

Jimma University

Jimma Institute of Technology

School of Graduate Studies

Faculty of Civil and Environmental Engineering

Geotechnical Engineering Stream

Prediction of Swelling Pressure from Index Properties of Expansive Soils found in Burayu Town

A Research thesis Submitted to School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirement of Degree of Master of Science in Civil Engineering.

By: Chala Lechu Kistana

> March, 14/2020 Jimma, Oromia, Ethiopia

Jimma University Jimma Institute of Technology School of Graduate Studies Faculty of Civil and Environmental Engineering Geotechnical Engineering Stream Prediction of Swelling Pressure from Index Properties of Expansive Soils found in Burayu Town

A Research Thesis Submitted to School of Graduate Studies of Jimma University in Partial Fulfillment of the Requirement of Degree of Master of Science in Civil Engineering.

By: Chala Lechu Kistana

Main Advisor: Prof. Emer T. Quezon (P.Eng)

Co Advisor: Mr. Worku Firomsa (Msc.)

March, 14/2020 Jimma, Oromia, Ethiopia

Declaration

I, the undersigned, declare that this Research thesis entitled "**Prediction of Swelling Pressure from Index properties of Expansive soils found in Burayu town**" is my original work, and has not been presented by any other person for an award of a degree in this or any other University. In addition, all sources of material used for this Research thesis duly acknowledged.

Candidate: Mr. Chala Lechu Kistana

Signature

Date

As Master's Research Advisors, I hereby certify that I have read and evaluated this MSc. Research thesis prepared under my guidance by **Chala Lechu** entitled: "**Prediction of Swelling Pressure from Index properties of Expansive soils found in Burayu town**".

Prof. Emer T. Quezon, P.Eng Main Advisor

Signature

15/03/2020

Date

Mr. Worku Firomsa (MSc.)

Co- Advisor

Signature

Date

Acknowledgement

First, I would like to thank GOD from the depth of my heart for endowing me with the courage, strength as well as health throughout time and for the successful accomplishment of this Research thesis.

Next, I would like to express my deepest gratitude to my Main advisor **Prof. Emer T. Quezon** for guiding and supervising my research thesis work. Also, I would like to extend my sincere thanks to my co-advisor **Mr. Worku Firomsa** and other Jimma Institute of technology, Geotechnical engineering staff members, who gave me comments and directions on my research thesis work.

Abstract

Expansive soils are recognized as problematic soils that impose several challenges for civil engineers. Such soils undergo significant volume change in case water penetrates into them, and they shrink as they lose moisture. Lightly-loaded engineering structures such as pavements, single story buildings, railways and walkways may experience severe damages when they are founded on such soils. A considerable surface area of Burayu town covered by expansive soils, which have a tendency to undergo volume change due to change in water content variation.

Reconnaissance study of the area carried by visiting the entire part and the surrounding part of the town. For this study thirty-(30) samples collected from 10(ten) test pits for different laboratory tests and each samples are determined according to American Society of Testing Materials (ASTM) and their result and discussions was stated.

This Research study is aimed to predict the swelling pressure from index properties of expansive soils found in Burayu town including classification of soil using AASHTO (American Association of State Highway and transportation officials) and Unified soil classification systems (USCS) to know the expansiveness of the soils the study area. The study also carried out on examining the nature and mechanism of swell-shrink behavior of expansive soils.

The statistical analysis conducted using Computer program Software (SPSS 20) and Microsoft-Excel to develop Empirical between soil index properties and swelling pressure of expansive soil of the study area. The outcome of this study is Modelling of swelling pressure from index properties of expansive soils in the study area. Based on both single and multiple linear regression analysis relatively good correlation is obtained by combining Swelling pressure (Sp) with soil index properties. From the analysis the equations developed are $S_P = 4.134*PI - 2.406*NMC - 95.564*\gamma d - 247.366*Ac + 381.831$ with coefficient of determination (R^2) of 0.869 for multiple linear regression and Sp = $387.51 - 158.1*\gamma d$ with coefficient of determination R^2 of 0.829 for single linear regression. The Results on the validity of the newly developed correlation with control test results shows that, the correlation of swelling pressure value with soil index properties is valid only for preliminary design purposes and estimation of swelling pressure of the soils the study area.

Key words: - Expansive, Swell Pressure, Regression, Correlation, Swell-Shrink behavior.

Table of Contents

Contents Pages	
Declaration	i
Acknowledgementi	i
Abstract ii	i
Table of Contentsiv	1
List of Tablesix	C
List of Figuresx	i
Abbreviationsxi	i
CHAPTER ONE1	L
INTRODUCTION	L
1.1 Back Ground of the Study	L
1.2 Statement of the Problem	2
1.3 Research questions	3
1.4 Objectives of the study	3
1.4.1 General Objective	3
1.4.2 Specific Objective	3
1.5 Scope of the Study	3
1.6 Significance of the study	ŀ
1.7 Organization of the Thesis	ŀ
CHAPTER TWO	5
LITERATURE REVIEW	5
2.1 Expansive Soil	5
2.2 Description of Expansive Soil	5
2.3 Field Identification of Expansive Soils	5
2.4 Experimental Identification of Expansive soils	7
2.4.1 Indirect methods	7
2.4.1.1 Grain Size Analysis Test	7
2.4.1.2 Natural Moisture Content Test	7
2.4.1.3 Atterberg limit Test	3
2.4.1.4 Activity of clay)
2.4.1.5 Specific Gravity Test)
2.4.2 Direct measurement)
2.4.2.1 Free Swell Test)

2.4.2.2 Swelling pressure Test	10
2.5 Measurement of swelling pressure using Oedometer tests	10
2.5.1 Constant Volume Method	10
2.5.2 Swell-Consolidation Method	11
2.6 Mineralogical identification	12
2.6.1 Structure of Clay Minerals	12
2.6.2 Clay Minerals Classification	12
2.7 Classification methods of Expansive Soils	12
2.7.1 General Soil Classification Systems	13
2.7.1.1 Unified Soil Classification System	13
2.7.1.2 AASHTO Soil Classification system	13
2.7.2 Classification specific to Expansive soils	14
2.7.3 Other Expansive soil classification based on different index properties	16
2.8 Mechanics of Swell	18
2.8.1 Moisture Transfer	18
2.8.2 Moisture Equilibrium	18
2.8.3 Depth of Moisture Fluctuation	18
2.9 Formation of Swelling Soils	20
2.9.1 Origin of Swelling Soils	20
2.9.2 Damage to Structures	20
2.10 Mechanism for Moisture Ingress and Removal	20
2.11 Application of heave predictions	21
2.11.1 Potential total Vertical heave	22
2.12 Previously Developed Equations of Study Area	22
CHAPTER THREE	23
MATERIAL SAMPLING AND TESTING METHODOLOGY	23
3.1 Introduction	23
3.2 Description of the study area	23
3.3 Study design	26
3.4 Study Population	26
3.5 Sampling techniques and procedures	27
3.5.1 Sampling Techniques	27
3.5.2 Sampling Procedures	27
3.5.3 Selection of Sampling Sites	27

3.5.4 Collection of Soil Samples	
3.6 Experimental study or Laboratory Tests	
3.7 Data collection process and Analysis	
3.7.1 Data collection process	
3.7.2 Collection Data for analysis	29
3.8 Statistical Data Analysis for Correlation and Regression	29
3.8.1 Data distribution Analysis of the Model	29
3.8.1.1 Choice of Sample Size	29
3.8.1.2 Normality Test	
3.9 Considerations for Statistical Analysis	31
3.9.1 Parametric Tests	31
3.9.1.1 Standard Error of the Mean or SE _{Mn}	31
3.9.1.2 Level of Significance	32
3.9.1.3 The Significance of R	32
3.9.1.4 The t- Test	32
3.9.1.5 Analysis of Variance (F) ANOVA Test	33
3.9.2 Non-Parametric Tests	33
3.9.2.1 Chi-Square Test (χ^2)	33
3.9.2.2 The Sign Test	34
3.10 Correlation and Regression Analysis	34
3.10.1 Simple Linear Regression	34
3.10.2 Multiple Linear Regression Model	35
3.10.2.1 R-squared (R ²) and Adjusted R-square (Adj. R ²)	35
3.10.2.2 Multicollinearity	35
CHAPTER FOUR	
RESULT AND DISCUSSION	
4.1 Laboratory Test Analysis and their Results	
4.1.1 Atterberg limit Test Result (ASTM D4318-98)	
4.1.2 Linear shrinkage limit test result	37
4.1.3 Specific Gravity Tests of soils (ASTM D854-98)	
4.1.4 Natural Moisture Content Test Result (ASTM D2216-98)	
4.1.5 Dry Density tests of soils (ASTM D 2937-00)	
4.1.6 Swelling Pressure Test (ASTM D4546-96)	40
4.1.7 Grain Size Analysis of soils (ASTM D422-98)	42

4.1.8 Free Swell test
4.1.9 Activity of clay
4.2 Soil Classification
4.3 Discussion on Laboratory Test Results
4.4. Results of Correlation and Regression Analysis
4.4.1 Determination of Sample size54
4.4.1.1 Discussion on Sample Size
4.4.2 Statistical Data distribution result
4.4.2.1 Discussion on Statistical data output55
4.4.3 Normality Test Result
4.4.3.1 Discussion on Normality Test output56
4.4.4 Correlation Analysis Result
4.4.4.1 Pearson correlation coefficient, R
4.4.4.1 Discussion on Correlation output57
4.5 Formulation of New Empirical Equations58
4.5.1 Using Simple Linear Regression Analysis
4.5.1.1 Scatter Plot and Best Curve Fit Results for Simple Linear Regression58
4.5.1.2 Formula developed from Simple Linear Regression outputs60
4.5.1.3 Discussion on Single Linear Regression60
4.5.2 Using Multiple Linear Regression Analysis61
4.5.2.1 New Formula developed from Multiple Linear Regression output62
4.5.2.2 Discussion on Multiple Linear Regression
4.6 Checking Adequacy of Developed model using SPSS output64
4.6.1 Interpreting Descriptive Statistics64
4.6.2 Regression Model Summary65
4.6.3 ANOVA
4.6.4 Regression Model parameters
4.6.5 Multicollinearity Diagnostics67
4.6 Comparisons of Previously Developed Equations with Values of Study Area67
4.7 Validation of the Developed Formula70
4.7.1 Cross Validation for control test71
4.7.2 Discussion on the Validation of Developed Formula71
CHAPTER FIVE
CONCLUSION AND RECOMMENDATION

5.1 Conclusion725.2 Recommendations73REFERENCES74APPENDIX A: Representative Atterberg Limit test Results77APPENDIX B: Representative Grain size distribution Analysis Result87APPENDIX C: Swelling Pressure test Result of the Study Area97APPENDIX D: Specific Gravity test Results of the Study Area126APPENDIX E: Graph of Normality test for each Variables129APPENDIX F: SPSS 20 Output of Correlation Analysis131APPENDIX G: Representative SPSS 20 output of developed Regression Analysis132		
5.2 Recommendations73REFERENCES74APPENDIX A: Representative Atterberg Limit test Results77APPENDIX B: Representative Grain size distribution Analysis Result87APPENDIX C: Swelling Pressure test Result of the Study Area97APPENDIX D: Specific Gravity test Results of the Study Area126APPENDIX E: Graph of Normality test for each Variables129APPENDIX F: SPSS 20 Output of Correlation Analysis131APPENDIX G: Representative SPSS 20 output of developed Regression Analysis132	5.1 Conclusion	72
REFERENCES	5.2 Recommendations	73
APPENDIX A: Representative Atterberg Limit test Results	REFERENCES	74
APPENDIX B: Representative Grain size distribution Analysis Result	APPENDIX A: Representative Atterberg Limit test Results	77
APPENDIX C: Swelling Pressure test Result of the Study Area	APPENDIX B: Representative Grain size distribution Analysis Result	
APPENDIX D: Specific Gravity test Results of the Study Area	APPENDIX C: Swelling Pressure test Result of the Study Area	97
APPENDIX E: Graph of Normality test for each Variables	APPENDIX D: Specific Gravity test Results of the Study Area	
APPENDIX F: SPSS 20 Output of Correlation Analysis	APPENDIX E: Graph of Normality test for each Variables	
APPENDIX G: Representative SPSS 20 output of developed Regression Analysis132	APPENDIX F: SPSS 20 Output of Correlation Analysis	131
	APPENDIX G: Representative SPSS 20 output of developed Regression Analysi	s132

List of Tables

Table 2-1: Soil Classification in Unified System 13
Table 2-2: Degree of colloidal activity (Skempton's method) 15
Table 2-3: U.S.B.R Classification method
Table 2-4: Altmeyer classification of expansive soil based on SL, % and LS, %15
Table 2-5: Seed, Woodward and Lundgreen classification of expansive soil. 15
Table 2-6: Chen method of classification of Expansive soil 16
Table 2-7: Expansive soil classification based on liquid limit
Table 2-8: Expansive soil classification based on plasticity Index
Table 2-9: Expansive soil classification based on shrinkage limit (Holtz and Gibbs1956)
Table 2-10: Expansive soil classification based on shrinkage limit (Altmeyer, 1956)16
Table 2-11: Expansive soil classification based on shrinkage index (IS: 1498)17
Table 2-12: Expansive soil classification based on particle size composition
Table 2-13: Expansive soil classification based on the activity
Table 2-14: Expansive soil classification based on oedometer swell tests 17
Table 2-15: Expansive soil classification based on Free Swell Index (FSI, %)(IS
1498:1970)
Table 2-16: Expansive soil classification based on FSR (Sridharan and Prakash 2000b).17
Table 3-1: Test Pit Location of Study Area 24
Table 3-2: Sigma value that must be exceeded for Rejection of Hypothesis 32
Table 4-1: Determination of Atterberg limits (LL, PL and PI) of soil for TP1 @1m36
Table 4-2: Atterberg Limit test and Liquidity Index Results of the study area37
Table 4-3: Determination of Linear Shrinkage limit test for Test pit 1 38
Table 4-4: Linear shrinkage limit test results of the study area
Table 4-5: Specific Gravity Determination for Test Pit 1
Table 4-6: Specific Gravity Test Results of expansive soils found in study area39
Table 4-7: Deformation reading during Swell-consolidation test for Tp1 @1m40
Table 4-8: Determination of dry unit weight and Height of solids
Table 4-9: Determination of void ratio for each load increments
Table 4-10: Natural Moisture Contents, Bulk Density, Dry Density, Swelling potential
and swelling pressure tests Result of the study area41
Table 4-11: Sample Preparation: Oven-Dried Sample43
Table 4-12: Grain size Distribution Analysis using Sieve Size Analysis 43

Table 4-13: Grain size Distribution determination using Hydrometer analysis
Table 4-14: Combined Sieve Analysis and Hydrometer Analysis 45
Table 4-15: Percent of Grain Size Distribution Result for the soils of the study area45
Table 4-16: Free swell test Results of the study area
Table 4-17: Activity of clay Result in the study area 48
Table 4-18: AASHTO soil Classification system result of the study area 50
Table 4-19: Unified soil Classification system result of the study area 52
Table 4-20: Results of Descriptive Statistics of Data Distribution
Table 4-21: Test of Normality for each variables 56
Table 4-22: Result of Pearson correlation coefficient in Correlation matrix
Table 4-0-23: Input Data for SPSS 20 computer program61
Table 4-24: Descriptive Statistics of the Developed model
Table 4-25: Correlation Matrix of developed model 64
Table 4-26: Model summary of developed Regression model
Table 4-27: ANOVA of the developed model
Table 4-28: Coefficients of Regression model parameters for developed model
Table 4-29: Comparisons of Previously Developed Equations with measured Values of
Study Area
Table 4-30: Predicted Swelling Pressure values using newly developed equations70
Table 4-31 : Sample Data for Control test 71
Table 4-32: Prediction of Swelling Pressure and Validation of the newly developed
equations by Control test Samples71

List of Figures

Figure 2-1: Graph of swelling pressure by Constant Volume Methods [27]11
Figure 2-2: Graph of swelling pressure by swelling consolidation method [27]11
Figure 2-3: Casagrande Plasticity Chart (ASTM D2487-11) [25]13
Figure 2-4: Liquid limit vs Plasticity Index chart for AASHTO classification [26]14
Figure 2-5: Moisture content variation with depth below ground surface [Chen, 1998] 19
Figure 3-1: Location of Study area on the map of Ethiopia (Source: Based on Maps of
Oromia National Regional State, 2012) [35]24
Figure 3-2: Sampling Locations of the Study Area on the Map of Burayu Town25
Figure 3-3: Flow chart for the overall frameworks
Figure 4-1: Graph of Moisture Content vs. Number of Blows for Determination of LL36
Figure 4-2: Graph of Logarithm of pressure Vs Void Ratio41
Figure 4-3: Graph of Grain size Distribution by using sieve size analysis
Figure 4-4: Graph of grain size Distribution analysis by using hydrometer analysis44
Figure 4-5: Graph of Particle size Distribution for Combined sieve and Hydrometer
Analysis
Figure 4-6: Graph of Particle size Distribution curve for all test pits of the study area46
Figure 4-7: Activity chart of the Study Area
Figure 4-8: Plasticity chart for soil Classifications According to AASHTO System50
Figure 4-9: Graph of Plasticity chart of the Study Area According to USCS System51
Figure 4-10: Scatter Plots of Dependent Variable vs Independent Variables60
Figure 4-11: Graphical output of developed Regression model
Figure 4-12: Comparison of Measured Values of Swelling Pressure for previously
Developed models

Abbreviations

AASHTO	American Association State Highway and Transportation Officials		
Ac	Activity of Clay		
ASTM	American Society of Testing Materials		
СН	High plasticity inorganic clays		
CL	Low plasticity inorganic clays		
GM	Salty gravels		
GP	Poorly graded gravels		
Gs	Specific gravity		
GW	Well graded gravels		
LI	Liquid Index		
LL	Liquid Limit		
MH	High plasticity inorganic silts		
ML	Low plasticity inorganic silts		
ОН	highly plastic organic soil		
OL	low plastic organic soil		
PI	Plastic Index		
PL	Plastic Limit		
Ps	Swelling pressure		
Pt.	Highly organic soils		
SC	Clayey sands		
SL	Shrinkage Limit		
SM	Salty sands		
SP	Poorly graded sands		
SPSS	Statically Package For Social Science Software		
SW	Well graded sands		
USCS	Unified Soil Classification system		
W	Moisture content		
γd	Dry density		

CHAPTER ONE INTRODUCTION

1.1 Back Ground of the Study

Expansive soils are mostly found in the arid and semi-arid regions of the world, which exhibit significant volume changes because of soil moisture variation. Expansive soils swell if its moisture content increases and shrinks when its moisture content decreases. The magnitude of the expansion depends upon the kind and amount of clay minerals present, their exchangeable ions, the electrolyte content of the aqueous phase, and the internal structure. The three most important groups of clay minerals are Montmorillonite, Illite, and Kaolinite[1].

The Swelling tendencies of expansive soils quantified by the potential swelling parameters. Determination of swelling potential of expansive soils, namely, swell percent and swelling pressure, is important for the design of foundations. The swell percent or volume change of expansive soil is the percentage of heave of a soil for a given surcharge load, while the swelling pressure of a soil is the external pressure that needs to be placed over a swelling soil to prevent volume increase. These swelling parameters directly measured in the laboratory or indirectly estimated from empirical correlations [2].

As investment in infrastructure development forms a significant portion of the global economy, expansive soils are a prime focus of research in geotechnical engineering and soil science. The road network in Ethiopia has been identified as a serious bottleneck for the economic development of the country, as it provides the dominant mode of freight and passenger transport and thus plays a vital role in the economy of the country. The network comprises a huge national asset that requires adherence to appropriate standards for design, construction and maintenance in order to provide a high level of service. As the length of the road network is increasing, appropriate choice of methods to preserve this investment becomes increasingly important [3]. Most of the roads constructed, lightly loaded residential and commercial buildings, airfield and proposed as well as substantial amount of the newly planned railway routes in the country pass through in the heart of expansive soils [4, 5, 6].

1.2 Statement of the Problem

Potentially expansive soils can be found almost anywhere in the world. In the underdeveloped nations, much of the expansive soil problems may not be recognized. The volume change behavior of expansive soil generates serious damage to civil infrastructures many countries over the world. In general, the annual damage in Sudan exceeds six million dollars and most of the annual damage reported occurs in residential and commercial buildings [7], [8]. Previous studies indicated a continual increase in annual damage caused by expansive soil as the population continues to grow due to the need of new developments to the expanding residential buildings and commercial markets [9], [8]. Rosen balm and Zapata [10],[8] stated that in the United States alone, the cost to repair structures damaged by expansive soils has been estimated to be twice the combined damages of natural disasters. Expansive soils have reportedly inflicted billions of dollars in damages and repairs annually to structures [45], [46].

Expansive soils widely occur in Ethiopia and are notorious for posing a wide range of problems in the construction sector. Two foremost topics in expansive soil research are characterization and treatment or stabilization [12], [13]. While the first deals with identification and quantitative analysis of expansive soils, and the second strives to improve their geotechnical characteristics (such as reducing their swelling and shrinkage potential). Site characterization is a prerequisite at the onset of any construction, also to promote a better land-use planning [14, 5].

Ethiopian researchers have shown that substantial damage has been occurring on structures that are constructed on expansive soils. *A* mong many researchers, two authors from Ethiopia found out damage of structures founded on expansive soils [13], [15].

The study area of this research is nearest to city of Finfinne. Burayu town is one of the town surrounding the Finfinne city in which the Engineering properties of their soils are almost similar. Many researchers studied that the engineering properties of Finfinne area covered by expansive soils, which will be almost similar to the soils of Burayu town [25].

In Burayu town, expansive soil may cause significant damage in the structures to build upon it during future urban development [16]. In order to determine its swelling pressure of those soils for design purpose, their laboratory tests will take time to analysis their results. In order to reduce cost, time, and its complex procedure, it is better to use simple index tests and correlating with swelling characteristics. This gives the required solution to the geotechnical problems, which used for the design projects around the study area.

1.3 Research questions

The research questions that this research study attempted to answer during the study are:

- 1. What are the swelling pressure and index property of expansive soils in Burayu town?
- 2. How swelling pressure could be correlated with index property of expansive soils in Burayu town?
- **3.** How much deviation of the values as a result from the developed equations with the existing correlation approaches related to the study?

1.4 Objectives of the study

1.4.1 General Objective

The general objective of this study is to predict the swelling pressure from Index Properties of Expansive soils found in Burayu town.

1.4.2 Specific Objective

- To determine swelling pressure and index property of expansive soils in Burayu town.
- To analyze and establish correlations betweeen swelling pressure and index property of expansive soils in Burayu town.
- To validate and evaluate the developed equations and compare with the existing correlation approaches related to the study.

1.5 Scope of the Study

This research address to cover as defined in the objective and provides correlations between the swelling pressure and index property of expansive soils in Burayu town. Collections of samples are limited to ten (10) test pits which is selected from representative locations. From each test pit, disturbed and undisturbed samples collected at a depth ranging from 1m to 3m depending on stratification of soil layer.

For the intended purpose, the analysis of Atterberg limits, grain size analysis, natural moisture contents, dry density, specific gravity, free swell test and swell-consolidation tests are conducted on disturbed and undisturbed samples. At the last this study covers the statistical analysis by using Statistical Package for Social Science Software (SPSS 20) and Microsoft-Excel for the purpose of Modelling of swelling pressure from index properties of expansive soils in the study area based on correlation and regression analysis.

1.6 Significance of the study

The guidance and information provided in this study can significantly reduce the risk of undesirable and severe damages to many structures for numerous expansive soil conditions. This research thesis predicts the swelling pressure for selecting economical foundations on expansive soil to minimize structural distress to within tolerable levels and guidance for minimizing problems that may occur in structures on expansive soils. The most obvious way in which expansive soils can damage foundations is by uplift as they swell with moisture increases. Swelling soils lift up and crack lightly-loaded, continuous strip footings, and frequently cause distress in floor slabs because of that predicting swelling pressure will benefits the designers to determine the amount of vertical heave and uplift pressure of expansive soils.

In addition, the finding of this study will benefit any construction sectors as the source of information to avoid the potential hazards posed due to the presence of swelling soils during the operational face of any construction in the town. And also, different construction Owners, contractors and consultants will benefit from this study as a source of information to determine the techniques of soil stabilization that reduce the anticipated heave of the foundations by examining the swelling pressure from index properties of expansive soils found in the town.

Finally, other researchers will use the findings as a reference for further research on the prediction of swelling pressure from index properties of expansive soils.

1.7 Organization of the Thesis

This thesis is organized into five Chapters. In the first Chapter back ground of the thesis, objectives of the research, significance and scope of the study are given. The second Chapter deals with literature review. The third Chapter addresses material sampling and testing methodology including description of the study area. The fourth Chapter describes laboratory test result, soil classification, and analysis of correlation and regression results including their discussions. At the end the study the last Chapter contains conclusion and recommendation.

4

CHAPTER TWO LITERATURE REVIEW

2.1 Expansive Soil

The response of expansive soils in the form of swelling and shrinkage due to changes in water content is frequently expressed superficially as heaving and settlement of lightly loaded structures such as pavements, walkways, railways, roadways, foundations, channel linings, etc. [17, 18].

Swelling soils recognized as problematic soils that undergo significant volume changes when their moisture content is changed. Principally, swelling occurs when water infiltrates between the clay particles, causing them to separate [19, 18].

Many lightly loaded structures had undergone severe damages when they founded over such soils due to differential heave of the underlying soils. Volume change of these soils is a major cause of concern since it causes extensive damage to the structures and the allied services. [20, 18].

Even when mitigating measures such as drain systems provided to prevent these soils from reacting to changes in their moisture condition, the soils still exhibit inherent low shear strength and undergo large secondary compression. Expansive or swelling soils are highly plastic soils that typically contain clay minerals such as Montmorillonite that attract and absorb a significant amount of water [21].

The type and amount of mineral and the percentage of clay fraction play a vital role in controlling the index properties such as liquid limit, plasticity index, and activity as well as the swelling characteristics including swell potential and swell pressure of such soils. Based on the mineral present, the swell potential of the soil varies; the Montmorillonite group minerals have the maximum swell potential, and the Kaolinite family minerals have the least swelling properties. Many empirical models proposed by various researchers to predict the swelling properties of such soils based on physical and index properties. The evaluation of swelling parameters (swell potential and swell pressure) of such soils includes both direct as well as indirect measurements. The direct methods involve the physical measurements of swell potential and swell pressure through laboratory test; however, the indirect methods involve the use of empirical models and correlations formulated based on basic soil properties. Nevertheless, these models provide an initial prediction of the swelling characteristics, which may not be as accurate as the direct evaluations. A number of correlations between index properties and the swelling characteristics developed in the

past for a variety of expansive soils. No special considerations made in these correlations to incorporate the remolding or natural moisture content of the expansive soils, which certainly has a significant influence on soils exhibiting certain degree of swell potentials. The role and significance of natural moisture content identified and incorporated in the prediction models presented in this study [22, 18].

Expansive soils or swelling soils are those soils, which have the tendency to increase in volume when water is available and to decrease in volume if water removed. Foundations constructed on these expansive soils subjected to large uplift forces caused by swelling and inducing heaving, cracking and break up building foundations and slabs on grade members. The engineering behavior of a soil mass greatly influenced by physical properties of particles, the type of clay mineral, the proportion of the soil grains forming the soil mass and index properties. Clay soils containing montmorillonite mineral swell considerably upon imbibing water from outside. Clay soils containing other clay minerals do not exhibit the volume change characteristic to the same degree as those of containing montmorillonite mineral. Swelling pressure, defined as maximum force per unit area that placed over a swelling soil to prevent volume increase. The objective of this study was to establish a correlation among Free Swell (FS), Plasticity Index (PI) and Swelling Pressure (SP) to obtain an approximate value of Swelling Pressure in short time [23].

2.2 Description of Expansive Soil

Most soil in the Front Range can be classified as a swelling soil. This means that the soil contains a high percentage of certain types of clay that absorb vast quantities of water. Expansive soils sometimes called shrink-swell soils, swelling soils, adobe, clay, or caliche soils. This can cause the soil to expand 10% or more as moisture enters it, usually during winter snowmelt and spring runoff. The soil then exerts tremendous pressure on foundations, slabs, and other structures [35].

2.3 Field Identification of Expansive Soils

Soil that cracks or fractures when it dries often a sign that it is expansive; however, a lack of cracks does not necessarily indicate that the soil is not expansive. Soils containing expansive clays become very sticky when wet and usually characterized by surface cracks or a "popcorn" texture. Expansive soils are often becoming very sticky when wet, hard, and brittle when dry [24].

2.4 Experimental Identification of Expansive soils

Generally, there are three different method of identifying Expansive soils for the purpose of experimental study to know their engineering properties. [41]

2.4.1 Indirect methods

Indirect methods are used to investigate the swelling potential of a soil by examining other parameters, which indirectly yield excellent indices of expansive properties. Such tests are easy and can be performed in average soil mechanics laboratory. The commonly used test here is the index property tests (consist of Grain size analysis, liquid limit, plastic limit, shrinkage limit, free swell and vertical swell).

2.4.1.1 Grain Size Analysis Test

Grain size analyses, known as soil gradation test, are performed on essentially all geotechnical materials ranging from clay to boulders. Since, Grain size analysis is one of the index property tests, in which the soil of the study area examined for its grain size distribution. Grain size divides soil into two distinctive groups, namely cohesion less and cohesive soil. Soil particles, which are coarser than 0.075 mm, are generally termed as cohesion less, and the finer ones like silt and clay considered as fine-grained [29].

A sieve analysis test consists of shaking the soil through a stack of wire screens with openings of known size. The steady fall of soil particles through a liquid at rest called sedimentation. The hydrometer method is based on Stokes equation that relates the velocity of a free-falling spherical particle through a liquid to the diameter of the particle, the specific gravity of the particle and the viscosity of the liquid. The hydrometer analysis assumes that the soil particles are spheres, the soil suspension is sufficiently low concentration to permit individual settling of grains without interference by others. That means small spheres in a liquid settle at a different rate according to the size of the sphere [26].

2.4.1.2 Natural Moisture Content Test

Moisture content (w) is defined as the ratio, expressed as a percentage, of the weight of water in a given soil mass to the weight of solid particles. The change in water content in a soil's environment plays a major role in determining the degree of swelling and shrinking behavior expansive soils.

Generally, natural moisture content has an influence on the swelling potential of expansive soils. The natural moisture content of a soil affected by climate, vegetation cover of the area, and other artificial factors. Hence, the same soil could have different moisture

contents in different seasons of a year and at different times. Since such type of moisture content is likely to fluctuate any time, it may not indicate the general property of the soil [26].

2.4.1.3 Atterberg limit Test

The Swedish soil scientist Albert Atterberg originally defined six "limits of consistency" to classify fine-grained soils, but in current engineering practice only two of the limits, the liquid and plastic limits, are commonly used. (A third limit, called linear shrinkage limit, used occasionally.) The Atterberg limits determined based on the moisture content of the soil [26].

These test methods are used as an integral part of several engineering classification systems to characterize the fine grained fractions of soils (ASTM D 2487 and D 3282) and to specify the fine-grained fraction of construction materials (ASTM D 1241). The liquid limit, plastic limit, and plasticity index of soils used extensively, either individually or together, with other soil properties to correlate with engineering behavior such as compressibility, hydraulic conductivity (permeability), compatibility, shrink-swell, and shear strength parameters of soils.

a) Liquid Limit

The liquid limit is defined as the moisture content at which soil begins to behave as a liquid material and begins to flow on the application of a very small shearing force. When soil becomes a viscous fluid, the soil will begin to flow under its own weight and a minimal amount of energy input. The liquid limit is primarily used by civil and geotechnical engineers as a physical property of soil.

The liquid limit of a soil also defined as the water content at the boundary between the liquid and plastic states. The water content at this boundary arbitrarily defined as the water content at which, two halves of a soil pat placed in a brass cup, cut with standard groove, and dropped from a height of 1cm will undergo a groove closure of about 1.3 cm when the cup dropped 25 times at the rate of 2 drops per sec.

b) Plastic Limit (PL)

The plastic limit of a soil is the water content at the boundary between the plastic and semisolid state. The water content at this boundary arbitrarily defined as the water content at which soil begins to crumble when rolled into threads of specified size 3.2mm.

c) Plasticity Index

Plasticity index (PI) is the range of water content over which the soil behaves plastically. From the Atterberg limit values, it is possible to determine plasticity index using the formula: Plasticity index, PI = LL - PL.

d) Linear Shrinkage Limit

The swell potential is presumed to be related to the opposite property of linear shrinkage measured in a very simple test. Altmeyer (1955) suggested the values given Table 2-10 as a guide to the determination of potential expansiveness based on shrinkage limits and linear shrinkage.

The linear shrinkage of a soil for the moisture content equivalent to the liquid limit, that decrease in one dimension, expressed as a percentage of the original dimension of the soil mass, when the moisture content is reduced from the liquid limit to an oven-dry state.

2.4.1.4 Activity of clay

Activity which is defined as the ratio of the plastic index to the percent of clay fraction finer than 0.002mm is one means of classifying expansive soils based on their index property. They used to estimate the swelling potential of given clay.

2.4.1.5 Specific Gravity Test

Specific gravity is referred as the ratio of the density of a substance to the density of a reference substance such as water. Samples are oven-dried at 105 for a period of 16 to 24 hours. To perform the test, it is necessary to have empty weight of pycnometer and weight of pycnometer with oven dry soil. Then add water to cover the soil in the pycnometer and screw on the cap. To remove entrapped air it is necessary to shake the pycnometer well and connect it to the vacuum pump for about 10 to 20 minutes, finally fill the pycnometer with water.

2.4.2 Direct measurement

As the name indicates, this type of test directly measures the pressure that a swelling soil exerts on any structure resting on it. It is a convenient and more reliable test because it directly tells the likely in-situ response of the soil for moisture variations.

The test can be done by the use of a conventional one-dimensional Consolidometer which is available in most soil mechanics laboratories. The method quantitatively evaluates the volume change characteristics of Expansive soil.

9

2.4.2.1 Free Swell Test

The free swell of expansive soil, also termed as a free swell index, is the increase in the volume of soil without any external constraint when subjected to submergence in water. Such soils can damage the structure when the water table reaches the influence zone.

The free swell test is one of the most commonly used simple tests for estimating swelling soil potential. This test is performed by pouring 10cc of dry soil, passing through sieve no 40 (0.425mm diameter), into a 100 cc graduated cylinder. The two cylinder then filled with distilled water and kerosene, and the swelled volume of the soil for two cylinders measured after the material settles within 24 hours.

2.4.2.2 Swelling pressure Test

Swelling Pressure is the amount of pressure a soil exerts upon the structure or the pressure required recompressing the fully swollen sample back to its initial volume. Most of the structural damages occur when the swelling pressure is greater than the foundation pressure; assessing the swelling pressure is an important task in dealing with expansive soil. The available techniques for quantitative measurement swelling pressure of expansive soils can be odometer test [27].

2.5 Measurement of swelling pressure using Oedometer tests

The oedometer tests are capable of simulating some of the factors, which affect the swelling characteristics of expansive soils. It should note, however, that the odometer tests have limitation. The odometer tests consider moisture as well as volume change in one dimension only. In the in-situ, the volume changes take place in three directions. For simplicity, the odometer testing techniques are popular and extensively used. The different types of techniques under these methods are Constant Volume Method and Swell-Consolidation Method. [27]

2.5.1 Constant Volume Method

The specimen in the constant volume method is allowed to absorb water without any increase in volume by increasing the applied pressure as the test proceeds until the sample reaches equilibrium. The more load is added to keep the volume of the sample constant while the sample absorbs water. The swelling pressure can be determined by plotting the applied pressure against change in volume. This method does not represent the in-situ condition where the applied load after the structure is in service, does not change with time. Information such as the amount of heave which could be expected under application of a certain load or load which could be applied to limit the heave within

tolerable limit cannot be furnished by this method. The method needs uninterrupted monitoring for a long period.

Figure 2-1: Graph of swelling pressure by Constant Volume Methods [27]

2.5.2 Swell-Consolidation Method

In this method, an undisturbed sample allowed to absorb water under a load of 1psi (7kpa) and putted aside to expand and reach equilibrium fully. Then it will consolidated by increasing the applied pressure in intervals following the conventional consolidation test procedure. The load increment is continued until the sample reaches its initial volume (zero volume change). The load corresponds to zero volume change is taken as swelling pressure.

This method is quite popular, and many investigators have used this method to evaluate swelling pressure and to establish a relationship between swelling pressure and index properties of soils. The most serious drawback of this method is that it does not represent the normal sequence of load submersion. In the field, the soils are first subjected to the structural load and then swell later following exposure to moisture but not vice versa.

Figure 2-2: Graph of swelling pressure by swell-consolidation method [27].

2.6 Mineralogical identification

Type of clay mineral is a fundamental factor, which determines the expansive behavior of a soil. This method is used for identifying the mineralogy of clay particles such as characteristic crystal dimensions, characteristic reaction to heat treatment, size and shape of clay particles and charge deficiency and surface activity of clay particle. These properties are a fundamental factor controlling Expansive soil behavior. [1]

The various techniques under this method are X-ray diffraction, Differential thermal analysis, Dye absorption, Electron microscope Base Exchange capacity, Infrared spectroscopy and Radio frequency electrical dispersion. But these methods are not suitable for routine tests because, they are time consuming, require expensive test equipment and, the results are interpreted by specially trained technicians.

2.6.1 Structure of Clay Minerals

An initial study of the crystal structure of clay minerals leads to a better understanding of the behavior of clays under different conditions of loading. Clay mineral is composed of two structural units of a silicon–oxygen tetrahedron unit and an aluminum or magnesium octahedron unit. [29]

2.6.2 Clay Minerals Classification

Clay minerals are a very distinctive type of particles that give particular characteristics to the soils in which they occur. The most well-known clay minerals are Montmorillonite, Illite and Kaolinite. [29]

2.7 Classification methods of Expansive Soils

The key to all Expansive soil classification systems is the method of measuring swell potential, since soils are rated by their measured swell potential. Swell potential may be measured directly in swell test or indirectly determined by correlation with other test results of swell test data. In almost every case swell potential is evaluated in the laboratory in a consolidation test device. This may yield swell potentials different from those for insitu soils. Thus an accurate correlation between swell potential and other test results for a purpose of prediction of in-situ heave is difficult. These procedures, however, do provide good indicators of swell potential when the soil is subjected to the conditions used in the laboratory test [25]. There are two category of Soil classification systems are:

- General classification systems
- Classification Specific to Expansive soil

2.7.1 General Soil Classification Systems

2.7.1.1 Unified Soil Classification System

The basis for USCS is liquid limit and plasticity index of soil. The plasticity chart is a plot of PI and LL (in the ordinate and abscissa respectively) that describes the properties of clay and silt soils in terms of Atterberg limits. This chart consists of two lines, namely A-line and U-line, as shown below. The A-line is assumed to be a boundary between clay and silt soils which is defined by an equation PI = 0.73*(LL-20). In this classification system a correlation is made between swell potential and unified soil classification as follows below:-

Figure 2-3: Casagrande Plasticity Chart (ASTM D2487-11) [25].

Symbol	Category	soil classification
1	Little or no expansion	GW, GP, GM, SW, SP, SM
2	Moderate expansion	GW, SC, ML, MH
3	High volume change	CL, OL, CH, OH
4	No rating	PT (Organic peat)

Table 2-1: Soil Classification in Unified System

2.7.1.2 AASHTO Soil Classification system

The AASHTO system uses similar techniques, but the dividing line has an equation of the form PI = LL-30. It generally classifies a soil broadly into granular material and silt-clay material. Soils classified under groups A-1, A-2 and A-3, are granular materials with 35%

or less passing through a No. 200 sieve but A-1 & A-3 non-plastic. Soils with more than 35% passing a no.200 sieve classified under groups A-4, A-5, A-6 and A-7. Subgroup A-7-5 includes those materials with moderate plasticity indexes in relation to the liquid limit and which may be highly elastic as well as subject to considerable volume change. Subgroup A-7-6 includes those materials which have high plasticity indexes in relation to the liquid limit and which are subject to extremely high volume change [26].

Figure 2-4: Liquid limit vs Plasticity Index chart for AASHTO classification [26].

2.7.2 Classification specific to Expansive soils

The above classification system may give an initial alert that the soil may have expansive character but does not provide useful information. A parameter determined from the expansive soil identification tests have been combined in a number of different classification schemes to give qualitative rating on the expansiveness of the soil. But the direct use of such classification systems as a basis for design may lead to an overly conservative construction in some places and inadequate construction in some areas [11]. Hence, it is very important to emphasize that design decision has to be based on predicting testing and analysis, which provide reliable information. An indirect prediction of swell potential includes correlations based on index properties, swell, physical indicator and a combination of them. Some of such classification methods are:

Skempton's method [28]

Skempton classifies clays according to their activities. Following his classification, three degree of colloidal activity (Activity, Ac = PI/ percentage by weight finer than 2µm) have been established as indicated in table below.

of colloidal activity (Skempton's method)			
	Degree of activity	Activity	
	Inactive clay	<0.75	
	Normal clay	0.75-1.25	
	Active clay	>1.25	

Table 2-2: Degree of colloidal activity (Skempton's method)

Following this classification:-

- montmorillonitic clay (expansive clay) is defined as active
- Illitic clay as normal and
- Kaolinitic clay as inactive.

U.S.B.R Classification Method

This method was developed by Holtz and Gibbs [42] to establish degree of expansion based on simultaneous consideration of shrinkage limit (SL), plasticity index (PI), percent smaller than 0.001mm (1 μ m), free swell (FS) and percent swell under a pressure of 1psi. The relationship between degree of swell and indicative clay properties as established by Holtz and Gibbs are presented in table below.

Degree of Expansiveness	Swell in oedometer under a pressure of 1psi (%)	SL, %	PI, %	Percent smaller than 1µm	FS, %
Very high	> 30	< 10	> 32	> 27	> 200
High	20 - 30	6 - 12	23 - 45	18 - 37	100 - 200
Medium	10 - 20	8 - 18	12 - 34	12 - 27	50 - 100
Low	< 10	> 13	< 20	< 17	< 50

Table 2-3: U.S.B.R Classification method

Altmeyer [28]

He suggested rating for degree of expansion based on volumetric shrinkage limit (SL) and linear shrinkage (LS) as shown in Table below.

Table 2-4: Altmeyer classification of expansive soil based on SL, % and LS, %

Volumetric SL, %	LS, %	Degree of expansion
<10	>8	Critical
10 - 12	5 - 8	Marginal
>12	<5	non critical

Seed, Woodward and Lundgreen [43]

According to Seed, Woodward and Lundgreen, Plasticity Index is a parameter which can

be used as a preliminary indicator of the swelling characteristics of a soil.

Table 2-5: Seed, Woodward and Lundgreen classification of expansive soil.

Chen Method [1]

In this method, a correlation is made between swell data and percent passing less than number 200 sieve, liquid limit, and standard penetration resistance and their degree of expansiveness stated.

Percent passing < N <u>o</u> . 200 sieve, %	LL, %	SPR	Probable Expansion, %	Degree of expansiveness
< 30	< 30	< 10	< 1	Low
30 - 60	30 - 40	10 - 20	1 - 5	Medium
60 - 95	60	20 - 30	3 - 10	High
> 95	> 60	> 30	> 10	Very high

 Table 2-6: Chen method of classification of Expansive soil

2.7.3 Other Expansive soil classification based on different index properties

The indirect methods of characterizing the soil swell potential suffer from the following

limitations: [41]

Indirect Methods:

1. Atterberg limit related properties

Table 2-7: Expansive soil classification based on liquid limit

Swall Dotantial	Liquid limit, LL (%)		
Swell Fotential	Chen (1965)	Snethan et al. (1977)	IS: 1498 (1970)
Low	< 30	< 50	20 - 35
Medium/marginal	30 - 40	50 - 60	35 - 50
High	40 - 60	> 60	50 - 70
Very high	> 60		70 - 90

 Table 2-8: Expansive soil classification based on plasticity Index

	Liquid limit, LL (%)		
Swell Potential	Holtz and Gibbs (1956)	Chen (1988)	IS: 1498 (1970)
Low	< 18	0 - 15	< 12
Medium	15 - 28	10 - 35	12 - 23
High	25 - 41	20 - 55	23 - 32
Very high	> 35	> 35	> 32

2. Shrinkage limit related properties

Table 2-9: Expansive soil classification based on shrinkage limit (Holtz and Gibbs1956)

Swell Potential	Shrinkage limit, SL (%)
Low	> 15
Medium	10 - 16
High	7 - 12
Very high	< 11

Table 2-10: Expansive soil classification based on shrinkage limit (Altmeyer, 1956)

Volume Change	Shrinkage limit, SL (%)
Non-critical	> 12
Marginal	10 - 12
Critical	< 10

|--|

Degree of expansiveness/swell potential	Shrinkage Index, SI (%)
Low	< 15
Medium	15 - 30
High	30 - 60
Very high	> 60

3. Particle size composition related properties

Table 2-12: Expansive soil classification based on particle size composition

Percent clay size fraction (Chen 1965)	Colloid content (Holtz and Gibbs1956)
< 30	< 15
30 - 60	13 - 23
60 - 95	20 - 31
> 95	> 28
	Percent clay size fraction (Chen 1965) < 30

Table 2-13: Expansive soil classification based on the activity

Activity (Ac)	Nature of the soil	Probable Degree of swell potential
< 0.75	Inactive	Low
0.75 - 1.25	Normal	Marginal
> 1.25	Active	High

Direct methods:

1. Oedometer Tests

Table 2-14: Expansive soil classification based on oedometer swell tests

Swell Potential	% Expansion in Oedometer (Holtz and Gibbs 1956)	% Expansion in Oedometer (Seed et al. 1962)
Low	< 10	0 - 1.5
Medium	10 - 20	1.5 - 5
High	20 - 30	5 - 25
Very high	> 30	> 25

2. Free swell test

Table 2-15: Expansive soil classification based on Free Swell Index (FSI, %)(IS 1498:1970)

swell potential	FSI (%)
Low	< 50
Medium	50 - 100
High	100 - 200
Very high	> 200

Table 2-16: Expansive soil classification based on FSR (Sridharan and Prakash 2000b)

Free Swell Ratio	Clay type	Swell potential	Dominant clay mineral type
<u><</u> 1.0	Non-swelling	Negligible	Kaolinitic
1.0 - 1.5	Mixture of swelling and non-swelling	Low	Mixture of Kaolinitic and Montmorillonitic
1.5 - 2.0	Swelling	Moderate	Montmorillonitic
2.0 - 4.0	Swelling	High	Montmorillonitic
> 4.0	Swelling	Very high	Montmorillonitic

2.8 Mechanics of Swell

Soil volume change results from an imbalance in internal energy of the system (soil, water, air). Energy imbalances are important in engineering result from moisture movement caused by loads, desiccation, and temperature changes. Response to a specific set of conditions determined by the composition, structures, and geologic history of the soil. The largest component of volume change is that of the clay micelle which surrounds the individual clay particles in the soil. Water is forced out of the micelle by loads, desiccation, or temperature along energy gradient and reduction in volume results. When these influences removed or reduced, the energy gradients reversed, the available water forced into the clay micelle, and swell is produced [28].

Swelling in expansive soils will take place if there is change in the environment. Environmental change can consist of pressure release due to excavation, desiccation caused by temperature increase, and volume increase because of the introduction of moisture. By far the most important element for swelling is the effect of water on expansive soils. With the introduction of water, volumetric expansion takes place. If pressure applied to prevent expansion, the pressure required to maintain the initial volume is the swelling pressure [1].

2.8.1 Moisture Transfer

The pattern of moisture migration depends on the geological formation, climatic condition, topographic features, soil types and ground water level. The most common method of moisture transfer is by gravity. The moisture migration can occur in all direction. Moisture migration will caused by different reasons. Fractures and fissures, shrinkage cracks, capillary force, vapor transfer, thermal gradients, etc. are some of the sources that cause moisture migration and swelling on expansive soils [1].

2.8.2 Moisture Equilibrium

In natural ground, the moisture content of the partially saturated soil is in general equilibrium with the applied stress, the forces due to evaporation and transpiration at ground surface and the capillary forces. When building or pavement covers the area, the evaporation and transpiration forces are eliminated and a new set of equilibrium must be established. The new equilibrium requires the flow of moisture compatible with the new condition. The force causing the moisture change or flow is termed soil suction [1].

2.8.3 Depth of Moisture Fluctuation

In covered area, there is no gain or loss of moisture to the atmosphere. The moisture content of the soil decreases with depth as shown in curve 1 of Fig 2.10. In uncovered

natural conditions evaporation and transpiration causes loss of moisture content in the soil near the ground surface. Hence, the moisture content will increase with depth. However the influence of evaporation decreases with depth and at some depth, Had, the moisture content equilibrium remains the same as the covered condition. The value of H_D depends on the climatic condition, type of soil, and the location of the water table. This depth represents the total thickness of the material, which has a potential to expand because of change of moisture content. The maximum depth of H_d is equal to the depth of the water table, and the minimum depth is equal to the depth of the seasonal moisture contents fluctuation (H_s). During wet months with heavier precipitation and higher humidity, the moisture content of near surface soil increases and the moisture profile represented by curve 2 alters its shape to curve three. The watering of lawns, planting of trees and shrubs, discharge of roof chains, formation of drainage channels and swales, and the possibility of utility line leakage will all increase the value of Hs. When areas are covered by structures such as buildings, pavements, sidewalks or aprons evaporation is blocked or partially retarded. The moisture content beneath the covered area decreases due to gravitational migration, capillary action, and vapor and liquid thermal transfer and, in course of several years, the depth of seasonal moisture content fluctuation Hs can approach to the depth of desiccation Hd [1].

Figure 2-5: Moisture content variation with depth below ground surface [Chen, 1998]

2.9 Formation of Swelling Soils

Swelling soils find wide distribution in areas of volcanic deposition or origin with tropical climate and also in arid and/or semi desert climates. In tropical volcanic settings, alumina rich volcanic ash gets deposited in general over a wide area. Some get concentrated in depressions or low areas which are almost always inundated or saturated with water. This regular inundation tends to leach the alumina and concentrate these at the bottom 1.0 meter to 2.0 meters generally but could be deeper depending on the leaching effects. This explains the sporadic occurrence of expansive soils as generally, the expansive soils are not deposited area wide and thus portions of the project footprint mayor may not be underlain by these soils. [40]

2.9.1 Origin of Swelling Soils

In tropical volcanic environments, volcanic soils rich in alumina is deposited as Aeolian deposits. These Aeolian deposits settle in the land and are thicker in depressed areas. The alumina gets leached and concentrated due to ponding and saturation in the depressed areas. This alumina is the primary source of the expansive tendency and most often are shallow in occurrence due to the limited leveling effects.

2.9.2 Damage to Structures

Type of Damages: Damages sustained by structures include: distortion and cracking of pavements and on-grade floor slabs; cracks in grade beams, walls, and drilled shafts; jammed or misaligned doors and windows; and failure of steel or concrete plinths (or blocks) supporting grade beams. Lateral forces may lead to buckling of basement and retaining walls, particularly in over consolidated and non-fissured soils. The magnitude of damages to structures can be extensive, impair the usefulness of the structure, and detract aesthetically from the environment. Maintenance and repair requirements can be extensive, and the expenses can grossly exceed the original cost of the foundation.

Occurrence of Damages: Damages can occur within a few months following construction, may develop slowly over a period of about 5 years, or may not appear for many years until some activity occurs to disturb the soil moisture. The probability of damages increases for structures on swelling foundation soils if the climate and other field environment, effects of construction, and effects of occupancy tend to promote moisture changes in the soil. [40]

2.10 Mechanism for Moisture Ingress and Removal

Cyclical Water Ingress and Removal causes moisture imbalance that triggers the "Shrink-Swell Cycles". The cyclical nature of the "shrink-swell cycle" is caused by the periodic entry and evacuation of water in the soil. If only moisture equilibrium can be maintained within the structure then the damage due to cyclic movements of water into and out of the soil can be prevented or minimized. This points to one remediation measure that could be effective in remediating existing structures that have experienced damage due to swelling and shrinking of the soils.

The following properties help us to understand the swell and shrink tendency of high plastic soil.

- Fine Grained Soils possess characteristic Crystal Lattices that are very small and could not normally be seen even under a Microscope.
- These Crystals possess electrical charges. The finer the crystals the greater is the surface area and the attractive electrical charges.
- The electrical attractive forces and the high affinity for water are very great as to cause separation of the clay platelets to adsorb the water and cations. This continued adsorption and absorption causes the swelling of the soil which could be reversible during periods of evapotranspiration and Matric suction. This phenomenon causes the shrink swell cycle.
- Salt Cations in the soil water are attracted to the surface of the Lattice crystals to balance the Charges. These salt cations such as magnesium, alumina, sodium, potassium are dissolved in the soil water and adsorbed on the clay surfaces as exchangeable cations. The hydration of these Cations can cause the attraction and accumulation of water between the clay particles.[40]

2.11 Application of heave predictions

Reasonable estimates of the anticipated vertical and horizontal heave and the differential heave are necessary for the following applications.

- Determination of adequate designs of structures that will accommodate the differential soil movement without undue distress. These predictions are also needed to estimate upward drag from swelling soils on portions of deep foundations such as drilled shafts within the active zone of moisture change and heave. Estimates of upward drag help determine an optimum design of the deep foundation.
- Determination of techniques to stabilize the foundation and to reduce the anticipated heave

2.11.1 Potential total Vertical heave

The foundation soil may expand both vertically and laterally. The vertical movement is usually of primary interest, for it is the differential vertical movement that causes most damages to overlying structures. Methodology for prediction of the potential total vertical heave requires an assumption of the amount of volume change that occurs in the vertical direction. The vertical heave ΔH from a consolidometer test can be found by: [40]

$$\frac{\Delta H}{H} = \frac{C_s}{1 + C_s} \text{ Log } \frac{\delta_s}{\delta'_v}$$

Where: H = thickness of expansive soil layer, m

Cs = Swell Index, slope of the curve between initial and final effective stress

 $\Delta s = Swell \text{ pressure, kpa}$

 δ'_v = final vertical effective stress, kpa

The final effective stress is given by: $\delta'_v = \delta'_v - u_w$; where δ_v is the total vertical overburden pressure and u_w is the equilibrium pore water pressure.

2.12 Previously Developed Equations of Study Area

Several investigators attempted to develop correlations for prediction of swelling pressure in terms of their index properties. Some of the previous experimental works are:

• Komornik and David, (1969) found out this empirical equation [20]: -

$$Log Ps = 0.132 + 0.0208*LL + 0.6688* \gamma d- 0.0269* w \dots 2.1$$

• Vijayvergiya and Ghazzaly (1973) found out those empirical equations [20]:-

Log Ps =
$$1/19.5(6.24*\gamma d + 0.65*LL-100$$
2.3

Some of researches on the relationship between index properties and swelling pressure of expansive soils of Ethiopia have been developed by:

• Ashenafi (2013) studied about Index Properties and Swelling Pressure of Expansive soils found in Dukem using the regression analysis based on experimental results and found out this empirical equation [33]:-

Ps = 1.639* γd +32.676* PL-3110.942.4

• Daniel (2003) studied about Examining the Swelling Pressure of Addis Ababa Expansive Soils using multiple regression analysis and he recommended the following empirical equations [20]:-

$$\label{eq:log_s} \begin{split} Log \ Ps &= -5.00 - 0.0002064 * LL + 0.003477 * PI + 0.005827 * \gamma d \dots 2.5 \\ Log \ Ps &= -9.384 + 0.02748 * W + 0.006307 * PI + 0.008359 * \gamma d \dots 2.6 \end{split}$$
CHAPTER THREE MATERIAL SAMPLING AND TESTING METHODOLOGY

3.1 Introduction

In order to achieve the objectives of this research thesis, literature reviews of many investigators used. Necessary information about the geology, climatic condition, and topography of the site collected and analyzed. The research methodology of this study will contain the laboratory analysis that focus on index properties and swelling pressure of the expansive soil and the estimation and prediction of their relationships using the laboratory test results of the given soil properties.

3.2 Description of the study area

Burayu town is one of the Oromia special zone surrounding Finfinne which was established in August 2008 as one of zones of Oromia National Regional State. This Zone is located in the central part of Oromia National Regional State. This research conducted in Burayu town, which is one of the nine municipal town administration of Oromia Special Zone Surrounding Finfinne.

Burayu town is located in Oromia National Regional State in the western fringe of Finfinne, along the Finfinne-Ambo road; 15km away from the center of Finfinne measured from Birbirsa Goro. Astronomically the town extends roughly from 9° 02' to 9° 02'30" North latitudes and 38°03'30" to 38°41'30" East longitudes. According to census, the population of Burayu town was 4,138 in 1984, 10,027 in 1994, 63,873 in 2007 and 100,200 in 2010 (estimated). Burayu town administration has estimated that the population of the town has grown to more than 150,000 in 2014 showing that the town is growing very fast. Location of the research area on the map of Ethiopia shown as in figure 3.1 below [35].

Figure 3-1: Location of Study area on the map of Ethiopia (Source: Based on Maps of Oromia National Regional State, 2012) [35].

Test Pits	Location of Test Pits	Northing	Easting
TP1	Gafarsa Burayu (Burayu Stadium)	9.0700582	38.6430701
TP2	Burayu Katta (Burayu Qera)	9.0746226	38.6705131
TP3	Malka Gafarsa (Anfo Meda)	9.0067820	38.6724442
TP4	Lakku Katta (Sansusi)	9.0709269	38.6888562
TP5	Lakku Katta (Wisdom Seeder School)	9.0618292	38.6773577
TP6	Gafarsa Guje (Corrisa)	9.0715696	38.6157807
TP7	Gafarsa Guje (Kella)	9.0610531	38.6038624
TP8	Gafarsa Nonno (Gabriel)	9.0230317	38.6500000
TP9	Gafarsa Burayu (Xache)	9.0423191	38.6367890
TP10	Gafarsa Nonno (A/meda)	9.0251030	38.6714959

Table 3-1: Test Pit Location of Study Area

Prediction of Swelling Pressure from Index Properties of Expansive Soils Found in Burayu Town

Figure 3-2: Sampling Locations of the Study Area on the Map of Burayu Town

3.3 Study design

A study design/frame is the process that guides researchers on how to collect, analyze, and interpret observations. Therefore, the objective of the research will be achieved in accordance with th methodology outlined below

Figure 3-3: Flow chart for the overall frameworks

3.4 Study Population

At an early stage in the planning of any investigation, decisions must made concerning the study population. That is, concerning the population of individual units investigated. According to this Research thesis, the study population that will concern the study of Engineering properties of the sub-surface soils that is collected from 10(ten) test pits around study area. So that, the geology, climate condition and the topography of the surrounding study area considered as the study population, which will be required as a source for data sampling and collection process.

The population is too large to consider during data collection process from all test pits. Instead, the samples selected individually from each test pits; that the sample is representative of the population. That means, each samples taken from each test pits (population) for data collection and analysis.

3.5 Sampling techniques and procedures

3.5.1 Sampling Techniques

Random sampling technique was used to explore the site within and outskirt of Burayu town. Sampling is mainly concerned to ensure that a sample is representative of the study population, which should be large enough to provide sufficient material to achieve the desired detection limit. Sampling involves the selection of a number of study units from a defined study population.

Ten test pits excavated using local labor and all samples were collected from each test Pits at different depths from different parts of Burayu Town. Three soil samples taken from one test pit that is totally thirty disturbed and undisturbed samples collected for further laboratory investigations.

3.5.2 Sampling Procedures

Reconnaissance study of the area done by visiting the entire part and the surrounding part of the town. The location of test pits will selected, so that it can well represent the soil types (visually) found in the Burayu town. During roughly selection of location of test pits, that includes red clay, gray and the black cotton soils were more preferable for the study of expansive characteristics of soils.

3.5.3 Selection of Sampling Sites

When selecting possible sampling sites, the major factor considered was that the site to be definitely located in the expansive soil region. To ensure the sites covered with expansive soil, the sites identified by visual investigation and field identification. After identification of the area thirteen (10) different test pits was selected from different locations. Thirty-(30) disturbed and undisturbed samples taken from depths (1m, 2m and 3m). Sampling locations of the town shown as in the above figure 3.2.

Depending on the above criterion the sites that show expansive in nature excavated and collected for the laboratory test analysis.

3.5.4 Collection of Soil Samples

After locations of the test pits was selected and the excavation work was conducted, It was decided to collect approximately thirty(30) samples from ten(10) test pits for testing. Then the soil samples collected from the field for further analysis and the laboratory tests carried out. Collection of Soil Samples was takes pace up to 3m depth then disturbed and undisturbed samples taken by plastic bags. The undisturbed samples extracted in which both ends of steel tube sealed with wax (melted candle) and tighten by polyethylene bags. Both the disturbed and undisturbed samples transported to the Jimma University Geotechnical laboratory o classify and categorize the soil type and the regression and correlation analysis will be determined.

3.6 Experimental study or Laboratory Tests

In order to classify the soils and assess the correlations between swelling pressure and index properties of soils, a series of tests conducted. To obtain the intended purpose of this research thesis the following laboratory tests must carried out.

- Particle size distribution (ASTM D422-98)
- Specific gravity of soil solid (Gs) (ASTM D854-98)
- Natural moisture content (ASTM D2216-98)
- Dry density (γd) (ASTM D2937-98)
- Atterberg limits (ASTM D4318-98)
- Linear Shrinkage Limit (ASTM D427-98)
- Swelling Pressure test (ASTM D4546-96
- Free swell test

3.7 Data collection process and Analysis

3.7.1 Data collection process

The data collection represents a plan for gathering data information from the study area. A set of the procedure followed to get the desired data or information from the fieldwork according to the ASTM Standard Manual in order to process and analysis the facts in a logical and scientific manner.

The investigation involved collection of relevant geologic maps and associated reports and supplementary study materials from different sources. Regional geologic setting of the area mainly referred from the countrywide geologic map prepared by the Geological Survey of Ethiopia

3.7.2 Collection Data for analysis

Detail statistical analyses of soil index properties and swelling pressure of expansive soils of the study area carried out using various data sets to determine suitable correlations for estimating swelling pressure. For analysis, different data points used for development of new model. The analysis carried out by using Computer Software Program (SPSS-20) and Microsoft Spreadsheet (MS- Excel) to predict the correlation between swelling pressure and index properties of expansive soils.

Using laboratory test results new correlations developed and the best formula selected from developed equations and the graph of predicted value with the measured values of swelling pressure plotted.

3.8 Statistical Data Analysis for Correlation and Regression

Many problems in engineering and the sciences involve a study or analysis of the relationship between two or more variables. In statistical terms, a correlation is a mathematical measure of the strength of association between two quantitative variables. A closely related cousin of correlation analysis is regression analysis. The collection of statistical tools that are used to model and explore relationships between variables are related in a non-deterministic manner is called regression analysis. Because problems of this type occur so frequently in many branches of engineering and science, regression analysis is one of the most widely used statistical tools.[36]

3.8.1 Data distribution Analysis of the Model

3.8.1.1 Choice of Sample Size

Technically, the size of the sample depends upon the precision the researcher desires in estimating the population parameter at a particular confidence level. There is no single rule that can use to determine sample size. A larger sample is much more likely to be representative of the population. Furthermore, with a large sample the data are likely to be more accurate and precise. It was pointed out in that the larger the sample, the smaller the standard error. In general, the standard error of a sample mean is inversely proportional to the square root of sample size (n). [38]

According to [38] the equation to yield a representative sample for proportions of large sample developed as follows:

$$N = \frac{Z^2 P * q}{\epsilon^2}$$

Where: N is the sample size,

 Z^2 = the abscissa of the normal curve that cuts off an area α at the tails $(1 - \alpha)$ equals the desired confidence level is 95%),

 ε = the desired level of precision

p = the estimated proportion of an attribute that is present in the population, and

q = 1-p.

When conducting research investigation on quantitative data, the sample size calculated by the following formula:

$$N=\,\frac{t_{\alpha^2*\,S^2}}{\epsilon^2}$$

Where; N = the desired sample size,

S = the standard deviation of observations,

 ε = the permissible in the estimate of mean and t α is the value of at 5% level of significance

3.8.1.2 Normality Test

To supplement the graphical assessment of normality, you can formally test for normality. For example, the Kolmogorov-Smirnov and ShapiroWilk test reported in the SPSS Explore procedure used to test the hypothesis that the distribution is normal. (SPSS recommends these tests only when your sample size is less than 50). The hypotheses used in testing data normality are as follows [37]:

H₀: the distribution of the data is normal.

H_a: the distribution of the data is not normal.

If a test does not reject normality, this suggests that a parametric procedure that assumes normality, (e.g., a t-test) safely used. However, we emphasize again that it is always a good idea to examine data graphically in addition to the formal tests for normality.

To further examine the data (and perhaps understand the reasons for the discrepancy), you can visualize the distribution of the data using graphical displays such as a histogram, boxplot, stem-and-leaf diagram, and normal Q-Q plot.

A brief explanation of how to interpret each of these plots in the context of normality:

- **Histogram:** When a histogram's shape approximates a bell curve, it suggests that the data may have come from a normal population.
- **Q-Q Plot:** A quantile-quantile (q-q) plot is a graph used to display the degree to which quantizes of a reference (known) distribution differ from the sample quantizes of the data. When the data fit the reference distribution, then the points will lie in a tight random scatter around the reference line.

3.9 Considerations for Statistical Analysis

There are various statistical techniques for analyzing data. To choose an appropriate technique of statistical analysis in the challenging task to a research worker. The major types of tests employed for analyzing data to interpret the test results are:

- Parametric statistics or tests, and
- Non-parametric statistics or tests.

A researcher has to select either of these approaches for analyzing his own research data depending on the criteria for choosing an appropriate statistical approach. [39]

3.9.1 Parametric Tests

The parametric tests are the tests of the most powerful type and used if their basic assumptions will based upon the nature of the population values and the ways of sample selection.

- The observations are independent. The selection of one case is in no way dependent upon the selection of any other case,
- The population values are normally distributed or, if not, the nature of their distribution known.
- The population values have equal variances or the ratio of their variances known.
- The variables measured are expressed in interval or ratio scales. Nominal or ordinal do not qualify.

3.9.1.1 Standard Error of the Mean or SEMn

The means of randomly selected samples, which are normally distributed, have their own standard deviation known as the standard deviation or standard error of the mean. The standard error of mean of a sample computed from the following formula:

 SE_{Mn} or $\sigma M = \frac{s}{\sqrt{N}}$, Where, $SE_{Mn} =$ Standard error of mean S = Standard deviation of sample scores N = Size of the sample However, a particular mean calculated from a randomly selected sample related to the population mean in the following way.

68 % of sample means will lie within a range of \pm 1 SEMn of the population mean.

- 95 % of sample means will lie within \pm 1.96 SEMn of the population mean.
- 99 % of sample means will lie within \pm 2.58 SEMn of the population mean.

3.9.1.2 Level of Significance

The rejection or acceptance of a null hypothesis depends upon level of significance as a criterion. Rejecting the null hypothesis at the 5 percent level indicates that a difference in means as large as that found between the experimental and control group means would not likely have resulted from sampling error in more than 5 out of 100 experiment. This suggests 95 percent likelihood or probability that the difference was due to the experimental variable.

The Sigma values that must exceed according to the values in the table for Rejection of Hypothesis.

~		5	21
	Test	Level of 0.05	Significance 0.01
	One tailed test	1.64	2.33
	Two tailed	1.96	2.58
	Probability	0.95	0.99

Table 3-2: Sigma value that must be exceeded for Rejection of Hypothesis

3.9.1.3 The Significance of R

To test the significance of a coefficient of correlation we may establish the null hypothesis that r = 0 and that any value of r, other than 0, is the possible result of sampling error. We assume that the sample r is one of a number of random samples. To use the z value and the probability table the r converted into z value by the formula: $Z = r\sqrt{N-1}$

If z value exceeds the table value, the hypothesis rejected and if not then the hypothesis is accepted.

3.9.1.4 The t- Test

The t- Test is a simple experiment that designed to establish cause effect relationships. It is used to determine whether the difference between means of two groups or conditions is due to the independent variable, or if the difference is simply due to chance. Thus, this procedure establishes the probability of the outcome of an experiment, and in doing so enables the researcher to reject or retain the null hypothesis. When small samples, fewer than 30 observations in number, are involved, the t-test used to determine

the statistical significance. To compute t-value for the significance of the difference between two means, when N is fewer than 30, the formula is:

$$t = \frac{(M_1 - M_2)}{\sqrt{\frac{(N_1 - 1)S_1^2 + (N_2 - 1)S_2^2}{N_1 + N_2 - 2}}\sqrt{\frac{1}{N_1} + \frac{1}{N_2}}}$$

3.9.1.5 Analysis of Variance (F) ANOVA Test

The analysis of variance is a convenient way to determine whether the means of more than two random samples are too different to attribute to sampling error. The question raised by the analysis of variance is whether the sample means differ from their own sample means (within group variance).

If the variation of sample means from the grand mean is greater enough than the variance of the individual values from their sample means, the samples are different enough to reject a null hypothesis or sampling error explanation. If the among groups variance is not substantially greater than the within group variance, the samples are not significantly different and probably behave as random samples from the same population.

> F =<u>Variance among groups</u> Variance within groups

The significance of the 'f 'ratio found in 'f 'tables which indicate the values necessary to reject the null hypothesis at the 0.05 or the 0.01 levels.

3.9.2 Non-Parametric Tests

Non-parametric, or distribution free tests are used when the nature of the population distribution is not known or when the data are expressed as nominal or ordinal measures. The variables in non-parametric tests usually presented in rank order or discrete values.

3.9.2.1 Chi-Square Test (χ²)

The Chi-square test applies only to discrete data (discrete variables are those expressed in frequency counts). The test would provide a method of testing the difference between actual preferences and choices based upon a probability assumption.

The Chi-square formula:
$$\chi^2 = \sum \left[\frac{(f_o - f_e)^2}{f_e}\right]$$

Where, $\chi^2 = \text{Chi-square}$

 f_o = frequency of observed sampling error

 f_e = frequency of Expected sampling error

3.9.2.2 The Sign Test

The sign test sometimes used to evaluate the effect of a type of treatment in a before-after experiment. The sign test uses the principles of the standard error of a dichotomous variable; deriving a Z-score by the formula:

$$Z = \frac{\mathbf{O} - \mathbf{NP}}{\sqrt{\mathbf{NP}(\mathbf{1} - \mathbf{\rho})}}$$
 Where, O = +ve changes
N = + and -ve changes
P = 0.5 (equal probability of a gain or loss)

If Z value exceeds the table value, the null hypothesis rejected and if not exceeded then the null hypothesis is accepted.

3.10 Correlation and Regression Analysis

Regression analysis is an important technique in engineering and science to model and study relationships between two or more variables. The method of regression analysis used to develop the line or curve, which provides the best fit through a set of data points. The best-fit model will be in the form of linear, parabolic or logarithmic trend.

Best fitting a regression model requires several assumptions. [36] [37]

- The method of least squares used in order to choose the best fitting line for a set of data.
- The confidence level of an estimate will gives some idea about the accuracy of an estimate. A variable with a confidence level (CL) ≥ 95% is the best to choose.

3.10.1 Simple Linear Regression

The case of simple linear regression considers a single regressor variable or predictor variable X and a dependent or response variable Y. Suppose that the true relationship between Y and X is a straight line and that the observation Y at each level of X is a random variable.

Therefore, the fitted or estimated regression line is $Y = \beta_0 + \beta_1 X$, where the intercept β_0 and the slope β_1 are unknown regression coefficients. Note that each pair of observations satisfies the relationship: $Y_i = \beta_0 + \beta_1 x_i + e_i$, Where $e_i = Y_i - Y$ is called the residual. The residual describes the error in the fit of the model to the ith observation Yi. The residuals used to provide information about the adequacy of the fitted model.

3.10.2 Multiple Linear Regression Model

Many applications of regression analysis involve situations that have more than one regressor or predictor variable. A regression model that contains more than one regressor variable called a multiple regression model. A multiple regression model described by the following relationship: $\mathbf{Y} = \boldsymbol{\beta}_{0+} \boldsymbol{\beta}_1 \mathbf{x}_1 + \boldsymbol{\beta}_2 \mathbf{x}_2 + \dots + \boldsymbol{\beta}_k \mathbf{x}_k + \boldsymbol{\epsilon}$; Where, \mathbf{Y} = Dependent variable or response, \mathbf{x}_i ($i = 1, 2 \dots k$) = independent variables or predictors, and β_j ($j = 0, 1 \dots k$) = Regression coefficients

3.10.2.1 R-squared (R²) and Adjusted R-square (Adj. R²)

The coefficient of multiple determination R^2 used as a global statistic to assess the fit of the model. Computationally:

 $R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$; Where, $SS_R = Regression$ or model sum of squares $SS_T = Total$ sum of square

 $SS_E = Error \ or \ residual \ Sum \ of \ squares$

Many regression users prefer to use an adjusted R² statistic, which is:

$$R_{adj}^2 = 1 - \frac{SS_E/(n-p)}{SS_T/(n-1)}$$
; Where, $SS_E/(n-p) = Error$ or residual Sum of squares $SS_T/(n-1) = Constant$

3.10.2.2 Multicollinearity

Multiple regression expects to find the dependencies between the response variable Y and the regressor $x_{i.}$ In situations in which these dependencies are strong, we say that Multicollinearity exists. Multicollinearity can have serious effects on the estimates of the regression coefficients and on the general applicability of the estimated model.

CHAPTER FOUR

RESULT AND DISCUSSION

4.1 Laboratory Test Analysis and their Results

Laboratory tests carried out in accordance with the ASTM standard testing methods. The actual test results presented in the Appendices.

4.1.1 Atterberg limit Test Result (ASTM D4318-98)

The Atterberg limits of a fine-grained soil represent the moisture content at which the physical state of the soil changes. The tests for the Atterberg limits are referred to as index tests because they serve as an indication of several physical properties of the soil, including strength, permeability, compressibility, and shrink/swell potential.

Determination of Liquid Limit & Plastic Limit Of Soil Liquid Limit @ 1m Determination Plastic Limit @1m 34 Number of blows 24 17 Container No C-1 E-5 C-3 A-4 C-6 27.729 Wt. of container + wet soil (gm)59.282 57.516 56.517 29.716 Wt. of container + dry soil 41.329 41.101 23.878 25.387 (gm)42.062 13.431 Wt. of container 23.592 13.412 23.732 23.612 (gm)Wt. of water 17.220 16.187 15.416 3.851 4.329 (gm)Wt. of dry soil 17.717 11.956 18.330 17.509 10.466 (gm)Moisture content (%) 93.944 91.364 88.046 36.795 36.208 Average 91.118 (%) 36.502 (LL - PL) Determination of (PI) LL 91.20 36.50 PL PI 54.70

 Table 4-1: Determination of Atterberg limits (LL, PL and PI) of soil for TP1 @1m

 Determination of Liquid Limit & Plastic Limit Of Soil

Liquidity Index of the Soil: Atterberg limits, when compared with the natural water content of the soil, give a valuable indication of the natural state of the soil in the ground. The parameter used for this purpose is the liquidity index (LI), which expresses the water content of the soil in relation to the PL and LL which is defined by the following relationship:

$$LI = \frac{w-PL}{LL-PL}$$

Table 4-2: Atterberg Limit te	st and Liquidity Index	Results of the study area
-------------------------------	------------------------	---------------------------

Test Dite	Depth (m)	LL	PL	PI	LI	Test Pite	Depth (m)	LL	PL	PI	LI
Fits	(111)	01.00	0 6 70		0.14	Fits	(111)	110.00	12.07	<0 50	0.07
	1	91.20	36.50	54.70	0.11		1	110.80	42.07	68.73	0.05
TP1	2	88.70	34.58	54.12	0.12	TP6	2	108.60	39.60	69.00	0.01
	3	80.40	30.48	49.92	0.03		3	103.00	36.12	66.88	0.02
	1	107.40	40.11	67.29	0.07		1	65.80	34.30	31.50	-0.08
TP2	2	104.25	39.61	64.64	0.07	TP7	2	63.81	33.51	30.29	-0.17
	3	95.40	35.07	60.33	0.08		3	60.00	33.11	26.89	-0.24
	1	81.28	29.23	52.05	0.19	TP8	1	113.40	45.38	68.02	0.03
TP3	2	74.02	26.08	47.94	0.18		2	105.80	43.32	62.48	-0.01
	3	73.40	29.62	43.78	0.03		3	91.82	36.82	55.00	0.04
	1	80.52	31.78	48.74	0.22		1	86.40	37.59	48.81	0.09
TP4	2	79.02	29.04	49.98	0.18	TP9	2	79.56	31.34	48.22	0.14
	3	70.20	30.89	39.31	0.10		3	74.40	34.67	39.73	-0.02
	1	77.20	34.05	43.15	0.13		1	116.40	45.16	71.24	0.08
TP5	2	69.90	31.24	38.66	0.19	TP10	2	102.00	41.46	60.54	0.09
	3	67.10	34.40	32.70	-0.06		3	95.83	40.85	54.98	0.04

4.1.2 Linear shrinkage limit test result

Linear shrinkage test, by British standard BS 1377 1990 part 2, defines the determination of total linear shrinkage from linear measurement on a standard bar of length 140 mm with a semicircular section of diameter 25 mm. The grove filled by a soil of the fraction passing 0.425 mm test sieve, originally having the moisture content of the liquid limit.

Linear shrinkage (%) =
$$\frac{\text{Initial Length} - \text{Oven Length}}{\text{Initial Length}} * 100\%$$

The linear shrinkage value is the way of quantifying the amount of shrinkage likely to be experienced by clayey material. The results of linear shrinkage tests tabulated in table below.

Table	Cable 4-3: Determination of Linear Shrinkage limit test for Test pit 1							
	Test pits	TEST PIT 1						
s	Depth	11	n	21	m	31	m	
low	Container number	C1	E4	D2	F4	B-1	A-1	
5 bl	Initial length of specimen (L ₁),mm	140	140	140	140	140	140	
t 2	Length of dried specimen (L ₂),mm	125.4	124.2	126.1	127.5	127.6	128.7	
A	Linear shrinkage;(L1-L2/L1)*100,%	10.429	11.286	9.929	8.929	8.857	8.071	
	Avg. Linear shrinkage, (%)	10.	86	9.4	43	8.4	46	

Table 4-4: Linear shrinkage limit test results of the study area

TEST	Donth (m)	Linear	TEST	Depth	Linear
PITS	Depth (III)	shrinkage, (%) PITS		(m)	shrinkage, (%)
	1	10.86		1	11.68
TP1	2	9.43	TP6	2	11.29
	3	8.46		3	10.36
	1	10.71		1	8.29
TP2	2	9.86	TP7	2	7.86
	3	10.25		3	7.71
	1	8.43		1	12.04
TP3	2	8.54	TP8	2	11.39
	3	8.75		3	10.43
	1	8.46		1	9.68
TP4	2	7.82	TP9	2	9.25
	3	7.32		3	7.79
	1	8.71		1	12.50
TP5	2	9.36	TP10	2	11.07
	3	7.93		3	11.00

4.1.3 Specific Gravity Tests of soils (ASTM D854-98)

The specific gravity (Gs) of soil defined as the ratio of mass in air of a given volume of soil particles to the weight in air of an equal volume of distilled water at standard temperature. The specific gravity of soil used in calculating the phase relationships of soils water, and solids in a given volume of the soil. In addition, the specific gravity of soils is an important quantity, which frequently used in the calculation of percentage finer and diameter of the soil grains in hydrometer analysis.

Computations

$$Gs = \frac{K * W_{S}}{(W_{S} + W_{pw} @Tx) - W_{pws})};$$

Where: $w_{pw}(atTx) = \frac{Density of water at Tx}{Density of water at Ti} * (W_{pw}(at Ti) - W_{p}) + W_{p}$

Cable 4-5: Specific Gravity Determination for Test Pit 1											
TEST PIT 1											
	Ľ	Depth	1r	n			2r	n		3	m
Pycnomete	r No.		01	C)2	C)3	O4		O5	06
Weight of a pycnometer	dry, clean r, w _p (g)		28.511 29.		442	28.	515	29.46	5	30.069	29.964
Weight of p water, w _{pw}	pycnometer + (g)	-	124.495	123	.572	124	.851	126.3 8	3	125.34 2	121.856
Observed to water, T _i (o	emperature of	f	23	2	23 23		23	23		23	23
Weight of p + water, W	pycnometer + pws (g)	- soil	130.961	130	.029	131	.257	132.7 8	3	131.67 1	128.178
Temperatu	re, $T_x(^{\circ}c)$		22	2	22	2	22	22		22	22
Weight of p water at T_x	pycnometer + , W _{pw} (atT _x) (g)	124.52	123	3.59	124	4.87	126.3	6	125.36	121.88
Weight of a	dry soil , w _s ((gm)	10	1	10		0	0 10		10	10
Conversion	n factor , K		1.0000	1.0	001	1.0	001	1.000	1	1.0001	1.0001
Gs of soil a	at 20°c.		2.805	2.808		2.7	764	2.759)	2.707	2.702
Average G	s of soil.		2.8	81	2.76			2.	.70		
Table 4-6: \$	Specific Gra	vity T	Test Results of expans		ive soils found in s		ı st	udy area			
Test Pits	Depth (m)	Spec	cific Gravity, Gs		Test Pits		Dep	th (m)	S	pecific Gr	avity, Gs
	1		2.81		TP6			1		2.79	
TP1	2		2.76					2		2.74	
	3		2.70					3		2.72	
	1		2.86					1			7
TP2	2		2.81		TI	7י		2		2.65	
	3		2.77					3		2.6	3
	1		2.74					1		2.8	5
TP3	2		2.70		TI	9 8		2		2.7	7
3			2.68					3		2.7	1
	1		2.67					1		2.7	3
TP4 2		2.65		TI	9		2		2.69		
3			2.63				3		2.69		
	1		2.69					1		2.82	2
TP5	2		2.67		TP	10		2		2.73	8
3			2.66					3	2.75		5

4.1.4 Natural Moisture Content Test Result (ASTM D2216-98)

The moisture content test is one of the simplest and less expensive laboratory tests to perform. The values of the natural moisture content test result of the study area carried out during swelling pressure test from undisturbed samples and summarized in Table 4-10.

4.1.5 Dry Density tests of soils (ASTM D 2937-00)

In the laboratory, soil unit weight and mass density they easily measured on undisturbed samples of natural soils. The relationship between the total and dry mass density and unit weight in terms of natural moisture content, NMC given by: $\gamma_d = \gamma t / (1 + NMC)$. The values of the dry density test result of the study area carried out during swelling pressure test from undisturbed samples and summarized in Table 4-10.

4.1.6 Swelling Pressure Test (ASTM D4546-96)

For this test undisturbed soil samples are taken from different test pits at a depth ranging from 1m to 3m. The swelling pressure is determined in the laboratory using an odometer consolidation cell.

In this test, the sample under a 7kPa-applied load is wetted and allowed to fully swelling. After swelling, the sample is further loaded by applying incremental loads starting with 50kPa till the initial specimen height is obtained. The pressure required to revert the specimen to its initial void ratio (height) is determined from graph plotted Void ratio as ordinate and applied pressure as abscissa as indicated in in figure below.

Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation
(min)	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg
0.0	0.00	2.706	0.654	0.856	1.246	1.466
0.1		0.298	0.667	1.064	1.308	1.479
0.25		0.318	0.671	1.078	1.320	1.488
1		0.349	0.693	1.092	1.332	1.497
1		0.394	0.716	1.106	1.344	1.506
2		0.454	0.749	1.120	1.356	1.515
4		0.501	0.772	1.134	1.368	1.524
8		0.532	0.795	1.148	1.380	1.533
15		0.562	0.808	1.162	1.392	1.542
30		0.584	0.819	1.176	1.404	1.551
60		0.602	0.828	1.190	1.416	1.560
120		0.618	0.837	1.204	1.428	1.569
240		0.630	0.848	1.218	1.440	1.578
480		0.642	0.852	1.232	1.452	1.587
1440	2.706	0.654	0.856	1.246	1.466	1.596

Table 4-7: Deformation reading during Swell-consolidation test for Tp1 @1m

Table 4-8: Determination of dry unit weight and Height of solids

Determination of dry unit weight and Height of solids						
Specimen wet mass + ring, (g)	134.05					
Specimen dry mass $+$ can, (g)	119.994					
Mass of ring (g)	68					
Specimen Height, L (cm)	2					
Specimen diameter, D (cm)	5					
Area of ring cm ²	19.625					
Volume of ring cm ³	39.25					
Bulk density, (g/cm^2)	1.683					
Water Content, %	27.030					
Dry density, (g/cm ²)	1.325					
Height of solid (cm)	0.943					
Initial void ratio, eo	1.121					
Height of Solids, Hs in mm	9.43					
Specific gravity of solids, Gs	2.81					

Table 4-9: I	able 4-9: Determination of void ratio for each load increments								
Applied Pressure P (KPa)	Final Deformation Reading (mm)	nal Cumulat mation Change ding Specimen h m) ΔH (mr		F S	inal Height of pecimen Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio: ef = <u>(Hf-Hs)</u> Hs			
7	0.00	0	,		20	1.121			
7	2.706	-2.706	5	1	22.706	1.408			
50	0.554	-2.152	2	1	22.152	1.349			
100	0.856	-1.296	5		21.296	1.259			
200	1.246	-0.050)		20.050	1.127			
400	1.466	1.416			18.584	0.971			
800	1.596	3.012			16.988	0.802			
S	welling Potenti	al		V	vid Ratio vs Loo	arithm of pressure			
Initial dial to Zero Re Final Dial Specimen Free swell Swelling I	reading (adjust eading), mm Reading (mm) Height (mm) index, (%) Pressure (Sp)	ed 0.0 2.706 20 13.53 265	itio	1.5 1.4 1.3					
(KPa)		203	Void Ra	1.2 1.1 1.0 0.9					
					1 10 1 Lo	Pressure, kpa 1000 adingSwelling			

Figure 4-2: Graph of Logarithm of pressure Vs Void Ratio

 Table 4-10: Natural Moisture Contents, Bulk Density, Dry Density, Swelling potential and swelling pressure tests Result of the study area

Test Pits	Depth m	NNMC, (%)	(γ b), g/cm ³	(γ d) g/cm ³	Swelling Potential %	Swelling Pressure KPa
	1	27.03	1.80	1.26	13.53	265
TP1	2	26.80	1.85	1.31	13.21	215
	3	42.72	1.81	1.37	11.24	120
	1	29.00	0.75	0.52	14.58	285
TP2	2	27.56	1.40	0.97	12.54	195
	3	40.01	1.61	1.15	10.07	200
	1	31.72	1.88	1.35	8.41	245
TP3	2	35.97	1.97	1.46	7.87	190
	3	40.75	1.98	1.51	7.49	115
	1	32.65	1.99	1.39	9.87	240
TP4	2	37.82	2.00	1.45	8.31	150
	3	44.70	2.20	1.63	7.57	90
TD5	1	39.68	1.96	1.41	8.82	210
115	2	44.49	2.33	1.68	7.94	125

	3	49.52	2.29	1.72	7.48	105
	1	25.22	0.92	0.63	15.86	325
TP6	2	30.22	1.30	0.93	14.29	290
	3	34.21	1.41	1.03	10.44	210
	1	40.73	2.33	1.77	8.25	125
TP7	2	45.47	2.34	1.82	8.04	105
	3	50.69	2.39	1.89	7.73	65
	1	24.69	0.69	0.47	14.94	280
TP8	2	22.90	1.04	0.73	12.46	260
	3	39.28	1.46	1.05	10.08	155
	1	42.01	1.97	1.39	9.46	205
TP9	2	38.24	2.01	1.45	8.77	170
	3	33.73	2.11	1.58	7.93	105
TP10	1	25.75	0.54	0.36	15.69	300
	2	21.98	1.16	0.79	13.48	285
	3	32.89	1.61	1.13	11.88	210

4.1.7 Grain Size Analysis of soils (ASTM D422-98)

This method covers the quantitative determination of the distribution of particle size of the soil in the study area using ASTM D422 standard test method. The distribution of particle sizes larger than 75 μ m (retained on the No. 200 sieve) is determined by sieving, while the distribution of particle sizes smaller than 75 μ m is determined by a sedimentation process, using hydrometer 152H.

Since surface force between particles depends upon particle size, for soils of different test pits, grain analysis is carried out to determine the ranges of sizes in which the soil samples fall and their relative proportions.

In this study, hydrometer and sieve analysis is performed on all the samples and percent finer against size of soil particle in millimeter on a semi-log scale is plotted. From this curve the proportion and type of soil grains is determined and Particle size analysis run by this test method is grouped in to Gravel, sand, silt and clay is summarized in table below.

A) SIEVE ANALYSIS

Method of sieving: Wet sieving		
Mass dry soil (before wash)	1000	gm
mass pass 0.075 mm	933	gm
percentage of pass 0.075 mm	93.25	%

Table 4-12: Grain size Distribution Analysis using Sieve Size Analysis

Sieve Size (mm)	Mas of Retained, gm	% Retained	% Cum. Retained	% of Passing
9.5	0	0	0	100
4.75	2.8	0.28	0.28	99.72
2	6.4	0.64	0.92	99.08
0.85	12.5	1.25	2.17	97.83
0.425	8.5	0.85	3.02	96.98
0.300	11.2	1.12	4.14	95.86
0.150	10.7	1.07	5.21	94.79
0.075	15.4	1.54	6.75	93.25
Pass	933	93.25	100	0

Figure 4-3: Graph of Grain size Distribution by using sieve size analysis

B) Hydrometer Analysis

Hydrometer analysis data

- ✓ Total oven Dried mass = 50 gm
- ✓ Specific Gravity = 2.81

Table 4-13: Grain size Distribution determination using Hydrometer analysis

			Correction For Hydrometer Reading					Com
Time (min.)	Actual Hydro. Reading	Temp.	T° corr.	meniscus correction	zero corr.	Composite Correction	Corrected Hydrometer Reading	factor (A)
1	51	21	0.2	1	-5	-3.8	47.2	0.968
2	49	21	0.2	1	-5	-3.8	45.2	0.968
5	47	21	0.2	1	-5	-3.8	43.2	0.968
15	44.5	21	0.2	1	-5	-3.8	40.7	0.968
30	43	21	0.2	1	-5	-3.8	39.2	0.968
60	42	21	0.2	1	-5	-3.8	38.2	0.968
120	41	21	0.2	1	-5	-3.8	37.2	0.968
240	40.5	21	0.2	1	-5	-3.8	36.7	0.968
480	40.2	21	0.2	1	-5	-3.8	36.4	0.968
1440	40	20	0	1	-5	-4	36	0.968
Eff. I Hydroi	Depth of meter (L)	Values of K		Diameter of soil Particle (mm)		% finer, P	Adjusted % of	of finer
5	8.0	0.012	.03		6	91.38	85.21	
5	3.3	0.012	87	0.026		87.51	81.60	
5	8.6	0.012	87	0.017		83.64	77.99	
(9.0	0.012	87	0.01	0	78.80	73.48	
(9.3 0.0128		87	0.00	7	75.89	70.77	
9.5		0.012	87	0.00	5	73.96	68.96	
(9.6	0.012	87	0.00	4	72.02	67.16	
9.7 0.012		0.012	87	0.00	3	71.05	66.26	
(9.7	0.012	87	0.00	2	70.47	65.71	
(9.8	0.013	03	0.00	1	69.70	64.99	

Sieve size	% nass	% of soil particle size AASHTO USCS					
9.5	100 100	% of gravel 0.92 0.28					
4.75	99.72	% of Sand 5.83 6.47					
2	99.08	% of Silt 27.54 24.29					
0.85	97.83	% of Clay 65.71 68.96					
0.425	96.98						
0.300	95.86	Combined Sieve and Hydrometer analysis					
0.150	94.79	105					
0.075	93.25	8 95					
0.036	85.21	Graph of					
0.026	81.60	sieve analysis					
0.017	77.99	Croph of					
0.010	73.48	75					
0.007	70.77	analysis					
0.005	68.96	<u><u><u><u></u></u> 65</u></u>					
0.004	67.16						
0.003	66.26	55					
0.002	65.71	10 1 0.1 0.01 0.001					
0.001	64.99	Sieve size, mm					

C)	Combined	Sieve A	Analysis	and Hy	ydrometer	Analysis
----	----------	---------	----------	--------	-----------	----------

Table 4-14: Combined Sieve Analysis and Hydrometer Analysis

Figure 4-5: Graph of Particle size Distribution for Combined sieve and
Hydrometer Analysis

Test	Dopth	% of	Percent of Grain size Distribution According to				Percent of Grain size Distribution According to			
pits	Depui	0.075mm	% Gravel	% Sand	% silt	% clay	% Gravel	% Sand	% silt	% clav
	1	93.25	0.92	5.83	27.54	65.71	0.28	6.47	24.29	68.96
TP1	2	90.45	0.46	9.09	22.51	67.94	0.04	9.09	22.51	67.94
	3	87.90	0.82	11.28	21.15	66.75	0.04	12.06	24.29	63.61
	1	92.42	0.50	7.08	22.09	70.33	0.12	7.46	22.09	70.33
TP2	2	88.73	0.61	10.66	26.20	62.53	0.08	11.19	26.20	62.53
	3	86.39	0.24	13.37	19.52	66.87	0.04	13.57	23.41	62.98
	1	93.43	0.90	5.67	23.33	70.10	0.30	6.27	27.00	66.43
TP3	2	90.61	1.08	8.31	21.72	68.89	0.27	9.12	24.95	65.66
	3	87.90	0.82	11.28	21.15	66.75	0.04	12.06	24.29	63.61
	1	91.18	0.67	8.15	17.11	74.07	0.09	8.73	24.83	66.35
TP4	2	87.84	0.50	11.66	20.38	67.46	0.07	12.09	23.54	64.30
	3	85.89	0.64	13.47	20.01	65.88	0.04	14.07	23.11	62.78
	1	91.49	0.42	8.09	22.15	69.34	0.00	8.51	25.42	66.07
TP5	2	91.08	0.67	8.25	21.41	69.67	0.24	8.68	24.68	66.40
	3	81.95	0.80	17.25	19.47	62.48	0.20	17.85	22.41	59.54
TP6	1	91.04	0.21	8.75	23.43	67.61	0.00	8.96	26.62	64.42

	2	86.10	1.53	12.37	18.12	67.98	0.56	13.34	21.17	64.93
	3	82.32	2.08	15.60	17.06	65.26	0.66	17.02	19.50	62.82
	1	80.34	2.29	17.37	17.61	62.73	1.04	18.62	19.69	60.65
TP7	2	77.90	1.64	20.46	18.38	59.52	0.16	21.94	21.19	56.71
	3	70.89	2.61	26.50	15.80	55.09	0.95	28.16	18.79	52.10
	1	92.34	0.48	7.18	24.61	67.73	0.00	7.66	28.16	64.18
TP8	2	90.09	0.24	9.67	22.56	67.53	0.04	9.87	25.73	64.36
	3	86.73	0.61	12.66	21.26	65.47	0.08	13.19	24.35	62.38
	1	84.50	1.80	13.70	16.82	67.68	0.60	14.90	23.14	61.36
TP9	2	82.55	0.60	16.85	19.66	62.89	0.00	17.45	22.61	59.94
	3	78.80	1.00	20.20	19.08	59.72	0.20	21.00	21.89	56.91
	1	94.03	0.34	5.63	24.63	69.40	0.00	5.97	27.90	66.13
TP10	2	92.51	0.86	6.63	23.31	69.20	0.22	7.27	26.55	65.96
	3	88.25	0.92	10.83	22.18	66.07	0.28	11.47	25.29	62.96

Figure 4-6: Graph of Particle size Distribution curve for all test pits of the study area

4.1.8 Free Swell test

This test suggested by Holtz and Gibbs (1956) that carried out on all specimens from the study area. The test is performed by slowly pouring 10cm³ of dry soil passing a 0.425mm sieve into a 100cm³ graduated jar cylinder with water, and observing the swelled volume of the soil after it comes to rest (Holtz and Kovacs, 1981). Soils with free swell less than 50% are not likely to show expansive property, while soils with free swell in excess of 50 percent could present swell problems. Values of 100% or more are associated with high clay, which could swell considerably, especially under light loading structures:

Free swell $=\frac{(v_d - v_k)}{v_k} * 100$; Where, Vd = volume in Distilled water after 24hr swell (vd) Vk = volume in Distilled water after 24hr swell (vd) Table 4-16: Free swell test Results of the study area.

Test	Depth	soil pass 0.425mm	volume of Distilled	volume in	Free swell
pits	(m)	sieve (gm)	water (vd)	kerosene (vk)	Index (%)
TP1	1	10	20.5	10	105
	2	10	20	10	100
	3	10	18.5	10	85
	1	10	23	10	130
TP2	2	10	21.5	10	115
	3	10	19.5	10	95
	1	10	19	10	90
TP3	2	10	17.5	10	75
	3	10	16	10	60
	1	10	19	10	90
TP4	2	10	18.5	10	85
	3	10	17	10	70
	1	10	19	10	90
TP5	2	10	17.5	10	75
	3	10	16.5	10	65
	1	10	22	10	120
TP6	2	10	21.5	10	115
	3	10	19.5	10	95
	1	10	17	10	100
TP7	2	10	16.5	10	65
	3	10	15.5	10	55
	1	10	23.5	10	135
TP8	2	10	20.5	10	105
	3	10	20	10	100
	1	10	20	10	100
TP9	2	10	18	10	80
	3	10	17.5	10	75
	1	10	24	10	140
TP10	2	10	22.5	10	125
	3	10	21.5	10	115

4.1.9 Activity of clay

Activity of clay defined as the ratio of the plastic index to the percent of clay fraction finer than 0.002mm. It is one means of classifying expansive soils based on their index property. Skempton (1953) observed that the plasticity index of a soil increases linearly with the percentage of clay-size fraction (% finer than 2μ m by weight). He proposed three classes of clays according to the activity ratio as follows: Soil with activity less than 0.75 is inactive indicating low potential for volume change, that with activity between 0.75 and 1.25 is normal, and above 1.25 is very active demonstrating very high potential for volume change. The activity of a clay soil denoted by Ac and defined as follows:

Activity of Clay,
$$Ac = \frac{PI}{CF}$$

Where CF is the clay fraction of the soil with a particle size less than 0.002mm. Table 4-17: Activity of clay Result in the study area

Test	Depth	ы	Percent of	Percent of Clay		%Clay)	Domorik
pits	(m)	PI	AASHTO	USCS	AASHTO	USCS	Remark
	1	54.70	65.71	68.96	0.83	0.79	Normal
TP1	2	54.12	67.94	67.94	0.80	0.80	Normal
	3	49.92	66.75	63.61	0.75	0.78	Normal
	1	67.29	70.33	70.33	0.96	0.96	Normal
TP2	2	64.64	62.53	62.53	1.03	1.03	Normal
	3	60.33	66.87	62.98	0.90	0.96	Normal
	1	52.05	70.10	66.43	0.74	0.78	Normal
TP3	2	47.94	68.89	65.66	0.70	0.73	Normal
	3	43.78	66.75	63.61	0.66	0.69	Inactive
	1	48.74	74.07	66.35	0.66	0.73	Inactive
TP4	2	49.98	67.46	64.30	0.74	0.78	Normal
	3	39.31	65.88	62.78	0.60	0.63	Inactive
	1	43.15	69.34	66.07	0.62	0.65	Inactive
TP5	2	38.66	69.67	66.40	0.55	0.58	Inactive
	3	32.70	62.48	59.54	0.52	0.55	Inactive
	1	68.73	67.61	64.42	1.02	1.07	Normal
TP6	2	69.00	67.98	64.93	1.02	1.06	Normal
	3	66.88	65.26	62.82	1.02	1.06	Normal
	1	31.50	62.73	60.65	0.50	0.52	Inactive
TP7	2	30.29	59.52	56.71	0.51	0.53	Inactive
	3	26.89	55.09	52.10	0.49	0.52	Inactive
	1	68.02	67.73	64.18	1.00	1.06	Normal
TP8	2	62.48	67.53	64.36	0.93	0.97	Normal
	3	55.00	65.47	62.38	0.84	0.88	Normal
	1	48.81	67.68	61.36	0.72	0.80	Normal
TP9	2	48.22	62.89	59.94	0.77	0.80	Normal
	3	39.73	59.72	56.91	0.67	0.70	Inactive
	1	71.24	69.40	66.13	1.03	1.08	Normal
TP10	2	60.54	69.20	65.96	0.87	0.92	Normal
	3	54.98	66.07	62.96	0.83	0.87	Normal

Figure 4-7: Activity chart of the Study Area

4.2 Soil Classification

Soil classification is an important aspect of laboratory test, which tells the characteristic of the soil under interest. There are different methods of classification based on the identification tests performed on the soil. The Unified Soil Classification System (USCS) and the American Association of State Highway Transport Officials (AASHTO) method are among the widely used schemes of soil classification. There are also other classification methods specifically proposed for expansive soils.

I. AASHTO Classification System

According to this system, the soil of the study area falls in the region of A-7-6 and A-7-5 as shown in Figure below. Subgroup A-7-5 includes those materials with moderate plasticity indexes in relation to the liquid limit and which may be highly elastic as well as considerable volume change between wet and dry states.

Figure 4-8: Plasticity chart for soil Classifications According to AA	SHTO System
Table 4-18: AASHTO soil Classification system result of the study	area

Test Pits	Depth (m)	Liquid Limit (LL), %	Plastic Limit (PL), %	Plastic Index (PI), %	Equation of line: PI=LL-30	Percentage of passing No. 200 sieve, %	AASHTO Classification
	1	91.20	36.50	54.70	61.20	93.25	A-7-5
TP1	2	88.70	34.58	54.12	58.70	90.45	A-7-5
	3	80.40	30.48	49.92	50.40	87.90	A-7-5
	1	107.40	40.11	67.29	77.40	92.42	A-7-5
TP2	2	104.25	39.61	64.64	74.25	88.73	A-7-5
	3	95.40	35.07	60.33	65.40	86.39	A-7-5
	1	81.28	29.23	52.05	51.28	93.43	A-7-6
TP3	2	73.40	26.08	47.32	43.40	90.61	A-7-6
	3	74.02	29.62	44.40	44.02	87.90	A-7-6
	1	80.52	31.78	48.74	50.52	91.18	A-7-5
TP4	2	79.02	29.04	49.98	49.02	87.84	A-7-6
	3	70.20	30.89	39.31	40.20	85.89	A-7-5
	1	77.20	34.05	43.15	47.20	91.49	A-7-5
TP5	2	69.90	31.24	38.66	39.90	91.08	A-7-5
	3	67.10	34.40	32.70	37.10	81.95	A-7-5
	1	110.80	42.07	68.73	80.80	91.04	A-7-5
TP6	2	108.60	39.60	69.00	78.60	86.10	A-7-5
	3	103.00	36.12	66.88	73.00	82.32	A-7-5
TD7	1	65.80	34.30	31.50	35.80	80.34	A-7-5
IP/	2	63.81	33.51	30.29	33.81	77.90	A-7-5

	3	60.00	33.11	26.89	30.00	70.89	A-7-5
TP8	1	113.40	45.38	68.02	83.40	92.34	A-7-5
	2	105.80	43.32	62.48	75.80	90.09	A-7-5
	3	91.82	36.82	55.00	61.82	86.73	A-7-5
	1	86.40	37.59	48.81	56.40	84.50	A-7-5
TP9	2	79.56	31.34	48.22	49.56	82.55	A-7-5
	3	74.40	34.67	39.73	44.40	78.80	A-7-5
	1	116.40	45.16	71.24	86.40	94.03	A-7-5
TP10	2	102.00	41.46	60.54	72.00	92.51	A-7-5
	3	95.83	40.85	54.98	65.83	88.25	A-7-5

I. Unified Soil Classification system (USCS)

According to USCS classification scheme the soil of the study area falls in CH or OH region but specific gravities were greater than two it categorized under CH (Fat clay), which shows that the soil is potentially expansive as shown in Figure below.

Figure 4-9: Graph of Plasticity chart of the Study Area According to USCS System

Table 4-19: Unified soil Classification system result of the study area										
Test Pits	Depth (m)	Liquid Limit (LL) %	Plastic Limit (PL) %	Plastic Index (PI) %	Equation of A-line: PI = 0.73(LL-20)	Equation of U-line: PI = 0.9(LL-8)	Percentage of passing No. 200 sieve (%)	USCS		
	1	91.20	36.50	54.70	51.98	74.88	93.25	СН		
TP1	2	88.70	34.58	54.12	50.15	72.63	90.45	СН		
	3	80.40	30.48	49.92	44.09	65.16	87.90	СН		
	1	107.40	40.11	67.29	63.80	89.46	92.42	СН		
TP2	2	104.25	39.61	64.64	61.50	86.63	88.73	СН		
	3	95.40	35.07	60.33	55.04	78.66	86.39	СН		
	1	81.28	29.23	52.05	44.73	65.95	93.43	СН		
TP3	2	73.40	26.08	47.32	38.98	58.86	90.61	СН		
	3	74.02	29.62	44.40	39.43	59.42	87.90	СН		
	1	80.52	31.78	48.74	44.18	65.27	91.18	СН		
TP4	2	79.02	29.04	49.98	43.08	63.92	87.84	СН		
	3	70.20	30.89	39.31	36.65	55.98	85.89	СН		
	1	77.20	34.05	43.15	41.76	62.28	91.49	СН		
TP5	2	69.90	31.24	38.66	36.43	55.71	91.08	CH		
	3	67.10	34.40	32.70	34.38	53.19	81.95	MH		
	1	110.80	42.07	68.73	66.28	92.52	91.04	CH		
TP6	2	108.60	39.60	69.00	64.68	90.54	86.10	CH		
	3	103.00	36.12	66.88	60.59	85.50	82.32	СН		
	1	65.80	31.85	33.95	33.43	52.02	80.34	CH		
TP7	2	63.81	33.51	30.29	31.98	50.23	77.90	MH		
	3	60.00	33.11	26.89	29.20	46.80	70.89	MH		
	1	113.40	43.46	69.94	68.18	94.86	92.34	CH		
TP8	2	105.80	40.25	65.55	62.63	88.02	90.09	CH		
	3	91.82	36.82	55.00	52.43	75.44	86.73	CH		
	1	86.40	37.59	48.81	48.47	70.56	84.50	СН		
TP9	2	79.56	31.34	48.22	43.48	64.40	82.55	CH		
	3	74.40	34.67	39.73	39.71	59.76	78.80	СН		
	1	116.40	45.16	71.24	70.37	97.56	94.03	CH		
TP10	2	102.00	41.46	60.54	59.86	84.60	92.51	СН		
	3	95.83	40.85	54.98	55.36	79.05	88.25	СН		

4.3 Discussion on Laboratory Test Results

From the test results of the Atterberg limits, the Plasticity and Activity chart was developed which is used to define the category of fine-grained materials. The measured liquid limit and plastic limit was found to be in the range of 60.0 - 116.40% and 26.08 - 45.16% respectively. The plasticity index and Liquid Index were found to be in the range of 26.89 - 71.24% and -0.32 - 0.65% respectively.

The linear shrinkage limit test values of the study area ranges from 7.32% - 12.5%. This shows that the value of test results greater than 8 % indicates that the soil have critical degree of expansion.

The Specific Gravity of the study area falls in the range of (2.63 - 2.86). This indicates that the soil type in the study area covers silt soils of high plasticity up to the clay soils of high plasticity behaviors. The moisture contents of the study area range from 26.69 up to 50.75 in percent. This indicates that the soil type of the study area is soft clay. The Dry density of the study area falls in the range of (0.36 - 1.89) g/cm³ and the Bulk density ranges from (0.54-2.39)g/cm³.

The swelling pressure and the amount of swell (Swelling potential) of the soil were measured by means of one-dimensional compression tests using the odometer apparatus as per ASTM D4546-08. The results of the odometer tests showed that the soils can exhibit swelling pressure in the range of 65kPa to 325kPa and swelling potential in the range of 7.48 to 15.86 percent. That means the expansive clay in area under study can exert an upward swelling pressure in this range, which is much greater than pressure exerted by lightweight structures on the subsoil.

From the grain size analysis test result, it has been found that the percentage of Gravel is in between 0.21-2.61%, the Percentage (%) of sand content is in between 5.63-26.50%, the percentage of silt content is in between 15.8-27.54% and the percentage of clay content is in between 55.09-74.07% according to AASHTO. And the percentage of Gravel is in between 0.00-1.04%, the Percentage (%) of sand content is in between 5.97-28.16%, the percentage of silt content is in between 18.79-28.16% and the percentage of clay content is in between 52.10-70.33% according to USCS. This indicates that the percent of clay according to both classification is greater than 50% which shows the soils of the study area have clay materials with moderate to high plasticity clay.

The free swell test is a simple test that is widely accepted as a way of getting an estimate of soil swelling potential. In this study, the variation in free swell percent ranges from 55%

to 140% indicating marginal to high swelling potential. This implies that the soils in the area can swell considerably when wet.

The activity of clay soils of the study area falls in the range of normal to inactive clay behavior. A clay soil that consists predominantly of the clay mineral like montmorillonite behaves very differently from a clay soil composed predominantly of kaolinite

After classification was done by using AASHTO Classification System, the soils in the study area are classified in to soil groups A-7-6 and A-7-5. These soil groups' materials have high liquid limits and are highly plastic as well as these types of soil groups will subject to considerable volume change up on moisture change.

Using Unified Soil Classification System (USCS) the soils of the study area are classified by using the Casagrande Plasticity Chart. Based on this chart, most of the soils were grouped as CH (inorganic clay with high plasticity) and only three of the thirteen soil test samples are on MH group (inorganic silt of high compressibility).

4.4. Results of Correlation and Regression Analysis

4.4.1 Determination of Sample size

Since the research investigation carried out on quantitative data, the sample size calculated by the following formula [38]:

$$N = \frac{t_{\alpha^2 * \sigma^2}}{\epsilon^2} = \frac{1.96^{2*} 0.1405^2}{0.05^2} = 30$$

Where, $t_{0.05\alpha} = 1.96$ for 95% confidence interval

E=0.05 for 95% confidence interval

From statistical output, the Avg. Standard deviation of all sample data can be used to determine the sample size.

Avg.
$$\sigma^2 = \frac{(16.469 + 12.766 + 1.473 + 8.049 + 0.419 + 0.18 + 0.25 + 72.765)}{8} = 14.05\%$$

Therefore, $\sigma^2 = 0.1405$

4.4.1.1 Discussion on Sample Size

It will often suggested that one should include at least 30 subjects in a sample since this number permits the use of large sample statistics. Statistically speaking, a sample n=30 is considered large, since with this n, the t-distribution and the normal curve are practically the same for hypothesis testing purposes. In experimental research, one should select a sample that will permit at least 30 in each group.

Based on the statistical data output the predicted standard deviation was 14% and the margin of error is dependent on the level of confidence. The 95% percent of level of confidence gives 5% of error from the population mean.

4.4.2 Statistical Data distribution result

Statistics											
									Swelling		
		LL	PI	LS	NMC	Dd	Ac	LI	Pressure		
									(Sp), kPa		
N	Valid	30	30	30	30	30	30	30	30		
IN	Missing	0	0	0	0	0	0	0	0		
Mean		87.254	51.902	9.574	35.281	1.220	.810	.051	194.67		
Std. Error of	Mean	3.007	2.331	.269	1.469	.0765	.033	.046	13.285		
Median		83.840	51.012	9.393	35.0901	1.219	.794	.046	202.50		
Mode		60.000	26.890	8.46	21.98	.36	.52	32	105		
Std. Deviation	on	16.469	12.766	1.473	8.049	.419	.180	.250	72.765		
Variance		271.233	162.977	2.171	64.793	.176	.032	.063	5294.713		
Skewness		.182	183	.282	.081	320	038	.425	004		
Std. Error of	Skewness	.427	.427	.427	.427	.427	.427	.427	.427		
Kurtosis		-1.196	898	-1.115	982	545	-1.066	458	-1.134		
Std. Error of	Kurtosis	.833	.833	.833	.833	.833	.833	.833	.833		
Range		56.40	44.35	5.18	28.71	1.61	.56	.98	260		
Minimum		60.00	26.89	7.32	21.98	.36	.52	32	65		
Maximum		116.40	71.24	12.50	50.69	1.97	1.08	.65	325		
Sum		2617.61	1557.05	287.2	1058.43	36.59	24.29	1.53	5840		
Percentiles	25	74.020	43.1475	8.429	27.560	.970	.688	165	123.33		
	50	83.840	51.012	9.393	35.0901	1.219	.794	.0464	202.50		
	75	103.000	64.635	10.86	40.7489	1.513	.958	.2452	260.00		

4.4.2.1 Discussion on Statistical data output

From the above table, the result of Skewness over its standard error as well as kurtosis over its standard error is between ± 2 . The histogram and Q-Q plot of each variable is shown figure below which shows each dependent and independent variables are normally distributed. [36]

4.4.3 Normality Test Result

 Table 4-21: Test of Normality for each variables

Tests of Normality										
	Kolmogo	orov-Sm	irnov ^a	Shapiro-Wilk						
Variables	Statistic	df	Sig.	Statistic	df	Sig.				
LL	.142	30	.129	.951	30	.185				
PI	.107	30	$.200^{*}$.957	30	.259				
LS	.145	30	.107	.948	30	.145				
NMC	.098	30	$.200^{*}$.966	30	.433				
γd	.076	30	$.200^{*}$.977	30	.736				
Ac	.111	30	$.200^{*}$.940	30	.088				
LI	.139	30	.143	.961	30	.326				
Swelling Pressure (Sp), kPa	.131	30	$.200^{*}$.955	30	.235				

4.4.3.1 Discussion on Normality Test output

From the above table and figure, the normality test result fulfill the basic assumption of normality test. The value of Skewness and kurtosis over its standard error is between the ranges of -1.96 to +1.96, this implies that the data is normally distributed. The kolmogrov-smirnov^a and shapiro-wilk test shows, the significance levels (α) greater than 0.05, this shows the sample data are not significantly different than a normal population or we accept the null hypothesis.

Ho: The sample data are not significantly different than a normal population.

Ha: The sample data are significantly different than a normal population

So that the shapiro-wilk and kolmogrov-smirnova test results fulfill assumption for normally distributed data.

In general, the test results fulfil the basic requirement of normal probability distribution data. So that we use parametric statistical test for evaluation of the hypothesis test. The independent t-test is used for parametric statistical test. The reason for selecting independent t-test is based on the data is continuous, fulfill normality test and it compares the means of two independent variables.

4.4.4 Correlation Analysis Result

4.4.4.1 Pearson correlation coefficient, R

The Pearson correlation coefficient (r) is used specifically to describe relationships when the variables to be correlated are continuous (measured on at least an interval scale). The possible values of the correlation coefficient range from -1 to +1 and the closer the number is to an absolute value of 1, the greater the degree of relatedness. The Pearson correlation coefficient can be tested for statistical significance (using the conventional probability criterion of .05).

Table 4-22: Result of Pearson correlation coefficient in Correlation matrix.									
Correlations									
		LL	PI	LS	NMC	Dd	Ac	LI	Swelling Pressure (Sp)
TT	Pearson Correlation	1	.977	.920	823	947	.968	898	.859
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
PI	Pearson Correlation	.977	1	.865	822	930	.981	880	.857
11	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
IS	Pearson Correlation	.920	.865	1	740	868	.845	822	.826
LS	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
NMC	Pearson Correlation	823	822	740	1	.846	765	.959	861
INIVIC	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	947	930	868	.846	1	883	.889	911
γd	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
A -	Pearson Correlation	.968	.981	.845	765	883	1	842	.791
AC	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000
	N	30	30	30	30	30	30	30	30
T T	Pearson Correlation	898	880	822	.959	.889	842	1	871
LI	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
	Ν	30	30	30	30	30	30	30	30
Swelling	Pearson Correlation	.859	.857	.826	861	911	.791	871	1
Pressure (Sp)	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
	Ν	30	30	30	30	30	30	30	30
**. Correlation is significant at the 0.01 level (2-tailed).									

4.4.4.1 Discussion on Correlation output

There are two ways to interpret the degree of relationship:

- If the Sig., or probability (p), associated with the R value 0.05 or less, then we reject Ho, and conclude that there is a statistically significant relationship between pair of variables.
- If p > 0.05, then we retain Ho, and conclude that the variables are unrelated.

Thus, from the table correlation matrix the p-value or Sig. (2-tailed) value is less 0.05, we can say that the correlation is not the result of chance or random sampling error. That is why we would reject Ho and conclude that the correlation is a real one, and thus, one that can be generalized from the sample to the overall population in which we are interested.

4.5 Formulation of New Empirical Equations

4.5.1 Using Simple Linear Regression Analysis

The relationship of two or more variables expressed in mathematical form by determining an equation connecting the two variables. Generally in this work, the value of swelling pressure (Ps) was considered as the dependent variable whereas liquid limit (LL), plasticity index (PI), Linear shrinkage limit (LS), Dry Density (γ d), liquidity index (LI), Activity of Clay (Ac) and Natural moisture content (NMC) are the independent (Predictor) variables.[36]

4.5.1.1 Scatter Plot and Best Curve Fit Results for Simple Linear Regression

The MS excel spread sheet is found to be the most powerful and manageable tool for scatter plot analysis and determination of correlation between two variables. However, when determination of the relationships between more than two variables are required (the dependent variable requires two or more independent variables) regression analysis is used and the SPSS software is found to be the most powerful and descriptive tool.

Prediction of Swelling Pressure from Index Properties of Expansive Soils Found in Burayu Town

4.5.1.2 Formula developed from Simple Linear Regression outputs

- 1. $Sp = -158.1*\gamma d + 387.51; R^2 = 0.8291$
- 2. $Sp = -7.7802*NMC + 469.16; R^2 = 0.7407$
- 3. $Sp = 4.883*PI 58.77; R^2 = 0.7339$

4.5.1.3 Discussion on Single Linear Regression

After carefully analyzing the data on the scatter plot and different models, Sp is highly influenced by γd , NMC and PI by achieving a coefficient of determination value (R^2) of 0.829, 0.741 and 0.734 respectively. This category also shows that correlation of Sp has very good relation with γd , NMC and PI that gave good correlation result.

4.5.2 Using Multiple Linear Regression Analysis

A number of techniques used to judge the adequacy of a regression model. Some of which are confidence level (CL), R-squared value (R^2), and adjusted R-square (Adj. R^2). The regression coefficients then calculated using SPSS 20 software for each sample parameters to develop best empirical equations and their validation carried out using control test results. Out of many equations, equations with higher R^2 values selected and using these equations the swelling pressure of the study area were predicted. Then a graph is plotted which shows the measured value against the predicted value.

Test Pits	Depth (m)	Test No.	LL	PI	LS	NMC	Dd	Ac	LI	Swelling Pressure
	1	1	91.20	54.70	10.86	27.03	1.06	0.79	-0.17	265
TP1	2	2	88.70	54.12	9.43	26.80	1.31	0.80	-0.14	215
	3	3	80.40	49.92	8.46	42.72	1.37	0.78	0.25	120
	1	4	107.40	67.29	10.71	29.00	0.52	0.96	-0.17	285
TP2	2	5	104.25	64.64	9.86	27.56	0.97	1.03	-0.19	195
	3	6	95.40	60.33	10.25	40.01	1.15	0.96	0.08	200
	1	7	81.28	52.05	8.43	31.72	1.15	0.78	0.05	245
TP3	2	8	74.02	47.94	8.54	35.97	1.47	0.73	0.21	190
	3	9	73.40	43.78	8.75	40.75	1.51	0.69	0.25	115
	1	10	80.52	48.74	8.46	32.65	1.19	0.73	0.02	240
TP4	2	11	79.02	49.98	7.82	37.82	1.45	0.78	0.18	150
	3	12	70.20	39.31	7.32	44.70	1.63	0.63	0.35	90
	1	13	77.20	43.15	8.71	39.68	1.11	0.65	0.13	210
TP5	2	14	69.90	38.66	9.36	44.49	1.68	0.58	0.34	125
	3	15	67.10	32.70	7.93	49.52	1.72	0.55	0.46	105
	1	16	110.80	68.73	11.68	25.22	0.63	1.07	-0.25	325
TP6	2	17	108.60	69.00	11.29	30.22	0.93	1.06	-0.14	290
	3	18	103.00	66.88	10.36	34.21	1.03	1.06	-0.03	210
	1	19	65.80	33.95	8.29	40.73	1.77	0.52	0.26	125
TP7	2	20	63.81	30.29	7.86	45.47	1.82	0.53	0.39	105
	3	21	60.00	26.89	7.71	50.69	1.97	0.52	0.65	65
	1	22	113.40	69.94	12.04	24.69	0.47	1.06	-0.27	280
TP8	2	23	105.80	65.55	11.39	22.90	0.73	0.97	-0.26	260
	3	24	91.82	55.00	10.43	39.28	1.25	0.88	0.04	155
	1	25	86.40	48.81	9.68	42.01	1.39	0.80	0.09	205
TP9	2	26	79.56	48.22	9.25	38.24	1.45	0.80	0.14	170
	3	27	74.40	39.73	7.79	33.73	1.58	0.70	-0.02	105
	1	28	116.40	71.24	12.50	25.75	0.36	1.08	-0.27	300
TP10	2	29	102.00	60.54	11.07	21.98	0.79	0.92	-0.32	285
	3	30	95.83	54.98	11.00	32.89	1.13	0.87	-0.14	210

Table 4-0-23: Input Data for SPSS 20 computer program

4.5.2.1 New Formula developed from Multiple Linear Regression output

To select the best fit model the following points are taken in to consideration

- The value of R² for the regression analysis should have relatively higher value and approaches to one.
- The slopes of the line for the measured versus Predicted swelling pressure graph should have relatively higher value and approaches to one.
- The equation should give approximately the same swelling pressure value compared with the measured one for the control test samples.
- Equations that have parameters which could be easily determined in soil mechanics laboratories.

From Multi Linear regression output the following equations gave a better estimation of calculated Swelling Pressure than many other models developed.

MODEL 1: SP = $-111.42*\gamma d - 2.873*NMC + 431.920$; R² = 0.858

Adj.
$$R^2 = 0.847$$
 and $P < 0.05$

- MODEL 2: SP = -91.456* γ d + 6.665*LS 2.849*NMC + 342.925; R² = 0.862 Adj. R² = 0.846 and P < 0.05
- MODEL 3: SP = -2.924 NMC 124.125* γ d 35.751*Ac + 478.171; R² = 0.86 Adj. R² = 0.843 and P < 0.05
- **MODEL 4**: SP = 0.405*LL 2.936*NMC -*125.444* γ d + 486.564; R² = 0.859 Adj. R² = 0.842 and P < 0.05
- MODEL 5: SP = 436.066 0.057*PI 2.884*NMC 112.863* γ d; R² = 0.858 Adj. R² = 0.841 and P < 0.05
- MODEL 6: SP = -1.575*LL +13.675*LS 3.07*NMC 125.043* γ d + 462.017 R² = 0.87, Adj. R² = 0.85 and P < 0.05
- MODEL 7: SP = 4.134*PI 2.406*NMC 95.564* γ d 247.366*Ac + 381.831 R² = 0.869, Adj. R² = 0.849 and P < 0.05
- MODEL 8: SP = 62.329*AC + 9.078*LS 2.93*NMC 106.379* γ d + 391.346 R² = 0.867, Adjusted R2 = 0.846 and P < 0.05
- MODEL 9: SP = $4.108*PI + 9.007*LS 2.415*NMC 78.138*\gamma d 272.399*Ac$ + 296.29; R² = 0.876, Adj. R² = 0.85 and P < 0.05.

4.5.2.2 Discussion on Multiple Linear Regression

The results of the Regression output of the above models shows that the relationship developed is relatively reasonable because (P < 0.05), this shows there is significance relationship between the correlated variables, and the value of R^2 and Adj. R^2 from the multiple linear regression analysis is improved than the R^2 value of the single linear regression analysis.

Among Models developed from Multiple Linear Regression, *MODEL 5: SP = 436.066 - 0.057*PI - 2.884*NMC - 112.863*yd* describes the relation better than the others. This is because that, the soil under investigation found to be sensitive to plastic index, natural moisture content and dry density. And also, it has good regression analysis with coefficient of determination (R^2) of 0.858 and the slope of the line for the measured versus calculated swelling pressure shows best curve fits. The equation developed has parameters that easily determined in soil mechanics laboratories. Thus, one may use these suggested equations for the estimation of the swelling pressure of the study area.

4.6 Checking Adequacy of Developed model using SPSS output

4.6.1 Interpreting Descriptive Statistics

The output described in this section is produced using the options in the Regression as the table below. This table tells us the mean and standard deviation of each variable in a data set, so that the average number of swelling pressure is 194.67. This table isn't necessary for interpreting the regression model, but it is a useful summary of the data.

In addition to the descriptive statistics, selecting this option produces a correlation matrix too. This table shows three things. First, the table shows the value of Pearson's correlation coefficient between every pair of variables (e.g. NMC has a large negative correlation with PI, R =.858). Second, the one-tailed significance of each correlation is displayed (e.g. the correlation above is significant, p <.005). Finally, the number of cases contributing to each correlation (N =30) is shown. The correlation matrix is extremely useful for getting a rough idea of the relationships between predictors and the outcome, and for a preliminary look for multicollinearity.

Descriptive Statistics									
Mean Std. Deviation N									
Swelling Pressure (Sp), kpa	194.67	72.765	30						
NMC	35.2810	8.04943	30						
γd	1.2198	.41909	30						
PI	51.9016	12.76625	30						

Table 4-24: Descriptive Statistics of the Developed model

Table 4-25: Correlation Matrix of developed model

		Swelling Pressure	NMC	ad	DI	
		(Sp), kpa	INIVIC	γu	11	
	Swelling Pressure (Sp), kpa	1.000	861	911	.857	
Pearson	NMC	861	1.000	.846	822	
Correlation	γd	911	.846	1.000	930	
	PI	.857	822	930	1.000	
	Swelling Pressure (Sp), kpa		.000	.000	.000	
Sig (1 tailed)	NMC	.000		.000	.000	
Sig. (1-tailed)	γd	.000	.000	•	.000	
	PI	.000	.000	.000	•	
	Swelling Pressure (Sp), kpa	30	30	30	30	
N	NMC	30	30	30	30	
11	γd	30	30	30	30	
	PI	30	30	30	30	

4.6.2 Regression Model Summary

This section of output describes the overall model, whether the model is successful in predicting swelling pressure. This option is selected by default in SPSS because it provides us with some very important information about the model on the values of R, R^2 and the adjusted R^2 .

	Model Summary [®]												
Model	R	R	Adjusted	Std. Error	rror Change Statistics								
		Square	R Square	of the	R Square F 461 462 Sig. F								
				Estimate	Change								
1	.926	.858	.841	28.976	.858	52.294	3	26	.000	1.824			
a. Predic	a. Predictors: (Constant), PI, NMC, yd												
b. Deper	ndent V	Variable:	Swelling P	ressure (Sp)	, kpa								

Table 4-26: Model summary of developed Regression model

From the above model, *the* R^2 *value* is .858 or 85.8 % which means that the predictors accounts 85.8 % of variation in swelling pressure.

The adjusted \mathbb{R}^2 gives us some idea of how well the model generalizes and ideally the same or very close to the value of \mathbb{R}^2 (Example, the difference is 0.858 - 0.841 = 0.017 (1.7%). This means that if the model derived from the population rather than a sample which account approximately 1.7 % variance in the outcome.

The change statistics tell us whether the change in R^2 is significant. The significance of R^2 can actually be tested using an F-ratio. As such, the change in the amount of variance that can be explained gives F-ratio which is significant (p <.005).

Finally, *Durbin–Watson statistic* is found in the last column of the table in SPSS Output. This statistic informs us about whether the assumption of independent errors is tenable. The closer to 2 that the value is, the better, and for these data the value is 1.824, which is so close to 2 that the assumption has almost certainly been met.

4.6.3 ANOVA

This section output shows whether the model is significantly better at predicting the outcome than using the mean as a best guess. Specifically, the F-ratio represents the ratio of the improvement in prediction that results from fitting the model, relative to the inaccuracy that still exists in the model.

			ANOVA ^a			
Model		Sum of	df	Mean	F	Sig.
		Squares		Square		
	Regression	131717.113	3	43905.704	52.294	.000 ^b
1	Residual	21829.554	26	839.598		
	Total	153546.667	29			
a. Dep	endent Variab	ole: Swelling Pr	essure (Sp)), kpa		
b. Prec	dictors: (Const	tant), PI, NMC,	Dd			

If the improvement due to fitting the regression model is much greater than the inaccuracy within the model then the value of F will be greater than 1 and SPSS calculates the exact probability of obtaining the value of F by chance. For the model the value of F is 52.294, which is highly significant (p < .005). From the ANOVA test results the model significantly improved our ability to predict the outcome variable.

4.6.4 Regression Model parameters

So far several summary statistics tells us whether or not the model has improved our ability to predict the outcome variable. The next part of the output is concerned with the parameters of the model.

In multiple regression model there are several unknown quantities (the b-values), which tells the relationship between Swelling pressure and each predictors. Therefore the t-test associated with b-value is significant, if the value in the column labelled Sig.is < .05 that indicates the predictor have a significant contribution to the model. The smaller the value of Sig. (and the larger the value of t), the greater the contribution of that predictor. For this model, the NMC (t (26) = -2.262, p <.005), the amount of γd (t (26) = -2.979, p <.005) and PI (t (26) = -1.049, p <.005) are all significant predictors of Swelling pressure.

	Coefficients ^a											
Model		Unstand	lardized	Standardized		<i>a</i> .	95.0% Confidence Interval					
		Coeff	icients	Coefficients	t	Sig.	for B					
		В	B Std. Error				Lower Bound	Upper Bound				
	(Constant)	437.066	107.373		4.071	.000	216.358	657.774				
1	NMC	-2.884	1.275	319	-2.262	.032	-5.505	263				
1	γd	-112.863	37.882	650	-2.979	.006	-190.731	-34.995				
	PI	057	1.165	010	-1.049	.041	-2.452	2.338				
	Correlatio	ons	Collinearity Statistics									
Zero- order	Partial	Part	Tolerance	VIF								
861	406	167	.275	3.637								
911	504	220	.115	8.706								
.857010004			.131	7.642								
a. Depe	endent Varia	ble: Swellin	g Pressure (S	Sp), kpa								

 Table 4-28: Coefficients of Regression model parameters for developed model

4.6.5 Multicollinearity Diagnostics

Multicollinearity exists when there is a strong correlation between two or more predictors in a regression model. SPSS produces various collinearity diagnostics, one of which is the variance inflation factor (VIF). The VIF indicates whether a predictor has a strong linear relationship with the other predictor(s). Specifically, it provides the VIF and tolerance statistics (with tolerance being 1/VIF). There are a few guidelines applied here:

- If the largest VIF is greater than 10 then there is cause for concern
- If the average VIF is substantially greater than 1 then the regression may be biased
- Tolerance below 0.1 indicates a serious problem.
- Tolerance below 0.2 indicates a potential problem.

For this model, the VIF values are all well below 10 and the tolerance statistics all well above 0.2; therefore there is no collinearity within a data.

4.6 Comparisons of Previously Developed Equations with Values of Study Area

- Komornik and David, (1969); Log Ps = $0.132 + 0.0208*LL + 0.6688* \gamma d- 0.0269* w$
- Vijayvergiya and Ghazzaly (1973; Log Ps = 1/12 (0.4*LL ω +23.6)

Log Ps = $1/19.5(6.24*\gamma d + 0.65*LL-100)$

- Ashenafi (2013); Ps = 1.639* γd +32.676* PL-3110.94
- Daniel (2003); Log Ps = -5.00 0.0002064*LL + 0.003477*PI + 0.005827* γd

 $Log Ps = -9.384 + 0.02748*W + 0.006307*PI + 0.008359* \gamma d$

Table	ble 4-29. Comparisons of Freviously Developed Equations with measured Values of Study Area												
	Calculate	Komornik	and David	V	<i>ijayvergiya</i>	and Ghazzal	У	Ashe	enafi		Da	niel	
Test	Calculate Sp. kPo	Predicted	Variation	Predicted	Variation	Predicted	Variation	Predicted	Variation	Predicted	Variation	Predicted	Variation
N <u>o</u> .	эр, кг а	Sp, kPa	of Sp, %	Sp, kPa	of Sp, %	Sp, kPa	of Sp, %	Sp, kPa	of Sp, %	Sp, kPa	of Sp, %	Sp, kPa	of Sp, %
		Eq. #1		Eq.	. #2	Eq.	#3	Eq.	#4	Eq.	#5	Eq	. #6
1	215	108.60	49.49	135.94	36.77	173.68	19.22	149.84	30.31	201.48	6.29	306.07	42.36
2	120	122.11	1.76	146.78	31.73	236.09	9.81	563.47	162.08	310.17	44.27	370.87	72.50
3	195	174.00	10.77	322.35	49.93	321.91	49.73	150.44	30.03	293.14	36.34	309.74	44.07
4	200	200.21	0.11	316.23	47.08	447.02	107.92	82.25	61.74	121.54	43.47	120.22	44.08
5	190	88.44	53.45	107.98	49.78	109.92	48.87	90.34	57.98	247.44	15.09	226.46	5.33
6	115	107.55	6.48	94.41	56.09	207.49	3.49	87.34	59.38	104.05	51.60	104.00	51.63
7	150	119.79	20.14	251.19	16.83	127.37	40.76	372.81	73.40	339.52	57.92	274.85	27.84
8	90	97.46	8.29	92.61	56.93	163.31	24.04	380.00	76.74	157.32	26.83	162.52	24.41
9	125	149.04	19.23	199.53	7.20	321.91	49.73	378.95	76.26	268.43	24.85	309.25	43.84
10	105	75.06	28.51	66.13	69.24	102.11	52.51	580.78	170.13	216.37	0.64	217.44	1.13
11	290	83.06	71.36	66.83	68.92	149.87	30.29	107.10	50.19	231.98	7.90	283.02	31.64
12	210	135.06	35.69	215.44	0.20	204.35	4.95	231.58	7.71	205.64	4.35	185.43	13.75
13	105	121.73	15.93	138.57	35.55	222.00	3.26	507.00	135.81	249.67	16.13	205.81	4.27
14	65	76.20	17.23	51.09	76.24	121.98	43.27	387.35	80.16	251.67	17.06	236.99	10.23
	Average Va	riation, %	24.17		43.03		34.85		76.57		25.19		29.79

Table 4-29: Comparisons of Previously Developed Equations with measured Values of Study Area

From the above table, one can observe that most of the equations do not predict the swelling pressure of the soil under investigation. However, equation #1 developed by Komornik and David, and equation #5 developed by Daniel, predicts the swelling pressure which is closer to those samples of the study area that have relatively minimum percent of variations than the others as shown in the figure below. This indicates that correlation developed for a certain soil is not applicable for other soil.

The reason for this variation is may be due to the difference in test procedures and the nature of the soil, environmental, climatic condition and geologic formation of the region where the relation is developed to the study area.

Figure 4-12: Comparison of Measured Values of Swelling Pressure for previously Developed models

4.7 Validation of the Developed Formula

Among the other Models developed the following equation gives best fit model after the interpretation of SPSS out. And also, the selected model gives adequate regression analysis by fulfilling the required statistical considerations.

Table 4-30): Predi	cted	Swe	lling P	Pressure	value	es usi	ng nev	vly	developed equations	
	0.1	1 .	1.0	11.	D	1.	10	11.			

Sample	Calculated Swelling	Predicted Swelling	Variation
No	Pressure (Sp), Kpa	Pressure (Sp)	$-\frac{ (A-B) }{ } * 100$
<u>no</u> .	(A)	(B)	– A 100
1	265	255.37	3.63
2	215	217.51	1.17
3	120	125.29	4.41
4	285	289.86	1.70
5	195	203.41	4.32
6	200	187.31	6.34
7	245	231.80	5.39
8	190	183.16	3.60
9	115	125.31	8.97
10	240	235.18	2.01
11	150	160.18	6.79
12	90	95.39	5.99
13	210	193.92	7.66
14	125	116.41	6.87
15	105	97.54	7.10
16	325	287.91	11.41
17	290	279.68	3.56
18	210	217.20	3.43
19	125	116.82	6.55
20	105	97.76	6.89
21	65	66.00	1.54
22	280	308.30	10.11
23	260	283.95	9.21
24	155	168.38	8.63
25	205	195.58	4.60
26	170	159.26	6.32
27	105	108.41	3.25
28	300	316.78	5.59
29	285	280.10	1.72
30	210	210.97	0.46
	Average Varia	tion	5.31

4.7.1 Cross Validation for control test

In this section it was tried to validate the developed equations by using nine control tests.

The data that is used as a control test is conducted on different parts of Burayu soil sample.

Location of Test Pits	LL	PI	LS	NMC	γ_d	Ac	LI	Swelling Pressure (Sp)
Gafarsa Burayu (B/Stadium)	97.50	45.99	11.04	44.86	0.93	0.65	-0.14	205
Burayu Katta (B/Qera)	83.00	46.82	10.14	48.67	1.12	0.66	0.27	195
Malka Gafarsa (A/Meda)	69.50	38.25	9.18	51.27	1.29	0.56	0.52	135
Lakku Katta (Sansusi)	105.80	59.73	10.62	28.86	0.52	0.83	-0.29	315
Lakku Katta (Wisdom Seeder School)	88.80	38.83	10.21	31.11	0.94	0.63	-0.49	295
Gafarsa Guje (Corrisa)	71.50	40.90	10.61	36.27	1.18	0.65	0.14	200
Gafarsa Guje (Kella)	84.20	48.02	8.55	30.16	1.16	0.71	-0.13	205
Gafarsa Nono (Gabriel)	76.25	44.96	8.96	37.11	1.46	0.68	0.13	190
Gafarsa Burayu (Xache)	65.50	40.60	8.36	39.30	1.53	0.62	0.35	125

 Table 4-31 : Sample Data for Control test

 Table 4-32: Prediction of Swelling Pressure and Validation of the newly developed equations by Control test Samples

Location of Test Pits	Calculated Swelling Pressure (Sp)	Predicted Swelling Pressure (Sp)	Variation $\frac{ (A-B) }{ (A-B) } * 100$				
	(A)	(B)	A				
Gafarsa Burayu (B/Stadium) @1m	210	199.17	5.16				
Burayu Katta (B/Qera) @2m	175	166.65	4.77				
Malka Gafarsa (A/Meda) @1m	150	140.04	6.64				
Lakku Katta (Sansusi) @1m	295	290.60	1.49				
Lakku Katta (Wisdom Seeder	235	237.62	1 11				
School) @1m	255	237.02	1.11				
Gafarsa Guje (Corrisa) @2m	200	195.65	2.17				
Gafarsa Guje (Kella)@1m	225	214.98	4.45				
Gafarsa Nono (Gabriel)@1m	170	161.43	5.04				
Gafarsa Burayu (Xache)@2m	145	147.89	1.99				
Average Variation							

4.7.2 Discussion on the Validation of Developed Formula

The predicted swelling pressure values using newly developed equations shows the variation of the actual value with the predicted value of the model is 5.31%. This indicates there is small variation exits between the actual value and the predicted value and the model developed can be used for estimation of swelling pressures of the study area.

After Checking Validation of the newly developed equations by Control test Samples, the equations give approximately the same swelling pressure value compared with the measured one for the control test samples with accuracy range of 3.65%. This indicates that there is a very good prediction of the values.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Experimental work has been carried out to predict the swelling pressure of expansive soils from easy measured soil properties. Several tests to measure swelling pressure and index properties were performed on disturbed and undisturbed samples to a wide range of the study area.

- The soil initial state parameters such as water content, dry density and void ratio were combined in a way reflecting the influence of each of them on swell percent and swelling pressure.
- The swelling pressure and the amount of swell (Swelling potential) of the soil were measured ASTM D4546-08. The results of the odometer tests showed that the soils can exhibit swelling pressure in the range of 65kPa to 325kPa and swelling potential in the range of 7.48 to 15.86 percent.
- Soil classification was done by using AASHTO Classification System, the soils in the study area are classified in to soil groups A-7-6 and A-7-5 and using Unified Soil Classification System (USCS) the soils of the study area are classified as CH (inorganic clay with high plasticity) and only three of the thirteen soil test samples are on MH group (inorganic silt of high compressibility).
- The equation developed using liquid limit (LL), plasticity index (PI), Linear shrinkage limit (LS), Dry Density (γd), liquidity index (LI), Activity of Clay (Ac) and Natural moisture content (NMC) as an input, can predict swelling pressure of the study area.
- From the Single Linear Regression Analysis, the Dry Density (γd) has good correlation with swelling pressure among other single index parameters.
- In prediction of swelling pressure from Multiple Linear Regression analysis, $SP = 436.066 0.057*PI 2.884*NMC 112.863*\gamma d$ describes the relation better than the others with *Coefficient Of Determination* (R²) of 0.858. This is indicaes Good relationship exists between the swelling pressure and the predictors.
- Comparison of the measured and predicted swelling pressure values of all the studied data indicates that there is a good agreement between the caculated and Predicted swelling pressure values.

5.2 Recommendations

- The accuracy of newly developed equations may be further modified or improved by increasing other additional soil samples and by decreasing expected errors during sampling and testing time.
- Further detailed laboratory analysis must be carried out on a number of additional disturbed and undisturbed soil samples from different locations of the town to prepare a reliable correlation and regression analysis.
- There is 3.65% precision variation by using control test in between actual laboratory and predicted Sp values. So that, it is recommended to use the developed equations for preliminary design and small projects to predict the swelling pressure of the study area.
- Finally, Burayu is one of the fast growing towns and commercial centers in the Oromia Special Zone in which further detailed Engineering soil investigation is essential.

REFERENCES

- [1] F.H. Chen, Foundation on Expansive Soil, New York: Elsevier Science, 1998.
- [2] Zumrawi Magdi, M. E. Prediction of Swelling Characteristics of Expansive Soils. Sudan Engineering Society Journal, 2012; 58: 2.
- [3] Negussie, E., and Dinku, A., Investigation on the effects of Combining Lime and Sodium silicate for Expansive Soil Stabilization. Journal of EEA. 2014; 31.
- [4] Gebrehiwot, T., Ameliorated Design and Construction Techniques of Pavements on Expansive Soils. MSc Thesis, Addis Ababa University, Ethiopia. 2003.
- [5] Alene, T., Experimental Treatment Options for Expansive Soils on Unpaved Roads in Ethiopia. First AFCAP Practitioners Conference. 2010.
- [6] Uba Uge, B., Expansive Soils in Ethiopia: A Review. International Journal of Scientific Research Engineering and Technology (IJSREET). 2017; 5(6).
- [7] Osman, M.A., and Charlie, W.A., "Expansive Soils in Sudan," BRRI Current Papers, No. CP.3/83. Building and Road Research Institute, University of Khartoum, Sudan.1983.
- [8] Magdi M.E.Z., Asim O. A., and Abubakr E. A.G., Damages of Buildings on Expansive Soils: Diagnosis and Avoidance. International Journal of Multidisciplinary and Scientific Emerging Research. 2017; 6(2).
- [9] Steinberg, M., Geo-membranes and the control of expansive soils in construction, McGraw-Hill, New York.1998.
- [10] Rosen balm, D. and Zapata, C.E., Effect of Wetting and Drying Cycles on the Behavior of Compacted Expansive Soils. Journal of Materials in Civil Engineering, American Society of Civil Engineers, ASCE. 2016.
- [11] Nelson, J. D. and Miller, D. J., Expansive soils: Problem and practice in foundation and pavement engineering, John Wiley and Sons, New York.1992.
- [12] Woldegiorgis, A., Ethiopia: The construction industry in bolstering growth. www.allafrica.com. October 14, 2019
- [13] Sisay, A., Assessment of Damage of Buildings Constructed in Expansive Soil Areas of Addis Ababa. MSc Thesis, Addis Ababa University, Ethiopia. 2004.
- [14] Alebachew, F., Pavement Distresses on Addis Ababa City Arterial Roads, Causes and Maintenance Options. MSc Thesis, Addis Ababa University, Ethiopia. 2005.

- [15] Sime A., J., Further Investigation of Road Failures Constructed on Expansive Soils of Central Ethiopia Addis Ababa-Jimma Road as A Case Study. MSc Thesis, Addis Ababa University, Ethiopia.2006.
- [16] Wubshet, H., Investigation on the Engineering Properties of Soils Found in Burayu town. Msc. Thesis Addis Ababa, Ethiopia. 2015
- [17] Shi, B., Jiang, H., Liu, Z., and Fang, H.Y. Engineering geological characteristics of swelling soils in China. Engineering Geology Journal. 2002; 67, 63–71.
- [18] Israr, J., Farooq, K., and H. Mujtaba, H. Modelling of Swelling Parameters and Associated Characteristics Based on Index Properties of Expansive Soils. Pak. J. Engg. & Appl. Sci., 2014; 15:1-9.
- [19] Okagbue. Expansive soils in engineering construction. A review of practices, Mining, and Geology Journal. 1990; 2: 123–129.
- [20] Ferber, V., Auriol, J.C., Cui, Y. J. and Magnan, J. P., Prediction on the swelling potential of compacted high plasticity clays, Engineering Geology Journal. 2009; 3(104): 200–210.
- [21] Muntohar, A. S., Prediction and classification of swelling clay soil. Swelling soils recent advances in characterization and treatment, London. 2000 25-36.
- [22] Farooq, K., Engineering Characteristics of Expansive Soils in Pakistan. M.Sc. Thesis, University of Engineering and Technology, Lahore, Pakistan. 1996.
- [23] Shweta, K., and Yadav, R. K. Correlation for Prediction of Swelling Pressure Using Differential Free Swell and Plasticity Index. International Research Journal of Engineering and Applied Science, 2016; 3(4): 5-8.
- [24] Mokhtari, M., and Dehghani, M., Swell-Shrink Behavior of Expansive Soils, Damage and Control. EJGE.2012: 17.
- [25] Daniel, T., Examining the Swelling Pressure of Addis Ababa Expansive Soil. Addis Ababa University: Unpublished M.Sc. Thesis, 2003.
- [26] ASTM, Special procedures for testing soil and rock for engineering purposes, 1996.
- [27] Braja M. Das. Principles of Foundation Engineering. Stamford, USA, Global Engineering: Christopher M. Shortt, 2011
- [28] Mckeen, R.G. Design, and construction of airport pavements on expansive soils. Washington, D.C: U.S department of transportation federal aviation administration systems research and development services, 1976.
- [29] Murthy, V.N.S. Soil Mechanics and Foundation Engineering. UBS Publishers Distributors Ltd, 200.

- [30] Al-Mhaidip, A., Swelling behavior of expansive shale's from the middle region of Saudi Arabia. Geotechnical and Geological Engineering. 1999; 16: 291-307.
- [31] Azam, S. and Abduljauwad, S.N., Influence of gypsification on engineering behavior of expansive clay. Journal of Geotechnical and Geo-environmental Engineering. 2000; 126:538-542.
- [32] El- Sohby, M.A. and El-Sayed, A. R., Mineralogy and swelling of expansive clayey soils. Geotechnical Engineering. 1983; 14: 79-87.
- [33] Ashenafi, T., Study on Index Properties and Swelling Pressure of found in Dukem.Addis Ababa University, Ethiopia: Unpublished M.Sc. Thesis, 2013.
- [34] Dagmawi, N., In-depth investigation of the relationship between index properties of expansive soils in Bahirdar. Addis Ababa University, Ethiopia: Unpublished MSc Thesis, 2007.
- [35] Degu, B., Jafri, S.S.A., and Melesse, A., Characteristics of Squatter Houses in Burayu Town Adjoining Addis Ababa, Capital City of Ethiopia. Civil and Environmental Research. 2014; 6: 61-63.
- [36] Elliot, T., B., and Steven, P.R. A Conceptual Guide to Statistics Using SPSS.University of Oregon and California, Los Angeles. Sage Publications, Inc., 2012
- [37] Alan, C., E., and Wayne, A., W. Statistical Analysis Quick Reference Guidebook. University of Texas, Southwestern Medical Center and Southern Methodist University. Sage Publications, Inc., 2007
- [38] Adcock, C. J. Sample size determination: A Review Statistician. 1997; 46(2): 261–283.
- [39] Kumar, Y.S., Fundamentals of Research Methodology and Statistics. Mahatima Gandhi Chitrakoot Rural University. New Age International Plc. Publishers, 2006.
- [40] Department of the Army USA, Technical Manual TM5-818-7.Foundations in Expansive Soils, 1 September 1983.
- [41] Sridharan, A., and Prakash, K. Expansive Soil Characterization: an Appraisal. INAEL, 2016; 1:29–33.
- [42] Holtz, W.G., and Gibbs, H.J. Engineering Properties of Expansive Clays. Translation ASCE. 1956: Vol. 121.
- [43] Seed, H.B, Woodward, R.J. and Lundgren, R. Prediction of Swelling Potential for Compacted Clays. Proceedings ASCE. 1962; 88 (No. SM3)

APPENDIX A: Representative Atterberg Limit test Results

able A1. Determination of Li	_, I L (5011101 11	I @2m				
TEST METHOD: ASTM I	D4318	-98						
Determination	Liqu	id Limit	@ 2m		Diastia	ii4 @ 2		
Number of blows		18	25	30	Plastic I	Plastic Limit @2m		
Container	No	B-4	B-1	A-5	A-7	A-1		
Wt. of container + wet soil	(g)	51.530	52.796	53.570	25.996	24.845		
Wt. of container + dry soil	(g)	38.249	39.214	39.628	22.787	21.937		
Wt. of container	(g)	23.520	23.890	23.660	13.436	13.591		
Wt. of water	(g)	13.281	13.582	13.942	3.209	2.908		
Wt. of dry soil	(g)	14.729	15.324	15.968	9.351	8.346		
Moisture content	(%)	90.169	88.632	87.312	34.317	34.843		
Average MC	(%)		88.704		34	4.580		
Determination of (PI)	(LL	- PL)						
	LL	88.70						
	PL	34.58]					
	Ы	54.12	1					

Table A1: Determination of LL, PL and PI of Soil for TP1 @2m

Figure A1: Moisture Content versus Number of Blows for TP1 @2m

Table A2: Determination of LL, PL and PI of Soil for TP2 @3m												
TEST METHOD: ASTM D4318-98												
Determination	TEST	PIT 2: Li	quid Limi	t @ 2m	Diastic	Limit @?m						
Number of blows		16	29	34	1 lastic	Liinit @2iii						
Container No.	No	NB	II	J6	B3	3						
Wt. of container + wet soil	(gm)	35.978	36.528	32.629	18.113	30.529						
Wt. of container + dry soil	(gm)	26.675	27.282	25.187	14.798	26.948						
Wt. of container	(gm)	17.154	17.483	17.176	5.471	16.596						
Wt. of water	(gm)	9.303	9.246	7.442	3.315	3.581						
Wt. of dry soil	(gm)	9.521	9.799	8.011	9.327	10.352						
Moisture content	(%)	97.708	94.357	92.897	35.542	34.592						
Average	(%)		94.987		3	5.067						
Determination of (PI)	(LL	- PL)										
	LL	95.40										
	PL	35.07										
	PI	60.33										

Figure A2: Moisture Content versus Number of Blows for TP2 @3m

TEST METHOD: ASTM D4318-98												
Determination]	Liquid Lim	nit TP3 @) 1m	Plastic Limit TP3 @1m							
Number of blows		18	25	30	riastic Linit 115 @11							
Container No.	No	B-4	B-1	A-5	A-7	A-1						
Wt. of container + wet soil	(gm)	51.530	52.796	53.570	25.996	24.845						
Wt. of container + dry soil	(gm)	38.925	39.829	40.204	23.187	22.271						
Wt. of container	(gm)	23.520	23.890	23.660	13.436	13.591						
Wt. of water	(gm)	12.605	12.967	13.366	2.809	2.574						
Wt. of dry soil	(gm)	15.405	15.939	16.544	9.751	8.680						
Moisture content	(%)	81.824	81.354	80.791	28.807	29.654						
Average	(%)		81.323		29	.231						
Determination of (PI)	(L	L - PL)										
	LL	81.28										
	PL	29.23										
	PI	52.05	1									

Table A3: Determination of LL, PL and PI of Soil for TP3 @1m

Figure A3: Moisture Content versus Number of Blows for TP3 @1m

Table A4: Determination of LL, PL and PI of Soil for TP4 @3m											
TEST METHOD: ASTM D4318-98											
Determination	TES	T PIT 4: L	iquid Lim	it @ 3m	Diagtia Lir	Diastia Limit @3m					
Number of blows		18	28	34	Flastic Li	int @Sill					
Container	No	II	G7	B3	A1	C4					
Wt. of container + wet soil	(gm)	40.973	43.876	38.456	32.273	33.834					
Wt. of container + dry soil	(gm)	31.918	34.672	29.442	30.153						
Wt. of container	(gm)	19.287	21.394	17.481	20.184	18.354					
Wt. of water	(gm)	9.055	9.204	8.493	2.831	3.681					
Wt. of dry soil	(gm)	12.631	13.278	12.482	9.258	11.799					
Moisture content	(%)	71.689	69.318	68.042	30.579	31.198					
Average	(%)		69.683		30.8	88					
Determination of (PI)	(Ll	L - PL)									
	LL	70.2									
	PL	30.89									
	PI	39.31									

Figure A4: Moisture Content versus Number of Blows for TP4 @3m

Table A5: Determination of LL, PL and PI of Soil for TP5 @1m												
TEST METHOD : ASTM D4318-98												
Determination	Li	Liquid Limit TP5 @1m Plastia Limit @1m										
Number of blows		18 25 30 Plastic Limit @ In										
Container No.	B-4 B-1 A-5 A-7 A-1											
Wt. of container + wet soil	(gm)	40.538	43.056	41.579	28.498	27.846						
Wt. of container + dry soil	(gm)	30.819	32.902	31.902	24.529	23.999						
Wt. of container	(gm)	18.528	19.756	19.128	12.435	13.097						
Wt. of water	(gm)	9.719	10.154	9.677	3.969	3.847						
Wt. of dry soil	(gm)	12.291	13.146	12.774	12.094	10.902						
Moisture content	(%)	79.074	77.240	75.755	32.818	35.287						
Average	(%)		77.357	,	34.	053						
Determination of (PI)	(LL -	· PL)										
	LL	77.2										
	PL	34.05]									
	PI	43 15										

Figure A5: Moisture Content versus Number of Blows for TP5 @1m

Table A6: Determination of LL, PL and PI of Soil for TP6 @3m												
TEST METHOD : ASTM D4318-98												
Determination TEST PIT 6: Liquid Limit @ 3m Plastic Limit @ 3												
Number of blows		18	28	34	Flastic Li	init @Sin						
Container	No	II	G7	B3	A1	C4						
Wt. of container + wet soil	(g)	34.903	33.815	33.915	35.873	36.034						
Wt. of container + dry soil	(g)	26.191	25.495	25.663	31.194	31.193						
Wt. of container	(g)	18.000	17.393	17.394	18.243	17.787						
Wt. of water	(g)	8.712	8.320	8.252	4.679	4.841						
Wt. of dry soil	(g)	8.191	8.102	8.269	12.951	13.406						
Moisture content	(%)	106.361	102.691	99.794	36.128	36.111						
Average	(%)		102.949		36.	120						
Determination of (PI)	(L	L - PL)										
	LL	103										
	PL	36.12										
	PI	66.88										

Figure A6: Moisture Content versus Number of Blows for TP6 @3m

Table A7: Determination of LL, PL and PI of Soil for TP7 @1m											
TEST METHOD : ASTM D4318-98											
Determination		Liquid Limit @ 1m Plastic Limit @ 1m									
Number of blows		16	24	30	r lasue i	Annt @ Im					
Container	No	B-4	B-1	A-5	A-7	A-1					
Wt. of container + wet soil	(gm)	44.530	43.125	43.570	25.894	24.840					
Wt. of container + dry soil	(gm)	36.089	35.492	35.805	22.896	22.111					
Wt. of container	(gm)	23.520	23.897	23.660	13.431	13.592					
Wt. of water	(gm)	8.441	7.633	7.765	2.998	2.729					
Wt. of dry soil	(gm)	12.569	11.595	12.145	9.465	8.519					
Moisture content	(%)	67.157	65.830		31.675	32.034					
Average	(%)		65.641		31	.854					
Determination of (PI)	(1	LL - PL)									
	LL	65.8									
	PL	31.85									
	PI	33.95									

Figure A7: Moisture Content versus Number of Blows for TP7 @1m

Table A8: Determination of LL, PL and PI of Soil for TP8 @2m											
TEST METHOD : ASTM D4318-98											
Determination	TEST	TEST PIT 8: Liquid Limit @ 2m									
Number of blows		16 29 34 Plastic Limit @21									
Container	No NB II J6 B3 3										
Wt. of container + wet soil	(gm)	36.978	37.528	34.629	18.013	30.429					
Wt. of container + dry soil	(gm)	26.675	27.282	25.787	14.498	26.398					
Wt. of container	(gm)	17.154	17.483	17.176	5.571	16.596					
Wt. of water	(gm)	10.303	10.246	8.842	3.515	4.031					
Wt. of dry soil	(gm)	9.521	9.799	8.611	8.927	9.802					
Moisture content	(%)	108.211	104.562	102.683	39.375	41.124					
Average	(%)		105.152		40.25	50					
Determination of (PI)	(LI	L - PL)									
	LL	105.80									
	PL	40.25									
	PI	65.55	1								

Table A9: Determination of LL, PL and PI of Soil for TP9 @2m											
TEST METHOD : ASTM D4318-98											
Determination		Liquid Limit @ 2m									
Number of blows		18	25	30	Flastic L	IIIII (@2111					
Container	No	B-4	B-1	A-5	A-7	A-1					
Wt. of container + wet soil	(gm)	51.530	25.996	24.845							
Wt. of container + dry soil	(gm)	37.049	38.614	38.858	22.987	21.987					
Wt. of container	(gm)	19.520	20.890	19.660	13.136	13.091					
Wt. of water	(gm)	14.481	14.182	14.712	3.009	2.858					
Wt. of dry soil	(gm)	17.529	17.724	19.198	9.851	8.896					
Moisture content	(%)	82.612	80.016	76.633	30.545	32.127					
Average	(%)		79.753		31.	.336					
Determination of (PI)	(Ll	L - PL)									
	LL	79.56									
	PL	31.34									
	PI	48.22									

Figure A9: Moisture Content versus Number of Blows for TP9 @2m

Table A10: Determination of LL, PL and PI of Soil for TP10 @1m											
TEST METHOD : ASTM D4318-98											
Determination	TEST	TEST PIT 2: Liquid Limit @ 1m									
Number of blows		17	28	34	r lastic Li	IIIt @1III					
Container	No	DH	P2	HC11	A2	O2					
Wt. of container + wet soil	(g)	33.145	33.939	33.153	27.896	17.886					
Wt. of container + dry soil	(g)	24.379	25.118	24.915	23.622	13.916					
Wt. of container	(g)	16.989	17.492	17.667	14.149	5.133					
Wt. of water	(g)	8.766	8.821	8.238	4.274	3.970					
Wt. of dry soil	(g)	7.390	7.626	7.248	9.473	8.783					
Moisture content	(%)	118.620	115.670	113.659	45.118	45.201					
Average	(%)		115.983		45.1	.59					
Determination of (PI)	(L	L - PL)									
	LL	116.40									
	PL	45.16									
	PI	71.24									

Figure A10: Moisture Content versus Number of Blows for TP10 @1m

Table D1. Determination of particle size distribution for 111 @ 2m												
TEST METH	HOD: D 4	22 – 63 (F	C)) Combined sieve and Hydrometer Analysis									
Sample prep	aration : (Oven-dried	l sample		particle size	% pass		AASHTO	USCS			
Method of si	Method of sieving:				9.5	100	% of gravel	0.46	0.04			
Wet sieving		V			4.75	99.96	% of Sand	9.09	9.51			
Dry sieving					2	99.54	% of Silt	22.51	22.51			
Mass dry soi	l (before	wash)	1000	gm	0.85	98.26	% of Clay	67.94	67.94			
mass pass 0.	075 mm		904.50	gm	0.4250	97.21	440					
%age of pass	s 0.075 m	m	90.45	%	0.300	95.74						
	A)	Sieve Ana	alysis		0.150	94.11	100					
Tota	1 mass =	1000	gm	-	0.075	90.45						
Sieve Size mm	Wt. R	% R	% Cum. Retained	% P	0.037	83.86	90 ssin					
9.5	0	0	0	100	0.027	80.32	R 80					
4.75	0.4	0.04	0.04	99.96	0.017	75.01						
2	4.2	0.42	0.46	99.54	0.010	72.36						
0.85	12.8	1.28	1.74	98.26	0.007	72.01	a 60 📃					
0.425	10.5	1.05	2.79	97.21	0.005	71.12						
0.300	14.7	1.47	4.26	95.74	0.004	70.24	50					
0.150	16.3	1.63	5.89	94.11	0.003	69.35		0.1	0.0001			
0.075	36.6	3.66	9.55	90.45	0.002	67.94	S	ieve size, m	m			
Pass	904.5	90.45	100	0	0.001	66.70		,				

APPENDIX B: Representative Grain size distribution Analysis Result Table B1: Determination of particle size distribution for TP1 @ 2m

B) Hydrometer Analysis

Data: Total oven dry sample: 50 gm

Specific gravity: 2.76

	Δ/		Correction For Hydrometer Reading					Corr	Effe			0/2	Adi
Time min	Hydr Rdg	Temp	T° corr	meni scus corr.	zero corr.	Comp Corr.	Corr. Hydr. Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer, P	Muj. % finer
1	51	22	0.4	1	-5	-3.6	47.4	0.978	7.9	0.01321	0.037	92.71	83.86
2	49	22	0.4	1	-5	-3.6	45.4	0.978	8.3	0.01321	0.027	88.80	80.32
5	46	22	0.4	1	-5	-3.6	42.4	0.978	8.8	0.01321	0.017	82.93	75.01
15	44.5	22	0.4	1	-5	-3.6	40.9	0.978	9.0	0.01321	0.010	80.00	72.36
30	44	23	0.7	1	-5	-3.3	40.7	0.978	9.1	0.01321	0.007	79.61	72.01
60	43.5	23	0.7	1	-5	-3.3	40.2	0.978	9.2	0.01321	0.005	78.63	71.12
120	43	23	0.7	1	-5	-3.3	39.7	0.978	9.2	0.01306	0.004	77.65	70.24
240	42.5	23	0.7	1	-5	-3.3	39.2	0.978	9.3	0.01306	0.003	76.68	69.35
480	42	22	0.4	1	-5	-3.6	38.4	0.978	9.4	0.01306	0.002	75.11	67.94
1440	41.5	21	0.2	1	-5	-3.8	37.7	0.978	9.5	0.01321	0.001	73.74	66.70

Tab	Table B2: Determination of particle size distribution for TP2 @ 2m												
TEST MET	HOD: AS	STM D 422	- 63		C) Combined sieve and hydrometer analysis								
Sample prep	paration :	Oven-dried	sample		particle	% of		AASHTO	USCS				
				size	pass								
Mathad of giving: Wet sieving			ng	J	9.5	100	% of gravel	0.61	0.08				
Method of s	leving.	Dry sievin	g		4.75	99.92	% of Sand	10.66	11.19				
Mass dry sc	il (before	wash)	1000	gm	2	99.39	% of Silt	26.20	26.20				
Mass pass 0	.075 mm	,	887.30	gm	0.85	98.6	% of Clay	62.53	62.53				
% age of pas	ss 0.075 n	nm	88.73	%	0.4250	96.96							
	A) <u>S</u>	Sieve Analy	vsis		0.300	95.09	Graph of Combined sieve and						
Total mass,	gm	1000			0.150	92.55	105						
Sieve Size, mm	Wt. R	% R	% Cum. Retained	% P	0.075	88.73	× ±0.95						
9.5	0	0	0	100	0.0360	82.80	sin						
4.75	0.8	0.08	0.08	99.92	0.0260	79.36	se 85						
2	5.3	0.53	0.61	99.39	0.0169	74.21	tu 75						
0.85	7.9	0.79	1.4	98.6	0.0100	69.91							
0.425	16.4	1.64	3.04	96.96	0.0072	67.34	å ₆₅						
0.300	18.7	1.87	4.91	95.09	0.0051	65.62							
0.150	25.4	2.54	7.45	92.55	0.0036	64.25	55						
0.075	38.2	3.82	11.27	88.73	0.0026	63.39	10 1	0.1 0.01	0.001				
Pass	887.30	88.73	100	0	0.0018	62.53	Sie	eve size, mm					
					0.0011	61.84							

B) Hydrometer Analysis Data: Total oven dry sample: 50 gm Specific gravity: 2.86

Time min	Hydr Rdg	Temp	Temp corr.	meni scus corr	Zero corr.	Comp Corr	corr. Hydr Rdg	Corr factor (a)	Effe. Depth (L)	Value of K	D (mm)	% finer, P	Adj. % of finer, P
1	52	21	0.2	1	-5	-3.8	48.2	0.968	7.8	0.01287	0.0360	93.32	82.80
2	50	21	0.2	1	-5	-3.8	46.2	0.968	8.2	0.01287	0.0260	89.44	79.36
5	47	21	0.2	1	-5	-3.8	43.2	0.968	8.6	0.01287	0.0169	83.64	74.21
15	44.5	21	0.2	1	-5	-3.8	40.7	0.968	9.0	0.01287	0.0100	78.80	69.91
30	43	21	0.2	1	-5	-3.8	39.2	0.968	9.3	0.01287	0.0072	75.89	67.34
60	42	21	0.2	1	-5	-3.8	38.2	0.968	9.5	0.01287	0.0051	73.96	65.62
120	41	22	0.4	1	-5	-3.6	37.4	0.968	9.6	0.01272	0.0036	72.41	64.25
240	40.5	22	0.4	1	-5	-3.6	36.9	0.968	9.7	0.01272	0.0026	71.44	63.39
480	40.2	21	0.2	1	-5	-3.8	36.4	0.968	9.7	0.01287	0.0018	70.47	62.53
1440	40	20	0	1	-5	-4	36	0.968	9.8	0.01303	0.0011	69.70	61.84

Tab	Table B3: Determination of Particle Size Distribution for TP3 @3m C Combined size and Hydrometer analysis													
TEST ME	THOD: AST	ГМ D 422 –	63		C) Com	bined sie	ve and Hydro	meter analys	sis					
Sample pre	paration · C)ven_dried s	amnle		particle	% of		AASHTO	USCS					
Sample pre			ampie		SIZC	pass								
Method o	of sieving	Wet sievin	g	V	9.5	100	% of gravel	0.82	0.04					
		Dry sievin	g	Π	4.75	99.96	% of Sand	11.28	12.06					
Mass dry s	oil (before v	wash)	1000	gm	2	99.18	% of Silt	21.15	24.29					
Mass pass	0.075 mm		879	gm	0.85	97.97	% of Clay	66.75	63.61					
% age of pa	uss 0.075 mr	n	87.90	%	0.4250	96.34	110							
	A) Sieve	Analysis			0.300	94.29	110							
Total mass	, gm	1000			0.150	91.43	100							
Sieve	Wt. of	% of	% Cum.	% of	0.075	87.0	%							
Size mm	Retained	Retained	Retained	Pass	0.075	07.9	90							
9.5	0	0	0	100	0.0390	78.98		N						
4.75	0.4	0.04	0.04	99.96	0.0281	75.49	<u>80</u>							
2	7.8	0.78	0.82	99.18	0.0181	72.00								
0.85	12.1	1.21	2.03	97.97	0.0106	70.25								
0.425	16.3	1.63	3.66	96.34	0.0075	68.50	10 60 G							
0.300	0.300 20.5 2.05 5.71 94					66.75								
0.150 28.6 2.86 8.57 9				91.43	0.0038	65.01	50							
0.075	35.3	3.53	12.1	87.9	0.0027	64.13	10	0.1	0.001					
Pan	879.00	87.9	100	0	0.0019	63.61	Siovo sizo mm							
					0.0011	63.26		eve 5120, 111						

B) Hydrometer Analysis

Data: Total oven dry sample: 50 gm Specific gravity: 2.68

Time A/ Hydr		Corre	ction Fo	r Hydro	meter Re	ading	Corr	Fffe			%	Adi	
Time min	Hydr Rdg	Temp	T° Corr	meni scus corr.	zero corr.	Comp Corr.	Corr H. Rdg	factor (a)	Depth (L)	Value of K	D (mm)	finer, P	% of finer
1	49	21	0.2	1	-5	-3.8	45.2	0.994	8.3	0.01353	0.0390	89.86	78.98
2	47	21	0.2	1	-5	-3.8	43.2	0.994	8.6	0.01353	0.0281	85.88	75.49
5	45	21	0.2	1	-5	-3.8	41.2	0.994	9.0	0.01353	0.0181	81.91	72.00
15	44	21	0.2	1	-5	-3.8	40.2	0.994	9.1	0.01353	0.0106	79.92	70.25
30	43	21	0.2	1	-5	-3.8	39.2	0.994	9.3	0.01353	0.0075	77.93	68.50
60	42.5	21	0.2	1	-5	-3.8	38.2	0.994	9.5	0.01353	0.0054	75.94	66.75
120	41.5	21	0.2	1	-5	-3.8	37.2	0.994	9.6	0.01353	0.0038	73.95	65.01
240	40.5	21	0.2	1	-5	-3.8	36.7	0.994	9.7	0.01353	0.0027	72.96	64.13
480	40.2	21	0.2	1	-5	-3.8	36.4	0.994	9.7	0.01353	0.0019	72.36	63.61
1440	40	21	0.2	1	-5	-3.8	36.2	0.994	9.8	0.01353	0.0011	71.97	63.26

Table	B4: Determ	ination	of Particle	e Size D	istributi	ion for '	ГР4 @3m		
TE	ST METHOD	: ASTM]	D 422 – 63		C) C	Combined	l sieve and Hy	drometer ana	lysis
Sample pre	eparation : Ove	en-dried s	ample		particl e size	% of pass		AASHTO	USCS
Method	of sieving	Wet siev	ving	>	9.5	100	% of gravel	0.64	0.04
		Dry siev	ving		4.75	99.96	% of Sand 13.47		14.07
Mass dry s	oil (before wa	sh)	1000	gm	2	99.36	% of Silt 20.01		23.11
Mass pass	0.075 mm		858.90	gm	0.85	97.77	% of Clay	65.88	62.78
%age of pa	ss 0.075 mm		85.89	%	0.425	95.9	105		
	A) Sieve Ar	alysis			0.300	92.76	105		
Total r	nass, gm	1000			0.150	89.55	05		
Sieve	Mass of	%	% Cum.	% of		85 80	\$ 33		
Size, mm	Retain, gm	Retain	Retain	Pass	0.075	63.69	50 or		
9.5	0	0	0	100	0.039	79.68	cs sin		
4.75	0.4	0.04	0.04	99.96	0.028	76.23	as		
2	6.0	0.6	0.64	99.36	0.018	72.78	d 75		
0.85	15.9	1.59	2.23	97.77	0.011	70.19	Gen		
0.425	18.7	1.87	4.1	95.9	0.008	67.61	Ja 65		
0.300	31.4	3.14	7.24	92.76	0.005	65.88	đ		
0.150	32.1	3.21	10.45	89.55	0.004	64.16	55		
0.075	36.6	3.66	14.11	85.89	0.003	63.30	10	0.1	0.001
Pan	858.90	85.89	100	0	0.002	62.78	S	ieve size, m	m
					0.001	62.43			

B) Hydrometer Analysis Data: Total oven dry sample: 50 gm Specific gravity: 2.65

	Act		СС	orrectior	n for hydr	cometer rea	nding	Corr	Effe			0/2	Adj.
Time min	Hydr Rdg	Tem p	T° Corr	meni scus corr.	zero corr.	Comp Corr.	Corr H.Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer, P	% of finer, P
1	50	21	0.2	1	-5	-3.8	46.2	1.004	8.2	0.01357	0.039	92.77	79.68
2	48	21	0.2	1	-5	-3.8	44.2	1.004	8.5	0.01357	0.028	88.75	76.23
5	46	21	0.2	1	-5	-3.8	42.2	1.004	8.8	0.01357	0.018	84.74	72.78
15	44.5	21	0.2	1	-5	-3.8	40.7	1.004	9.0	0.01357	0.011	81.73	70.19
30	43.5	21	0.2	1	-5	-3.8	39.2	1.004	9.3	0.01357	0.008	78.71	67.61
60	42.5	21	0.2	1	-5	-3.8	38.2	1.004	9.5	0.01357	0.005	76.71	65.88
120	41.5	21	0.2	1	-5	-3.8	37.2	1.004	9.6	0.01357	0.004	74.70	64.16
240	40.5	21	0.2	1	-5	-3.8	36.7	1.004	9.7	0.01357	0.003	73.69	63.30
480	40.2	21	0.2	1	-5	-3.8	36.4	1.004	9.7	0.01357	0.002	73.09	62.78
1440	40	21	0.2	1	-5	-3.8	36.2	1.004	9.8	0.01357	0.001	72.69	62.43

Tabl	e B5: Dete	rmination	of Partic	le Size	Distribut	tion for	• TP5 @1m					
			TEST ME	THOD:	AASHTC	T 11, T	27					
Sample	preparation	: Oven-drie	d sample		C) Co	ombined	l sieve and Hyd	frometer anal	ysis			
Method	of sieving:	Wet s	ieving	K	particle size	% of pass		AASHTO	USCS			
	_	Dry si	ieving		9.5	100	% of gravel	0.42	0.00			
Mass dr	y soil (befor	e wash)	1000	gm	4.75	100	% of Sand	8.09	8.51			
mass pas	ss 0.075 mm	l	914.9	gm	2	99.58	% of Silt	22.15	25.42			
percenta	ge of pass 0	.075 mm	91.49	%	0.85	98.93	% of Clay	69.34	66.07			
_	A) Si	eve Analys	sis		0.4250	97.89						
Total ma	ass, gm	= 1000			0.300	96.37	110					
Sieve Size mm	Mass of Retained, gm	% Retained	% Cum. Retained	% of Pass	0.150	94.1						
9.5	0	0	0	100	0.075	91.49						
4.75	0	0	0	100	0.0379	83.86	sin					
2	4.2	0.42	0.42	99.58	0.0273	80.23	80					
0.85	6.5	0.65	1.07	98.93	0.0176	76.60						
0.425	10.4	1.04	2.11	97.89	0.0103	73.88	en vo					
0.300	15.2	1.52	3.63	96.37	0.0074	71.15	5 60					
0.150	22.7	2.27	5.9	94.1	0.0053	69.34	A **					
0.075	26.1	2.61	8.51	91.49	0.0038	67.52	50					
Pan	914.90	91.49	100	0	0.0027	66.62	10	0.1	0.001			
					0.0019	66.07	Si	Sieve size, mm				
							~ ~					

B) Hydrometer Analysis Data: Total oven dry sample: 50 gm Specific gravity: 2.69

			Corr	rection for	or Hydro	meter Re	ading	Corr	Effo			04	Adi
Time min	Hydr Rdg	Temp	T° Corr	Meni scus Corr.	Zero Corr.	Comp Corr.	Corr. Hydr Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer, P	% of finer
1	50	21	0.2	1	-5	-3.8	46.2	0.992	8.1	0.01332	0.038	91.66	83.86
2	48	21	0.2	1	-5	-3.8	44.2	0.992	8.4	0.01332	0.027	87.69	80.23
5	46	21	0.2	1	-5	-3.8	42.2	0.992	8.8	0.01332	0.018	83.72	76.60
15	44.5	21	0.2	1	-5	-3.8	40.7	0.992	9.0	0.01332	0.010	80.75	73.88
30	43	21	0.2	1	-5	-3.8	39.2	0.992	9.2	0.01332	0.007	77.77	71.15
60	42	21	0.2	1	-5	-3.8	38.2	0.992	9.4	0.01332	0.005	75.79	69.34
120	41	21	0.2	1	-5	-3.8	37.2	0.992	9.6	0.01332	0.004	73.80	67.52
240	40.5	21	0.2	1	-5	-3.8	36.7	0.992	9.7	0.01332	0.003	72.81	66.62
480	40.2	21	0.2	1	-5	-3.8	36.4	0.992	9.7	0.01332	0.002	72.22	66.07
1440	40	21	0.2	1	-5	-3.8	36.2	0.992	9.7	0.01332	0.001	71.82	65.71

0.0011 65.71

Tab	Table B6: Determination of Particle Size Distribution for TP6 @1m TEST METHOD: ASTM D 422 – 63 C) Combined size and Hydrometer analysis											
Т	EST METH	IOD: ASTM	1 D 422 – 6	3	C) Comb	ined siev	e and Hydron	meter analysi	is			
Sample	e preparation	n : Oven-dri	ied sample		particle size	% of pass		AASHTO	USCS			
Methoo sieving	d of g:	Wet sievi	ng	Y	9.5	100	% of gravel	0.21	0.00			
	Dry sieving					100	% of Sand	8.75	8.96			
Mass d	Mass dry soil (before wash) 1000 gm					99.79	% of Silt	23.43	26.62			
mass p	ass 0.075 m	m	910.40	gm	0.85	99.14	% of Clay	67.61	64.42			
percent mm	tage of pass	0.075	91.04	%	0.4250	97.98						
	A) S	ieve Analy	sis		0.300	96.4	105					
Total n	nass, gm	1000			0.150	94.23						
Sieve Size mm	Mas of Retained, gm	% Retained	% Cum. Retained	% of Pass	0.075	91.04	95 %					
9.5	0	0	0	100	0.036	83.54	ssii					
4.75	0	0	0	100	0.026	80.00	b as					
2	2.1	0.21	0.21	99.79	0.017	76.46	ut,					
0.85	6.5	0.65	0.86	99.14	0.010	72.03	l loo					
0.425	11.6	1.16	2.02	97.98	0.007	69.38	ag5					
0.300	15.8	1.58	3.6	96.4	0.005	67.61						
0.150	21.7	2.17	5.77	94.23	0.004	65.84	55					
0.075	31.9	3.19	8.96	91.04	0.003	64.95	10	0.1	0.001			
Pass	Pass 910.40 91.04 100 0					64.42	2 Sieve size, mm					
					0.001	63.71		Sieve size, mm				

B) Hydrometer Analysis Data: Total oven dry sample: 50 gm Specific gravity: 2.79

Time Hydr		corr	ection fo	or hydro	ometer re	ading	Corr	Fff			0/2	Adi	
Time min	Hydr .Rdg	Temp	T° corr	meni scus corr.	zero corr	Comp Corr.	Corr Hydr Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer P	% of finer
1	51	21	0.2	1	-5	-3.8	47.2	0.972	8.0	0.01295	0.037	91.76	83.54
2	49	21	0.2	1	-5	-3.8	45.2	0.972	8.3	0.01295	0.026	87.87	80.00
5	47	21	0.2	1	-5	-3.8	43.2	0.972	8.6	0.01295	0.017	83.98	76.46
15	44.5	21	0.2	1	-5	-3.8	40.7	0.972	9.0	0.01295	0.010	79.12	72.03
30	43	21	0.2	1	-5	-3.8	39.2	0.972	9.3	0.01295	0.007	76.20	69.38
60	42	21	0.2	1	-5	-3.8	38.2	0.972	9.5	0.01295	0.005	74.26	67.61
120	41	21	0.2	1	-5	-3.8	37.2	0.972	9.6	0.01295	0.004	72.32	65.84
240	40.5	21	0.2	1	-5	-3.8	36.7	0.972	9.7	0.01295	0.003	71.34	64.95
480	40.2	21	0.2	1	-5	-3.8	36.4	0.972	9.7	0.01295	0.002	70.76	64.42
1440	40	20	0	1	-5	-4	36	0.972	9.8	0.01310	0.001	69.98	63.71

Table I	Table B7: Determination of Particle Size Distribution for TP7 @2mTEST METHOD: ASTM D 422 – 63C) Combined sieve and Hydrometer analysis													
TEST	Г МЕТНО	OD: AST	M D 422 –	- 63	C) Com	bined si	eve and Hydi	rometer ana	lysis					
Sampl	e preparat	tion : Ove	n-dried san	nple	particle size	% of pass		AASHTO	USCS					
Metho siev	od of ing	Wet Sie	ving		9.5	100	% of gravel	1.64	0.16					
	Dry sieving					99.84	% of Sand	20.46	21.94					
Mass dry wash)	soil (befo	ore	1000	gm	2	98.36	% of Silt	18.38	21.19					
mass pass	s 0.075 mi	m,	779.00	gm	0.85	96.47	% of Clay	59.52	56.71					
%age of p	bass 0.075	mm	77.90	%	0.4250	94.13								
	A) Si	eve Anal	lysis		0.300	90.26	105							
Total ma	ass, gm	1000			0.150	84.72	**							
Sieve Size, mm	Wt. R	% R	% Cum. Retaine d	% P	0.075	77.9	95 % 585							
9.5	0	0	0	100	0.038	75.10	SSi							
4.75	1.6	0.16	0.16	99.84	0.027	71.98	875							
2	14.8	1.48	1.64	98.36	0.018	67.31	, ut							
0.85	18.9	1.89	3.53	96.47	0.010	63.41	265							
0.425	23.4	2.34	5.87	94.13	0.008	61.07	De la							
0.300	38.7	3.87	9.74	90.26	0.005	59.52	-22							
0.150	55.4	5.54	15.28	84.72	0.004	58.27	45							
0.075	68.2	6.82	22.1	77.9	0.003	57.49	45	0.1	0.001					
Pass	779.00	77.9	100	0	0.002	56.71	10	U.1	0.001					
					0.001	56.09	51	eve size, m	[]]					

B) Hydrometer Analysis

Data: Total oven dry sample: 50 gm

Specific gravity: 2.65

Time min	Hydr Rdg	Temp	Temp corr.	meni scus corr.	Zero corr.	Comp Corr.	Corr Hydr Rdg	Corr. Factor (a)	Effe. Depth (L)	Values of K	D (mm)	% finer, P	Adj % of finer
1	51	21	0.2	1	-5	-3.8	48.2	1.000	7.8	0.01348	0.038	96.40	75.10
2	48	21	0.2	1	-5	-3.8	46.2	1.000	8.2	0.01348	0.027	92.40	71.98
5	46	21	0.2	1	-5	-3.8	43.2	1.000	8.6	0.01348	0.018	86.40	67.31
15	44.5	21	0.2	1	-5	-3.8	40.7	1.000	9.0	0.01348	0.010	81.40	63.41
30	43	21	0.2	1	-5	-3.8	39.2	1.000	9.3	0.01348	0.008	78.40	61.07
60	42	21	0.2	1	-5	-3.8	38.2	1.000	9.5	0.01348	0.005	76.40	59.52
120	41.5	22	0.4	1	-5	-3.6	37.4	1.000	9.6	0.01332	0.004	74.80	58.27
240	40.5	22	0.4	1	-5	-3.6	36.9	1.000	9.7	0.01332	0.003	73.80	57.49
480	40	21	0.2	1	-5	-3.8	36.4	1.000	9.7	0.01348	0.002	72.80	56.71
1440	39.5	20	0	1	-5	-4	36	1.000	9.8	0.01365	0.001	72.00	56.09

1 abic	TEST METHOD: A STM D 422 63 C) Combined sieve and Hydrometer analysis												
TEST	Г МЕТН	OD: AST	M D 422 –	63	C) Comb	ined siev	ve and Hydro	ometer analy	sis				
Sample pr	eparation	: Oven-dr	ied sample		particle size	% of pass		AASHTO	USCS				
Method of	sieving	Wet siev	ving	×	9.5	100	% of gravel	0.61	0.08				
		Dry siev	ing		4.75	99.92	% of Sand	12.66	13.19				
Mass dry s	soil (befor	e wash)	1000	gm	2	99.39	% of Silt	21.26	24.35				
mass pass	0.075 mn	1	867	gm	0.85	98.6	% of Clay	65.47	62.38				
Percent of	pass 0.07	5 mm	86.73	%	0.4250	96.96	110						
	A) Sie	ve Analys	sis		0.300	95.09	110						
Total mass, gm 1000					0.150	91.55	100						
Sieve Size, mm	Wt. of Retain	% of Retain	% Cum. Retain	% of Pass	0.075	86.73	Ssing,%						
9.5	0	0	0	100	0.0387	77.46	80 m						
4.75	0.8	0.08	0.08	99.92	0.0279	74.04	nt						
2	5.3	0.53	0.61	99.39	0.0180	70.61	3 70						
0.85	7.9	0.79	1.4	98.6	0.0105	68.89	bei						
0.425	16.4	1.64	3.04	96.96	0.0075	67.18	- 60						
0.300	18.7	1.87	4.91	95.09	0.0053	65.47	50						
0.150	35.4	3.54	8.45	91.55	0.0038	63.75	50	0.1	0.001				
0.075	48.2	4.82	13.27	86.73	0.0027	62.90	10	0.1	0.001				
Pan	867.30	86.73	100	0	0.0019	62.38	Sieve size, mm						
					0.0011	62.04							

Table B8: Determination of Particle Size Distribution for TP8 @3m

B) Hydrometer Analysis

Data: Total oven dry sample: 50 gm

Specific gravity: 2.71

Time min Hydr Rdg			correction for hydrometer reading					Corr	Fffe			0%	Adi
	Temp	T° Corr	meni scus corr.	zero corr	Comp Corr.	Corr. Hydr .Rdg	factor Dept (a) (L)	Depth (L)	Values of K	D (mm)	finer, P	% of finer	
1	49	21	0.2	1	-5	-3.8	45.2	0.988	8.3	0.01341	0.0387	89.32	77.46
2	47	21	0.2	1	-5	-3.8	43.2	0.988	8.6	0.01341	0.0279	85.36	74.04
5	45	21	0.2	1	-5	-3.8	41.2	0.988	9.0	0.01341	0.0180	81.41	70.61
15	44	21	0.2	1	-5	-3.8	40.2	0.988	9.1	0.01341	0.0105	79.44	68.89
30	43	21	0.2	1	-5	-3.8	39.2	0.988	9.3	0.01341	0.0075	77.46	67.18
60	42	21	0.2	1	-5	-3.8	38.2	0.988	9.5	0.01341	0.0053	75.48	65.47
120	41	21	0.2	1	-5	-3.8	37.2	0.988	9.6	0.01341	0.0038	73.51	63.75
240	40.5	21	0.2	1	-5	-3.8	36.7	0.988	9.7	0.01341	0.0027	72.52	62.90
480	40.2	21	0.2	1	-5	-3.8	36.4	0.988	9.7	0.01341	0.0019	71.93	62.38
1440	40	21	0.2	1	-5	-3.8	36.2	0.988	9.8	0.01341	0.0011	71.53	62.04
Table B	9: Deter	minatio	on of Pa	article Si	ze Distribu	tion for T	ГР9 @2m						
----------------------------------	-----------------------------	--------------------	-------------------------	--------------	-------------	-------------	----------------	--------------	-------	--	--		
TES	ST METH	OD: AST	FM D 42	2 - 63	C) Combine	ed sieve an	d Hydromet	er analysis					
					particle	% of		AASHT	USC				
Sample	preparation	: Oven-o	dried san	nple	size	pass		0	S				
Method sieving:	of	Wet sie	eving	_	9.5	100	% of gravel	0.60	0.00				
		Dry sie	ving		4.75	100	% of Sand	16.85	17.45				
Mass dry soil (before wash)			1000	gm	2	99.4	% of Silt	19.66	22.61				
mass pass 0.075 mm 826 gm				gm	0.85	96.85	% of Clay	62.89	59.94				
percentage of pass 0.075 82.55 %				%	0.4250	93.59	105	105					
A) Sieve Analysis				0.300	92.31								
Total n	nass, gm	1000			0.150	87.74	0.5						
Sieve Size, mm	Mass of Retain, gm	% of Retai n	% Cum. Retai n	% of Pass	0.075	82.55	Assing,%						
9.5	0	0	0	100	0.037	79.27	t b						
4.75	0.0	0	0	100	0.027	72.72	lue 75						
2	6.0	0.6	0.6	99.4	0.017	69.44	Dero						
0.85	25.5	2.55	3.15	96.85	0.010	66.99	65						
0.425	32.6	3.26	6.41	93.59	0.007	64.53							
0.300	12.8	1.28	7.69	92.31	0.005	62.89	55						
0.150	0.150 45.7 4.57 12.26 87.74		87.74	0.004	61.25	10	0.1	0.001					
0.075	51.9	5.19	17.45	82.55	0.003	60.43	10	U.I	0.001				
Pan	825.50	82.55	100	0	0.002	59.94		neve size, n	1111				
					0.001	59.29							

B) Hydrometer Analysis Data: Total oven dry sample: 50 gm Specific gravity: 2.69

Time Hada			corr	rection for	or hydro	meter rea	ading	Corr	Effe	X 7 1		%	Adi
Time min	Hydr Rdg	Temp	T° corr	meni scus corr	zero corr	Comp Corr	Corr Hydr Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer, P	% of finer
1	51	22	0.4	1	-5	-3.6	48.4	0.992	7.8	0.01317	0.037	96.03	79.27
2	48	22	0.4	1	-5	-3.6	44.4	0.992	8.4	0.01317	0.027	88.09	72.72
5	46	22	0.4	1	-5	-3.6	42.4	0.992	8.8	0.01317	0.017	84.12	69.44
15	44.5	22	0.4	1	-5	-3.6	40.9	0.992	9.0	0.01317	0.010	81.15	66.99
30	43	22	0.4	1	-5	-3.6	39.4	0.992	9.2	0.01317	0.007	78.17	64.53
60	42	22	0.4	1	-5	-3.6	38.4	0.992	9.4	0.01317	0.005	76.19	62.89
120	41	22	0.4	1	-5	-3.6	37.4	0.992	9.6	0.01317	0.004	74.20	61.25
240	40.5	22	0.4	1	-5	-3.6	36.9	0.992	9.7	0.01317	0.003	73.21	60.43
480	40.2	22	0.4	1	-5	-3.6	36.6	0.992	9.7	0.01317	0.002	72.61	59.94
1440	40	21	0.2	1	-5	-3.8	36.2	0.992	9.7	0.01332	0.001	71.82	59.29

Table B10: Determination of Particle Size Distribution for TP10 @3m											
TES	Г METHOD:	ASTM I) 422 - 63	3	C) Co	mbined	sieve and Hy	drometer an	alysis		
Sample pre	paration : Ove	n-dried sa	mple		particle size	% of pass		AASHTO	USCS		
Method of s	sieving:	Wet siev	ving	V	9.5	100	% of gravel	0.92	0.28		
	ving		4.75	99.72	% of Sand	10.83	11.47				
Mass dry so	1000	gm	2	99.08	% of Silt	22.18	25.29				
mass pass 0	882.5 0	gm	0.85	97.83	% of Clay	66.07	62.96				
percentage	of pass 0.075 i	mm	88.25	%	0.4250	95.98					
	A) Sieve	Analysis			0.300	93.86	110				
Total n	nass, gm	1000			0.150	91.79					
Sieve Size mm	Mass of Retain, gm	% of Retain	% Cum. Retain	% of Pass	0.075	88.25	100				
9.5	0	0	0	100	0.0374	79.91	sin				
4.75	2.8	0.28	0.28	99.72	0.0269	76.45	08 bas				
2	6.4	0.64	0.92	99.08	0.0173	72.99	te 70				
0.85	12.5	1.25	2.17	97.83	0.0101	70.40	erce				
0.425	18.5	1.85	4.02	95.98	0.0073	67.80	^ق 60				
0.300	21.2	2.12	6.14	93.86	0.0052	66.07					
0.150 20.7 2.07 8.21 92				91.79	0.0037	64.34	50				
0.075	35.4	3.54	11.75	88.25	0.0026	63.48	10	1 0.1 0.0	0.001		
Pan	Pan 882.50 88.25 100 0							Sieve size, mr	n		
					0.0011	62.62	L				

B) Hydrometer Analysis

Data: Total oven dry sample: 50 gm Specific gravity: 2.75

			corre	ection fo	r hydro	meter rea	ding	Corr	Effe.		%	Adi	
Time min	Hydr Rdg	Temp	T° Corr	meni scus corr.	zero corr.	Comp Corr	Corr Hydr Rdg	factor (a)	Depth (L)	Values of K	D (mm)	finer, P	% of finer
1	51	21	0.2	1	-5	-3.8	46.2	0.98	8.2	0.01309	0.0374	90.55	79.91
2	48	21	0.2	1	-5	-3.8	44.2	0.98	8.4	0.01309	0.0269	86.63	76.45
5	46	21	0.2	1	-5	-3.8	42.2	0.98	8.8	0.01309	0.0173	82.71	72.99
15	44.5	21	0.2	1	-5	-3.8	40.7	0.98	9.0	0.01309	0.0101	79.77	70.40
30	43	21	0.2	1	-5	-3.8	39.2	0.98	9.2	0.01309	0.0073	76.83	67.80
60	42	21	0.2	1	-5	-3.8	38.2	0.98	9.4	0.01309	0.0052	74.87	66.07
120	41	21	0.2	1	-5	-3.8	37.2	0.98	9.6	0.01309	0.0037	72.91	64.34
240	40.5	21	0.2	1	-5	-3.8	36.7	0.98	9.7	0.01309	0.0026	71.93	63.48
480	40.2	21	0.2	1	-5	-3.8	36.4	0.98	9.7	0.01309	0.0019	71.34	62.96
1440	40	21	0.2	1	-5	-3.8	36.2	0.98	9.7	0.01309	0.0011	70.95	62.62

Table C	Table C1: Deformation reading of Odometer consolidation test for Tp1 @2m									
Time (min)	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg				
0.00	0.00	2.642	0.675	0.885	1.104	1.456				
0.10		0.294	0.718	0.904	1.222	1.502				
0.25		0.308	0.732	0.916	1.234	1.514				
0.50		0.340	0.742	0.934	1.242	1.522				
1		0.382	0.760	0.956	1.256	1.538				
2		0.446	0.784	0.974	1.284	1.544				
4		0.500	0.808	0.996	1.314	1.556				
8		0.546	0.828	1.012	1.352	1.568				
15		0.566	0.838	1.022	1.380	1.584				
30		0.576	0.846	1.038	1.406	1.592				
60		0.582	0.852	1.050	1.422	1.608				
120		0.586	0.854	1.066	1.434	1.622				
240		0.588	0.858	1.088	1.446	2.634				
480		0.596	0.866	1.096	1.452	1.650				
1440	2.642	0.675	0.885	1.104	1.456	1.656				

APPENDIX C: Swelling Pressure test Result of the Study Area
ble C1: Deformation reading of Odometer consolidation test for Tp1 @2m

Determination of dry unit wei	ght and	Pressure (KPa)	Df. Rdg	Cum. ΔH	$Hf = Hi - \sum \Delta H$	ef = (Hf-Hs) Hs	
Height of solids	100.05		(mm)	(mm)	(mm)	1.1.1.0	
Specimen wet mass + ring (g)	133.05	1	0	0	20.000	1.112	
Specimen dry mass + ring (g)	119.30	7	2.642	-2.642	22.642	1.391	
Mass of ring (g)	68	50	0.675	-1.967	21.967	1.319	
Mass of dry specimen (g)	51.302	100	0.885	-1.082	21.082	1.226	
Specimen Height, L (cm)	2	200	1.104	0.022	19.978	1.109	
Specimen diameter, D (cm)	5	400	1.456	1.478	18.522	0.956	
Area of ring cm ²	19.625	800	1.656	3.134	16.866	0.781	
Volume of ring cm^3	39.25] .	Void ratio) Vs Logari	ithm of Pres	sure	
Bulk density, (g/cm^2)	1.657	1.45					
Water Content, %	32.968	1.35	*				
Dry density, (g/cm^2)	1.25	al 25					
Height of solid (mm)	9.47	ji 1.2.5					
Initial void ratio, eo	1.112	<u>1.15</u>					
Swelling Potential		1.05				→ loading"	
Initial dial reading (adjusted to		0.95			• • •	– 📥 – swelling	
Zero Reading) mm	0.0	0.85					
Final Dial Reading mm	2.642	0.85			•		
Specimen Height mm	20	0.75				_	
Free swell index (%)	13.21	1	10 D	10	0 100	0	
Swelling pressure (Sp) kPa	215	Pressure in (KPa)					

Table C2	: Deformat	ion readi	ng of	Odc	meter con	nsolidatio	n test	for	Tp1 @3r	n	
Time	Time Swelling Deform		ation	Def	ormation	Deformat	ion	Def	ormation	De	formation
(min)	@ 0.14kg	@ 11	ĸg	(@ 2kg	@ 4kg	5	(@ 8kg		@ 16kg
0.00	0.00	2.24	8		0.703	1.287			1.617		1.756
0.10		0.39	4		0.978	1.394			1.632		1.762
0.25		0.41	8		1.002	1.426			1.644		1.774
0.50		0.43	4		1.132	1.442			1.652		1.782
1		0.48	2	1.154		1.466		1.660			1.798
2	•••••	0.54	6		1.174	1.484			1.672		1.804
4	•••••	0.60	2		1.198	1.506			1.684		1.816
8		0.64	6		1.218	1.522			1.692		1.828
15		0.00	6		1.232	1.534			1.098		1.834
<u> </u>	•••••	0.07	0		1.240	1.548			1.700		1.842
120	•••••	0.00	6		1.232	1.502			1.724		1.040
240		0.08	8		1.254	1.570			1.734		1.850
480	•••••	0.00	6		1.256	1.572			1 752		1.868
1440	2.248	0.70	3		1.287	1.617			1.756		1.872
1110		0170	0		11207	11017				1	11072
D		•. •	1, 1		D	Final	Cu	m.	Hf = Hi	-	C (11C 11)
Determin	ation of dry	unit weig	ght and		Pressure (KDa)	Df. Rdg	Δ	Н	ΣΔΗ		ef = (Hf-Hs)
	Height of s	sonas			(KPa)	(mm)	(m	m)	(mm)		HS
Specimen v	wet mass + r	ing (g)	131.0	05	7	0	0)	20.000		1.1334
Specimen d	lry mass + c	an (g)	117.6 4	57	7	2.248	-2.2	248	22.248		1.3732
Mass of rin	Ig	(g)	68		50	0.703	-1.5	545	21.545		1.2982
Specimen I	Height, L	(cm)	2		100	1.287	-0.2	258	20.258		1.1609
Specimen d	liameter, D	(cm)	5		200	1.617	1.3	59	18.641		0.9884
Area of rin	g	cm^2	19.62	25	400	1.756	3.1	15	16.885		0.8011
Volume of	ring o	cm^3	39.2	5	800	1.872	4.9	87	15.013		0.6014
Bulk densit	ty, (g/c	m ²)	1.61	1	1.45	Void ration	o Vs	Log	arithm of	Pre	essure
Water Cont	tent	%	32.96	58	1.35	*					
Dry density	/ (g/cm ²)	1.21	1	1.25						
Height of s	olid	(cm)	0.93	7	.1.15						
Initial void	ratio, eo		1.13	3							
	Swelling Potential				≥ _{0.95}					- 1	 loading
Initial dial	reading (adj	usted to	0.0		0.85				+	_	╆ – swelling
Zero Readi	ng)	mm	0.0		0.75						s emile
Final Dial I	Reading 1	nm	2.24	-8	0.65				X		
Specimen H	Height	mm	20		0.03					•	
Free swell	index	(%)	11.2	4	0.55	1 1	0	1	100 1		
Swelling p	ressure (Sp)	kPa	120)		1 I	Pressi	ure in	(KPa)		

Table C	Table C3: Deformation reading of Odometer consolidation test for Tp2 @1m									
Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation				
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg				
0.00	0.00	2.916	0.558	0.893	1.004	1.214				
0.10		0.294	0.618	0.908	1.062	2.252				
0.25		0.308	0.732	0.912	1.084	2.266				
0.5		0.312	0.752	0.926	1.098	2.282				
1.0		0.352	0.768	0.936	1.112	2.298				
2		0.376	0.784	0.944	1.122	2.302				
4		0.394	0.802	0.956	1.134	2.314				
8		0.406	0.828	0.962	1.142	2.328				
15		0.436	0.842	0.976	1.150	2.334				
30		0.476	0.848	0.982	1.166	2.342				
60		0.492	0.854	0.986	1.172	2.358				
120		0.506	0.862	0.992	1.184	2.362				
240		0.528	0.874	0.996	1.194	2.364				
480		0.546	0.886	1.002	1.202	2.366				
1440	2.916	0.558	0.893	1.004	1.214	1.368				

Determination of dry unit weight a	nd Height	Height of	8.91			
Specimen wet mass + ring (g)	136.05	(11111)	Final			
Specimen dry mass + can (g)	118.029	Pressure	Df.	Cum.	$Hf = Hi - \Sigma_{AU}$	ef =
Mass of ring (g)	68	(KPa)	Rdg	$\Delta \Pi$ (mm)	$\sum \Delta \Pi$ (mm)	<u>(HI-HS)</u> Hs
Specimen Height, L (cm)	2		(mm)	(IIIII)	(IIIII)	115
Specimen diameter, D (cm)	5	7	0	0	20.000	1.244
Area of ring cm^2	19.625	7	2.916	-2.916	22.916	1.571
Volume of ring cm ³	39.25	50	0.558	-2.358	22.358	1.508
Bulk density, (g/cm^2)	1.73	100	0.893	-1.465	21.465	1.408
Water Content, %	36.021	200	1.004	-0.461	20.461	1.296
Dry density, (g/cm2)	1.27	400	1.214	0.753	19.247	1.159
Height of solid (cm)	0.891	800	1.368	2.121	17.879	1.006
Initial void ratio, eo	1.244	v	oid ratio	Vs Logari	thm of Press	ure
Swelling Potential						
Initial dial reading (adjusted to		1.50				
Zero Reading) mm						
Final Dial Reading mm	0.0				∖ →	- loading''
Specimen Height mm	2.916				• • • • •	··swelling
Free swell index (%)	14.58	0.90				_
Swelling pressure (Sp) kPa	285		10 P	100 ressure i i	1000 n (KPa)	

Table C4: Deformation reading of Odometer consolidation test for Tp2 @2m									
Timo	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation			
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg			
0.00	0.00	2.508	0.618	0.916	1.289	1.426			
0.10		0.394	0.668	0.968	1.302	1.442			
0.25		0.418	0.686	0.982	1.308	1.448			
0.5		0.452	0.705	1.012	1.316	1.454			
1.0		0.482	0.720	1.026	1.322	1.458			
2		0.506	0.732	1.044	1.330	1.462			
4		0.524	0.746	1.066	1.336	1.474			
8		0.546	0.764	1.072	1.344	1.482			
15		0.554	0.782	1.086	1.352	1.494			
30		0.576	0.788	1.102	1.364	1.498			
60		0.572	0.854	1.136	1.372	1.502			
120		0.586	0.872	1.158	1.394	1.502			
240		0.598	0.884	1.276	1.404	1.504			
480		0.606	0.896	1.282	1.422	1.504			
1440	2.508	0.618	0.916	1.289	1.426	1.506			

Determination of dry unit we	ight and	Pressure (KPa)	Final Df. Rdg	Cum. <u> </u> AH (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void ef = (<u>Hf-Hs)</u> / Hs
Specimen wet mass + ring.(g)	132.34	7	0	0	20.000	1.306
Specimen dry mass $+$ can, (g)	115.827	7	2.508	-2.508	22.508	1.595
Mass of ring (g)	68	50	0.618	-1.89	21.890	1.524
Mass of dry sample (g)	47.827	100	0.916	-0.974	20.974	1.418
Specimen Height, L (cm)	2	200	1.289	0.315	19.685	1.270
Specimen diameter, D (cm)	5	400	1.426	1.741	18.259	1.105
Area of ring cm ²	19.625	800	1.506	3.247	16.753	0.932
Volume of ring cm ³	39.25	v	oid ratio	Vs Logari	ithm of Pres	sure
Bulk density, (g/cm^2)	1.64	1 50		15 Logui		,sui e
Water Content, %	34.527	1.58				
Dry density, (g/cm^2)	1.22	1.48				
Height of solid (cm)	0.867	; ≘ 1.38				
Initial void ratio, eo	1.306	₹ <u>1.28</u>	• = = 🌲			
Height of solid (mm)	8.67					
Swelling Potential		F 1.10				loading"
Initial dial reading (adjusted to		1.08			. .	- 🖈 - swelling
Zero Reading) mm	0.0	0.98				6
Final Dial Reading mm	2.508	0.88				
Specimen Height mm	20	1	10) 1(00 100	0
Free swell index (%)	12.54]	Pressure i	n (KPa)	
Swelling pressure (Sp) kPa	195	L				

Table C	Table C5: Deformation reading of Odometer consolidation test for Tp2 @3m									
Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation				
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg				
0.00	0.00	2.014	0.424	0.656	1.012	1.298				
0.10		0.194	0.508	0.758	1.102	1.306				
0.25		0.218	0.526	0.774	1.108	1.308				
0.5		0.252	0.535	0.788	1.116	1.314				
1.0		0.282	0.542	0.808	1.122	1.318				
2		0.306	0.552	0.824	1.130	1.322				
4		0.324	0.576	0.836	1.136	1.324				
8		0.346	0.594	0.842	1.144	1.328				
15		0.354	0.602	0.856	1.152	1.334				
30		0.376	0.612	0.962	1.164	1.338				
60		0.372	0.624	0.976	1.172	1.342				
120		0.386	0.634	0.988	1.194	1.348				
240		0.398	0.646	0.992	1.288	1.352				
480		0.406	0.654	1.008	1.294	1.355				
1440	2.014	0.424	0.656	1.012	1.298	1.357				

Determination of dry unit wei Height of solids	ght and	Pressure (KPa)	Final Df. Rdg	Cumul <u> </u> <u> </u> <u> </u> <u> </u> AH	$Hf = Hi - \sum \Delta H$	Final Void ef = (Hf-Hs)
	1	(III u)	(mm)	(mm)	(mm)	Hs
Specimen wet mass $+$ ring (g)	131.64	7	0	0	20.000	1.3575
Specimen dry mass $+ can (g)$	114.117	7	2.014	-2.014	22.014	1.5949
Mass of ring (g)	68	50	0.424	-1.59	21.590	1.5449
Specimen Height, L (cm)	2	100	0.656	-0.934	20.934	1.4676
Specimen diameter, D (cm)	5	200	1.012	0.078	19.922	1.3483
Area of ring cm ²	19.625	400	1.298	1.376	18.624	1.1953
Volume of ring cm ³	39.25	800	1.357	2.733	17.267	1.0354
Bulk density, (g/cm^2)	1.62		T 7 • 1 4	. . .	·41 6 D	
Water Content, %	37.996	1.75	Void rati	lo Vs Loga	arithm of Pr	essure
Dry density, (g/cm2)	1.17					
Height of solid (cm)	0.848	1.55	† -			
Initial void ratio, eo	1.358	Itio				
Height of Solids in mm	8.48	1 .35				
SWELLING POTENTIA	AL.	Voi				→ loading"
Initial dial reading (adjusted to	0.0	1.15				
Zero Reading) mm	0.0				· · · · ·	
Final Dial Reading mm	2.014	0.95				
Specimen Height mm	20] 1	l 1() 10 December 10	1000 (WB ₂))
Free swell (%)	10.07		1	ressure in	(rra)	
Swelling pressure (Sp) kPa	200]				

Table Co	6: Deformati	on read	<u>ling of</u>	Od	lometer co	onsolidatio	on test	for	<u>Tp3 @1</u> m	1	
Time	Swelling	Defor	mation	D	eformation	Deform	ation	Det	formation	De	formation
11110	@ 0.14kg	@	1kg		@ 2kg	@ 41	кg		@ 8kg		@ 16kg
0.00	0.00	2.2	282		0.512	0.70	6		0.811		0.968
0.10		0.2	294		0.548	0.72	8		0.882		0.996
0.25		0.3	808		0.562	0.73	2		0.894		1.006
0.50		0.3	840		0.574	0.74	0		0.898		1.012
1		0.3	082 206		0.592	0.75	2		0.906		1.020
	•••••	0.5	112		0.004	0.70	4 つ		0.914		1.032
8		0.4	12 146		0.628	0.77	8		0.924		1.042
15	•••••	0.4	166		0.638	0.78	2		0.932		1.082
30		0.4	76		0.646	0.78	8		0.948		1.096
60		0.4	182		0.652	0.79	6		0.954		1.008
120		0.8	360		0.674	0.80	2		0.958		1.118
240		0.4	198		0.688	0.80	6		0.962		1.122
480		0.5	506		0.702	0.80	8		0.966		1.124
1440	2.282	0.5	512		0.706	0.81	1		0.968		1.126
					Pressur	Final	Cum	nul.	Hf = Hi -	ł	Final Void
Determi	nation of dry	unit we	ight and	l	e	Df. Rdg	Δŀ	Ŧ	ΣΔΗ		Ratio ef =
<u>a</u> :	Height of s	olids	1		(KPa)	(mm)	(mr	n)	(mm)	(1	Hf-Hs) / Hs
Specimen	wet mass $+ r$	ıng,	132.6	9	7	0	0		20.000		1.299
(g) Specimen	dry mass 1 r	ina									
(g)	ury mass + m	ing	114.78	36	7	2.282	-2.2	82	22.282		1.561
Mass of ri	ing	(g)	68		50	0.512	-1.7	77	21.770		1.502
Specimen	Height, L (cm)	2		100	0.706	-1.0	64	21.064		1.421
Specimen	diameter, D	(cm)	5		200	0.811	-0.2	53	20.253		1.328
Area of ri	ng cm	^2	19.62	5	400	0.968	0.7	15	19.285		1.216
Volume o	fring cn	n^3	39.24	5	800	1 126	1.84	41	18 159		1 087
Bulk dens	ity, (g/ci	m^2)	1.65	-	Vo	id ratio V		orith	m of Pros	auro	
Water Co	ntent, %		38.26	8	1.65		<u>s Log</u>				<u>·</u>
Dry densi	ty, (g/cm	\mathbf{n}^{2})	1.19		1 55						
Height of	solid (cm))	0.870)	1.55	İ					
Initial voi	d ratio, eo		1.299)	. <u>9</u> 1.45						
Height of	solid (mm	l)	8.701	l	<u><u><u></u></u>²1.35</u>						
	Swelling Po	tential			^{.5} 1.25					-	← loading"
Initial dia	l reading (adj	usted	0.0		1.15					- 1	▲ swelling
to Zero Re	eading) mm	l	0.0						• •		
Final Dial	Reading m	m	2.282	2	1.05						
Specimen	Height mm	1	20	_	0.95					H	
Free swell	l index (%)	11.41	l	1	l 1	0	1	00 10	000	
Swelling l	Pressure (Sp)	kPa	245				Press	ure i	in (KPa)		

Table C7: Deformation reading of Odometer consolidation test for Tp3 @2m									
Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation			
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg			
0.00	0.00	1.573	0.394	0.507	0.894	1.036			
0.10		0.294	0.448	0.618	0.922	1.048			
0.25		0.308	0.456	0.632	0.934	1.052			
0.50		0.314	0.464	0.676	0.942	1.058			
1		0.322	0.472	0.692	0.966	1.062			
2		0.336	0.478	0.714	0.984	1.066			
4		0.342	0.482	0.732	0.994	1.072			
8		0.356	0.486	0.778	1.002	1.084			
15		0.366	0.490	0.792	1.012	1.088			
30		0.376	0.494	0.818	1.018	1.096			
60		0.382	0.498	0.836	1.022	1.008			
120		0.388	0.500	0.862	1.028	1.102			
240		0.390	0.502	0.878	1.032	1.104			
480		0.392	0.504	0.888	1.034	1.106			
1440	1.573	0.394	0.507	0.894	1.036	1.108			

Determination of dry unit wei Height of solids	ght and	Pressure (KPa)	Final Df. Rdg (mm)	Cum <u> </u> <u> </u>	$Hf = Hi - \sum_{\Delta H} \Delta H$ (mm)	Final Void Ratio ef = (Hf-Hs)/Hs
Specimen wet mass + ring (g)	135.28	7	0	0	20.000	1.198
Specimen dry mass + can (g)	116.57 2	7	1.573	-1.573	21.573	1.371
Mass of ring (g)	68	50	0.394	-1.179	21.179	1.328
Specimen Height, L (cm)	2	100	0.507	-0.672	20.672	1.272
Specimen diameter, D (cm)	5	200	0.894	0.222	19.778	1.174
Area of ring cm ²	19.625	400	1.036	1.258	18.742	1.060
Volume of ring cm ³	39.25	800	1.108	2.366	17.634	0.938
Bulk density, (g/cm^2)	1.71	V	oid ratio	Vs Loga	rithm of Pr	essure
Water Content %	38.515	1.50		V S LUGA		cssure
Dry density, (g/cm^2)	1.24	1.40				
Height of solid (cm)	0.9099	1.40				
Initial void ratio, eo	1.1980	. <u>o</u> 1.30				
Height of solid (mm)	9.10	E 1.20				loading"
Swelling Potential		5 1.10				• Iouuing
Initial dial reading (adjusted to						– 🔥 – swelling
Zero Reading) mm	0.0	1.00			V N	
Final Dial Reading mm	1.573	0.90				
Specimen Height mm	20	0.80				
Free swell index (%)		1	10	100 10	D O	
Swelling pressure (Sp) kPa	190	Pressure in (KPa)				

Table C	Table C8: Deformation reading of Odometer consolidation test for Tp3 @3m									
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg				
0.00	0.00	1.497	0.532	0.954	1.438	1.657				
0.10		0.392	0.628	1.098	0.982	1.678				
0.25		0.406	0.656	1.124	0.494	1.682				
0.50		0.415	0.678	1.146	0.502	1.684				
1		0.423	0.696	1.182	0.516	1.686				
2		0.432	0.718	1.214	0.524	1.688				
4		0.444	0.732	1.242	0.544	1.69				
8		0.452	0.756	1.288	1.562	1.692				
15		0.464	0.778	1.314	1.582	1.694				
30		0.480	0.794	1.348	1.598	1.696				
60		0.502	0.818	1.386	1.612	1.698				
120		0.518	0.838	1.402	1.632	1.700				
240		0.522	0.846	1.418	1.648	1.702				
480		0.528	0.850	1.432	1.654	1.702				
1440	1.497	0.532	0.954	1.438	1.657	1.704				

Determination of dry unit weigh Height of solids	t and	Pressure (KPa)	Final Df. Rdg (mm)	Cumul <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) / Hs
Specimen wet mass + ring, (g)	133.52	7	0	0	20.000	1.226
Specimen dry mass + can, (g)	115.24 7	7	1.497	-1.497	21.497	1.393
Mass of ring (g)	68	50	0.532	-0.965	20.965	1.334
Specimen Height, L (cm)	2	100	0.954	-0.011	20.011	1.228
Specimen diameter, D (cm)	5	200	1.438	1.427	18.573	1.068
Area of ring cm ²	19.625	400	1.657	3.084	16.916	0.883
Volume of ring cm ³	39.25	800	1.704	4.788	15.212	0.693
Bulk density, (g/cm ²)	1.669	Vo 1.55	id ratio V	's Logarit	thm of Pre	ssure
Water Content, %	38.675					
Dry density, (g/cm2)	1.204	1.35				
Height of solid (cm)	0.8983	.0	<u></u>			
Initial void ratio, eo	1.226	F 1.15				
Height of solid (cm)	8.9832	[d]				▲ leadine"
Swelling Potential		o 0.95				
Initial dial reading (adjusted to Zero Reading) mm	0.0	0.75				swelling
Final Dial Reading mm	1.497					
Specimen Height mm	20	0.55	1			,
Free swell index (%)	7.49		.]() 10	0 100()
Swelling pressure (Sp) kPa	115		P	ressure n	n (KP a)	

Table C	Table C9: Deformation reading of Odometer consolidation test for Tp4 @1m									
Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation				
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg				
0.00	0.00	1.974	0.387	0.559	0.868	1.256				
0.10		0.254	0.458	0.658	0.952	1.296				
0.25		0.268	0.472	0.672	0.974	1.306				
0.50		0.280	0.482	0.692	0.992	1.312				
1		0.292	0.492	0.708	1.006	1.318				
2		0.306	0.504	0.724	1.124	1.324				
4		0.318	0.518	0.756	1.144	1.334				
8		0.326	0.526	0.784	1.162	1.342				
15		0.336	0.532	0.806	1.188	1.356				
30		0.346	0.538	0.818	1.206	1.364				
60		0.352	0.542	0.828	1.222	1.372				
120		0.366	0.546	0.846	1.234	1.378				
240		0.378	0.552	0.854	1.246	1.382				
480		0.382	0.556	0.862	1.252	1.384				
1440	1.974	0.387	0.559	0.868	1.256	1.386				

Determination of dry unit wei Height of solids	ight and	Pressure (KPa)	Final Df. Rdg (mm)	Cumul. <u> </u> <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) / Hs
Specimen wet mass + ring,(g)	136.19	7	0	0	20.000	1.044
Specimen dry mass $+$ can (g)	119.283	7	1.974	-1.974	21.974	1.245
Mass of ring (g)	68	50	0.387	-1.587	21.587	1.206
Specimen Height, L (cm)	2	100	0.559	-1.028	21.028	1.149
Specimen diameter, D (cm)	5	200	0.868	-0.16	20.160	1.060
Area of ring cm^2	19.625	400	1.256	1.096	18.904	0.932
Volume of ring cm^3	39.25	800	1.386	2.482	17.518	0.790
Bulk density, (g/cm ²)	1 35 -	Void ratio	o Vs Loga	rithm of Pres	sure	
Water Content, %	32.968	1.55				
Dry density, (g/cm2)	1.307	1.25	+			
Height of solid (cm)	0.9787	• ^{1.15}				
Initial void ratio, eo	1.044	5 1.05				
Height of solid (cm)	9.79					
SWELLING POTENTIA	AL	.0 005				→ loading"
Initial dial reading (adjusted to Zero Reading) mm	0.0	0.85			• •	- * - swelling
Final Dial Reading mm	1.974	0.65				
Specimen Height mm	20	0.55				
Free swell index (%)	9.87	1	1	10	100 100	00
Swelling pressure (Sp) kPa	240		Pres	sure in (K	KPa)	

Table C	Table C10: Deformation reading of Odometer consolidation test for Tp4 @2m										
Time	Swelling @	Deform	ation	Deforma	ation	Deforma	tion	Def	ormation	Deformation	
Time	0.14kg	@ 11	kg	@ 2k	g	@ 4k	g	(@ 8kg	@ 16kg	
0.00	0.00	1.66	52	0.592	2	0.702	2		1.095	1.268	
0.10		0.45	54	0.63	8	0.758	3		1.152	1.296	
0.25		0.46	66	0.64	6	0.772			1.164	1.302	
0.50		0.48	34	0.652	2	0.792			1.172	1.308	
1		0.49	92	0.65	8	0.808	3		1.186	1.312	
2		0.50)6	0.664	4	0.824	1		1.194	1.318	
4		0.51	8	0.66	8	0.856	5		1.204	1.324	
8		0.52	26	0.672	2	0.884	1		1.212	1.338	
15		0.53	36	0.67	6	0.906	5		1.218	1.344	
30		0.54	16	0.68	0	0.918	3		1.226	1.348	
60		0.55	52	0.682	2	0.938	3		1.232	1.352	
120		0.56	55	0.68	8	0.966	5		1.244	1.352	
240		0.57	77	0.692	2	0.998	3		1.254	1.354	
480		0.58	35	0.69	8	1.085	5		1.262	1.354	
1440	1.662	0.59	92	0.702	2	1.095	5		1.268	1.356	
				Press	ure	Final	Cum	ul	Hf = Hi	Final Void	
Determ	nination of dry	unit wei	ght and	(KPa)	Df. Rdg	ΔH		- ∑∆H	Ratio $ef =$	
	Height of s	solids		(111 4	.,	(mm)	(mm)	(mm)	(Hf-Hs) / Hs	
Specime	n wet mass $+1$	ring,(g)	136.9	6	7	0	0		20.000	1.118	
Specime	$\frac{n \text{ dry mass} + c}{c}$	can, (g)	117.1	0	7	1.662	-1.6	52	21.662	1.294	
Mass of	ring	<u>(g)</u>	68		50	0.592	-1.0	07	21.070	1.232	
Specime	n Height, L	(cm)	2		100	0.702	-0.3	68	20.368	1.157	
Specime	n diameter, D	(cm)	5	~	200	1.095	0.72	27	19.273	1.041	
Area of 1	$\frac{ring}{c}$ c	m ²	19.62	5 4	400	1.268	1.99	<i>1</i> 5	18.005	0.907	
Volume	of ring cr	n^3	39.23		800	1.356	3.33)]	16.649	0.763	
Bulk der	nsity, (g/cı	m ²)	1.76	1.4		oid ratio	Vs Lo	ogar	rithm of F	Pressure	
Water C	ontent, %		40.44	9 17							
Dry dens	sity, (g/cm2)		1.25	1.3							
Height o	of solid (cm)		0.944	↓ <u>.</u> 91.2	20						
Initial vo	oid ratio, eo		1.118	3 <u>t</u> a11	•						
Height o	f solid (mm))	9.44						•		
Sw	elling Potenti	al			0					loading''	
Initial di	al reading (adj	usted		0.9	0				† (- A- swelling	
to Zero I	Reading) mn	1	0.0	0	80 E						
Final Dia	al Reading m	m	1.662	2 0.0							
Specimen Height mm		20	0.7	0							
Free swe	ell index (%)	8.31		1	10		100) 10(00	
Swelling	g pressure (Sp)	kPa	150	1	Pressure in (KPa)						

Table C	Table C11: Deformation reading of Odometer consolidation test for Tp4 @3m										
Time	Swelling	Deformation	Deformation	Deformation	Deformation	Deformation					
Time	@ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg					
0.00	0.00	1.513	0.702	0.914	1.198	1.286					
0.10		0.552	0.768	0.974	1.222	1.292					
0.25		0.564	0.776	0.982	1.226	1.298					
0.50		0.586	0.788	0.992	1.232	1.306					
1		0.594	0.798	0.908	1.240	1.310					
2		0.608	0.804	0.924	1.246	1.316					
4		0.618	0.818	0.956	1.252	1.322					
8		0.624	0.832	0.984	1.258	1.334					
15		0.632	0.846	1.097	1.262	1.342					
30		0.644	0.860	1.108	1.266	1.346					
60		0.652	0.872	1.138	1.272	1.350					
120		0.665	0.888	1.176	1.278	1.352					
240		0.677	0.892	1.188	1.282	1.354					
480		0.698	0.898	1.195	1.284	1.354					
1440	1.513	0.702	0.914	1.198	1.286	1.356					

		Draggura	Final	Cum.	Hf = Hi	Final Void			
Determination of dry unit we	ight and	(KD_{0})	Df. Rdg	ΔH	- <u>Σ</u> ΔΗ	Ratio ef =			
Height of solids		(Kra)	(mm)	(mm)	(mm)	(Hf-Hs) / Hs			
Specimen wet mass + ring, (g)	132.98	7	0	0	20.000	1.217			
Specimen dry mass + can, (g)	114.572	7	1.513	-1.513	21.513	1.384			
Mass of ring (g)	68	50	0.702	-0.811	20.811	1.306			
Specimen Height, L (cm)	2	100	0.914	0.103	19.897	1.205			
Specimen diameter, D (cm)	5	200	1.198	1.301	18.699	1.072			
Area of ring cm ²	19.625	400	1.286	2.587	17.413	0.930			
Volume of ring cm ³	39.25	800	1.356	3.943	16.057	0.780			
Bulk density, (g/cm^2)	1.656		Vaid natio	Valera	with me of I)			
Water Content, %	39.527	1.50 🗆	1.50						
Dry density, (g/cm2)	1.187	1 40							
Height of solid (cm)	0.902	1.10							
Initial void ratio, eo	1.217	ij 1.30							
Height of solid (cm)	9.02								
Swelling Potential		₽ ^{1.10}				→ loading"			
Initial dial reading (adjusted to		▶ 1.00				welling			
Zero Reading) mm	0.0	0.90				swennig			
Final Dial Reading mm	1.513	0.80							
Specimen Height mm	20	0.70							
Free swell index (%)	7.57	1	10	10	0 10	00			
Swelling pressure (Sp) kPa	90		Pres	ssure in (KPa)				

Table C12: Deformation reading of Odometer consolidation test for Tp5 @1m									
Time	Swelling	Deformation	Deformation @	Deformation	Deformation	Deformation			
Time	@ 0.14kg	@ 1kg	2kg	@ 4kg	@ 8kg	@ 16kg			
0.00	0.00	1.763	0.324	0.529	0.914	1.096			
0.10		0.224	0.348	0.638	0.957	1.153			
0.25		0.238	0.452	0.662	0.962	1.156			
0.50		0.246	0.458	0.686	0.968	1.160			
1		0.252	0.464	0.708	0.970	1.164			
2		0.264	0.472	0.724	0.972	1.168			
4		0.272	0.478	0.766	0.980	1.174			
8		0.278	0.484	0.798	0.992	1.178			
15		0.286	0.488	0.816	1.002	1.180			
30		0.296	0.496	0.838	1.028	1.184			
60		0.302	0.492	0.864	1.058	1.186			
120		0.306	0.506	0.886	1.074	1.188			
240		0.316	0.518	0.904	1.086	1.190			
480		0.320	0.526	0.908	1.094	1.192			
1440	1.763	0.324	0.529	0.914	1.096	1.194			

Determination of dry unit we Height of solids	Pressure (KPa)	Final Df. Rdg (mm)	Cum. <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio: ef = (<u>Hf-Hs)</u> Hs	
Specimen wet mass + ring (g)	130.15	7	0	0	20.000	1.344
Specimen dry mass $+$ can (g)	113.035	7	1.763	-1.763	21.763	1.551
Mass of ring (g)	68	50	0.324	-1.439	21.439	1.513
Specimen Height, L (cm)	2	100	0.529	-0.91	20.910	1.451
Specimen diameter, D (cm)	5	200	0.914	0.004	19.996	1.344
Area of ring cm ²	19.625	400	1.096	1.1	18.900	1.216
Volume of ring cm ³	39.25	800	1.194	2.294	17.706	1.076
Bulk density, (g/cm^2)	1.58	• • •	• 1 4•	X 7 X	·/1 6 D	
Water Content, %	38.005	1.75 °0	id ratio	VS Loga	rithm of Pr	ressure
Dry density, (g/cm2)	1.147	1.65				
Height of solid (cm)	0.853	1.55				
Initial void ratio, eo	1.344	9 1 1 45				
Height of solid (mm)	8.53	B 1.43				
SWELLING POTENTL	AL	1 .35	← Å		-	loading''
Initial dial reading (adjusted	0.0	▶ 1.25			<u>!</u> . –	4 – swelling
to Zero Reading) mm	0.0	1.15				0
Final Dial Reading mm	1.763	1.05			V	
Specimen Height mm	20	0.95				
Free swell index (%)	8.82	1	1	Q 10	00	
Swelling pressure (Sp) kPa	210			Pressure	e in (KPa)	

Table C13: Deformation reading of Odometer consolidation test for Tp5 @2m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg		
0.00	0.00	1.587	0.584	0.745	1.208	1.387		
0.10		0.454	0.648	0.852	1.274	1.423		
0.25		0.468	0.652	0.872	1.282	1.436		
0.50		0.476	0.658	0.896	1.294	1.442		
1		0.482	0.664	0.918	1.298	1.454		
2		0.494	0.672	0.934	1.302	1.468		
4		0.502	0.678	0.966	1.314	1.474		
8		0.518	0.684	0.988	1.322	1.478		
15		0.526	0.692	1.006	1.334	1.480		
30		0.536	0.706	1.118	1.348	1.484		
60		0.542	0.714	1.154	1.358	1.486		
120		0.556	0.726	1.182	1.364	1.488		
240		0.568	0.738	1.194	1.376	1.474		
480		0.576	0.741	1.202	1.384	1.482		
1440	1.587	0.584	0.745	1.208	1.387	1.489		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumu l∆H (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) Hs
Specimen wet mass + ring (g)	138.58	7	0	0	20.000	1.051
Specimen dry mass + can (g)	119.094	7	1.587	-1.587	21.587	1.214
Mass of ring (g)	68	50	0.584	-1.003	21.003	1.154
Specimen Height, L (cm)	2	100	0.745	-0.258	20.258	1.078
Specimen diameter, D (cm)	5	200	1.208	0.95	19.050	0.954
Area of ring cm ²	19.625	400	1.387	2.337	17.663	0.811
Volume of ring cm ³	39.25	800	1.489	3.826	16.174	0.659
Bulk density, (g/cm^2)	1.80	T T	loid rati		arithm of	Proseuro
Water Content %	38.137	1.24		U VS LUg		1 i cssui c
Dry density, (g/cm^2)	1.302	1 1 4				
Height of solid (cm)	0.975	1.14				
Initial void ratio, eo	1.051	3 1.04	(r - -	╸╼╺╸╼		
Height of solid (mm)	9.75	E 0.04				
SWELLING POTENTI	AL				\+	- loading"
Initial dial reading (adjusted		▶0.84				• swelling
to Zero Reading) mm	0.0	0.74				sweining
Final Dial Reading mm	1.587	0.74				
Specimen Height mm	20	0.64				
Free swell index (%)	7.94	1	10	100	1000	
Swelling pressure (Sp) kPa	125	Pressure in (KPa)				

Table C14: Deformation reading of Odometer consolidation test for Tp5 @3m								
Timo	Swelling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	1.496	0.684	0.915	1.151	1.256		
0.10		0.458	0.758	0.962	1.194	1.302		
0.25		0.462	0.762	0.968	1.198	1.306		
0.50		0.476	0.778	0.972	1.204	1.312		
1		0.584	0.784	0.978	1.218	1.324		
2		0.592	0.792	0.984	1.222	1.328		
4		0.608	0.808	0.992	1.232	1.334		
8		0.616	0.824	1.006	1.236	1.348		
15		0.624	0.852	1.016	1.240	1.350		
30		0.632	0.876	1.128	1.244	1.364		
60		0.644	0.884	1.134	1.248	1.374		
120		0.658	0.896	1.142	1.250	1.386		
240		0.664	0.902	1.144	1.252	1.384		
480		0.678	0.912	1.148	1.254	1.386		
1440	1.496	0.684	0.915	1.151	1.256	1.389		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cum. ∆H (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) Hs
Specimen wet mass + ring (g)	131.76	7	0	0	20.000	1.236
Specimen dry mass + can (g)	114.699	7	1.496	-1.496	21.496	1.403
Mass of ring (g)	68	50	0.684	-0.812	20.812	1.326
Specimen Height, L (cm)	2	100	0.915	0.103	19.897	1.224
Specimen diameter, D (cm)	5	200	1.151	1.254	18.746	1.096
Area of ring cm ²	19.625	400	1.256	2.51	17.490	0.955
Volume of ring cm ³	39.25	800	1.389	3.899	16.101	0.800
Bulk density, (g/cm^2) 1.62		· · · · · · · · · · · · · · · · · · ·	oid ratio	VeLoge	rithm of	Prossura
Water Content, % 36.53		1.45		v s Luga		licssuic
Dry density, (g/cm2)	1.190		_			
Height of solid (cm)	0.895	1.35				
Initial void ratio, eo	1.236	ţ;				
Height of solid (mm)	8.946	e .25	← ^			
Swelling Potential		.15			-	→ loading"
Initial dial reading (adjusted to					-	- A - swelling
Zero Reading) mm	0.0	1.05			▼	
Final Dial Reading mm	1.496					
Specimen Height mm	20	0.95				
Free swell index (%) 7.48		1	1	010	00::::::100	0
Swelling pressure (Sp) kPa 105			Pr	essure in	n (KPa)	

Table C15: Deformation reading of Odometer consolidation test for Tp6 @1m								
Timo	Swalling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	3.172	0.485	0.773	0.994	1.156		
0.10		0.264	0.538	0.844	1.104	1.162		
0.25		0.376	0.562	0.852	1.108	1.168		
0.50		0.384	0.594	0.864	1.112	1.170		
1		0.392	0.612	0.872	1.116	1.172		
2		0.406	0.634	0.878	1.120	1.174		
4		0.412	0.658	0.886	1.124	1.176		
8		0.426	0.678	0.898	1.128	1.182		
15		0.436	0.688	0.916	1.132	1.186		
30		0.446	0.696	0.928	1.136	1.190		
60		0.452	0.712	0.942	1.138	1.194		
120		0.466	0.734	0.966	1.142	1.198		
240		0.478	0.748	0.981	1.148	1.202		
480		0.484	0.764	0.988	1.152	1.206		
1440	3.172	0.485	0.773	0.994	1.156	1.209		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul. <u> <u> </u> </u>	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = <u>(Hf-Hs)</u> Hs
Specimen wet mass + ring (g)	137.705	7	0	0	20.000	1.146
Specimen dry mass + can (g)	119.035	7	3.172	-3.172	23.172	1.486
Mass of ring (g)	68	50	0.485	-2.687	22.687	1.434
Specimen Height, L (cm)	2	100	0.773	-1.914	21.914	1.351
Specimen diameter, D (cm)	5	200	0.994	-0.92	20.920	1.244
Area of ring cm ²	19.625	400	1.156	0.236	19.764	1.120
Volume of ring cm ³	39.25	800	1.209	1.445	18.555	0.991
Bulk density, (g/cm^2)	1.78	T T	aid natio	Valor	withm of	Duogguno
Water Content, % 36.582		1.55 □	olu ralio	J VS LOga		Pressure
Dry density, (g/cm2)	1.300					
Height of solid (cm)	0.932	1.45				
Initial void ratio, eo	1.146	::: 1.35				
Height of solid (cm)	9.32	La l				
SWELLING POTENTI	AL					→ loading"
Initial dial reading (adjusted to		$ _{1.15}$	<u> </u>			 swelling
Zero Reading) mm	0.0					-
Final Dial Reading mm	3.172	1.05			<u> </u>	
Specimen Height mm	20	0.95				
Free swell index (%)	15.86	1	1	0 1	00 100	00
Swelling pressure (Sp) kPa	325			Pressure	in (KPa)	

Table C16: Deformation reading of Odometer consolidation test for Tp6 @2m								
Timo	Swelling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	2.857	0.615	0.743	1.014	1.216		
0.10		0.474	0.648	0.814	1.104	1.262		
0.25		0.486	0.652	0.822	1.108	1.288		
0.50		0.494	0.660	0.834	1.112	1.302		
1		0.502	0.664	0.842	1.126	1.312		
2		0.516	0.670	0.864	1.130	1.334		
4		0.522	0.678	0.872	1.144	1.356		
8		0.536	0.688	0.892	1.158	1.372		
15		0.546	0.698	0.912	1.162	1.396		
30		0.566	0.706	0.928	1.176	1.412		
60		0.572	0.712	0.952	1.188	1.424		
120		0.586	0.724	0.976	1.198	1.438		
240		0.598	0.734	0.992	1.206	1.442		
480		0.608	0.740	1.004	1.212	1.444		
1440	2.857	0.615	0.743	1.014	1.216	1.446		

Determination of dry unit we Height of solids	Pressure (KPa)	Final Df. Rdg (mm)	Cumul. <u> </u> <u> </u> <u> </u> <u> </u> (mm)	Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio ef = <u>(Hf-Hs)</u> Hs	
Specimen wet mass $+ ring (g)$	132.705	7	0	0	20	1.249
Specimen dry mass + can (g)	115.813	7	2.857	-2.857	22.857	1.571
Mass of ring (g)	68	50	0.615	-2.242	22.242	1.501
Specimen Height, L (cm)	2	100	0.743	-1.499	21.499	1.418
Specimen diameter, D (cm)	5	200	1.014	-0.485	20.485	1.304
Area of ring cm ²	19.625	400	1.216	0.731	19.269	1.167
Volume of ring cm ³	39.25	800	1.446	2.177	17.823	1.004
Bulk density, (g/cm^2)	1.65	Voie	l motio V	a Logomiti	hm of Duog	G11 40
Water Content, %	35.329		I ratio v	s Logariu	IIII OI Pres	sure
Dry density, (g/cm^2)	1.218	1 50				
Height of solid (cm)	0.889	1.50				
Initial void ratio, eo	1.249	1 .40				
Height of solid (mm)	8.89	<u></u>				
Swelling Potential		31.20				loading"
Initial dial reading (adjusted		1.10			i \ '	
to Zero Reading) mm	0.0	1 00				
Final Dial Reading mm	2.857	1.00				
Specimen Height mm	20	0.90				
Free swell index (%)	14.29	0.80				
Swelling pressure (Sp)		1	1	() 1(Pressure)0 100 in (KPa)	0
kPa	290			I I CoSul C	III (ISI <i>a)</i>	

Table C17: Deformation reading of Odometer consolidation test for Tp6 @3m								
Timo	Swelling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	2.088	0.385	0.648	0.958	1.256		
0.10		0.274	0.448	0.764	1.064	1.282		
0.25		0.276	0.462	0.782	1.078	1.286		
0.50		0.284	0.484	0.804	1.092	1.292		
1		0.292	0.498	0.822	1.106	1.298		
2		0.306	0.512	0.844	1.124	1.306		
4		0.312	0.538	0.862	1.144	1.318		
8		0.326	0.558	0.874	1.156	1.332		
15		0.336	0.578	0.882	1.162	1.346		
30		0.346	0.596	0.898	1.176	1.362		
60		0.352	0.602	0.912	1.188	1.380		
120		0.366	0.614	0.936	1.198	1.388		
240		0.378	0.624	0.946	1.206	1.392		
480		0.388	0.634	0.954	1.252	1.394		
1440	2.088	0.385	0.648	0.958	1.256	1.396		

		Final		Cum	Hf =	Final Void
		Pressure	Df.		Hi -	Ratio ef =
Determination of dry unit we	ight and	(KPa)	Rdg	(mm)	$\sum \Delta H$	<u>(Hf-Hs)</u>
Height of solids			(mm)	(11111)	(mm)	Hs
Specimen wet mass + ring ,(g)	130.56	7	0	0	20.000	1.296
Specimen dry mass $+$ can (g)	114.507	7	2.088	-2.088	22.088	1.535
Mass of ring (g)	68	50	0.385	-1.703	21.703	1.491
Specimen Height, L (cm)	2	100	0.648	-1.055	21.055	1.417
Specimen diameter, D (cm)	5	200	0.958	-0.097	20.097	1.307
Area of ring cm ²	19.625	400	1.256	1.159	18.841	1.163
Volume of ring cm ³	39.25	800	1.396	2.555	17.445	1.002
Bulk density, (g/cm^2)	1.59		• • •			
Water Content, %	V 160 ⊓	old ratio	o Vs Loga	rithm of 1	Pressure	
Dry density, (g/cm2)	1.185	1.00	&			
Height of solid (cm)	0.871	1.50				
Initial void ratio, eo	1.296	tio				
Height of solid (mm)	8.712	<u></u> ይ 1.40				
Swelling Potential		pi _{1 30}				— loading"
Initial dial reading (adjusted to		► ^{1.30}				- · swelling
Zero Reading) mm	0.0	1 20				sweining
Final Dial Reading mm	2.088	1.20			†	
Specimen Height mm	20	1.10				
Free swell index (%)	10.44	1	n 10) 10) 1000)
Swelling pressure (Sp) kPa	Pressure in (KPa)					

Table C18: Deformation reading of Odometer consolidation test for Tp7 @1m								
Time	Swalling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	1.649	0.552	0.883	1.124	1.296		
0.10		0.421	0.607	0.925	1.162	1.332		
0.25		0.435	0.623	0.932	1.175	1.334		
0.50		0.443	0.655	0.942	1.193	1.336		
1		0.451	0.687	0.948	1.209	1.342		
2		0.467	0.711	0.956	1.215	1.352		
4		0.473	0.739	0.982	1.223	1.358		
8		0.487	0.757	1.002	1.235	1.362		
15		0.495	0.779	1.024	1.243	1.368		
30		0.505	0.797	1.054	1.257	1.374		
60		0.513	0.813	1.074	1.268	1.380		
120		0.525	0.837	1.092	1.277	1.378		
240		0.537	0.857	1.106	1.285	1.382		
480		0.549	0.877	1.118	1.293	1.384		
1440	1.649	0.552	0.883	1.124	1.296	1.386		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cum. <u> </u> <u> </u> <u> </u> <u> </u> (mm)	Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio ef = (Hf- Hs) / Hs
Specimen wet mass + ring (g)	131.96	7	0	0	20.000	1.201
Specimen dry mass + can (g)	115.624	7	1.649	- 1.649	21.649	1.382
Mass of ring (g)	68	50	0.552	- 1.097	21.097	1.321
Specimen Height, L (cm)	2	100	0.883	- 0.214	20.214	1.224
Specimen diameter, D (cm)	5	200	1.124	0.91	19.090	1.100
Area of ring cm ²	19.625	400	1.296	2.206	17.794	0.958
Volume of ring cm^3	39.25	800	1.386	3.592	16.408	0.805
Bulk density, (g/cm^2)	1.63	Voie	Void ratio Vs Logarithm of Pressure			
Water Content, %	34.302	1.40				
Dry density, (g/cm2)	1.21	1.35				
Height of solid (cm)	0.909	1 30				
Initial void ratio, eo	1.201	atio				
Height of solid (mm)	9.09	G 1.25			•	
Swelling Potential		5 ^{1.20}				→ loading"
Initial dial reading (adjusted to		1.15				 ★-• swelling
Zero Reading) mm	0.0				*	
Final Dial Reading mm	1.649	1.10			•••••••••	
Specimen Height mm	20	1.05				
Free swell index (%) 8.25		1	'n	10	100	1000
Swelling pressure (Sp) kPa	Pressure in (KPa)					

Table C19: Deformation reading of Odometer consolidation test for Tp7 @2m								
Time	Swelling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	1.007	0.392	0.573	0.875	1.016		
0.10		0.271	0.487	0.675	0.922	1.082		
0.25		0.284	0.493	0.692	0.933	1.084		
0.50		0.293	0.505	0.712	0.943	1.092		
1		0.302	0.517	0.738	0.949	1.099		
2		0.317	0.524	0.756	0.955	1.102		
4		0.323	0.532	0.782	0.963	1.104		
8		0.336	0.537	0.802	0.975	1.108		
15		0.345	0.542	0.834	0.983	1.112		
30		0.354	0.549	0.844	0.987	1.116		
60		0.363	0.555	0.852	0.992	1.118		
120		0.375	0.562	0.862	0.977	1.120		
240		0.384	0.567	0.866	1.005	1.122		
480		0.388	0.570	0.871	1.013	1.144		
1440	1.007	0.392	0.573	0.875	1.016	1.126		

Determination of dry unit weig Height of solids	Pressure (KPa)	Final Df. Rdg (mm)	Cum. <u> </u> <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum\Delta H$ (mm)	Final Void Ratio ef = (Hf-Hs) / Hs	
Specimen wet mass + ring (g)	135.96	7	0	0	20.000	1.089
Specimen dry mass $+$ can (g)	117.785	7	1.007	-1.007	21.007	1.194
Mass of ring (g)	68	50	0.392	-0.615	20.615	1.153
Specimen Height, L (cm)	2	100	0.573	-0.042	20.042	1.094
Specimen diameter, D (cm)	5	200	0.875	0.833	19.167	1.002
Area of ring cm ²	19.625	400	1.016	1.849	18.151	0.896
Volume of ring cm ³	39.25	800	1.126	2.975	17.025	0.778
Bulk density, (g/cm^2)	Void ratio Vs Logarithm of Pressure					
Water Content, %	36.508		u ralio v	s Logar	IUIIII OI P	ressure
Dry density, (g/cm2)	1.27					
Height of solid (cm)	0.957	1.20	_			
Initial void ratio, eo	1.089	.9 1.15				
Height of solid (mm)	9.57					
Swelling Potential						→ loading"
Initial dial reading (adjusted to		ĭ≥ 1.05				- avvalling
Zero Reading) mm	0.0					M - swennig
Final Dial Reading mm	1.007	1.00			•	
Specimen Height mm	20	0.95				
Free swell index (%)	5.04	$ \frac{0.95}{1}$	10) 10	0 100	00
Swelling pressure (Sp) kPa	105		Press	ure in (K	(Pa)	

Table C20: Deformation reading of Odometer consolidation test for Tp7 @3m								
Time	Swalling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	0.946	0.779	0.868	1.009	1.196		
0.10		0.651	0.817	0.915	1.052	1.212		
0.25		0.662	0.821	0.912	1.073	1.216		
0.50		0.674	0.824	0.918	1.093	1.220		
1		0.682	0.828	0.926	1.104	1.224		
2		0.695	0.832	0.934	1.110	1.228		
4		0.703	0.838	0.942	1.113	1.232		
8		0.715	0.842	0.952	1.125	1.236		
15		0.724	0.848	0.964	1.133	1.238		
30		0.734	0.852	0.974	1.147	1.240		
60		0.745	0.858	0.982	1.152	1.242		
120		0.756	0.862	0.992	1.167	1.242		
240		0.764	0.864	0.998	1.175	1.244		
480		0.772	0.866	1.005	1.183	1.244		
1440	0.946	0.779	0.868	1.009	1.196	1.246		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul. ∆H (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = <u>(Hf-Hs)</u> Hs
Specimen wet mass $+$ ring (g)	133.87	7	0	0	20.000	1.092
Specimen dry mass + can (g)	117.336	7	0.946	-0.946	20.946	1.191
Mass of ring (g)	68	50	0.779	-0.167	20.167	1.110
Specimen Height, L (cm)	2	100	0.868	0.701	19.299	1.019
Specimen diameter, D (cm)	5	200	1.009	1.71	18.290	0.913
Area of ring cm ²	19.625	400	1.196	2.906	17.094	0.788
Volume of ring cm ³	39.25	800	1.246	4.152	15.848	0.658
Bulk density, (g/cm^2)	1.68	X 7	aid natio T		the of De	
Water Content, %	33.512	1.25	ola ratio v	s Logar	lunm of Pr	essure
Dry density (g/cm2)	1.26					
Height of solid (cm)	0.956	1 15				
Initial void ratio, eo	1.092					
Height of solid (mm)	9.559			• = = =		
Swelling Potential						← loading"
Initial dial reading (adjusted		1		* \		🛧 – swelling
to Zero Reading) mm	0.0	0.95				
Final Dial Reading mm	0.946					
Specimen Height mm	20	0.85				
Free swell index (%)	4.73] 1	10	100	1000	
Swelling pressure (Sp) kPa	65		Pre	ssure in ()	KPa)	

r

Table C21: Deformation reading of Odometer consolidation test for Tp8 @1m								
Time	Swalling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation		
Time	Swennig @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg		
0.00	0.00	2.987	0.685	0.816	1.058	1.156		
0.10		0.582	0.718	0.933	1.109	1.195		
0.25		0.597	0.722	0.945	1.114	1.190		
0.50		0.609	0.728	0.957	1.116	1.182		
1		0.617	0.734	0.963	1.120	1.184		
2		0.624	0.742	0.975	1.124	1.194		
4		0.633	0.753	0.983	1.127	1.204		
8		0.641	0.764	0.989	1.130	1.218		
15		0.647	0.771	0.995	1.133	1.226		
30		0.653	0.782	1.008	1.138	1.232		
60		0.659	0.788	1.023	1.142	1.238		
120		0.665	0.795	1.039	1.148	1.242		
240		0.677	0.805	1.045	1.152	1.250		
480		0.682	0.812	1.052	1.154	1.254		
1440	2.987	0.685	0.816	1.058	1.156	1.256		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul. <u> </u> <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = <u>(Hf-Hs)</u> Hs
Specimen wet mass + ring (g)	129.985	7	0	0	20.000	1.477
Specimen dry mass + can (g)	113.155	7	2.987	-2.987	22.987	1.847
Mass of ring (g)	68	50	0.685	-2.302	22.302	1.762
Specimen Height, L (cm)	2	100	0.816	-1.486	21.486	1.661
Specimen diameter, D (cm)	5	200	1.058	-0.428	20.428	1.530
Area of ring cm ²	19.625	400	1.156	0.728	19.272	1.387
Volume of ring cm ³	39.25	800	1.256	1.984	18.016	1.232
Bulk density, (g/cm^2)	1.58					
Water Content, %	37.272	1 00 V	oid ratio	Vs Loga	rithm of I	Pressure
Dry density, (g/cm^2)	1.15	1.90	^			
Height of solid (cm)	0.807	1.80				
Initial void ratio, eo	1.477	·: 1 70				
Height of solid (mm)	8.07					
SWELLING POTENTI	AL	5 1.60				→ loading'
Initial dial reading (adjusted to		P 1 50				
Zero Reading) mm	0.0	1.50				sweming
Final Dial Reading mm	2.987	1.40				
Specimen Height mm	20	1 30				
Free swell index (%)	14.94	1.50	1 1	0 10	0 100	0
Swelling pressure (Sp) kPa	280	Pressure in (KPa)				

Table	Table C22: Deformation reading of Odometer consolidation test for Tp8 @2m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg			
0.00	0.00	2.492	0.592	0.707	0.907	1.196			
0.10		0.465	0.625	0.792	0.985	1.215			
0.25		0.474	0.630	0.803	0.989	1.219			
0.50		0.489	0.634	0.810	0.996	1.224			
1		0.507	0.639	0.816	1.012	1.228			
2		0.514	0.644	0.822	1.032	1.231			
4		0.523	0.653	0.831	1.073	1.237			
8		0.531	0.664	0.844	1.093	1.242			
15		0.542	0.673	0.857	1.113	1.247			
30		0.557	0.680	0.869	1.138	1.252			
60		0.565	0.685	0.874	1.152	1.255			
120		0.573	0.689	0.888	1.178	1.259			
240		0.579	0.695	0.897	1.182	1.262			
480		0.587	0.702	0.904	1.194	1.265			
1440	2.492	0.592	0.707	0.907	1.196	1.267			

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul . ΔH (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) / Hs
Specimen wet mass + ring (g)	130.58	7	0	0	20.000	1.366
Specimen dry mass + can (g)	113.951	7	2.492	-2.492	22.492	1.661
Mass of ring (g)	68	50	0.592	-1.9	21.900	1.591
Specimen Height, L (cm)	2	100	0.707	-1.193	21.193	1.507
Specimen diameter, D (cm)	5	200	0.907	-0.286	20.286	1.400
Area of ring cm^2	19.625	400	1.196	0.91	19.090	1.258
Volume of ring cm ³	39.25	800	1.267	2.177	17.823	1.109
Bulk density, (g/cm ²)	V	id ratio	Ve I oga	rithm of P	raccura	
Water Content, %	36.190	1.70		v s Lugai		ressure
Dry density, (g/cm2)	1.17		*			
Height of solid (cm)	0.845	1.60				
Initial void ratio, eo	1.366	i.				
Height of solid (mm)	8.45	Ē 1.50				
SWELLING POTENTI	AL					→ loading"
Initial dial reading (adjusted						- * - swelling
to Zero Reading) mm	0.0	1.30				= swennig
Final Dial Reading mm	2.492				Į è	
Specimen Height mm	20	1.20				
Free swell index (%)	12.46	1	10) 10	00 100	00
Swelling pressure (Sp) kPa	260		Pre	ssure in (KPa)	

Table C2	Table C23: Deformation reading of Odometer consolidation test for Tp8 @3m									
Timo	Swalling @ 0.14kg	Deformation	Deformation	Deformation	Deformation					
THIE	Swenning @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg					
0.00	0.00	2.015	0.622	0.879	1.181					
0.10		0.415	0.753	0.932	1.205					
0.25		0.424	0.762	0.943	1.207					
0.50		0.439	0.779	0.951	1.210					
1		0.547	0.789	0.966	1.213					
2		0.554	0.794	0.972	1.217					
4		0.563	0.803	0.981	1.221					
8		0.571	0.814	0.994	1.224					
15		0.582	0.823	1.104	1.228					
30		0.587	0.830	1.119	1.232					
60		0.595	0.845	1.134	1.237					
120		0.603	0.859	1.158	1.243					
240		0.609	0.865	1.167	1.248					
480		0.617	0.872	1.178	1.254					
1440	2.015	0.622	0.879	1.181	1.256					

Determination of dry unit we Height of solids	Pressure (KPa)	Final Df. Rdg (mm)	Cum. <u> </u> <u> </u> <u> </u>	Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio ef = (Hf-Hs) / Hs	
Specimen wet mass + ring (g)	136.58	7	0	0	20.000	1.128
Specimen dry mass $+$ can (g)	117.977	7	2.015	-2.015	22.015	1.343
Mass of ring (g)	68	50	0.622	-1.393	21.393	1.277
Specimen Height, L (cm)	2	100	0.879	-0.514	20.514	1.183
Specimen diameter, D (cm)	5	200	1.181	0.667	19.333	1.057
Area of ring cm ²	19.625	400	1.256	1.923	18.077	0.924
Volume of ring cm ³	39.25	800	1.398	3.321	16.679	0.775
Bulk density, (g/cm ²) 1.75						~
Water Content, %	37.223		id ratio	Vs Loga	rithm of	Pressure
Dry density, (g/cm2)	1.27	1.40				
Height of solid (cm)	0.940	1.30				
Initial void ratio, eo	1.128	·············				
Height of solid (cm)	9.40	E 1.24				
SWELLING POTENT	IAL					
Initial dial reading (adjusted		1.12				loading''
to Zero Reading) mm	0.0	1.08				🗕 🙏 – swelling
Final Dial Reading mm	2.015	1.04				
Specimen Height mm	20		1.	0 1	00 10	
Free swell index (%) 10.08			1 5	•		00
Swelling pressure (Sp) kPa	155		Pr	ressure in	i (KPa)	

Table C	Table C24: Deformation reading of Odometer consolidation test for Tp9 @1m								
Timo	Swelling @ 0.14kg	Deformation	Deformation	Deformation	Deformation	Deformation			
Time	Swelling @ 0.14kg	@ 1kg	@ 2kg	@ 4kg	@ 8kg	@ 16kg			
0.00	0.00	1.892	0.402	0.579	0.867	1.151			
0.10		0.254	0.458	0.628	0.932	1.192			
0.25		0.268	0.462	0.632	0.944	1.206			
0.50		0.275	0.472	0.646	0.952	1.222			
1		0.282	0.486	0.665	0.966	1.244			
2		0.296	0.494	0.684	0.984	1.264			
4		0.312	0.508	0.716	1.014	1.288			
8		0.346	0.528	0.750	1.052	1.298			
15		0.366	0.538	0.776	1.089	1.306			
30		0.376	0.546	0.788	1.106	1.312			
60		0.382	0.552	0.798	1.122	1.328			
120		0.386	0.554	0.816	1.128	1.332			
240		0.388	0.558	0.834	1.134	1.344			
480		0.396	0.566	0.852	1.142	1.348			
1440	1.892	0.402	0.579	0.867	1.151	1.352			

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul AH (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = <u>(Hf-Hs)</u> Hs
Specimen wet mass + ring (g)	131.357	7	0	0	20.000	1.258
Specimen dry mass + can (g)	115.458	7	1.892	-1.892	21.892	1.471
Mass of ring (g)	68	50	0.402	-1.49	21.490	1.426
Specimen Height, L (cm)	2	100	0.579	-0.911	20.911	1.361
Specimen diameter, D (cm)	5	200	0.867	-0.044	20.044	1.263
Area of ring cm ²	19.625	400	1.151	1.107	18.893	1.133
Volume of ring cm ³	39.25	800	1.352	2.459	17.541	0.980
Bulk density, (g/cm^2)	1.61	Vo	oid ratio	o Vs Log	arithm of	Pressure
Water Content, %	33.501	1.50				
Dry density, (g/cm2)	1.21	1.45	-			
Height of solid (cm)	0.886	1 40				
Initial void ratio, eo	1.258	i i i i i i i i i i				
Height of solid (mm)	8.86	5 5 1 30				
Swelling Potential						— loading''
Initial dial reading (adjusted to		r 1.25				 swelling
Zero Reading) mm	0.0	1.20				
Final Dial Reading mm	1.892	1.15				
Specimen Height mm	20	1 10			-	
Free swell index (%)	9.46	1.10	10) 10	0 1000	
Swelling pressure (Sp) kPa	205		Press	sure in (K	Pa)	

Table C25: Deformation reading of Odometer consolidation test for Tp9 @2m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg		
0.00	0.00	1.753	0.432	0.707	0.918	1.142		
0.10		0.284	0.518	0.753	0.955	1.197		
0.25		0.292	0.542	0.762	0.963	1.203		
0.50		0.305	0.562	0.779	0.972	1.208		
1		0.322	0.586	0.787	0.979	1.213		
2		0.346	0.605	0.799	0.988	1.218		
4		0.352	0.638	0.816	1.014	1.223		
8		0.366	0.647	0.837	1.052	1.228		
15		0.376	0.653	0.849	1.095	1.233		
30		0.386	0.665	0.863	1.107	1.237		
60		0.392	0.673	0.878	1.114	1.240		
120		0.406	0.687	0.892	1.122	1.242		
240		0.418	0.695	0.904	1.130	1.244		
480		0.426	0.702	0.912	1.137	1.246		
1440	1.753	0.432	0.707	0.918	1.142	1.248		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul . ΔH (mm)	Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio ef = (<u>Hf-Hs)</u> Hs
Specimen wet mass + ring (g)	130.876	7	0	0	20.000	1.311
Specimen dry mass + can (g)	113.682	7	1.753	-1.753	21.753	1.514
Mass of ring (g)	68	50	0.432	-1.321	21.321	1.464
Specimen Height, L (cm)	2	100	0.707	-0.614	20.614	1.382
Specimen diameter, D (cm)	5	200	0.918	0.304	19.696	1.276
Area of ring cm ²	19.625	400	1.142	1.446	18.554	1.144
Volume of ring cm ³	39.25	800	1.248	2.694	17.306	1.000
Bulk density, (g/cm^2)	Voi	d ratio V	s Logari	thm of Pr	essure	
Water Content, %	37.640	1.60		5 105411		cssure
Dry density, (g/cm2)	1.16					
Height of solid (cm)	0.865	1.50				
Initial void ratio, eo	1.311	tion the tion				
Height of solid (mm)	8.65	ជ .40				
SWELLING POTENTL	AL	Pi .30				← loading''
Initial dial reading (adjusted to						
Zero Reading) mm	0.0	1.20			<u>↓ \</u>	Strening
Final Dial Reading mm	1.753					
Specimen Height mm	20	1.10	10	1.00	100	2
Free swell index(%)8.77			10	100) 1000	J
Swelling pressure (Sp) kPa	170		Press	sure in (F	(Pa)	

Table C26: Deformation reading of Odometer consolidation test for Tp9 @3m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg			
0.00	0.00	1.585	0.682	0.856	1.064			
0.10		0.487	0.743	0.908	1092			
0.25		0.495	0.755	0.913	1.097			
0.50		0.508	0.767	0.925	1.102			
1		0.527	0.783	0.937	1.109			
2		0.345	0.802	0.949	1.112			
4		0.567	0.832	0.956	1.115			
8		0.586	0.847	0.967	1.119			
15		0.606	0.853	0.979	1.123			
30		0.625	0.865	0.983	1.127			
60		0.637	0.873	1.007	1.130			
120		0.649	0.827	1.022	1.132			
240		0.663	0.838	1.044	1.134			
480		0.676	0.847	1.052	1.136			
1440	1.585	0.682	0.856	1.064	1.138			

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul . ΔH (mm)	Hf = Hi - $\sum \Delta H$ (mm)	Final Void Ratio ef = (Hf-Hs)/Hs
Specimen wet mass + ring (g)	7	0	0	20.000	1.108	
Specimen dry mass $+$ can (g)	118.078	7	1.585	-1.585	21.585	1.275
Mass of ring (g)	68	50	0.682	-0.903	20.903	1.204
Specimen Height, L (cm)	2	100	0.856	-0.047	20.047	1.113
Specimen diameter, D (cm)	5	200	1.064	1.017	18.983	1.001
Area of ring cm ²	19.625	400	1.138	2.155	17.845	0.881
Volume of ring cm ³	39.25	800	1.206	3.361	16.639	0.754
Bulk density, (g/cm^2) 1.73		Vo	id ratio	Vs Loga	rithm of Pi	ressure
Water Content, %	35.519	1.34		15 <u>20</u> 9u		
Dry density, (g/cm2)	1.28					
Height of solid (cm)	0.949	1 24				
Initial void ratio, eo	1.108	ja i				
Height of solid (cm)	9.49	Ľ ––– 1.14				
Swelling Potential		/oi	←≜ -		-	→ loading"
Initial dial reading (adjusted to		1.04			<u>.</u>	- A - swelling
Zero Reading) mm	0.0	1.04			♥	
Final Dial Reading mm 1.585						
Specimen Height mm	20	0.94		<u> </u>		
Free swell index (%) 7.93		1	l Dro	0 l	00 100 (KP a)	U
Swelling pressure (Sp) kPa	105	Pressure in (KPa)				

Table C27: Deformation reading of Odometer consolidation test for Tp10 @1m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg		
0.00	0.00	3.137	0.592	0.802	1.114	1.364		
0.10		0.367	0.628	0.865	1.207	1.412		
0.25		0.385	0.632	0.882	1.214	1.426		
0.50		0.407	0.642	0.904	1.242	1.432		
1		0.422	0.656	0.926	1.256	1.444		
2		0.446	0.684	0.944	1.264	1.454		
4		0.467	0.708	0.966	1.274	1.464		
8		0.486	0.718	0.985	1.289	1.478		
15		0.506	0.728	1.006	1.297	1.486		
30		0.526	0.736	1.018	1.308	1.492		
60		0.542	0.742	1.038	1.320	1.508		
120		0.566	0.754	1.066	1.332	1.522		
240		0.578	0.764	1.084	1.345	1.534		
480		0.584	0.786	1.102	1.353	1.545		
1440	3.137	0.592	0.802	1.114	1.364	1.554		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul <u> </u> <u> </u> <u> </u> <u> </u> (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs) / Hs
Specimen wet mass + ring (g)	138.61	7	0	0	20.000	1.222
Specimen dry mass + can (g)	117.814	7	3.137	-3.137	23.137	1.570
Mass of ring (g)	68	50	0.592	-2.545	22.545	1.505
Specimen Height, L (cm)	2	100	0.802	-1.743	21.743	1.416
Specimen diameter, D (cm)	5	200	1.114	-0.629	20.629	1.292
Area of ring cm ²	19.625	400	1.364	0.735	19.265	1.140
Volume of ring cm ³	39.25	800	1.554	2.289	17.711	0.968
Bulk density, (g/cm^2)	1.80		X 7- ! -]	4° - 37 - 1		- C D
Water Content, %	41.748		vola ra	tio vs L	ogarithm	of Pressure
Dry density, (g/cm2)	1.27	1	- 4			
Height of solid (cm)	0.900	1.52				-
Initial void ratio, eo	1.222	.9 1.40				
Height of solid (cm)	9.00	ra				
Swelling Potential						loading"
Initial dial reading (adjusted		≥ _{1.16}				
to Zero Reading) mm	0.0					- A- Swelling
Final Dial Reading mm	3.137	1.04				
Specimen Height mm	20					
Free swell index (%)	15.69	0.92		ч <u> </u>	100 1/	
Swelling pressure (Sp) kPa	300		-	Pressur	re in (KPa)	JUU

Table C28: Deformation reading of Odometer consolidation test for Tp10 @2m									
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg			
0.00	0.00	2.695	0.412	0.707	1.084	1.196			
0.10		0.277	0.468	0.852	1.127	1.222			
0.25		0.289	0.487	0.852	1.134	1.228			
0.50		0.303	0.499	0.884	1.139	1.232			
1		0.312	0.516	0.906	1.143	1.238			
2		0.325	0.534	0.924	1.147	1.242			
4		0.337	0.558	0.946	1.152	1.247			
8		0.343	0.578	0.965	1.157	1.253			
15		0.352	0.598	0.986	1.163	1.258			
30		0.365	0.616	1.008	1.170	1.262			
60		0.372	0.632	1.018	1.175	1.267			
120		0.383	0.658	1.036	1.182	1.271			
240		0.397	0.679	1.054	1.187	1.273			
480		0.404	0.696	1.072	1.193	1.275			
1440	2.695	0.412	0.707	1.084	1.196	1.277			

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul . ΔH (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (Hf-Hs)/Hs
Specimen wet mass + ring (g) 135.68		7	0	0	20.000	1.298
Specimen dry mass + can (g)	115.478	7	2.695	-2.695	22.695	1.608
Mass of ring (g)	68	50	0.412	-2.283	22.283	1.561
Specimen Height, L (cm)	2	100	0.707	-1.576	21.576	1.479
Specimen diameter, D (cm)	5	200	1.084	-0.492	20.492	1.355
Area of ring cm ²	19.625	400	1.196	0.704	19.296	1.217
Volume of ring cm ³	39.25	800	1.277	1.981	18.019	1.071
Bulk density, (g/cm ²)		oid ratio	o Vs Loga	arithm of F	Pressure	
Water Content, %	42.549	1.70				
Dry density, (g/cm2)	1.21	1.60	†			
Height of solid (cm)	0.870	. d .50				
Initial void ratio, eo	1.298	5 .40				
Height of solid (cm)	8.70	ġ				• 1 1 1
Swelling Potential			╺╸╼╺╋			
Initial dial reading (adjusted to		1.20				• A swelling
Zero Reading) mm 0.0		1 10				
Final Dial Reading mm	2.695	1.10				
Specimen Height mm	20	1.00				
Free swell index (%) 13.48		1	10 D	U 10)0 100 (VD-)	U
Swelling pressure (Sp) kPa	285	Pressure in (KPa)				

Table C29: Deformation reading of Odometer consolidation test for Tp10 @3m								
Time	Swelling @ 0.14kg	Deformation @ 1kg	Deformation @ 2kg	Deformation @ 4kg	Deformation @ 8kg	Deformation @ 16kg		
0.00	0.00	2.376	0.512	0.735	1.044	1.217		
0.10		0.365	0.594	0.822	1.107	1.242		
0.25		0.387	0.609	0.832	1.114	1.248		
0.50		0.405	0.617	0.844	1.129	1.252		
1		0.416	0.628	0.856	1.133	1.258		
2		0.428	0.638	0.864	1.147	1.262		
4		0.439	0.643	0.876	1.152	1.267		
8		0.448	0.655	0.885	1.167	1.273		
15		0.459	0.667	0.896	1.173	1.278		
30		0.467	0.688	1.008	1.182	1.280		
60		0.473	0.695	1.019	1.195	1.282		
120		0.487	0.702	1.028	1.202	1.282		
240		0.495	0.715	1.035	1.207	1.283		
480		0.504	0.726	1.040	1.212	1.284		
1440	2.376	0.512	0.735	1.044	1.217	1.285		

Determination of dry unit weight and Height of solids		Pressure (KPa)	Final Df. Rdg (mm)	Cumul. ∆H (mm)	$Hf = Hi - \sum \Delta H (mm)$	Final Void Ratio ef = (<u>Hf-Hs)</u> Hs
Specimen wet mass + ring (g)	135.61	7	0	0	20.000	1.172
Specimen dry mass + can (g)	117.706	7	2.376	-2.376	22.376	1.430
Mass of ring (g)	68	50	0.512	-1.864	21.864	1.374
Specimen Height, L (cm)	2	100	0.735	-1.129	21.129	1.294
Specimen diameter, D (cm)	5	200	1.044	-0.085	20.085	1.181
Area of ring cm ²	19.625	400	1.217	1.132	18.868	1.049
Volume of ring cm^3	39.25	800	1.285	2.417	17.583	0.909
Bulk density, (g/cm ²)	1.72	Voi	d ratio	Vs Logar	ithm of Pr	essure
Water Content, %	36.021	1.50				
Dry density, (g/cm2)	1.27	1 40				
Height of solid (cm)	0.921	1.40				
Initial void ratio, eo	1.172	it 1.30				
Height of solid (cm)	9.21	d r.				
Swelling Potential		5 1.20				loading"
Initial dial reading (adjusted to						A swelling
Zero Reading) mm	0.0	1.10				
Final Dial Reading mm	2.376	-			•••••	
Specimen Height mm	20	1.00				
Free swell index (%) 11.88				10 1(D	JU 1000)
Swelling pressure (Sp) kPa	210			Pressure	ın (KPa)	

Test Method: D 854 **TEST PIT 2** Depth 1m 2m3m Pycnometer No. **O**7 08 **O**9 10 11 12 31.977 30.884 30.786 Wt of dry, clean pycnometer, $w_p(g)$ 31.519 26.863 30.408 Wt of pycnometer + water, w_{pw} (g) 126.205 127.712 126.379 125.962 123.022 126.456 Observed Temp. of water, $T_i(oc)$ 23 23 23 23 23 23 129.44 132.731 134.242 132.841 132.442 132.876 Wt of pycno. + soil + water, W_{pws} (g) Temperature, $T_x(^{\circ}c)$ 22 22 22 22 22 22 Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g) 126.23 126.40 125.98 123.04 126.48 127.73 Wt of dry soil ,(gm) 10 10 10 10 10 10 Conversion factor, K 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001 Gs of soil at 20°c. 2.859 2.808 2.822 2.773 2.775 2.862 2.86 Average Gs of soil. 2.81 2.77

APPENDIX D: Specific Gravity test Results of the Study Area

Table F1: Specific test results Test Pit 2

Table F2: Specific test results Test Pit 3

Test Method: D 854	TEST PIT 3					
Depth	1m		2m		3m	
Pycnometer No.	13	14	15	16	17	18
Wt of dry, clean pycnometer, $w_p(g)$	29.752	30.248	28.746	31.076	30.249	29.324
Wt of pycnometer + water, w_{pw} (g)	125.625	126.642	125.086	125.872	124.682	123.056
Observed Temp. of water, $T_i(oc)$	23	23	23	23	23	23
Wt of pycno. + soil + water, W _{pws} (g)	131.997	133.018	131.407	132.201	130.972	129.344
Temperature, T _x (°c)	22	22	22	22	22	22
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	125.65	126.66	125.11	125.89	124.70	123.08
Wt of dry soil ,(gm)	10	10	10	10	10	10
Conversion factor, K	1.0001	1.0001	1.0001	1.0001	1.0001	1.0001
Gs of soil at 20°c.	2.738	2.741	2.701	2.707	2.679	2.677
Average Gs of soil.	2.	74	2.	70	2.68	

Table F3: Specific test results Test Pit 4

Test Method: D 854	TEST PIT 4						
Depth	1m		2m		3m		
Pycnometer No.	o1	<i>o2</i>	o3	o4	05	06	
Wt of dry, clean pycnometer, $w_p(g)$	28.514	29.429	29.715	29.567	30.179	29.976	
Wt of pycnometer + water, w_{pw} (g)	124.509	123.826	124.871	126.658	125.542	122.256	
Observed Temp. of water, $T_i(oc)$	22	22	22	22	22	22	
Wt of pycno. + soil + water, W_{pws} (g)	130.788	130.107	131.117	132.922	131.764	128.479	
Temperature, $T_x(^{\circ}c)$	21	21	21	21	21	21	
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	124.53	123.85	124.89	126.68	125.56	122.28	
Wt of dry soil ,(gm)	10.011	9.992	10.000	10.000	10.000	10.000	
Conversion factor, K	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	
Gs of soil at 20°c.	2.667	2.677	2.648	2.661	2.632	2.633	
Average Gs of soil	2.67		2.	65	2.63		

Table F4: Specific test results Test Pit 5								
Test Method: D 854	TEST PIT 5							
Depth	1	1m 2m		31	m			
Pycnometer No.	o7	08	<u>o9</u>	10	11	12		
Wt of dry, clean pycnometer, $w_p(g)$	30.928	30.985	31.727	30.767	27.063	30.408		
Wt of pycnometer + water, w_{pw} (g)	126.187	127.712	126.229	125.922	122.922	126.456		
Observed Temp. of water, $T_i(oc)$	22	22	22	22	22	22		
Wt of pycno. $+$ soil $+$ water, $W_{pws}(g)$	132.495	134.012	132.499	132.197	129.188	132.712		
Temperature, $T_x(^{\circ}c)$	21	21	21	21	21	21		
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	126.21	127.73	126.25	125.94	122.94	126.48		
Wt of dry soil ,(gm)	10.000	10.000	10.000	10.000	10.000	10.000		
Conversion factor, K	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998		
Gs of soil at 20°c.	2.693	2.687	2.665	2.669	2.662	2.655		
Average Gs of soil	2.69 2.67 2.66				66			

Table F5: Specific test results Test Pit 6

Test Method: D 854	TEST PIT 6					
Depth	1m		21	2 m		m
Pycnometer No.	13	14	15	16	17	18
Wt of dry, clean pycnometer, $w_p(g)$	29.725	30.749	29.546	31.076	30.249	29.324
Wt of pycnometer + water, w_{pw} (g)	125.205	126.512	125.166	125.992	124.692	122.829
Observed Temp. of water, $T_i(oc)$	22	22	22	22	22	22
Wt of pycno. + soil + water, W_{pws} (g)	131.637	132.948	131.545	132.358	131.039	129.171
Temperature, $T_x(^{\circ}c)$	21	21	21	21	21	21
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	125.23	126.53	125.19	126.01	124.71	122.85
Wt of dry soil ,(gm)	10.000	10.000	10.000	10.000	10.000	10.000
Conversion factor, K	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
Gs of soil at 20°c.	2.786	2.789	2.745	2.735	2.721	2.718
Average Gs of soil	2.	79	2.74		2.	72

 Table F6: Specific test results Test Pit 7

Test Method: D 854	TEST PIT 7					
Depth	1m		21	2m		m
Pycnometer No.	o1	<i>o2</i>	o3	o4	05	об
Wt of dry, clean pycnometer, $w_p(g)$	28.511	29.442	28.515	29.46	30.069	29.964
Wt of pycnometer + water, w_{pw} (g)	124.498	123.572	124.851	126.338	125.342	121.856
Observed Temp. of water, $T_i(oc)$	24	24	24	24	24	24
Wt of pycno. $+$ soil $+$ water, W_{pws} (g)	130.797	129.868	131.131	132.612	131.588	128.089
Temperature, T _x (°c)	22	22	22	22	22	22
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	124.54	123.62	124.90	126.38	125.39	121.90
Wt of dry soil ,(gm)	10	10	10	10	10	10
Conversion factor, K	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
Gs of soil at 20°c.	2.668	2.667	2.654	2.650	2.631	2.623
Average Gs of soil	2.	67	2.65		2.63	

Table F7: Specific test results Test Pit 8								
Test Method: D 854	TEST PIT 8							
Depth	1	m	2m		31	m		
Pycnometer No.	o 7	08	09	10	11	12		
Wt of dry, clean pycnometer, $w_p(g)$	31.519	30.884	31.977	30.786	26.863	30.408		
Wt of pycnometer + water, w_{pw} (g)	126.205	127.712	126.379	125.962	123.022	126.456		
Observed Temp. of water, $T_i(oc)$	24	24	24	24	24	24		
Wt of pycno. $+$ soil $+$ water, $W_{pws}(g)$	132.746	134.252	132.816	132.398	129.382	132.822		
Temperature, $T_x(^{\circ}c)$	22	22	22	22	22	22		
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	126.25	127.76	126.42	126.01	123.07	126.50		
Wt of dry soil ,(gm)	10	10	10	10	10	10		
Conversion factor, K	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996		
Gs of soil at 20°c.	2.853	2.851	2.771	2.770	2.712	2.717		
Average Gs of soil	2.85		2.77		2.71			

Table F8: Specific test results Test Pit 9

Test Method: D 854	TEST PIT 9					
Depth	1m		21	2m		m
Pycnometer No.	13	14	15	16	17	18
Wt of dry, clean pycnometer, $w_p(g)$	29.752	30.248	28.746	31.076	30.249	29.324
Wt of pycnometer + water, w_{pw} (g)	125.625	126.642	125.086	125.872	124.682	123.056
Observed Temp. of water, $T_i(oc)$	24	24	24	24	24	24
Wt of pycno. $+$ soil $+$ water, W_{pws} (g)	132.014	133.021	131.414	132.206	131.014	129.394
Temperature, $T_x(^{\circ}c)$	22	22	22	22	22	22
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	125.67	126.69	125.13	125.92	124.73	123.10
Wt of dry soil ,(gm)	10	10	10	10	10	10
Conversion factor, K	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996
Gs of soil at 20°c.	2.734	2.726	2.689	2.694	2.692	2.697
Average Gs of soil	2.73		2.69		2.69	

Table F9: Specific test results Test Pit 10

Test Method: D 854	TEST PIT 10						
Depth	1m		2 m		3m		
Pycnometer No.	13	14	15	16	17	18	
Wt of dry, clean pycnometer, $w_p(g)$	31.357	30.298	29.875	30.025	31.256	30.258	
Wt of pycnometer + water, w_{pw} (g)	126.123	125.752	122.667	124.011	126.629	126.001	
Observed Temp. of water, $T_i(oc)$	24	24	24	24	24	24	
Wt of pycno. $+$ soil $+$ water, $W_{pws}(g)$	132.621	132.248	129.121	130.458	133.042	132.409	
Temperature, $T_x(^{\circ}c)$	22	22	22	22	22	22	
Wt of pycno. + water at T_x , $W_{pw}(atT_x)$ (g)	126.17	125.80	122.71	124.06	126.67	126.05	
Wt of dry soil ,(gm)	10	10	10	10	10	10	
Conversion factor, K	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	
Gs of soil at 20°c.	2.818	2.816	2.784	2.779	2.752	2.748	
Average Gs of soil	2.	82	2 2.78		2.75		

Descrip	otive Statisti	ics	
	Mean	Std. Deviation	Ν
LL	87.2536	16.46916	30
PI	51.9016	12.76625	30
LS	9.5738	1.47349	30
NMC	35.2810	8.04943	30
γd	1.2198	.41909	30
Ac	.8097	.17967	30
LI	.0510	.25030	30
Swelling Pressure (Sp), kpa	194.67	72.765	30

APPENDIX F: SPSS 20	Output of	Correlation An	alysis						
Descriptive Statistics									

			Car	malation	~				
		1	Cor	relation	S	1	-		G 11
			DI	ТC		DI			Swelling
		LL	PI	LS	NMC	Dd	Ac	LI	Pressure
			~ ~~ **	000**	0.0.0**	o 1 – **	0.40**	000**	(Sp), kpa
	Pearson Correlation	1	.977	.920	823	947	.968	898	.859
LL	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	.977**	1	.865**	822**	930**	.981**	880**	.857**
PI	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	.920**	.865**	1	740**	868**	.845**	822**	.826**
LS	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
NMC	Pearson Correlation	823**	822**	740**	1	.846**	765**	.959**	861**
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	947**	930**	868**	.846**	1	883**	.889**	- .911**
γ_d	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	.968**	.981**	.845**	765**	883**	1	842**	.791**
Ac	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000
	Ν	30	30	30	30	30	30	30	30
	Pearson Correlation	898**	880**	822**	.959**	.889**	842**	1	871**
LI	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
	N	30	30	30	30	30	30	30	30
Swelling	Pearson Correlation	.859**	.857**	.826**	861**	911**	.791**	871**	1
Pressure	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
(Sp), kpa	N	30	30	30	30	30	30	30	30
**. Correl	ation is significant at	the 0.01	level (2-t	ailed).		1			

APPENDIX G: Representative SPSS 20 output of developed Regression Analysis MODEL 1: REGRESSION ANALYSIS OUTPUT

Variables Entered/Removed ^a									
Model	Variables Entered	Variables Removed	Method						
1	NMC, γ _d ^b	. Enter							
a. Depender	a. Dependent Variable: Swelling Pressure (Sp), kpa								
b. All reque	sted variables entered.								

Model Summary ^b										
Model	R	R	Adjusted R	Std. Error of	Change Statistics					Durbin-
		Square	Square	the Estimate	R Square	F Change	df1	df2	Sig. F	Watson
					Change	_			Change	
1	.926 ^a	.858	.847	28.436	.858	81.449	2	27	.000	1.833
a Predic	tors (Co	onstant) N	IMC Dd			-				

b. Dependent Variable: Swelling Pressure (Sp), kpa

	ANOVA ^a										
Model		Sum of Squares df		Mean Square	F	Sig.					
	Regression	131715.069	2	65857.535	81.449	.000 ^b					
1	Residual	21831.597	27	808.578							
	Total	153546.667	29								
a. Dep	a. Dependent Variable: Swelling Pressure (Sp), kpa										
b. Pre	dictors: (Const	ant), NMC, γ_d									

Coefficients ^a												
Unstand	Unstandardized		t	Sig.	95.0% Confide	Collinearity						
Coeff	icients	Coefficients			for B		Statistics					
В	Std. Error	Beta			Lower Bound	Upper Bound	Tolerance	VIF				
431.920	25.000		17.277	.000	380.625	483.215						
-111.420	23.631	642	-4.715	.000	-159.907	-62.933	.284	3.518				
-2.873	1.230	318	-2.335	.027	-5.397	348	.284	3.518				
1	Unstand Coeff B 431.920 -111.420 -2.873	Unstandardized Coefficients B Std. Error 431.920 25.000 -111.420 23.631 -2.873 1.230	Unstand=rdized Coefficients Standardized Coefficients B Std. Error Beta 431.920 25.000 -111.420 -111.420 23.631 642 -2.873 1.230 318	$\begin{tabular}{ c c c c } \hline Unstand ardized \\ \hline Coefficients \\\hline \hline B \\ $ Std. Error \\ Beta \\\hline $ 431.920 \\ -111.420 \\\hline $ 23.631 \\\hline $642 \\\hline $ -2.375 \\\hline $ -2.873 \\\hline $ 1.230 \\\hline $318 \\\hline $ -2.335 \\\hline $ -2.335 \\\hline $ -2.355 \\\hline $ -2.55 \\\hline $ -2.355 \hline\hline $ -2.355 \\\hline $ -2.355 \hline\hline $ -2.355 \hline$	$\begin{tabular}{ c c c c c c } \hline Unstandardized & Standardized & Coefficients & Coefficients & & & & & & & & & & & & & & & & & & &$	Unstandardized Coefficients Standardized Coefficients t Sig. 95.0% Confide for B Std. Error Beta Lower Bound 431.920 25.000 17.277 .000 380.625 -111.420 23.631 642 -4.715 .000 -159.907 -2.873 1.230 318 -2.335 .027 -5.397	Unstandardized Coefficients Standardized Coefficients t Sig. 95.0% Confidence Interval for B B Std. Error Beta Lower Bound Upper Bound 431.920 25.000 17.277 .000 380.625 483.215 -111.420 23.631 642 -4.715 .000 -159.907 -62.933 -2.873 1.230 318 -2.335 .027 -5.397 348	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				

Coefficient Correlations ^a										
Model			NMC	Dd						
1	Completions	NMC	1.000	846						
	Correlations	γd	846	1.000						
	Coverience's	NMC	1.514	-24.596						
	Covariance s	γd	-24.596	558.419						
a. Deper	ident Variable: Sw	elling Pressu	re (Sp), kpa							

	Collinearity Diagnostics ^a											
Model	Dimension	Eigen value	Condition	Variance	Variance Proportions							
			Index	(Constant)	Dd	NMC						
	1	2.938	1.000	.00	.00	.00						
1	2	.053	7.440	.45	.24	.00						
	3	.009	18.121	.54	.76	1.00						
a. Depen	dent Variable:	Swelling Press	sure (Sp), kpa	l								

	Residuals Sta	atistics ^a			
	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	66.81	317.52	194.67	67.394	30
Std. Predicted Value	-1.897	1.823	.000	1.000	30
Standard Error of Predicted Value	5.431	13.395	8.706	2.287	30
Adjusted Predicted Value	67.16	322.27	195.05	67.813	30
Residual	-54.195	48.845	.000	27.437	30
Std. Residual	-1.906	1.718	.000	.965	30
Stud. Residual	-2.080	1.762	006	1.011	30
Deleted Residual	-64.558	51.879	379	30.180	30
Stud. Deleted Residual	-2.228	1.838	009	1.039	30
Mahal. Distance	.091	5.468	1.933	1.513	30
Cook's Distance	.000	.276	.033	.053	30
Centered Leverage Value	.003	.189	.067	.052	30
a. Dependent Variable: Swelling Press	ure (Sp), kpa				

MODEL 2: REGRESSION ANALYSIS OUTPUT

			Varial	oles En	tered	/Removed ^a					
Model		Va	iables Entered	l	V	/ariables Remov	red	Ν	lethod	1	
2		Ν	MC, LS, γ _d ^b]	Enter		
a. Deper	ndent Va	riable: S	welling Pressu	re (Sp)	, kpa						
b. All re	quested	variables	entered.								
				I	Model	l Summary ^b					
	R	R Squar	e Adjusted R	Std. E	Error	(Change Sta	atistics	5		Durbin-
Model			Square	of t	he	R Square	F	df1	df2	Sig. F	Watson
				Estin	nate	Change	Change			Change	
2	.929ª	.86	2.846	28.517		.862	54.271	3	26	.000	1.914
a. Predic	ctors: (Co	onstant),	NMC, LS, γd							<u> </u>	
b. Deper	ndent Va	riable: S	welling Pressu	re (Sp)), kpa						
				ANOV	'A ^a						
Ν	Model	S	um of Squares	di di	f	Mean Square	F	Sig	Ţ.		
	Regressi	on	132403.03	30	3	44134.343	54.271		000 ^b		
2	Residual	l	21143.63	57	26	813.217					
	Total		153546.66	153546.667 2							
a. Deper	ndent Va	riable: S	welling Pressu	re (Sp)	, kpa						
b. Predic	ctors: (C	onstant),	NMC, LS, γd								

	Coefficients ^a											
		Unstandardized		Standardized			95.0% C	onfidence	Collinear	rity		
	Model	Coeffi		Coefficients	t	Sig.	Interva		Statistic			
		В	Sta.	Beta			Lower	Upper	Tolerance	VIF		
	•	D	Error	Deta			Bound	Bound		• 11		
	(Constant)	342.925	99.954		3.431	.002	137.468	548.383				
1	γd	-91.456	32.137	527	-2.846	.009	-157.514	-25.398	.155	6.468		
1	LS	6.665	7.247	.135	.920	.366	-8.230	21.561	.246	4.066		
	NMC	-2.849	1.234	315	-2.309	.029	-5.386	312	.284	3.519		
a.	Dependent Va	riable: Swo	elling Pres	sure (Sp), kpa								

a.	Dependent	Variable:	Swelling	Pressure	(Sp), l	kpa

	Coefficient Correlations ^a											
	Model		NMC	LS	γd							
		NMC	1.000	.021	610							
	Correlations	LS	.021	1.000	.675							
1		Dd	610	.675	1.000							
1		NMC	1.523	.186	-24.180							
	Covariance's	LS	.186	52.512	157.292							
		Dd	-24.180	157.292	1032.768							
	a. Dependent V	ariable: S	Swelling Pres	ssure (Sp), k	pa							

	Collinearity Diagnostics ^a												
Model	Dimension	Eigen value	Condition Index	Variance Proportions									
				(Constant)	γd	LS	NMC						
	1	3.866	1.000	.00	.00	.00	.00						
1	2	.123	5.607	.00	.05	.02	.01						
1	3	.009	20.494	.01	.51	.01	.98						
	4	.002	46.934	.99	.44	.97	.01						
a. Deper	ndent Variable:	Swelling Pressur	re (Sp), kpa										

	Residuals Sta	tistics ^a			
	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	69.76	319.69	194.67	67.569	30
Std. Predicted Value	-1.849	1.850	.000	1.000	30
Standard Error of Predicted Value	6.424	13.943	10.229	1.984	30
Adjusted Predicted Value	70.77	325.26	194.74	67.801	30
Residual	-49.397	44.106	.000	27.002	30
Std. Residual	-1.732	1.547	.000	.947	30
Stud. Residual	-1.929	1.625	001	1.014	30
Deleted Residual	-61.285	49.710	074	31.000	30
Stud. Deleted Residual	-2.044	1.682	001	1.038	30
Mahal. Distance	.505	5.966	2.900	1.440	30
Cook's Distance	.000	.224	.037	.048	30
Centered Leverage Value	.206	.100	.050	30	
a. Dependent Variable: Swelling Press	ure (Sp), kpa				

MODEL 3: REGRESSION ANALYSIS OUTPUT												
	Model Summary ^b											
Model	Model R R Adjusted Std. Error Change Statistics Durbin-											
SquareR Squareof theR SquareFdf1df2Sig. F								Watson				
				Estimate	Change	Change			Change			
3	.927ª	.860	.843	28.803	.860	53.028	3	26	.000	1.727		
a. Predic	a. Predictors: (Constant), Ac, NMC, yd											
b. Deper	ndent Va	riable: Sv	welling Pres	ssure (Sp), k	ра							

ANOVA ^a											
Model		Sum of Squares	df	Mean Square	F	Sig.					
	Regression	131976.755	3	43992.252	53.028	.000 ^b					
3	Residual	21569.912	26	829.612							
	Total	153546.667	29								
a. Depe	a. Dependent Variable: Swelling Pressure (Sp), kpa										
b. Pred	ictors: (Consta	nt), Ac, NMC, Dd									

				Coefficients ^a						
		Unstandardized		Standardized			95.0% Confidence		Collinearity	
,	x 112	Coefficients		Coefficients		Sig.	Interval for B		Statisti	cs
Model 3		D		Dete	t		Lower	Upper	T 1	VIE
		В	Std. Error	Beta			Bound	Bound	Tolerance	VIF
	Constant	478.171	86.156		5.550	.000	301.074	655.268		
~	NMC	-2.924	1.250	323	-2.340	.027	-5.492	355	.283	3.536
3	γd	-124.125	32.935	715	-3.769	.001	-191.823	-56.427	.150	6.659
	Ac	-35.751	63.655	088	562	.579	-166.596	95.094	.219	4.573
a.	Dependent	Variable:	Swelling Pre	essure (Sp), kpa	l					

Residuals Statistics ^a											
Minimum Maximum Mean Std. Deviation N											
Predicted Value	66.98	319.32	194.67	67.461	30						
Std. Predicted Value	-1.893	1.848	.000	1.000	30						
Standard Error of Predicted Value	5.760	15.306	10.238	2.448	30						
Adjusted Predicted Value	67.36	324.96	194.85	68.004	30						
Residual	-53.706	53.984	.000	27.273	30						
Std. Residual	-1.865	1.874	.000	.947	30						
Stud. Residual	-2.036	2.034	003	1.010	30						
Deleted Residual	-64.044	63.564	182	31.078	30						
Stud. Deleted Residual	-2.178	2.175	003	1.042	30						
Mahal. Distance	.193	7.222	2.900	1.794	30						
Cook's Distance	.000	.200	.035	.051	30						
Centered Leverage Value	.100	.062	30								
a. Dependent Variable: Swelling Pres	ssure (Sp), kp	a									

MODEL 4: REGRESSION ANALYSIS OUTPUT												
	Model Summary ^b											
		р	Adjusted	Std. Error		Change	Statis	stics		Duchin		
Model	R	R Square	quare R Square	of the	R Square	F	df1	462	Sig. F Watson	Watson		
				Estimate	Change	Change	an	u12	Change	w atsoli		
4	.927ª	.859	.842	28.890	.859	52.658	3	26	.000	1.773		
a. Predictors: (Constant), LL, NMC, yd												
b. Deper	h Dependent Variable: Swelling Pressure (Sp) kna											

	ANOVA ^a											
Model		Sum of Squares	df	Mean Square	F	Sig.						
	Regression	131846.932	3	43948.977	52.658	.000 ^b						
4	Residual	21699.735	26	834.605								
	Total	153546.667	29									
a. Depe	a. Dependent Variable: Swelling Pressure (Sp), kpa											
b. Pred	ictors: (Consta	nt), LL, NMC, Dd										

				Coefficients ^a						
		Unstan	dardized	Standardized			95.0% Confidence		Collinearity	
		Coefficients		Coefficients		a:	Interva	l for B	Statist	ics
Model		D	Std Error	Data	t	t Sig. Lower Upper		Lower Upper	Toloronoo	VIE
		D	Stu. Elloi	Deta			Bound	Bound	Tolerance	VIF
	Constant	486.564	139.800		3.480	.002	199.202	773.926		
	NMC	-2.936	1.260	325	-2.330	.028	-5.526	346	.280	3.575
4	Dd	-125.444	42.675	722	-2.940	.007	-213.162	-37.725	.090	11.114
	LL	405	1.018	092	397	.694	-2.497	1.688	.102	9.767
a.	a. Dependent Variable: Swelling Pressure (Sp), kpa									

	Residuals Statistics ^a											
Minimum Maximum Mean Std. Deviation N												
Predicted Value	66.34	318.34	194.67	67.427	30							
Std. Predicted Value	-1.903	1.834	.000	1.000	30							
Standard Error of Predicted Value	6.183	16.412	10.304	2.300	30							
Adjusted Predicted Value	66.60	323.48	194.46	67.844	30							
Residual	-54.468	53.141	.000	27.354	30							
Std. Residual	-1.885	1.839	.000	.947	30							
Stud. Residual	-2.058	2.043	.003	1.017	30							
Deleted Residual	-64.926	65.583	.210	31.593	30							
Stud. Deleted Residual	-2.206	2.187	.003	1.051	30							
Mahal. Distance	.362	8.393	2.900	1.739	30							
Cook's Distance	.000	.244	.039	.059	30							
Centered Leverage Value	.012	.289	.100	.060	30							
a. Dependent Variable: Swelling Pres	ssure (Sp), kpa	1										

MODEL 6: REGRESSION ANALYSIS OUTPUT Model Summary^b

Model	R	R	Adjusted	Std.	td. Change Statistics					
		Square	R	Error of	R	F	df1	df2	Sig. F	Watson
			Square	the	Square	Change			Change	
				Estimate	Change				-	
6	.932ª	.869	.848	28.403	.869	41.334	4	25	.000	1.710

a. Predictors: (Constant), Ac, NMC, yd, PI

b. Dependent Variable: Swelling Pressure (Sp), kpa

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	133378.757	4	33344.689	41.334	.000 ^b
6	Residual	20167.910	25	806.716		
	Total	153546.667	29			

a. Dependent Variable: Swelling Pressure (Sp), kpa

b. Predictors: (Constant), Ac, NMC, yd, PI

				Coef	ficients	a				
Μ	odel	Unstand	lardized	Standardized	t	Sig.	95.0% Co	onfidence	Colline	arity
		Coefficients		Coefficients			Interval for B		Statistics	
	B Std.		Std.	Beta			Lower	Upper	Tolerance	VIF
			Error				Bound	Bound		
	(Constant)	381.831	112.065		3.407	.002	151.028	612.634		
	NMC	-2.406	1.293	266	- 1.860	.075	-5.070	.257	.257	3.896
6	γd	-95.564	39.040	550	- 2.448	.022	- 175.969	-15.159	.104	9.623
	PI	4.134	3.136	.725	1.318	.199	-2.325	10.593	.017	57.619
	Ac	- 247.366	172.358	611	1.435	.164	- 602.345	107.612	.029	34.475
9	Dependent V	Variable S	volling Pro	secure (Sn) kno						

a. Dependent Variable: Swelling Pressure (Sp), kpa

Collinearity Diagnostics^a Model Dimension Eigenvalue Variance Proportions Condition Index (Constant) NMC ΡI γd Ac 1 4.759 1.000 .00 .00 .00 .00 .00 2 .229 4.562 .00 .01 .02 .00 .00 6 3 .009 22.620 .00 .85 .38 .00 .00 4 .003 43.226 .56 .03 .30 .00 .13 5 .001 96.063 .43 .11 .30 1.00 .87

a. Dependent Variable: Swelling Pressure (Sp), kpa **Residuals Statistics**^a Minimum Maximum Mean Std. Deviation Predicted Value 194.67 55.10 313.22 Std. Predicted Value -2.058 1.748 .000 Standard Error of Predicted Value 17.385 6.683 11.263 Adjusted Predicted Value 51.54 317.69 195.24 Residual -40.273 51.773 .000 Std. Residual -1.418 1.823 .000

Stud. Residual	-1.621	1.906	009	1.009	30			
Deleted Residual	-58.233	58.054	577	31.315	30			
Stud. Deleted Residual	-1.679	2.020	006	1.034	30			
Mahal. Distance	.639	9.898	3.867	2.358	30			
Cook's Distance	.000	.315	.038	.062	30			
Centered Leverage Value	.022	.341	.133	.081	30			
a. Dependent Variable: Swelling Pressure (Sp), kpa								

Ν

30

30

30

30

30

30

67.818

1.000

2.802

68.367

26.371

.928

MOI	DEL 7	: REGR	ESSION A	ANALYSIS	OUTPUT	Г				
Model Summary ^b										
		р	Adjusted	Std. Error		Change	Statis	tics		Durhin
Model	R	K Squara	Square R Square	of the	R Square	F	df1	df2	Sig. F	g. F ange
		Square		Estimate	Change	Change	an		Change	
7	.932ª	.869	.848	28.403	.869	41.334	4	25	.000	1.710
a. Predic	ı. Predictors: (Constant), PI, NMC, γd, Ac									
b. Deper	b. Dependent Variable: Swelling Pressure (Sp), kpa									

b. Dependent Variable: Swelling Pressure (Sp), kpa

	ANOVA ^a											
Model		Sum of Squares	df	Mean Square	F	Sig.						
	Regression	133378.757	4	33344.689	41.334	.000 ^b						
7	Residual	20167.910	25	806.716								
	Total	153546.667	29									
a. Dependent Variable: Swelling Pressure (Sp), kpa												
b. Predictors: (Constant), PI, NMC, γd, Ac												

b. Predictors: (Constant), PI, NMC, γd, Ac

				Coeff	icients ^a	l				
Μ	lodel	Unstand	dardized	Standardized	t	Sig.	95.0% Confidence		Collinearity	
		Coefficients		Coefficients			Interval for B		Statistics	
		В	Std. Error	Beta			Lower	Upper	Tolerance	VIF
							Bound	Bound		
	(Constant)	381.831	112.065		3.407	.002	151.028	612.634		
	Dd	-95.564	39.040	550	-2.448	.022	-175.969	-15.159	.104	9.623
7	NMC	-2.406	1.293	266	-1.860	.075	-5.070	.257	.257	3.896
	Ac	-247.366	172.358	611	-1.435	.164	-602.345	107.612	.029	34.475
	PI	4.134	3.136	.725	1.318	.199	-2.325	10.593	.017	57.619

		Coef	ficient Cor	relations ^a					
	Model		PI	NMC	γd	Ac			
		PI	1.000	.304	.555	931			
	Correlations	NMC	.304	1.000	278	257			
	Correlations	γd	.555	278	1.000	309			
1		Ac	931	257	309	1.000			
1		PI	9.835	1.232	67.943	-503.400			
	Coverience's	NMC	1.232	1.673	-14.024	-57.393			
	Covariance s	γd	67.943	-14.024	1524.143	-2077.493			
		Ac	-503.400	-57.393	-2077.493	29707.376			
a. Deper	a. Dependent Variable: Swelling Pressure (Sp), kpa								

			Collinear	ity Diagnosti	cs ^a					
Model	Dimension	Eigan valua	Condition	Variance Proportions						
Model	Dimension	Eigen value	Index	(Constant)	γd	NMC	Ac	PI		
	1	4.759	1.000	.00	.00	.00	.00	.00		
	2	.229	4.562	.00	.02	.01	.00	.00		
1	3	.009	22.620	.00	.38	.85	.00	.00		
	4	.003	43.226	.56	.30	.03	.13	.00		
	5	.001	96.063	.43	.30	.11	.87	1.00		
a Depe	Dependent Variable: Swelling Pressure (Sp) kpa									

R	esiduals Sta	tistics ^a			
	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	55.10	313.22	194.67	67.818	30
Std. Predicted Value	-2.058	1.748	.000	1.000	30
Standard Error of Predicted Value	6.683	17.385	11.263	2.802	30
Adjusted Predicted Value	51.54	317.69	195.24	68.367	30
Residual	-40.273	51.773	.000	26.371	30
Std. Residual	-1.418	1.823	.000	.928	30
Stud. Residual	-1.621	1.906	009	1.009	30
Deleted Residual	-58.233	58.054	577	31.315	30
Stud. Deleted Residual	-1.679	2.020	006	1.034	30
Mahal. Distance	.639	9.898	3.867	2.358	30
Cook's Distance	.000	.315	.038	.062	30
Centered Leverage Value	.022	.341	.133	.081	30
a. Dependent Variable: Swelling Pre	essure (Sp), l	кра			

MODEL 8: REGRESSION ANALYSIS OUTPUT Model Summarv^b

	Model	R	R	Adjusted	Std.	Std. Change Statistics					
			Square	R	Error of	R	F	df1	df2	Sig. F	Watson
				Square	the	Square	Change			Change	
					Estimate	Change				-	
	8	.931ª	.867	.846	28.593	.867	40.704	4	25	.000	1.735

a. Predictors: (Constant), Ac, NMC, LS, yd

b. Dependent Variable: Swelling Pressure (Sp), kpa

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	133108.297	4	33277.074	40.704	.000 ^b
8	Residual	20438.369	25	817.535		
	Total	153546.667	29			

a. Dependent Variable: Swelling Pressure (Sp), kpa

b. Predictors: (Constant), Ac, NMC, LS, yd

	Coefficients ^a										
Model		Unstandardized		Standardized	t	Sig.	95.0% Confidence		Collinearity		
		Coeffi	cients	Coefficients			Interva	Interval for B		Statistics	
		В	Std.	Beta			Lower	Upper	Tolerance	VIF	
			Error				Bound	Bound			
	(Constant)	391.346	112.967		3.464	.002	158.686	624.005			
	NMC	-2.930	1.240	324	-2.362	.026	-5.485	375	.283	3.536	
8	γd	-106.379	36.006	613	-2.955	.007	-180.535	-32.224	.124	8.077	
	LS	9.078	7.716	.184	1.176	.250	-6.814	24.969	.218	4.585	
	Ac	-62.329	67.107	154	929	.362	-200.539	75.880	.194	5.157	

a. Dependent Variable: Swelling Pressure (Sp), kpa

Collinearity Diagnostics^a

Model	Dimension	Eigenvalue	Condition	Variance Proportions								
			Index	(Constant)	NMC	γd	LS	Ac				
	1	4.795	1.000	.00	.00	.00	.00	.00				
	2	.189	5.031	.00	.01	.03	.00	.01				
8	3	.009	22.782	.01	.96	.43	.00	.00				
	4	.005	30.764	.01	.01	.03	.45	.85				
	5	.002	54.880	.98	.02	.51	.55	.13				

a. Dependent Variable: Swelling Pressure (Sp), kpa

Residuals Statistics ^a									
	Minimum Maximum		Mean	Std. Deviation	Ν				
Predicted Value	71.12	323.62	194.67	67.749	30				
Std. Predicted Value	-1.824	1.903	.000	1.000	30				
Standard Error of Predicted Value	6.539	15.926	11.491	2.087	30				
Adjusted Predicted Value	72.45	331.18	194.85	68.140	30				
Residual	-46.806	50.226	.000	26.548	30				
Std. Residual	-1.637	1.757	.000	.928	30				
Stud. Residual	-1.834	1.920	003	1.008	30				
Deleted Residual	-58.765	60.020	181	31.369	30				
Stud. Deleted Residual	-1.932	2.038	.001	1.035	30				
Mahal. Distance	.550	8.030	3.867	1.675	30				
Cook's Distance	.000	.172	.036	.045	30				
Centered Leverage Value	.019	.277	.133	.058	30				

MODEL 9: REGRESSION ANALYSIS OUTPUT

Variables Entered/Removed ^a									
Model	Variables Entered	Variables Removed	Method						
9	LS, NMC, Ac, yd, PI ^b	•	Enter						
a. Depender	a. Dependent Variable: Swelling Pressure (Sp), kpa								
b. All reque	sted variables entered.								

Model Summary ^b											
Model	R	R	Adjusted R	Std. Error		Change Statistics					
		Square	Square	of the	R Square	F	df1	df2	Sig. F	Watson	
				Estimate	Change Change Change						
γd	.936ª	.876	.850	28.177	.876 33.881 5 24 .000					1.814	
a. Predictors: (Constant), LS, NMC, Ac, yd, PI											
b. Depen	dent Va	ariable: S	welling Pres	sure (Sp), kp	ba						

ANOVA ^a										
Model		Sum of Squares	df	Mean Square	F	Sig.				
	Regression	134492.564	5	26898.513	33.881	.000 ^b				
1	Residual	19054.103	24	793.921						
	Total	153546.667	29							
a. Depe	a. Dependent Variable: Swelling Pressure (Sp), kpa									
b. Pred	ictors: (Constar	nt), LS, NMC, Ac, γ	d, PI							

	Coefficients ^a										
	M - 1-1	Unstandardized Coefficients		Standardized Coefficients	т	C 1-	95.0% Confidence Interval for B		Collinearity Statistics		
Model		В	Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Tolerance	VIF	
	(Constant)	296.295	132.569		2.235	.035	22.687	569.904			
	γd	-78.138	41.430	450	-1.886	.071	-163.645	7.369	.091	11.012	
1	NMC	-2.415	1.283	267	-1.883	.072	-5.063	.233	.257	3.896	
1	Ac	-272.399	172.287	673	-1.581	.127	-627.982	83.184	.029	35.002	
	PI	4.108	3.111	.721	1.320	.199	-2.313	10.529	.017	57.621	
	LS	9.007	7.604	.182	1.184	.248	-6.687	24.701	.218	4.586	
b D	an and ant Va	mahlar Cruc	Ilin a Dragon	$ma(\mathbf{Sm})$ $lmaa$							

	Coefficient Correlations ^a									
Model			LS	NMC Ac		γd	PI			
		LS	1.000	006	123	.355	007			
		NMC	AC006 1.000		255	262	.304			
	Correlations	Ac	123	255	1.000	330	923			
		γd	.355	262	330	1.000	.516			
1		PI	007	.304	923	.516	1.000			
1		LS	57.822	059	-160.708	111.874	168			
		NMC	059	1.646	-56.319	-13.916	1.212			
	Covariance's	Ac	-160.708	-56.319	29682.848	-2355.479	-494.949			
		γd	111.874	-13.916	-2355.479	1716.421	66.541			
		PI	168	1.212	-494.949	66.541	9.679			
a. Deper	dent Variable:	Swelling	Pressure (Sp), kpa						

			Col	lineari	v Diag	nosti	rsa					
Model	Dimension	Eigen	Condi	tion	<u>y 12108</u>	1050	Va	ariance Pro	oportion	IS		
		value	Inde	ex	(Consta	ant)	γd	NMC	Ac	PI	LS	
	1	5.736		1.000		.00	.00	.00	.00	.00		.00
	2	.246		4.825		.00	.02	.01	.00	.00		.00
1	3	.009		24.831		.00	.33	.85	.00	.00	_	.00
1	4	.006		31.410		.01	.02	.03	.05	.01		.51
	5	.002		58.173		.55	.29	.01	.10	.03		.45
	6	.001	1	07.036		.44	.34	.11	.85	.96		.04
a. Depe	a. Dependent Variable: Swelling Pressure (Sp), kpa											
Residuals Statistics ^a												
				Mini	mum	Ma	aximum	Mean	Mean Ste		td. Deviation	
Predicte	ed Value				59.28	59.28 317.52		2 194.	194.67		68.100	
Std. Pre	edicted Value				-1.988 1.804		4.0	00	1.000		30	
Standar	d Error of Predi	cted Value			6.906		18.16	0 12.3	64	2.475		30
Adjuste	d Predicted Val	ue			57.06		323.9	8 195.	39	68.312		30
Residua	ıl			-	35.841		47.53	7.0	00	25.633		30
Std. Res	sidual				-1.272		1.68	.0	00	.910		30
Stud. Re	esidual				-1.378		1.78	0	11		1.003	30
Deleted	Residual				50.769		54.36	7	19	3	1.348	30
Stud. D	eleted Residual				-1.405		1.87	00	04	1.025		30
Mahal. Distance					.775		11.08	4.8	33	2.307		30
Cook's l	Distance				.000		.22	.5 .0	37		.046	30
Centere	d Leverage Valu	ue			.027		.38	2 .1	67		.080	30
a. Depe	ndent Variable:	Swelling Pre	essure (S	p), kpa					•			

1.0

