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Abstract 

Constrained networks or Low Power and Lossy Network (LLN) are networks that consists of 

spatially distributed autonomous sensors, which are tiny devices deployed to cooperatively 

process, communicate and monitor the physical or environmental conditions, such as 

temperature, sound, vibration, pressure, motion or pollutants and pass their data through the 

network to a main location. 

Constrained sensor nodes, in addition to their resource constrained (energy, processing power, 

memory, and communication bandwidth), are often placed in a hard-to-reach location in harsh 

and extreme environments, because of that, it is very difficult to maintenance and repair. Sensor 

nodes must be self-managing meaning they must be able to autonomously configure, update 

them, cooperate with other nodes and accommodate to failures and environmental changes 

without human intervention. Considering such sensor deployment, LLNs are envisioned to be 

deployed in the absence of permanent network infrastructure and in environments with limited or 

no human accessibility.  

In this thesis, we design a mechanism to aggregate data generated by multiple sensors in the 

constrained networks using Constrained Application Protocol (CoAP) and send it to the next hop 

node which may do further aggregation. In addition, it devises a method that can be remotely 

deploying aggregation module to a remote node using Constrained Application Protocol block-

wise transfer. It is implemented in Contiki with COOJA simulator and evaluated the 

implementation by taking different measures such as energy consumption, delay and number of 

packet transmitted in the network.  

This solution makes flexibility to access and exchange sensor nodes application components and 

minimize the number of packets in network which reduce battery consumption of each sensor 

nodes and communication energy of overall constrained network. 

Key words: LLN, CoAP, Cooja, Contiki, Constrained Network. 
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Chapter One: Introduction 

1.1 Background 

Internet of Things ( IoT ), an emerging topic of technical, social, and economic significance, that 

connect our world (things) more than we ever thought possible all our infrastructure systems 

forming a network called constrained network, or Low Power and Lossy Network (LLN) by 

using constrained sensor devices.  

Low Power and Lossy Network consists of spatially distributed autonomous sensors, which are 

tiny devices deployed to cooperatively process, communicate and monitor  the physical or 

environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants 

and pass their data through the network to a main location. 

Constrained sensors are deployed in harsh and extreme environment, because of that, it is more 

vulnerable to different types of security issues, there is no possibility of maintenance and repair 

in remote areas, in harsh environments sensor nodes must be self-managing which means they 

must be able to autonomously configure, update themselves, cooperate with other nodes and 

accommodate to failures and environmental changes without human intervention. So that Low 

Power and Lossy Network (LLN) are envisioned to be deployed in the absence of permanent 

network infrastructure and in environments with limited or no human accessibility 

Specifying the application component or program ranging from full image replacement to virtual 

machines after deployment and changing it during operation has become necessary, since the 

precise application requirements and processing methods are often not fully known until a sensor 

network is actually deployed. Thanks to researchers and the evolution of technologies there are a 

variety of mechanisms that exist today to deploy new application or to fix bugs in deployed 

systems, of course such deployments demand mechanisms to update nodes over the wireless 

network: collecting nodes to deploy updates, e.g., from simple modifications to the introduction 

of new functionality or re-tasking of sensor nodes, is often tedious [1], or even dangerous [2]. 

Remote image replacement or application deployment schemes for sensor nodes meet challenges 

like resource consumption i.e. energy, processing power, memory, and communication 

bandwidth are scarce resources on sensor nodes and their consumption needs to be limited, and 
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integration those new application component or full image into the system architecture also 

another challenge. 

Flexible remote deployment or replacement of any image or application component always 

considered as the limitation of the constrained network resource and integration of the new 

component to the system architecture. 

The focus of this paper is to design and develop a new user application module that enables 

nodes to do data pre-processing locally and deploy the application module to a constrained 

sensor node remotely over a wireless link (from anywhere), this makes the networked nodes 

accessibility more flexible and easy to reprogram in environments especially where sensor nodes 

are deployed in limited human accessibility areas.  The proposed approach decrease the overall 

constrained network data transmission by twofold  

1) Enable in-network-processing and hence reduce number of unnecessary packet 

transmissions on the way to reach to the Base Station. 

2) It makes the network management easy by doing a flexible remote deployment via a 

constrained network without disturbing the network. 

We use a CoAP URI Query to register the sensor node to aggregator sensor node and the 

aggregator node initiates the new module application to compute the average value and send it to 

the next hop node which may do further aggregation processing. CoAP block transfer based, 

flexible protocol is used to deploy the new user application module. Here, the Base Station or 

any other smart device like laptop can initiate the process of remote deployment of the 

application module whenever the new functionalities module need to be added, wants to upgrade 

the application version or wants to change the application itself. The simulation used to work for 

this thesis is Contiki constrained network simulator. 
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1.2   Motivation and Statement of the problem 

Low Power and Lossy Network, in addition to their resource constrained, are deployed in harsh 

and extreme environments, because of which, there is no possibility of maintenance and repair 

such sensor nodes must be self-managing meaning they must be able to autonomously configure, 

update themselves, cooperate with other nodes and accommodate to failures and environmental 

changes without human intervention. Considering such sensor deployments, constrained 

networks are envisioned to be deployed in the absence of permanent network infrastructure and 

in environments with limited or no human accessibility.  

This thesis proposed a flexible and easier solution to make easily accessible to the components of 

a constrained sensor nodes, sensor nodes which are deployed in harsh environment, using a 

remote user application deployment to the constrained sensor node via a constrained network. 

The new user application module, which is remotely deployed to sensor node from the Base 

Station or laptop or mobile, will aggregate the generated data from sensor nodes and can send 

simple pre-processing tasks such as averaging, finding minimum or maximum values using In-

Network-Process then it sends the average value to the Base Station so that only the minimum 

required data value will be transmitted over the constrained network communication media. 
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1.3  Objectives 

1.3.1 General Objective 

The general objective of this work is to provide remote and flexible user application deployment 

using web services for constrained networks node without disturbing the other sensor nodes on 

the network and limiting unnecessary/unwanted data transmission over the constrained network 

media.  

1.3.2 Specific Objectives 

The specific objectives of this work are listed as follows: 

✓ Design and develop a new user application module,  

✓ Flexible remote user application deployment mechanism based on CoAP Block transfer 

protocol from Base Station to constrained sensor node over the constrained network, 

✓ Sensor nodes subscription to aggregator sensor nodes using web based URI-Query 

✓ Perform functional and performance evaluations to see effectiveness of the new approach 

using different metrics like number of packets to complete the entire communication and 

communication energy consumption with that of the existing system. 

1.4  Methodology 

1.4.1 Methods 

To accomplish the objectives of this proposed thesis work, the following steps are followed: 

1.4.2 Literature review 

In order to achieve the objectives of this thesis various related resources like books, published 

research papers and other documents are revised to get accurate knowledge, implementation 

about wireless sensor network, user application deployment. 

1.4.3 Software and Simulation tools 

The following Software and simulation tools, that are required for development and simulation, 

are identified and studied: 

✓ Contiki OS is a lightweight open source Operating System written in C for constrained 

networks. Contiki is a highly portable OS and it is built around an event-driven kernel. 
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Contiki provides preemptive multitasking that can be used at the individual process level 

[3]. Also it is an open source operating system for the Internet of Things (IoT). Contiki 

connects tiny low-cost, low-power microcontrollers to the Internet. Contiki is a powerful 

toolbox for building complex wireless systems. 

✓ CoAP Constrained Application Protocol is a Restful transfer protocol for constrained 

nodes and networks.  Basic CoAP messages work well for the small payloads we expect 

from temperature sensors, light switches, and similar building-automation devices. [4]. 

Cooja is the Contiki network simulator allows large and small networks of Contiki motes 

to be simulated. Motes can be emulated at the hardware level or which is faster and 

allows simulation of larger networks.[5] We choose CoAP in our thesis work because it 

is designed to easily interface with HTTP for integration with the Web while meeting 

specialized requirements such as multicast support, very low overhead, and simplicity for 

constrained environments. 

✓ CoAP Block-wise transfer an extension used in CoAP that allow limiting the size of 

datagram in constrained network. CoAP is based on datagram transports such as UDP or 

Datagram Transport Layer Security (DTLS), the maximum size of resource 

representations that can be transferred without too much fragmentation is limited. The 

Block options provide a minimal way to transfer larger resource representations in a 

block-wise fashion. The size of the datagram used in Block size transfer in constrained 

networks is maximum datagram size (~ 64 KiB for UDP).  Block options to CoAP that 

can be used for block-wise transfers.  Benefits of using these options include: 

o Transfers larger than what can be accommodated in constrained network link-

layer packets can be performed in smaller blocks. 

o The transfer of each block is acknowledged, enabling individual retransmission if 

required. 

o No hard-to-manage conversation state is created at the adaptation layer or IP layer 

for fragmentation. 

✓ Performance Evaluation: After the system is fully implemented, in order to validate 

energy improvement and effectiveness of the designed constrained network as well as its 

proper functioning and overall energy consumption improvement is checked using the 

following metrics: 

o Number of packet transmitted in constrained networks in the way of 
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communication to gateway node 

o Flexibility of dynamic deployment  

o Communication energy improvement 

1.5 Scope 

This thesis work focuses to design, a user application module and remote deployment of a new 

user application module remotely to sensor node over a constrained network and this application 

module improve the communication energy, by decreasing the number of packet transmission 

thought out the entire constrained network compared with that of the existing system paradigm, 

using simulator tool due to unavailability of real sensor node and some other required device. 

Our proposed work will not cover the following tasks: 

✓ No real sensor node and sensor network is used due to unavailability of the motes in the 

market 

✓ Automatic sensor node selection for deploying the new designed module is not applied. 

✓ Data compression techniques to overcome the bandwidth limitation of constrained 

networks. 

✓ No authenticate or hashing or integrity is applied while transfer the new user application. 

1.6 Organization of the study 

This thesis work comprises of six chapters. The next Chapter covers the study of a constrained 

network, the standards, the architecture, hardware that are related to constrained network and 

applications. Chapter 3 discusses related works that have significant relation with this thesis. 

Even if there are a number of works done on this area, we select the most related works to our 

thesis. Chapter 4 shows the designed and the proposed work. Chapter 5 discusses the 

development of the proposed system implementation and simulation using a powerful 

constrained network emulation and simulation software tools called contiki. Finally, chapter 6, 

we summarize the contributions made in the thesis, and conclude our work based on the results 

obtained from the thesis. Furthermore, new issues that have been surfacing while working on the 

thesis will be suggested as future work. 
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Chapter Two: Literature Review 

2.1 Constrained networks 

Internet of things are a new class of distributed systems [6] where a collection of nodes are 

organized in a cooperative network intended to monitor the physical condition and to 

cooperatively pass the data through an ad-hoc network to the main location. One of the main 

components in a constrained network is sensor nodes, each of which is usually made up of a 

microcontroller, antenna, transceiver, memory, power source and one or more sensors. A typical 

wireless sensor network is shown in Figure 2.1 

Zolertia Z1 Mote (which is used in our thesis and described in detail in section 5.1.1) is a general 

purpose development platform for constrained network designed for researchers, developers, 

enthusiasts and hobbyists [7]. Its transceiver is based on the IEEE 802.15.4 protocol [8].  

 

Figure 2.1: Constrained network 
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2.2 Characteristics of constrained sensor networks 

A brief description of a constrained network characteristics are described as follows: 

Dynamic Network Topology: It is important to Re-deployment the network topology in case of 

failure of the node, failure of radio links, or arrival of some mobile obstacles. 

Limited power: In some environment it is not easy to charge energy regularly [9]. They may, 

probably, be. So, energy consumption is a major issue, and should be optimized at three stages, 

node communication, sensing and processing to reduce the energy consumption. 

Node mobility: It makes the network links to be formed dynamically, that more nodes can join 

to the network easily or disjoin when they move out of the range. 

Unattended operation: Ability of reconfiguration the network by the nodes without any human 

intervention 

Large scale of deployment: The large scale of constrained network from hundreds or thousands 

of nodes and some environmental parameters like noise, dispersion, interface and available 

bandwidth, effects on the connection quality and may causes some disconnection between the 

nodes even in tiny networks [10].Advantages and disadvantages of constrained networks are 

listed in the table 1 [11] 

Table 2.1: Constrained Network advantages and disadvantages 

Advantages Disadvantages 

Low cost implementation More complex to configure than a wired   network 

Could be set up in the non-reachable 

places 

Lower speed 

No need the fixed infrastructure to set 

up the network 

Less secure 

Flexible if there is ad  hoc situation 

when additional workstation is required 

Easily affected by surroundings (walls, Microwave, 

large distances due to Signal attenuation). 
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2.3 Constrained Senor Nodes 

A sensor node, also known as a mote, is a node in a constrained network that is capable of 

performing data processing, gathering sensory information, communicating with other connected 

nodes in the network over flexible network architecture [12]. It consists of computation, sensing 

and communication units and are often deployed in hostile environments or over large 

geographical areas, and have been developed and used in various different fields, from indoor to 

outdoor. Building a constrained network first of all requires the constituting nodes to be 

developed and made available.  

These nodes have to meet the requirements that come from the specific requirements of a given 

application: they might have to be small, cheap, or energy efficient, they have to be equipped 

with the right sensors, the necessary computation and memory resources, and they need adequate 

communication facilities.  

Sensor nodes are designed focusing on lower energy consumption and easier development 

process for a given wireless communication range and area. Hence they are categorized in two 

different classes [13].One is ordinary sensor nodes which are used to sense different physical 

phenomena, and the other is the sink/gateway node that connects sensor networks to the Internet. 

In this thesis, sensor nodes are used to communicate with each other within the constrained 

network and send data to the sink, so we use both of them because they are available on Cooja 

constrained sensor network simulator by using Contiki operating system which is described letter 

in chapter 5. 

A typical constrained sensor node is shown in Figure 2.2 
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Figure 2.2: Components of constrained sensor node [14] 
 

The above different components are described as follows [15]. 

Microcontroller/Processor: is the core of a sensor node which is in charge of processing data 

and executing the code that describes the operation of the sensor node. The processor gets data 

from the sensors, processes this data, decides when and where to send it, receives data from other 

sensor nodes, and decides on the actuator’s behavior. It has to execute various programs, ranging 

from time-critical signal processing and communication protocols to application programs. 

System-on-chip (SOC) technology enables integrating a complete system on a single chip. 

Commercial SOC based embedded processors from Atmel, Intel, and Texas Instruments have 

been used for sensor nodes such as UC Berkeley's nodes. 

Memory: is used to store programs and data. Commonly random access memory (RAM) is used 

to store intermediate and temporary samples or packets from other nodes. Memories like 

Electrically Erasable Programmable Read Only Memory (EEPROM) are used to store the 

program code. However, the energy consumption by memory is an important factor for the 

appropriate design of the sensor node. 

Antenna 

Microcontroller Sensing chip 
Radio transceiver 

Memory (OS, networking, software, etc) 

Temperature 

Lights 

Acceleration 

Power to all components 

CPU has multiple “analog”, “digital” or 

serial interfaces to read sensing data 
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Radio Transmitter: is the hardware to enable the networking capability of the sensor nodes. 

Some usual methods for communication between the sensor nodes are Radio Frequencies (RF), 

optical communication, etc. RF is generally used because it provides a long range of 

transmission and reception at high rate with acceptable error rates for the required energy and 

also it does not require a direct line of sight between two neighbors. 

Sensing chip: A sensor is an electronic component that measures the physical quantity and 

converts to the type that can be read by the user or other electronic device such as, a 

microprocessor. Micro Electro Mechanical System (MEMS) technology is now available to 

integrate a rich set of sensors onto the same chip. They are interfaces to the physical world which 

sense the environment parameter and convert them to a raw data (mostly voltage or current) for 

further processing within the processor. Commercially available sensors include thermal, 

acoustic/ultrasound, and seismic sensors, magnetic and electromagnetic sensors, optical 

transducer, chemical and biological transducer, accelerometer, and barometric pressure detectors. 

These sensors can be used in a broad range of applications. Commercially there are readily 

available sensors for different applications. [16] 

Power Supply: For sensor nodes, the power supply is a crucial system component. There exists 

a large quantity of power supply options for a sensor node. The most common option is the use 

of batteries; other options are scavenging energy from the environment where the sensor node is 

exposed, the most popular example is solar cell. The integration of the above technologies has 

made it possible to integrate sensing, computing, communication, and power components in to 

tiny sensor nodes. 
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2.4 Constrained Network Communication Standard 

Standardization bodies, IEEE, have developed standards for the Internet of Things and IP 

protocol stack for Low-Power, Reliable constrained sensor networks have defined. The different 

layers and their protocols are listed in table 2.2 and which will be described in next sections. 

                                Table 2.2: IP protocol stack for Low Power, Reliable WSN  

Layer Protocols 

Transport/Application CoAP 

Network/Routing RPL, BCP, CTP 

Adaption 6LoWPAN 

MAC IEEE 805.15.4.E, B-MAC 

Physical IEEE 802.15.4 

 

2.4.1 Application Layer: CoAP 

Constrained Application Protocol (CoAP) is an application layer protocol, a web transfer 

protocol for constrained nodes and constrained networks like IoT, WSN, and M2M, to be used in 

very simple electronics devices that allow them to communicate interactively over the Internet 

[19]. It is particularly targeted for small low power sensors, switches, valves and similar 

components that need to be controlled or supervised remotely, through standard Internet 

networks. CoAP attempts to tackle different problems to work in a suitable way for constrained 

nodes and networks some of the solutions are as follows: 
 

➢ CoAP removes the overhead and complexity of TCP by operating entirely over UDP and 

implementing an optional acknowledgements system. This allows for messages to be 

transmitted with only best-effort and in cases of network congestion, a sensor reading 

will be lost instead of adding retransmission attempts into congested network.  

➢ CoAP uses a smaller amount of data transition.  

TCP requires a three-way handshake before any communication can even begin however 

this is not necessary with CoAP as data can be sent on the first packet. In constrained 

network, the client may not require a reply and so does not need to store any state about 

the connections and can simply discard incoming packets. The amount of data to be 
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transmitted is further reduced by using a binary header as opposed to the ASCII header 

used by HTTP. 

➢ CoAP use with multicast, which would allow sensor nodes to send their updates to a 

multicast group as oppose to a single server. This can be used for a server to simply listen 

to a multicast group. 

 

Summary of CoAP features 

Table 2.3: CoAP features 

CoAP Features 

✓ It is open IETF standard 

✓ Asynchronous transaction model 

✓ Embedded web transfer protocol (coap://) 

✓ UDP binding with reliability and multicast support 

✓ URI support 

✓ GET, POST, PUT and DELETE methods are used 

✓ Small, sample 4 byte header 

✓ Supports binding to UDP, SMS and TCP 

✓ DTLS based PSK,RPK and Certification security 

✓ Built-in discovery 

✓ Optional observation and block transfer 

 

 

From the above analyses we can summarize the usefulness (listed below) and its best features 

(table 2.3 CoAP features) of CoAP transfer protocol, is best to use for a constrained networks 

and the reason to choose for implementation in our thesis. 

✓ It is clear that, CoAP is becoming more and more suitable for use in the constrained 

environments that are found in sensor nodes.  

✓ CoAP stack is also clearly a better solution than HTTP stacks for constrained networks 

but it seems that there are still places where it has shortcomings. 

✓ CoAP would be useful for tasks such as pushing configuration updates to nodes and 

receiving confirmations of completion using a multicast request. 
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❖ CoAP vs. HTTP 

The model of CoAP is similar to the client server model of HTTP. CoAP web transfer uses 

similar methods as HTTP when sending requests from clients to servers, namely PUT, POST, 

GET, and DELETE. In client server communication, the CoAP client sends a request to a 

specific resource on a server by using one the methods and the server responds with the 

respective response. Figure 2.3 shows a typical request response interaction between a CoAP 

client and server. CoAP is based on REST architecture, which is a general design for accessing 

Internet or machine to machine resources thus, result in a CoAP implementation acting in both 

client and server roles.  

 

Figure 2. 3: CoAP Operation [42] 
 

Unlike HTTP based protocols, CoAP operates over UDP instead of using complex congestion 

control as in TCP [20]. In order to overcome disadvantage in constrained resource, CoAP need to 

optimize the length of datagram and provide reliable communication. CoAP intends to avoid any 

complexity by running over UDP instead of TCP that has complexity in congestion control. 

Figure 2.4 shows the HTTP and CoAP protocol stacks. 
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Figure 2. 4: HTTP and CoAP protocol stacks 

❖ CoAP Model 

CoAP application layer transfer protocol model, Figure 2.5, works in a two layers structure 

namely, 

1. Message layer: is the first layer designed to communicate with UDP and asynchronous 

switching. It supports 4 types message: CON (confirmable) a request or response and 

require an Acknowledgment. NON (non-confirmable) a regularly repeated messages 

that doesn’t require an Acknowledgment. ACK (Acknowledgement) type of message that 

carry a response or sometimes it could be empty [Code field value is 0 in CoAP header]. 

RST (Reset) a message sent in case a CON message is not received properly. 

2. Request/response layer: is the second layer concerns communication method and deal 

with request/response message. Piggy-backed: Client sends request using CON type or 

NON type message and receives response ACK with confirmable message immediately. 

Separate response: If server receive a CON type message but not able to response this 

request immediately, it will send an empty ACK in case of client resend this message. 

Non confirmable request and response: client send NON type message indicate that 

Server don't need to confirm. Server will resend a NON type message with response 
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2.4.2 CoAP: Message Format 

CoAP uses simple binary format which is based on the exchange of compact messages that are 

transmitted over UDP. You can see a typical CoAP message format at Figure 2.6. 

 

2b 2b 4b 1B 2B 

Ver TKL OC Code Message ID 

Token (if any)… 

Options (if any)… 

11111111 Payload (if any)… 

 

Figure 2. 5: CoAP message format 
 

❖ Where:  

o Ver – CoAP version(2 bit) 

o TKL – Indicates length of token(2 bit) 

o OC – Option count(4 bit) 

o Code – Request method (1-10) or Response method (40-255)(8 bit) 

▪ GET: 1 

▪ POST: 2 

▪ PUT: 3 

▪ DELETE: 4 

o Message ID – Unique Identifier for matching response(16 bit) 

2.4.3 Routing: Low power and Lossy Networks (RPL) 

Routing is a fundamental operation in network communication, which deals with packet delivery 

from source to destination. [21] Low-power and lossy networks (LLN)  is composed of many 

embedded devices, typically, the energy of these embedded devices itself, processing, and 

storage capabilities are limited, the embedded device via Bluetooth, IEEE 802.15.4, or Wi-Fi and 

other wireless technology to connect to the instrument [22] Low-power networks are often easy 

to lose no predefined topology. For such low-power and lossy network, an IPv6 Routing Protocol 

                              Figure 2. 5: CoAP layering Model 
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for Low power and Lossy Networks (RPL) is very suitable which is developed by IETF ROLL 

working group in order to overcome such routing issue. RPL routing protocols mitigates this 

issue by connecting automatically discover and create and maintain the topology. [23] RPL 

routing protocol node through the exchange of DIS, DIO, ICMPv6 and DAO control messages, 

thus creating the topology and routing, RPL routing protocol establish divided into the following 

two processes: topology to establish and build up the route, the route down the establishment. 

Down route established when there are two modes: Non-Storing Mode and Storing Mode. [24] 

✓ Destination Oriented Directed Acyclic Graph (DODAG): which is routed at a single 

destination and constructed by RPL in order to avoid any cycle in the connected 

nodes. The logical topology of the network will be defined by his graph. 

✓ DODAG Information Object (DIO) message is sent periodically by the root node down 

to the leaf nodes to form and maintain the DODAG graph 

✓ Destination Advertisement Object (DAO) is sent from nodes to their parents to inform 

their presence. 

✓ DODAG Information Solicitation (DIS) message is used by nodes to enforce other 

nodes in the network to send DIO messages.[25] 

2.4.4 Adaptation: 6LoWPAN 

Future IoT consisting of thousands of nodes and these networks may be connected to others via 

the internet. 6LoWPAN, a transport technique where LoWPAN is carried over IPv6, is defined 

by Internet Engineering Task Force (IETF) [26] to apply TCP/IP into constrained network [13]. 

In short the main function of the adaptation layer is to provide IPv6 and UDP header 

compression and fragmentation to transport IPv6 packets with a maximum transmission unit 

(MTU) [27]. Therefore, 6LoWPAN [28] [13] provides a means of carrying packet data in the 

form of IPv6 over IEEE 802.15.4 networks. 
 

2.4.5 Media Access Control Layer: IEEE 802.15 

The MAC Layer uses Multiple Access with Collision Avoidance (CSMA-CA) to detect whether 

or not another radio is transmitting and employ a method to avoid collisions. In this algorithm 

the MAC layer listens for energy or modulated data on the air. If none is detected, it can transmit 

immediately. If the channel is not clear the algorithm applies random wait times (back offs) 

before retrying the transmissions. Power management is another functionality of MAC layer that 
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allows radio devices to be turn off most of the time in order to save more energy. Contiki MAC 

[29] mechanism is used in contiki OS to replace the CSMA-CA. 

2.4.6 Physical Layer: IEEE 802.15.4 

The physical layer, which is defined by the IEEE 802.15.4, is the first layer in OSI reference 

model. The main different features of constrained network make the transmission at shorter 

distances, lower data rates and node power constraints. The physical layer is an important 

network stack layer to reduce energy dissipation by finding the optimal transmit (relay) distance 

and transmit power for a given modulation scheme and a given channel model, in order to 

maximize network lifetime. IEEE standard 802.15.4 aims to operate within a short range (i.e. 10 

meters), with very low transmission rate of 250Kbit/s and with a reasonable battery life rather 

than other approaches, such as WI-FI, which offers more bandwidth and requires more power. 

The IEEE 802.15.4 packet consist of the 64-bit IEEE address or a short 16-bit address that is 

located in the destination and source addressing mode field, so the size of the packet could be 

different regarding to the address size. Figure 2.7 shows the general packet frame structure of 

IEEE 802.15.4. 

The frame control field defines the type of the frame (i.e. data, acknowledgement or other type) 

and the addressing used (16 bit or 64 bit). The sequence number is an increasing counter of the 

frames transmitted by the node. The addressing fields contain the source and destination 

addresses. The following fields are the frame payload followed by the frame check sequence 

which ends the frame. The two subsections below are dedicated to the main functions of physical 

(PHY) layer and media access control (MAC) layer. 
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Figure 2.6: IEEE 802.15.4 General packet frame format 

2.5 CoAP Block-wise Transfer 

CoAP is based on datagram transports such as UDP or Datagram Transport Layer Security 

(DTLS), the maximum size of resource representations that can be transferred without too much 

fragmentation is limited, meaning the payload is considered to be as small as possible, this 

results very difficult   to transfer large amount of data using CoAP transfer protocol. The CoAP 

Block-wise options provide a minimal way to transfer larger resource representations in a block-

wise fashion instead of relying on IP fragmentation to overcome this kind of issues. In other 

word the block-wise transfer mechanisms are very fundamental to the use of CoAP for 

representations larger than about a kilobyte. When a resource representation is larger than the 

maximum size transferred in the payload of a single CoAP datagram, a Block option can be used 

to indicate a block-wise transfer. When a CoAP message is sent both with requests and with 

response the Block-wise provide two separate options to refer the transfer of the resource 

representation for each direction payload transfer, (“Block1”, “Size1”) to the request i.e., a PUT 

or POST and (“Block2”, “Size2”) for the response i.e., GET. This option indicates a block-wise 
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transfer and describes how this specific block-wise payload forms part of the entire body being 

transferred. 

2.5.1 Structure of a Block Option 

In transferring a Block (Block1 or Block2) option, the following three block options 

information’s should be addressed,  

✓ the size of the block (SZX), 

✓ whether more blocks are following (M) 

✓ the relative number of the block (NUM) within a sequence of blocks with the given size. 

The value of the Block option is a variable-size (0 to 3 byte) unsigned integer. This integer value 

encodes these three fields, see Figure 2.8. 

 

Figure 2. 7: Block Option Value 

 

When all of NUM, M, and SZX happen to be zero, a zero-byte integer will be sent. The first field 

(NUM) indicates the block sequence number that “0” means it is the first block of this message. 

The M flag indicates the number of blocks are followed, M=0 means this is the last block of the 

message. The maximum size of this block defines in SZX field that is calculated using the 

formula Size = 2 ^ (Exp + 4). For example the SXZ=2 corresponds to a block size value of 64 

bytes that the payload would be divided to 64 bytes and distributed to some blocks needed to 

transfer whole data. Note that the Block options support only a power of two block sizes from 16 

to 1024 bytes. 
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Let us see two illustrative short examples, client server communication, with message flows for a 

block-wise GET, and for a PUT or POST that demonstrate the basic operation, the operation in 

the presence of retransmissions, and the operation of the block size negotiation.[30] 

In Figure 2.9 client-server communication (Block2 Option), a block-wise GET with Early 

Negotiation illustration, the client sends a block size request based on the block-wise transfer 

link-format description. All ACK messages except for the last carry 64 bytes of payload. 

 

Figure 2. 8: Block-Wise GET with Early Negotiation 

In Figure 2.10 client-server communication (Block1 Option), a block-wise PUT with Early 

Negotiation illustration, similar to GET, the responses to the requests that have a more bit in the 

request Block1 Option are provisional and carry the response code 2.31 (Continue); only the 

final response tells the client that the PUT succeeded. 

 

 

 

 

 

 

 

 

Figure 2. 9: Block-Wise PUT with Early Negotiation 
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                Chapter Three: Review of Related Works 

This chapter reviews some of the related works that have been published by different 

researchers. Most of the works are related to remote deployment of an application module (see 

section 3.1.) to a constrained sensor node remotely over a constrained network media and 2) 

section 3.2, are works that are related to In-network processing. 

3.1 Remote deployment 

Specifying the program after deployment and changing it during operation has become 

necessary, since the precise application requirements and processing methods are often not fully 

known until a sensor network is actually deployed. A range of possible solutions have been 

proposed allowing sensor nodes to be reprogrammed or deploy remotely in the field by using 

different approaches. 

Range of approaches like in  [34] - [38] based on a reprogramming of the constrained sensor 

node of the image by using the incremental code update mechanism which transmits  an  edit  

map  encoding  the  differences  between  old and  new  program  images.  They  generate  the  

differences  between  the  two  files  using  a  divide-and-conquer dynamic programming 

approach by adapting different algorithms that suit to their work. The incremental  code  update  

solution does  not use block level  code  comparison,  and hence is  able  to  locate and  send  

differences  at  byte-level granularity, by doing so they use the network traffic to send all the 

code updates continuously, which increase constrained network energy consumption by sending 

to many packets in constrained network. 

M.B.Nirmala and A.S. Manjunath in [39] developed an efficient protocol to securely disseminate 

the code updates in constrained networks using mobile agents. Mobile agents are used to 

disseminate the code. Mobile agents traverse through the entire monitoring area of the network 

and disseminate the code. Mobile agents and also the code update are more vulnerable for 

adversaries, hence another measures are taken to detect the attacks and rectify them which is 

additional processing on the network. For example the sensor node should authenticate the 

mobile agents and check the integrity of the code. The code should be secured from adversaries, 

hence authentication, integrity, confidentially where the sensor node is certain about the origin of 

the program image and DoS are the security services need to be considered for secure code 

updates. 
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Munawar et al. present Dynamic TinyOS [33], which uses high-level knowledge of application 

structure to make application deployment.  This is achieved using extensions to the NesC 

compiler, an extension to the C programming language designed to embody the structuring 

concepts and execution model, which convert TinyOS applications and system components into 

separate binary objects during compilation.  Standard data dissemination protocols are then used 

to update individual objects.  This  approach  also  requires knowledge  of program code  

structure,  which reduces  its  applicability  to  systems  developed  using other  compilers  and 

languages. 

Sensor Scheme as a novel interpreted WSN platform [40] for dynamically deployment sensor 

network applications. It is based on the semantics of the Scheme language and is equipped with 

high-level programming to improve the program’s compactness. Hence the major design 

consideration of this work to improve the compactness of the program and memory allocation. 

3.2 In-Network-Processing 

T-Res programming [41] - written in Python, presented as a solution which models processing 

tasks as resources and make available on each constrained device and can be used by CoAP 

methods. Each T-Res resource stores URIs of the input and output devices as sub-resources. The 

last output and the compiled processing function are also stored as sub-resources. The processing 

function internally connects the input sources and output destinations by reading data from the 

input source(s) and sending out new outputs to devices identified by the URLs, if any. The last 

output is stored to allow concatenation of tasks. The getter and setter functions are provided with 

T-RES as programming APIs to be used in processing functions.  

This paper solution approach is a little bit similar with our solution but with many differences to 

our solution approach and let as see some of the differences. 

The first difference and also the limitation of this solution is the overall approach of the system. 

If the application requires doing the same processing task (e.g., Average) on different sets of 

sensors and/or sends output to different wireless sensors, multiple task resources needs to be 

defined and the same function have to be stored in each resource because every task resource 

stores URLs of input sources and destination outputs the T-RES definition.  

The second difference of the T-RES with our solution, the T-RES represents processing tasks as 

a resource but in our solution we model a flexible dynamic and independent module application 
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that run anywhere in the wireless senor network nodes i.e. on a sensor node, aggregated sensor or 

gateway node. We also store input that may arrive from any device and send stored output to any 

other device after processing. In case of T-Res, the processing function is responsible for getting 

the inputs from the sensors and sending the output, if there is any output. 

In contrast to  all  the prior  approaches our work is different with that of a flexible remote user 

application (new user application, that compute average value) deployment over a wireless link 

(required value only) in In-Network-process to the wireless sensor based on CoAP, this results 

improvement of wireless sensor device accessibility over the network and communication energy 

consumption. 

In order to increase efficiency to the system we can process the data locally at some intermediate 

nodes within the constrained network to send semi-processed data to next node which may do 

further aggregation until it reaches to the sink or gateway, so sending all information to the 

gateway is not required. We use an easy and a flexible remote deployment mechanism using 

CoAP block-wise to transfer and load the new application module to sensor node via constrained 

network media.   

Summary of Related works 

Authors Title Approaches Drawbacks 

JaeinJeo

ng and 

David 

Culler 

Incremental 

network 

programming 

for wireless 

sensors.[35 ] 

- A reprogramming of the sensor node of the 

image by using only the incremental code 

update mechanism which transmits  an  edit  

map  encoding  the  differences  between  

old and  new  program  images. 

- They  generate  the  differences  between  

the  two  files  using  a  divide-and-conquer 

dynamic programming approach  

- Does not use block 

level code comparison, 

and send differences at 

byte-level granularity. 

Panta, 

R., 

Khalil, I. 

and 

Bagchi, 

S.  

Stream: Low 

Overhead 

Wireless 

Reprogrammi

ng for Sensor 

- Present a protocol called Stream that 

mitigates the problem by significantly 

reducing the size of the program image.  

- Using multiple code images on a node and 

- Installation of images 

is based on static linking 

- Memory and energy 

consumption of the 

sensor node is not 
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 Networks.[37

] 

switching between them,  

- Stream pre-installs the reprogramming 

protocol as one image and the application 

program listen to new code updates as the 

second image. 

considered 

Nirmala, 

M. B., 

and A. 

S. 

Manjuna

th 

Mobile agent 

based secure 

code update 

in wireless 

sensor 

networks.[39] 

- Developed a protocol and disseminate the 

code updates in entire networks using 

mobile agents.  

- Sensor node should authenticate the mobile 

agents and check the integrity and 

confidentially of the code to certain about 

the origin of the program image. 

- The general approach 

is different with our 

solution  

- The agent should 

always traverse actively 

in the network which 

needs more resources. 

Alessand

relli, D.; 

Patracca, 

M.; 

Pagano, 

P 

T-Res: 

Enabling 

Reconfigurab

le in-Network 

Processing in 

IoT-Based 

WSNs.[41] 

- Present a T-Res programming solution, 

written in python, which models processing 

tasks(that internally connects the input 

sources and output destinations) as 

resources, sub-resources and make available 

on each constrained device 

- The getter and setter functions are 

provided with T-RES as programming APIs 

to be used in processing functions.  

 - If the application 

requires doing the same 

processing task on 

different sets of sensors 

and/or sends output to 

different sensors, 

multiple task resources 

needs to be defined 

 

 

 

 

 

 

 

 

  



26 
 

Chapter Four: Proposed Work 

4.1 Introduction 

As we discussed in the previous chapters and reviewed some related researchers publication 

works, deployment of application module to a constrained sensor node remotely over a 

constrained network (from anywhere), this makes the nodes more easily accessible and 

maintenance up to date overall system, especially constrained sensor nodes that are deployed in 

limited human accessibility areas i.e. load a new module, upload a program, maintain, keeping 

up to date software information. As well as it gives more flexible environment to constrained 

sensor network. To describe our proposed design, design and develop a new user application 

module and flexible deployment to a constrained sensor node remotely in an easy manner, we 

divided in different phases. First we introduce the general overview of normal constrained 

network traffic flow in section 4.1. In section 4.2 we discuss the proposed system architecture 

step by step to achieve the general goal of the proposed solution. Finally in Section 4.3 we use a 

web based URI-QUERY to enable the sensors to associate or subscribe with aggregator sensor 

node so that the sensor nodes can send their generated data to registered aggregator sensor node 

only, then the aggregator sensor node process the input data with the module already deployed 

on it.  

4.2 Normal Constrained Network Traffic Flow 

In this section, we present and compare how packets are routed in the original constrained 

network paradigm and the proposed constrained network paradigm of the Low Power and Lossy 

Network. Both topologies shows the sensor nodes, Zolertia Z1 mote sensor node is used, that are 

organized in multi-hop route based tree to illustrate the different physical parameters of the 

constrained network and route the reading to gateway then to the so-called base station.  

In original constrained network traffic scenario, each node will send its sensing information 

value to the next aggregate sensor node and the next aggregated sensor node to the next one… 

just by looking the packet up to network layer only, no further processing is used then it forward 

to the gateway finally the packet reaches to base station. [42] By doing such route if we have 

"𝑛"𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 in the constrained network, "𝑛 ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠 " number of 

transmission packet will be routed in the constrained network to reach from initial point of the 
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sensor node to the base station Figure 4.1. This scenario consumes bandwidth as well as 

communication energy of each constrained network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4. 1: Existing traffic flow 
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4.3 Proposed Solution 

As described in the previous sections, this approach involves a lot of data communication within 

the constrained network. In many applications, such as warehouse monitoring, we are not 

interested in every detail of the data. Rather, we wanted to know the general information. In such 

applications, exchanging all these data between all nodes and the sink or the gateway is 

inefficient as it involves too much traffic which leads to wastage of already scarce power. In 

order to increase efficiency to the system we can process the data locally within the constrained 

network send semi-processed data to the sink, so sending all information to the gateway is not 

required. Hence, we can do some processing at some intermediate nodes and send the semi-

processed data to the next hop until it reaches the sink or the gateway.  

Our solution starts by selecting nodes that will host the application module and concludes after 

the nodes are associated to exchange data (raw or semi-processed) among themselves. Figure 4.2 

illustrates the general steps involved in both approaches. The steps involved in achieving this are 

discussed in detail below. 

 

 

 

 

 

 

 

 

Figure 4. 2: General Steps of the proposed solution 
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4.3.1 Step 1 – Node Selection 
 

The first step involved in both approaches is selecting nodes that will host the processing 

module. This step is crucial in order to achieve the most efficient energy consumption reduction. 

If the right nodes are selected to process the data, the number of data exchange to reach them 

will be minimal. Hence, the total energy consumption will also be minimal. But, selecting the 

right nodes is an optimization problem and depends on various factors (such as topology and 

routing tree). Selecting optimal nodes is beyond the scope of this research work. For the sake of 

simplicity, we consider a random topology and select nodes by visually inspecting the topology.  

4.3.2 Step 2 – Application Module Definition 

Application module definition is module that will run on the selected nodes. The application 

module may vary depending on the requirement of the IoT application. Due to the memory 

constraint and limited processing capacity of the nodes, complex processing activities cannot be 

performed. Rather, simple pre-processing tasks such as averaging, finding minimum or 

maximum values or counting occurrence of events is considered to be performed by the 

constrained nodes. As an example, we define an averaging module that collects input data from 

multiple sensor nodes and produce an output that can be communicated further. Definition of 

such a module is given below. 

 

Figure 4. 3: Proposed Module Architecture 
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Suppose AgSN-02 module is designated to compute the average values which is generated and 

sent from sensor nodes SNv-01, SNv-02 and SNv-03 with values, 𝑎, 𝑏 and 𝑐, respectively. Let us 

assume calculated result value is 𝑺𝑵𝒂𝒗𝒈.  

𝑺𝑵𝒂𝒗𝒈 = 𝑎𝑣𝑔(𝑎, 𝑏, 𝑐) 

AgSN-01 follow the same procedure by computing the average of average sensing information 

values which is sent from aggregate sensor nodes or just sensing values only, if the node is not 

an aggregate sensor node and let as assume 𝑨𝒗𝒈 (𝒅, 𝒆) for AgSN-03 then the final calculated 

value is going to be 𝑭𝑰𝑵𝒂𝒗𝒈.  

𝑭𝑰𝑵𝒂𝒗𝒈 = 𝑨𝒗𝒈 (𝑨𝒗𝒈 (𝒂, 𝒃, 𝒄), 𝑨𝒗𝒈 (𝒅, 𝒆), 𝒇) 

Any small aggregation function can be defined in a similar fashion. 

The proposed designed of the application module algorithm task process are demonstrated below 

as shown in Figure 4.4 

 

Average value processing 

 

 

Step1: get generated data value of SNv-01 as  𝒂 

Step 2: get generated data value of SNv-02 as 𝒃 

Step 3: get generated data value of SNv-03 as 𝒄 

Step 4: compute the  𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝒂, 𝒃, 𝒄) 

Step 5: send 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 value to next aggregate node 

 

 

Figure 4. 4: Module application algorithm 
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4.3.3 Step 3 – Remote Deployment  

Once the application module is defined and compiled for the right platform, it will be loaded into 

the selected node. There are two options to load the module. The first method is statically linking 

the module to the rest of the executable file before uploading it. This entails flashing the entire 

code on a node. This is very inflexible and, in larger networks, it is practically impossible to 

achieve. The second method, which is proposed in this paper, is flexible remote deployment. We 

use CoAP Block-wise transfer to transfer the code to the selected node and the nodes operating 

system’s dynamic loading functionality to load the code into memory and link it to the existing 

modules dynamically. 

 

Figure 4. 5: Dynamic User Application Module Deployment Architecture 
 

4.3.4 Step 4 – Node Association 

Once the application module is deployed on selected nodes, the next step will be associating the 

sensor nodes with the aggregator nodes (the nodes which host the dynamic application module). 

There are two approaches that can be used to achieve this – Periodic Polling or CoAP Observe 

based. If periodic polling is in effect, the Figure 4.6: Traffic Flow with Periodic Polling is used 
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Figure 4. 6: Traffic Flow with Periodic Polling 
 

Aggregator node periodically collects data from specific nodes and processes it. The result will 

also be sent to the next aggregator or the final destination through the same method and 

described in Figure 4.7. 

 

Figure 4.7: Traffic Flow within Aggregator sensor nodes 
 

But if CoAP Observe is used, we send URI-Queries from a third party device (e.g. Smartphone) 

to the sensor nodes that inform the nodes to subscribe the aggregator node as an observer. The 

query may specify IP Address of the aggregator, port number and resource URI. Upon receipt of 
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the query, the sensor node registers the aggregator as an observer and sends notifications 

whenever the resource state changes only (Figure 4.8).  

 

Figure 4.8: Traffic Flow with observe 

 

The pseudo code demonstrates to enable the sensor node to associate with aggregator sensor 

node. 

 

Node Association Pseudo code 
 

 

Input: Observe request 

Process 

1:   receive observer request 

2:   IF  URI request exist 

3:           Observe ip= URI-QUERY(host) 

4:          Observe uri= URI-QUERY(res) 

5:          Register(observer_ip, observer_uri, METHOD_PUT) 

6:    ELSE  

7:          Register(src_ip) 

8:   ENDIF 

Output:  send sensing value/notification to AgSN 
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_ 

4.3.5 Step 5 – Data Exchange 

Finally, after every application is remotely deployed and dynamically loaded, associations 

between nodes is made, data exchange begins. The data exchange mechanism varies a bit 

depending on the approach selected. Periodic polling requires the aggregator node to take the 

lead in pulling the data from each associated nodes periodically. This is achieved by sending 

GET requests periodically to the nodes. But for the CoAP Observe based approach, the sensor 

nodes will be responsible for notifying the aggregator node. Every time the aggregator gets data 

from the sensors, it initiates the application module to process the data and generate new result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

Figure 4. 9: Proposed WSN Traffic Flow 
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4.4 Node Association through Queries 

Now we have all resources we need, i.e. the application module designed in step 2, and is already 

deployed dynamically from work station see in step 3, to aggregate generated data and send it to 

the next hope constrained sensor nodes, but still all the resources are idle and the processes are 

not yet stated or initiated. To do so we use a web based URI-Query that observer changes (if 

there is any) to initiate the sensor node to associated with an aggregator node. In order to achieve 

this, we implemented a modified version of the standard CoAP Observe operation. 

The normal scenario of sensor node and next hop sensor communication is using sensor registers 

the sender as an observer and sends notifications to it whenever a new reading emerges, after the 

device knows the sensor node then the device (aggregator or the application loaded sensor) sends 

a GET request to a sensor node to be notified whenever there is a change by including the 

Observe option in the request. 

In our proposed solution, we modified the above/original observe function to allow third-party 

devices to send observation request to a sensor node and request it to register the aggregator as 

an observer rather than itself. This solution involves associating a resource on a sensor to a 

resource on the aggregator node.  In order to achieve this, the third-party has to include, as URI-

QUERY, the aggregator’s IP address and the URI_PATH of the resource that accepts the data 

from the sensor in the observation request. Upon receiving this, the sensor node registers the 

aggregator as an observer. Whenever there are changes, the sensor node will notify to the 

aggregator by sending new PUT requests to the resource indicated by the URI-PATH on the 

aggregator. Figure 4.10 shows the pseudo code or syntax demonstration for the observe request: 

GET [Sensor-IP] 

URI-PATH uri 

URI-QUERY host=[AggregatorIP]&res=aggrigator_uri 

OBSERVE 

 

Figure 4. 10: QUERY Pseudo code for SN-0i value 
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Chapter Five:  Implementation and Results 

5.1    Introduction 

In this section, we present the implementation of the proposed system and evaluation results. We 

will show the functional and performance evaluation results.  

We performed a simulation experiment and evaluate using different metrics. To accomplish this 

we followed different procedures: first, we defined the simulation setup where it encompass 

defining the arrangement of constrained sensor nodes in the network, identifying the type of 

constrained sensor nodes and define the nodes type in section 5.1 in the network, develop an 

application module, deploy it remotely, define a web based URI-QUERY that associate the 

sensor node to aggregator sensor node. Second, we conducted computer simulation by deploying 

different software tools that are developed for Low Power and Lossy Network application.  

Lastly, we determined the evaluation metrics that help us to observe and evaluate the flexibility 

of the system, easy of management, consumption of the communication energy of the proposed 

system implementation in Section 5.1 and then we described our experimental analysis in 

Section 5.2. 

5.2  Implementation 

The proposed solution was implemented on Contiki OS version 2.7. Contiki is an open source 

embedded operating system that can be installed on smart objects such as sensor and actuator 

nodes. Since we lack real sensors and wireless test bed, we used Cooja Simulator to test the 

performance of our solution. The simulated nodes are Z1 motes with limited memory and 

processing capacity. Z1 nodes are selected because of this limitation to show that in-network 

processing is still possible with constrained nodes. The official CoAP implementation of Contiki, 

Erbium was extensively used in the proposed solution. 

5.2.1 Zolertia Z1 Mote 

Different sensor nodes are designed and manufactured by different companies [17] but because 

of its many advantages which is described next we choose Zolertia Z1 mote sensor node type, 

produced by a Spanish company named Zolertia, in our thesis.  
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The Z1 is a low power wireless module compliant with IEEE 802.15.4 and Zigbee protocols. Its 

core architecture is based upon the MSP430+CC2420 family of microcontrollers and radio 

transceivers by Texas Instruments. However, the microcontroller unit (MCU) that Z1 uses is the 

MSP430F2xxx instead of the MSP430F1xxx, as is customary among other motes, like 

Crossbow's TelosB, Moteiv'sTmote, and alike. The inner changes between F2xxx and F1xxx 

devices lead to the subtle differences between Z1 and other F1xxx devices, and these differences 

in turn result in that some Contiki functions available for Tmote sensor nodes are not portable to 

the Z1 sensor nodes. Z1 has two built-in sensors, one accelerometer sensor and one temperature 

sensor. The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-

bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos complement and 

is accessible through either a SPI (3- or 4-wire) or I2C digital interface. The TMP102 is ideal for 

extended temperature measurement in a variety of communication, computer, consumer, 

environmental, industrial, and instrumentation applications. The device is specified for operation 

over a temperature range of - 40°C to + 125°C. The more information and documentation about 

these two sensors can be found in [50]. In addition to the built-in sensors, Z1 also supports up to 

four external sensors. 

 

✓ Zolertia Z1 Microcontroller 

A Z1 sensor node, made by Texas Instruments [18] is equipped with the low power 

microcontroller MSP430F2617, which features a powerful 16-bit RISC CPU @16MHz clock 

speed, built-in clock factory calibration, 8KB RAM and a 92KB Flash memory.  

 

✓ Zolertia Z1 Transceiver  

Zolertia Z1 Mote also includes a CC2420 transceiver from Texas Instruments, which is IEEE 

802.15.4 compliant and operates at 2.4GHz with an effective data rate of 250Kbps. Z1 hardware 

selection guarantees the maximum efficiency and robustness with low energy cost. The CC2420 

is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed for low-power 

and low-voltage wireless applications. CC2420 includes a digital direct sequence spread 

spectrum baseband modem providing a spreading gain of 9 dB and an effective data rate of 250 

kbps. 
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5.2.2 Copper and Erbium 

Copper is a CoAP protocol handler for Mozilla Firefox, used for browsing and book marking of 

CoAP URIs and Interaction with resource like REST Client or Poster. It treats tiny devices like 

normal Restful Web services. It is designed for unconstrained environments as Cf. Its ability to 

render a number of different content types such as JSON or the CoRE Link Format makes it a 

useful testing tool for application as well as protocol development. 

Erbium is a low-power REST Engine for Contiki that was developed together with scientific 

computing and makes low-power systems to communicate efficiently and easily with the 

Internet. Therefore, this implementation is specialized for constrained environments as it is 

designed to run on small amounts of memory and low-power Central Processing Units or 

Microcontroller Units. 

5.2.3 Node Association 

As discussed in the previous chapter, one of the steps involved in the proposed solution is node 

association, a phase were a sensor node is associated with an aggregator node. The solution 

implemented here is the CoAP Observe based solution. This solution involves associating a 

resource on a sensor to a resource on the aggregator node. In order to achieve this, we 

implemented a modified version of the standard CoAP Observe operation. 

As discussed above, the normal CoAP observe specification states that a device sends a GET 

request to a sensor node to be notified of every state change of the sensor by including the 

Observe option in the request. Upon receipt, the sensor registers the sender as an observer and 

sends notifications to it whenever a new reading emerges. 

In the modified version, we modified the normal observe function to allow third-party devices to 

send observation request to a sensor node and request it to register the aggregator as an observer 

rather than itself. In order to achieve this, the third-party has to include, as URI-QUERY, the 

aggregator’s IP address and the URI_PATH of the resource that accepts the data from the sensor 

in the observation request. Upon receiving this, the sensor node registers the aggregator as an 

observer. Changes at the sensor will be notified to the aggregator by sending new PUT requests 

to the resource indicated by the URI-PATH on the aggregator. 

APPENDIX A: code script shows the modification of observer function (er-coap-13-

oberserving.c) done on the erbium. 
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5.2.4 In-Network Processing 

In-network processing or aggregation is done on aggregator nodes which may or may not be 

sensor nodes. The code on these nodes will have a resource defined for each input it receives 

from a sensor node. As indicated above, the sensor node will be programmed to send PUT 

requests to this resource on the aggregator node whenever the sensor reading changes. Whenever 

these resource state changes, the processing module will be initiated in order to process the data 

and produce the result. The result may then be sent to the next aggregator sensor node or the 

gateway or the cloud for further processing and storage. 

APPENDIX B: shows a code script in erbium modification done on er-coap-dyn-module.c 

resource file.  

5.2.5 Remote Deployment  

Remote deployment and loading process starts with compiling the application module with the 

appropriate flags. Figure 5.4 simulation screenshot shows a compilation process of the 

deployment and loading. The Contiki make rule compiles the program as a Contiki application 

and strips off unnecessary components from the file. This modification is done at er-dynamic-

loader resource on erbium.  

The er-dynamic-loader.c code script modification done on erbium has in APPENDIX C. 

 

5.3 Experiment Setup 

Experiments are conducted on Lenovo Laptop-E51-80 computer which runs Ubuntu14.04 

platform with the Long term support (LTS). The laptop has 8GB RAM and Intel® Core ™ i7-

6500U CPU@2.50GHz 2.50GHz processor. For the purpose our experiment we installed Contiki 

OS 2.7 with Cooja constrained network simulation software, which is described in section below 

in detail, on Ubuntu 16.04 LTS laptop computer.  

5.3.1 COOJA 

COOJA, which is used for simulation and emulation purposes in this thesis, is a simulator for the 

Contiki sensor node operating system from small sensor nodes to a very larger sensor nodes 

network simulation. COOJA allows for simultaneous simulation at different level of the system. 

[32].  
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• Network level,  

• Operating system level, and 

• Machine code instruction set level. 

Cooja is a tool for Contiki development as it allows constrained sensor nodes to be emulated at 

hardware level in Instant Contiki OS with the following different performance behaviors, 

• slower but allows precise inspection of the system behavior,  

• less detailed level, which is faster inspection of the system behavior 

 
 

 Figure 5.1: Cooja Contiki Network Simulator Interface  
 

 

Here we briefly describe the functionalities of each tool:  

1) Network - Shows the location of each node in the network. Can be used to visualize the 

status of each node, including LEDs, mote IDs, addresses, of outputs, etc. Initially this 

window is empty and we need to populate it with our sensors. 

2) Mote output - Shows all output of serial interface of the nodes. It is possible to enable 

one window of Mote output for each node in the simulation. 

1 

3 
5 

2 

4 
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3) Simulation Control - This panel is used to Start, Pause, Reload or execute Steps of the 

simulation. It shows the time of execution and the speed of simulation. It means that we 

can run the events several times faster than it would take in real-time execution. 

4) Timeline - Simulation timeline where messages and events such as channel change, 

LEDs change, log outputs, etc. are shown 

5) Notes - This is a simple notepad for taking notes about the simulation. 

5.3.2 Simulation Topology 

For our experiment, we use four motes (three client constrained node two server constrained 

node, one for aggregated sensor node and one for a gateway). From these three clients 

constrained nodes are connected to aggregated sensor node and the aggregated sensor connected 

to the gateway and the gateway to workstation via Internet forming a hierarchal constrained 

network, or Low Power and Lossy Network (LLN). The client nodes are used to generate data 

value, sensing temperature from the environment and send it the value to the next hope 

aggregator or server node which is an application module deployed on it and the aggregator 

sensor node compute average value and again send the result value for next hope or gateway 

node which may do further aggregation. We used our Lenovo E51 laptop with Ubuntu 14 

operating system as a work station. To accomplish the above tasks, we implemented the 

following, Contiki OS: for the network simulation environment, COOJA for simulation and 

emulation. Finally in last sections we describe the different scenarios with their respective 

simulation experiment and evaluation result.  

We take different topologies scenarios by varying number of hopes to analysis the functional and 

performance evaluation differences between original constrained network traffic with our 

designed solution, the following screenshots are taken from the topology simulation. See Figure 

5.2. 
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Figure 5. 2: Different hop topology scenarios 

 

5.3.3 Data Source 

In real world, sensor nodes can read an environment data but this is not possible in simulation 

software. In order to emulate sensor data, we generated 100 random numbers and stored it in an 

array. The handler function is invoked every 5 seconds to read the data from the array. The index 

of the array is incremented in order to get new readings during each iteration.  

Two hops topology Three hops topology 

Four hops topology Five hops topology 
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The erbium data source function code namely er-sensor.c is shown in APPENDIX D. 

5.4 Evaluation 

We compared the number of packets required to complete the communication, and energy 

consumption of the proposed solution against a default constrained network solution. All tests 

were run 10 times for each topology and the averages are taken for comparison. 

5.4.1 Functional Evaluation 

❖ Node association from Copper 

Sending a web based URI-QUERY from third party or copper to end sensor nodes and enabling 

the sensor node to register to the aggregator sensor node using the IP address, port address, URI 

path. The screenshot below demonstrate the implementation. 

 

 Figure 5. 3: Node Association 
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❖ Remote Deployment  

The screenshot below depicts an easy and flexible remote deployment of application module (a 

module that compute average temperature value) using CoAP block-wise transfer protocol. The 

simulation below shows data transferring from base station to aggregator sensor using maximum 

block size is 64B/blk and start loading the application module dynamically.  

 

 

Figure 5. 4: CoAP Block-Wise based Remote Deployment and Loading a Module 
 

❖ Aggregation 

After remote deployment of the module done on the aggregator sensor node, the sensor nodes 

send their generated data based on the URI-QUERY information given and the aggregator sensor 

node receive each sensor nodes value and aggregate to send to next hope aggregator sensor node. 

Figure 5.5: shows aggregation simulation. 

 

Figure 5.5: Aggregation 
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5.4.2 Performance Evaluation 

5.4.2.1 Number of Packets 

We compared the number of packet transaction in the constrained network by varying the 

number of hopes from sensor nodes to base station against the number of packet Figure 5.6 

displays in detail in the graph below. 

Using a simple average, suppose AgSN-02,the module is designated to compute the averages 

value which is generated from sensor nodes SN-01, SN-02 and SN-03 with values, 𝑎, 𝑏 and 𝑐, 

respectively. The average is computed and resulted as  𝑺𝑵𝒂𝒗𝒈.  

𝑺𝑵𝒂𝒗𝒈 = 𝑎𝑣𝑔(𝑎, 𝑏, 𝑐) 

 
 

 

Figure 5. 6: Network packet transaction 
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5.4.2.2 Energy Consumption 

The energy consumption is the sum of used energy of all the nodes in the network, where the 

used energy of node is the sum of the energy used for communication, including transmitting, 

receiving, and idling. In above section, number of packet section, we have seen that the number 

of packet is decreased as we add more number of hops in the network. Assuming each 

transmission consumes an energy unit, the total energy consumption is equivalent to the total 

number of packets sent in the network, and energy is optimized in our designed solution. 

 

❖ Mathematical Evaluation  

General mathematical formula to get energy consumption for the overall communication energy 

of the constrained network is by adding the energy consumption of the sensor nodes times sensor 

nodes in constrained network plus aggregator sensor node energy consumption times the number 

of aggregator nodes plus number of routers times energy consumption the routers. The equation 

is illustrated below. 

 

𝐸𝑇𝑜𝑡𝑎𝑙 = 𝑛 ∗ 𝐸𝑠𝑛 + 𝐸𝐴𝑔𝑆𝑁 + 𝑚 ∗ 𝐸𝑅  

Where   

 𝐸𝑇𝑜𝑡𝑎𝑙  Total communication energy of the constrained network 

 𝐸𝑠𝑛   Energy consumption of senor nodes in the constrained network 

 𝐸𝐴𝑔𝑆𝑁  Energy consumption of aggregator sensor 

 𝑛  Number of sensors in the constrained network 

 𝑚  Number of routers in the constrained network 

 𝐸𝑅  Energy consumption of routers in constrained network 
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Now to compute the energy consumption of a single sensor node the equation will be: 

 

𝐸𝑠𝑛 = 𝐸𝑐𝑝𝑢  + 𝐸𝑐𝑝𝑢−𝑙𝑝𝑚 + 𝐸𝑇𝑥 + 𝐸𝑅𝑥 + 𝐸𝑖𝑑𝑙𝑒−𝑟𝑎𝑑𝑖𝑜 

Where 

 𝐸𝑐𝑝𝑢  CPU energy consumption 

 𝐸𝑐𝑝𝑢−𝑙𝑝𝑚 CPU energy consumption in low powered mode 

 𝐸𝑇𝑥  Energy of data transmission 

 𝐸𝑅𝑥  Energy consumption of data receiving  

 𝐸𝑖𝑑𝑙𝑒−𝑟𝑎𝑑𝑖𝑜 Energy consumption of radio idle 

 

To get 𝐸𝑠𝑛 , first we have to compute the value for each of the following: 

 

𝐸𝑐𝑝𝑢 = 𝐼𝑐𝑝𝑢 ∗  𝑉 ∗ 𝑡𝑐𝑝𝑢 

𝐸𝑐𝑝𝑢−𝑙𝑝𝑚 =  𝐼𝑙𝑝𝑚 ∗ 𝑉 ∗ 𝑡𝑙𝑝𝑚 

𝐸𝑇𝑥 =  𝐼𝑇𝑥 ∗ 𝑉 ∗ 𝑡𝑇𝑥 

𝐸𝑅𝑥 =  𝐼𝑅𝑥 ∗ 𝑉 ∗ 𝑡𝑅𝑥 

𝐸𝑖𝑑𝑙𝑒−𝑟𝑎𝑑𝑖𝑜 = 𝐼𝑖𝑑𝑙𝑒  ∗ 𝑉 ∗ 𝐼𝑖𝑑𝑙𝑒 

 

Finally, the formula to get energy consumption of a single sensor node computed as: 

 

𝐸𝑠𝑛 = (𝐼𝑐𝑝𝑢 ∗  𝑉 ∗ 𝑡𝑐𝑝𝑢) + (𝐼𝑙𝑝𝑚 ∗ 𝑉 ∗ 𝑡𝑙𝑝𝑚) + (𝐼𝑇𝑥 ∗ 𝑉 ∗ 𝑡𝑇𝑥) + (𝐼𝑅𝑥 ∗ 𝑉 ∗ 𝑡𝑅𝑥) + (𝐼𝑖𝑑𝑙𝑒  ∗ 𝑉

∗ 𝐼𝑖𝑑𝑙𝑒)  
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Using the above equation and constant values below in Table 5.1 we can compute the energy 

values of any sensor node in the constrained network and we can compare communication 

energy of the overall constrained network. 

Table 5. 1: Constant values 

No Notations Descriptions Values 

1 V Voltage 3V 

2 𝐼𝑐𝑝𝑢 CPU Current 8mA 

3 𝐼𝑙𝑝𝑚 Current for Low Power Mode 0.0005mA 

4 𝐼𝑇𝑥 Transmission Current 17.4mA 

5 𝐼𝑅𝑥 Receiving Current 18.8mA 

6 𝐼𝑖𝑑𝑙𝑒 Idle Current 0.426mA 

7 𝑇𝑡𝑜𝑡𝑎𝑙 Total time 60s 

8 N Number of nodes Vary 

9 M Number of routers Vary 

10 𝑡𝑇𝑥 Transmission Time 0.01s/pkt 

11 𝑡𝑅𝑥 Receiving Time 0.01s/pkt 

12 𝑡𝑐𝑝𝑢 % CPU Time Percent 10% 

13 𝑡𝑙𝑝𝑚 % Time for Low Power Mode 90% 

14 
𝑡𝑐𝑝𝑢 

CPU Time 𝑡𝑐𝑝𝑢 = 𝑇𝑡𝑜𝑡𝑎𝑙 ∗ 𝑡𝑐𝑝𝑢 
6s 

15 𝑡𝑙𝑝𝑚 CPU Low Power Mode  𝑡𝑙𝑝𝑚 = 𝑇𝑡𝑜𝑡𝑎𝑙 ∗ 𝑡𝑙𝑝𝑚 54s 

16 𝐷𝑒𝑙𝑡𝑎 𝑡𝑐𝑝𝑢−𝑙𝑝𝑚 CPU Time and Low Power Mode difference 1% 

17 𝑅𝑎𝑑𝑖𝑜𝑖𝑑𝑙𝑒 Radio Idle in Percent 99% 

18 𝑅𝑎𝑑𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑒 Radio Active in Percent 1% 

19 𝑇𝑑 Time gap between packets 5 ms b/n Tx  

20 N Number of Packets 12 pkts/day 

 

By using the above mathematical formula and value inputs we can get the following discussion 

and results. 
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Evaluation of communication energy consumption is taken by varying the number of sensor 

nodes against energy consumption to compare the original constrained network scenario with the 

proposed solution of the constrained network. As it can be seen in Figure 5.7, Figure 5.9, and 

Figure 5.11, as the number of sensor nodes increases communication energy consumption of 

proposed solution is more efficient than the original constrained network. We sampled 3 sensor 

nodes and 3 different topology scenarios (2 hops, 3 hops, and 4 hops) in all our energy 

consumption evaluations.   

We also evaluated the original and proposed solution of communication energy by comparing 

energy consumption against data generation interval by varying the time gap between each 

packet generated by the sensor nodes. The proposed solution indicates the energy consumption is 

also more efficient than the original constrained network scenario. We take 3 sensor nodes for 

our mathematical evaluation and three different topology scenarios (for 2 hops, 3 hops, and 4 

hops) as previous topology and the detail result and discussion of energy consumption against  

data generation interval is described in Figure 5.8, Figure 5.10, and Figure 5.12. From all results 

displayed in the graphs we can conclude that in our proposed solution there is an efficient usage 

and energy saving compared to the original constrained network.  
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➢ Results for 2 Hops 

The result of Energy consumption against number of sensor nodes for 2 hops is illustrated in  

Figure 5.7. The data is generated every 5 seconds. 

 

 
 

Figure 5. 7: Energy Consumption vs. Number of sensor nodes 

 

We also evaluate the original and proposed solution energy consumption using Energy 

consumption against data generation interval as shown in Figure 5.8.  

 

 

Figure 5. 8: Energy consumption vs. Data generation interval 
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➢ Results for 3 Hops 
 

The result of energy consumption against number of sensor nodes for 3 hops is illustrated in the 

Figure 5.9.  

 
 

Figure 5. 9: Energy consumption vs. Number of sensor nodes 

The result of energy consumption against data generation interval for 3 nodes is illustrated in the 

Figure 5.10.  

 
 

Figure 5.10: Energy consumption vs. Data generation interval 
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➢ Results  for 4 Hops 

The result of energy consumption against number of sensor nodes, data is generated in 5 seconds 

and illustrated in the Figure 5.11.  

 

 
 

Figure 5. 11: Energy Consumption vs. Number of sensor nodes 

The result of energy consumption against data generation interval for 3 nodes is illustrated in the 

Figure 5.12.  

 

 
 

Figure 5. 12: Energy consumption vs. Data Generation interval 
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❖ Summarized communication Energy Saving (in 60 Seconds) 

In general, from the above discussions and results, the energy saving against the number of 

sensor nodes in constrained network within total time of 60 seconds and with 5 seconds data 

generation interval can be computed as illustrated in Figure 5.13.   

 

 
 

Figure 5.13: Energy saving vs. Number of sensor nodes 
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     Chapter Six: Conclusions and Future Works 

6.1 Conclusions 

Now a day everything becomes connected using modern digital network and everything becomes 

programmable to work what function we really need.  Billions of sensors and actuators are 

connected to transform traditional world to digital world, like smart city, smart homes, self-

driving cars, and other dangerous areas also digitalized in the newly driven Internet of Things 

technology, each daily generates billions of huge data and interconnected using LLN. In such 

constrained sensor and huge number of deployed constrained devices, automation is the most 

important feature to enable the device accessible, maintenance, update, and upgrade. 

The purpose of this research work is to increase efficiency to the system we can process the data 

locally at some intermediate nodes within the constrained network to send semi-processed data 

to next node which may do further aggregation until it reaches to the sink or gateway, so sending 

all information to the gateway is not required.  The application module is remotely deployed in 

an easy and flexible way using CoAP block-wise protocol to such constrained sensors which is 

interconnected in LLN.  

In the final of our work, we able to contribute some solution to constrained network accessibility 

mechanism to update or upgrade firmware’s remotely via a LLN in IoT.  

To describe some of our contributions:  

• With the complete mechanism, provided an easy and flexible remote application module 

deployment using CoAP Block transfer protocol mechanism to a constrained node 

without disturbing the other sensor nodes on the network and limiting unnecessary data 

transmission over wireless sensor network media by aggregating data generated by 

multiple sensors. 

• In order to evaluate the function and performance of our designed system we used 

different important metrics for ease of accessibility and flexible deployment and 

reduction of packet transmission in LLN.  

Even though a number of deployment mechanism are proposed by many research works, the 

methods of their module deployment are different and number of packets are not considered and 

billions of big data is generated in IoT technology. In our work, we able to contribute some 
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solution to remote deployment for constrained sensor nodes. Therefore, the result of this research 

provides its own contribution to the ongoing researches in this domain area. 

6.2 Future Works 

There are a few aspects that need future discussion and some implementation and operational 

issues need to be addressed before our designed architecture deployed in real world and to the 

Internet. The main limitation of this remote deployment mechanism is data compression which is 

not considered in our work. The more feature or function we add the more code is uploaded to 

Erbium sensor, the more code is added the sensor memory become loaded and the life time of the 

constrained device will be shorten even the device may die. To fix these fears, data compression 

in transferring the payload is the best approach. 

Secondly, security is not considered in our proposed work while transferring the data payload to 

aggregated sensor node. I.e. authentication or some other security measures to make the data as 

well as the network more secure.  

These two issues can be considered as a vulnerability of our research working approach when we 

are thinking security, so these can be a future work in these domain areas. 
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APPENDIX A: Observer Function 

The code script shows the modification of observer function (er-coap-13-oberserving.c) done on 

the erbium. 

 

void 

coap_observe_handler(resource_t *resource, void *request, void *response) 

{ 

coap_packet_t *constcoap_req = (coap_packet_t *) request; 

coap_packet_t *constcoap_res = (coap_packet_t *) response; 

  uint8_t *host = "aaaaaaaaaaaaaaaaaaaaaaaaaa"; 

  uint8_t *res_path = "rrrrrrrr"; 

uip_ipaddr_taddr; 

uint8_tlen = 0; 

  uint8_t res_path_len = 0; 

if (coap_req->code==COAP_GET &&coap_res->code<128) /* GET request and response 

without error code */ 

{ 

if (IS_OPTION(coap_req, COAP_OPTION_OBSERVE)) 

{ 

if ((len=REST.get_query_variable(request, "host", host))) 

{ 

host[len]=0; 

coap_convert_str_to_ip6addr(host, &addr);  

if ((res_path_len = REST.get_query_variable(request, "res", &res_path))) 

{ 

res_path[res_path_len] = 0; 

} 

printf("Agg IP = %s Resource = %s\n Adding Aggregator as Observer. \n ",h, res_path);  

if (coap_add_bind_observer(&addr, COAP_DEFAULT_PORT, coap_req->token, coap_req-

>token_len,resource->url, res_path, res_path_len, 0, 0, &UIP_IP_BUF->srcipaddr, coap_req-

>observe, NULL)) 
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{ 

coap_set_header_observe(coap_res, coap_req->observe);    

} 

else 

{ 

coap_res->code = SERVICE_UNAVAILABLE_5_03; 

coap_set_payload(coap_res, "TooManyObservers", 16); 

}} 

else 

{ 

if (coap_add_observer(&UIP_IP_BUF->srcipaddr, COAP_DEFAULT_PORT, coap_req->token, 

coap_req->token_len, resource->url, coap_req->observe)) 

{ 

coap_set_header_observe(coap_res, coap_req->observe);    

} 

else 

{ 

coap_res->code = SERVICE_UNAVAILABLE_5_03; 

coap_set_payload(coap_res, "TooManyObservers", 16); 

}}} 

else /* if (observe) */ 

{ 

/* Remove client if it is currently observing. */ 

coap_remove_observer_by_url(&UIP_IP_BUF->srcipaddr, UIP_UDP_BUF->srcport, resource-

>url); 

} /* if (observe) */ 

} /* if (GET) */ 

} * End of function * 
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APPENDIX B: In-Network aggregation 

The erbium code script modification in the file er-coap-dyn-module.c  

 

void 

dyn_module_resource_handler (void *request, void *response, uint8_t *buffer, uint16_t 

preferred_size, int32_t *offset) 

{ 

coap_packet_t *coap_req = (coap_packet_t *) request; 

coap_packet_t *coap_res = (coap_packet_t *) response; 

const char *uri_path; 

uint8_t uri_path_len; 

uint8_t res_type = 0; /* 1= None, 2 = Input, 3 = Output, 4 = Control, 0 - Error */ 

uint8_t res_num = 0; 

uint8_t dyn_module_name[4]; 

static uint16_t obs_counter = 0; 

uri_path_len = coap_get_header_uri_path(coap_req, &uri_path); 

get_dyn_module_info_from_uri(uri_path, uri_path_len, dyn_module_name, &res_type, 

&res_num); 

if(strncmp(dyn_module_name, dyn_module.dyn_module_name, 3) != 0) 

{ 

printf ("Invalid URI\n"); 

return; 

} 

switch (res_type) { 

case ALL: /* Uri is /dyn_module_NAME - respond to GET only */ 

if (REST.get_method_type(coap_req) == METHOD_GET) 

{ 

coap_res->code = CONTENT_2_05; 

//respond with values of input and output and control 

} 

break; 
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case INPUT: // Input 

if(REST.get_method_type(coap_req) == METHOD_GET) 

{ 

char content[5]; 

if(res_type == INPUT) 

{ 

coap_set_payload(coap_res,content,snprintf(content,sizeof(content),"%u",dyn_module.in[res_nu

m])); 

} 

else 

{ 

//coap_set_payload(coap_res,content,snprintf(content,sizeof(content),"%u",dyn_module.con[res

_num])); 

}} 

if(REST.get_method_type(coap_req) == METHOD_PUT) 

{ 

uint8_ttmp[MAX _PAYLOAD_LEN]; 

const char url[MAX _PATH_LEN]; 

size_tlen = coap_get_payload(request, tmp); 

dyn_module.in[res_num] = atoi(tmp); 

printf("Arrived Input [%u]\n", dyn_module.arrived_inputs); 

if(dyn_module.arrived_inputs ==((1 <<dyn_module.num_in) - 1) || dyn_module.separate_inputs) 

{ 

uip_ipaddr_t *addr = &UIP_IP_BUF->srcipaddr; 

if(dyn_module.processing_logic(res_num)) 

{ 

resource_t *resource = get_resource_by_url(url, strlen(url)); 

if(resource) 

{ 

if(dyn_module.separate_inputs) 

{ 

dyn_module_resource_notifier(resource, &dyn_module, res_num); 
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} 

else 

{ 

dyn_module_resource_notifier(resource, &dyn_module, 0); 

dyn_module.arrived_inputs = 0; 

} 

} /*resource*/ 

} /* if processing */ 

} /*if arrived_inputs */ 

} /* if PUT */ 

break; 

case OUTPUT: //output 

if (REST.get_method_type(coap_req) == METHOD_GET) 

{ 

uint8_tmsg[MAX_ PAYLOAD_LEN]; 

REST.set_response_payload(response, msg, strlen(msg)); 

} 

break; 

default: 

{ 

printf("Invalid Request\n"); 

} 

} /*Switch */ 

} /*dyn_module_resource_handler function */ 
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APPENDIX C: Remote Deployment 

The er-dynamic-loader.c code script modification done on erbium 

 

void 

dloader_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t 

*offset) 

{ 

coap_packet_t *constcoap_req = (coap_packet_t *) request; 

uint8_t method = REST.get_method_type(request); 

 

if (method == METHOD_PUT) 

{ 

char *filename = "avg.ce"; 

if (!IS_OPTION(coap_req, COAP_OPTION_BLOCK1)) 

{ 

restlet_load_file(filename); 

} 

else 

{ 

intfd; 

uint8_tlen; 

uint8_t *incoming = NULL; 

 

fd = cfs_open(filename, CFS_WRITE | CFS_APPEND); 

if(fd == -1) { 

printf("Unable to open file\n"); 

const char *error_msg = "Unable to open file"; 

REST.set_response_payload(response, error_msg, strlen(error_msg)); 

 

return; 

} 
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if ((len = REST.get_request_payload(request, (const uint8_t **) &incoming))) 

{ 

static uint8_t more = 1; 

cfs_write(fd, incoming, len); 

cfs_close(fd); 

printf("Block[%u] = Len <%u/%u>\n", coap_req->block1_num, len, coap_req->block1_size); 

if(!(coap_req->block1_more) && more) 

{ 

more = 0; 

printf("Done Transferring. Start Loading\n"); 

restlet_load_file(filename); 

} 

} 

REST.set_response_status(response, REST.status.CHANGED); 

coap_set_header_block1(response, coap_req->block1_num, 0, coap_req->block1_size); 

} 

} 

REST.set_header_content_type(response, REST.type.TEXT_PLAIN); 

 

} 
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APPENDIX D: Data Source 

The erbium data source function code done on er-sensor.c. 

PERIODIC_RESOURCE(temp, METHOD_GET, "gpio/btn", "title=\"Temp Sensor\";obs", 5 * 

CLOCK_SECOND); 

 

#if !(RES_TEMP_USE_SHT11_DATA) 

const static uint8_t data[100] = { 

21, 23, 27, 27, 29, 21, 23, 27, 22, 25, 24, 26, 23, 25, 29, 29, 26, 27, 21, 26, 20, 22, 21, 28, 21, 24, 

21, 21, 29, 22, 25, 28, 26, 22, 26, 25, 24, 29, 22, 27, 25, 27, 24, 28, 22, 23, 28, 29, 20, 21, 25, 20, 

21, 26, 28, 23, 20, 20, 24, 20, 22, 24, 29, 28, 22, 25, 23, 27, 25, 26, 25, 20, 24, 29, 29, 27, 22, 27, 

26, 23, 26, 21, 24, 28, 28, 23, 22, 20, 23, 26, 29, 25, 26, 28, 24, 29, 23, 22, 26, 23 

}; 

unsigneddata_iterator = 0; 

#endif 

 

void 

temp_handler(void* request, void* response, uint8_t *buffer, uint16_t preferred_size, int32_t 

*offset) 

{ 

REST.set_header_content_type(response, REST.type.TEXT_PLAIN); 

coap_set_header_max_age(response, MAX_AGE); 

static uint32_t tmp; // state of temperature resource at the moment 

static char msg[11]; 

 

#ifdef RES_TEMP_USE_SHT11_DATA // use sht11 sensor for temperature resource 

i2c_disable(); //http://comments.gmane.org/gmane.os.contiki.devel/14819 

sht11_init(); 

tmp = (unsigned) (-39.60 + 0.01 * sht11_temp()); 

#else // use stored values for temperature resource 

tmp = data[data_iterator++ % 100]; 

#endif 
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snprintf(msg, sizeof(msg), "%lu", tmp); 

REST.set_response_payload(response, msg, strlen(msg)); 

 

/* A post_handler that handles subscriptions will be called for periodic resources by the REST 

framework. */ 

} 

/* 
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