
POLYMER TRANSLOCATION THROUGH

NANOPORE : A MONTE CARLO STUDY

By

DEREJE KENEA

A THESIS SUBMITTED TO THE GRADUATE STUDIES OF JIMMA UNIVERSITY IN

PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN PHYSICS

(STATISTICAL PHYSICS)

Advisor : Solomon Negash(PhD)

JIMMA, ETHIOPIA

JANUARY, 2021

c⃝ Copyright by DEREJE KENEA, 2021



JIMMA UNIVERSITY

DEPARTMENT OF PHYSICS

The undersigned hereby certify that they have read and recommend

to the College of Natural Sciences for acceptance a thesis entitled

“Polymer translocation through nanopore : a monte carlo study”

by DEREJE KENEA in partial fulfillment of the requirements for the

degree of Master of Science in Physics(Statistical Physics).

Dated: January, 2021

Advisor:
Solomon Negash(PhD)

Co-advisor:
Solomon Hailemariam (PhD Fellow)

Internal Examiner:
Menberu Mengesh(PhD)

External Examiner :
Aniley Gesese(PhD)

Chair person:
Menberu Mengesh(PhD)

ii



JIMMA UNIVERSITY

Date: January, 2021

Author: DEREJE KENEA

Title: Polymer translocation through nanopore : a monte

carlo study

Department: Department of Physics

Degree: MSc.
Convocation: January
Year: 2021

Permission is herewith granted to Jimma University to circulate and to

have copied for non-commercial purposes, at its discretion, the above title upon

the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLYWRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii



Table of Contents

Table of Contents iv

List of Tables vi

List of Figures vii

Acknowledgements ix

Abstract x

1 Introduction 1

1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Litrature Review 7

2.1 Polymers and Polymerization . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Static Properties of Polymers . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Ideal Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iv



2.2.2 Real Chain And Excluded Volume(EV) . . . . . . . . . . . . . 12

2.3 Dynamic Properties of Polymer Chains . . . . . . . . . . . . . . . . . 15

2.3.1 Rouse Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Review of Translocation of Polymer . . . . . . . . . . . . . . . . . . . 17

2.5 Review of Bond Fluctuation Method . . . . . . . . . . . . . . . . . . 21

3 Methods 22

3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Bond Fluctuation Method . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Results and Discussion 30

4.1 The static properties of a linear polymer chains . . . . . . . . . . . . 30

4.2 Dynamic Properties of a linear polymer . . . . . . . . . . . . . . . . . 34

5 Conclusion 41

References 43

v



List of Tables

4.1 The probability to translocate either of the sides . . . . . . . . . . . . 37

vi



List of Figures

2.1 Various types of polymer structure[14] . . . . . . . . . . . . . . . . . 8

2.2 Architecture of polymer chain: a linear chain (a), a branched chain

(b), and a cross-linked polymer (c). [26] . . . . . . . . . . . . . . . . . 9

2.3 Center of mass and the radius of gyration in the bead-stick model. [26] 11

2.4 Self Avoiding Walk(SAW) . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 A spherical bead moving with velocity v will experience a friction force

of −ξv opposite to its velocity and random forces F [20] . . . . . . . 16

2.6 The middle of a polymer is initially placed in the center of the pore.

The length and width of the pore are L and W, respectively[14] . . . 20

3.1 The bond length between consecutive monomers in the range 2 ≤ l ≤
√
13 for 2D BFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Schematic representation of square lattice with size 800x800 unit square

cells and at the middle we put a wall with a nanopore of width W= 6

and length L=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The initial conformation of a linear polymer of length N = 23 placed

symmetrically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Schematic representation of a linear polymer during the time spent

translocation from the nano pore with length L = 2 and width w =

6 sites and the polymer size, N = 23. This confarmation is the most

likely adaptation after relaxation for N ∗ 106 Monte Carlo moves. . . 28

vii



3.5 Schematic representation of a polymer of length N = 23 after translo-

cated through a pore of length L=2 and width W=6 . . . . . . . . . 29

4.1 Log-log plot of mean square end to end distance ⟨R2⟩ as a function of

polymer chain length N for N = 23, 31, 45, 57,73 . . . . . . . . . . . 32

4.2 Log-log plot of mean square radius of gyration ⟨R2
g⟩ versus polymer

chain length N , for N =23, 31, 45,57,73 . . . . . . . . . . . . . . . . 33

4.3 Log-log plot of mean square displacement ⟨r2(t)⟩ versus time t, for N

=23, 31, 45,57,73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Log-log plot of diffusion coefficient D versus polymer chain length N ,

for N =23, 31, 45,57,73 . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Probability distribution P(τ) of escape time τ for a linear polymer

chain N , for N =23,31, 45, 57 obtained from 1000 runs each . . . . . 38

4.6 Log - Log plot of escape time, τ , as a function of polymer chain length,

for N =23,31,45,57,73 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Plot of average escape time, τ , versus the chain length for a linear

polymer translocation through width w = 6, 8,10,12 . . . . . . . . . . 40

viii



Acknowledgements

First of all I would like to express my thanks to the Almighty God who help me

starting from my womb to still and in all my way, Next to God I would like to express

my deep thanks to my advisor Dr Solomon Negash in his unforgettable help and

advise from the starting to the end of my work. With out him this thesis wouldnt

come up to its end. I am also grateful to Solomon Hailemariam (PhD Fellow)

for his support and encouragement.

Special thanks goes to Alemu Gurmessa (PhD Fellow) for his important sug-

gestions and discussions in this work. I am also very much pleased to forward my

unreserved affection and thank to my family, and my classmates specially Dame

Tesfaye

ix



Abstract

In this thesis we investigate polymer translocation through nanopore without exter-

nal driving force. We used the two dimensional Monte Carlo simulation with Bond

Fluctuating method. To prevail over the entropic barrier, we have taken our system

consideration that placing polymer in the middle of nanopore. Thus, we studied the

static properties of linear polymer like mean square end to end distance ⟨R2⟩ and mean

square radius of gyration ⟨R2
g⟩ as a function of chain length N. We found that the scal-

ing relations of ⟨R2⟩ and R2
g⟩ with polymer size N,as ⟨R2⟩ ∼ N1.49 and ⟨R2⟩ ∼ N1.512

which are in agreement with Flory prediction of real polymer chain. We also studied

the dynamic properties of linear polymers by investigating diffusion coefficient(D)

and escape time (τ) with chain length N, as D ∼ N−0.93 and τ ∼ N2.512 which are

in agreement with Rouse model prediction that are D ∼ N−1 and τ ∼ N1+2ν , where

ν = 3
4
for 2D . In this work, we have also examine the interplay between the pore size

and escape time τ while simulating the translocation process.

Keywords: Monte Carlo method (MC),Bond Flactuation Method (BFM),

self avoiding walk (SAW)
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Chapter 1

Introduction

1.1 Background of the Study

So far logical advances in natural science have affirmed the idea that physical laws

are indeed entirely responsible for how life functions. Another interesting aspect of

biological systems is the paramount roles played by several kinds of polymers, which is

comprehensive in a huge field, called polymer science. Although many people maybe

do not realize it, everyone is familiar with polymers. Polymers are used extensively in

the chemical, electronic, optical, pharmaceutical and medical industries as important

components of highly functional materials. They are all around as in everyday uses.

The usefulness of polymers is due to the many advantages of polymeric materials

have compared to metals, e.g., low weight, radiolucency, thermally and electrically

insulating, and lower process and maintenance cost. Moreover, at the molecular

scale, life is made of biopolymers: DNA, RNA and proteins that are fundamental

to biological structure and function [2, 19]. However, these practical application of

polymers is affected by their physical properties.

1
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In polymer physics [22, 26], polymers are usually classified by topology i.e., over-

all connectivity. Linear, branched, and ring polymers are examples of the topological

classes in polymer physics. Static properties of polymers are the properties that

are characterized by the polymer chain size and shape[5, 26], this means the prop-

erties are characterized by the parameters like End-to-End distance(R) and Radius

of gyration(Rg). Where as, the dynamic properties of the polymers are character-

ized by the parameter like diffusion constant of the molecules (D)[27] as well as the

translocation of the polymers through narrow pore.

Polymer translocation is the process by which a polymer chain will pass through

a pore to either of the sides of the pore. Translocational transport of polymers

through nanopore also plays a crucial role in other numerous biological processes,

such as DNA and RNA [2, 10] translocation across nuclear pores, protein transport

through membrane channels and virus injections. Moreover, translocation processes

might eventually prove useful in various technological applications, such as rapid

DNA sequencing, gene therapy, and controlled drug delivery [16]. Thus, in order to

determine these properties many simulation methods are employed. The two promi-

nent approaches used to simulate polymers are Molecular Dynamics (MD) and Monte

Carlo (MC) methods. These approaches are similar to time and ensemble averaging

in statistical mechanics. Monte Carlo simulation method involves generating and ac-

cepting or rejecting of possible conformations (states) stochastically [23]. Generally,

polymers are studied in the fields such as biophysics, macro-molecular science and

polymer sciences which includes polymer physics. Polymer physics deals with the

description of the structure and the resulting properties of polymeric materials. The
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statistical approach of polymer physics is based on an analogy between a polymer

and a Brownian motion or some other type of random walk (RW) [22].

To work as an accurate measuring tool the translocation process needs to be con-

trolled and predictable. Hence appropriate nanopores are important[14].T here are

two types of pore biological nanopores and solid state nanopores.

Persuaded by this introductory scientific background, we would investigate unbiased

translocation of polymer through nanopore.

1.2 Statement of the Problem

Recently, scholars are focused on different polymeric materials due to their technolog-

ical applications and daily use. The properties of polymers play a crucial role in their

applications. Although polymers are important in our daily life. However, static and

dynamic properties of polymers are remained with great disputes. Particularly, the

properties of linear polymers are still not fully addressed. Even though, a lot of work

has been done with simulation of linear polymers focusing mainly on understanding

their translocation through nanopore in the absence of external driving force in free

space. However, the depth level of theoretical and computer simulations are still in

progress. Therefore, this study investigate unbiased translocation of linear polymer

through nanopore.
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1.3 Research Questions

• What is the scaling exponent of the average-squared radius of gyration of linear

polymer with chain length N, R2
g ∼ N2ν?

• What is the scaling behavior of the mean-squared end-to-end distance of a linear

polymer as function of chain length?

• What is the scaling exponent α for the mean translocation time τ ∼ N1+2ν as

a function of chain length N?

• How does the pore size affects the translocation time of linear polymer chains?

• What is the probability distribution of the mean translocation time of a linear

chain through a nanopore?

• How does the chain length related with the mean translocation time?

• What is the center of mass diffusivity D of the translocating polymer?

1.4 Objectives

1.4.1 General Objective

• To study the translocation of linear polymer chains through nanopore in the

absence of a driving force.

1.4.2 Specific Objectives

The specific objectives of this study are:
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• To determine the scaling exponent α of the average-squared radius of gyration

of linear polymers with chain length.

• To calculate the exponent for the scaling of the mean-squared end-to-end dis-

tance of the polymer as a function of the chain length.

• To obtain the scaling behavior (τ ∼ N1+2ν)of the translocation time with chain

length.

• To examine the effect of the pore size on the translocation time of the polymers.

• To determine the probability distribution of the mean translocation time of a

linear chain through a nanopore.

• To examine the chain length related with the translocation time.

• To calculate the center of mass diffusivity D of the translocating polymer

1.5 Significance of the Study

Latterly, polymers have got a grand technological relevance for several applications.

For example, as mentioned above, they play a pivotal role in other many biolog-

ical processes, such as DNA and RNA translocation across nuclear pores, protein

transport through membrane channels and virus injections. And also the polymers

are useful in several technological applications, such as rapid DNA sequencing, gene

medical aid, and controlled drug delivery. Their application depends on their prop-

erties. The size and the shape of polymers affect their properties. Based on this fact

the result of this study would be the following importance.
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• To provide basic knowledge and recommendation to researchers, students and

other concerned bodies about unbiased translocation of linear polymer through

nanopore.

• To asses the problems and would use as base for further study.



Chapter 2

Litrature Review

In this chapter, we provide a brief review on polymer physics: static and dynamic

properties of polymers, starting with basic definition of polymers and polymerization.

2.1 Polymers and Polymerization

Since most materials are consisting of polymers and most of the modern advances in

science and technology involve polymers, some have called this the polymer era. In

reality, we have always lived in polymer age. The ancient Greeks classified all matters

as animal, vegetable, and mineral[5]. All are largely polymeric and are important to

life as we know it. Most Chemists, biochemists, and chemical engineers are now

involved in some phase of polymer Science.

The word polymer is derived from the Greek words poly and meros, mean-

ing many and parts respectively[9]. Some Scientists prefer to use the word macro

molecule or large molecule, instead of polymer. So, polymers are characterized

within the more general concept of macro molecules by the presence of a clear repeti-

tious elements. These reiterative elements are called monomers. Although, natural

polymers do exist (for example, natural rubber), most polymers are synthesized by

7
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Figure 2.1: Various types of polymer structure[14]

polymerization of monomers from the petrochemical industry. Figure 2.1 illustrates

some important types of polymers.

Polymerization is the process by which elementary units are covalently bonded

together.The entire structure of a polymer is generated during this process. The

number of monomers in a polymer is called its degree of polmerization, N [1,

22].The molar mass M of polymer is equal to its degree of polymerization N times

the molar mass Mmol of its chemical monomer.

M = NMmol (2.1.1)

Another important feature controlling the properties of polymeric systems is poly-

mer architecture. Types of polymer architecture include linear, branched, cross-

linked, as shown in Figure 2.2

The size and the shape of polymers are closely connected to their properties [22, 26].
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Figure 2.2: Architecture of polymer chain: a linear chain (a), a branched chain (b),
and a cross-linked polymer (c). [26]

The shape of polymers is also nearly connected to the size of the various units that

comprise the macro-molecule and the various primary and secondary bonding forces

that are present within the chain and between chains. We discus the detail in the

next sections.

2.2 Static Properties of Polymers

We now discus the properties of ideal chain and real chain polymers.

2.2.1 Ideal Chain

This section are based on the so called freely jointed chain model which is the simplest

model to describe a polymer chain. Here, a polymer is regarded as a random walk of

finite length and interactions among individual monomers are neglected. Let us start

with a freely jointed chain (FJC) model, which consists of massless points connected

by bonds with a constant length, l. The bonds are free to rotate. This model is

similar to the random walk in two dimension in which the length of a step is l.

The two quantities of the random walk, end-to-end vector and radius of gyration,
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characterizes the most important static properties (i.e., shape and size) of a polymer

chain. Here, the bond vector is represented by:−→r n =
−→
R n+1 −

−→
R n, where

−→
R n is the

position of an n-th monomer, and |−→r n| = l for all n.

End-to-end vector : is the sum of all n bond vectors.

−→
R n =

N∑
i=1

−→r i (2.2.1)

In this model, the average of end-to-end distances ⟨
−→
R ⟩ can be written as:

⟨
−→
R ⟩ = ⟨

N∑
i=1

−→r i⟩ = 0 (2.2.2)

and average of squared end-to-end distances is:

⟨R2⟩ = ⟨
−→
R 2⟩ = ⟨

(
N∑
i=1

−→r i

)(
N∑
j=1

−→r j

)
⟩

=
N∑
i=1

N∑
j=1

⟨−→r i.
−→r j⟩

=
N∑
i

N∑
j

l2 cos θij

= Nl2 + 2l2
N∑
i

N∑
i̸=j

cos θij (2.2.3)

where θij is an angle between two bond vectors,−→r i and
−→r j. For freely jointed chain

model:

cos θij =

1, for i = j

0, otherwise
(2.2.4)

Thus equation 2.2.3 becomes:

⟨
−→
R 2⟩ = Nl2 (2.2.5)
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Figure 2.3: Center of mass and the radius of gyration in the bead-stick model. [26]

As it is remarked above,the model is similar to the random walk, i.e. every

polymer segment is independent from all others. The end-to-end distance is a well-

defined for a linear polymer as mentioned above, but it cannot characterize the size of

branched and ring polymers, because they either have too many ends or no ends at all.

Radius of gyration: since, all polymers posses a radius of gyration , it can

characterize the size of polymers of any architecture. The square radius of gyration

is defined as the average square distance between monomers in a given conformation

(position vector
−→
R i) and the polymer’s center of mass (position vector

−→
R cm)[26]

R2
g =

1

N

N∑
i=1

(−→
R i −

−→
R cm

)2
(2.2.6)

The position of center of mass of the polymer is the number of average of all monomer
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position vectors.

−→
R cm =

1

N

N∑
j=1

−→
R j (2.2.7)

Substituting equation 2.2.7 into 2.2.6 and rearranging it, gives an expression for

the square radius of gyration as a double sum of squares of over all inter-monomer

distance :

R2
g =

1

2N2

N∑
i=1

N∑
j=1

(−→
R i −

−→
R j

)2
(2.2.8)

Now we obtain Rg for ideal chains, as a freely joined chain model, whose conformations

are given as trajectories of random walkers. The bond vector (ri − ri−1 ) of the ith

bond is then the displacement vector ∆ri of the ith step. The expression of mean

square end-to-end distance for a random walk applies to the mean square distance

between the ith and jth monomers on the chain just by replacing N with | i − j |.

When | i − j | is large, ri − rj of an ideal chain has a Gaussian distribution with

variance | i− j | l2. Which means that

⟨(ri − rj)
2⟩ =| i− j | l2 (2.2.9)

Therefore, the radius of gyration of ideal linear chain polymer is:

Rg =
1

2N2

N∑
i=1

N∑
j=1

| i− j | l2 = Nl2

6
(2.2.10)

Equating this result with equation 2.2.5,we get:

⟨R2
g⟩ =

l2N

6
=

⟨R2⟩
6

(2.2.11)

2.2.2 Real Chain And Excluded Volume(EV)

Polymer physics based on ideal model of polymer chains discussed above. However,

in real, polymer chains have physical constraints beyond considered on their ideal
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Figure 2.4: Self Avoiding Walk(SAW)

models. These constraints affect the static and dynamic properties a polymer chain.

The interactions between monomers of a chain with finite lateral dimensions at the

real polymer chains and these interactions can alter the size of the polymer. Therefore,

it is important to see such constraints and their effects on the static behaviors of

polymer chains.

Real chains have a finite molecular volume and will exclude overlapping configu-

rations. On a lattice this can be implemented by allowing empty sites for each con-

sequent segment only. Such configurations are known as Self Avoiding Walk(SAW).

SAW is a random walk in which points are not revisited as shown in Figure 2.4. This

intermolecular excluded volume effect leads to an expansion of the chain with respect

to the corresponding ideal chain,since the excluded volume effect is proportional to

the segment density which is highest at the center of the chain. Real polymer chains

of excluded volume was analyzed by Flory.
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For N monomers, Flory[8] considered that the monomers are uniformly distributed

within the total volume of the chain with neglecting correlation between them and

represented the polymer coil a sphere with radius R filled with the polymer segments

with mutual repulsive interaction. The repulsive energy is [9]

Frep (N,R) = kBTvex
N2

m

Rd
(2.2.12)

And the other contribution to the free energy is an entropic cost,Fentropic (N,R).The

entropy loss due to the chain extension can be determined by the probability distri-

bution which is given by:

P
(
N,

−→
R
)
=

(
2πNl2

d

)−d
2

exp

(
−3

−→
R 2

2Nl2

)
(2.2.13)

Hence, the Fentropic (N,R) becomes:

Fentropic (N,R) = −TS
(
N,

−→
R
)
≈ −kBT lnP

(
N,

−→
R
)
=

dkBT
−→
R2

2l2N
(2.2.14)

Therefore, the total free energy of the polymer is the sum of the two energies

F (N,R) = Frep (N,R) + Fentropic (N,R) ≈ kBT

(
vex

N2

Rd
+

dR2

2l2N

)
(2.2.15)

By reducing equation 2.2.15 with respect to R(i.e.,,∂F (N,R)
∂R

= 0), we get the following

relation:

R ∽ Nν (2.2.16)

Where, ν = 3
d+2

and d is dimension.

In general Florys theory for a linear polymer in good solvent is that it yields a universal

power-law dependence of polymer size R on the number of monomers N , i.e

⟨R2⟩ ∼ N2ν (2.2.17)
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ν =


1
2
, Random walk

3
4
, self-avoiding walk

1
3
, collapsed chain

(2.2.18)

2.3 Dynamic Properties of Polymer Chains

Dynamics of linear polymers is modeled by N beads connected by massless, frictionless

springs. Such a model is usually called the Rouse model. We discus the detail of the

model as follows.

2.3.1 Rouse Model

When a polymer chain moves through a solvent every bead, whether it represents

a monomer or a larger part of the chain, will continuously collide with the solvent

molecules[26]. Besides a systematic friction force, the bead will experience random

forces, resulting in Brownian motion. Consider a spherical bead of radius a and mass

m moving in a solvent. Because on average the bead will collide more often on the

front side than on the back side, it will experience a systematic force proportional

with its velocity, and directed opposite to its velocity as shown in figure 2.5.The bead

will also experience a stochastic force F(t)[20]. Hence, equation of motion is:

dR

dt
= v (2.3.1)

dv

dt
= −ξV + F (2.3.2)

Where the friction constant ξ is given by:

ξ =
ζ

m
=

6πηsa

m
(2.3.3)
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Figure 2.5: A spherical bead moving with velocity v will experience a friction force
of −ξv opposite to its velocity and random forces F [20]

where, ηs is the viscosity of the solvent, ζ is friction force , F is stochastic force, and

v is velocity. Furthermore, solving equation 2.3.2 gives:

v (t) = voe
ξt +

∫ t

0

dτe−ξ(t−τ)F (t) (2.3.4)

We have to make some assumptions about the stochastic force. In view of its scram-

bled character, the following assumptions seem to be appropriate for its average prop-

erties:

⟨F(t)⟩ = 0 (2.3.5)

⟨F (t) .F(t
′
)⟩ = Cvoδ(t− t

′
) (2.3.6)

where Cvo depend on the initial velocity. Using the equations one can find: The bead

is in thermal equilibrium with the solvent and from equipartition theorem, for large

t, the mean square displacement is:

⟨(R(t)−R(0))2⟩ = 6kBT

mξ
=

6kBT

ζ
(2.3.7)
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From equation 2.3.7 the Rouse model show that the mean square displacement R2(t)

of the molecule’s center of mass (CM) of d-dimension is given by:

⟨R(t)2⟩ = 2d
kBT

Nζ
t (2.3.8)

⟨R(t)2⟩ = 2dDt (2.3.9)

Where D is diffusion constant. Hence,the diffusion constant in this model is:

D =
kBT

Nζ
(2.3.10)

Here after, from equation 2.3.10, it is easy to understand that the Rouse diffusion

constant and the number of monomers have inversely relationship[25]:

D ∼ N−1 (2.3.11)

In this study, we consider two key parameters related to the dynamic property of a

polymer chain. They are the diffusion constant of the polymer center of mass, D,

and the escape time of the polymer chain through a pore, τ . These two parameters

shows a distinct scaling dependence on the number of monomers N as

D ∼ N−1 (2.3.12)

And

τ ∼
R2

g

D
(2.3.13)

2.4 Review of Translocation of Polymer

Polymer translocation is one of the most fundamental macromolecular processes in

life. For example molecular transport through cell membrane is an essential mech-

anism in living organisms and it is a translocation process [10, 2]. This ubiquitous
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phenomenon deals with how electrically charged polymer molecules, such as polynu-

cleotides and proteins, move from one region of space to another in jammed envi-

ronments. So, beside its biological relevance, the translocation dynamics is also a

challenging topic in polymer physics. Accordingly, the polymer translocation has got

attention to be studied experimentally[11], theoretically[21], and numerically[11, 24].

From statistical physics view the translocation process of polymers can be seen

as a kind of tunneling process over an entropic barrier. This entropic barrier arises

because the number of states (conformations) possible or available to the polymer is

significantly decreased by the presence of the membrane. In order to overcome such

barrier and to speed up the translocation, an external field or interaction is often

introduced. For example, in 1996, Kasianowicz et al [11]reported that an electric field

can drive single stranded DNA and RNA molecules through the α-hemolysin channel

of inside diameter 2nm. In the case of unbiased translocation process some geometri-

cal restriction or systematic placement of the chain is needed in ordered to overcome

the entropy near the nanopore and increase the possibility of the translocation.

Elysian by experiments, a number of recent theories[17, 18] have been developed

to investigate a polymer translocation. However the case of unbiased translocation of

linear polymers still remains a challenging problem. So our simulation study focuses

on unbiased translocation of a linear polymer through nanopore.

Among the fundamental parameters defining a translocation process the main one

is the average time of translocation, τ . It can also be perceived and referred as the first

passage time through the pore or else an escape time from the pore to one of the sides

starting from an equilibrated state in which the polymer is threaded halfway through
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the pore. This quantity will be studied as a function of the number of monomers of the

polymer N and is an important measure of the underlying dynamics. The dynamics

of such unbiased translocation for linear polymers has been extensively investigated

by several independent models both in 2D and 3D. All these studies were aiming

at conclusively determining the dynamical scaling exponents. However even recently,

various heuristic scaling arguments for τ as a function of N have been presented. Most

of these studies use extensive numerical simulations based on the fluctuating bond

Method (FBM). In the case of unforced polymer translocation, Sung and Park[14]

and Muthukumar[17] considered equilibrium entropy of the polymer as a function of

the position of the polymer through the nanopore. The geometric restriction leads to

an entropic barrier. Standard Kramer[12] analysis of diffusion through this entropic

barrier yields a scaling prediction of the translocation time τtran ∽ N2. However,

as Chuang et al [7]noted, this quadratic scaling behavior is at best only marginal

for phantom(illusion) polymers and cannot be correct for a self-avoiding polymer.

The reason is that the equilibration time τequil ∽ N2 for a phantom polymer and

τequil ∽ N1+2ν for a self-avoiding polymer, where ν is the Flory exponent [ν = 3
4
and

3
5
in two-dimensional (2D) and three-dimensional (3D), respectively]. Chuang et al [5]

performed numerical simulations with Rouse dynamics for a 2D lattice model to study

the translocation for both phantom and self-avoiding polymers. They decoupled the

translocation dynamics from the diffusion dynamics outside the pore by imposing the

artificial restriction that the first monomer, which is initially placed in the pore, is

never allowed to cross back out of the pore. We will refer to the translocation time

obtained this way as τtran .
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Figure 2.6: The middle of a polymer is initially placed in the center of the pore. The
length and width of the pore are L and W, respectively[14]

.

Their results show that for large N , translocation time τtran scales approximately in

the same manner as equilibration time, but with a larger prefactor.

In our study we consider a polymer which is initially placed symmetrically in the

middle of the pore as shown in Figure 2.6[15]. In this case, without any external

driving force or restriction, the polymer escapes from the hole either to the left or

the right side of the pore in an average time defined as the escape time τ . It is clear

thatτtrans and τ are different. Namely, the translocation time τtrans includes events

where the middle segment reaches the center of the pore but then the first segment

returns to the entrance of the pore and the whole translocation process begins all

over again. Numerically,τ can be sampled much more efficiently than τtran , leading

to a more accurate determination of the scaling behavior. We will show numerically

that τ ∼ N1+2ν , in the same manner as found previously for τtran . In this study, we

investigate polymer translocation through nanopre in the absence of driving force in

a 2D lattice model by focusing on τ .
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2.5 Review of Bond Fluctuation Method

Bond fluctuation method (BFM) was proposed[3] as an alternative to a (single-site)

SAW model, which retains the computational efficiency of the lattice without being

plagued by severe ergodicity problems. It is an efficient lattice Monte Carlo (MC)

algorithm for coarse-grained polymer chains where each monomer occupies exclusively

a certain number of lattice sites on a simple cubic lattice[13]. Also, a coarse-grained

simulation model on lattice is preferred [27]. The key idea is to increase the size of a

monomer which now occupies, instead of a single site, a whole unit cell of the lattice

(for example, a square for the 2D square lattice or a cube for the 3D cubic lattice).

This two dimensional BFM which represent a monomer by a square cell of the

lattice allows 36 possible bond vectors and 41 bond angles between two monomers [3,

4]. But the single-site lattice model in two dimension lattice where a monomer is

associated with each lattice site instead of the square lattice area permits 3 bond

angles. Due to such multitude of different bond lengths and bond angles also the

BFM is much closer to continuous space behavior than the single site lattice model.

This also makes it clear why the system with BFM escapes situation in which SAW

models with monomer at a lattice site freezes in.



Chapter 3

Methods

Computer simulations are intermediate between theory and experiments. They can

provide a valuable tests of assumptions and predictions of theoretical models as well

as attempt to imitate experimental systems such as polymer solutions, melts and

networks etc. There are two main approaches used to simulate polymers: Molecular

Dynamics (MD) and Monte Carlo (MC) simulations.

3.1 Monte Carlo Simulation

A method of estimating the value of unknown quantity using the principles of infer-

ential statistics. Here we have selected to use MC simulation. Then we have to make

a further decision, whether to do the MC simulation on a lattice or in the contin-

uum. For, long time and large-scale phenomena such as translocation, a realistic and

microscopically detailed model would require too much computer time and memory.

Accordingly, our model eliminates microscopic degrees of freedom and represents the

linear polymer by a simplified structure which retain only the most basic features of

the polymer (for example, chain connectivity or bonds and the short-range excluded-

volume interactions). Therefore such model is appropriate to explore general and

22
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universal properties of the linear polymer chains.

In MC method the subsequent configurations of the polymer is generated ran-

domly. We need a way of generating and evaluation for accepting/rejecting the con-

formations forwarded along each moves. In our simulations, this task will be done

according to the Bond Fluctuation Method (BFM).

3.2 Bond Fluctuation Method

BFM has been widely used in recent years to investigate the structure and dynamics

of a great variety of polymer systems. To satisfy the SAW condition, each lattice

site can only be part of a single monomer. Each monomer on the model occupies 4

vertexa sites of a square area on the lattice. Then each monomer connected to its

nearest neighbor monomer by a predetermined set of bond vectors. Two neighbor

monomers on a chain must be within a certain bond distance, which is to vary in the

range 2 ≤ l ≤
√
13[3, 4] , where l is the bond length between two consecutive beads.

Although the lengths of the bonds are allowed to fluctuate, they have to belong to

the set of lengths 2,
√
5,

√
8, 3,

√
10,

√
13. All spatial distances are measured in units

of the lattice spacing constant. The minimum distance 2 guarantees the excluded

volume effect and the upper limits
√
13 [3, 4] prevents bonds from cutting and crossing

each other. Such restrictions on the bond lengths are topology-preserving, since they

prevent the crossing of segments. This feature of the algorithm makes the method

very well suitable for simulations of polymers. The BFM allows a local move which

consists of selecting a monomer at random and of attempting a displacement by one

lattice constant in a randomly chosen lattice direction. If the attempted displacement
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Figure 3.1: The bond length between consecutive monomers in the range 2 ≤ l ≤
√
13

for 2D BFM.

satisfies both the bond length constraints and the excluded volume interaction, the

move is accepted. From Figure 3.1 all the possible positions of a monomer that

could be bonded with the monomer positioned at 0. As the bond length is in the

range of 2 ≤ l ≤
√
13 lattice units, lattices with the same color represent equal

bond lengths. Bond fluctuation model is a lattice model for simulating polymer

systems. It is useful for obtaining static and dynamic properties of polymers. It is

common and lawful to consider simple models which capture the essential physics

of the problem. For instance, they ought to yield the same universal properties as

the real system. Such model for macro molecular configurations is the self-avoiding

walk (SAW) on a lattice known commonly as Lattice model. Each site on the lattice

which is occupied by the walk will correspond to a monomer, and the bond length

equals the lattice constant which connects two subsequent steps of the walk and the

bond angles are restricted by the lattice geometry and by the repulsive hardcore

monomer-monomer interaction. The lattice model simulation of polymers can be

done on different lattice geometries. For example our simulation considers square

and hexagonal lattice geometry. The generation of SAW conformations of a given

polymer configuration on a given lattice would be done by specific algorithms from



25

different methods. One particularly popular lattice model simulation method is the

bond fluctuation method (BFM). It is used to give an algorithm that allows for an

analysis of dynamic properties in all dimensions and which is more ergodic.

Implementation of Bond Fluctuation model:

Step 1: Start with an initial state of self avoiding conformation of a polymer chain

consisting of N monomers.

Step 2: Select a monomer randomly and select one of the four lattice directions

randomly with equal probability, for a 2D square lattice.

Step 3: Move the selected monomer in the selected direction by one lattice spacing

called, this a trial move.

Step 4: Check if the trial move violates self avoidance and bond length constraints.

if it does, then reject the trial move by returning the monomer to its earlier lattice

position and go to step 2.

Step 5: If both requirements self avoidance and bond length restrictions are met

then accept the move.

Step 6: Go to the second step. N elementary moves define one MC time step.

3.3 Simulation procedure

For all our simulations, we set up a 2D square simulation box of 800 X 800 square

cells of unit length each us shown in Figure 3.2.This lattice space is wide enough to

have no effect on any property of the polymer system. Since we use a lattice for our

simulation purpose, the first thing that we do is preparing the lattice itself. Then

by putting the center of mass of polymer at the center of the lattice, we try to see
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how the chain diffuses through time by the bond fluctuation Monte Carlo method

explained above. We see how the center of mass of the polymer diffuses from the

initial position for different times, and we compute the diffusion constant D.

To study the effect of self-avoidance on translocation in the coiled state, higher

dimensional simulations (d > 1) are necessary. Two dimensional polymers are ideally

suited to this purpose for dual reasons that excluded volume effects are more apparent,

while computation times are shorter than three dimensional case.

A typical simulation then proceeds as follows. Starting from the initial polymer

configuration many moves are to be made until the polymer is equilibrated. To

generate such an equilibrated configuration, the chain will be allowed to relax by

attempting local moves. We select monomer randomly and then attempt a trial move

of by one lattice unit and it is accepted if it does not violate the excluded volume,

chain connectivity and chain constraints. Thought this equilibration process the

middle of the polymer is anchored not to move. In our simulations this relaxation of

the polymer will be executed for longer times than the relaxation time or equilibration

time τ ∼ N2.5 in two dimension simulations of polymers. And we will also perform

two independent simulations for most sets of parameters investigated and then check

whether the two results agreed reasonable well. The latter procedure particularly

helps us to make sure good stability of our simulation results and the values are not

initial configuration dependent.

For unbiased translocation of the linear polymer through the pore the simulation

procedure involves additional task of the wall pore placement. Therefore, after we

prepare square box then a wall, tall enough as the simulation box height, with a
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Figure 3.2: Schematic representation of square lattice with size 800x800 unit square
cells and at the middle we put a wall with a nanopore of width W= 6 and length L=2

nanopore of length L = 2 and width W = 6 lattice constant at its center is placed

at the middle of the this lattice plane. The pore is small enough to allow only one

monomer or two monomers at minimum separation to pass through it. The linear

polymer is initially placed at the middle of the pore with half of the chain in either

sides of the wall[14] as shown in Figure 3.3 This deliberate position is critical to over

come the impact of the entropic boundary or wall. The chain is then permitted to

relax with neighborhood moves while one of its center monomer is fixed inside the

pore. To get completely equilibrated adaptation us shown in Figure 3.4 with 1 x106

Monte Carlo time steps per monomer (MCS) are allocated . After equilibration is

finished, at t = 0, the middle monomer is allowed to move just like the rest of the

monomers of the chain as shown in Figure 3.5
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Figure 3.3: The initial conformation of a linear polymer of length N = 23 placed
symmetrically.

Figure 3.4: Schematic representation of a linear polymer during the time spent
translocation from the nano pore with length L = 2 and width w = 6 sites and
the polymer size, N = 23. This confarmation is the most likely adaptation after
relaxation for N ∗ 106 Monte Carlo moves.
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Figure 3.5: Schematic representation of a polymer of length N = 23 after translocated
through a pore of length L=2 and width W=6



Chapter 4

Results and Discussion

In our study here We tried to discussed our methods, data we used as well as the

results of our study in detail as such we categorized it into two sections such as static

properties of a linear polymer chains and Dynamic properties of a linear polymer

chains translocating through a nanopore with the bond fluctuating model combined

with the single-segment Monte Carlo moves.

4.1 The static properties of a linear polymer chains

Mean squared end to end distance of a linear polymer as a
function of the chain length.

The mean square end to end distance of a polymer chain is a measure of the average

conformation of the polymer. The mean square end to end distance is static property

of polymer chain depend on the number of monomers of polymer chains. The plot of

the mean square end-to-end distance ⟨R2⟩ as a function of polymer chain length N

depicted in Figure 4.1 which describe the mutual dependence of the parameters. In

ideal polymer models the two parameters have the power-law scaling relation ⟨R2⟩ ∼

N
1
2 . In ideal polymer models no excluded volume effect between monomers. In
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contrast, the scaling relation of mean square end to end distance as the function

of N is ⟨R2⟩ ∼ N2ν in real polymer chains. However, Flory theory suggested that

the exponent at the scaling relation is dimension dependent given by ν = 3
2+d

with

approximation on Rouse Model of a SAW of polymer chains.

In our study, the scaling exponent is calculated from the slope of the log-log plot of

⟨R2⟩ as a function of the number of monomers of polymer as shown in Figure 4.1.

The log-log plot of ⟨R2⟩ versus N have a slope of 1.487± 0.01 which is in agreement

with Flory prediction of the scaling exponent in two dimension. We observed that

the mean squared end-to-end distance of linear polymer with chain length N have

close to the scaling power of ⟨R2⟩ ∼ N2ν ,where ν is Flory exponent ν = 3
4
for 2D

and ν = 3
5
for 3D.
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Figure 4.1: Log-log plot of mean square end to end distance ⟨R2⟩ as a function of
polymer chain length N for N = 23, 31, 45, 57,73

Mean-squared radius of gyration of linear polymers with chain
length

An alternative representation of the size of a polymer coil often used as the root

mean square of the radius of gyration defined as the average distance of a chain

element from the center of gravity of the chain. The plot of the mean square radius

of gyration ⟨R2
g⟩ against polymer chain length N is represented in Figure 4.2. In ideal

polymer models the two quantities have the power-law scaling relation ⟨R2
g⟩ ∼ N

1
2

. Ideal polymer models have no excluded volume effect between monomers. On the

contrary, the scaling relation of mean squared radius of gyration as the function of

N is ⟨R2
g⟩ ∼ N2ν in real polymer chains However, Flory showed that the exponent at
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the scaling relation is dimensional dependent ν = 3
2+d

.

In our study, the scaling exponent is extracted from the slope of the log-log plot

of ⟨R2
g⟩ with respect to the number of monomers of a linear polymers as shown in

Figure 4.2. The log-log plot of ⟨R2
g⟩ versus N have a slope of 1.512 ± 0.01 which is

in agreement with Flory exponent. We examined the scaling exponent of the average

squared radius of gyration of linear polymer with chain length N is approach to 2ν,

where ν is Flory exponent.

Figure 4.2: Log-log plot of mean square radius of gyration ⟨R2
g⟩ versus polymer chain

length N , for N =23, 31, 45,57,73
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4.2 Dynamic Properties of a linear polymer

Diffusion of linear polymer

As delineated in chapter two, we considered specific properties of a linear polymer

by investigating the feature of the diffusion of linear polymers. Subsequently, time

dependent mean square displacement of the center of mass CM of the chain is ⟨r2(t)⟩.

Which can be determined as

⟨r(t)2⟩ = ⟨(rcm(t)− rcm(0))
2⟩ (4.2.1)

⟨r2(t)⟩ can be representative for the motion of linear polymer chain.

Mean square displacement is the standard term that linearly goes with time. Some

monomer has moved over a very large distances undergone a large number of colli-

sions then mean square displacement is proportional to time and the proportionality

constant is 4D where D, being the diffusion constant. Figure 4.3 depicted a measure

for progress of translocation for chain length N = 23, 31, 45, 57, 73 over time t.

⟨r2(t)⟩ ∼ t (4.2.2)

D =
1

4
lim
t→∞

⟨r(t)2⟩
t

(4.2.3)

The proportion of respective mean square displacement to the time t that creates

diffusion coefficient D relating to each chain length N described by equation 4.2.3.

Figure 4.4 elaborates the interdependence of diffusion constant and their degree of

polymerization. Park et.al assumed the chain diffusion coefficient(D) to be inverse
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Figure 4.3: Log-log plot of mean square displacement ⟨r2(t)⟩ versus time t, for N
=23, 31, 45,57,73

relation to chain length N[25]. Our simulation result shows D ∼ N−0.93±0.01 in agree-

ment with Rouse model scaling relationship of the form D ∼ N−1 with the theoretical

Flory exponent ν = −1
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Figure 4.4: Log-log plot of diffusion coefficient D versus polymer chain length N , for
N =23, 31, 45,57,73
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Translocation of a linear Polymer

The probability distribution of the mean translocation time of a linear
chain through a nanopore.

We have studied the translocation of a self-avoiding polymer through nanopore in

two dimensions. We attempted to see the dispersion of the escape times of a polymer

through a pore. As can be seen,from the table 4.1 the probabilty to translocate either

Table 4.1: The probability to translocate either of the sides
No polymer chain length Iteration Left % right %
1 23 1000 521 52.1 479 47.9
2 31 1000 488 48.8 512 51.2
3 45 1000 480 48 520 52
4 57 1000 471 47.1 529 52.9
5 73 1000 508 50.8 492 49.2

of the sides are almost equal.

The most probable translocation time is given by the maximum of P(τ). We

computed the probability distribution of the escape time τ for N = 23, 31, 45 and 57

we took randomly through a fixed pore size of length 2 lattice units and width of 6

lattice units. Figure 4.5 we exhibit that the plots of the escape time is a long tailed

distribution in agreement with [6] as the probability distribution function decays for

large values of escape times.
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Figure 4.5: Probability distribution P(τ) of escape time τ for a linear polymer chain
N , for N =23,31, 45, 57 obtained from 1000 runs each
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Figure 4.6: Log - Log plot of escape time, τ , as a function of polymer chain length,
for N =23,31,45,57,73

The translocation time as function a linear polymer chain length

The scaling relationship between translocation time and polymer chainN is significant

concept in polymer science. It estimates the properties of escape time for ranges of

N and the vise versa. We take the most likely estimations of the escape time of

each linear and plot against the sizes N of the linear in a log-log scales as appeared

in Figure 4.6. The slope of log-log plot of escape time τ versus polymer chain N

shown in Figure 4.6 that shows τ ∼ Nα where α = 1 + 2ν and from our simulation

α = 2.512 ± 0.01 that in agreement with τ ∼ N1+2ν ,where 1 + 2ν = 2.5 in two

dimensional self avoiding walk.
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Figure 4.7: Plot of average escape time, τ , versus the chain length for a linear polymer
translocation through width w = 6, 8,10,12

The effect of the pore size on the translocation time of linear polymers

In this subsection we examine the average escape time as a function of polymer chain

N = 23,31,45,57 and 73 for various pore widths. Figure 4.7 below elaborate the

translocation of a polymer chain through pore widths having value, W = 6, 8, 10,

12 . As can be seen,from the plot 4.7 when the width of the pore increase the time

required for a similar size of a polymer chain to escape from the pore is less as it

can get to numerous places inside the pore. In this manner, we observed an inverse

relation between the average escape time and the pore width. Our simulation result

shows as the pore’s width increase the escape time of linear polymers chain length

decrease.
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Conclusion

In our study of polymer translocation, we have employed computational method on

a Monte Carlo calculation for both static and dynamical simulation of linear poly-

mers. We executed a fluctuating bond length between adjoining polymer’s monomer

molecules to realize dynamics for linear polymer architectures. We introduced poly-

mer diffusion and polymer translocation through a nanopore without any outside

potential that might enhance translocations.

Our simulation results are in a good agreement with the scaling exponent of the

static behavior of a polymer chain. In we found that the average squared end to end

distance ⟨R2⟩ and squared radius of gyration ⟨R2
g⟩ as a function of polymer length

N are obtained. We clearly observed the dependency of mean square end to end

distance and mean square radius of gyration on N . We have investigated the mean

square end to end distance ⟨R2⟩ = 1.49 ± 0.01 and mean square radius of gyration

⟨R2
g⟩ = 1.521 ± 0.01 that made in agreement with Flory prediction of the scaling

exponent in two dimension.
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We have contemplated the dynamic properties of a polymer chain to determine

diffusion constant and the escape time of a linear polymer chain. Polymer diffusion

plays a significant function in the translocation process. We explored translocation

process was the most plausible get away time and the likelihood distribution of these

escape times for polymer chains. We have examined that the probabilty to translo-

cate either of the sides are almost equal . The theoretical mean time translocation

investigated by Flory was 2.5. As such our work had shown a good agreement valued

2.512±0.01 in 2D SAW. We conclude that in this our work pore size and escape time

τ have inverse relation in unbiased polymer translocation.
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