

JIMMA UNIVERSITY SCHOOL OF GRADGUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY DEPARTMNT OF CIVIL ENGINEERING GEOTECHNICAL ENGINEERING CHAIR

Investigation of the Effects of Geogrid Reinforcement in Flexible Asphalt Pavement Layers using Numerical analysis method: The case of Jimma to Sekoru road Corridor, South Western Ethiopia

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES JIMMA UNIVERSITY, JIMMA INSTITUTE OF TECHNOLOGY, DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN GEOTECHNICALENGINEERING.

BY

TIGIST MEZMUR

JANUARY, 2020

JIMMA ETHIOPIA

JIMMA UNIVERSITY SCHOOL OF GRADGUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY DEPARTMNT OF CIVIL ENGINEERING GEOTECHNICAL ENGINEERING CHAIR

Investigation of the Effects of Geogrid Reinforcement in Flexible Asphalt Pavement Layers using Numerical analysis method. The case of Jimma to Sekoru road Corridor, South Western Ethiopia

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES JIMMA UNIVERSITY, JIMMA INSTITUTE OF TECHNOLOGY, DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN GEOTECHNICAL ENGINEERING.

BY

TIGIST MEZMUR

MAIN ADVISOR: EMER T. QUEZON, P.ENG (Professor)

CO ADVISOR: DAMTEW TSIGE (PhD)

JANUARY, 2020

JIMMA ETHIOPIA

DECLARTION

I, the undersigned, declare that this thesis entitled "Investigation of the Effects of Geogrid Reinforcement in Flexible Asphalt Pavement Layers using numerical analysis method: The case of Jimma to Sekoru road section, South Western Ethiopia" is my original work, and has not been presented by any other person for an award of a degree in this or any other University, and all sources of material used for theses have been duly acknowledged.

Candidate:

TIGIST MEZMUR

Signature_____Date_____

As Master research Advisors, we hereby certify that we have read and evaluated this MSc. research prepared under our guidance, by TIGIST MEZMUR entitled "Investigation of the Effects of Geogrid Reinforcement in Flexible Asphalt Pavement Layers using numerical analysis method: The case of Jimma to Sekoru road section, South Western Ethiopia" We recommend that it can be submitted as fulfilling the MSc

Thesis requirements.

Main adviser: Prof. Emer T. Quezon, P.Eng

Signature

Date_15/1/2020

Co- Adviser. Damtew Tsige (PhD)

Signature_____Date_____

ACKNOWLEDGMENT

Primarily, I would like to thank the almighty God for giving me health, strength and his very existence in every moment of my life as well as for helping me to reach at this stage.

My utmost words of thanks go to my major supervisor Prof. Emer T. Quezon and my co-advisor Eng'r. Damtew Tsige (PhD) for their constructive supports, advice and guidance throughout my study period. I very much appreciate their encouragement and understanding.

I am thankful for the kind hospitality of Ethiopian Road Construction Corporation Jimma district during my data collection process is very much appreciated

I thank my entire family for always being there for me knowing that they always held me in their thoughts and prayers gave me strength to go on. Every family member is so dear to me, specially my husband Moges Getahun for his inexpressible encouragement.

Lastly, my gratitude goes to Jimma University for giving me the opportunity to avail the scholarship program to pursue my master's degree in Civil Engineering.

ABSTRACT

A flexible pavement is a load bearing structure, consisting of layers of different granular materials above the earth. There are factors that affect this structure, such as, increasing traffic intensity; high tire pressure, increasing axle loads, weak subgrade material, are causing early signs of distress on bituminous pavements throughout the world. The road segment of the study area is affected due to the presence of week subgrade material (existence of expansive soil) as well as the presence of shallow groundwater. Therefore, the study aims to conduct the effect of geogrid in flexible asphalt pavement using numerical analysis method. To achieve the objective of the study the following activities were conducted (i) survey of the pavement surface condition, (II) assessment of engineering properties of pavement layers, (iii) conducting pavement analysis by incorporating the effect of geogrid reinforcement on pavement layers by taking into consideration the influence of geogrid location and groundwater fluctuations.

From site investigation, rutting and longitudinal crack was recorded as high sever condition on the section. From PLAXIS 2D analysis, significant improvement in pavement stabilization was observed using geogrid. The effectiveness of geogrid were obtained at the interface between subbase and base course, sub-base and sub-grade of pavement. As a result 10.29% reduction in total deformation was observed for road section having block cotton soil as subgrade when geogrid was reinforced between sub base and sub grade. But for road having red clay as subgrade soil, 9.13% total deformation reduction was observed with the same geogrid reinforcement. Comparatively a high deformation was observed when the ground water level was reached at subgrade surface and 33.33% increment was shown for road with block cotton soil at subgrade and 35.71% increment was also shown for road with red clay as subgrade. Therefore the geogrid material was effectively stabilize the pavement layers.

Key Words: Distress, Expansive soil, Flexible Pavement, Geogrid, Plaxis 2D, Reinforcement,

TABLE OF CONTENT

DECLARITON	
ACKNOWLEDGMENT	II
ABSTRACT	III
TABLE OF CONTENT	IV
LIST OF TABLE	VI
LIST OF FIGURE	VII
ACRONYMS	IX
CHAPER ONE	1
 1.1. BACKGROUND 1.2. PROBLEM STATEMENT	1 2 3 3 3 3 3 3 3
	_
CHAPTER TWO	
CHAPTER TWO LITRATURE REVIEW	5 5
CHAPTER TWO LITRATURE REVIEW 2.1 INTRODUCTION 2.2 FACTORS THAT AFFECT FLEXIBLE PAVEMENT 2.3. COMMON FLEXIBLE PAVEMENT DISTRESSES 2.4. GEOSYNTHETICS 2.5. GENERAL FUNCTION OF GEOSYNTHETICS 2.6. TYPES OF GEOSYNTHETICS 2.7. USE OF GEOSYNTHETICS FOR ROAD CONSTRUCTION 2.8. THE IMPORTANCE OF GEOGRID REINFORCEMENT ON FLEXIBLE ASPHALT PAVE 2.9. NUMERICAL MODELING 2.9.1. Type of Modeling 2.9.2. Loading Condition 2.9.3. Numerical Modeling of Pavement Layers and Geogrid Material 2.9.4. Meshing	5 5 5 6 6 6 6 8 9 10 11 MENT 12 13 13 13 14 14 14 14 16
CHAPTER TWO LITRATURE REVIEW 2.1 INTRODUCTION 2.2 FACTORS THAT AFFECT FLEXIBLE PAVEMENT. 2.3. COMMON FLEXIBLE PAVEMENT DISTRESSES 2.4. GEOSYNTHETICS 2.5. GENERAL FUNCTION OF GEOSYNTHETICS 2.5. GENERAL FUNCTION OF GEOSYNTHETICS 2.6. TYPES OF GEOSYNTHETICS 2.7. USE OF GEOSYNTHETICS FOR ROAD CONSTRUCTION 2.8. THE IMPORTANCE OF GEOGRID REINFORCEMENT ON FLEXIBLE ASPHALT PAVE 2.9. NUMERICAL MODELING 2.9.1. Type of Modeling 2.9.2. Loading Condition 2.9.3. Numerical Modeling of Pavement Layers and Geogrid Material 2.9.4. Meshing 2.9.4. Meshing	5 5 5 5 5 5 5 5 5 5
CHAPTER TWO	

3.2.1. Some Pavement surface distress on Jimma to Sekoru road section	19
3.2.2. Severity level of damaged pavement surface	20
3.2.3. Pavement Layer Thickness and Properties	22
3.2.4. Numerical analysis (Finite Element Method Analysis) Plaxis 2D	23
3.2.5. Loading	24
3.2.6. Direct Shear Test	25
3.2.7. Input Parameters	26
3.2.8. Models	27
3.2.9. Geogrid	27
3.2.9. Evaluation of the Result	28
3.2.10 Tools	29
3.3 Study Variables	29
3.3 SAMPLING PROCEDURE AND DATA COLLECTION	30
3.4. DATA ANALYSIS	30
CHAPTR FOUR	
RESULT AND DISCUSSION	32
4.1. SURFACE CONDITION OF THE ROAD RESULT	32
4.1.1 Severity levels	33
4.1.2. Possible Cause of Pavement Surface Failures (Jimma to Sekoru)	34
4.2. ENGINEERING PROPERTIES OF PAVEMENT LAYERS	35
4.3. SUB -GRADE REINFORCEMENT	38
4.3.1. Geogrid Unreinforced and Reinforced Road, Section One	38
4.3.2. Geogrid Unreinforced and Reinforced For Road Section Two	40
4.4. DEFORMATION OF THE PAVEMENTS WHEN THERE IS GROUND WATER AT SUB	
GRADE LEVEL	42
4.5. GEOGRID LOCTION IN BOTH ROAD SECTION WHEN THERE IS NO GROUND WATER	2
Effect	44
4.5.1 Best geogrid location for road section one	45
4.5.2. Best Geogrid Location for Road Section Two	46
CHAPTER FIVE	48
CONCLUTION AND RECOMMENDATION	. 48
	0
5.1. CUNCLUSIUN	48
3.2. KECOWIWIENDATION	4ð
REFERENES	49
APPENDIX	52

LIST OF TABLE

Table 2. 1 Types of distress and its cause	7
Table 2. 2 Types of geosynthetics and their function	10
Table 3. 1 Distress type and Severity level	21
Table 3. 2 Material Properties	
Table 3. 3 Material Properties of Reinforcement	
Table 4. 1 Surface Condition of Jimma to Sekoru Road Sectiont.	
Table 4. 2 Severity Level	
Table 4. 3 Types of Distress and Observed Possible Cause	
Table 4. 4 Pavement Layer Property of Road Section One.	
Table 4. 5 Pavement Layer Property of Road Section Two	

LIST OF FIGURE

Figure 2.1 Load Distribution Of Flexible Pavement	5
Figure 2. 2 Flexible Pavement Distress	8
Figure 2. 3 Function Of Geosyntitics on Asphalt Pavement	9
Figure 2. 4 Types Of Geosyntitics	1
Figure 2. 5 Geogrid Reinforced Pavement14	4
Figure 2. 6 Vertical Settlement and Stress Effect1	5
Figure 2. 7 Effect of Geogrid1	5
Figure 3. 1 A. Jimma – Sekoru road cross section, B. Gilgel Gibe 1 Reservoir [Google Map] 1	7
Figure 3. 2 Study Design	8
Figure 3. 3 Longitudinal and Alligator crack1	9
Figure 3. 4 Rutting)
Figure 3. 5 Position of Nodes and Stress in a Soil Element	1
Figure 3. 6 Direct Shear Testing)
Figure 3. 7 Biaxial Geogrid28	3
Figure 3. 8 Analysis Chat)
Figure 4. 1 Normal Stress vs. Shear Stress for Black Cotton soil	б
Figure 4. 2 Normal Stress vs. Shear Stress for Red clay soil	б
Figure 4. 3 Total Deformation of Unreinforced Road Section One	9
Figure 4. 4 Total Deformation of Geogrid Reinforced Road Section One	9
Figure 4. 5 Total Deformation of Unreinforced Road Section Two4	0
Figure 4. 6 Total Deformation of Reinforced Road Section Two4	1
Figure 4. 7 Total Defromtion of Unreinforced Road Section One with GW at Subgrade4	2
Figure 4.8 Total Defromtion of Reinforced Road Section One with GW at Subgrade4	3
Figure 4. 9 Total Defromtion of Unreinforced Road Section Two with GW at Subgrade4	3
Figure 4. 10 Total Defromtion of Reinforced Road Section Two with GW at Subgrade4	4
Figure 4. 11 A, Unreinforced B, Geogrid Location betweeb Subbase and Subgrade of Road	
Section One4	5
Figure 4. 12 A, Geogrid Location between subbase and base B, Base and Asphalt of Road	
Section one4	5

Investigation of the Effects of Geogrid Reinforcement in Flexible Asphalt Pavement Layers

Figure 4. 13 A, Unreinforced B, Geogrid Location betweeb Subbase and Subgrade of Road	
Section Two	46
Figure 4. 14 A, Geogrid Location between subbase and base B, Base and Asphalt of Road	
Section Two	46

ACRONYMS

ASTM	American Society for Testing and Materials
CBR	California Bearing Ratio
ERCC	Ethiopian Road Construction Corporation
ERA	Ethiopia road authority
ESAL	Equivalent standard axle load
FEA	Finite Element Analysis
FEM	Finite Element Method
GW	Ground Water
MC	Mohr-Coulombs
PCS	Pavement Conditions Survey
USCS	Unified Soil Classification System
2D	Two Dimensional

CHAPER ONE INTRODUCTION

1.1. BACKGROUND

Road is the most important infrastructure, that provides access to rural and urban areas and it plays crucial role to reduce transportation costs and support economic growth through enhancement of passenger and freight movements.

Ethiopia's road network has increased from 26,550 km in 1997 to 113,066 km in 2016 (an increase of 326 percent). As a result, the road density per 1,000 sq. km has increased from 24.1 km in 1997 to 102.8 km in 2016 [1].

Nowadays, most of the road type that constructed in Ethiopia is flexible pavement. Flexible pavements are most commonly used for low to medium volume roads with significant usage also found in high volume interstate highways and airfield runways, taxiways and aprons subjected to heavy aircraft gear/wheel loads. Flexible pavements transfer wheel load stresses to the lower layers by grain-to-grain transfer through the points of contact in the granular structure. The wheel load acting on the pavement will be distributed to a wider area, and the stress decreases with the depth [2].

There are different factors that affect the performance of flexible pavement, such as under the Traffic case, the loading magnitude, configuration and the number of load repetitions by heavy vehicles, infiltration of moisture (water) can significantly weaken the support strength of natural gravel materials [3]. The presence of those factor had a great effect on the reduction of the pavement life (reduce durability) of the pavement.

Jimma to Sekoru road is one of the section of Addis Ababa to Jimma road, is one of investigated road section under this main trunk road. Which is the main trunk road and it is flexible pavement type that connect Oromia region with Southern Nation and Nationality. And it was initially constructed by Italians, in 1930 G.C. Since 1998G.C the road is under rehabilitation.

The sub grade condition of this section shows that it is covered with expansive soil and red clay soil. So this is the fact that many road failure, such as, cracks, deformation and potholes are may be caused by presence of such types of soil in large amount. Because, the properties of

the expansive soils vary from place to place due to topography, climate, geological history and formation [4].

Several researchers have done studies the effect of geogrid-reinforced pavement over the structural performance of roads through laboratory, field, and finite element methods and the result shows that when the pavement layer reinforced with the geogrid having high axial stiffness the vertical deformation (rutting) is decreased and the pavement layer improve the bearing capacity(increase the bearing capacity) [5].

1.2. Problem Statement

Distribution of expansive soil is generally a result of geological history, sedimentation and local climatic conditions. In Ethiopia, covering nearly 40% surface area of the country, expansive soils are observed in area such as central Ethiopia, following the major trunk road like Addis Ababa - Ambo, Addis Ababa - Weliso, and the most Southern, Addis Ababa – Jimma and southeast part of the capital Addis Ababa area in which the most major recent construction are being carried out [6].

The fact that expansive soils are a major engineering problem. It made this study an important research aspect due to the accruing cost involved in terms of economic loss when construction is undertaken without due consideration to the probability of their presence. The biggest problem is the presence of differential water content due to seasonal variations within the locality. Expansive soil had changed their behavior when it contacts with water, so such variation of behavior affect the performance of the pavement [6,4]. Due to expansiveness of the soil under the Pavement layers, it decreases the serviceability caused by the development of surface distresses such as cracks, potholes and ruts [7].

Different scholars are trying to stabilize (reinforced) such type of weak soil with geosynthetics material, especially with geogrid. Because when such soil reinforced with geogrid, the water will be drained easily and the bearing capacity of the soil is improved. In addition, a geogrid material had the ability to increase fatigue resistance, reduce rutting and limit reflective cracking when properly used [8].

Hence, this research focused on the different factors causing deformation of pavement layers by using finite element method, including the selection of the best geogrid location for the selected pavement layers.

1.3. Research Questions

The research questions that this study sought to answer are as follows.

- 1. What are the factors responsible for pavement distress/failure?
- 2. Can geogrid reinforcement enhances the stability of pavement?
- 3. What factors influences the effectiveness of geogrid reinforcement?
- 4. Can geogrid reinforcement makes sustainable within the pavement design life?

1.4. Objectives

1.4.1 General Objective

The general objective of the study is to evaluate the effects of Geogrid in flexible asphalt pavement using numerical method/PLAXIS 2D analysis.

1.4.1 Specific Objectives

- > To identify the different types of distresses and evaluate its severity level
- > To assess the engineering properties of the different pavement layers
- To conduct sensitivity analysis considering geogrid location, number of geogrid layers and ground water condition.
- > To validate the effect of geogrid reinforcement in stabilization of pavement failure

1.5. Significance of the study

Effectiveness of geogrid materials in flexible pavement reinforcement was investigated throughout finite-element analysis (FEA). The analysis was carried based on the current pavement layers engineering properties and evaluate the effectiveness and location of geogrid on the sections.

Addis Ababa to Jimma road section is one of the major road section that need a grate maintenance and reconstruction. Still now some section from this major road has been under maintenance and Jimma to Sekoru road section is one of the section that ERA put it to be reconstructed. Therefor the stakeholders such as ERA (Ethiopian Road Authority) and ERCC (Ethiopian Road Construction Corporation) use the result of the finding to go for their aim of

maintenance and reconstruction.

In addition to this research would be plat form for the research institutions, because such type of research wasn't done before.

1.6. Scopes of the Studies

This research was focused particular on investigation of effectiveness of geogrid by evaluating the vertical deformation only. But there are some base points before evaluation, such as:

- Exploring some of pavement surface condition and rating the severity level. This is important only to know how much damaged and used to identify types of distress.
- Determining engineering properties of each pavement layers. This is not conducted in field or laboratory, hence the values were taken from ERA and USCS.
- Properties of geogrid materials also taken from journals based on ERA manual and subgrade soil properties.
- Based on the plaxis 2D software output values compare and evaluate the vertical deformation of geogrid reinforced and un-reinforced section on both dry and wet season. But rainfall data's were not considered in this research
- Lastly at which layer does geogrid decrease the vertical deformation on both section?

Finally conclusions and recommendation were listed based on the results as per the specific objectives.

CHAPTER TWO LITRATURE REVIEW

2.1 Introduction

A flexible pavement is a load bearing structure, consisting of layers of different granular materials above the earth. According to Ethiopian road authority (ERA 2013) manual flexible pavement is defined that, it is simply a pavement that does not include a layer of high strength concrete, it include pavements with unbound granular aggregate layers and pavements with aggregate layers that are bound together with bitumen. Making a safe riding base without any discomfort for the passenger and vehicles due to excessive deformation of pavement structures, that is the primary function of flexible pavement. The objective of flexible pavement design is, to avoid the excessive flexing of any layer, failure to achieve this will result in the over stressing of a layer, which ultimately will cause the pavement to fail. In flexible pavements, the load distribution pattern changes from one layer to another, because the strength of each layer is different. The strongest material (least flexible) is in the top layer and the weakest material (most flexible) is in the lowest layer. The reason for this is that at the surface the wheel load is applied to a small area, the result is high stress levels, deeper down in the pavement, the wheel load is applied to larger area, and the result is lower stress levels thus enabling the use of weaker materials. Some pavement parameters such as pavement layers thickness, quality of pavement materials and environment conditions affect the pavement durability [3, 5, 9,].

Figure 2.1: Load distribution of flexible pavement (11)

2.2 Factors That Affect Flexible Pavement

There are different factors that affect flexible pavement, among this, increasing traffic intensity, high tire pressure, increasing axle loads etc. are causing early signs of distress to bituminous pavements throughout the world. Permanent deformation cause rutting that affect vehicle steering and the deep rutting also causes longitudinal cracks where they drain free water into the underlying pavement layer, which means indirectly it increase deterioration rate. The deterioration of the paved roads in tropical and subtropical countries differs from those in the more temperate regions of the world. This can be due to the harsh climatic conditions and sometimes due to the lack of good pavement materials and construction practices. (10, 11)

The deterioration of paved roads caused by traffic results from both the magnitude of the individual wheel loads and the number of times these loads are applied. It is necessary to consider not only the total number of vehicles that will use the road but also the wheel loads (or, for convenience, the axle loads) of these vehicles. Moisture (water) may enter through the cracks and holes that arise on the pavement surfaces, this may cause weakening of the support strength of natural gravel, especially the subgrade and also from the underlying water table through capillary action.

If the subgrade is too weak to support the wheel loads, the pavement will flex excessively which ultimately causes the pavement to fail. If natural variations in the composition of the subgrade are not adequately addressed by the pavement design, significant differences in pavement performance will be experienced. Failure to obtain proper compaction, improper moisture conditions during construction, quality of materials, and accurate layer thickness (after compaction) all directly affect the performance of a pavement. (3, 9)

2.3. Common Flexible Pavement Distresses

One of the most common problems afflicting flexible pavements is cracking of the asphalt surface. The rapid reappearance of these cracks through an asphalt surface that is laid directly over them is a well-known phenomenon that must be solved [9].

According to [12] the defects on pavements, usually quantified through pavement condition survey, can be classified into three major modes of distress, cracking (fracture), disintegration and Permanent deformation.

Table 2.1 shows types of distress, its cause with brief description and figure 2.2 also show some

of flexible pavement distress types that frequently seen.

Mode	Туре	Brief Description	Primary cause
Cracking	Alligator	Interconnected polygon of less than	traffic
		300mm diameter	
	Longitudinal	Line crack longitudinal along	Material/climate
		pavement	
	Transversal	Line crack transverse along pavement	Material/climate
	Block	Intersecting line crack in rectangular	Material/climate
		pattern	
Disintegration	Raveling	Loss of stone particles from surface	Material/climate
	Rutting	Open cavity in surface >150mm	traffic
		diameter and >50mm depth	
	Edge break	Loss of surface at the edge	traffic
Deformation	Rut	Longitudinal depression in wheel path	Traffic
	Depression	Bowl shape depression	Material/climate
	Mound	Localized rise of surface	Material/climate
	Corrugation	Transverse depression at close spacing	Material/climate
	Undulation	Transverse depression at lunge	Material/climate
		spacing>5m	
	roughness	Irregularity of pavement surface in	Traffic/
		wheel path	Material/clim

Table 2.1 Types of distress and its cause [12].

Most of the time such types of distress was seen after construction of pavements. This means when the pavement is opened for traffic. Thus, distress is the combined factor of traffic load (wheel load) and environmental condition of the given area.

Figure 2.2 Flexible pavement distress [14]

2.4. Geosynthetics

Geosynthetics are a class of geo-materials that are used to improve soil conditions for a number of applications. They consist of polymeric materials manufactured in different forms The most common applications to roads are for reinforcing embankments and foundation soils, creating barriers to water flow in liners and cut-offs, and improving drainage. [13].

The geosynthetics products most commonly used in roadway systems include geotextiles (woven and non-woven) and geogrids (biaxial and multi-axial), although erosion-control products, geocells, geo-nets (or geo-composite drainage products) and geo-membranes have also been incorporated in a number of applications These various types of geosynthetics can be used to fulfill one or more specific functions in a variety of roadway applications. For example, geosynthetics have been in use since the 1970s to improve the performance of unpaved roads on soft subgrade soils [14, 15].

2.5. General Function of Geosynthetics

The three primary uses of a geosynthetics in a pavement system are to serve as a construction aid over soft subgrades, improve or extend the estimated service life of the pavement, and reduce the thickness of the structural cross section for a given design period.[13]. Some or all of these objectives are normally achieved through at least one of the four functions and figure 2.3 clearly demonstrate the function of geosynthetics.

- Separation: it placed between two dissimilar materials to maintain the integrity and functionality of the two materials. It may also involve providing long-term stress relief
- Filtration: it use to allow liquid flow across its plane, while retaining fine particles on its upstream side.
- Reinforcement: The geosynthetics develops tensile forces intended to maintain or improve the stability of the soil geosynthetics composite and the geosynthetics tensile strength property must be properly determined before use.
- Stiffening: The geosynthetics develops tensile forces intended to control the deformations in the soil-geosynthetics composite [15].

Figure 2.3 Function of geosynthetics on asphalt pavement [15]

2.6. Types of Geosynthetics

There are different types of geosynthetics with their different function. The following table 2.2 gives more information about them, for instance geotextile, geogrids and geonets has used as a separators, this shows that such types of geosynthetics have the same function even if they made from different material and figure 2.4 shows types of geosynthetics diagrammatically.

Type of geosynthetics	Description	function		
Geotextile	Woven and non-woven type	separators, filters drainage layers		
Geogrids	There are different types of geogrid are used in worldwide such as plastic, triaxial, Biaxial, uniaxial	Separation ,reinforcement and filtration		
Geonets	Made from polymers, plastic type of geonets were largely used	Separation ,filtration		
Geosynthetic clay liners (GCLs):	Made of clay bonded to a single geosynthetics layer or to multiple geosynthetic layers.	hydraulic barriers		
Geomembranes	polymeric material	separation		
Erosion control materials	degradable and non-degradable products	work with accompanying vegetation to form a bio-composite solution to erosion		

Table 2.2	Types of	googynthatiog	and thair	function	F 5 1	51
1 abie 2.2	I ypes of	geosynmetics	and men	Tunction	[J, I	J

Figure 2.4 Types of geosynthetics [15].

2.7. Use of Geosynthetics for Road Construction

In many ground-engineering problems, geosynthetics are mainly required to perform its function in full capacity, only for a limited duration: for example, within temporary haul roads, basal reinforcements for new embankments, vertical drainage to increase shear strength, etc. Among different geosynthetics a geotextile is one of it and it can perform one or several functions to improve the mechanical and or hydraulic behavior of the structure in which it is incorporated, for instance using the coir-geotextile reinforcement is a superior solution for the construction of roads on weak subgrade soils. [16]

Geosynthetics clay liners (GCLs) are also used as environmental protection barriers in transportation facilities (roads and railways) and geotechnical applications such as minimizing pollution of subsurface strata from accidental spills and seepage of chemicals from road accidents. [17]

According to [18] the geo-cell- reinforcement reduced the vertical stresses transferred to the subgrade by distributing the load over a wider area and base sections and the base sections over moderate subgrade showed a stable response whereas the unreinforced base over weak subgrade showed unstable response.

Expanded Polystyrene (EPS) Geo-foam has a remarkably high strength-to density ratio and the standard material types available worldwide are capable of supporting long-term compressive stresses up to approximately 100 KPa (2000 lb/ft2). Because of its uniquely low density, the use of EPS as lightweight fill generally does not require using additional ground improvement techniques such as preloading or soil mixing when soft ground conditions exist at a project sire. [19]

In addition to this now a days different countries are use geogrid as a reinforcement material for road construction and it is used to increase stability and improve performance of soft and weak subgrade in roadways. If it is placed between pavement layers, it provides subgrade restraint, stabilizes aggregate particles, and increases the bearing capacity of a pavement structure. Due to the wide application of this technique, many experimental and analytical studies have been conducted to assess and potentially quantify the improvements associated with geogrid base reinforcement of roadways [20].

2.8. The importance of Geogrid reinforcement on Flexible Asphalt Pavement

The quality of materials for subgrade, sub-base and base has a great effect on the life of pavement. The nature of subgrade soil has the most important effect among other materials. There is a real concern in construction flexible pavements over a weak subgrade and the California bearing ratio (CBR) is critical parameter and very low for such soils. Therefore, pavement constructed on such problematic soil needs improvement [21]. Now a days many scholars are use geogrid as reinforcement for flexible asphalt pavement because, geogrids are very good in improving shear strength properties when used as a reinforcement on pavement layer it make the pavement layer stiffer and reduces the deformation due to repeated wheel loads and it provides lateral confinement to resist the lateral movement of aggregates by the interlocking effect that happens between geogrid openings and surrounding aggregates. The presence of geogrid affects the resilient behavior of stabilized bases and benefits the stabilized bases by reducing permanent deformations (i.e. rutting) [22, 23, and 24].

Prof Vikram, J.P and et.al conduct their studies on one of Indian place called Shirpur city which is highly affect by the heavy ground water and high pavement failures was also happened due to the presence of ground water on this area. To reduce such problem on the pavement they use geogrid as reinforcement to stabilize the soil and to decrepit water from the road. In the previous history of the area there was traditional practices to undercut and stabilization soils but this solution is often costly and always time-consuming.

Geogrids are often used as a replacement for these traditional solutions and it helps to increase the bearing capacity of the subgrade soil while greatly reducing the loss of the aggregate cover material into weak, wet, or saturated subgrade soils. The use of geogrid also provides, extensive cost savings and decreased life cycle costs when compared to other structural solutions [25].

2.9. Numerical Modeling

The finite element method (FEM), sometimes referred to as finite element analysis (FEA), is a computational technique used to enhance and insures the safe design solutions for problems in engineering. The effectiveness of finite element method is based on the type of problem, on several mathematic/physical principles [26].

2.9.1. Type of Modeling

There are different ways of material modeling, in most geotechnical engineers the phase 'strength of soil' raises up image of Mohr –Coulomb failure criteria. Mohr –Coulomb failure criteria is concerned with stress conditions on potential rupture plane within the soil and it says that failure of soil mass will occur if the resolved shear stress on any plane in that soil mass reaches a critical value [27]. During finite element analysis was done for granular materials at low stress level Mohr-Coulomb material model was used [22].

The linear elastic model is extensively used in pavement analysis, mainly due to its simplicity. However, it cannot adequately model the behavior of unbound pavement layers composed by soils and other granular materials [28].

2.9.2. Loading Condition

To carry finite element method and to simulate the materials, it must to identify types of loading condition. In general there are two types of loading conditions, static and dynamic loading? Some scholar are used both type of loading at different time for the same pavement layers [20] use both type of loading but the effect of dynamic loading frequency on pavement behavior was significant only for high stress amplitude. It is possible also to model flexible pavement as a multilayer structure subjected to static loading. To model the vehicle load axisymmetric modeling was used, because the load is act as circular [29].

2.9.3. Numerical Modeling of Pavement Layers and Geogrid Material

Faheem. H et al. [20] ware used axisymmetric pavement response model developed through the FE program PLAXIS and Bituminous concrete layer and geogrid were modeled as a linear elastic isotropic material. While the Mohr- Coulomb material model was adapted to represented granular base material. An axisymmetric model was utilized in the analysis using 15-noded structural solid element with medium refinement. Axisymmetric modeling was chosen in this study because it could simulate circular loading and did not require excessive computational time under dynamic loading. As per there analysis, the pavement performance was evaluated by changing the axial stiffness of geogrid material and also vary the location of geogrid on the same pavement. Then the result shows that, when the axial stiffness of geogrid increases the pavement increase its strength and no significant in vertical displacement is gained by placing two geogrid on two places (reinforce geogrid between, asphalt and base as well as base and sub base) and figure 2.5 indicates such condition clearly

As a result of the research that they conducted and plaxis 2D software they are clearly illustrate the effect of geogrid reinforced and unreinforced section on the figure 2.6 below. As the applied stress increase the vertical deformation of the pavement reduces when geogrid was reinforced than the unreinforced one.

Figure 2.6: Vertical Settlement and Stress Effect [20]

Moayedi,H et.al [30] also want to show the effect of geogrid location on paved road, from their analysis, when the load is applied to the surface of the pavement, a zone of tension is developed at the lower section of the asphalt concrete layer as depicted from Figure 2.6. To improve the rigidity of the asphalt concrete layer, which may be considered as a beam, the geogrid is included as tensile reinforcement.

Figure 2.7: Effect of geogrid [29].

2.9.4. Meshing

The composition of finite element is called "Mesh". So when the mesh is generated, finite element analysis was carried. In particular for stability and bearing capacity problems, the accuracy of the solution depends on the type and size of the elements. Upon global or local mesh refinement, the accuracy of results tends to improve. In addition to the refinement of the mesh the quality of the mesh has to be considered [31]. The research called Adel also use typical finite element mesh consisted of 15473 nodes and 5006 eight-node axisymmetric quadrilateral elements (PLANE82 elements) and Geogrid has been modeled using 360 three- node axisymmetric shell element (SHELL 209 elements). He use the ANSYS software for the simulation of pavement with the selected mesh element [29].

CHAPTER THREE MATERIALS AND METHOD

This chapter focuses on the methodologies and materials that was used during the execution of the research and also showed the different variability, what the study design (steps of the research) was clearly defined, sampling process, data collection process and data analysis were discussed.

Starting from general over view of study area, Investigation of the existing pavement with identification of the distress type and severity level, selection of critical section of the pavement based on the sub-grade soil properties and selection of material modeling was clearly defined.

3.1. Study Area

Jimma to Sekoru road section is one of the road section which is found on the way Jimma to Addis Ababa national road, and the total distance is 99 km as shown from Figure 3.1 A. The study area is located It has a latitude and longitude of 7°40′N 36°50′E. Sekoru is one of the woredas in the Oromia Region of Ethiopia and it is also administered under Jimma zone. The altitude of this woreda ranges from 1160 to 2940 meters above sea level. The Gilgel Gibe 1 reservoir is also located behind to this road section around Deneba as it is shown on the figure 3.1 B below.

Figure 3. 1 A. Jimma – Sekoru road cross section

3.2. Study Design

The overall flow of the study design of this research was started from the site selection of study area as it is shown on figure 3.2 and it is used to identify the more affected section. Direct field survey and literature was the second most important task. It also incorporate identification of distress types with their extent as a primary data that was registered from the site as well as assessing the engineering properties of the selected pavement layers as secondary data. The secondary data's were taken from Ethiopian Road Construction Corporation (ERCC) Jimma district and it use as an input parameter for the analysis. The analysis of this research was conducted by using the finite element method (PLAXIS 2D) software.

Figure 3.2: Study Design

The study design of this research is generally had a collaboration of distress identification, assessing the engineering properties of the pavement layer and also software simulation are some of them. So the next statements were clearly shows what the design looked like

3.2.1. Some Pavement surface distress on Jimma to Sekoru road section

The researcher was conducted pavement condition survey (PCS) of the study area by measuring the damaged pavement surface. The relevance of this task was, to evaluate the existing condition of pavement surface and to identify types of distress. Execution of such survey was important to go to the next work, without knowing the existing condition of the pavement, it is meaningful to talk about effects of geogrid. But the field measurement result is not the same with the software result, because the existing pavement surface deformation was occurred due to the repetitive effect of axle load within a long period of time and the software result was simulated without bearing in mind the time impact.

This task was done directly on the field and the following points show clear steps on this stage:

★ Measuring the length and width of cracks as well as the direction of crack along the wheel path or parallel to center of pavement. This is important to identify types of distress and to know the severity level based on the measurement, for instance to say this is alligator crack or longitudinal crack see the extent of severity

Figure 3.3: Longitudinal and Alligator Crack

★ Depth of pavement distress, this is important to clearly identify how much pavement surface is deformed. For example figure 3.4 shows that there is rutting after the road depth was measured.

Figure 3.4: Rutting

★ By observing distress and defect to the pavement surface, predict the possible cause of failure. Every distress cannot have the same cause to be happened, therefore is vital to identify the cause of the distress.

Therefor the above points were taken as primary data to this research and all information also recorded and evaluated as per [33].

3.2.2. Severity level of damaged pavement surface

It is must to know how much the pavement surface is damage, after measuring and identifying distress types. Table 3.1 clearly describe types of distress with their severity level. For instance if the crack width of longitudinal crack is less than 6mm, it shows that it is low damaged pavement and the same is true for pavement having crack depth greater than 50mm in depth, it indicates that the pothole on that section is high. In addition to this knowing the extent of pavement damage is used to identify that the pavement needs reconstruction or maintenance. Based on the damaging scale and degree of the pavement, the travelling public are affected their riding comfortability, as well as their safety.

Distress type	Severity level	Description	
Longitudinal cracking	Low	crack with a mean width ≤ 6 mm; or a sealed crack with sealant material in good condition and with a width that cannot be determined	
	Moderate	Any crack with a mean width > 6 mm and \leq 19 mm; or any crack with a mean width \leq 19 mm and adjacent low severity random cracking.	
	High	Any crack with a mean width > 19 mm; or any crack with a mean width \leq 19 mm and adjacent moderate to high severity random cracking	
Edge cracking	Low	Cracks with no breakup or loss of material.	
	Moderate	Cracks with some breakup and loss of material for up to 10 percent of the length of the affected portion of the pavement	
	High	Cracks with considerable breakup and loss of material for more than 10 percent of the length of the affected portion of the pavement.	
Alligator crack	Low	An area of cracks with no or only a few connecting cracks; cracks are not spelled or sealed; pumping is not evident.	
	Moderate	An area of interconnected cracks forming a complete pattern; cracks may be slightly spelled; cracks may be sealed; pumping is not evident.	
	High	An area of moderately or severely spelled interconnected	

 Table 3.1: Distress type and Severity level [33]

		cracks forming a complete pattern; pieces may move when subjected to traffic; cracks may be sealed; pumping may be evident.		
Potholes	Low	< 25 mm deep.		
	Moderate	25 mm to 50 mm deep		
	High	> 50 mm deep.		
Rutting	Not applicable. Severity levels could be defined by categorizing the measurements taken. A record of the measurements taken is much more desirable, because it is more accurate and repeatable than are severity levels.			

In general knowing the severity level of pavement distress is important to predict what types of maintenance that the road is needed.

3.2.3. Pavement Layer Thickness and Properties

On the selected road section there was two type of expansive soil exist as subgrade soil and the sub base layer thickness is also vary. The CBR value of subgrade soils are ranged 5%-7%. This is important to know their strength and as per ERA manuals such types of soil is classified under the weak soil type.

Therefore two pavement sections were selected based on subgrade soil and thickness variation, those sub grade soil properties are not the same so it was better to see them separately. The need to select two type of pavement section was to evaluate the performance of the pavement and it use to know effects of geogrid on such subgrade soil type.

Both road section had four layers such as

- Asphalt layer
- Base course layer
- Sub base course layer
- Sub grade layer

But they have different sub grade soil type and all others layer are the same, like sub base and base course had crushed aggregate material and their CBR value are greater than 80%. This indicates that the materials are so strong to bear incoming load.

The first pavement section had Black Cotton soil as sub grade and the second one had Red Clay

soil as sub grade material. This classification was based on their CBR values, because the current practices of ERA for the design of highway is depend on the CBR values of soils.

Those soils have different engineering properties in all season, or their properties were changed when the environmental condition had also changed.

Therefore the pavements layer thickness and properties were taken from ERA AutoCAD design reports and appendix 6 and 7 shows the two pavement section. Each layer had their own CBR values and based on their CBR values modules of elasticity and Poisons Ratio were define from ERA manual and those values were written on table 3.2. The CBR value for base and sub base was grater that 80, this means the materials are strong. But all the sub grade CBR value is less than 15, therefore the subgrade material strength is weak.

 Table 3.2 Material Properties [9]

Material	Elastic modulus (MPa)	Poisson's ratio
Asphalt surface	3000	0.35
Base course layer	300	0.30
Sub-base layer	175	0.30
Subgrade layer	53	0.35

The CBR value could change by using different institution of laboratory test equations. The most popular equations throughout the world is equation 3.1 and For Poisson's ratio, the common practice is to use typical value based on the type of material as required in equation 3.2

E=250CBR ^{1.2} (1500CBR) Psi	3.1[9]
$V = \Sigma D / \Sigma L$	3.2
Where	
$\Sigma D = \Delta D/D =$ is strain along diametrical (horizontal) axis.	
$\Sigma L = \Delta L/L =$ is strain along longitudinal (vertical) axis.	

3.2.4. Numerical analysis (Finite Element Method Analysis) Plaxis 2D

The major thing that the researcher performed in this stage was first specifying proper dimension and select axisymmetric modeling(assuming the load as circular) with 15-noded element of the pavement , because the 15-node triangle is a very accurate element that has produced high quality result and one 15 –node element can be thought of a composition of four 6-node element , since the figure below shows that the total number of nodes and stress points is equal, so that one 15-node element is more powerful that 6-node element.[31]

Figure 3.5: Position of Nodes and Stress in a Soil Elements [31]

3.2.5. Loading

For the design and analysis case the load was considered as either static loading or dynamic loading, but for this research, it was considered only the static load than dynamic loading, because static load is best to see the vertical deflection of the section and the CBR value is a static property that can't account for the actual response of the pavement under the dynamic loads of moving vehicles. In addition to this, when the dynamic loading is assign no significant geogrid reinforced pavement behavior is observed [19, 13].

Load configuration has an effect on the stress distribution and deflection within a pavement. Many trucks have dual wheels which guarantee that the contact pressure is within the limits. In this study for simplification of the analysis, the dual wheels are converted into an equivalent 80 KN single axle load (ESAL).

To determine the axle load, it was important to know the contact area of wheel. The load distribution assumed to be uniformly distributed load. In this study, only wheels on one

side (the outer wheel path) need to be considered. Each tire is assumed to have circular contact area. The tire spacing assumed with a typical distance between dual tires of 35 cm and tire radius of the contact area for commercial vehicles is 10.75cm [35]. Since the load is analyzed using 80 KN single axle load (ESAL), the tire pressure is calculated using Equation

$$P=F/A = F/\pi r^2 = 80/2 \pi * 0.10752 = 550 \text{ MPa...} 3.3$$

In this research both pavement layer analysis with and without geogrid and by generate ground water up to top sub-grade surface. The relevance of such analysis is:

- ✓ First to see and compare the maximum pavement layer deflection when the pavement is at dry condition (dry season).
- ✓ Second to evaluate pavement layer deformation reduction with in this dry season if the pavement ware reinforced with geogrid
- ✓ The other one to evaluate the pavement layer deformation at rain season, by assuming that if the worst condition is happened and the ground water will rise until the surface of the sub grade layer of the pavement and evaluate deformation reduction after geogrid reinforcement.

3.2.6. Direct Shear Test

To determine the shear strength properties of the subgrade soil material of the study area it is important to conduct direct shear test by following the procedure on ASTM D 3080.

Direct shear test used to determine the consolidated drained shear strength of a soil material.

This test can be used for all soil materials and undisturbed, remolded or compacted materials. There is however, there is a limitation on maximum particle size. The minimum specimen diameter for circular specimens, or width for square specimens, shall be 2.0 in. (50 mm), or not less than 10 times the maximum particle size diameter [39].

The researcher was conduct the direct shear test for the sub grade soils. The need to conduct this test is only to see the current shear strength parameters of those soils, however the test was not recommended for expansive type of soils. But with the absence of triaxial test it is possible to use it. Figure 3.6 below shows that the clear procedure of the test, that the researcher was following during the laboratory testing and also preparing the samples, operating the machine

and taking the reading from the machine.

Figure 3.6: Direct Shear Testing

3.2.7. Input Parameters

The input parameter that the researcher was used for the plaxis 2D software with their measurements are:

 \diamond Material types,

- \diamond Material modeling
- ♦ Pavement Thickness
- \diamond Young's modulus(KPa)
- ♦ Poisson's ratio
- \Rightarrow Dry density (KN/m3)
- ♦ Wet density(KN/m3)
- ♦ Cohesion(KN/m3)
- ♦ Friction angle(degree)

3.2.8. Models

There are two most important types of modeling was selected as per the material type and their properties, those are linear elastic model and Mohr coulomb model.

Linear Elastic Model

Linear elasticity is a mathematical **model** of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of **elasticity** and a branch of continuum mechanics. If the constitutive stress-strain low is restricted to be linear also we call it linear elastic solid [37].

It is insufficient to capture the essential feature of soil, this is due to soil behavior is highly non-linear and irreversible, therefore linear elastic model is used to model massive structures, so during analysis of this research linear elastic model was used for the asphalt and geogrid material.

Mohr – **Coulomb Model** (MC) is linear- elastic -perfectly -plastic model that involve the five input parameters ,i.e E and V for soil elasticity ; ψ as an angle of dilatancy, Φ and C for soil plasticity [31].

The most popular formula of this model and that is incorporated in plaxis 2D software is

 $\zeta = c + \sigma \tan \Phi..... 3.4$

Where ζ = shear strength

 Φ =angle of internal friction c=cohesion σ =normal stress

3.2.9. Geogrid

The geogrid type that the researcher used in this research is based on ERA manual and those condition that was listed in the manual was satisfied. Therefore Jimma to Sekoru road section fulfilled the condition and the researcher decided to use Bi –axial geogrid, because it exhibit significant stiffness and strength in two orthogonal directions. In these materials, the ribs and junctions provide geometrical stability during transport and installation and may provide the possibility of interlock with the soil in which they are placed. The average axial stiffness of geogrid was used in this research which means 600 KN/m.

Type of Material	Material Model	Axial Stiffness
Geogrid	Linear Elastic	200-1000KN/m

Anisotropic biaxial geogrids exhibit dissimilar stiffness's in the two principal directions. They are used in anisotropic loading conditions, i.e. where there is a primary and a secondary degree of loading/strain. Isotropic biaxial geogrids exhibit very similar stiffness's and strengths in the two orthogonal directions. They are used in isotropic loading conditions, i.e. where there is almost an equal degree of loading/strain in two orthogonal directions [32].

Therefor based on the loading condition of this research, the researcher select isotropic biaxial geogrid with its axial stiffness.

Figure 3.7: Biaxial Geogrid [32]

3.2.9. Evaluation of the Result

Finally the total deformation of the pavements was computed based on the plaxis 2D output result value and figure 3.5 shows how the computation was carried, as per the figure the first thing was total deformation was simulated the pavement only, which means without geogrid reinforcement and ground water generation. All other analysis was computed in reference with this pavement.

Figure 3.8: Analysis chart

Finally based on the results from the analysis, each conclusion and recommendation was drawn.

3.2.10 Tools

There was tools also that used in this research during field survey and for the analysis. Such as:

- > Meters to measure crack length, width and depth,
- > Excel sheet format that used to write crack and deformation history,
- Microsoft words that used to writ the overall progress report of the research and
- Plaxis 2D software that used to carry analysis.
- > XMIND software

3.3 Study Variables

Dependent Variables: Performance of flexible pavement

Independent Variables: Surface conditions of the

- : Engineering properties of pavement layers
- : Geogrid Type
- : Geogrid Location

3.3 Sampling Procedure and Data collection

The sampling technics is non-probabilistic, purposive which means pick out the sample in relation to some criterion from the pavement layer. Both qualitative and quantitative data's were used. The qualitative data's the data was expressed in word based on the research objectives and the quantitative data's are data's that was expressed numerically, which means the numerical data from the site and software. To collect the samples that used for the research the major criterion that the researcher was used:

- Select the most affected section of the road, for example looking and measuring the crack width, length and depth.
- Based on the above information, identify what types of distress is that and predicting the possible cause.
- Then put the severity level, that is important to identity the most damaged part of the pavement

The data collection process were conducted as per the research objective and research questions. Both primary and secondary data's were collected.

Primary data's were data's that was taken directly from the field. Secondary data's were data's that was taken from ERA Jimma office AUTOCAD file, laboratory result, ERA manual and (Unified Soil Classification System)USCS and those materials are attached at the end of this research page Those manuals and standards were used to know each pavement layers properties in detail. Because those parameters was the input for the software.

3.4. Data analysis

The data analysis was conducted by using plaxis 2D software and the analysis expressions as follows

- ♦ First all the proper dimension of pavement layer was drown and choose units of measurement
- \diamond Selection of element and modeling type
- ♦ All pavement material was alleged on each pavement layer
- ♦ Load was assigned
- \diamond No horizontal movement is allowed ,only vertical movement was assumed
- ♦ Finite element analysis were executed before calculation by generate mesh
- \diamond Then assign the ground water if there is
- ♦ Initial pore pressure was conducted

Finally under calculation stage by selecting plastic analysis to see deformation in pavement layer and from the output take total deformation for all pavement with and without geogrid.

Lastly comparatively evaluate total deformation from all calculation and select the best geogrid location for both selected pavements.

CHAPTR FOUR RESULT AND DISCUSSION

This chapter in general shows that the result of the study as per the specific objectives and their clear discussion of them. The first part of this chapter presents the existing pavement surface condition of the road section as per the field investigation, the second part cover identification of some of engineering properties of each pavement layer. It was done based on ERA manual, laboratory report and USCS. Third one, a comparative study of vertical deformation between the sub grade geogrid reinforced and unreinforced road section, then the other one is the comparative total deformation study of the pavement when the ground water level reaches at the sub grade level. Finally, the reinforced pavement layers by geogrid and show the best location of the geogrid based on the vertical deformation value of plaxis 2D output.

4.1. Surface Condition of the Road result

As per the field observation and investigation of the existing road section of Jimma to Sekoru, the existing surface condition of the road had different types of distress on both sections. Almost half of the distress among the sample was observed on the right side of the pavement direction towards Addis Ababa to Jimma. Table 4.1 also shows that rutting, edge and longitudinal cracks were observed on the right side of the pavement.

SAMP LE NUM BER	SIDE	Offset from CL (m)	(mm) HTUW	DEPTH (mm)	LENGTH (m)	EMBANKMENT	SHOULDER	CARRIAGEWAY	CONDITION OF CRACK
1	RS	1.9	8		5.0	•			Edge and Longitudinal crack
2	RS	1.0	12		4.4	•			Edge and Longitudinal crack
3	RS	0.5	1600	800	8.6			٠	Rutting
4	RS	1.6	25		8.6			•	Longitudinal crack
5	С	-	1300	600	2.1				Rutting
6	LS	2.0	25		7.4		•		Longitudinal crack

Table 4.1: Surface Condition of Jimma to Sekoru Road Section

7	LS	1.2	600	100 0	1		٠		Rutting
8	RS	0.5	-	500	10			•	Rutting
9	LS	-	300	700	10			•	Longitudinal crack
10	RS	_	1000	-	1.2		•		shoulder bulging out
11	С	-	1300	50	2.6			•	Longitudinal crack and pothole
12	С		1000	400	1.5			•	Rutting
13	RS		10		2.3			•	alligator crack
14	ALL				70	•	•	•	Total pavement damage and the base course material also observed
15	С				17			•	pavement bulge out
16	RS	2.0	8	-	5		•		alligator crack
17	RS		20		5		٠		Edge crack
18	LS		1000	40	3		•		Edge crack and pothole

The main importance of studying of pavement distress was used to reach on the decision whether this road need rehabilitation or reconstruction. Also, it served to validated the existing condition based on ERA manuals that the rapid reappearance (or reflection) of these cracks through on asphalt surface that is laid directly over them, is a well-known phenomenon that must be solved as part of the rehabilitation process [9].

4.1.1 Severity levels

The severity level of both investigated sections of road depends on the above table 4.1 information, because in order to talk about its severity level, it is important to know the depth, width and length of cracks. Edge crack, longitudinal crack and rutting are on high severity

level than others table 4.2 also clearly identify this distress.

As a result shows the road is highly damaged even around 17meter length of the section is totally destroyed and it cause disruption on transportation system. Due to such effect of road damage passengers feel discomfort and it may cause traffic accident.

As per the history of Addis Ababa to Jimma road such types of pavement distress with their severity level was recorded and they are trying to maintain some road section but, still now they are working with reconstruction and rehabilitations of some section of this road [unpublished document 36].

Distress type	Severity level
Edge crack	high
Longitudinal crack	high
Alligator crack	moderate
pothole	moderate
Rutting	high
Total pavement damage	high

Table 4.2 Severity Level

In general Jimma to Sekoru road corridor need some improvement to increase the serviceability life and to decrease discomfort to passengers.

4.1.2. Possible Cause of Pavement Surface Failures (Jimma to Sekoru)

Always if there is distress in a pavement there must be a cause to that distress to be happening. Therefore, for those distress listed before there is a possible cause that was observed from the field. Poor drainage, poor construction quality and weak subgrade material are the main cause to this pavement to be failed that clearly illustrated on table 4.3

Types of distress/defect	Description	Observed possible cause
Edge crack	Crescent-shaped cracks or fairly continuous cracks which intersect the pavement edge and are located within 0.6 m of the pavement edge, adjacent to the shoulder	Poor drainage And it may be weak shoulder

 Table 4.3: Types of Distress and Observed Possible Cause

Pothole	Bowl-shaped holes of various sizes	Poor drainage and weakness
Longitudinal	Cracks predominantly parallel to the payement centerline	Poor construction joints
Alligator crack	Interconnected crack forming a series of small block resembling an alligator skin	When the bearing capacity of the pavement is lower than the incoming load Poor sub grade quality Saturation of the sub grade material
Rutting	A longitudinal surface depression in the wheel path. It may have associated transverse displacement.	Joining of pavement layer under traffic It may be insufficient pavement thickness during construction
Total pavement damage and the base course material also observed	Total destruction of the pavement	Poor construction quality Poor pavement material Poor drainage facility Excessive incoming load from the vehicle's

4.2. Engineering Properties of Pavement Layers

It is important to know the engineering properties of each pavement layer, because finite element analysis of pavement depended on such property. Those pavement layer properties of each investigated section were taken from the ERCC Jimma district laboratory test result Such as dry and wet density of pavement layers were taken and clearly show on Table 4.4 and 4.5 shows engineering properties for road section one and road section two respectively.

For dry and wet density of pavement layers, the laboratory result was reported in kg/m³ but to use such result as an input for the software, it must be changed to kN/m^3 , therefor it need conversation factor that convert kilogram in to kilo newton.

1 kN = 102 kg, which means 1kg =1/102=0.00980392157 so all units much be changed

The value of young's modules and poisons ration are depend on the CBR values of pavement materials, based on CBR values those parameters were extracted from ERA manuals. Like that of CBR value depending on the material type it is possible to take the angle of internal friction and cohesion from standard.so to get more information on the sub grade strength properties look at appendix 1(USCS) and appendix 2(ERA 2013) at the end.

In addition to this, from the direct shear test for the subgrade soils angle of internal friction and

cohesion was taken. But those parameters were taken after the shear stress and the normal stress graph was constructed. So figure 4.1 and 4.2 clearly illustrate the graphs for both soil types. For instance figure 4.1 shows that when the soil sample was loaded with the increment of normal stress of 100kpa, 200kpa and 300kpa the corresponding maximum shear stress value was 68.1048218 kpa,104.3982779kpa and 150.9790342 respectively. The same is true for the subgrade soil type (red clay) figure 4.3 was clearly illustrate it. Then by depending on this value the graph was constructed and angle of internal friction and cohesion was computed from the graph.

Figure 4.1: Normal Stress vs. Shear Stress for Black Cotton soil

The laboratory test (direct shear test) result of the subgrade soil samples was attached in appendix 7 for the road section one that have black cotton soil as sub grade and appendix 8 for road section two that has red clay soil as subgrade soil.

As it is shown those asphalt layers, base layer and sub base layers are strong on their properties. The only weak portion is the sub grade layer of pavement on both sections. The estimated total distance of road section one, which is the total asphalt surface destruction was observed, had 17meter in length and all the width of the pavement that it covers. All the pavement layer thickness of this section was clearly shown in appendix 6 first figure.

Material	Asphalt wearing	Base course	Sub base course	Sub grade
	Course	(crushed	(crushed	(black cotton)
		aggregate)	aggregate)	
Model	Linear Elastic	Mohr Coulomb	Mohr Coulomb	Mohr Coulomb
Thickness(m)	0.05	0.2	0.2	4.55
Young's	3*10+6	3*10+5	1.75*10+5	5.3*10+4
modulus(KPa)				
Poisson's ratio	0.35	0.3	0.3	0.35
Dry density (KN/m ³)	22.3	22.43	18.60	16.04
Wet density(KN/m ³)	23.3	23.4	20.84	18.69
Cohesion(KN/m ³)	-	1	1	25
Friction	-	40	38	22
angle(degree)				

Table 4.4 Pavement Layer Property of Road Section One

The second road section with red clay as sub grade soil had covered around 10meter in length and half part of the pavement is in good condition. All the pavement thickness of this section was clearly shown on appendix 6 second figure.

Sub grade Material Base course Sub base course Asphalt wearing (crushed (red clay) course (crushed aggregate) aggregate) Model Linear Elastic Mohr Coulomb Mohr Coulomb Mohr Coulomb Thickness(m) 0.05 0.2 0.3 4.45 3*10+6 3*10+5 5*10+4 Young's $1.75*10^{+5}$ modulus(KPa) 0.3 0.3 Poisson's ratio 0.35 0.35 22.3 22.43 18.60 16.55 Dry density (KN/m³) Wet density(KN/m³) 23.3 23.4 20.84 18.89 Cohesion(KN/m³) 20 -1 1 Friction _ 40 38 27 angle(degree)

 Table 4.5 Pavement Layer Property of Road Section Two

4.3. Sub -Grade Reinforcement

The total deformation of the sub grade reinforced and unreinforced pavement was computed. At this stage the ground water condition was not considered, by assuming the depth of ground water table may be deeper than 5 m in depth. The geogrid was reinforced on the top surface of subgrade soil. The geogrid material that was used in both sections are the same. Therefore, the geogrid material have axial stiffness of 600kN/m, with this material both sections was stabilized. That means the total deformation was decreased when geogrid was used as a reinforcement. In this study, analysis was carried and computed with in two types of road section with their sub grade soil types. The road section one refers, road with black cotton soil as subgrade material and road section two means, road with red clay soil as subgrade material. Those sub grade soil shear strength parameters, that was used for the modeling was taken from the direct shear test results.

4.3.1. Geogrid Unreinforced and Reinforced Road, Section One

The total deformation of unreinforced read section one is 2.43*10⁻³meter but this value is decreased when it reinforced with the geogrid and it became 2.18*10⁻³meter. Therefore, this value indicates that, the total deformation was reduced by 10.29% when the geogrid is reinforced in between sub base and sub grade. The result variation of pavements was clearly illustrated in Figure 4.1 and 4.2 of both sections.

As the total deformation of the pavement layers decreased after the geogrid material was reinforced at the top of the sub grade surface, the more improvement of bearing capacity. This indicates that, the subgrade soil material was stabilized.

Figure 4.3: Total Deformation of Unreinforced Road Section One

Figure 4.4: Total Deformation of Geogrid Reinforced Road Section One

4.3.2. Geogrid Unreinforced and Reinforced For Road Section Two

The other one was the second pavement (road section two) with the red clay soil as sub grade material. The same is true that, the total deformation of the pavement was computed. As the result shows that, the sub grade soil is stabilized. Figure 4.3 and 4.4.shows the relative decreasing of total deformation of geogrid reinforced pavement by 9.13% than the unreinforced one.

Figure 4.5 Total Deformation of un-Reinforced Road Section Two

Figure 4.6 Total Deformation of Geogrid Reinforced Road Section Two

In general relatively high total deformation was observed when the pavement had black cotton soil as a sub grade material than red clay soil. There is also the effect of geogrid reinforcement was observed on the road section one and a10.29% of deformation reduction shown, but there is less deformation reduction was shown on road section two, it is about 9.13%.

The bearing capacity of Laterite, Alluvial soil and black cotton soil is increased when geogrid was reinforced on the top of them, but for red clay soil geogrid reinforced in the middle of soil layer [38].Even those soils had different behavior under the geogrid reinforcement.

The mesh deformation of those soils was also different. To see the effects of geogrid on such soils after the mesh generation (finite element analysis) refer appendix 4 and appendix 5. Clearly .put the total vertical deformation for road section one and two respectively.

4.4. Deformation of the Pavements When There is Ground Water at Sub Grade Level

The existence of ground water affects the pavement performance. For the selected road section the analysis was conducted by generating the ground water at the subgrade level and measure the total deformation. As figure 4.5 shows the total deformation of pavement that had ground water at subgrade level increased by 33.33% than the dry one,but when geogrid was reinforced on the top of the sub grade 24.38% reduction was observed and figure 4.6 proves this statement.

This result is shown when there is black cotton soil exist as subgrade material.

There is a great effect, weaken the structural strength of pavement, when the ground water is located at shallow dapth than deep. That is why the researcher takes an assumption of the water table if it is on the surface of sub grade. As it is far from it, the effect with respect to the applied traffic load become less.

The bearing capacity of soil is affected by the ground water table, due to this the pavement failure becomes the major problem. Therfore, geogrid helps to increase the bearing capacity of the subgrade soil, while greatly reducting the loss of the aggregate covering material into weak, wet or saturated subgrade soils [25].

Figure 4.7 Total Deformation of Unreinforced Road Section One with GW at Sub Grade

Figure 4.8 Total Deformation of Reinforced Road Section One with GW at Sub Grade

Figure 4.9: Total Deformation of Unreinforced Road Section Two with GW at Sub Grade

Figure 4.10: Total Deformation of Reinforced Road Section Two with GW at Sub Grade

At figure 4.7 guides, the total deformation of road section two is increased by 35.71%, when the sub grade soil had excess water then dry condition. This deformation value was decreased up to 24.85% after the geogrid reinforcement on the top of subgrade according to figure 4.8 indicates. In general geogrid stabilizs the pavements in both conditions, during the dry and wet condition. This makes my study unique than others. Because, those scholars were done the analysis only when the pavement is dry condition and changing the sub grade thicknes with respect to vartion of axial stiffnes of geogrid [5].

4.5. Geogrid Loction in both Road Section When there is no Ground Water Effect

When the pavement layers are reinforced with geogrid there is an improvement on the pavement performances. But at which layer of the pavement is improved more is the best question. Therefor such question was get an answer in this portion.

4.5.1 Best geogrid location for road section one

Based on the total deformation result the best location of geogrid for this section, is in between base and sub base. Because at this section there is less vertical deformation than others. This result is computed when the road is dry condition only.

Figure 4.11:A. Unreinforced B. Geogrid location between sub grade and sub base of road section one

4.5.2. Best Geogrid Location for Road Section Two

Based on the vertical deformation result the best location of geogrid for this section, is in between base and sub base. Because at this section there is less vertical deformation than others. This result is computed when the road is dry condition only.

Figure 4.13:A. Unreinforced B. Geogrid location between sub grade and sub base of road section two

Based on the result shown in the above figures, there is a great improvement of the total deformations shown when geogrid reinforcement location varies from place to place and the total deformation is decreased when geogrid reinforced in between subgrade and sub base than others.

CHAPTER FIVE CONCLUTION AND RECOMMENDATION

5.1. CONCLUSION

Investigation of effect of geogrid on flexible pavement that have different type of subgrade soil property was conducted by using plaxis 2D software by including distress identification. So the following conclusions was drown as per the result:

- \diamond A high deflection is recorded when there is ground water
- ☆ Relatively less deflection is observed when the road section analyzed at dry condition(without ground water) than wet condition
- ♦ When geogrid is reinforced at sub grade level the total deformation is decreased than unreinforced one
- ☆ To decreases the rutting effect of road section one that have black cotton soil as subgrade, it is better to reinforce Bi axial geogrid having 600kN/m in between asphalt and base course.
- ☆ To decreases the rutting effect of road section two that have red clay soil as subgrade, it is better to reinforce Bi axial geogrid having 600kN/m in between base course and sub base.
- ♦ Use such geogrid as a reinforcement material on different road to improve their performances and decreases a repetitive maintenance and early damage.

5.2. RECOMMENDATION

Based on the result and discussion the following recommendations are draw:

- > Stabilize expansive soil using geogrid as a reinforcement
- Improve construction quality
- Construct additional structure on the road along the reservoir that prevent the infiltration of water to the road
- Construct sub surface drainages along the pavements.

REFERENES

Ethiopian Road Authority (2016). "The Federal Democratic Republic of Ethiopia ministry of transport, Road Sector Development Program 19 years" performance assessment. Addis Ababa, Ethiopia.
 Mohod, M.V and Kadam, N.K. (2016)." A Comparative Study on Rigid and Flexible Pavement: A Review" IOSR Journal of Mechanical and Civil Engineering, 13(3)

[3]. Adlinge, S. S and Gupta.A. K (2009)." Pavement Deterioration and its Causes". Journal of Mechanical & Civil Engineering (IOSR-JMCE): 2278-1684, PP: 09-15

[4]. Nikodimos Bekele and et.al. (2017). "Investigation of the Causes of Severe Asphalt Damaged on Road Pavement in Addis Ababa -Jimma Road," International Journal of Scientific & Engineering Research, 8(2)

[5]. Ahirwara, S.K and Mandal, J.N (2017). "Finite Element Analysis of Flexible Pavement with Geogrids," Transportation Geotechnics and Geoecology, Saint Petersburg, Russia

[6]. Bantayehu Upa, (2017)."Expansive soils in Ethiopia: a Review". International Journal of Scientific Research Engineering & Technology (IJSRET), 6(5)

[7]. Zumrawi, M.E (2015)." Survey and Evaluation of flexible Pavement Failures" International Journal of Science and Research (IJSR), 4(1), 2319-7064

[8]. Calvarano, L.S , et al (2017)." 3D-FEM Analysis on Geogrid Reinforced Flexible Pavement

Roads" IOP Conf. Ser.: Earth Environ. Sci. 95 022024

[9] ETHIOPIAN ROADS AUTHORITY (2013)." pavement design, Flexible pavement design manual",(1)

[10]. MANOJ K, P and BABU, B.P (2016). "A Study on the Performance of Flexible Pavements". International journal of research.5 (5)

[11]. Gupta.A (2014). " comparative structural analysis of flexible pavements using finite element method". The International Journal of Pavement Engineering and Asphalt Technology (PEAT), 15(1):11-19

[12]. Abiyou, G.K. (2013). "Performance Evaluation of Asphalt Concrete pavements in Ethiopia, the application of hdm-4 road deterioration sub-model", University of Nairobi

[13]. ETHIOPIAN ROADS AUTHORITY (2013). Geotechnical design manual,

[14]. Baraj, M, Das, (2006). "Principle of Geotechnical Engineering" California state of university.

[15]. Jorge G. Z. (2017)." Functions and applications of geosynthetics in roadways" Transportation Geotechnics and Geoecology, Saint Petersburg, Russia, TGG 2017, 17-19,

[16].Kundan, M et.al, (2013)" Application of Coir Geotextile for Road Construction: Some Issues" Oriental International Journal of Innovative Engineering Research (OIJIER), 1(1,) [17] Bouazza, A (2001). "Geosynthetic clay liners" Elsevier Science Ltd, Geotextiles and Geomembranes 20(3–17)

[18]. Jitendra, K. T (2011), Geocell-Reinforced Unpaved and Paved Roads with Recycled Asphalt Pavement (RAP) Bases: Experimental Study and Damage Model Development", University of Kansas[19]. John S. H, (2019). "Expanded Polystyrene (EPS) Geofoam for Road Embankments and Other

Lightweight Fills in Urban Environments", researchgate.net/publication/333092141

[20]. Hamdy, F and Ahmed, M. H. (2014). "2D PLAXIS FINITE ELEMENT MODELING OF ASPHALT CONCRETE PAVEMENT REINFORCED WITH GEOGRID." Journal of Engineering Sciences 42(6): 1336 – 1348

[21]. Hamid, A. A (2016). "Reinforcement of Poor Sandy Subgrade Soil with Geogrid" Al -Qadisiyah Journal for Engineering Sciences, 9(3)

[22]. Chetan, C. P and Shivananda, P. (2017)." Effect of Axial Stiffness Of Geogrid In The Flexible Pavement Deformation Through Finite Element Analysis With Plaxis 2D" Journal of Emerging Technologies and Innovative Research (JETIR) 4(11).

[23]. Arulrajah A and et.al (2013)" Interface shear strength testing of geogrid-reinforced construction and demolition materials." AdvCiv Eng Mater J 2(1):189–200.

[24]. Sun, X. (2015). "Resilient Behavior and Permanent Deformations of Triaxial Geogrid Stabilized Bases over Weak Subgrade". PhD Dissertation, University of Kansas, U.S.

[25]. Vikram, J P and et.al (2016)." Road Pavement Design for Heavy Ground Water Table in Shirpur and Surrounding Area" International Journal of Civil Engineering and Technology (IJCIET) 7(1)

[26]David, V.H (2004)."Fundamentals of Finite Element Analysis" First Edition, New York

[27].Wood, D.M (1994)."Soil Behavior and Critical Soil Mechanics" First Edition, Cambridge University Press, New York

[28]. Huang, Y. H. (2004). "Pavement Analysis and Design". Prentice Hall, Inc., Englewood Cliffs.

[29]. Adel, A.A (2012). "Finite Element Analysis of Flexible Pavements Strengthen With Geogrid" ARPN Journal of Engineering and Applied Sciences, 7(10)

[30].Moayedi, H and et.al (2009). "Effect of Geogrid Reinforcement Location in Paved Road Improvement." Journal of EJGE, Vol.14, pp.3313-3329.

[31]. Plaxis 2D Version (2002). "Reference Manual"

[32]. McGown, A & Kupec, J (2004)." Current Approaches to the Determination of the Design

Stiffness and Strength of Polymeric Biaxial Geogrids" University of Strathclyde, Glasgow, UK

[33]. John. S.M and William, Y.B (2003). "DISTRESS IDENTIFICATION MANUAL, for the Long-

Term Pavement Performance Program" US department of transportation,

[34]. Shiferaw Garoma and et.al (2017)." Analysis of Stress- Strain and Deflection of Flexible Pavements

Using Finite Element Method Case study on Bako-Nekemte Road" Journal of Civil, Construction and Environmental Engineering.

[35]. Kim, Y.R and et.al (2010). "Impact of Truck Loading on Design and Analysis of Asphaltic Pavement Structures" Final Reports & Technical Briefs from Mid-America Transportation Center. 23

[36]. Monthly Progress Report, (2008). "ADDIS ABABA TO JIMA ROAD REHABILITATION PROJECT". (101)

[37].Sadd, H.M, (2009)."Elasticity, theory, application and numeric" Elsevier's Science & Technology Rights Department in Oxford, UK

[38]. Mohammed. K and et'al (2017)." Role of Geo-Grid in Enhancing the Bearing Capacity of Soil' International Journal of Engineering Science and Computing, 7(5).

[39].ASTM D 3080 "Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions"

APPENDIX

Appendix –1 Unified Soil Classification System

USCS Soil-class	Description	Cohesion (kPa)	Friction angle (°)
GW	well-graded gravel, fine to coarse gravel	0	40
GP	poorly graded gravel	0	38
GM	silty gravel	0	36
GC	clayey gravel	0	34
GM-GL	silty gravel	0	35
GC-CL	clayey gravel with many fines	3	29
sw	well-graded sand, fine to coarse sand	0	38
SP	poorly graded sand	0	36
SM	silty sand	0	34
sc	clayey sand	0	32
SM-SL	silty sand with many fines	0	34
SC-CL	clayey sand with many fines	5	28
ML	silt	0	33
CL	clay of low plasticity, lean clay	20	27
СН	clay of high plasticity, fat clay	25	22
OL	organic silt, organic clay	10	25
он	organic clay, organic silt	10	22
мн	silt of high plasticity, elastic silt	5	24

Material	Parameter	Value	Comment
Asphaltic concrete wearing course and binder course	Elastic modulus (MPa)	3000	A balance between a value appropriate for high ambient temperatures and the effect of ageing and embrittlement
	Volume of bitumen	10.5%	
Asphaltic concrete	Elastic modulus (MPa)	3000	
roadbase	Volume of bitumen	9.5%	
Granular roadbase	Elastic modulus (MPa) Poisson's ratio	300 0.30	For all qualities with CBR > 80%
Granular sub-base	Elastic modulus (MPa) Poisson's ratio	175 0.30	For CBR ≥30%
Capping layer	Elastic modulus (MPa) Poisson's ratio	100 0.30	For CBR ≥15%
Subgrades S1 S2 S3 S4 S5 S6	Elastic modulus in MPa	28 37 53 73 112 175	Poisson's ratio for all subgrades was assumed to be 0.4
Hydraulically stabilised material	Elastic modulus (MPa)	CB1 = 3500 CB2 = 2500 CS =1500	Poissons ratio assumed to be 0.25 The modulus of CS is assumed to decrease with time hence a conservative low value of 1000MPa has been used

Appendix –2 Material Characteristics (Source ERA)

Appendix 3 Pavement Distress, Total Wearing Out, Derange Problem, Bulge Out of Material

Appendix- 4Ttotal vertical deformation mesh generation of un-reinforced and reinforced road section one

Appendix -5 Total vertical deformation mesh generation of reinforced road section two

Road section one

Road section two

Appendix 7: Direct Shear Test Result for Black Cotton Soil, Sample D at 2m depth

Sample		P01	Sampl	e	Test Pit		Sample Depth, m:			?	
No.		A1	Source=								
Thickne		25	Ring (Calib.	0.70 N/	div	Wet un	it weigh	nt,	18.69	
ss of		mm	Factor	=			kN/M ³	:			
sample:											
Length		60	Rate o	of strain	1.6		Dry Ur	nit Weig	,ht,	16.04	
of		mm	=		mm/m		kN/M^3 :				
sample :					in						
Width of		60	Moist	ure	47.33		Sample Condition:			Undistu	
sample:		mm	conten	nt, % =			_				
		Appli	ed Vert	ical	Applied Vertical			Applied Vertical			
		Stress			Stress			Stress			
		100kp	pa		200kpa	l		300kpa			
Horizont	Corre	Provi	Shea	Shear	Provi	Shear	Shear	Provi	Shear	Shear	
al	cted	ng	r		ng			ng			
Displace	Area	Ring	Load	Stress	Ring	Load	Stress	Ring	Load	Stress	

ment										
	[mm2	Dood	[N]	[lzDo]	Doodi	[N]	[lrDo]	Dood	[N]	[lzDo]
		ing		נגרמן	ng		נגרמן	ing		[кга]
0.0	3600	nig 0.00	0.00	0.00	ng 0.00	0.00	0.00	nig 0.00	0.00	0.00
0.0	2507	0.00	0.00	0.00	0.00	161.1	44.91	0.00	220.2	0.00
0.1	3397	70.0	83.0	23.08	230.2	101.1	44.81	457.	520.5	89.06
0.1	2504	/	0	20.02	3	/	50 01	04 520	3	102.10
0.1	5594	90.0 7	105.	20.05	501.9	211.5	30.01	329. 27	570.5	105.10
0.2	3501	/	110	33 10	7	0	66 / 3	568	307.7	110.76
0.2	5571	27	20	55.19	8	238.3 A	00.45	18	$\frac{397.7}{2}$	110.70
0.2	3588	119	132	36 79	370.3	259.2	72.26	597	2 118 1	116.62
0.2	5500	07	00	50.77	7	6	12.20	77	410.4	110.02
03	3585	129	142	39.69	382.1	267.5	74.62	609	426.6	119.02
0.5	5505	37	30	57.07	5	1	/ 1.02	55	9	119.02
0.3	3582	138.	151.	42.18	395.5	276.9	77.31	622.	436.0	121.75
		17	10		9	1		99	9	
0.4	3579	145.	158.	44.15	407.5	285.2	79.70	634.	444.4	124.18
		07	00		2	6		92	4	
0.4	3576	152.	165.	46.14	419.6	293.7	82.14	647.	452.9	126.65
		07	00		0	2		00	0	
0.5	3573	158.	171.	48.00	427.4	299.2	83.74	654.	458.4	128.29
		57	50		5	2		85	0	
0.5	3570	163.	176.	49.36	447.0	312.9	87.66	674.	472.1	132.25
		27	20		8	6		48	4	
0.6	3567	168.	181.	50.88	468.3	327.8	91.92	695.	487.0	136.54
		57	50		7	6		77	4	
0.6	3564	173.	186.	52.25	473.8	331.6	93.06	701.	490.8	137.72
		27	20		1	7		21	4	
0.7	3561	176.	189.	53.19	479.0	335.3	94.18	706.	494.5	138.88
		47	40		9	7		49	4	
0.7	3558	180.	193.	54.30	482.7	337.9	94.97	710.	497.0	139.71
		27	20		2	0		12	8	
0.8	3555	182.	195.	55.11	488.1	341.7	96.12	715.	500.8	140.90
0.0	0550	97	90	56.00	5	1	07.00	55	9	1.41.01
0.8	3552	185.	198.	56.00	492.6	344.8	97.09	720.	504.0	141.91
0.0	2540	9/	90	56.00	8	8	07.74	08	6	1 40 50
0.9	3549	188.	201.	56.89	495.5	346.8	97.74	122.	506.0	142.59
0.0	2516	9/	90	57 (1	J 407.9	9	09.27	95	/	142.16
0.9	3546	191.	204.	57.61	497.8	348.4	98.27	125.	507.6	143.10
1.0	2542	3/	206	59 17	2 500.2	/	00.06	22	500.4	142 70
1.0	5545	195.	200.	38.17	0	550.2 7	98.80	727.	509.4	145.79
1.0	3540	105	208	58 70	2 502.0	352.0	00 /5	730	511.2	1/1/12
1.0	5540	17	10	30.19	5	552.0 7	77.4J	35	5	144.42
11	3537	196	200	59.32	505.0	353.5	90.06	732	5127	144.06
1.1	5551	87	209.	57.52	7	5	77.90	46	2	144.70
		07	00		1	5	1	τu	4	

1.1	3534	198.	211.	59.82	505.0	353.5	100.0	732.	512.7	145.08
		47	40		7	5	4	46	2	
1.2	3531	199.	212.	60.24	505.5	353.8	100.2	732.	513.0	145.30
		77	70		2	6	2	92	4	
1.2	3528	201.	214.	60.77	505.6	353.9	100.3	733.	513.1	145.45
		47	40		7	7	3	07	5	
1.3	3525	203.	216.	61.31	506.5	354.6	100.6	733.	513.7	145.75
		17	10		8	0	0	97	8	
1.3	3522	204.	217.	61.76	507.4	355.2	100.8	734.	514.4	146.06
		57	50		8	4	6	88	2	
1.4	3519	205.	218.	62.18	508.0	355.6	101.0	735.	514.8	146.30
		87	80		9	6	7	48	4	
1.4	3516	207.	220.	62.57	508.5	355.9	101.2	735.	515.1	146.52
		07	00		4	8	4	94	6	
1.5	3513	208.	221.	62.91	508.0	355.6	101.2	735.	514.8	146.55
		07	00		9	6	4	48	4	
1.5	3510	208.	221.	63.16	508.0	355.6	101.3	735.	514.8	146.68
		77	70		9	6	3	48	4	
1.6	3507	209.	222.	63.42	509.6	356.7	101.7	736.	515.9	147.10
		47	40		0	2	2	99	0	
1.6	3504	209.	222.	63.58	510.8	357.5	102.0	738.	516.7	147.47
		87	802	505	0	628	442	20	414	
1.7	3501	210.	223.	63.81	512.0	358.4	102.3	739.	517.5	147.84
		47	402	091	1	084	732	41	87	
1.7	3498	211.	224.	64.15	512.6	358.8	102.5	740.	518.0	148.09
		47	402	152	2	312	818	01	098	
1.8	3495	211.	224.	64.34	512.6	358.8	102.6	740.	518.0	148.21
		97	902	964	2	312	699	01	098	
1.8	3492	212.	225.	64.60	512.6	358.8	102.7	740.	518.0	148.34
		67	602	538	2	312	581	01	098	
1.9	3489	213.	226.	64.80	512.9	359.0	102.9	740.	518.2	148.53
		17	102	424	2	426	07	32	212	
1.9	3486	213.	226.	64.97	512.4	358.7	102.9	739.	517.9	148.57
		57	502	476	7	255	046	86	041	
2.0	3483	214.	227.	65.23	512.7	358.9	103.0	740.	518.1	148.76
		27	202	17	7	369	539	17	155	
2.0	3480	214.	227.	65.34	512.3	358.6	103.0	739.	517.7	148.79
		47	402	54	1	198	517	71	984	
2.1	3477	214.	227.	65.43	511.8	358.3	103.0	739.	517.4	148.83
		57	502	054	6	027	494	26	813	
2.1	3474	214.	227.	65.57	511.4	357.9	103.0	738.	517.1	148.87
		87	802	34	1	856	471	81	642	
2.2	3471	214.	227.	65.60	510.6	357.4	102.9	738.	516.6	148.84
	ļ	77	702	127	5	571	839	05	357	
2.2	3468	215.	228.	65.8	511.1	357.7	103.1	738.	516.9	149.06
		17	102		1	742	644	50	528	

2.3	3465	214.	227.	65.77	511.5	358.0	103.3	738.	517.2	149.28
		97	902	258	6	913	453	96	699	
2.3	3462	215.	228.	65.94	512.0	358.4	103.5	739.	517.5	149.51
		372	302	512	12	084	264	41	87	
2.35	3459	215.	228.	66.06	512.0	358.4	103.6	739.	517.5	149.63
		572	502	013	12	084	162	41	87	
2.4	3456	215.	228.	66.11	512.0	358.4	103.7	739.	517.5	149.76
		572	502	748	12	084	061	41	87	
2.45	3453	215.	228.	66.23	511.8	358.3	103.7	739.	517.4	149.86
		772	702	284	61	027	656	259	813	
2.5	3450	215.	228.	66.34	512.3	358.6	103.9	739.	517.7	150.09
		972	902	841	14	198	478	712	984	
2.55	3447	215.	228.	66.40	511.8	358.3	103.9	739.	517.4	150.13
		972	902	615	61	027	462	259	813	
2.6	3444	216.	229.	66.52	511.8	358.3	104.0	739.	517.4	150.26
		172	102	207	61	027	368	259	813	
2.65	3441	216.	229.	66.60	511.4	357.9	104.0	738.	517.1	150.29
		272	202	913	08	856	353	806	642	
2.7	3438	216.	229.	66.66	510.8	357.5	104.0	738.	516.7	150.30
		272	202	725	04	628	031	202	414	
2.75	3435	216.	229.	66.75	510.3	357.2	104.0	737.	516.4	150.34
		372	302	459	51	457	017	749	243	
2.8	3432	216.	229.	66.81	509.8	356.9	104.0	737.	516.1	150.38
		372	302	294	98	286	002	296	072	
2.85	3429	216.	229.	66.95	510.2	357.1	104.1	737.	516.3	150.57
		672	602	888		4	528	598	186	
2.9	3426	216.	229.	66.95	510.9	357.6	104.3	738.	516.8	150.86
		472	402	914	55	685	983	353	471	
2.95	3423	216.	229.	67.13	510.0	357.0	104.3	737.	516.2	150.81
		872	802	468	49	343	045	447	129	
3	3420	216.	229.	67.13	509.2	356.5	104.2	736.	515.6	150.78
		672	602	509	94	058	415	692	844	
3.05	3417	216.	229.	67.13	507.4	355.2	103.9	734.	514.4	150.55
		472	402	55	82	374	618	88	16	
3.1	3414	216.	229.	67.25	507.0	354.9	103.9	734.	514.0	150.59
		672	602	308	29	203	603	427	989	
3.15	3411	216.	229.	67.31	506.5	354.6	103.9	733.	513.7	150.62
		672	602	223	76	032	587	974	818	
3.2	3408	216.	229.	67.28	505.0	353.5	103.7	732.	512.7	150.45
		372	302	345	66	462	401	464	248	
3.25	3405	216.	229.	67.31	505.3	353.7	103.8	732.	512.9	150.64
		272	202	336	68	576	936	766	362	
3.3	3402	216.	229.	67.34	505.3	353.7	103.9	732.	512.9	150.77
		172	102	333	68	576	852	766	362	
3.35	3399	216.	229.	67.43	504.7	353.3	103.9	732.	512.5	150.78
		272	202	219	64	348	526	162	134	

3.4	3396	215.	228.	67.40	505.0	353.5	104.1	732.	512.7	150.98
		972	902	342	66	462	067	464	248	
3.45	3393	216.	229.	67.49	505.2	353.6	104.2	732.	512.8	151.14
		072	002	248	17	519	299	615	305	
3.5	3390	215.	228.	67.52	505.5	353.8	104.3	732.	513.0	151.34
		972	902	271	19	633	845	917	419	
3.55	3387	215.	228.	67.55	506.1	354.2	104.6	733.	513.4	151.60
		872	802	3	23	861	017	521	647	
3.6	3384	215.	228.	67.55	506.5	354.6	104.7	733.	513.7	151.83
		672	602	378	76	032	882	974	818	
3.65	3381	215.	228.	67.55	506.1	354.2	104.7	733.	513.4	151.87
		472	402	457	23	861	874	521	647	
3.7	3378	215.	228.	67.64	504.9	353.4	104.6	732.	512.6	151.75
		572	502	417	15	405	301	313	191	
3.75	3375	215.	228.	67.64	504.7	353.3	104.6	732.	512.5	151.86
		372	302	504	64	348	918	162	134	
3.8	3372	215.	228.	67.61	503.8	352.7	104.5	731.	511.8	151.80
		072	002	625	58	006	969	256	792	
3.85	3369	214.	227.	67.58	503.8	352.7	104.6	731.	511.8	151.94
		772	702	741	58	006	9	256	792	
3.9	3366	214.	227.	67.64	503.4	352.3	104.6	730.	511.5	151.98
		772	702	765	05	835	891	803	621	
3.95	3363	214.	227.	67.64	503.4	352.3	104.7	730.	511.5	152.11
		572	502	853	05	835	825	803	621	
4	3360	214.	227.	67.73	502.8	351.9	104.7	730.	511.1	152.12
		672	602	869	01	607	502	199	393	
4.05	3357	214.	227.	67.79	502.1	351.5	104.7	729.	510.7	152.13
		672	602	923	97	379	179	595	165	
4.1	3354	214.	227.	67.77	500.9	350.6	104.5	728.	509.8	152.02
		372	302	042	89	923	594	387	709	
4.15	3351	214.	227.	67.86	501.1	350.7	104.6	728.	509.9	152.19
		472	402	094	4	98	846	538	766	
4.2	3348	214.	227.	67.89	501.5	351.1	104.8	728.	510.2	152.42
		372	302	188	93	151	731	991	937	
4.25	3345	214.	227.	67.86	500.3	350.2	104.7	727.	509.4	152.30
		072	002	308	85	695	143	783	481	
4.3	3342	214.	227.	67.95	499.9	349.9	104.7	727.	509.1	152.34
		172	102	392	32	524	135	33	31	
4.35	3339	214.	227.	68.10	499.1	349.4	104.6	726.	508.6	152.32
		472	402	482	77	239	493	575	025	
4.4	3336	214.	227.	68.07	498.5	349.0	104.6	725.	508.1	152.33
		172	102	614	73	011	166	971	797	
4.45	3333	213.	226.	68.04	498.8	349.2	104.7	726.	508.3	152.53
		872	802	74	75	125	742	273	911	
4.5	3330	213.	226.	68.10	498.8	349.2	104.8	726.	508.3	152.67
		872	802	871	75	125	686	273	911	
4.55	3327	213.	226.	68.17	498.4	348.8	104.8	725.	508.0	152.71
------	------	------	------	-------	------------	-------	---------------------------	----------------------------	----------------	--------
		872	802	012	22	954	679	82	74	
4.6	3324	213.	226.	68.11	497.8	348.4	104.8	725.	507.6	152.72
		472	402	131	18	726	353	216	512	
4.65	3321	213.	226.	68.14	498.2	348.7	105.0	725.	507.9	152.96
		372	302	273	71	897	255	669	683	
4.7	3318	213.	226.	68.17	497.2	348.0	104.8	724.	507.2	152.87
		272	202	42	14	498	975	612	284	
4.75	3315	212.	225.	68.11	496.7	347.7	104.8	724.	506.9	152.91
		872	802	523	61	327	967	159	113	
4.8	3312	212.	225.	67.96	496.1	347.3	104.8	723.	506.4	152.93
		172	102	558	57	099	641	555	885	
4.85	3309	212.	225.	68.05	495.8	347.0	104.8	723.	506.2	153.00
		272	202	742	55	985	953	253	771	
4.9	3306	212.	225.	68.14	495.5	346.8	104.9			
		372	302	943	53	871	265			
4.95	3303	212.	225.	68.15	496.1	347.3	105.1			
		172	102	077	57	099	498			
5	3300	212.	225.	68.24	496.3	347.4	105.2			
		272	202	303	08	156	775			
5.05	3297	211.	224.	68.15	496.1	347.3	105.3			
		772	702	347	57	099	412			
5.1	3294	211.	224.	68.15	495.4	346.7	105.2			
		572	502	483	02	814	767			
5.15	3291	211.	224.	68.15						
		372	302	618	4		Norma	Stress - 1 Stress - 2	00kpa 00kpa	
5.2	3288	211.	224.	68.12		_	 Norma 	l stress - 3	00kpa 00kpa	
		072	002	713	200	0.00				
5.25	3285	210.	223.	68.00	a → 150	0.00				
		472	402	67	S 100	0.00				
5.3	3282	210.	223.	68.06	otre 50	0.00				
		472	402	886	ar a					
5.35	3279	210.	223.	68.10	She	0.0	2.0	4.0	6.0	8.0
		372	302	064	4		Dis	placemer	nt ,mm	
5.4	3276	210.	223.	68.13						
		272	202	248						
5.45	3273	209.	222.	68.10						
		972	902	327						
5.5	3270	209.	222.	68.07						
		672	602	401						
5.55	3267	209.	222.	68.04						
		372	302	469						
5.6	3264	208.	221.	67.98						
		972	902	468						
5.65	3261	209.	222.	68.13						
		272	202	922						

5.7	3258	209.	222.	68.14			
		072	002	058			
5.75	3255	207.	220.	67.86			
		972	902	544			
5.8	3252	207.	220.	67.89			
		872	802	729			
5.85	3249	207.	220.	67.92			
		772	702	921			
5.9	3246	207.	220.	67.89			
		472	402	957			
5.95	3243	207.	220.	67.86			
		172	102	987			
6	3240	207.	220.	67.90			
		072	002	185			
6.05	3237	206.	219.	67.77			
		472	402	943			
6.1	3234	206.	219.	67.78			
		272	202	046			
6.15	3231	205.	218.	67.75			
		972	902	054			
6.2	3228	205.	218.	67.72			
		672	602	057			
6.25	3225	205.	218.	67.69			
		372	302	054			

Appendix 8: Direct Shear Test Result for Red Clay Soil, Sample D at 2m depth

Sample		P01	Sampl	e	Test Pit		Sample	Depth,	m:	?	
No.		A1	Source	e=							
Thickne		25	Ring C	Calib.	0.70 N/	div	Wet un	it weight	t,	18	.89
ss of		mm	Factor	=			kN/M^3				
sample:											
Length		60	Rate o	f strain	1.6		Dry Un	it Weigł	nt,	16	.55
of		mm	=		mm/m		kN/M^3				
sample :					in						
Width of		60	Moistu	ıre	47.33		Sample	e Conditi	on:	Un	distur
sample:		mm	conten	nt, % =				-		bee	d
		Applie	ed Vert	ical	Applie	d Vertica	al	Applie	d Ver	tica	ıl
		Stress			Stress			Stress			
		100kp	a		200kpa			300kpa	a		
Horizont	Corre	Provi	Shea	Shear	Provi	Shear	Shear	Provi	Shea	ar	Shear
al	cted	ng	r		ng			ng			

Displace	Area	Ring	Load	Stress	Ring	Load	Stress	Ring	Load	Stres
ment		U			U			U		s
[mm]	[mm2	Read	[N]	[kPa]	Readi	[N]	[kPa]	Readi	[N]	[kPa]
]	ing			ng			ng		
0.0	3600	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.1	3597	14.2	9.97	2.77	47.77	33.44	9.30	105.8	74.12	20.61
0.1	0.50 /	4				00.47		8		
0.1	3594	34.8	24.3	6.79	119.5	83.65	23.27	345.5	241.91	67.31
0.0	2501	4	9	0.02	0	110.0	20.06	9	222.1.6	00.00
0.2	3591	50.4	35.3	9.83	158.3	110.8	30.86	461.6	323.16	89.99
0.0	2500	4	1	10.04	1	1 101 7	26.66	6	255.06	00.10
0.2	3588	63.2	44.2	12.34	187.9	131.5	36.66	508.3	355.86	99.18
0.2	2505	4	/	14.26	0	3	20.00	/	200.00	106.0
0.3	3585	/3.5	51.4	14.36	199.6	139.7	38.99	544.0	380.86	106.2
0.2	2592	4	8	16.00	8	8	41.65	8	402.01	4
0.3	3582	82.3	57.6	16.09	213.1	149.1	41.65	5/4.3	402.01	112.2
0.4	2570	4	4	17 45	2	8	44.00	1	410.01	3
0.4	3579	89.2	62.4	17.45	225.0	157.5	44.02	587.0	410.91	114.8
0.4	2576	4	/	10.04	3 227 1	3	16.40	1	421.40	1
0.4	3576	96.2	07.3	18.84	237.1	165.9	46.42	602.1	421.49	11/.8
0.5	2572	4	71.0	20.12	3	9	47.00	<u> </u>	420.19	/
0.5	5575	102.	71.9	20.15	244.9 Q	0	47.99	015.1	429.18	120.1
0.5	3570	107	2 75.2	21.07	0	185.2	51.88	1 623 7	136.63	<u> </u>
0.5	3370	107.	1	21.07	204.0	3	51.00	6	430.03	122.5
0.6	3567	112	78.9	22.12	285.9	200.1	56 11	629.2	440 48	123.4
0.0	5507	74	2	22.12	0	3	50.11	5	110.10	9
0.6	3564	117.	82.2	23.07	291.3	203.9	57.22	634.0	443.84	124.5
		44	1		4	4		6		3
0.7	3561	120.	84.4	23.71	296.6	207.6	58.31	638.1	446.73	125.4
		64	5		2	4		8		5
0.7	3558	124.	87.1	24.48	300.2	210.1	59.07	641.6	449.13	126.2
		44	1		5	7		1		3
0.8	3555	127.	89.0	25.03	305.6	213.9	60.19	640.9	448.65	126.2
		14	0		8	8		3		0
0.8	3552	130.	91.1	25.65	310.2	217.1	61.13	642.6	449.85	126.6
		14	0		1	5		5		5
0.9	3549	133.	93.2	26.26	313.0	219.1	61.75	644.7	451.29	127.1
		14	0		8	6		1		6
0.9	3546	135.	94.8	26.76	315.3	220.7	62.25	645.3	451.77	127.4
		54	8		5	4		9		0
1.0	3543	137.	96.1	27.13	317.9	222.5	62.81	646.4	452.50	127.7
		34	4		1	4		2		2
1.0	3540	139.	97.5	27.55	320.4	224.3	63.37	647.1	452.98	127.9
		34	4		8	4		1		6
1.1	3537	141.	98.7	27.91	322.5	225.8	63.84	647.1	452.98	128.0

		04	3		9	2		1		7
1.1	3534	142.	99.8	28.25	322.5	225.8	63.90	647.8	453.46	128.3
		64	5		9	2		0		1
1.2	3531	143.	100.	28.54	323.0	226.1	64.04	647.4	453.22	128.3
		94	76		5	3		5		5
1.2	3528	145.	101.	28.90	323.2	226.2	64.13	647.8	453.46	128.5
		64	95		0	4		0		3
1.3	3525	147.	103.	29.26	324.1	226.8	64.36	647.8	453.46	128.6
		34	14		0	7		0		4
1.3	3522	148.	104.	29.56	325.0	227.5	64.60	647.8	453.46	128.7
		74	12		1	1		0		5
1.4	3519	150.	105.	29.85	325.6	227.9	64.77	647.1	452.98	128.7
		04	03		1	3		1		2
1.4	3516	151.	105.	30.11	326.0	228.2	64.92	647.1	452.98	128.8
		24	87		7	5		1		3
1.5	3513	152.	106.	30.34	325.6	227.9	64.88	647.1	452.98	128.9
		24	57		1	3		1		4
1.5	3510	152.	107.	30.50	325.6	227.9	64.94	646.7	452.74	128.9
		94	06		1	3		7		8
1.6	3507	153.	107.	30.67	327.1	228.9	65.29	647.1	452.98	129.1
		64	55		2	9		1		6
1.6	3504	154.	107.	30.77	328.3	229.8	65.59	647.4	453.21	129.3
		04	828	283	3	324	144	5	71	4
1.7	3501	154.	108.	30.91	329.5	230.6	65.88	647.8	453.45	129.5
		64	248	917	4	78	917	0	75	2
1.7	3498	155.	108.	31.14	330.1	231.1	66.06	648.1	453.69	129.7
		64	948	58	4	008	655	4	79	0
1.8	3495	156.	109.	31.27	330.1	231.1	66.12	647.1	452.97	129.6
		14	298	268	4	008	326	1	67	1
1.8	3492	156.	109.	31.43	330.1	231.1	66.18	646.4	452.49	129.5
		84	788	986	4	008	007	2	6	8
1.9	3489	157.	110.	31.56	330.4	231.3	66.29	646.4	452.49	129.6
		34	138	721	5	122	756	2	6	9
1.9	3486	157.	110.	31.67	329.9	230.9	66.26	646.0	452.25	129.7
		74	418	47	9	951	365	8	56	3
2.0	3483	158.	110.	31.84	330.3	231.2	66.38	645.0	451.53	129.6
		44	908	266	0	065	142	5	44	4
2.0	3480	158.	111.	31.91	329.8	230.8	66.34	644.3	451.05	129.6
		64	048	034	4	894	753	6	36	1
2.1	3477	158.	111.	31.95	329.3	230.5	66.31	644.0	450.81	129.6
		74	118	801	9	723	357	2	32	6
2.1	3474	159.	111.	32.04	328.9	230.2	66.27	643.6	450.57	129.7
		04	328	606	4	552	956	8	28	0
2.2	3471	158.	111.	32.05	328.1	229.7	66.18	643.6	450.57	129.8
		94	258	359	8	267	459	8	28	1
2.2	3468	159.	111.	32.2	328.6	230.0	66.33	642.9	450.09	129.7

		34	538		3	438	328	9	2	8
2.3	3465	159.	111.	32.14	329.0	230.3	66.48	642.6	449.85	129.8
		14	398	949	9	609	222	5	16	3
2.3	3462	159.	111.	32.25	329.5	230.6	66.63	642.3	449.61	129.8
		54	678	823	4	78	143	018	12	7
2.35	3459	159.	111.	32.32	329.5	230.6	66.68	641.9	449.37	129.9
		74	818	668	4	78	922	584	09	1
2.4	3456	159.	111.	32.35	329.5	230.6	66.74	641.6	449.13	129.9
		74	818	475	4	78	711	149	05	6
2.45	3453	159.	111.	32.42	329.3	230.5	66.77	640.9	448.64	129.9
		94	958	34	89	723	449	281	97	3
2.5	3450	160.	112.	32.49	329.8	230.8	66.92	640.5	448.40	129.9
		14	098	217	42	894	446	847	93	7
2.55	3447	160.	112.	32.52	329.3	230.5	66.89	640.2	448.16	130.0
		14	098	045	89	723	072	413	89	2
2.6	3444	160.	112.	32.58	329.3	230.5	66.94	639.8	447.92	130.0
		34	238	943	89	723	898	979	85	6
2.65	3441	160.	112.	32.63	328.9	230.2	66.91	639.2	447.44	130.0
		44	308	819	36	552	52	11	77	3
2.7	3438	160.	112.	32.66	328.3	229.8	66.85	639.2	447.44	130.1
		44	308	667	32	324	061	11	77	5
2.75	3435	160.	112.	32.71	327.8	229.5	66.81	638.1	446.72	130.0
		54	378	557	79	153	668	808	65	5
2.8	3432	160.	112.	32.74	327.4	229.1	66.78	638.1	446.72	130.1
		54	378	417	26	982	269	808	65	7
2.85	3429	160.	112.	32.83	327.7	229.4	66.90	637.8	446.48	130.2
		84	588	406	28	096	277	373	61	1
2.9	3426	160.	112.	32.82	328.4	229.9	67.11	637.8	446.48	130.3
		64	448	195	83	381	562	373	61	2
2.95	3423	161.	112.	32.93	327.5	229.3	66.98	636.8	445.76	130.2
		04	728	252	77	039	916	071	5	3
3	3420	160.	112.	32.92	326.8	228.7	66.89	636.8	445.76	130.3
		84	588	047	22	754	339	071	5	4
3.05	3417	160.	112.	32.90	325.0	227.5	66.58	637.1	446.00	130.5
		64	448	84	1	07	092	505	54	3
3.1	3414	160.	112.	32.97	324.5	227.1	66.54	636.8	445.76	130.5
		84	588	832	57	899	654	071	5	7
3.15	3411	160.	112.	33.00	324.1	226.8	66.51	635.7	445.04	130.4
		84	588	733	04	728	211	768	38	7
3.2	3408	160.	112.	32.97	322.5	225.8	66.26	635.4	444.80	130.5
		54	378	477	94	158	05	334	34	2
3.25	3405	160.	112.	32.98	322.8	226.0	66.38	634.4	444.08	130.4
		44	308	326	96	272	097	032	22	2
3.3	3402	160.	112.	32.99	322.8	226.0	66.43	633.7	443.60	130.3
		34	238	177	96	272	951	163	14	9
3.35	3399	160.	112.	33.04	322.2	225.6	66.37	633.3	443.36	130.4

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			44	308	148	92	044	376	729	1	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.4	3396	160.	112.	33.00	322.5	225.8	66.49	633.3	443.36	130.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	098	883	94	158	464	729	1	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.45	3393	160.	112.	33.05	322.7	225.9	66.58	631.9	442.39	130.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			24	168	865	45	215	459	992	95	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.5	3390	160.	112.	33.06	323.0	226.1	66.70	631.3	441.91	130.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14	098	726	47	329	587	124	87	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.55	3387	160.	112.	33.07	323.6	226.5	66.88	629.9	440.95	130.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			04	028	588	51	557	978	387	71	9
84 888 383 04 728 279 387 71 1 3.65 3381 159. 111. 33.05 323.6 226.5 67.00 628.5 439.91 130.1 3.7 3378 159. 111. 33.08 322.4 225.7 66.81 627.8 439.51 130.1 3.7 3375 159. 111. 33.08 322.4 225.7 66.84 626.8 438.79 130.0 3.8 3372 159. 111. 33.08 321.3 224.9 66.71 625.4 437.83 129.8 3.85 3369 158. 111. 33.02 321.3 224.9 66.71 624.7 437.35 129.8 3.85 3369 158. 111. 33.02 320.9 224.6 66.74 627.7 435.90 129.6 3.95 3363 158. 111. 33.09 320.3 221.46 66.80 62.7 435.90	3.6	3384	159.	111.	33.06	324.1	226.8	67.04	629.9	440.95	130.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			84	888	383	04	728	279	387	71	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.65	3381	159.	111.	33.05	323.6	226.5	67.00	628.5	439.99	130.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			64	748	176	51	557	849	651	55	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.7	3378	159.	111.	33.10	322.4	225.7	66.81	627.8	439.51	130.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			74	818	184	43	101	767	782	48	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.75	3375	159.	111.	33.08	322.2	225.6	66.84	626.8	438.79	130.0
3.8 3372 $159.$ $111.$ 33.05 321.3 224.9 66.71 625.4 437.83 129.8 3.85 3369 $158.$ $111.$ 33.02 321.3 224.9 66.77 624.7 437.35 129.8 3.85 3369 $158.$ $111.$ 33.02 321.3 224.9 $66.77.$ 624.7 437.35 129.8 3.95 3363 $158.$ $111.$ 33.04 320.9 224.6 66.74 623.7 436.63 129.7 3.95 3363 $158.$ $111.$ 33.04 320.9 224.6 66.80 622.7 435.90 129.6 4.4 3360 $158.$ $111.$ 33.09 320.3 224.2 66.73 622.3 435.66 129.6 4.16 188 167 29 303 $521.$ 835 85 66 4.03 $158.$ 111			54	678	978	92	044	575	48	36	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.8	3372	159.	111.	33.05	321.3	224.9	66.71	625.4	437.83	129.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			24	468	694	86	702	714	743	2	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.85	3369	158.	111.	33.02	321.3	224.9	66.77	624.7	437.35	129.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			94	258	404	86	702	655	875	12	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.9	3366	158.	111.	33.05	320.9	224.6	66.74	623.7	436.63	129.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			94	258	348	33	531	186	572		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.95	3363	158.	111.	33.04	320.9	224.6	66.80	622.7	435.90	129.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			74	118	133	33	531	14	27	89	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	3360	158.	111.	33.09	320.3	224.2	66.73	622.3	435.66	129.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			84	188	167	29	303	521	835	85	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.05	3357	158.	111.	33.12	319.7	223.8	66.66	621.6	435.18	129.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			84	188	124	25	075	89	967	77	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.1	3354	158.	110.	33.08	318.5	222.9	66.47	621.0	434.70	129.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			54	978	825	17	619	642	099	69	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.15	3351	158.	111.	33.13	318.6	223.0	66.56	619.9	433.98	129.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			64	048	876	68	676	747	796	57	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2	3348	158.	110.	33.14	319.1	223.3	66.72	618.9	433.26	129.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			54	978	755	21	847	183	494	46	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.25	3345	158.	110.	33.11	317.9	222.5	66.52	618.2	432.78	129.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			24	768	45	13	391	888	625	38	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3	3342	158.	110.	33.16	317.4	222.2	66.49	616.8	431.82	129.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			34	838	517	6	22	372	889	22	1
64 048 786 05 935 518 586 1 1 4.4 3336 158. 110. 33.22 316.1 221.2 66.32 615.1 430.62 129.0 4.4 3336 158. 110. 33.22 01 707 815 718 02 8 4.45 3333 158. 110. 33.19 316.4 221.4 66.45 613.1 429.17 128.7 4.45 3330 158. 110. 33.22 316.4 221.4 66.45 613.1 429.17 128.7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 613.1 429.17 128.7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5	4.35	3339	158.	111.	33.25	316.7	221.6	66.39	615.8	431.10	129.1
4.4 3336 158. 110. 33.22 316.1 221.2 66.32 615.1 430.62 129.0 4.4 34 838 482 01 707 815 718 02 8 4.45 3333 158. 110. 33.19 316.4 221.4 66.45 613.1 429.17 128.7 0.4 628 172 03 821 128 113 79 7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5			64	048	786	05	935	518	586	1	1
4.45 3333 158. 110. 33.19 316.4 221.4 66.45 613.1 429.17 128.7 4.5 3330 158. 110. 33.22 316.4 221.4 66.45 613.1 429.17 128.7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5	4.4	3336	158.	110.	33.22	316.1	221.2	66.32	615.1	430.62	129.0
4.45 3333 158. 110. 33.19 316.4 221.4 66.45 613.1 429.17 128.7 04 628 172 03 821 128 113 79 7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5			34	838	482	01	707	815	718	02	8
04 628 172 03 821 128 113 79 7 4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5	4.45	3333	158.	110.	33.19	316.4	221.4	66.45	613.1	429.17	128.7
4.5 3330 158. 110. 33.22 316.4 221.4 66.51 611.7 428.21 128.5			04	628	172	03	821	128	113	79	7
	4.5	3330	158.	110.	33.22	316.4	221.4	66.51	611.7	428.21	128.5

		04	628	162	03	821	114	376	63	9
4.55	3327	158.	110.	33.25	315.9	221.1	66.47	610.3	427.25	128.4
		04	628	158	5	65	58	639	47	2
4.6	3324	157.	110.	33.19	315.3	220.7	66.40	608.9	426.29	128.2
		64	348	735	46	422	86	902	32	5
4.65	3321	157.	110.	33.20	315.7	221.0	66.56	608.3	425.81	128.2
		54	278	626	99	593	408	034	24	2
4.7	3318	157.	110.	33.21	314.7	220.3	66.40	607.2	425.09	128.1
		44	208	519	42	194	127	732	12	2
4.75	3315	157.	109.	33.16	314.2	220.0	66.36	606.5	424.61	128.0
		04	928	078	89	023	57	863	04	9
4.8	3312	156.	109.	33.04	313.6	219.5	66.29	605.2	423.64	127.9
		34	438	287	85	795	816	126	89	1
4.85	3309	156.	109.	33.09	313.3	219.3	66.29	604.5	423.16	127.8
		44	508	399	83	681	438	258	81	8
4.9	3306	156.	109.	33.14	313.0	219.1	66.29			
		54	578	519	81	567	059			
4.95	3303	156.	109.	33.13	313.6	219.5	66.47			
		34	438	291	85	795	881			
5	3300	156.	109.	33.18	313.8	219.6	66.57			
		44	508	424	36	852	127			
5.05	3297	155.	109.	33.10	313.6	219.5	66.59			
		94	158	828	85	795	979			
5.1	3294	155.	109.	33.09	312.9	219.0	66.5			
		74	018	593	3	51				
5.15	3291	155.	108.	33.08						
		54	878	356						
5.2	3288	155.	108.	33.04						
		24	668	988						
5.25	3285	154.	108.	32.95						
		64	248	221						
5.3	3282	154.	108.	32.98						
		64	248	233						
5.35	3279	154.	108.	32.99						
		54	178	116						
5.4	3276	154.	108.	33						
		44	108							
5.45	3273	154.	107.	32.96						
		14	898	609						
5.5	3270	153.	107.	32.93						
		84	688	211						
5.55	3267	153.	107.	32.89						
		54	478	807						
5.6	3264	153.	107.	32.84						
		14	198	252						
5.65	3261	153.	107.	32.93						

		44	408	714										
5.7	3258	153.	107.	32.92										
		24	268	449									1	
5.75	3255	152.	106.	32.71										
		14	498	828									L	
5.8	3252	152.	106.	32.72										
		04	428	694									L	
5.85	3249	151.	106.	32.73										
		94	358	561									L	
5.9	3246	151.	106.	32.70									1	
		64	148	117									L	
5.95	3243	151.	105.	32.66					_ N	ormal stro				
		34	938	667					- 11		55			
6	3240	151.	105.	32.67										
		24	868	531		140.00								_
6.05	3237	150.	105.	32.57	0a	120.00								
		64	448	584	×,	100.00								
6.1	3234	150.	105.	32.56	ess	80.00	F							
		44	308	277	r stı	60.00								
6.15	3231	150.	105.	32.52	hea	40.00								
		14	098	801	S	20.00								
6.2	3228	149.	104.	32.49		0.00		2	0	4.0	6	0		80
		84	888	318		0	.0	2	.U ח	4.0	nt mm	0		0.0
6.25	3225	149.	104.	32.45					υ	isplaceille				
		54	678	829										
													1	

Appendix 9 ERCC Laboratory and Field Test Results of Each Layers

Addis Ababa to Jima Road Rehabilitation Project Asphalt Wearing Course - Test Results

Station, km	Date Laid	28	20 (95-100)	14 (80-90)	5	2 (30-40)	1 (20-30)	0.6	0.3	0.15	0.075	Bitumen Content, by total weight	Bulk Specific Gravity	Max. theoretical density,	Marshall Air voids, % (3 - 5)	VMA (min. 14)	VFA %	Stability (min. 9KN)	Flow (min. 2mm)	Comments
		-		-								(5.0 - 5.1)	2 314				-	42.00	4.05	
247+700	25/02/08			85	54	30	18	14	10	8	61	5 29	2.314	2.426	4.7			13.22	4.00	
RHS							10	14	10	v	0.7	0.20	2.304	2.420	4.7		-	10.00	2.00	
		-								-	-		2 304					16.61	3.00	
250+300	26/02/08			87	53	31	19	14	11	9	6.7	5.21	2.304	2 426	47		-	10.01	4.39	
LHS							10	17	1.11	, v	0.1	5.21	2.310	2.420	4,7		-	10.00	7.10 E.00	
						-	-	-	1	-			2.311					19.70	5.00	
250+700	27/02/08			84	57	34	23	18	13	10	7.9	5 34	2.010	2 429	5.0		-	10.04	4.00	
RHS	2						20	10	15	10	1.0	0.04	2.313	2,430	0.0		-	10.04	0.10 E 42	
				-						-			2.303					15.04	3.43	
248+900	29/02/08		99	89	59	33	20	15	11	q	70	5.26	2.311	2 4 2 0	5.1			10.91	4.07	
LHS					<u> </u>	<u> </u>		10	53.Q	<u> </u>		0.40	2.303	2.423	0.1		-	10.10	4.10	
		a – 1		-			-			-			2.308					11.09	0.40	
249+600	29/02/08		99	89	53	32	20	16	11	8	63	4 99	2 307	2 / 28	5.1		-	11.95	6.00	
LHS			2000			<u> </u>	~~	1.2		ň.	0.0	4.00	2.300	2.420				12.26	0.70	
													2.300					12.30	2.55	
247+200	01/03/08			91	57	32	19	14	10	8	61	5.04	2 303	2 / 2/	1.5			12.27	. 3.30 A.C.E.	
RHS						100	19	14	10.		9.1	0.04	2.303	2.424	9.0			11.09	4.00	
			-						-	-			2.305		-			12.00	2.02	
248+700	02/03/08			90	59	32	20	15	11	9	74	5.24	2 330	2 426	4.5		-	10.09	0.90	
LHS							-		10 A	Ŭ	1.13	W.4-7	2.300	2.420	4.0			12.45	4.00	
				1	-					-			2 318		-			11.40	5.02	
248+800	02/03/08		è	91	59	33	19	14	10	8	5.7	5.05	2.310	2 / 26	1.8			16.62	0.01	
LHS											0,1	0.00.	2 297	4.420	4.0			11.03	5.07	
			1				-	-	-	-			2 309					10.63	4.00	
244+000	03/03/08			93	. 59	33	18	14	10	8	6.0	5.22	2 308	2 4 2 0	45			0.58	4.00	
RHS			9						- 25	, i	0.0	0.66	2 316	2.920	4.5		- 12	11.99	4.11	
		1				-		-11					2 302				- C	11.00	4.50	
244+500	03/03/08			87	55	31	19	15	10	8	5.8	5 19	2 302	2 420	61		1.1	11.00	5.09	
RHS				-58	22.0	200				Č.	0.0	0.10	2 300	6.460	0.1			12.21	6.25	
		100						-		-			2.301					0.00	4.22	
245+300	04/03/08			87	58	33	20	15	10	8	63	5.07	2.301	2 430	5.0			9,99	4.33	
RHS	1.0000000000			1000					18	×.	0.0	0.01	2314	2.400	0.0		1.12	0.60	3.14	
							-				-		2.3.14	1.1				11 77	3.00	
245+450	05/03/08			90	62	31	19	14	10	q	66	5.11	2.320	2 /28	13			11.77	4.23	
LHS						2.10	140	N.X. 1	19	×.	9.9	9.11	2 3 3 0	2.420	4.0	-		11.91	4.02	
								-					2.310			1/		0.24	9.42	
246+200	05/03/08	15	100 march	90	61	36	21	16	10	8	61	5.09	2.311	2 / 20	47			9.24	3.11	
RHS	00100100	00'7'	2.1. 10		81	00		1.0	10	0	0.1	0.00	2.328	2.439	4:7		1.1	11.00	4.04	

Page 1 of 3

AWC Lab

Station,	Date Laid	28	20	14	5	2	1	0.6	0.3	0.15	0.075	Bitumen Content,	Bulk	Max.	Marshall Air voids	VMA		Stability	Flow	
KII		(100)	(95-100)	(80-90)	(53-63)	(30-40)	(20-30)	(14-22)	(10-16)	(7-11)	(4.3-8.3)	weight (5.0 - 5.1)	Gravity	density,	% (3 - 5)	(min. 14)	VFA %	(min. 9KN)	(min. 2mm)	Comments
246+500	06/03/08			89	61	22	10				191701		2.318					11 31	4.76	
LHS				03	01	33	18	14	10	8	6.5	5.34	2.321	2.431	4.6			11.39	4.76	
242.000				-	-								2.317					10.43	4.00	
243+200	07/03/08			91	59	34	20	45	40		122220	0000	2.303					13.20	5.76	
LHS						34	20	15	10	8	5.3	5.12	2.315	2.434	5.0			12.85	6.77	
242.000				1.1.1									2.319					10.59	4 48	
2437000	07/03/08		99	92	60	33	20	45	10			2.27	2.306					12.02	5.16	
LHS					~	55	20	15	10	9	6.8	5.21	2.324	2.441	5.1			11.10	3.97	-
250.000								-	-	-			2.320					12.75	4 90	
200+000	08/03/08			87	55	32	10	44	10	- Q - 1			2.316					11.10	5.72	
KHS					~~	25	10	14	10	- 0	5.5	5.25	2.317	2.432	4.9			13.92	6.20	
242.000					-		-	-	-	-			2.308					12.58	5.26	
2437902	09/03/08			90	61	22	20	15	10				2.312					10.09	4.25	
LHS	1.				×	55	20	15	10	8	6.8	5.25	2.305	2.434	4.8			12.08	A 77	
244+400				-	-	-	-	-	-	_			2.334					11.31	474	
244+190	09/03/08			86	62	33	21	10					2.324					13.49	4.74	
LHS	0.802.09.0075.			00	02	00	21	10	11	9	7.1	5.09	2.323	2.440	5.0			12.68	5.22	
245.007				-	-		-			_			2.305					11.95	4 20	
245+087	10/03/08			86	54	31	20	45					2.310					10.34	7 33	
LHS				~~	54	51	20	15	11	9	7,4	5.20	2.327	2.432	4.8			11.16	6.02	
244.750		-		-	-	-	-			-			2.305					12 72	6 30	
244+758	10/03/08			90	61	25	20		40		1122120		2.310					10.05	5.77	
LHS	1.0.000000000000000			00	0.1	30	20	14	10	8	5.6	5.27	2.310	2.434	4.9		-	10.00	5.02	
		-	-	-			-	-				-	2.322					12.78	7.20	
240+3/4	11/03/08			02	55	24	10	10		1200	0.000	310000 C	2.306					11.30	6.24	
RHS				52	55	31	19	15	11	9	7.0	5.05	2.321	2.425	4.5			10.23	4.40	
		-		-	-							10000	2.322				-	10.84	6.90	
242+290	12/03/08			84	50	22	10			12	02/020	1000	2.311					12.08	6.01	
RHS				~	50	52	19	15	10	9	6.7	5.06	2.319	2.428	4.6		-	12.83	6.22	
		-		-		-	-	-	-	-			2.315					11.20	7.67	
243+126	13/03/08			85	62	24	00		12				2.316					10.33	1.07	
RHS				00	55	31	20	15	10	8	6.7	5.18	2.322	2.437	4.9			10.07	4.00	
		-		-		-	-		-				2.314					10.61	6.10	
41+621	14/03/08			05	60	20		127					2.309					12.07	0.10	
LHS				55	00	30	23	18	14	12	10.1	5.07	2.322	2.434	4.8			12.67	5.00	
		-	-		-	-	-	_	-				2.319					12.10	5.40	
41+621	14/03/08		0	02	52	24	10						2.311					9.11	5.59	
LHS				03	55	31	18	14	10	8	6.6	5.00	2.320	2.437	4.9			8.20	0.00	
				-		-		_					2.323					10.29	4.75	
41+096	15/03/08			-258 pr	380								2.313					10.29	4.79	
LHS	10.00100		an	PC 10	30	34	22	18	14	10	6.9	5.10	2.311	2.440	5.0			10.10	5.19	
			* WY	24. 117	Sug	2							2.327		5.0			12.00	4.39	
40+580	16/03/08	/	1	pC742	80 12	7					0.50		2.312	-				10.60	0.08	
LHS	10/00/00	13	3 50	00	92.0	36 -	21	16	11	9	7.0	5.02	2.308	2.429	47			11.09	5.51	
			101	N	1 Ste	7. 0							2.322		1.1			10.04	5.4/	
40+580		1	~	X	- F	6							2.319					12.94	5.93	
								19	52 52	- 2	1							13.85	5.92	

Page 2 of 3

AWC Lab

Wk & Safery

Addis Ababa to Jima Road Rehabilitation Project Base Course Material - Laboratory Test Results

							Gr	adation	1				Modifie	d proctor							
station	Material source	Date Sampled	Date Tested	50	37.5	20	10	5	2	0.6	0.425	0.075	MDD	OMC	LL	PL	PI	CBR	Swell	LA	Remarks
				100	(95-100)	(60-80)	(40-60)	(25-40)	(15-30)	(8-22)	(7-19)	(5-12)	g/cm		-		0	>=80	0	<=35	
250+220	R/W	16/02/08	17/02/08												N.P	N.P	N.P	-		8 - Conner 1997	
248+700	R/W	21/02/08	23/02/08										2.24	8.3							
248+000	R/W	26/02/08	01/03/08		99	70	44	27	16	8	7	5	2.20	8.0	N.P	N.P	N.P				
247+000	R/W	26/02/08	01/03/08		99	69	43	26	17	9	8	5			N.P	N.P	N.P				
241+800	R/W	03/03/08	07/03/08		98	72	46	27	17	10	9	6	2.22	7.4							
244+000	R/W	04/03/08	09/03/08		98	83	57	37	22	11	10	6	2.23	7.7							
240+000	R/W	12/03/08	12/03/08									11140	2.24	73				-			
241+600	R/W	12/03/08	12/03/08										2.25	8.3							
240+000	R/W	12/03/08	14/03/08		96	67	46	29	19	10	8	5	2.24	7.2							
241+000	R/W	12/03/08	14/03/08		93	67	47	31	20	11	9	6	2.24	8.0						i I	
239+000	R/W	15/03/08	19/03/08		96	68	46	27	18	9	8	5	2.30	6.7							
237+400	R/W	21/03/08	24/03/08		94	86	43	22	12	8	5	4	2.29	6.1							

Addis Ababa to Jima Road Rehabilitation Project Subbase Course - Field Density Results

Date Tested	Test-Chainage (km)	MDD (Kg/m³)	OMC (%)	Wet Density (kg/m ³)	Dry Density (kg/m ³)	% Moisture	% Compaction	Remark
20/02/08	243+720R	2.110	8.7	2288	2114	8.2	100.2	
20/02/08	243+780L	2.110	8.7	2254	2074	8.7	98.3	
20/02/08	243+840L	2.110	8.7	2241	2068	8.4	98.0	6
20/02/08	243+900R	2.110	8.7	2261	2093	8.0	99.2	
20/02/08	243+960L	2.110	8.7	2265	2102	7.8	99.6	
20/02/08	244+020L	2.110	8.7	2265	2074	9.2	98.3	
20/02/08	244+080R	2.110	8.7	2255	2083	8.3	98.7	
20/02/08	244+140L	2.110	8.7	2235	2093	6.8	99.2	
20/02/08	244+200L	2.110	8.7	2289	2110	8.5	100.0	
20/02/08	244+260R	2.110	8.7	2360	2183	8.1	98.8	
20/02/08	244+320L	2.110	8.7	2259	2099	7.6	99.5	
20/02/08	244+380L	2.110	8.7	2258	2083	8.4	98.7	
20/02/08	244+440R	2.110	8.7	2290	2097	9.2	99.4	
20/02/08	244+500L	2.110	8.7	2251	2078	8.3	98.5	
25/02/08	242+520L	2.000	11.0	2159	1974	9.4	98.7	
25/02/08	242+580R	2.000	11.0	2169	1988	9.1	99.4	
25/02/08	242+640R	2.000	11.0	2182	1996	9.3	99.8	
25/02/08	242+700L	2.000	11.0	2161	1970	9.7	98.5	
25/02/08	242+760R	2.000	11.0	2244	2072	8.3	98.2	
25/02/08	242+820R	2.000	11.0	2238	2076	7.8	98.4	
25/02/08	242+880L	2.000	11.0	2270	2099	8.1	99.5	
25/02/08	242+940R	2 000	11.0	2262	2083	8.6	98.7	
25/02/08	243+000R	2.000	11.0	2246	2076	8.2	98.4	
25/02/08	243+020L	2.110	9.7	2260	2087	8.3	98.9	
25/02/08	243+080R	2.110	9.7	2276	2097	8.5	99.4	
25/02/08	243+140R	2.110	9.7	2268	2080	9.0	98.6	
25/02/08	243+200L	2.110	9.7	2259	2074	8.9	98.3	1
25/02/08	243+260R	2.110	9.7	2269	2089	8.6	99.0	
27/02/08	241+020R	2.100	10 8	2281	2106	8.3	100.3	
27/02/08	241+080L	2.100	10.8	2269	2071	9.6	98.6	
27/02/08	241+140L	2.100	10.8	2252	2066	9.0	98.4	
27/02/08	241+200R	2.100	10.8	2281	2100	8.6	100.0	
27/02/08	241+260L	2.000	11.0	2264	2004	8.0	100.2	
27/02/08	241+320L	2.000	11.0	2195	2010	9.2	100.5	
27/02/08	241+380R	2.000	11.0	2170	1996	8.7	99.8	
27/02/08	241+440L	2.000	11.0	2180	2000	9.0	100.0	
27/02/08	241+500L	2.000	11.0	2205	2008	9.8	100.4	
27/02/08	242+000L	2.100	10.8	2268	2100	8.0	100.0	
27/02/08	242+080R	2.100	10.8	2265	2073	9.3	98.7	
27/02/08	242+140R	2.100	10.8	2265	2087	8.5	99.4	
27/02/08	242+200L	2.100	10.8	2305	2012	10.2	99.6	
27/02/08	242+260R	2.100	10.8	2185	2006	8.9	100.3	

Subbase

Date Tested	Test-Chainage (km)	MDD (Kg/m ³)	OMC (%)	Wet Density (kg/m ³)	Dry Density (kg/m ³)	% Moisture	% Compaction	Remark
20/03/08	233+200R	1.97	12.8	2214	1968	12.5	99.9	
20/03/08	233+320R	1.97	12.8	2204	1970	11.9	100.0	
20/03/08	233+520	1.99	12.3	2229	1990	12.0	100.0	
20/03/08	233+580	1.99	12.3	2225	1988	11.9	99,9	
20/03/08	233+640	1.99	12.3	2205	1992	10.7	100.1	
20/03/08	233+700	1.99	12.3	2212	1968	12.4	98.9	
20/03/08	233+760	1.99	12.3	2153	1926	11.8	96.8	
20/03/08	233+820	1.99	12.3	2214	1968	12.5	98.9	Y
20/03/08	233+880	1.99	12.3	2205	1988	10.9	99.9	
20/03/08	233+940	1.99	12.3	2237	1990	12.4	100.0	
20/03/08	233+980	1.99	12.3	2196	1964	11.8	98.7	
20/03/08	233+760	1.99	12.3	2227	1988	12.0	99.9	
20/03/08	234+020	2.06	9.6	2249	2056	9.4	99.8	
20/03/08	234+080	2.06	9.6	2264	2058	10.0	99.9	1
20/03/08	234+140	2.06	9.6	2230	2033	9.7	98.7	
20/03/08	234+200	2.06	9.6	2186	1994	9.6	96.8	
20/03/08	234+260	2.06	9.6	2243	2037	10.1	98.9	
20/03/08	234+320	2.06	9.6	2262	2060	9.8	100.0	
20/03/08	234+380	2.06	9.6	2247	2054	9.4	99.7	
20/03/08	234+420	2.06	9.6	2210	2017	9.6	97.9	í .
20/03/08	234+480	2.06	9.6	2241	2037	10.0	98.9	
20/03/08	234+200	2.06	9.6	2264	2056	10.1	99.8	
20/03/08	234+420	2.06	9.6	2262	2060	9.8	100.0	
20/03/08	234+520	1.98	10.5	2160	1958	10.3	98.9	
20/03/08	234+580	1.98	10.5	2118	1936	9.4	97.8	
20/03/08	234+640	1.98	10.5	2169	1972	10.0	99.6	
20/03/08	234+700	1.98	10.5	2146	1954	9.8	98.7	
20/03/08	234+760	1.98	10.5	2111	1911	10.5	96.5	
20/03/08	234+820	1.98	10.5	2166	1958	10.6	98.9	
20/03/08	234+880	1.98	10.5	2120	1932/	9.7	97.6	1
20/03/08	234+940	1.98	10.5	2180	1978	10.2	99.9	
20/03/08	234+980	1.98	10.5	2158	1954	10.4	98.7	
20/03/08	234+580	1.98	10.5	2180	1976	10.3	99.8	Re Test
20/03/08	234+760	1.98	10.5	2166	1958	10.6	98.9	Re Test
20/03/08	234+880	1.98	10.5	2172	1978	9.8	99.9	Re Test
21/03/08	232+520L	1.89	11.4	2115	1894	11.7	100.2	
21/03/08	232+580R	1.89	11.4	2116	1918	10.3	101.5	
21/03/08	232+640R	1.89	11.4	2075	1890	9.8	100	
21/03/08	232+700L	1.89	11.4	2082	1886	10.4	99.8	
21/03/08	232+760R	1.89	11.4	2056	1844	11.5	97.6	
21/03/08	232+820R	1.89	11.4	2104	1899	10.8	100.5	
21/03/08	232+880L	1.89	11.4	2142	1894	13.1	100.2	
21/03/08	232+940R	1.89	11.4	2086	1886	10.6	99.3	
21/03/08	233+000/2.3	1.89	11.4	2141	1903	12.5	100.7	

Page 4 of 6

Subbase

Addis Ababa to Jima Road Rehabilitation Project Subgrade - Field Density Results

Date Tested	Test Chainage (km)	MDD (Kg/m ³)	OMC (%)	Wet Density (kg/m ³)	Dry Density (kg/m ³)	% Moisture	% Compaction	Remark
24/02/08	229+820R	1.85	13.0	1990	1804	10.3	97.5	
24/02/08	230+020R	1.85	13.0	2073	1859	11.5	100.5	
24/02/08	229+720R	1.85	13.0	2039	1852	10.1	100.1	—
24/02/08	229+020R	1.85	13.0	2053	1855	10.7	100.2	
24/02/08	229+920R	1.85	13.0	2019	-1822	10.8	98.5	
24/02/08	229+820L	1.85	13.0	1972	1795	9.9	97.0	
24/02/08	229+620L	1.85	13.0	2044	1832	11.6	99.0	
24/02/08	229+120R	1.85	13.0	1994	1797	11.0	98.1	
24/02/08	229+220R	1.85	13.0	2001	1788	12.1	96.4	
24/02/08	229+220L	1.85	13.0	2002	1794	12.5	97.0	
24/02/08	229+620R	1.85	13.0	2014	1815	11.0	98.1	
24/02/08	229+520R	1.85	13.0	2039	1819	12.1	98.3	
24/02/08	229+420L	1.85	13.0	1965	1793	9.6	96.9	
24/02/08	229+420R	1.85	13.0	2012	1815	10.8	98.1	
24/02/08	229+120L	1.85	13.0	1995	1889	11.5	96.7	
24/02/08	229+020L	1.85	13.0	1996	1787	11.7	96.6	
24/02/08	229+320L	1.85	13.0	2001	1785	12.1	96.4	
24/02/08	229+320R	1.85	13.0	1996	1808	10.4	97.7	
24/02/08	230+020L	1.85	13.0	1943	1763	10.2	95.3	
24/02/08	229+920L	1.85	13.0	2070	1848	12	99.9	
24/02/08	229+520L	1.85	13.0	2061	1835	12.3	99.2	
24/02/08	229+720L	1.85	13.0	2042	1843	10.8	99.6	
25/02/08	230+940L	1.85	13.0	2072	1852	11.9	100.1	
25/02/08	230+540R	1.85	13.0	2020	1795	12.0	97.0	
25/02/08	230+340R	1.85	13.0	2048	1835	11.6	99.2	
25/02/08	230+340L	1.85	13.0	2047	1857	10.2	100.4	
25/02/08	231+000R	1.85	13.0	2029	1841	10.2	99.5	
25/02/08	230+440R	1.85	13.0	2029	1813	11.9	98.0	
25/02/08	230+840R	1.85	13.0	2038	1828	11.5	98.8	
25/02/08	230+640R	1.85	13.0	1975	1787	10.5	96.6	
25/02/08	230+740L	1.85	13.0	1986	1804	10.1	97.5	
25/02/08	230+740R	1.85	13.0	1979	1769	11.9	95.6	
25/02/08	230+940R	1.85	13.0	1965	1767	11.2	95.5	
25/02/08	230+540L	1.85	13.0	2026	1804	12.3	97.5	
25/02/08	230+040L	1.85	13.0	2000	1793	11.6	96.9	
25/02/08	227+620R	1.85	13.0	1995	1804	10.6	97.5	
25/02/08	227+920L	1.85	13.0	2008	1793	12.0	96.9	
25/02/08	227+120R	1.85	13.0	2067	1841	12.3	99.5	
25/02/08	228+000L	1.85	13.0	2067	1854	11.3	100.4	
25/02/08	227+420L	1.85	13.0	1898	1758	8.0	95.0	
25/02/08	230+140L	1.85	13.0	1972	1768	11.6	95.5	
25/02/08	227+7201	1.85	13.0	1986	1804	10.1	97.5	
25/02/08	227+8201	1.85	13.0	2070	1832	13.0	99.0	
25/02/08	227+720R	1.85	13.0	1977	1767	11.9	95.5	
25/02/08	227+920R	1.85	13.0	2041	1822	12.8	98.5	
25/02/08	227+1201	1.85	13.0	2076	1856	11.9	100.3	
25/02/08	222+220R	1.85	13.0	1963	1782	10.2	96.3	
25/02/08	227+2201	1.85	13.0	1944	1758	10.6	95.0	
25/02/08	227+5201	1.85	13.0	2031	1846	10.0	99.8	
25/02/08	227+020R	1.85	13.0	1986	1776	11.8	96.0	
25/02/08	227+0201	1.05	13.0	1977	1804	9.6	97.5	
25/02/08	227+6201	1.85	13.0	1981	1793	10.5	96.9	1

Page 1 of 4

Date Tested	Test Chainage (km)	MDD (Kg/m ³)	OMC (%)	Wet Density (kg/m ³)	Dry Density (kg/m ³)	% Moisture	% Compaction	Remark
02/03/08	225+320L	1.85	13.0	2013	1764	14.1	95.3	
02/03/08	225+420L	1.85	13.0	2021	1783	13.4	96.3	
02/03/08	226+320R	1.85	13.0	1971	1777	11.0	96.0	
02/03/08	225+220L	1.85	13.0	1929	1770	9.0	95.6	
02/03/08	225+320R	1.85	13.0	2010	1761	14.1	95.0	
02/03/08	225+020L	1.85	13.0	1999	1779	12.3	96.1	
02/03/08	226+020R	1.85	13.0	2001	1809	10.6	97.8	
02/03/08	225+220R	1.85	13.0	1942	1789	8.5	96.7	
02/03/08	225+920L	1.85	13.0	1983	1809	9.6	97.8	
02/03/08	226+820L	1.85	13.0	2035	1807	12.6	97.6	
02/03/08	225+020R	1.85	13.0	1978	1762	12.0	95.2	
02/03/08	225+820L	1.85	13.0	2074	1854	11.9	100.2	
16/03/08	197+700R	1.75	17.0	1871	1682	11.3	96.1	
16/03/08	197+900R	1.75	17.0	1 1907	1691	12.8	96.8	Black
16/03/08	197+800R	1.75	17.0	1905	1666	14.4	95.1	paren
16/03/08	196+000R	1.75	17.0	1929	1693	13.9	96.7	
16/03/08	196+500R	1.75	17.0	1898	1675	13.4	95.6	
16/03/08	196+200R	1.75	17.0	1938	1745	11.1	90.6	
16/03/08	195+900R	1.75	17.0	1914	1675	14.3	95.0	
16/03/08	195+800R	1.75	17.0	1950	1765	10.5	95.0	
16/03/08	196+100R	1.75	17.0	1843	1610	14.5	01.0	
18/03/08	196+400R	1.75	17.0	1915	1671	14.5	91.9	
18/03/08	196+300R	1.75	17.0	2004	1720	14.0	95,5	
18/03/08	196+100R	1.75	17.0	1954	1601	16.5	98.3	
19/03/08	194+800R	1 75	17.0	1890	1731	15.6	96.6	
19/03/08	195+300R	1.75	17.0	1792	1696	9.2	98.9	
19/03/08	195+000R	1.75	17.0	1853	1710	7.0	96.3	
19/03/08	195+500R	1.75	17.0	1901	1713	7.0	98.2	
19/03/08	194+760R	1.75	17.0	1832	1/33	9.7	99.0	
19/03/08	194+900R	1.75	17.0	1835	1724	0.2	96.7	
19/03/08	195+700R	1.75	17.0	1934	1752	10.4	98.5	
19/03/08	195+400R	1.75	17.0	1084	1752	10.4	100.1	
19/03/08	195+200R	1.75	17.0	1801	1705	10.0	100.0	
19/03/08	195+600R	1.75	17.0	1860	1703	10.9	97.4	
19/03/08	195+100R	1.75	17.0	1827	1707	9.0	97.5	
23/03/08	196+5201	1.85	15.0	1027	1967	6.1	98.3	
23/03/08	197+0501	1.85	15.0	2018	1962	0.2	100.9	
23/03/08	197+9501	1.85	15.0	1078	1800	8.3	100.7	
23/03/08	197+5501	1.85	15.0	1970	1779	9.3	97.8	
23/03/08	197+250R	1.85	15.0	1000	1770	4.9	96.1	0.1
23/03/08	197+3501	1.85	15.0	1005	1959	7.1	96.7	Ked
23/03/08	197+350R	1.85	15.0	1995	1000	7.4	100.4	
23/03/08	196+950R	1.85	15.0	1900	1900	0.0	100.7	
23/03/08	197+1501	1.85	15.0	1002	1000	0.2	97.3	
23/03/08	197+150R	1.85	15.0	1000	101/	4.8	98.2	
23/03/08	197+6501	1.05	15.0	1930	1807	6.8	97.6	
23/03/08	197+7501	1.00	15.0	1944	1830	6.2	98.9	
23/03/08	197+850	1.00	15.0	19/1	1850	6.5	100.0	
23/03/08	196+9501	1.00	15.0	1904	1813	5.0	98.0	
23/03/08	190+950L	1.85	15.0	1955	1815	7.7	98.0	
23/03/09	107,050L	1.05	15.0	1899	1778	6.8	96.1	
20100100	197+250L	1.85	15.0					

Page 4 of 4

ş