MRZF) beamforming is adopted

for MBS downlink. Here the MBS and SBSs are linked by a backhaul network which

have a soft cell type allocation of resource, but for non-coherent linear communication

which infers to be, information symbols would be emitted immediately but each user are

served by multiple transmitters which is termed to be something like spatial multi-flow

transmission. This would enable users covered by one SBS to receive additional signal

from the other SBSs or MBS [46].

4.2.1 Quality of service

The QoS constraints is the information rate that each user must achieve in parallel.

Rk = log2(1 + SINRk) (4.5)
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These are defined as log2(1 + SINRk) ≥ γk Here, γk is the QoS target and SINRk is given

in Eq.4.5 of the kth user as follows [47].

SINRk =
|hHk,0wk,0|2 +

∑S
j=1 |hHk,jwk,j|2∑K

i=1,i 6=k

(
|hHk,0wi,0|2 +

∑S
j=1 |hHk,jwi,j|2

)
+ σ2

k

(4.6)

where wH
k,0 ∈ CNMBS×1 and wH

k,j ∈ CNSBS×1 represents the beamforming vectors.

Equation 4.6 provides the kth user’s signal to interference plus noise ratio.

The information rate (log2(1 + SINRk)) can be achieved by applying MRZF, cancelling

interference successively on symbols. Note that wk,j 6= 0 only for the jth transmitter

that serves the kth user. The MBS and jth SBS to user k are denoted xk,0 and xk,j

respectively, which originates from independent Gaussian codebooks as xk,j ∼ CN(0, 1)

for j = 0, ..........., S having unit power [45]. These beamforming vectors are the variables

that will serve as the source for solving the optimization problem.

4.2.2 Energy efficiency

Energy consumption have become a major concern in the design and operation of

wireless communication systems of the next generation. In fact, while communication

networks have been intended primarily to optimize performance metrics such as data

rate, throughput, latency for more than a century, in the last decade EE has emerged as a

new prominent figure of merit, due to economic, operational, and environmental concerns

[44]. Therefore, the design of the next wireless network generation will necessarily have to

consider EE as one of its pillars. Indeed, 5G systems will serve an extraordinary number of

devices, providing ubiquitous connectivity as well as state-of-the-art and rate demanding

services. For cellular network EE is defined as the ratio of network throughput and total

power consumed per unit area [48]. More generally, it can be defined as a measure of cost

benefit ratio.

Energy Efficinecy (bit/joule) =
Data throughput (bit/s)

Energy consumpption(joule/s)
(4.7)

4.2.3 Performance evaluation metrics

The performance evaluation of massive MIMO and SBS is done by calculating the total

power consumption which can be defined as follows:

Pr =

∑K
i=1 P

i
r

K
(4.8)
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where Pr is the average received power at users, P i
r is the power received at user i and K

denotes the total number of users. However, this total power consumption
∑K

i=1 P
i
r and

EE have inversely proportional.

4.3 Power optimizations

Optimization theory deals with the minimization of an objective function subject to

a set of constraints [50]. Wireless network design and optimization depends heavily on

mathematical modeling tools. Convex optimization is commonly used as a mathematical

method to solve a specific class of optimization problems, such as minimum squares and

linear programming problems [46, 48]. It can find the optimal solution for nonlinear

problems over convex constraint sets.

Convex optimization has been studied about complex problems, that can be solved as

easily as linear programs, such as semi-definite programs and second-order cone programs.

The power resources available for transmission need to be limited somehow to model

the inherent restrictions of practical systems. The total power consumption of each per

sub carrier can be demonstrated as Pdynamic + Pstatic [41] where

Ptotal = Pdynamic + Pstatic (4.9)

Pdynamic = µ0

K∑
k=1

||wk,0||2 +
S∑
j=1

µj

( K∑
k=1

||wk,0||2
)

(4.10)

Pstatic =
θ0

C
NMBS +

S∑
j=1

θj
C
NSBS (4.11)

with the dynamic and static terms respectively. The dynamic term is the collection of

the emitted powers,
∑K

k=1 ||wk,0||2 each multiplied with a constant µj ≥ 1 which would

represent the inefficiency of particular transmitter’s power amplifier having the values

µ0 = 2.577 and µj = 19.25 for MBS and SBSs. While the static power consumption is

proportional to the number of antennas and θ0 ≥ 0 which is the power dissipation of

filters, converters, mixers, baseband processing and number of antennas as well with the

constant values θ0 = 189mW for MBS and θj = 5.6mW for SBS respectively [45]. The

total number of subcarriers is C ≥ 1 where, C = 600 and also have an impact on the

equation each MBS and SBS is prone to Tj, which the power constraints.

In this thesis, to consider per-antenna power constraints for all BSs, which are more

practical than total power constraints when each antenna has its own radio frequency

chain [46].
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The per antenna power constraints T0 for each MBS and Tj for the jth SBS can also be

expressed, respectively, as

K∑
k=1

wH
k,0D0,twk,0 ≤ d0,t, t = 1, ..........T0 = NMBS (4.12)

K∑
k=1

wH
k,jDj,twk,j ≤ dj,t, j = 1, .., NSBS, t = 1, ..Nj (4.13)

where D0,t ∈ CNMBS×NMBS and Dj,t ∈ CNSBS×NSBS , for j = 1........,S with order N ×
N × T , where N and T stands for total number of antennas and total number of power

constraints, respectively. The positive semidefinite zero weighting matrices with only "1"

at the tth diagonal element and the corresponding limits are dj,t ≥ 0.

However, these constraints are given in advance and based on [42],

• Physical limitations, to protect the dynamic range of power amplifiers;

• Regulatory constraints, to limit radiated power in certain directions;

• Interference constraints, to control interference caused to certain users;

• Economic decisions, to manage the long-term cost and revenue of running a base

station.

The parameters Dj,t, dj,t are fixed and describe any combination of per-antenna, per-

array and soft shaping constraints [43]. Typically the value of d0,t � dj,t for 1 ≤ j ≤ S,

represent the maximum transmitted powers from the tth antenna of the MBS and the jth

SBS, respectively [44].

The numerical evaluation considers per-antenna constraints of dj power in (mW) at the

jth transmitter, given by T0 = NMBS, Tj = NSBS, dj,t = dj ∀t and

D̃j,t = diag(Dj,t, ....., DM,t) (4.14)

where

D̃j,t =

1, if j = t;

0, otherwise.

So for optimizing the power, the total power consumption Pdynamic + Pstatic from Eq.4.9

have been reduced, while satisfying the QoS constraints in Eq. 4.5 and Eq. 4.6 and the

power constraints in Eq. 4.12 and Eq.4.13 thus in [45]
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minimize
wk,j ∀kj

Pdynamic + Pstatic

subject to log2(1 + SINRk) ≥ γk, ∀k
K∑
k=1

wH
k,0D0,twk,0 ≤ d0,t, ∀j,t

K∑
k=1

wH
k,jDj,twk,j ≤ dj,t, ∀j,t

(4.15)

In the single cell downlink system model shown that there are three possibilities of

case 2 as described in the next section 4.4 for optimizing the power.

4.4 Optimization based on beamforming and algorith-

mic solution

To increase the EE of a wireless communication system is use low-complexity algorithms

to allocate the system radio resources to maximize EE rather than through Eq.4.15 QoS

have complicated functions with the beam vectors. It creates a non-convex problem in

the formulation of original vectors [45].

So the above Eq.4.15 can be redesigned as a convex optimization problem which can

be solvable in polynomial time with the help of standard algorithms. In addition, the

optimal power minimizing solution is self-organizing in the sense that each user will be

served by only one or few transmitters. It has a low convex structure and is extracted by

means of the semi definite relaxation [51].

4.4.1 Convex and self dual minimization software

Convex (CVX) and self dual minimization software (SeDuMi) is an add on for MATLAB

which, solve optimization problems with linear quadratic and semidefiniteness constraints.

It is possible to have complex valued data and variables in SeDuMi [50, 51]. SeDuMi

implements the self-dual embedding techniques for self-dual homogeneous optimization

cones. Additionally, large scale optimization problems are solved efficiently by exploiting

sparsity.
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4.4.2 Semidefinite programming

Semidefinite programming (SDP) has now become an important algorithm designing

tool for a wide variety of optimization problems [48]. This part make known to SDP

relaxation procedure for quadratic optimization problems that can generate a provably

approximately optimal solution with a randomized polynomial time complexity [50].

SDP relaxation

In the semidefinite programming (SDP) relaxation approach for the quadratic constrained

quadratic program (QCQP) problems, which has not only a polynomial time computa-

tional complexity, but also guarantees a worst case approximation performance. Mathe-

matically, a QCQP can be written as

minimize
x

(XTP0X) + (qT0 X) + r0

subject to (XTPiX) + (qTi X) + ri ≤ 0; i = 1, . . . ,m.
(4.16)

where x, qi ∈ RK , ri ∈ R and Pi ∈ RK×K are symmetric. If all the Pi are positive SDP,

where Pi � 0. The QCQP in Eq 4.16 is convex and can be efficiently solved to the global

optimum. However, if at least one of the Pi is not SDP, the QCQP is nonconvex and, in

general, computationally difficult to solve.

Since the nonconvex QCQPs is NP-hard in general, a polynomial time approximation

method is desired. To put the SDP relaxation into context, let us consider the following

homogeneous QCQP:

νqp =
minimize

x
Tr(P0X) + r0

subject to Tr(PiX) + ri ≤ 0, i = 1, . . . ,m.
(4.17)

The SDP relaxation makes use of the following fundamental observation:

X = xxT ⇐⇒ X � 0, which is componentwise inequality,

rank(X) = 1 and xTPix = Tr(PiX)

minimize
x

Tr(P0X) + r0

subject to Tr(PiX)) + ri ≤ 0, i = 1, . . . ,m.
(4.18)

Using this observation, it can be linearize the QCQP problem in Eq 4.16 by representing

it in terms of the matrix variable X. Specifically, note that xTPix = Tr(PiX), so Eq.4.19
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can be rewritten as

minimize
x

Tr(P0X) + r0

subject to Tr(PiX)) + ri ≤ 0, i = 1, . . . ,m.

X � 0

rank(X) = 1

(4.19)

From the above expression the only nonconvex constraintis rank(X) = 1, one can

directly relax the last constraint, in other words, dropping the nonconvex rank(X) = 1

and keeping only X � 0, to obtain the following SDP:

νsdp =

minimize
x

Tr(P0X) + r0

subject to Tr(PiX)) + ri ≤ 0, i = 1, . . . ,m.

X � 0

(4.20)

The relaxed problem (νsdp) gives a lower bound on the optimal objective value, that

is, νsdp ≤ νqp. In fact, this gives the same lower bound as the Lagrangian dual of νqp
because it can be shown that the SDP relaxation problem νsdp is, the bi-dual of νqp [50].

Now, based on the above expression Eq. 4.18 - 4.20 the constraints can be convert to

convex constraints by using some positive semidefinite relaxation matrices as

Wk,j = wk,jwH
k,j, ∀k,j (4.21)

This matrix should be positive semidefinite, denoted as Wk,j � 0. The rank of the

matrix is rank(Wk,j) ≤ 1 and the rank of the matrix can be zero, which implies that

Wk,j = 0. However, this one is dropped as a relaxation without loss of optimality. This

becomes a convex semidefinite optimization problem. Additionally, it will always have

an optimal solution W∗
k,j∀k,j where all matrices satisfy rank(W∗

k,j) ≤ 1.
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By incorporating the MBS and SBSs in sum expressions, can rewrite as follow

minimize
Wk,j�0 ∀k,j

S∑
j=0

µj

( K∑
k=0

Tr(Wk,j)

)
+ Pstatic

subject to (Wk,j) ≤ 1, ∀k,j
K∑
k=1

wH
k,0D0,twk,0 ≤ d0,t, t = 1, ......T0 = NMBS

K∑
k=1

wH
k,jDj,twk,j ≤ dj,t, j = 1, ......NSBS

S∑
j=0

hHkj

((
1 +

1

2γk − 1

)
Wkj −

K∑
i=k

Wij

)
hkj ≥ σ2

k, ∀, k

S∑
j=0

hHkj

((
1 +

1

γ̃k

)
Wkj −

K∑
i=k

Wij

)
hkj ≥ σ2

k, ∀k

K∑
k=1

Tr

(
D0,tWk,j

)
≤ dj,t ,∀j, t

(4.22)

where the target QoS have been transformed into SINR targets of

γ̃k = 2γk − 1 and σ2
k variance [see: Appendix - B] as

γ̃k =
PkV

H
k AkVk∑

i 6=k PiV
H
i AkVi + 1

=
Ωa,kV

H
k AkVk

V H
k BkVk

(4.23)

Except for the constraints of ranks, the expression in Eq.4.22 is convex optimization. But

by relaxing these constraints, optimality can be achieved without losing its optimality.

There are two special cases required to accomplish this:

The first reason is to provide the complete analysis of the problem of complexity and the

second reason is provided to analyze the problem of power optimization [48].

Case 1. For achieving a convex semidefinite optimization problem, consider a

semi-definite relaxation of Eq.4.22 in which the limitation of position rank(Wk,j) ≤ 1 are

extracted. Additionally, it will always have an optimal solution {W∗
k,j ∀k, j} where all

matrices satisfy rank (W∗
k,j) ≤ 1.

Case 2. For achieving the optimality, consider {W∗
k,j, ∀k, j} as the optimal solution

to Eq. 4.22 and for each user k there are three options:

• W∗
k,j = 0 , 1 ≤ j ≤ S. It is only assisted by the macrocell base station.

• W∗
k,0 = 0, and W∗

k,i = 0 for i 6= j. It is only assisted by one of the small cell base

stations and finally
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•
∑K

k=1 Tr(D0,tW∗
k,j) = d0, t , Same as

∑K
k=1 Tr(D0,tW∗

k,j) = dj, t

It is assisted by a combination of macrocell base station and small cell base stations,

where at least one transmitter j has an active power constraint t [45].

This statement now, illustrates the above three possibilities indicated in the 2nd part

as a special case. This result demonstrates that users can be served by multi-flow trans-

mission, but at least one transmitter is selected for each UE to achieve optimality [45].

Users close to an SBS are served by it alone, while most other users are served by the

MBS. Around each SBS there are transition regions where multi-flow transmission is

operated.

Since the SBS is not able to fully support the QoS targets, the coverage area around

each SBS in which multi-flow transmission is applied will be started to change. The

other advantage of this consequence is a favorable outcome as a reduced complexity of

transmission or reception is often optimal [48]. The power transition areas will vanish if

the power limitations are removed.

4.4.3 Low complexity algorithm for resource allocation

This algorithm defines the spatial soft cell coordination. The level of complexity related

to optimal beamforming is relatively modest, but when NMBS and number of smal cell

bases grow larger, i.e. for real-time implementation, the algorithm becomes infeasible

[44].

Additionally, Case 1 provides a centralized algorithm requiring the MBS to gather all

channel information. Distributed algorithms can definitely be achieved using primary or

dual decomposition methods, but these require iterative backhaul signaling of coupling

variables, so they are not suitable for real-time implementation as they require iterative

coupling variables backhaul signals [42]. Therefore, when calculating less complex codes

for non-coherent coordination, Case 1 is considered the standard.

Use non-iterative multiflow regularized zero-forcing beamforming with low complexity,

Therefore to validate this, a less complex non-iterative multiflow RZF beamforming vector

V ∈ CK×Kt is computed by :

Vk,j =
Ṽk,j

‖Ṽk,j‖
∀k ∈ {1, 2..., K}, n ∈ {1, 2..., Kt} (4.24)

where K is the number of users, Kt number of transmitters and Ṽk,j is given by

Ṽk,j =

( K∑
i=1

1

σ2
i

hHi,jhi,j +
K

γ̃kdj
I
)−1

hk,j (4.25)
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• Each transmitter compute j = 1,..............,S

Vk,j =

(∑K
i=1

1
σ2
i
hHi,jhi,j + K

γ̃kdj
I
)−1

hk,j∥∥∥∥(∑K
i=1

1
σ2
i
hHi,jhi,j + K

γ̃kdj
I
)−1

hk,j

∥∥∥∥ ∀k (4.26)

The magnitude of the channel have become

gi,k,j =

∣∣∣∣hHi,jVk,j

∣∣∣∣2 ∀i,k (4.27)

where gi,k,j be a scalar which denotes the equivalent channel status of each access

point, given by Eq.4.27.

Dj,t,k = VH
k,jDj,tVk,j ∀t, k (4.28)

where, Dj,t is the block diagonal matrix [see: Appendix - B].

• The jth SBS sends the scalars of gi,k,j, Dj,t,k ∀k, i, t to the MBS. The MBS solves

the convex optimization problem gi,k,j and Dj,t,k ∀k,i,t

minimize
Pk,j≥0 ∀kj

S∑
j=0

µj

( K∑
k=1

Pk,j

)
+ Pststic

subject to
K∑
k=0

Dj,t,kPk,j ≤ dj,t ∀j, t

S∑
j=0

Pk,jgk,k,j

(
1 +

1

2γk − 1

)
−

K∑
i=1

Pi,jgk,i,j ≥ σ2
k ∀k

(4.29)

• The power allocation p∗k,j∀k that can solve Eq.4.29 is sent to the jth SBS, which

computes

Each AP obtain the final beamforming vector through

w2
k,j = p∗k,jV

2
k ∀k (4.30)

this imply that wk,j =
√
p∗a,k,jVk ∀k

This algorithm is applied to the heuristic RZF beam forming in which transforms the

problem given in Eq.4.15 into the problem of power allocation provided in Eq. 4.27, while

maintaining it less complex regardless of the antenna number [50]. In this case, the code

does not give iteration, but some scalar variables are interchanged between the MBS and
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SBS points to maintain coordination [45]. This change between MBS and SBS points

will only affect those users near a SBS point. Therefore, for each SBS point only few

variables are interchanged, while all other variables are set to zero.

The traditional zero forcing method, based on an observation, attempts to nullify the

inter-cell interference of mobile users at the edges of the cell. But to complete this, the

system’s complexity is increased. If the inter-cell interference vanishes, however, there

is even thermal noise [47]. Therefore, there is no need to remove inter-cell interference,

but it is comparable to that of thermal noise at a certain level. Thus the amount of

complexity is reduced by relaxing the ZF interference limitations and now the number of

antennas is increased to give a higher rate than that of the ZF system [48]. But along

with low complexity, power optimization is also an important concern. So for optimizing

or minimizing the power while maintaining the low complexity.

4.4.4 Average achievable sum information rate

Consider a downlink scenario which, have checked the performance of prescribed factors

by assuming a systematic design with respect to following constraints. Suppose that the

transmitter Kt = 4 with four number of antennas and there exist Kr = 4 users. The

channel link existing between transmitter j and user k is generated as an uncorrelated

rayleigh fading. So the average channel gain E = {||hj,k||22} equals four for serving

transmitters and two for the transmitters which are interfering. To illustrate the behavior

of different heuristic beamforming directions, a 4 - user interference channel with Nj

= 4 antennas per base station and global interference coordination [52]. The channel

vectors hj,k are generated as uncorrelated Rayleigh fading and the average channel gains

E =
{||hj,k||22}

σ2
K

equal Nj for the serving base station and Nj
2

for all interfering base stations.

By looking into the simple power minimization problem as given below it is not a

complicated task to use this to derive optimal beamforming structure.

maximize
w1,.......,wk

= f(SINR1, ......., SINRK)
K∑
k=1

||wk||2 ≤ p

subject to SINRK ≥ γk

(4.31)

Here in this expression the parameters such as γ1.........γk are the SINR parameters that

will be achieved by all users as per depending on number users for optimum of the equation

above. These γ-parameters elaborate the SINRs which is needed to obtain some certain

value of data rates. The values of the γ-parameters are not variable in the equation above
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and this gave clear impact to optimal beamforming solution, but there is no variation in

the solution structure [52].

Here the cost function
∑K

k=1 ||wk||2 is clear depiction of convex function of beam-

forming vector. The basic purpose and main goal is to determine the noise impact. By

transmit beamforming the maximization of metric of performance utility can be achieved

where as it is the general function of SINR [14,15]. The task is to maximize the arbitrary

utility function f(SINR1, ......., SINRK) which is increasing in the value of SINR of ev-

ery user and there exist a limitation in the total transmit power i.e. limited by Power.

Mathematically it can be stated as:

maximize
w1,.......,wk

= f(SINR1, ......., SINRK)

subject to ||wk||2 ≤ p

(4.32)

It is a quite complicated task to solve the problem Eq. 4.32 however, suppose that if

the values of SINR, i.e. SINR∗1, ......, SINR∗k that have obtained by an optimal solution

to the problem 4.32. Than what would be the outcome result in case of γk = SINR∗k,

for the values k = 1,....,K. with it if solve Eq. 4.31 for the parameter specifically with

particularity of γ-parameter. With respect to this simple scenario it is very clear that

the particular constraints that will solve 4.31 will also be same for providing the solution

to Eq. 4.32 and will solve it definitely [42]. It can be specifically described as follow

that Eq.4.31 finds the beamforming vectors that are solving it achieves the SNR values;

SINR∗1, ......, SINR
∗
k. The solution for the problem 4.31 must satisfy the total values of

power constraints in the problem 4.32. The basic reason is that the problem 4.31 gives

the beam-forming which further achieve the given SINRs by using the minimal value of

the power [52]. So it can be depicted clearly that the beam-forming vectors from 4.31

are feasible for 4.32 and got optimal SINRs values and these are the optimal solution for

the problem 4.32 also [53].

To find out the values of SINR∗1, ......, SINR∗k it need to solve 4.32, and it is a quite

complicated task because the values of SINR are predefined in 4.31 and are to be calcu-

lated in 4.32. However an optimal beamforming value of 4.32 as follow

w∗ =
√
pk

[
IN +

∑k
i=1

λi
σ2hih

H
i

]−1

hk∥∥∥∥[IN +
∑k

i=1
λi
σ2hihHi ]−1hk

∥∥∥∥ for k = 1, ..........K (4.33)

However, the importance of is that it provides a simple structure for the optimal

beamforming [53]. Although the matrix above in Eq. 4.33 is same for all of the users, the
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matrix with respect to the optimal beamforming vectors and these can be written in the

very compact form. The optimal beamforming direction in the above Eq. 4.33 consist of

two main parts. The channel vector hk which between the BS and the intended users k

and 2 is the matrix;

[
IN +

k∑
i=1

λi
σ2
hih

H
i

]−1

hk (4.34)

As with respect to the beam-forming in the same direction from the expression of the

channel as

W̃MRT
k =

hk
||hk||

Is the matched filtering or MRT. The maximization of the received signal power,|pkhHk W̃k|2

and due to this selection at the respective intended user. As arg max

W̃k : ||W̃k||2 = 1

|hHk W̃k|2 =
hk
||hk||

The expression shows with respect to above mentioned fact for MRT is due to the Cauchy-

schwarz-inequality. The optimality in beamforming directions for the values as K = 1.

As the value before normalization
[
IN+

∑k
i=1

λi
σ2hih

H
i

]−1

when multiplied with hk, take

care of the respective values and it rotates the MRT for reducing the value of interference

which is due to the co - user directions, as h1, ...hk−1, ..hk+1, ..hk[54].

4.5 Stochastic models for SBS locations

The performance of wireless systems depends strongly on the locations of the users or

nodes. In modern networks, these locations are subject to considerable uncertainty and

thus need to be modeled as a stochastic process of points in the two or three dimensional

space [55]. The field of mathematics that offers such models and techniques to evaluate

their features is stochastic geometry, especially the theory of point processes.

The central idea for applying stochastic geometry to wireless cellular network anal-

ysis is to model base station and user terminal locations as realizations of a random

mathematical subject class called point process [56].

Stochastic geometry is concerned with random patterns of space. The most funda-

mental and important such objects are random point patterns or point procedures, so

point process theory is often considered as the primary sub-field of stochastic geometry

[57].
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4.5.1 Point processes as wireless network spatial models

Spatial point processes are mathematical models that describe the arrangement of

objects distributed in the plane or space irregularly or randomly. The development of

classes of large wireless networks such as ad hoc network, femto cell, picocell, sensor

network and cellular networks with coverage extensions such as relays or micro-base

stations has been intensively investigated over the past decade [55, 56]. For the following

reasons, classical communication theory methods are adequate to analyze these new types

of networks [55].

• Signal-to-interference-plus-noise ratio (SINR) is the performance-limiting metric

rather than the signal-to-noise ratio (SNR).

• The interference depends on the features of path loss and fading, which in turn are

functions of the geometry of the network.

• The amount of uncertainty present in large wireless networks far exceeds the amount

present in point-to-point systems: the locations and channels of all but perhaps a

few other nodes can not be known or predicted by each node.

There are two primary tools that have recently proven to be extremely most help-

ful in avoiding the above problems: stochastic geometry and random geometric graphs.

Stochastic geometry allows one to investigate the average behaviour over many spatial

network realizations whose nodes are arranged according to some distribution of proba-

bility [55]. Random geometric graphs capture the node connectivity’s distance influence

and randomness.

4.5.2 Poisson point process

The most important and widely used point process is the Poisson point process, often

abbreviated to PPP or called just the Poisson process. Lacking any information on the

dependence of the points, it is the model of choice due to its super analytical tractability

[57].

• The number of points of the process in any finite region A ⊂ R2, denoted N(A), is

a random variable with the Poisson distribution

P{N(A) = n} = exp[−µ(A)] [µ(A)]n

n!
, n = 0, 1, 2........., , , , , , ,
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with mean, if µ(A) admits a density λ, the Poisson distribution can be expressed

as

µ(A) =

∫ ∫
A
λ(x, y)dxdy,A ⊆ R2 (4.35)

where λ(., .) is a non-negative-valued function of two variables called the intensity

function of the PPP Φ.

• Given the number of points of Φ in any finite region A ⊂ R2, i.e. conditioned on

N(A) = n, say, the locations of these n points are i.i.d. with Probability Density

Function (PDF) of λ(x, y)/µ(A) over A.

• For two disjoint finite regions A ⊂ R2 and B ⊂ R2, the corresponding numbers

of points of Φ in these regions,N(A) and N(B), are independent. These three

properties are not independent [58].

It is possible to derive SE and EE. On the basis of the particular point process

analytical experiment of coverage probability. Many literature results have been evaluated

using stochastic geometry of the heterogeneous network [55–58].

Figure 4.2: A realization of a homogeneous Poisson point process with different intensity

value in a finite window [56].
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The static part of the power consumption, Pstatic, focuses on the number of antennas

and SBSs. Therefore, from the perspective of EE, placing inactive SBSs and antenna

elements in sleep mode makes sense [44].

Consider the downlink of a network running over a Bw bandwidth in which all SBSs

are active and distributed randomly according to a homogeneous PPP Φ with λ(SBSs/km2)

intensity. Each SBS is equipped with N antennas and serves randomly distributed K ≤
N single antenna UEs within the Voronoi cells. It is assumed that the UEs are static

and equipped with hardware-impaired transceivers [56]. UE’s stationarity implies that

the time of validity is sufficiently large to neglect the overhead introduced by channel

estimation.

Furthermore, the impacts of hardware impairments in the UEs are regarded dominant

over the channel estimation errors and in turn is also neglected [59]. It is connected to

SBS0 ∈ Φ and has an arbitrary UE index k.

The received baseband signal Zk ∈ C at the typical UE is modeled as

Zk =
√

1− δ2

(√
Ptx
Bw

hH0,kW0S0 +
∑

i∈Φ\{SBS0}

√
Ptx
Bw

hHi,kWiSi

)
+ bk (4.36)

where hj,k ∼ CN(0, ω−1d−αi,k IN) is the rayleigh flat-fading channel from SBSi ∈ Φ to

the typical UEk, di,k is the distance between them α > 2 is the path loss exponent, and

ω models fixed propagation losses such as wall penetration at a reference distance of 1

km [60].

Take si ∼ CN(0, IK) contains the normalized information symbols sent by SBSi,to

its associated K UEs and Ptx > 0 the average transmission power per UE over the

complete bandwidth Bw and Wi ∈ CN×Kas the corresponding beamforming matrix with

normalized columns [60]. The additive receiver noise is modeled by bk ∼ CN(0, σ
2

Bw
)

with σ2 being the noise energy per symbol, while δ model the distortions from hardware

impairments. The impact of hardware impairments is modeled based on as a reduction

of the received signal energy of 1− δ2 and an additive distortion noise given by

ek ∼ CN

(
0, δ2Ptx

Bw

∑
i∈Φ

||hHi,kWi||2
)

(4.37)

By assuming zero force precoding and denote Wi = [wi,1, ....., wi,K ] ∈ CN×K as the

precoding matrix of SBSi with wi,k being the normalized precoding vector associated to
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UE k and given by

wi,k =

Hi

(
HH
i Hi

)−1

ek∥∥∥∥Hi

(
HH
i Hi

)−1

ek

∥∥∥∥ (4.38)

where Hi = [hi,1, ......., hi,K ] ∈ CN×K is the channel gain matrix between SBSi and its

associated K UEs, and the notation ‖.‖ stands for the Euclidean norm. Notice that for

Wi to exist the matrix HH
i Hi needs to be invertible [59, 60]. This is why need to enforce

the condition N ≥ K.

4.5.3 Average achievable spectral efficiency

The wireless communication link’s spectral efficiency is strictly bounded by the channel

capacity [59]. In comparison, the EE metric of a communication link shows that it can

achieve unbounded EE in massive MIMO if the power of the circuit is neglected and

only time will show how small circuit energy in future hardware becomes [61]. In other

words, on a network’s EE, it can only define achievable lower bounds. Try to obtain

a lower bound in this thesis, which is tractable for analytical optimization, and need a

closed-form SE expression for that. ZFBF is the typical ergodic achievable SE

E
{
log2

(
1 +

1− δ2|hH0,kW0|2∑
i∈Φ\{SBS0}

||hHi,kWi||2 + δ2|hH0,kW0|2 + σ2

Ptx

)}
(4.39)

Where the channel fading expectation for the given Φλ is. Now take the PPP average

of Eq. 4.39. This is difficult to do in a closed form, but a lower bound can be obtained.

An achievable lower bound on the average SE of the network with ZFBF where N ≥ K+1

[60].

S̃E = log2

(
1 +

(1− δ2)(N −K)
2K
α−2

+ δ2(N −K) +
Γ(α

2
+1)

(λπ)
α
2

+ ωσ2

Ptx

)
(4.40)

The SE in Eq. 4.39 is achieved by canceling intra-cell interference using zero force beam-

forming, treating inter-cell interference as the worst-case decoding Gaussian noise, and

using the distortion noise variance in Eq. 4.36 [61].

In other words, the average lower bound can be written as follows:

R̃ = Bwlog2

(
1 +

(1− δ2)(N −K)
2K
α−2

+ δ2(N −K) + N

(λπ)
α
2

+ ωσ2

Ptx

)
(4.41)

According to Jensen’s inequality in solving the average take Eq. 4.39 in terms of

channel realizations and PPP Φ computing a achievable reduced boundary in the form

of
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E

{
log2

(
1 +

1

r

)}
≥ log2

(
1 +

1

E{r}

)
where, r = SINR−1

0,k (4.42)

Using complex Wishart and complex inverse Wishart distributed random matrices to

calculate the expectations for channel realizations [60].

E

{
1

|hH0,kW0|2
|d0,k

}
=

ωdα0,k
N −K

(4.43)

E

{
||hHi,kWi||2|di,k

}
=

K

ωdαi,k
for, i 6= 0 (4.44)

model the statistical properties of complex sample covariance matrices and complex in-

verse sample covariance matrices as relevant [55]. Beamforming at SBS0 is independent

of channel reliability in other cells since zero force [61]. Assume that the transmitting

nodes form a stationary PPP Φ of intensity λ is in the two dimensional plane. The dis-

tance to the serving MBS is d0,k ∼ rayleigh ( 1√
2πλ

). All nodes transmit at unit power

and the g(r) = r−α path loss calculate the expectation with respect to the interfering

SBSs, which are further away as

E

{ ∑
i∈Φλ\{SBS0}

|d−αi,k |d0,k

}
=

∫ ∞
d0,k

r−α2πλrdr (4.45)

which gives 2πλ
2−αr

2−α|∞d0,k
α 6= 2 = 2πλ

α−2
r2−α. If α < 2 , the upper integration bound is

incorrect [60]. There is too much interference from all the far nodes. If α > 2, the lower in-

tegration bound is the culprit. The nodes near the origin make E
{∑

i∈Φ\{SBS0}
|d−αi,k |d0,k

}
diverge, since r−α grows too quickly as r tends to zero if α > 2 [60].

A bounded path loss model would solve the problem for α > 2. Similarly, if it

can be ensure that no node is close to the origin, E
{∑

i∈Φ\{SBS0}
|d−αi,k |d0,k

}
remains

finite for α > 2. Replace the lower integration bound by Ptx > 0, to obtain E{I} =

E

{∑
i∈Φ\{SBS0}

|d−αi,k |d0,k

}
, E{I} = 2π

α−2
P

(2−α)
tx . This can be used to model CSMA.

Applied to Laplace transform into this interference E{dv0,k} =
Γ( v

2
+1)

(λπ)
v
2
. where , v > −2,

and, α = v which gives Eq.4.40 [60].

4.6 Performance metric of SBSs

In a wireless network the spatial distribution of APs is highly irregular and the cell

geometry plays a key role when determining the performance.
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The key performance metric in this paper is the achievable downlink EE. The ratio

between the area spectral efficiency (ASE) and the energy consumption area is described

[56] ,[60]. The ASE is defined for a given SE

ASE = λKSE (4.46)

The overall energy consumption area accounts for radiated signal energy, circuit

dissipation, digital signal processing, signaling backhaul, and overhead such as cooling.

These are all non-negligible parts of practical power consumption [56].

ẼE =
λKS̃E

λ

(
KPtx
µ

+ Pstat + PueK + PbsN + PsignNK + PdecobS̃E

) (4.47)

where µ ∈ (0, 1] is the efficiency of the radio frequency amplifiers at the SBS and we

recall that Ptx is the average RF transmission energy per symbol per active UE. The

term Pstat is an SBS’s static energy consumption, whereas PueK and PbsN are the terms

that linearly scale with the number of active UEs and the number of antennas in the SBS

[60]. The PsignNK higher-order term accounts for signal processing expenses, in specific

computing the WiSi product for each si information vector and other matrix operations.

The energy consumed by the mechanism of coding and decoding and signaling backhaul

is proportional to the ASE with a coefficient of proportionality of Pdecob [60].

4.6.1 Optimizing the energy efficiency of SBSs

The following EE optimization problem is considered to guarantee reasonable user

performance:

maximize
Ptx≥0,0≤λ≤λmax

ẼE(N,K, Ptx, λ)

subject to S̃E = Υ, N ≥ K + 1

(4.48)

where Υ is an SE level that is guarantee on average to UEs in the network [60]. Note

that the Ptx can be any positive number, while λ is a positive number upper bounded by

λmax, this is the highest average SBSs density that can be physically deployed. N and K

belong to the set Z+ of strictly positive integers.

Now, in the above-mentioned expression Eq.4.48, to fix this EE optimization problem,

derive expressions must show the basic relationship between the parameters required.
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4.6.2 Optimizing the SBS density

Consider problem of Eq.4.48 with N, K, and Ptx allocated values. If the problem is

feasible, the EE metric increases in λ(SBSs/m2) monotonically and is therefore maximized

in λ∗ = λmax while the other parameters are fixed. Observe that even if λ goes to

infinity and consequently Ptx becomes zero, the EE has the finite upper limit because

the transmission power term goes away in the EE expression, while the circuit power

consumption remains [60]. Hence, smaller cells will only bring EE improvements till the

point where the transmission power becomes negligible and then higher cell density only

brings marginal improvements [61].

4.6.3 Optimizing the transmission power

To find the optimal transmission power per UE, P ∗tx which, is used Lambert W function

repeatedly . For any values on λ, N, and K, the SE constraint in Eq.4.43 is satisfied by

P ∗tx =

(
2Υ−1

1−2Υδ2

ωσ2Γ(α
2

+1)

(λπ)
α
2

)
(
N −K − 2Υ−1

(1−2Υδ2)
2K
α−2

) (4.49)

Use the Lambert W function is denoted by W(x) and defined by the equation x =

W (x)eW (x) for any x ∈ C [62].

if problem Eq.4.47 is feasible. The problem is infeasible whenever P ∗tx is negative .

This expression offers the connection between P ∗tx and other parameters of the system.

Due to shorter path losses when λ increases, the optimal transmission power is inversely

proportional to the SBS density as λα/2.

It is decreasing function of the number of antennas, N, due to the array gain from coherent

beamforming, the relationship is as
1

N
when N is large [62].

Finally, P ∗tx increases with K since K makes the denominator of Eq. 4.49 smaller,

this is explained by the will to operate at higher SNRs when the inter-cell interference

grows stronger. By substituting P ∗tx into Eq.4.48 and taking λ as a constant, the EE

optimization problem is reduced to

maximize
N,K∈Z+

KΥ

(
KP ∗tx
µ

+ Pstat + PueK + PbsN + PsignNK + PdecobKΥ)

subject to (N −K)− (2Υ − 1)

(1− 2Υδ2)

2K

α− 2

(4.50)
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By removing interference and noise, it can be shown that Eq.4.48 is only feasible for

0 ≤ Υ < 2log2(δ) thus Υ assume that lies in this interval [60].

4.6.4 Optimizing SBS antenna number

Now, if P ∗tx is given and the other system parameters are fixed, find the optimal number

of SBS antennas, N [59, 60]. The EE metric in Eq. 4.48 is maximized for any specified

values on λ and K

N∗ = K +
2K(2Υ − 1)

(α− 2)(1− 2Υδ2)
+

√
2Υ − 1

(1− 2Υδ2)

Kµ−1ωσ2Γ(α
2

+ 1)

(πλ)
α
2 (Pbs + PsignK)

(4.51)

If N∗ is not an integer, then either the nearest smaller or greater integer will produce the

optimum.

4.6.5 Optimization of the number of UEs

Finally, the optimum number of active UEs per SBS should always be found. Because

the constraint has N ≥ K + 1 in Eq. 4.48, K ’s tractable optimization requires N to be

changed too. Therefore, the value of β = N/K should be fixed and N and K should be

optimized together [59–61].

For any given values on λ and β = N/K > 1, the EE metric in Eq. 4.49 is maximized

by

K∗ =

√√√√√√
2Υ−1

(1−2Υδ2)

ωσ2Γ(α
2

+1)

(πλ)
α
2

βPsign

(
β − 1− (2Υ − 1)

(1− 2Υδ2)
2

(α−2)

) +
Pstat
βPsign

(4.52)

If K∗ is not an integer, then either the nearest smaller or greater integer can achieve

the optimum. Using this operation Lambert W denotes W(x) and describes the equation

x = W (x)eW (x) for any x ∈C [62].
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Chapter 5

Results and Discussion

5.1 Introduction

Chapter two covers literature review, chapter three deal some theoretical and analytical

part which helps to understand this thesis work and in chapter four, proposed system

model and analysis was discussed. Channel model, EE, HetNet, massive MIMO, power

optimization and consumption model and small cell BS, stochastic geometry was dis-

cussed. Simulation results will be discussed in chapter five using MATLAB and SeDuMi

modeling software depending on the concepts of chapters three and four respectively.

5.1.1 Simulation setup and its parameters

The downlink system of a HetNet consisting one macro cell with radius 500m and there

are four small cell base stations each SBSs with radius 40m which are deployed at the

same area. Suppose there are six active users in the macro cell and one user in each small

cell. The users are uniformly distributed in the coverage area between the radiuses of

35m and 500m for MUEs and the radiuses between 3m and 40m for SUEs. Assume that

all the SBSs have equal number of antennas, i.e. Tj = N , for j = 1, ...,NSBS where N =

1, 2, 3 and NMBS = { 20, 30,.......,100}

This thesis shows a clear performance on the user locations and channel information.

There are some variables such as carrier frequency fc = 2GHz with Bw = 10MHz and

number of subcarrier is 600 with, 15 kHz bandwidth used in numerical calculation and the

channel model is 3GPP channel model LTE standard. Taking the hardware parameters

for numerical analysis macro cell power amplifiers efficiency µ0 = 2.577 for MBS and

µj = 19.25 for SBS respectively, constraints per- antenna in miliwatt, also do,t = 66 mW

foe MBS and dj,t = 0.08 mW for SBSs ∀ j, t and finally, the circuit power per antenna

of θ0 = 189mW and θj = 5.6mW ∀j of MBS and SBSs respective orders.

Consider the small-scale fading of rayleigh: hk,j ∼ CN(0, Rk,j). The correlation

matrix is spatially uncorrelated, Rk,j ∝ I, between the jth SBS and each user k [32].

The matrix of correlation between the MBS and each user is based on the model of the

physical channel.
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5.1.2 Backhual power

Massive MIMO is a promising solution for wireless backhaul provisioning to a large num-

ber of SBSs, without the need for LoS links. A co-channel deployment of massive MIMO

BSs and small cell base stations can achieve a very attractive rate region. The minimum

number of MBS antennas necessary to provide a desired DL backhaul rate to either { 21,

10 or 5} randomly selected SBSs in each cell with a maximum power budget of 46 dBm

for MBS and 30dBm for SBS transmit power.

Figure 5.1: Required number of MBS antennas NMBS Vs the DL backhaul rates

Figure 5.1, shows the average transmit power in MBS that is needed to achieve a

certain backhaul rate for different numbers of randomly selected SBSs S ∈ {5, 10, 21}
using the smallest possible number of antennas and a maximum average transmit power

of 46 dBm MBS, in Figure 5.2, for large target rates, the entire power budget is needed,

independently of the number of SBSs.

In this Figure 5.2, shown the minimum required transmit power per BS in com-

petition with the DL backhaul rates for different numbers of randomly selected SBSs

S ∈ {5, 10, 21}. The curves are not entirely smooth since each point on the curves uses

a different number of antennas.

Generally, Figures 5.1 and 5.2 provide some evidence that high speed backhaul pro-

visioning via massive MIMO BSs is possible up to a very large number of SBSs per

cell.
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Figure 5.2: Minimum required transmit power per BS Vs the DL backhaul rates

Figure 5.3: Received power at users Vs QoS target

Figure 5.3, shows the average received power at users (dBm) with respect to QoS tar-

get per user (bits/sec/Hz). It is clear that the higher the information rate is, the higher

the average received power becomes. However, the average received power becomes sat-

urated when the information rate is high enough higher than 2.5 (bits/sec/Hz).

First analyze the effects both the homogeneous and heterogeneous network having

different number of antennas:

Figure 5.4, show the total power consumption per subcarriers with different NMBS and

SBSs where, users are uniformly distributed with massive MIMO and SBSs, having 2

(bits/sec/Hz) for each user in the single-cell downlink system.

Figures 5.4 and 5.5, illustrate the average total power consumption per subcarrier(dBm)
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Figure 5.4: Average power Vs Number of antennas

at MBS and SBSs, versus the number of antennas at MBS required. The information rate

considered here is (2 bits/sec/Hz). According to Figure 5.4, it is obvious that the higher

the number of antennas or increasing extra hardware at { NSBS = 1, 2, 3} is, reducing

the total power consumption. In other words, addition of extra hardware is decreasing

the total power consumption, because if there is a decrease in the dynamic part, then an

increase in the static part, from the additional electric circuit systems will equate it for

maintaining the EE and decreasing the propagation losses. Massive MIMO brings large

EE improvements by itself, but the same power consumption can be achieved with half

the number of MBS antennas by deploying a few SBSs in the areas with active users. This

will reduce the power consumption and maintain the EE. The EE is further improved by

HetNet topology.

When the number of MBS antennas is large, after the saturation points (bending), the

total power consumption per subcarrier is not relevant to the number of MBS antennas.

Next, Figure 5.6, shows the average total power consumption, considering without

MRZF and different QoS constraints and beamforming users are randomly distributed,

take the value of NMBS = 50 and NSBS = 2 with 15 users.

Figure 5.7, demonstrates that adding more hardware can significantly reduce Pdynamic+

Pstatic total power consumption.
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Figure 5.5: Average total power Vs Number of antennas

In this case, the 50 MBS antennas and 2 antennas per SBS are adopted for different

QoS constraints,

The three cases of performance are compared;

1. It is only assisted by the MBS (Homogeneous Network);

2. low complexity MRZF algorithm;

3. It is assisted by mixture of SBSs and MBS, where at least one transmitter has an

active power constraint (Heterogeneous Network)

It is obvious that combination of massive MIMO to SBS has the lowest total power

consumption among all methods. For Figure 5.7, the total power consumption if different

QoS constraints with MRZF and beamforming users are distributed randomly, take the

value of NMBS =50 and NSBS = 2 for 15 users

In the previse Figure 5.6, it can be shown that by offloading users to the SBSs, there

are major improvements in E. The implemented multiflow-RZF beamforming provides

appropriate results for practical applications, as functional low complexity beamforming

techniques can achieve a majority of EE improvements.
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Figure 5.6: Total power consumption Vs Information rate

Figure 5.7: Total power consumption Vs Information rate

The average achievable sum information rate is shown in Figure 5.8, as a function

of the total transmit power (per base station). The optimal transmit strategy is com-

puted using the branch-reduce-and-bound algorithm. The diagrams illustrate scenarios

separately and collective comparative results are also elaborated with multiple numbers

of antennas. As the number N increases MRT become optimal at the rate at which SNR

range is low. For ZFBF it asymptotically seems optimal at high SNR range. In the

area of spectral efficiency and energy consumption models, a number of hardware and

propagation parameters
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Figure 5.8: Total transmit power Vs Average sum information rate

5.1.3 Optimizing energy efficiency of SBSs

The number of antennas, number of UEs, and transmission power are optimized to

produce maximum EE. There are four factors in the EE optimization problem of Eq.

4.48, but stated that the λSBS density should be large.

The procedure for both SE constraints is the same, but the highest EE values are

given by (3 bit/symbol). Also considered is the alternative optimization algorithm. It

began at (N, K) = (10, 1) and translated to (N, K) = (91, 10) with an EE of (5.71 Mb/j)

in three iterations. This value is obtained by mathematically calculated in Eq.4.47 and

take Υ = 3. The 0.2 % deviation from the global optimum is due to rounding impacts,

as only real-valued N and K are expected to efficiently converge. The EE is optimized

with respect to (N, K, λSBS, Ptx), or only with respect to (λSBS, Ptx) for given N and K.

Figure 5.9, the EE has an UE density function for SE = (3 bit/symbol) and figure

5.10, the corresponding SBS density is expressed.

5.1.4 Optimization under fixed UE density

Assume that the SBSs would be incorporated to satisfy a certain UE density. Now

to study how this UE density determines the SBS density. In the hotspot areas, future

densities from 102 UEs per km2 to 105 UEs per km2 are used as reference points.
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Table 5.1: Simulation Parameters

Parameter Symbol Value

Path loss exponent α 3.77

Fixed propagation loss ω 35dB

Power amplifier efficiency µ 0.39

Level of hardware impairments δ 0.05

Symbol time S 1
2·107 (s/symbol)

Coding, decoding and backhaul Pdecob 1.15 (J/Gbit)

Static energy consumption Pstst 10W · S(J/symbol)

Circuit energy per active UE Pue 0.1W · S(J/symbol)

Circuit energy per SBS antenna Pbs 1W · S(J/symbol)

Signal processing coefficient Psign 1.56 · 10−20(J/symbol)

Noise variance σ2 10−20(J/symbol)

The design parameters N, K, λ and Ptx are optimized as in Eq.4.48 but with the extra

constraint. Single-user transmission (N, K)=(10,1) and large multi-user MIMO transmis-

sion (N, K)=(91,10). In the two reference cases, only the SBS density and transmission

power have been optimized for EE. It is possible to produce several significant observa-

tions. First, it is possible to keep almost the same EE regardless of the UE density. This

is achieved mainly by linear scaling of the SBS density

5.1.5 EE maximization for a given UE density

Next, study the tradeoff between massive MIMO and small cells when a cellular network

is deployed to cover a heterogeneous UE density of (UE/km2). Mathematically, this

amounts to solving 4.47 with the additional constraint Θ = KλUE, which can be easily

solved numerically. Consider the range Θ ∈ [102; 105] predicted in [60, 61] is fully covered

in these saturation regimes. Figure 5.9, shows the EE as a function of the UE density Υ

for the average SINR level = 3, while Figure 5. 10 shows the corresponding BS density.

Apart from the optimal solution, by considering the two reference cases: transmission

with (N, K) = (10, 1) and with (N, K) = (91, 10).

In contrast, single-user SIMO transmission performs reasonably well at low UE den-

sities, but saturates earlier and at an EE level that is 3× lower than the maximal EE in
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Figure 5.9: Energy efficiency Vs UE density

Figure 5.10: Optimized SBSs density Vs UE density

Figure 5.9. More importantly, Figure 5.10, shows that the single-user case requires a 10×
higher BS density in the saturation regime, which might greatly reduce the deployment

cost.
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Chapter 6

Conclusion and Recommendation

6.1 Conclusion

To conclude this thesis work, investigate further the power optimization technique

between the MBS and SBS in 3GPP, under the performance of massive MIMO in the

HetNet using power optimization technique. To achieve the maximum EE, the typical

approaches are to increase the throughput or to reduce the power consumption.

Heterogeneous networks of the small BSs to massive MIMO has been proved as one

efficient way to achieve the maximum EE. It also achieves the spectral efficiency by

employing overlaid SBS’s with current infrastructure. This can be analyzed a combination

of these concepts based on shared cell (soft-cell) coordination, where each user can be

served by non-coherent beamforming from multiple transmitters. The performance is

measured and compared with the existing work in terms of total power consumption per

subcarrier of both the massive MIMO BS and small cell BSs.

Further improvements in EE are achieved by having multi-antenna SBSs a network

topology that combines massive MIMO and small cell BSs is desirable to achieve high EE

with little additional hardware. Note that the power is shown in dBm using MATLAB

simulation, thus there is 10-fold improvement from the highest to the lowest point. The

results illustrate that increasing the number of antennas at the BSs and also increasing

the number of small cells antennas in the network leads to a higher user satisfaction.

To provide promising results showing that the total power consumption can be greatly

improved by combining massive MIMO and small cells. Most of the benefits are also

achievable by low-complexity beamforming, such as the proposed multiflow-RZF beam-

forming. The analysis considered both the dynamic emitted power and static hardware

consumption. Based on anlysis the relationship among the number of antennas in macro

base station, the number of small cells. It can be concluded that the power consumption

decreases when the number of antennas per SBS increases.

The other variables were SBSs density, number of antennas and UEs per SBS, and the

transmission power. Its result show that the EE increases with the SBSs density, but the

positive effect saturates when the circuit power dominates over the transmission power.
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6.2 Recommendation for future work

There are some promising future works were proposed.

• This thesis was done by assuming perfect channel acquisition and a backhaul net-

work that supports interference coordination, while the future work will consider

fast fading channels where the channel estimation overhead and account errors.

• Multiow beamforming techniques are based on sharing information on controls be-

tween network tiers. Furthermore, optimal beamforming can receive significant

computational complexity, although beneficial in terms of reducing circuit power

and hardware requirements. To address this concern, future studies should investi-

gate designing suboptimal multiow beamforming techniques for energy maximiza-

tion.

• The analysis of this thesis focused on the downlink and single cell, while future

work will consider uplink and multi cell environment of an other interesting area to

investigate.

• This thesis work is limited to mobility management, which comes as another tech-

nical challenge with heterogeneous networks, thus some advanced mobility man-

agement schemes are proposed adaptive sleep mode techniques make the sensing of

user mobility and user grouping based on their velocities, where stationary users

are served by small BSs while mobile users are allocated to the macro BSs
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Appendix

Appendix - A

According to the standard in [50, 53], the relaxed problem is Eq. 4.15 in a semidefinite

optimization problem. So far, there always exist a solution with rank (Wk,j) ≤ 1,∀k, j. To
verify this consider there exist an optimal solution {W∗∗

k,j, ∀k, j} with rank(W∗∗
k,j) > 1.

So W∗∗
k,j can be replaced by any F ≥ 0 such that it

maximizes hHk,jFhk,j

subject to Tr(F ) ≤ Tr

(
W∗∗

k,j

)
, T r(Dj,tF ) ≤ Tr

(
Dj,tW∗∗

k,j

)
, ∀t

(6.1)

which means that, it is not using more power than W∗∗
k,j and for not causing more inter-

ference than W∗∗
k,j

hHi,jFhi,j ≤ hHi,jW
∗∗
k,jhi,j ∀i 6= k (6.2)

So one solution will be F = W∗∗
k,j, but according to [54] in Lemma 3 these types of

problems always have rank-one solutions.

Appendix - B

To analysis of these can be Ak = 1
σ2
k
diag

(
1
µ0
hk,0h

H
k,0, , , , , , ,

1
µs
hk,sh

H
k,s

)
can be block-

diagonal matrix and wk =

[
√
µ0wT

k,0, , , , , , ,
√
µswT

k,s

]T
be the aggregate beamforming

vectors. where, D̃j,t is the block diagonal matrix that makes wH
k D̃j,twk = wH

k,jDj,twk,j

and w∗ =
√
PkVk is the optimal solution to 4.21), where Vk is unit-norm.

According to the uplink-downlink duality as given in[54], Lemma 4, is given as

γ̃k =
PkV

H
k AkVk∑

i 6=k PiV
H
i AkVi + 1

=
Ωa,kV

H
k AkVk

V H
k BkVk

(6.3)

Where Bk =

(∑
i 6=k ΩiAi +

∑
j,t ξj,tD̃j,t + I

)
and Ωi, ξj,t ideal Lagrange multipliers for

the QoS and power constraints, respectively.

From the expression provided in Eq.6.3, therefore it is evident that the uplink SINR

targets or QoS targets will take the greatest value when Vk will be the dominating eigen-

vector of B−1/2
k AkB

−1/2
k . Since Bk and Ak are block diagonal with each block belongs to

either the MBS or one of the SBS points.
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Appendix - C

The lambert function is denoted W(x) and written the equation x = W (x)eW (x) for

any x ∈ C. By considering the optimization problem in Eq.4.49, Eq.4.51 and Eq.4.52 to

maximizing the EE in the Eq.4.48, where taking λSBS as a constant, the EE optimization

problem is reduced to Eq. 4.50.

maximize
z>−a

b

glog(a+ bz)

c+ dz + hlog(a+ bz)
(6.4)

with constant coefficients a ∈ R, c, h ≥ 0, and b, d, g > 0.

ϕ(z) =
glog(a+bz)

c+dz+hlog(a+bz)
denote the objective function.

To prove this function is quasiconcave, the level sets Sk = {z : ϕz ≥ κ} need to be

convex for any κ ∈ R.

Since ∂2ϕ(z)
∂z2 = (hκ−g)

ln(2)

b2

(a+bz)2 ≤ 0 for κ ≤ g
h
. If there exists a point z∗ > −a

b
such that

ϕ
′
(z∗) = 0. Then the quasi-concavity implies that z∗ is the global maximizer and that

ϕ(z) is increasing for z < z∗ and decreasing for z > z∗. To prove the existence of z∗ thus,

note that ϕ′(z) = 0, if and only if 1

ln(2)

b(c+dz)
a+bz

− dlog(a+ bz) = 0.

bc− ad
a+ bz

= d(ln(a+ bz)− 1) (6.5)

Plugging x = ln(a+bz)−1 into Eq.6.5 yields bc
de
− a

e
= xex whose solution is eventually

found to be x∗ = W ( bc
de
− a

e
), W is Lambert function.
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