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Abstract

Since the discovery of General theory of relativity, a great deal of astrophysical issues have

been studied. Among which the precession of planetary orbits has given attention. Yet, the

study is incomplete. Here, we studied the precession of solar planetary system using GR

field equations. The results are in agreement with previous studies, including the anomalies.

We have suggested some future perspective for the anomalies for progress of the issues.

Keywords: General Relativity, precession,perihelion, aphelion.
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Chapter 1

General Introduction

1.1 Background

One of the first phenomenon which was elucidated by Einstein′s General Theory of Relativity

was anomalous precession of the perihelion of Mercury[1, 2]. The theory owes its success to

the numerical value provided by Einstein for the perihelion precession of Mercury similar

to observation value [3, 4]. This resulted in changes in the apprehension of astronomers

and physicists about the concepts of space and time and a different way of viewing the

problems [5]. Jean Joseph Le Verrier (1811-1877), a French mathematician, reported the

perihelion precession for the first time in 1859, investigation of the solar system appealed

to astronomers and theorists more than ever. What attracted Le Verriers attention to

the advance of the perihelion of Mercury was its unusual orbital motion [6]. This was

associated with an unknown planet that was never found, which he referred as Vulcan. The

value he obtained for the precession of the perihelion using Newtonian mechanics was 38 arc

seconds per century [7]. The results obtained by Le Verrier were corrected in 1895 by Simon

Newcomb (1835-1909)[8], whose theory confirmed Le Varrie′s finding about the advance of

the perihelion of Mercury. Also following the Newtonian method with a slight changes in

the planetary masses, Newcomb obtained the 42.95 arc seconds per century for the advance

of Mercury, close to the actual value.

1



2

However, the planets cannot advance when only the gravitational force between the planet

and the Sun is taken into account [9]. Einstein′s General Theory of Relativity[10] finally

provided explanation for the phenomenon.

Today, it is well known that, not only Mercury but all the planets and other systems

with high central gravitating object precess. Since the discovery of General Relativity

,there is a great deal of progress in the subject both observationally and theoretically.

Observational data extracted for all the planets. The inner planets observational value and

General Relativity theoretical prediction are very good agreement. But,the fitting to the

outer planets differ from slight to high deviation as we go outward and towards the Kiuper

.

1.2 Statement of the problem

Since the discovery of General theory of Relativity theory,a number of astrophysical relativis-

tic effects have gained research attention. The theory has successfully passing observational

tests. For example, deflection of light and precession of orbits around gravitating central

force fields. In our solar system, Planetary orbit precession is one of the areas where General

Relativity has extensively used with great success to the inner planets. But there are dis-

crepancies in a outer planets with respect to observation. So it is important to re-examine

the precession of planets for further developments of the subject.

Research questions

• In what way gravity affect the orbit of planet around the sun?

• What is effective potential of a point mass in General Relativity theory?

• What are the characteristics of closed orbits in General Relativity?
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1.3 Objectives

1.3.1 General objective

The general objective of this thesis will be to study the General relativistic orbital precession

of planets.

1.3.2 Specific objectives

1. To derive General Relativity orbit equations for Planetary system.

2. To develop General Relativity effect in potential of a point mass.

3. To characterize orbits in strong gravity with general relativistic effect.
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1.4 Methodology

General Relativity field equations one used to derive the Effective potential and closed Orbit

equations for Solar planetary system. Then the potential and the Orbit equations are used

to characterize the Orbits. Observational data is used to quantify the effect of Gravity on

the precession of the planets orbit. The result Will be discussed and commented.



Chapter 2

Planetary Orbits

2.1 Keplerian Orbits

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as

an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-

dimensional space. A Kepler orbit can also form a straight line. It considers only the point-

like gravitational attraction of two bodies, neglecting perturbations due to gravitational

interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical

central body, and so on. It is thus said to be a solution of a special case of the two-body

problem, known as the Kepler problem. As a theory in classical mechanics, it also does not

take into account the effects of general relativity.

2.1.1 Kepler’s Laws of Planetary Motion

The First successful description of planetary motion in agreement with observational data

was put forth by the German mathematician Johannes Kepler. After the death of Tycho

Brahe, the foremost naked-eye-observer at the time, Kepler inherited his massive amount of

data and over a period of about 20 years put forth three laws of planetary motion famously

attributed to him. These three laws, known as Kepler’s Laws of Planetary Motion, are at

the foundation of modern astronomy. This motion is summed up in three simple laws:

5
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1. The orbit of every planet is an ellipse with the Sun at one of the two foci.

2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of each planet is proportional to the cube of its orbital

major radii.

2.1.2 Keplers first law

The orbit of every planet is an ellipse with the Sun at one of the two foci. Mathematically,

an ellipse can be represented by the formula:

r =
p

1 + ε cos θ
(2.1.1)

where p is the semi-latus rectum,ε is the eccentricity of the ellipse, r is the distance from

the Sun to the planet, and θ is the angle to the planet’s current position from its closest

approach, as seen from the Sun. So (r, θ) are polar coordinates.[11]
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Figure 2.1: Kepler’s first law placing the Sun at the focus of an elliptical orbit

For an ellipse 0 < ε < 1; in the limiting case ε = 0, the orbit is a circle with the Sun

at the centre (i.e. where there is zero eccentricity). At θ = 0, perihelion, the distance is

minimum

rmin =
p

1 + ε
(2.1.2)

At θ= 90◦ and at θ =270◦ the distance is equal to p. At θ= 180◦, aphelion, the distance is

maximum (by definition, aphelion is invariably perihelion plus 180◦). The semi-major axis

a is the arithmetic mean between rmin and rmax :

rmax =
p

1− ε
(2.1.3)

rmax − a = a− rmin

a =
p

1− ε2
(2.1.4)

The semi-minor axis b is the geometric mean between rmin and rmax :

rmax
b

=
b

rmin

b =
p√

1− ε2
(2.1.5)
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The semi-latus rectum p is the harmonic mean between rmin and rmax:

1
rmin

− 1
p

=
1
p
− 1
rmax

pa = rmaxrmin = b2 (2.1.6)

The eccentricity ε is the coefficient of variation between rmin and rmax:

ε =
rmax − rmin
rmax + rmin

(2.1.7)

The area of the ellipse is

A = πab

The special case of a circle is ε = 0, resulting in r = p = rmin = rmax = a = b and A =

πr2.

2.1.3 Keplers second law

A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

The orbital radius and angular velocity of the planet in the elliptical orbit will vary. This is

shown in the animation: the planet travels faster when closer to the Sun, then slower when

farther from the Sun. Kepler’s second law states that the blue sector has constant area.[12]

In a small time dt the planet sweeps out a small triangle having base line r and height rdθ

and area dA = 1
2 · r · rdθ so the constant areal velocity is

dA

dt
=
r2

2
dθ

dt
(2.1.8)

The area enclosed by the elliptical orbit is π ab. So the period P satisfies

P · r
2

2
dθ

dt
= πab. (2.1.9)

and the mean motion of the planet around the Sun

n =
2π
P

(2.1.10)

satifies

r2dθ = abndt. (2.1.11)
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Figure 2.2: The same (blue) area is swept out in a fixed time period. The green arrow is
velocity. The purple arrow directed towards the Sun is the acceleration.

2.1.4 Keplers Third Law

The square of the orbital period of a planet is directly proportional to the cube of the semi-

major axis of its orbit. This captures the relationship between the distance of planets from

the Sun, and their orbital periods. Kepler enunciated in 1619 this third law in a laborious

attempt to determine what he viewed as the ”music of the spheres” according to precise

laws, and express it in terms of musical notation[13]. So it was known as the harmonic law.

Using Newton’s Law of gravitation (published 1687), this relation can be found in the case

of a circular orbit by setting the centripetal force equal to the gravitational force:

mrω2 = G
mM

r2
(2.1.12)

Then, expressing the angular velocity in terms of the orbital period and then rearranging,

we find Kepler’s Third Law:

mr

(
2π
T

)
= G

mM

r2
→ T 2 =

(
4π2

GM

)
r3 → T 2αr3 (2.1.13)

A more detailed derivation can be done with general elliptical orbits, instead of circles,

as well as orbiting the center of mass, instead of just the large mass. This is replacing a

circular radius,r , with the semi-major axis, a , of the elliptical relative motion of one mass

relative to the other, as well as replacing the large mass M with M+m. However, with

planet masses being so much smaller than the Sun, this correction is often ignored. The
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full corresponding formula is:

a3

T 2
=
GM +m

4π2
≈ GM

4π2
≈ 7.469× 10−6

(
AU3/days2

)
(2.1.14)

is constant. where M is the mass of the Sun, m is the mass of the planet, and G is the

gravitational constant, T is the orbital period and a is the elliptical semi-major axis.

2.2 Newtonian Gravity

The force which maintains the Planets in orbit around the Sun is called gravity, and was

first correctly described by Isaac Newton (in 1687). According to Newton, any two point

mass objects (or spherically symmetric objects of finite extent) exert a force of attraction

on one another. This force points along the line of centers joining the objects, is directly

proportional to the product of the objects masses, and inversely proportional to the square

of the distance between them. Suppose that the first object is the Sun, which is mass M,

and is located at the origin of our coordinate system. Let the second object be some planet,

of mass m, which is located at position vector r. The gravitational force exerted on the

planet by the Sun is thus written

f = −GMm

r2
(2.2.1)

The constant of proportionality, G, is called the gravitational constant, and takes the value

G = 6.67300× 10−11m3kg−1s−2.

An equal and opposite force to Eq. (2.1.1) acts on the Sun. In Newtons second law, the

gravitational force acting on an object is directly proportional to its inertial mass. According

to Equation (2.1.1), and Newtons second law, the equation of motion of our planet takes

the form
d2r

dt2
= −GM

r2
(2.2.2)

Note that the planetary mass, m, has canceled out on both sides of the above equation.



Chapter 3

General Relativistic Orbit

Equations for planetary Motion

In general relativity, a geodesic generalizes the notion of a ”straight line” to curved space

time. Importantly, the world line of a particle free from all external, non-gravitational forces

is a particular type of geodesic. In other words, a freely moving or falling particle always

moves along a geodesic.

In general relativity, gravity can be regarded as not a force but a consequence of a curved

space time geometry where the source of curvature is the stress energy tensor (representing

matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection

of a geodesic of the curved four-dimensional (4-D) space time geometry around the star on

to three-dimensional (3-D) space. The full geodesic equation is

d2µ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 (3.0.1)

where s is a scalar parameter of motion (e.g. the proper time), and Γµαβ are Christoffel

symbols (sometimes called the affine connection coefficients or Levi-Civita connection coef-

ficients) symmetric in the two lower indices. Greek indices may take the values: 0, 1, 2,3

and the summation convention is used for repeated indices α and β. The quantity on the

left-hand-side of this equation is the acceleration of a particle, so this equation is analo-

gous to Newton’s laws of motion, which like wise provide formula for the acceleration of

a particle. This equation of motion employs the Einstein notation, meaning that repeated

11
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indices are summed (i.e. from zero to three). The Christoffel symbols are functions of the

four space-time coordinates and so are independent of the velocity or acceleration or other

characteristics of a test particle whose motion is described by the geodesic equation.

So far the geodesic equation of motion has been written in terms of a scalar parameter s. It

can alternatively be written in terms of the time coordinate, (here we have used the triple

bar to signify a definition). The geodesic equation of motion then becomes:

d2µ

dt2
= −Γµαβ

dxα

dt

dxβ

dt
+ Γ0

αβ

dxα

dt

dxβ

dt

dxµ

dt
(3.0.2)

This formulation of the geodesic equation of motion can be useful for computer calculations

and to compare General Relativity with Newtonian Gravity [14]. It is straight forward to

derive this form of the geodesic equation of motion from the form which uses proper time as

a parameter using the chain rule. Notice that both sides of this last equation vanish when

the µ index is set to zero.

3.1 Einstein field equations and the schwarzschild Solution

The Schwarzschild metric is a solution of Einstein’s field equations in empty space, that it

is only outside the gravitating body. That is, for a spherical body of radius R the solution

is valid for r > R.The gravitational field both inside and outside the gravitating body the

Schwarzschild solution must be matched with some suitable interior solution at r = R.In

Schwarzschild coordinates (t, r, θ, φ) the Schwarzschild metric has the form

g = −c2dτ2 = −(1− rs
r

)c2dt2 + (1− rs
r

)−1(dr2 + r2gΩ) (3.1.1)

where gΩ is the metric on the two sphere,i.e gΩ = (dθ2 + sin2 θdφ2). The Schwarzschild

metric has a singularity for r = 0 which is an intrinsic curvature singularity.It also seems

to have a singularity on the event horizon r = rs.

3.2 Euler Lagrangian Equation of Motion

Nearly spherically symmetric, the Sun has a very small radius as compared to the position

of the planets. The space time around it may thus be considered to be in the form of the
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solution to Einsteins vacuum equations, quite famous as the Schwarzschild space time with

the line element

ds2 = c2(1− 2µ
r

)dt2 − (1− 2µ
r

)−1dr2 − r2dθ2 − r2 sin2 θdφ2 (3.2.1)

where

µ = GM/c2

Defining the squared Lagrangian for massive bodies as

L = gµν ẋ
µẋν (3.2.2)

= c2

where

ẋµ =
dxµ

dτ

and is the affine time parameter, we get, using (3.2.1),

ds2 = c2(1− 2µ
r

)ṫ2 − (1− 2µ
r

)−1ṙ2 − r2
(
θ̇2 + sin2 θφ̇2

)
(3.2.3)

The Euler-Lagrange equations are

d

dτ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0 (3.2.4)

(µ = 0, 1, 2, 3)

By means of (3.2.3) and (3.2.4), we get the four space time geodesic equations

(1− 2µ
r

)ṫ = k (3.2.5)

(
1− 2µ

r

)−1

r̈ +
µc2

r2
ṫ2 −

(
1− 2µ

r

)−2 µ

r2
ṙ2 − r

(
θ̇2 + sin2 θφ̇2

)
= 0 (3.2.6)

θ̈ +
2
r
ṙθ̇ − sin θ cos θφ̇2 = 0, (3.2.7)

r2 sin2 θφ̇ = h (3.2.8)



14

where h, the angular momentum per unit rest mass, and k, the total energy per unit rest

energy, are constants. For a celestial massive body moving in the plane

θ =
π

2

the set of the third space time geodesic equations reduces to

(1− 2µ
r

)ṫ = k (3.2.9)

(
1− 2µ

r

)−1

r̈ +
µc2

r2
ṫ2 −

(
1− 2µ

r

)−2 µ

r2
ṙ2 − rφ̇2 = 0, (3.2.10)

r2φ̇ = h (3.2.11)

These equations are valid for both null and non null affinity parameterized geodesics. For

a non-null geodesic the first integral is simply

gµν ẋ
µẋν = x2 (3.2.12)

where x is some constant. For a null geodesic it is as follows,

gµν ẋ
µẋν = 0 (3.2.13)

3.2.1 Massive particles

The trajectory of a massive particle is a time like geodesic. Considering motion in the

equatorial plane,we replace the geodesic equation(3.2.10)by equation(3.2.12), where gµν is

taken from Eq.(3.2.13)with θ = π
2 . Moreover, since we are considering a time like geodesic

we can choose our affine parameter λ to be the proper time λ along the path. Thus we

find that the world line xµ (τ) of a massive particle moving in the equatorial plane of the

Schwarzschild geometry must satisfy the equations,

(1− 2µ
r

)ṫ = k (3.2.14)

c2(1− 2GM
c2r

)ṫ2(1− 2GM
c2r

)r−1ṙ2 − r2φ̇2 = x2 (3.2.15)
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r2φ̇ = h (3.2.16)

Substituting Eq.(3.2.14) and Eq.(3.2.16) in to Eq.(3.2.15), we obtain the combined Energy

equation for the r coordinate.

ṙ2 +
h2

c2
(1− 2GM

c2r
)− 2GM

r
= x2(k2 − 1) (3.2.17)

We use this Energy equation to discuss radial free fall and the stability of orbits. Note that

the right hand side of Eq.(3.2.17) is a constant of the motion. The constant of proportion-

ality is fixed by requiring that, for a particle at rest at r =∞ , we have E = mOc
2. Letting

r =∞ and ṙ = 0,in Eq.(3.2.17) we get k2 = 1.

Hence we must have k = E
moc2

where E- is the total energy of the particle in its orbit. A

second useful equation which help us to determine the shape of a particle orbit(i.e r as a

function of φ ) we found by using h = r2φ̇ to express ṙ in the energy equation (3.2.17) as,

dr

dτ
=
dr

dφ

dφ

dτ
=

h

r2
dr

dφ

Thus we obtain

(
h

r2
dr

dφ
)2 +

h2

r2
= c2(k2 − 1) +

2GM
r

+
2GMh2

c2r3

Let u = 1
r , that is usually employed in Newtonian orbit calculation, we find that:

(
du

dφ
)2 + u = c2(k2 − 1) +

2GMu

h2
+

2GMu3

c2

By differentiating this equation with respect to φ finally we get,

(
d2u

dφ2
) + u =

GM

h2
+

3GM
c2

u2 (3.2.18)

In Newtonian gravity, the equations of motion of a particle of mass m in the equatorial

plane θ = π
2 may be determined from the Lagrangian as,

L =
1
2
m(ṙ2 + r2φ̇2) +

GMm

r

From the Euler-Lagrangian equations we have

r2φ̇ = h,
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r̈ =
h

r3
− GM

r2
,

where the integration constant h is the specific angular momentum of the particle. If we

now substitute u = 1
r and eliminate the time variable the Newtonian equation of motion

for planetary orbit is obtained,
d2u

dφ2
+ u =

GM

h2

In this equation u = 1
r where r is the radial distance from the mass, where as in Eq.(3.2.18)

r is a radial coordinate that is related to distance through the metric.

3.2.2 Circular motion of massive particles

For circular motion in the equatorial plane, r=constant and so ṙ = r̈ = 0 setting u = 1
r =

constant in the ”shape” Eq.(3.2.18)we have the following,

u =
GM

h2
+

3GM
c2

u2

From which

h2 =
3GMr2

r − 3GM
c2

.

Putting ṙ = 0 in the energy equation (3.2.17) and substituting the above expression for h2

allows us to identify the constant k,

k =

(
1− 2GM

c2r

1− 3GM
c2r

)2

The energy of a particle of rest mass mo in a circular of radius r is given by; E = km0c
2. We

use this result to determine which circular orbits are bound. For this we require E < moc
2,

so the limits on r for the orbit to be bound are given by k = 1. This gives : (1− 2GM
c2r

)2 = 1−
3GM
c2r

,Which is satisfied when r = 4GM
c2

or r →∞. Thus over the range r = 4GM
c2

< r <∞,

circular orbits are bound.

3.2.3 Stability of massive particle orbits

The above analysis appears to suggest that the closest bound circular orbit around a massive

spherical body is at r = 4GM
c2

. However, we have not yet determine whether this orbit is
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stable or not. In Newtonian dynamics the equation of motion of a particle in a central

potential can be written
1
2
(
dr

dt
)2 + Veff (r) = E,

where: Veff (r)- is the effective potential and

E- is the total energy of the particle per unit mass. For an orbit around a spherical mass

M, the effective potential is:

Veff (r) =
−GM
r

+
h2

2r2
(3.2.19)

Where h is the specific angular momentum of the particle. In general relativity, the energy

equation (3.2.17) for the motion of a particle around a central mass can be written as,

1
2
(
dr

dτ
)2 +

h2

2r2
(1− 2GM

c2r
)− GM

r
=
c2

2
(k2 − 1)

where the constant k = E
moc2

. Thus in general relativity we identify the effective potential

per unit mass as follows;

Veff (r) =
−GM
r

+
h2

2r2
− GMh2

c2r3
(3.2.20)

Differentiating Eq.(3.2.20) gives,

dVeff
dr

=
GM

r2
− h2

r3
+

3GMh2

c2r4
,

and so the exterema of the effective potential are located at the solutions of the quadratic

equation.

GMr2 − h2r +
3GMh2

c2
= 0

Which occur at

r =
h

2GM
(h±

√
h2 − 12G2M2

c2
)

We note that if h =
√

12GM
c = 2

√
3GMc then there is only one extremum and, there are no

turning points in the orbit for lower values of h. The significance of this result is that the

inner most stable circular orbit has

rmin =
6GM
c2
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This orbit, with r = 6GM
c2

and hc
GM = h

√
3, is unique in satisfying both

dVeff
dr

= 0

and
d2Veff
dr2

= 0

If d2Veff/dr
2 > 0 the the curvature of the effective potential is positive and it is a minimum.

This means the orbit is stable. On the other hand if d2Veff/dr
2 < 0 ,it means there is a

maximum in the effective potential at that point, and the orbit is unstable.

3.3 Equation of Orbits

In discussing the exact solutions for the orbital motion in the equatorial plane by considering

r as a function of φ instead of τ we get,

(
dr

dφ
)2 = (E2 − 1)

r4

h2
+

2M
h2

r3 − r2 + 2Mr (3.3.1)

If we introduce the variable u = 1
r , as in the analysis of the Keplerian orbits in the

Newtonian theory. Now by replacing this the fundamental equation becomes;

(
du

dφ
)2 = 2GMu3 − u2 +

2M
h2

u− 1− E2

h2
(3.3.2)

This equation determines the geometry of the geodesics in the invariant plane. Once it have

been solved for u = u(φ).
dτ

dφ
=

1
hu2

(3.3.3)

dt

dφ
=

E

hu2(1− 2Mu)
(3.3.4)

3.3.1 Bound Orbits

This solutions of Eq.(3.3.2) will depend on E1 < 1 or E2 ≥ 1. This distinction are between

bound orbits and unbound orbits. Bound orbits are governed by an equation:

du

dφ
= f(u) (3.3.5)
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where f(u) is given by,

f(u) = 2Mu3 − u2 +
2M
h2

u− 1− E2

h2
(3.3.6)

It is clear that the geometry of geodesics will be determined by the positions of the roots

f(u)=0. Since f(u) is cubic in u, there are two possibilities: either all roots are all, or one of

them is real and the two remaining are complex conjugate ones. Let u1, u2, u3 denote the

roots of f(u) = 0. Then we have,

u1u2u3 =
(1− E2)
2Mh2

(3.3.7)

and

u1 + u2 + u3 =
1
2
M (3.3.8)

Since1−E2 > 0, it must allow for one positive real root. From the further facts that f < 0

for f(u)→ ±∞, for u→∞
Case

⇒ If the three roots are all different,

There exists two distinct orbits confined to the interval u1 < u < u3 and u > u3, i.e an

orbit that oscillates between two extreme values for r and an orbit , starting at a certain

aphelion distance given by 1
u3 plunges in to the singularity at r = 0, i.e u→∞. These two

classes of orbits are called orbits of the first kind and the second kinds. Orbits of both kinds

are most conveniently parameterized by an eccentricity e and a latus rectum l, similar to

Newtonian orbits.

3.3.2 Orbits of the first kind

For this all three roots are positive, and we can write them as;

u1 =
1
l
(1− e) (3.3.9)

u2 =
1
l
(1 + e) (3.3.10)

u3 =
1

2M
− 2
l

(3.3.11)
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The semilatus rectum l is some positive constant and the eccentricity e < 1 for u1 > 0, as

required by the condition E2 < 1. The conformity with the ordering u1 < u2 < u3 requires

1
2M

− 2
l
≥ 1 + e

l

l ≥ 2M(3 + e) (3.3.12)

let µ ≡ M
l . The inequality becomes,

µ ≤ 1
2(3 + e)

, or, 1− 6µ− 2µe ≥ 0 (3.3.13)

this parameter now f(u) is written as

f(u) = 2M(u− 1 + e

l
)(u− 1

2M
+

2
l
) (3.3.14)

For a Keplerian ellipse, the semilatus rectum l is the distance l measured from a focus such

that;
1
l

=
1
2
(

1
r+

+
1
r−

) (3.3.15)

where r+ = a(1+e) and r− = a(1−e) are the aphelion and perihelion positions of the orbit

respectively. Substituting the values of r+ and r− in to Eq.(3.3.15) for l it gives:

1
l

=
1

a(1− e2)
(3.3.16)

The values of the two becomes,

r+ =
l

1− e
, and, r− =

l

1 + e
(3.3.17)

This justifies for the roots u1 and u2. This has to agree with the original form of the

function, giving the relations;

M

h2
=

1
l2

[l −M ](3 + e2)] (3.3.18)

1− E2

h2
=

1
l3

[(l − 4M)(3− e2)] (3.3.19)

If expressed in terms of µ
1
h2

=
1
lM

[1− µ(3 + e2)] (3.3.20)
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1− E2

h2
=

1
h2

[(1− 4µ)(1− e2)] (3.3.21)

From this equation it follows that µ < 1
3+e2

and µ < 1
4 As in the Keplerian problem, we

now make

u =
1
l
(1 + e cosχ) (3.3.22)

χ is now a kind of relativistic anomaly.

At aphelion,χ = π, we found u = (1−e)
l and

At perihelion, χ = 0,u = (1+e)
l

This substitution leads to the equation;

(
dχ

dφ
)2 = 1− 2µ(3 + e cosχ)

= (1− 6µ+ 2µe)− 4µe cos2(
χ

2
) (3.3.23)

or,

±dχ
dφ

=
√

1− 6µ+ 2µe
√

1− k2 cos2(
χ

2
)

where

k2 =
4µe

1− 6µe+ 2µe
The solution for φ can be expressed in terms of the Jacobian integral as,

F (ψ, k) =
∫ ψo dγ√

1− k2 sin2 γ
(3.3.24)

where ψ = 1
2(π − χ), thus finally written as

φ =
2√

1− 6µ+ 2µe
F (
π

2
,
χ

2
, k) (3.3.25)

where the origin of φ has been chosen at aphelion passage where χ = π. The perihelion

passage occurs at χ = 0, where ψ = χ
2 . The solution can be completed by the expressions

for the proper time and the coordinate time as;

τ =
1
h

∫
dφ

u2
=

1
h

∫
dφ

dχ

dχ

u2
(3.3.26)

and

t =
E

h

∫
dφ

dχ

dχ

u2(1− 2Mu)
(3.3.27)
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The first order corrections to the Keplerian orbits of the Newtonian theory can readily be

deduced from Eq.(3.3.23)

Under normal conditions, the parameter µ
h is a very small quantity. It is essentially the

ratio of the gravitational radius M to the major axis of a planetary orbit or a binary star

orbit. So expanding Eq.(3.3.23) to the first order in µ to obtain

−dφ = dχ(1 + 3µ+ µe cosχ) (3.3.28)

integrating this gives

−φ = (1 + 3µ)χ+ µe sinχ) (3.3.29)

From this we understand that the change in φ after one complete revolution during which

χ changes by 2π is 2π(1 + 3µ). Therefore,the advance of the perihelion ∆φ, per revolution

is,

∆φ =
6πM
l

=
6πGM

a(1− e2)c2
(3.3.30)

where

a- is the semi major axis of the particles orbit

l- is semilatus rectum and

e- is eccentricity of particles orbit

From Eq.(3.2.43) replacing u = 1
r one can have,

1
r

=
1
l
(1 + e cosφ)

from l = r(1 + e cosφ) and

l = a(1− e2) finally this gives

r(φ) =
a(1− e2)

(1 + e cos(φ))
(3.3.31)

3.4 Precession of orbits

The function the sn and sn2 have periods of 4K and 2K, respectively, where K is defined

by the equation

K =
∫ 1

0

dy√
(1− y2)(1− k2y2)

(3.4.1)
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where,k- is elliptic modulus function.

Therefore, the change in ϕ over one oscillation of u (or, equivalently, one oscillation of r)

equals

∆ϕ =
4k√

rs(u3 − u1)
(3.4.2)

In the classical limit, u3 approaches 1
rs

and is much larger than u1 or u2. Hence, k2 is

approximately

k2 =
u2 − u1

u3 − u1
≈ rs(u2 − u1) << 1 (3.4.3)

For the same reasons, the denominator of ∆ϕ is approximately

1√
rs(u3 − u1)

=
1√

1− rs(2u1 + u2)
≈ 1 +

1
2
rs(2u1 + u2) (3.4.4)

Since the modulus k is close to zero, the period K can be expanded in powers of k; to lowest

order, this expansion yields

k ≈
∫ 1

0

dy√
1− y2

(
1 +

1
2
k2y2

)
=
π

2

(
1 +

k2

4

)
(3.4.5)

Substituting these approximations into the formula for ∆ϕ yields a formula for angular

advance per radial oscillation

δϕ = ∆ϕ− 2π ≈ 3
2
πrs(u1 + u2) (3.4.6)

For an elliptical orbit, u1 and u2 represent the inverses of the longest and shortest distances,

respectively. These can be expressed in terms of the ellipse’s semi-major axis a and its orbital

eccentricity e,

rmax =
1
u1

= a(1 + e)

rmin =
1
u2

= a(1− e)

those equations gives

u1 + u2 =
2

a(1− e2)
(3.4.7)

Substituting the definition of rs gives the final equation

δϕ ≈ 6πGM
c2a(1− e2)

(3.4.8)



Chapter 4

Result and Discussion

4.1 General relativistic effect on particle orbit

Here to characterize we use the effective potential derived in chapter 3. Since we are

interested in the precession of solar planetary precessions, here we focus on the bound orbit

characterization with the aid of the effective potential. There are in general two classes

of bound orbits: circular and elliptical bound orbits where the circular orbit will further

divided into stable and unstable circular orbits.

i) Circular orbits

In Newtonian gravity, we found that circular orbits appear at rc = h2

GM . In general relativity

the situation is different, only for r is sufficiently small. Since the difference resides in the

term −GMh2

r3
, as r → ∞, the behaviors are identical in the two cases. But as r → 0, the

potential goes to 1, as in the Newtonian case. At r = 2GM
c2

the potential is always zero. For

massive particles depending on the angular momentum:-

rc =
h2 ±

√
h4 − 12G2M2h2

2GM

For large h,there are two circular orbits, one stable and one unstable.

r =
h2 ± h2 (1−6GM2)

h2

2GM
= (

h2

GM
, 3GM)

24
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In this limit, the stable circular orbit becomes further and further away, while the unstable

one approaches 3GM. As we decrease h, the two circular orbits come closer together,they co-

incide when the discriminant vanishes, i.e h =
√

12GM for which rmin = 3Rs. It disappears

entirely for smaller h. Thus 6GM
c2

is the smallest possible radius of a stable circular orbit in

the Schwarzschild metric. There also unbound orbits, which come in from infinity and turn

around, and bound but non circular ones, which oscillate around the stable circular radius.

Therefore, Schwarzschild solution possesses stable circular orbits for r > 6GM
c2

and unstable

circular orbits for 3GM
c2

< r < 6GM
c2

. For massless particles there are no circular orbits.

Massless particles actually move in straight line, since the Newtonian gravitational force on

a massless particle is zero. In terms of the effective potential a photon with a given energy

will come in from r → ∞ and gradually slow down, but the speed of light is not changing

until it reaches the turning point, then it will start moving away back to r → ∞. The

smallest value of h for which the photon will come closer before it starts moving away, is

those trajectories which are initially aimed closer to the gravitating body.

ii) Elliptical orbits

In this case once a particle is trapped in the potential well of the gravitating system, and if

it lacks sufficient energy either to jump into the attractor or go away to infinity, the particle

will orbit in elliptical path bounded by perihelion and aphelion points.

In the proceeding discussion we characterize the orbits in relation to the general effective

potential as shown in 4.1
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Figure 4.1: Effective potential as a function of radius ( rsc
r ) for various values of angular

momentum

From the above graph there are five cases as follows:

(i) If E > E1 (where E is the energy of incoming test particle), the particle will fall directly

into the singularity starting from rest. In such cases we expect a plunge orbit in which the

particle comes from infinity, moves part way around the central mass and then plunges into

the center.

(ii)If E = E1 , the particle has an unstable circular orbit, it may fall into the singularity

beyond this, depending on initial energy conditions of the particle.

(iii) If E = E2 , the particle will have a fly by orbit, i.e. the particle comes from infinity,

moves towards the center and after approaching a minimum distance , it flies again back

towards the infinity.

(iv) If E = E3, the particle shows a bounded circular motion between the turning points

which represent aphelion and perihelion distances respectively(in Newtonian case)and If

E = E4, the particle shows a bounded circular motion between the turning points which

represent aphelion and perihelion distances respectively(in Schwarzschild).

(v) If E = E5 ,with this energy particle strikes the minima of potential energy curve. This

represents the possibility of bounded circular motion with radius equivalent to the distance

of the minima.
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Generally from the graphs :

There are bound orbits with energy E < 0 , and unbound orbits, with energy E ≥ 0. And

there are orbits with E = Emin are circles, those with Emin < E < 0 are ellipses, those

with E = 0 are parabolas, and those with E > 0 are hyperbolas.

When we come to the particles trajectory of bounded orbits round the black hole, since

the eccentricity we have taken during our work is 0 ≤ e < 1, the trajectory that happened

while the particle rotates round the black hole is ellipse. The points in the trajectory which

are closest to the focus and furthest away from from the focus are called the perihelion and

aphelion respectively.
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Figure 4.2: Ellipses with different eccentricities for all in Schwarzschild

For some values of eccentricities (e < 1), i.e (e=0, 0.1, 0.5, and 0.9) the particles have

different elliptical shapes. The particle is closest to the black hole when φ = 0 and this

minimum distance is a r+ = l
1+e and the motion is slow, again the greatest distance occurs

at aphelion when φ = πr+ = l
1−e . When farthest away the motion is fast and it follows

planetary orbit.
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Figure 4.3: Ellipses with different eccentricities in Schwarzschild cases

Figure 4.4: Ellipses with different eccentricities for all in Newtonian cases

From figure 4.4 All Four planets share the same radial motion, but move at different

angular speeds. The Magenta planet feels only an inverse-square force. The blue planet

moves angularly fast as the orange planet. The Orange planets slow angularly than the

blue planet. The red planet illustrates purely radial motion with no angular motion.
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Table 4.1: Perihelion precession of the planetary systems
System a(m)× 1011 T(d) e ∆φ( sec

century )
Mercury 0.579 88 0.206 42.842
Venus 1.082 224.7 0.007 8.5979
Earth 1.496 365.25 0.017 3.8374
Mars 2.279 687 0.093 1.3467

Jupiter 7.783 4331.865 0.048 0.0621
Saturn 14.27 10760.25 0.056 0.0136
Uranus 28.709 30676.8 0.047 0.00237
Neptune 44.97 60266.25 0.009 0.0007
Pluto 59.00 90582 0.254 0.00041

Data source:
https:www.info.please.com(Basic planetary data)

According to some data and the perihelion precession of final equation(3.4.8), we prepare

a table that represents the results for eight planets in the solar system (Mercury,Venus,

Earth, Mars, Jupiter, Saturn, Uranus and Neptune). There is a conversion in our table

that gives us different values for advance of perihelion that we express the (sec/century),

represented by δϕ = 6πGM
c2a(1−e2)



Chapter 5

Summary and conclusion

One of the astrophysical systems that requires GR is the precession of planets which has

motivated Einstein to develop GR itself. Since then attention has given for the study of

precession of orbits around strong gravity sources. Yet, the it remains an active research

area including planetary orbits around the sun. We studied about the Perihelion Precession

of Planetary Systems on the basis of general relativity. Also starting from geodesic equation

in connection with Lagrangian equation we derived equations for the trajectories of both

massive and massless particles, like equation for effective potential of massive and massless

particles, polar equations of ellipse and the behavior of the trajectories have been studied.

In our analytical derivations particles motion would be considered and using these equations

we generate the numerical data by MATHEMATICA and produce different graphs(figures).

As a result during the motion of particles around Elliptical Orbit those particles with weak

gravity (Newtonian)have stable circular orbits while particles with strong gravity have un-

stable orbits. when these particles approach to the Schwarzschild radius they will trapped

in to a black hole. There are also no stable circular photon orbits in the Schwarzschild

geometry.
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