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Abstract

In this research we have studied the squeezing, entanglement and statistical prop-

erties of the cavity light beams produced by a nondegenerate three-level laser with

a closed cavity and coupled to a two-mode vacuum reservoir via a single-port mir-

ror. We have carried out our analysis by putting the noise operators associated with

the vacuum reservoir in normal order. Applying the solutions of the equations of

evolution for the expectation values of the atomic operators, the interaction Hamil-

tonian and the quantum Langavin equations for the cavity mode operators, we have

calculated the mean and variance of the photon number as well as the quadrature

squeezing, photon and atom entanglement of the cavity light. We have found that

the mean photon number and its fluctuation, quadrature squeezing, and photon

entanglement within the laser cavity are enhanced by increasing the stimulated

emission decay constant. In addition, proper choice of the amplitude of the driv-

ing coherent light increases these non-classical features. The mean photon number

and its fluctuation also become more intense for large frequency interval. Moreover,

the squeezing and entanglement of the two-mode light are directly related and their

maximum strength is found to be 43%.
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Introduction

Light has played a special role in our attempt to understand nature quantum me-

chanically. Squeezing is one of the nonclassical features of light that has attracted a

great deal of interest [1-8]. In squeezed light the noise in one quadrature is below the

vacuum-state level at the expense of enhanced fluctuations in the other quadrature,

with the product of the uncertainties in the two quadratures satisfying the uncer-

tainty relation [7,8]. Squeezed light has potential applications in low-noise optical

communications and weak signal detection [8-11].

The other important quantum feature that is attributed to the correlation be-

tween two or more group of quantum particles is quantum entanglement, which

is the non-locality aspect of quantum correlations with no classical similarity. This

wonderful feature is a very key resource for many fascinating applications such as

quantum memories for quantum computers, quantum information and communi-

cation, quantum dense coding, quantum teleportation for secure communication,

and atom clocks and interferometers for quantum sensing and metrology [10-12].

There has been a considerable interest in the analysis of the squeezing, entangle-

ment, and statistical properties of the light generated by three-level lasers [11-26].

When a three-level atom in a cascade configuration makes a transition from the top

to the bottom level via the intermediate level, two photons are generated. If the two

photons have the same frequency, then the three-level atom is called degenerate

three-level atom otherwise it is called nondegenerate. The squeezing and statistical

properties of the light produced by three-level lasers when the atoms are initially

prepared in a coherent superposition of the top and bottom levels or when these

1
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levels are coupled by a strong coherent light have been studied by several authors

[27-29]. These authors have found that these quantum optical systems can generate

squeezed light under certain conditions.

Moreover, Fesseha [27, 29] has studied the squeezing and the statistical proper-

ties of the light produced by a three-level laser with the atoms in a closed cavity and

pumped by electron bombardment. He has shown that the maximum quadrature

squeezing of the light generated by the laser, operating below threshold, is found

to be 50% below the vacuum-state level. In addition, he has also found that the

quadrature squeezing of the output light is equal to that of the cavity light. On the

other hand, this study shows that the local quadrature squeezing is greater than

the global quadrature squeezing. He has also found that a large part of the total

mean photon number is confined in a relatively small frequency interval. Moreover,

T. Abebe [30] has studied the entanglement of the light produced by a degenerate

three-level laser coupled to a noiseless vacuum reservoir by employing coherent

light for pumping process. He has shown that the maximum quadrature squeezing

is 43% below the vacuum-state level, which is slightly less than the result found with

electron bombardment.

In this thesis we wish to study the squeezing, entanglement and statistical prop-

erties of the light generated by nondegenerate three-level laser with a closed cavity

containing N three-level atoms and coupled to a two-mode vacuum reservoir via

a single-port mirror. We carry out our calculation by putting the noise operators

associated with the vacuum reservoir in normal order. We thus first determine the

interaction Hamiltonian for a dynamics of nondegenerate three-level laser coupled

to a two-mode vacuum reservoir and obtain the quantum Langevin equations for

the cavity mode operators. In addition, employing the interaction Hamiltonian and

the large-time approximation scheme, we obtain equations of evolution of the ex-

pectation values of atomic operators. Moreover, we determine the solutions of the

equations of evolution of the expectation values of the atomic operators and the

quantum Langevin equations for cavity mode operators. Then applying the result-

ing solutions, we calculate the photon statistics and the quadrature variances of the
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two-mode cavity light beams. Furthermore, applying the same solutions, we ob-

tain the mean and variance of the two-mode cavity light, the intracavity quadrature

squeezing and photon and atom entanglement of the system under consideration.



2

Operator Dynamics

In this chapter we consider a nondegenerate three-level laser driven by coherent

light and with the cavity modes coupled to a two-mode vacuum reservoir via a

single-port mirror as shown in Figure (2.1). We first set up the interaction Hamilto-

nian for a coherently driven nondegenerate three-level atom with the cavity modes

and the quantum Langevin equations for the cavity mode operators. In addition,

employing the Hamiltonian and the Heisenberg equation, we drive the equations of

evolution of the expectation values of the atomic operators. Finally, we determine

the steady-state solutions of the resulting equations of evolution. Here we carry out

our calculation by putting the noise operators associated with the two-mode ther-

mal reservoir in normal order.

2.1 The Interaction Hamiltonian

We consider here the case in which N nondegenerate three-level atoms in cascade

configuration are available in a closed cavity. We denote the top, intermediate, and

bottom levels of the three-level atom by |a〉k, |b〉k, and |c〉k, respectively. As shown in

Figure (2.1) for nondegenerate cascade configuration, when the atom makes a tran-

sition from level |a〉k to |b〉k and from levels |b〉k to |c〉k two photons with different

frequencies are emitted. The emission of light when the atom makes the transition

from the top level to the intermediate level is light mode a and the emission of light

when the atom makes the transition from the intermediate level to the bottom level

is light mode b. We assume that the cavity mode a is at resonance with transition

|a〉k → |b〉k and the cavity mode b is at resonance with the transition |b〉k → |c〉k, with

top and bottom levels of the three-level atom coupled by coherent light. The cou-

4
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ω
a

ω
b

N-atoms

κ

|a>

|b>

|c>

ε

Figure 2.1: Schematic representation of a coherently driven nondegenerate three-

level laser coupled to a two-mode vacuum reservoir.

pling of the top and bottom levels of a nondegenerate three-level atom by coherent

light can be described by the Hamiltonian [27]

Ĥ
′
=
iΩ

2

[
σ̂†kc − σ̂kc

]
, (2.1)

where

σ̂kc = |c〉k k〈a| (2.2)

is lowering atomic operator and

Ω = 2ελ. (2.3)

Here ε, considered to be real and constant, is the amplitude of the driving coher-

ent light and λ is the coupling constant between the driving coherent light and the

three-level atom. In addition, the interaction of a three-level atom with the cavity

modes can be described by the Hamiltonian [29]

Ĥ
′′

= ig
[
σ̂†ka â− â†σ̂ka + σ̂†kb b̂− b̂

†σ̂kb
]
, (2.4)
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where

σ̂ka = |b〉k k〈a|, (2.5)

σ̂kb = |c〉k k〈b|, (2.6)

are atomic operators, g is the coupling constant between the atom and cavity mode

a or b, and â and b̂ are the annihilation operators for light modes a and b. Thus up

on combining Eqs. (2.1) and (2.4), the interaction of the three-level atom with the

driving coherent light and cavity mode a and b is described by the Hamiltonian

ĤS(t) = ig
[
σ̂†ka â− â†σ̂ka + σ̂†kb b̂− b̂

†σ̂kb
]

+
iΩ

2

[
σ̂†kc − σ̂kc

]
. (2.7)

2.2 Quantum Langevin Equations

We recall that the laser cavity is coupled to a two-mode vacuum reservoir via a

single-port mirror. In addition, we carry out our calculation by putting the noise

operators associated with the vacuum reservoir in normal order. Thus the noise

operators will not have any effect on the dynamics of the cavity mode operators

[7,8]. We can therefore drop the noise operators and write the quantum Langevin

equations for the operators â and b̂ as

dâ

dt
= −κ

2
â− i[â, Ĥ], (2.8)

db̂

dt
= −κ

2
b̂− i[b̂, Ĥ], (2.9)

where κ is the cavity damping constant. Then in view of Eq. (2.7), the quantum

Langevin equations for cavity mode operators â and b̂ turns out to be

dâ

dt
= −κ

2
â− gσ̂ka , (2.10)

db̂

dt
= −κ

2
b̂− gσ̂kb . (2.11)

2.3 Equations of Evolution of the Atomic Operators

Here we seek to derive the equations of evolution of the expectation values of the

atomic operators by applying the Heisenberg equation. Moreover, we find the
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steady-state solutions of the equations of evolution of the atomic operators. To this

end, employing the relation

d

dt
〈Â〉 = −i〈[Â, Ĥ]〉 (2.12)

along with the interaction Hamiltonian of the system described by (2.7), one can

readily establish that

d

dt
〈σ̂ka〉 = g[〈η̂kb â〉 − 〈η̂ka â〉+ 〈b̂†σ̂kc 〉] +

Ω

2
〈σ̂†kb 〉, (2.13)

d

dt
〈σ̂kb 〉 = g[〈η̂kc b̂〉 − 〈â†σ̂kc 〉 − 〈η̂kb b̂〉]−

Ω

2
〈σ̂†ka 〉, (2.14)

d

dt
〈σ̂kc 〉 = g[〈σ̂kb â〉 − 〈σ̂ka b̂〉] +

Ω

2

[
〈η̂kc 〉 − 〈η̂ka〉

]
, (2.15)

d

dt
〈η̂ka〉 = g[〈σ̂†ka â〉+ 〈â†σ̂ka〉] +

Ω

2

[
〈σ̂kc 〉+ 〈σ̂†kc 〉

]
, (2.16)

d

dt
〈η̂kb 〉 = g[〈σ̂†b b̂〉+ 〈b̂†σ̂kb 〉 − 〈σ̂†ka â〉 − 〈â†σ̂ka〉], (2.17)

d

dt
〈η̂kc 〉 = −g(〈σ̂†b â〉+ 〈b̂†σ̂kb 〉)−

Ω

2

[
〈σ̂kc 〉+ 〈σ̂†kc 〉

]
(2.18)

where

η̂ka = |a〉k k〈a|, (2.19)

η̂kb = |b〉k k〈b|, (2.20)

η̂kc = |c〉k k〈c|. (2.21)

We see that Eqs. (2.13) - (2.18) are nonlinear differential equations and hence

it is not possible to find exact time-dependent solutions of these equations. We

intend to overcome this problem by applying the large-time approximation [7,8].

Therefore, employing this approximation scheme, we get from Eqs. (2.10) and (2.11)

the approximately valid relations

â = −2g

κ
σ̂ka , (2.22)

b̂ = −2g

κ
σ̂kb . (2.23)

Evidently, these turn out to be exact relations at steady-state. Now introducing Eqs.

(2.22) and (2.23) into Eqs. (2.13) - (2.18), the equations of evolution of the atomic
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operators take the form

d

dt
〈σ̂ka〉 = −γc〈σ̂ka〉+

Ω

2
〈σ̂†kb 〉, (2.24)

d

dt
〈σ̂kb 〉 = −γc

2
〈σ̂kb 〉 −

Ω

2
〈σ̂†ka 〉, (2.25)

d

dt
〈σ̂kc 〉 = −γc

2
〈σ̂kc 〉+

Ω

2

[
〈η̂kc 〉 − 〈η̂ka〉

]
, (2.26)

d

dt
〈η̂ka〉 = −γc〈η̂ka〉+

Ω

2

[
〈σ̂kc 〉+ 〈σ̂†kc 〉

]
, (2.27)

d

dt
〈η̂kb 〉 = −γc[〈η̂kb 〉 − 〈η̂ka〉], (2.28)

d

dt
〈η̂c〉 = −γc〈η̂b〉 −

Ω

2

[
〈σ̂c〉+ 〈σ̂†c〉

]
, (2.29)

where

γc =
4g2

κ
(2.30)

is the stimulated emission decay constant.

We next sum Eqs. (2.24) - (2.29) over the N three-level atoms, so that

d

dt
〈m̂a〉 = −γc〈m̂a〉+

Ω

2
〈m̂†b〉, (2.31)

d

dt
〈m̂b〉 = −γc

2
〈m̂b〉 −

Ω

2
〈m̂†a〉, (2.32)

d

dt
〈m̂c〉 = −γc

2
〈m̂c〉+

Ω

2

[
〈N̂c〉, (2.33)

d

dt
〈N̂a〉 = −γc〈N̂a〉+

Ω

2

[
〈m̂c〉+ 〈m̂†c〉

]
, (2.34)

d

dt
〈N̂b〉 = −γc[〈N̂b〉 − 〈N̂a〉], (2.35)

d

dt
〈N̂c〉 = −γc〈N̂b〉 −

Ω

2

[
〈m̂c〉+ 〈m̂†c〉

]
, (2.36)
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in which

m̂a =
N∑
k=1

σ̂ka , (2.37)

m̂b =
N∑
k=1

σ̂kb , (2.38)

m̂c =
N∑
k=1

σ̂kc , (2.39)

N̂a =
N∑
k=1

η̂ka , (2.40)

N̂b =
N∑
k=1

η̂kb , (2.41)

N̂c =
N∑
k=1

η̂kc , (2.42)

with the operators N̂a, N̂b, and N̂c representing the number of atoms in the top, in-

termediate, and bottom levels, respectively. In addition, employing the complete-

ness relation

η̂ka + η̂kb + η̂kc = Î , (2.43)

we easily arrive at

〈N̂a〉+ 〈N̂b〉+ 〈N̂c〉 = N. (2.44)

Furthermore, using the definition given by Eq. (2.5) and setting for any k

σ̂ka = |b〉〈a|, (2.45)

we have

m̂a = N |b〉〈a|. (2.46)

Following the same procedure, one can also easily establish that

m̂b = N |c〉〈b|, (2.47)

m̂c = N |c〉〈a|, (2.48)

N̂a = N |a〉〈a|, (2.49)

N̂b = N |b〉〈b|, (2.50)

N̂c = N |c〉〈c|. (2.51)



2.3 Equations of Evolution of the Atomic Operators 10

Using the definition

m̂ = m̂a + m̂b (2.52)

and taking into account Eqs. (2.46)-(2.51), it can be readily established that [8]

m̂†m̂ = N(N̂a + N̂b), (2.53)

m̂m̂† = N(N̂b + N̂c), (2.54)

m̂2 = Nm̂c. (2.55)

In the presence of N three-level atoms, we rewrite Eqs. (2.10) and (2.11) as [8]

dâ

dt
= −κ

2
â+ λm̂a, (2.56)

db̂

dt
= −κ

2
b̂+ βm̂b, (2.57)

in which λ and β are constants whose values remain to be fixed. We note that the

steady-state solutions of Eqs. (2.10) and (2.11) are

â = −2g

κ
σ̂ka , (2.58)

b̂ = −2g

κ
σ̂kb . (2.59)

Now employing Eqs. (2.58) and (2.59), the commutation relations for the cavity

mode operators are found to be

[â, â†]k =
γc
κ

[
η̂kb − η̂ka

]
, (2.60)

[b̂, b̂†]k =
γc
κ

[
η̂kc − η̂kb

]
, (2.61)

and on summing over all atoms, we have

[â, â†] =
γc
κ

[
N̂b − N̂a

]
, (2.62)

[b̂, b̂†] =
γc
κ

[
N̂c − N̂b

]
, (2.63)

where

[â, â†] =
N∑
k=1

[â, â†]k, (2.64)

[b̂, b̂†] =
N∑
k=1

[b̂, b̂†]k. (2.65)
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We note that Eqs. (2.64) and (2.65) stand for the commutators â and â†, and for b̂

and b̂† when the light modes a and b are interacting with all theN three-level atoms.

On the other hand, using the steady-state solutions of Eqs. (2.56) and (2.57), one

can easily verify that

[â, â†] = N

(
2λ

κ

)2(
N̂b − N̂a

)
, (2.66)

[b̂, b̂†] = N

(
2β

κ

)2(
N̂c − N̂b

)
. (2.67)

Thus on account of Eqs. (2.62) and (2.66), we see that

λ = ± g√
N
. (2.68)

Similarly, inspection of Eqs. (2.63) and (2.67) shows that

β = ± g√
N
. (2.69)

Hence in view of these two results, the equations of evolution of the light modes a

and b operators given by Eqs. (2.56) and (2.57) can be written as [8]

dâ

dt
= −κ

2
â+

g√
N
m̂a, (2.70)

db̂

dt
= −κ

2
b̂+

g√
N
m̂b. (2.71)

Now adding Eqs. (2.62) and (2.63) as well as Eqs. (2.70) and (2.71), we get

[ĉ, ĉ†] =
γc
κ

[
N̂c − N̂a

]
(2.72)

and

dĉ

dt
= −κ

2
ĉ+

g√
N
m̂, (2.73)

in which

ĉ = â+ b̂. (2.74)

We next proceed to obtain the expectation value of the cavity mode operators.

One can rewrite Eq. (2.30) and the adjoint of (2.31) as

d

dt
〈m̂a〉 = −γc〈m̂a〉+

Ω

2
〈m̂†b〉, (2.75)

d

dt
〈m̂†b〉 = −Ω

2
〈m̂a〉 −

γc
2
〈m̂†b〉. (2.76)
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To solve the coupled differential equations (2.75) and (2.76), we write the single-

matrix equation

d

dt

 〈m̂a(t)〉

〈m̂†b(t)〉

 = M

 〈m̂a(t)〉

〈m̂†b(t)〉

 , (2.77)

with

M =

 −γc Ω
2

−Ω
2
−γc

2

 . (2.78)

In order to solve Eq. (2.77), we need the eigenvalues and eigenvectors of M such

that

MVi = λiVi, (2.79)

with i = 1, 2, and the eigenvectors

Vi =

 xi

yi

 , (2.80)

subject to the normalization condition

x2
i + y2

i = 1. (2.81)

The eigenvalue equation (2.79) has nontrivial solution, provided that

det(M − λI) = 0, (2.82)

so that applying Eq. (2.77), the eigenvalues are found to be

λ1 = −3

4
γc +

1

2
p, (2.83)

λ2 = −3

4
γc −

1

2
p, (2.84)

p =

√
1

4
γ2
c − Ω2. (2.85)

We next seek to obtain the eigenvectors of M . To this end, the eigenvector cor-

responding to λ1 is expressible as

V1 =

 x1

y1

 . (2.86)
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Then employing Eqs. (2.78) and (2.79), we write the matrix equation −γc Ω
2

−Ω
2
−1

2
γc

 x1

y1

 = λ1

 x1

y1

 . (2.87)

Taking into account this equation and the normalization condition

x2
1 + y2

1 = 1, (2.88)

we get

V1 =
1√

Ω2

4
+ (λ1 + γc)2

 Ω
2

λ1 + γc

 . (2.89)

The eigenvector corresponding to λ2 can also be established following a similar pro-

cedure that

V2 =

 x2

y2

 =
1√

Ω2

4
+ (λ2 + γc)2

 Ω
2

λ2 + γc

 . (2.90)

Finally, we construct a matrix V consisting of the eigenvectors of the matrix M as

column matrices

V =


Ω
2√

Ω2

4
+(λ1+γc)2

Ω
2√

Ω2

4
+(λ2+γc)2

λ1+γc√
Ω2

4
+(λ1+γc)2

λ2+γc√
Ω2

4
+(λ2+γc)2

 . (2.91)

We next proceed to determine the inverse of the matrix V . To this end, it can be

readily verified that the characteristic equation

det(V − λI) = 0 (2.92)

has explicit form

λ2 −
[ Ω

2√
Ω2

4
+ (λ1 + γc)2

+
λ2 + γc√

Ω2

4
+ (λ2 + γc)2

]
λ

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γc)2

√
Ω2

4
+ (λ2 + γc)2

I = 0. (2.93)

Thus applying the Cayley-Hamilton theorem that a matrix satisfies its own charac-

teristic equation, we have

V 2 −
[ Ω

2√
Ω2

4
+ (λ1 + γc)2

+
λ2 + γc√

Ω2

4
+ (λ2 + γc)2

]
V

−
Ω
2
(λ1 − λ2)√

Ω2

4
+ (λ1 + γc)2

√
Ω2

4
+ (λ2 + γc)2

I = 0. (2.94)
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In view of this, we obtain

V −1 =
1

λ1 − λ2

 −(λ2+γc)
Ω
2

√
Ω2

4
+ (λ1 + γc)2

√
Ω2

4
+ (λ1 + γc)2

(λ1+γc)
Ω
2

√
Ω2

4
+ (λ2 + γc)2 −

√
Ω2

4
+ (λ2 + γc)2

 . (2.95)

Using the fact that V V −1 = I, Eq. (2.95) can be rewritten as

d

dt
〈Û(t)〉 = V V −1MV V −1〈Û(t)〉, (2.96)

in which

〈Û(t)〉 =

 〈m̂a(t)〉

〈m̂†b(t)〉

 . (2.97)

Multiplying Eq. (2.96) by V −1 from the left, we get

d

dt
(V −1〈Û(t)〉) = DV −1〈Û(t)〉, (2.98)

where

D = V −1MV =

 λ1 0

0 λ2

 , (2.99)

in which λ1 and λ2 are the eigenvalues of the matrix M . We note that Eq. (2.98) has

a well defined solution for λ1 > 0 and λ2 > 0. The formal solution of Eq. (2.98) can

be written as

V −1〈Û(t)〉 = eDtV −1〈Û(0)〉, (2.100)

from which follows

〈Û(t)〉 = V eDtV −1〈Û(0)〉. (2.101)

In view of the fact that D is diagonal, we have

eDt =

 eλ1t 0

0 eλ2t

 . (2.102)

Therefore, on account of Eq. (2.101) along with (2.91), (2.95), (2.99), and (2.102), we

obtain

V eDtV −1〈Û(0)〉 =
1

p

 [aeλ2t − beλ1t]〈m̂a(0)〉 Ω
2
(eλ1t − eλ2t)〈m̂†b(0)〉

−Ω
2
(eλ1t − eλ2t)〈m̂a(0)〉 [aeλ1t − beλ2t]〈m̂†b(0)〉

 , (2.103)
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where

p = λ1 − λ2, (2.104)

a = λ1 + γc, (2.105)

b = λ2 + γc. (2.106)

In view of Eqs. (2.97) and (2.103) along with (2.101), we see that 〈m̂a(t)〉

〈m̂†b(t)〉

 =
1

p

 [aeλ2t − beλ1t]〈m̂a(0)〉 Ω
2
(eλ1t − eλ2t)〈m̂†b(0)〉

−Ω
2
(eλ1t − eλ2t)〈m̂a(0)〉 [aeλ1t − beλ2t]〈m̂†b(0)〉

 . (2.107)

It then follows that

〈m̂a(t)〉 =
1

p
[aeλ2t − beλ1t]〈m̂a(0)〉+

Ω

2p
(eλ1t − eλ2t)〈m̂†b(0)〉 (2.108)

〈m̂†b(t)〉 =
1

p
[aeλ1t − beλ2t]〈m̂†b(0)〉 − Ω

2p
(eλ1t − eλ2t)〈m̂a(0)〉. (2.109)

Furthermore, the adjoint of Eq. (2.109) can be written as

〈m̂b(t)〉 =
1

p
[aeλ1t − beλ2t]〈m̂b(0)〉 − Ω

2p
(eλ1t − eλ2t)〈m̂†a(0)〉. (2.110)

With the atoms considered to be initially in the bottom level, Eqs. (2.108) and

(2.110) reduce to

〈m̂a(t)〉 = 0, (2.111)

〈m̂b(t)〉 = 0. (2.112)

The expectation value of the solution of Eq. (2.70) is expressible as

〈â(t)〉 = 〈â(0)〉e−κt/2 +
g√
N

∫ t

0

eκt
′/2〈m̂a(t

′)〉dt′. (2.113)

With the help of Eq. (2.111) and the assumption that the cavity light is initially in a

vacuum state, Eq. (2.113) turns out to be

〈â(t)〉 = 0. (2.114)

In view of the linear equation described by Eq. (2.70) and the result given by Eq.

(2.114), we claim that â(t) is a Gaussian variable with zero mean. Following a similar
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procedure, one can readily obtain the expectation value of the solution of Eq. (2.71)

to be

〈b̂(t)〉 = 0. (2.115)

Then on account of the linear equation described by Eq. (2.71) and the result given

by Eq. (2.115), we realize b̂(t) to be a Gaussian variable with zero mean. Now with

the aid of Eqs. (2.114) and (2.115) together with (2.74), we have

〈ĉ(t)〉 = 0. (2.116)

In view of Eqs. (2.116) and (2.73), we see that ĉ(t) is a Gaussian variable with zero

mean.

Finally, we seek to determine the steady-state solutions of the expectation values

of the atomic operators. We note that the steady-state solutions of Eqs. (2.33), (2.34),

and (2.35) are given by

〈m̂c〉 =
Ω

γc

[
〈N̂c〉 − 〈N̂a〉

]
, (2.117)

〈N̂a〉 =
Ω

2γc

[
〈m̂c〉+ 〈m̂†c〉

]
, (2.118)

〈N̂b〉 = 〈N̂a〉. (2.119)

Furthermore, with the help of Eq. (2.44) together with (2.119), we see that

〈N̂c〉 = N − 2〈N̂a〉. (2.120)

With the aid of Eq. (2.120), Eq. (2.117) can be written as

〈m̂c〉 =
Ω

γc

[
N − 3〈N̂a〉

]
(2.121)

and in view of Eq. (2.121), we observe that

〈m̂c〉 = 〈m̂†c〉. (2.122)

Now taking into consideration this result, Eq. (2.118) can be put in the form

〈N̂a〉 =
Ω

γc
〈m̂c〉. (2.123)
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Using Eqs. (2.121) and (2.123), one readily gets

〈N̂a〉 =

[
Ω2

γ2
c + 3Ω2

]
N. (2.124)

Substitution of Eq. (2.124) into Eqs. (2.119), (2.120), and (2.121) results in

〈N̂a〉 =

[
Ω2

γ2
c + 3Ω2

]
N, (2.125)

〈N̂b〉 =

[
Ω2

γ2
c + 3Ω2

]
N, (2.126)

〈N̂c〉 =

[
γ2
c + Ω2

γ2
c + 3Ω2

]
N, (2.127)

〈m̂c〉 =

[
γcΩ

γ2
c + 3Ω2

]
N. (2.128)

These equations represent the steady-state solutions of the equations of evolution

of the atomic operators for a coherently driven nondegenerate three-level atom in

an open cavity and coupled to a two-mode reservoir. In addition, we note that for

Ω� γc, Eqs. (2.125)-(2.128) reduce to

〈N̂a〉 =
1

3
N, (2.129)

〈N̂b〉 =
1

3
N, (2.130)

〈N̂c〉 =
1

3
N, (2.131)

〈m̂c〉 = 0. (2.132)

Finally, in the absence of the deriving coherent light, when Ω = 0, Eqs. (2.125)-

(2.128) turns out to be

〈N̂a〉 = 0, (2.133)

〈N̂b〉 = 0, (2.134)

〈N̂c〉 = N, (2.135)

〈m̂c〉 = 0. (2.136)

These results show initially, when the deriving coherent light (Ω = 0), all the atoms

are found to be in bottom level.



3

Photon Statistics

In this chapter we seek to study the statistical properties of the light produced by the

coherently driven non degenerate three-level laser with a closed cavity and coupled

to a two-mode vacuum reservoir via a single-port mirror. Applying the solutions of

the equations of evolution of the expectation values of the atomic operators and the

quantum Langavin equations for the cavity mode operators, we obtain the global

and local photon statistics for light modes a and b. In addition, we determine the

global photon statistics of the two-mode cavity light.

3.1 Single-Mode Photon Statistics

In this section we obtain the global mean and variance of the photon numbers for

light modes a and b. Moreover, we determine the local mean and variance of the

photon numbers for light modes a and b.

3.1.1 Global Mean Photon Number

Here we seek to calculate the global mean photon numbers of light modes a and b,

produced by the coherently driven non degenerate three-level laser with a closed

cavity and coupled to a two-mode vacuum reservoir.

A. Global mean photon number of light mode a

We now proceed to obtain the mean photon number of light mode a in the entire

frequency interval. The mean photon number of light mode a, represented by the

operators â and â†, is defined by

n̄a = 〈â†â〉. (3.1)

18
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Figure 3.1: Plots of the global mean photon number of light mode a [Eq. (3.6)] versus

Ω for κ = 0.8, N = 50, and for different values of γc.

We note that the steady-state solution of Eq. (2.70) is

â =
2g

κ
√
N
m̂a, (3.2)

so that introducing Eq. (3.2) and its adjoint into (3.1), we see that

n̄a =
γc
κN
〈m̂†am̂a〉. (3.3)

With the help of Eq. (2.46), one can write

m̂†am̂a = NN̂a. (3.4)

On account of Eq. (3.4), Eq. (3.3) can be expressed as

n̄a =
γc
κ
〈N̂a〉. (3.5)

In view of Eq. (2.124), there follows

n̄a =
γc
κ
N

[
Ω2

γ2
c + 3Ω2

]
. (3.6)

This is the steady-state mean photon number of light mode a produced by the co-

herently driven non-degenerate three-level laser with a closed cavity and coupled
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to a two-mode vacuum reservoir. In addition, we note that for Ω � γc, Eq. (3.6)

reduces to

n̄a =
γc
3κ
N. (3.7)

Figure 3.1 shows that the mean photon number of light mode a increases with the

stimulation emission decay constant γc, particularly for Ω ≥ 0.1.

B. Global mean photon number of light mode b

Here we seek to determine the mean photon number of light mode b in the entire

frequency interval produced by the system under consideration. The mean photon

number of light mode b, represented by the operators b̂ and b̂†, is defined by

n̄b = 〈b̂†b̂〉. (3.8)

We note that the steady-state solution of Eq. (2.71) is

b̂ =
2g

κ
√
N
m̂b, (3.9)

so that introducing Eq. (3.9) and its adjoint into (3.8), we see that

n̄b =
γc
κN
〈m̂†bm̂b〉. (3.10)

With the help of Eq. (2.47), one can write

m̂†bm̂b = NN̂b. (3.11)

On account of Eq. (3.11), Eq. (3.10) can be expressed as

n̄b =
γc
κ
〈N̂b〉. (3.12)

Now on substituting Eq. (2.125) into (3.12), the mean photon number of light mode

b takes, at steady-state, the form

n̄b =
γc
κ
N

[
Ω2

γ2
c + 3Ω2

]
. (3.13)

This is the steady-state mean photon number of light mode b produced by the co-

herently driven non-degenerate three-level laser in a closed cavity and coupled to a

two-mode vacuum reservoir.
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We would like to point out that this result is exactly the same as that described

by Eq. (3.6). In addition, we note that for Ω� γc, Eq. (3.13) reduces to

n̄b =
γc
3κ
N. (3.14)

3.1.2 Local Mean Photon Number

Here we seek to determine the local mean photon numbers of light modes a and

b, produced by the coherently driven nondegenerate three-level laser with a closed

cavity and coupled to a two-mode vacuum reservoir.

A. Local mean photon number of light mode a

We now proceed to obtain the mean photon number of light mode a in a given fre-

quency interval. To determine the local mean photon number of light mode a, we

need to consider the power spectrum of light mode a. The power spectrum of light

mode a with central frequency ω0 is expressible as [8]

Pa(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈â†(t)â(t+ τ)〉ss. (3.15)

Upon integrating both sides of Eq. (3.15) over ω, we readily get∫ ∞
−∞

Pa(ω)dω = n̄a, (3.16)

in which n̄a is the steady-state mean photon number of light mode a. From this

result, we observe that Pa(ω)dω is the steady-state mean photon number of light

mode a in the frequency interval between ω and ω + dω [8].

We now proceed to determine the two-time correlation function that appears in

Eq. (3.15). To this end, we realize that the solution of Eq. (2.70) can be written as

â(t+ τ) = â(t)e−κτ/2 +
g√
N
e−κτ/2

∫ τ

0

eκτ
′/2m̂a(t+ τ ′)dτ ′. (3.17)

Applying the large time approximation on Eq. (2.76), we have

〈m̂†b〉 = −Ω

γc
〈m̂a〉. (3.18)

Employing this result, Eq. (2.75) takes the form

d

dt
〈m̂a〉 = −1

2
η〈m̂a〉. (3.19)
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On the basis of Eq. (3.19), we see that

d

dt
m̂a(t) = −1

2
ηm̂a(t) + F̂a(t), (3.20)

in which F̂a(t) is a noise operator with a vanishing mean and η is given by

η =

[
Ω2 + 2γ2

c

γc

]
. (3.21)

The solution of Eq. (3.20) can be put in the form

m̂a(t+ τ) = m̂a(t)e
−ητ/2 + e−ητ/2

∫ τ

0

eητ
′/2F̂a(t+ τ ′)dτ ′, (3.22)

so that on introducing this into Eq. (3.17), there follows

â(t+ τ) = â(t)e−κτ/2 +
g√
N
e−κτ/2m̂a(t)

∫ τ

0

e(κ−η)τ ′/2dτ ′

+
g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2F̂a(t+ τ ′′). (3.23)

Thus on carrying out the first integration, we arrive at

â(t+ τ) = â(t)e−κτ/2 +
2gm̂a(t)√
N(κ− η)

[
e−ητ/2 − e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2F̂a(t+ τ ′′). (3.24)

Now multiplying on the left by â†(t) and taking the expectation value of the resulting

expression, we have

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉e−κτ/2 +
2g〈â†(t)m̂a(t)〉√

N(κ− η)

[
e−ητ/2 − e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2〈â†(t)F̂a(t+ τ ′′)〉.(3.25)

Applying the large-time approximation scheme, one gets from Eq. (2.70)

â(t) =
2g

κ
√
N
m̂a(t), (3.26)

so that in view of this result, we get

m̂a(t) =
κ
√
N

2g
â(t). (3.27)

Thus substitution of Eq. (3.27) into Eq. (3.25) results in

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−η)τ ′+ητ ′′]/2〈â†(t)F̂a(t+ τ ′′)〉.(3.28)
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Since a noise operator at a certain time should not affect a light mode operator at

an earlier time [8], we note that

〈â†(t)F̂a(t+ τ ′′)〉 = 0. (3.29)

It then follows that

〈â†(t)â(t+ τ)〉 = 〈â†(t)â(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
(3.30)

and at steady-state, we have

〈â†(t)â(t+ τ)〉ss = n̄a

[
κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
. (3.31)

Thus on combining Eq. (3.31) with Eq. (3.15), the power spectrum of light mode a

with central frequency ω0 is expressible as

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

∫ ∞
0

dτe−[η/2−i(ω−ω0)]τ − η
∫ ∞

0

dτe−[κ/2−i(ω−ω0)]τ

]
, (3.32)

so that on carrying out the integration, we readily arrive at

Pa(ω) =
1

π

[
n̄a

κ− η

]
Re

[
κ

[η/2− i(ω − ω0)]
− η

[κ/2− i(ω − ω0)]

]
. (3.33)

This can be rewritten as

Pa(ω) =
κn̄a
κ− η

[
η/2π

[η/2]2 + (ω − ω0)2

]
− ηn̄a
κ− η

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.34)

We realize that the mean photon number of light mode a in the interval between

ω′ = −λ and ω′ = λ is expressible as [8]

n̄a±λ =

∫ λ

−λ
Pa(ω

′)dω′, (3.35)

in which ω′ = ω − ω0. Therefore, upon substituting Eq. (3.34) into Eq. (3.35) and

carrying out the integration by employing the relation∫ λ

−λ

dx

x2 + a2
=

2

a
tan−1

(
λ

a

)
, (3.36)

the local mean photon number of light mode a produced by the coherently driven

non-degenerate three-level laser with a closed cavity and coupled to a two-mode

vacuum reservoir is found to be

n̄a±λ = n̄aza(λ), (3.37)
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Figure 3.2: Plots za [Eq. (3.37)] versus λ for κ = 0.8,N = 50, Ω = 0.2, and for different

values of γc.

where za(λ) is given by

za(λ) =
2κ/π

κ− η
tan−1

(
2λ

η

)
− 2η/π

κ− η
tan−1

(
2λ

κ

)
. (3.38)

We see from Eq. (3.37) along with the plot of za(λ) that n̄a±λ increases with λ until it

reaches the maximum value of the global mean photon number. From the plots in

Figure 3.2, we find the values indicated in table below.

Table 3.1: Numerical Values of za(λ) for N = 50, κ = 0.8, and Ω = 0.2.

γc za(0.5) za(1) za(2) za(4)

0.3 0.6005 0.7787 0.8861 0.944

0.1 0.6591 0.8166 0.9066 0.9527

Moreover, using the above results of za(λ) and on account of Eq. (3.37), we have the

following result indicated below.

Table 3.2: Numerical Values of n̄a±λ for for N = 50, κ = 0.8 and Ω = 0.2.

γc n̄a±0.5 n̄a±1 n̄a±2 n̄a±4

0.3 2.145 2.781 3.165 3.365

0.1 1.268 1.57 1.743 1.832
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We therefore observe that the total mean photon number of mode a increases with

the frequency interval to reach its global value.

B. Local mean photon number of light mode b

We now proceed to obtain the mean photon number of a light mode b in a given

frequency interval produced by the system under consideration. To determine the

local mean photon number of light mode b, we need to consider the power spec-

trum of light mode b. The power spectrum of light mode bwith central frequency ω0

is expressible as

Pb(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈b̂†(t)b̂(t+ τ)〉ss. (3.39)

Upon integrating both sides of Eq. (3.39) over ω, we readily get∫ ∞
−∞

Pb(ω)dω = n̄b, (3.40)

in which n̄b is the steady-state mean photon number of light mode b. From this

result, we observe that Pb(ω)dω is the steady-state mean photon number of light

mode b in the frequency interval between ω and ω+dω. We now proceed to calculate

the two-time correlation function that appears in Eq. (3.40). To this end, we realize

that the solution of Eq. (2.71) can be written as

b̂(t+ τ) = b̂(t)e−κτ/2 +
g√
N
e−κτ/2

∫ τ

0

eκτ
′/2m̂b(t+ τ ′)dτ ′. (3.41)

Applying the large time approximation on Eq. (2.75), we have

〈m̂a〉 =
Ω

γc
〈m̂†b〉. (3.42)

Employing this result, Eq. Eq. (2.76) takes the form

d

dt
〈m̂†b〉 = −1

2
µ〈m̂†b〉. (3.43)

On the basis of Eq. (3.43), we see that

d

dt
m̂b(t) = −1

2
µm̂b(t) + F̂b(t), (3.44)
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in which F̂b(t) is a noise operator with a vanishing mean and η is given by

µ =

[
Ω2 + 2γ2

c

2γc

]
. (3.45)

The solution of equation (3.44) can be put in the form

m̂b(t+ τ ′) = m̂b(t)e
−µτ ′/2 + e−µτ

′/2

∫ τ ′

0

e−µτ
′′/2F̂b(t+ τ ′′)dτ ′′, (3.46)

so that on introducing this into Eq. (3.41), we have

b̂(t+ τ) = b̂(t)e−κτ/2 +
g√
N
e−κτ/2m̂b(t)

∫ µ

0

e(κ−µ)τ ′/2dτ ′

+
g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2F̂b(t+ τ ′′). (3.47)

Thus on carrying out the first integration, we arrive at

b̂(t+ τ) = b̂(t)e−κτ/2 +
2gm̂b(t)√
N(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2F̂b(t+ τ ′′). (3.48)

Now multiplying both sides on the left by b̂†(t) and taking the expectation value of

the resulting equation, we have

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉e−κτ/2 +
2g〈b̂†(t)m̂b(t)〉√

N(κ− µ)

[
e−µτ/2 − e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2〈b̂†(t)F̂b(t+ τ ′′)〉.(3.49)

Applying the large-time approximation scheme, one gets from Eq. (2.71)

b̂(t) =
2g

κ
√
N
m̂b(t). (3.50)

In view of Eq. (3.50), we see that

m̂b(t) =
κ
√
N

2g
b̂(t). (3.51)

With this substituted into Eq. (3.49), there follows

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
+

g√
N
e−κτ/2

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′e[(κ−µ)τ ′+µτ ′′]/2〈b̂†(t)F̂b(t+ τ ′′)〉(3.52)
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and taking into account the fact that

〈b̂†(t)F̂b(t+ τ ′′)〉 = 0, (3.53)

we arrive at

〈b̂†(t)b̂(t+ τ)〉 = 〈b̂†(t)b̂(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.54)

Therefore, at steady-state, Eq. (3.54) takes the form

〈b̂†(t)b̂(t+ τ)〉ss = n̄b

[
κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
. (3.55)

Thus on combining Eq. (3.55) with Eq. (3.39), the power spectrum of light mode b

with central frequency ω0 can be put in the form

Pb(ω) =
1

π

[
n̄b

κ− µ

]
Re

[
κ

∫ ∞
0

dτe−[µ/2−i(ω−ω0)]τ − µ
∫ ∞

0

dτe−[κ/2−i(ω−ω0)]τ , (3.56)

so that on carrying out the integration, we readily arrive at

Pb(ω) =
κn̄b
κ− µ

[
µ/2π

[µ/2]2 + (ω − ω0)2

]
− µn̄b
κ− µ

[
κ/2π

[κ/2]2 + (ω − ω0)2

]
. (3.57)

We realize that the mean photon number of light mode b in the interval between

ω′ = −λ and ω′ = λ is expressible as

n̄b±λ =

∫ λ

−λ
P (ω′)dω′, (3.58)

in which ω′ = ω − ω0. Therefore, upon substituting Eq. (3.57) into Eq. (3.58), and

performing the integration by using the relation given by Eq. (3.36), we readily get

n̄b±λ = n̄bzb(λ), (3.59)

where zb(λ) is given by

zb(λ) =
2κ/π

κ− µ
tan−1

(
2λ

µ

)
− 2µ/π

κ− µ
tan−1

(
2λ

κ

)
. (3.60)

We see from Eq. (3.59) along with the plot of zb(λ) that n̄b±λ increases with λ until it

reaches the maximum value of the global mean photon number.

From the plots in Figure (3.3), we find the values indicated in table below.
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Figure 3.3: Plots of zb(λ)[Eq. 3.60] versus λ for κ = 0.8, N = 50, Ω = 0.2,

and for different values of γc.

Table 3.3: Numerical Values of zb(λ) for N = 50, κ = 0.8 and Ω = 0.2.

γc zb(0.5) zb(1) zb(2) zb(4)

0.3 0.6005 0.7787 0.886 0.9421

0.1 0.8166 0.84 0.9533 0.9766

The result indicated in Figure 3.3 demonstrates that zb(λ) decreases as γc becomes

larger. Furthermore, using the result presented in the figure of zb(λ) and on account

of Eq. (3.59), we have tabulated the following result.

Table 3.4: Numerical Values of n̄b±λ for N = 50, κ = 0.8 and Ω = 0.2.

γc n̄b±0.5 n̄b±1 n̄b±2 n̄b±4

0.3 2.145 2.781 3.165 3.365

γc = 0.1 1.57 1.743 1.833 1.878

From Tables 3.2 and 3.4, we therefore observe that a large part of the mean photon

number is confined in a relatively large frequency interval.
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3.1.3 Global Photon-Number Variance

Here we seek to obtain the global photon number variance of light modes a and

b, produced by the coherently driven nondegenerate three-level laser with a closed

cavity and coupled to a two-mode thermal reservoir.

A. Global photon-number variance of light mode a

We now proceed to calculate the photon number variance of light mode a in the en-

tire frequency interval. The photon number variance of light mode a is expressible

as

(∆n)2
a = 〈â†ââ†â〉 − 〈â†â〉2. (3.61)

Applying the fact that â is a Gaussian variable with zero mean, we arrive at

(∆n)2
a = 〈â†â〉〈ââ†〉+ 〈â†2〉〈â2〉. (3.62)

In view of Eq. (3.2), we see that

〈â2〉 = 0, (3.63)

〈ââ†〉 =
γc
κ
〈N̂b〉. (3.64)

Thus on account of Eqs. (3.5), (3.63) and (3.64), the photon number variance (3.62)

turns out to be

(∆n)2
a =

(
γc
κ

)2

〈N̂a〉〈N̂b〉. (3.65)

With the aid of Eqs. (2.125) and (2.126), the photon number variance of light mode

a takes, at steady-state, the form

(∆n)2
a =

[
γc
κ
N

]2 [
Ω2

γ2 + 3Ω2

]2

. (3.66)

This is the global photon number variance of light mode a, produced by the coher-

ently driven non-degenerate three-level laser with a closed cavity and coupled to a

two-mode vacuum reservoir. Moreover, in view of Eq. (3.6), we have

(∆n)2
a = n̄2

a, (3.67)
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Figure 3.4: Plots of the photon number variance of light mode a [Eq. 3.66] versus Ω

for κ = 0.8, N = 50, and for different values of γc.

which represents the normally-ordered variance of the photon number for chaotic

light.

In addition, we note that for Ω� γc, Eq. (3.66) reduces to

(∆n)2
a =

[
γc
3κ
N

]2

, (3.68)

so that with the aid of Eq. (3.7), we see that

(∆n)2
a = n̄2

a. (3.69)

Figure 3.4 shows that the photon number variance of light mode a increases with Ω

and γc.

B. Global photon-number variance of light mode b

Here we seek to obtain the photon number variance of light mode b in the entire

frequency interval. The photon number variance of light mode b is defined as

(∆n)2
b = 〈b̂†b̂b̂†b̂〉 − 〈b̂†b̂〉2 (3.70)
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and using the fact that b̂ is a Gaussian variable with zero mean, we readily get

(∆n)2
b = 〈b̂†b̂〉〈b̂b̂†〉+ 〈b̂†2〉〈b̂2〉. (3.71)

In view of Eq. (3.9), we have

〈b̂2〉 = 0, (3.72)

〈b̂b̂†〉 =
γc
κ
〈N̂c〉. (3.73)

Thus on account of Eqs. (3.12), (3.72) and (3.73), the photon number variance (3.79)

turns out to be

(∆n)2
b =

(
γc
κ

)2

〈N̂c〉〈N̂b〉, (3.74)

from which follows

(∆n)2
b = n̄b

[
γc
κ
N − 2n̄b

]
. (3.75)

With the aid of Eq. (3.13), the photon number variance of light mode b takes, at

steady-state, the form

(∆n)2
b =

(
γc
κ
N

)2[
Ω2(γ2

c + Ω2)

(γ2
c + 3Ω2)2

]
. (3.76)

This is the steady-state the global photon number variance of of light mode b pro-

duced by the coherently driven non-degenerate three-level laser with a closed cav-

ity and coupled to a two-mode vacuum reservoir.

Furthermore, we note that for Ω� γc, Eq. (3.76) reduces to

(∆n)2
b =

[
γc
3κ
N

]2

(3.77)

and in view of Eq. (3.14), there follows

(∆n)2
b = n̄2

b , (3.78)

which represents the normally-ordered variance of the photon number for chaotic

light.

We readily observe from the plots in Figure 3.5 that the photon number variance

of light mode b grows with the γc, for instance, (∆n)2
b = 44.573 for γc = 0.3 and

Ω = 0.276.
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Figure 3.5: Plots of the photon number variance of light mode b [Eq. 3.76] versus Ω

for κ = 0.8, N = 50, and for different values of γc.

3.1.4 Local Photon-Number Variance

Here we seek to study the local photon number variance of light modes a and b,

produced by the coherently driven non degenerate three-level laser with a closed

cavity and coupled to a two-mode vacuum reservoir.

A. Local photon-number variance of light mode a

We now proceed to obtain the photon number variance of light mode a in a given

frequency interval. To determine the local photon number variance of light mode a,

we need to consider the spectrum of photon number fluctuations of light mode a.

The spectrum of photon number fluctuations of light mode awith central frequency

ω0 is expressible as [4]

Sa(ω) = Re
1

π

∫ ∞
0

dτei(ω−ω0)τ 〈n̂a(t), n̂a(t+ τ)〉ss, (3.79)

where

n̂a(t) = â†(t)â(t) (3.80)
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and

n̂a(t+ τ) = â†(t+ τ)â(t+ τ). (3.81)

Upon integrating both sides of Eq. (3.79) over ω, we find∫ ∞
−∞

Sa(ω)dω = (∆n)2
a, (3.82)

in which (∆n)2
a is the steady-state global photon number variance of light mode

a. From this result, we realize that Sa(ω)dω is the photon number variance of light

mode a in the frequency interval between ω and ω + dω [4].

We now proceed to evaluate the two-time correlation function that appears in

Eq. (3.79). Applying the notation [9]

〈Â, B̂〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉, (3.83)

we see that

〈n̂a(t), n̂a(t+ τ)〉 = 〈n̂a(t)n̂a(t+ τ)〉 − 〈n̂a(t)〉〈n̂a(t+ τ)〉. (3.84)

On account of Eqs. (3.80) and (3.81) and using the fact that a is a Gaussian variable

with zero mean given by Eq. (2.114), we have

〈n̂a(t)n̂a(t+ τ)〉 = 〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉

+ 〈â(t)â(t+ τ)〉〈â†(t)â†(t+ τ)〉

+ 〈â†(t)â(t+ τ)〉〈â(t)â†(t+ τ)〉. (3.85)

Thus substitution of Eq. (3.85) into Eq. (3.84) results in

〈n̂a(t), n̂a(t+ τ)〉 = 〈â†(t)â†(t+ τ)〉〈â(t)â(t+ τ)〉

+ 〈â†(t)â(t+ τ)〉〈â(t)â†(t+ τ)〉. (3.86)

With the help of Eq. (3.24), one can readily establish that

〈â†(t)â†(t+ τ)〉 = 〈â†2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.87)

〈â(t)â(t+ τ)〉 = 〈â2(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.88)

〈â(t)â†(t+ τ)〉 = 〈â(t)â†(t)〉
[

κ

κ− η
e−ητ/2 − η

κ− η
e−κτ/2

]
, (3.89)

〈â†(t+ τ)〉 = 0. (3.90)
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Now employing Eqs. (3.30), (3.87), (3.88), and (3.89), we obtain

〈n̂a(t)n̂a(t+ τ)〉 =

[
〈â†(t)â(t)〉〈â(t)â†(t)〉+ 〈â2(t)〉〈â†2(t)〉

]
×

[(
η

κ− η

)2

e−κτ +

(
κ

κ− η

)2

e−ητ − 2κη

(κ− η)2
e−(κ+η)τ/2

]
. (3.91)

This can be rewritten as

〈n̂a(t)n̂a(t+ τ)〉ss =
(∆n)2

a

(κ− η)2

[
η2e−κτ + κ2e−ητ − 2κηe−(κ+η)τ/2

]
, (3.92)

in which (∆n)2
a is the steady-state photon number variance of light mode a given

by Eq. (3.66). Therefore, in view of Eq. (3.92), the spectrum of photon number

fluctuations can be put in the form

Sa(ω) =
(∆n)2

a

π(κ− η)2
Re

[
η2

∫ ∞
0

dτe−[κ−i(ω−ω0)]τ

+ κ2

∫ ∞
0

dτe−[η−i(ω−ω0)]τ − 2kη

∫ ∞
0

dτe−[
(κ+η)

2
−i(ω−ω0)]τ

]
. (3.93)

Thus on carrying out the integration, the spectrum of photon number fluctuations

of light mode a turns out to be

Sa(ω) =
(∆n)2

a

(κ− η)2

[
η2κ/π

κ2 + (ω − ω0)2
+

κ2η/π

η2 + (ω − ω0)2
− 2κη(κ+ η)/2π

(κ+η
2

)2 + (ω − ω0)2

]
. (3.94)

Now we realize that the photon number variance in the frequency interval be-

tween ω′ = −λ and ω′ = λ is expressible as [4]

(∆n)2
a±λ =

∫ λ

−λ
Sa(ω

′)dω′, (3.95)

in which ω′ = ω − ω0. Therefore, substituting Eq. (3.94) into Eq. (3.95) leads to

(∆n)2
a±λ =

(∆n)2
a

π(κ− η)2

[ ∫ λ

−λ

η2κdω′

κ2 + ω′2
−
∫ λ

−λ

2κη(κ+ η)dω′

(κ+η
2

)2 + ω′2
+

∫ λ

−λ

ηκ2dω′

η2 + ω′2

]
. (3.96)

Employing the relation given by Eq. (3.36), the local photon number variance of

light mode a produced by the coherently driven nondegenerate three-level laser

with a closed cavity and coupled to a two-mode vacuum reservoir is found to be

(∆n)2
a±λ = (∆n)2

az
′

a(λ), (3.97)

where z
′
a(λ) is given by

z
′

a(λ) =
2η2/π

(η − κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− η)2
tan−1

(
λ

η

)
− 4κη/π

(κ− η)2
tan−1

(
2λ

κ+ η

)
. (3.98)
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Figure 3.6: Plots of z
′
a(λ)[Eq. 3.98] versus λ, for κ = 0.8, N = 50, Ω = 0.2,

and for different values of γc.

We see from Eq. (3.97) along with the plot z
′
a(λ) (given in Figure (3.6) that (∆n)2

a±λ

increases with λ until it reaches the maximum value of the global photon number

variance. From the plots in Figure (3.6), we find the values indicated in table below.

Table 3.5: Numerical Values of z
′
a(λ) for N = 50, κ = 0.8, and Ω = 0.2.

γc z
′
a(0.5) z

′
a(1) z

′
a(2) z

′
a(4)

0.3 0.7661 0.9499 0.9941 0.9997

0.1 0.8044 0.9621 0.9958 0.9999

We see from these results that z
′
a(λ) increases rapidly for smaller values of λ but

saturates for larger values. Moreover, using the above results of z
′
a(λ) and on account

of Eq. (3.98), we have indicated in Table 3.6.

Table 3.6: Numerical Values of (∆n)2
a±λ for N = 50, κ = 0.8, and Ω = 0.2.

γc (∆n)2
a±0.5 (∆n)2

a±1 (∆n)2
a±2 (∆n)2

a±4

0.3 9.772 12.12 12.68 12.75

0.1 2.975 3.558 3.683 3.698

We also see that the variance of photon number is very larger compared with the

mean photon number for the same system parameters.
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B. Local photon-number variance for light mode b

We now proceed to obtain the photon number variance of light mode b in a given

frequency interval produced by the system under consideration. To determine the

local photon number variance of light mode b, we need to consider the spectrum

of photon number fluctuations of light mode b. We define the spectrum of photon

number fluctuations of light mode b with central frequency ω0 by

Sb(ω) =
1

π
Re

∫ ∞
0

dτei(ω−ω0)τ 〈n̂b(t), n̂b(t+ τ)〉ss, (3.99)

where

n̂b(t) = b̂†(t)b̂(t), (3.100)

n̂b(t+ τ) = b̂†(t+ τ)b̂(t+ τ). (3.101)

Upon integrating both sides of Eq. (3.99) over ω, we easily find∫ ∞
−∞

Sb(ω)dω = (∆n)2
b , (3.102)

in which (∆n)2
b is the steady-state photon number variance of the light mode b. We

can then assert that Sb(ω)dω is the steady-state photon number variance of light

mode b in the frequency interval between ω and ω + dω.

We now proceed to evaluate the two-time correlation function that appears in

Eq. (3.102). Applying the relation given by Eq. (3.83), we see that

〈n̂b(t), n̂b(t+ τ)〉 = 〈n̂b(t)n̂b(t+ τ)〉 − 〈n̂b(t)〉〈n̂b(t+ τ)〉. (3.103)

On account of Eqs. (3.100) and (3.101), we have

〈n̂b(t)n̂b(t+ τ)〉 = 〈b̂†(t)b̂(t)〉〈b̂†(t+ τ)b̂(t+ τ)〉

+ 〈b̂(t)b̂(t+ τ)〉〈b̂†(t)b̂†(t+ τ)〉

+ 〈b̂†(t)b̂(t+ τ)〉〈b̂(t)b̂†(t+ τ)〉. (3.104)

Thus substitution of Eq. (3.103) into Eq. (3.104) results in

〈n̂b(t), n̂b(t+ τ)〉 = 〈b̂†(t)b̂†(t+ τ)〉〈b̂(t)b̂(t+ τ)〉

+ 〈b̂†(t)b̂(t+ τ)〉〈b̂(t)b̂†(t+ τ)〉. (3.105)
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With the help of Eq. (3.48), one can readily obtain the following equations

〈b̂†(t)b̂†(t+ τ)〉 = 〈b̂†2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.106)

〈b̂(t)b̂(t+ τ)〉 = 〈b̂2(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.107)

〈b̂(t)b̂†(t+ τ)〉 = 〈b̂(t)b̂†(t)〉
[

κ

κ− µ
e−µτ/2 − µ

κ− µ
e−κτ/2

]
, (3.108)

〈b̂†(t+ τ)〉 = 0. (3.109)

Hence on account of Eqs. (3.54), (3.106), (3.107), and (3.108), Eq. (3.105) can be put

in the form

〈n̂b(t)n̂b(t+ τ)〉 =

[
〈b̂†(t)b̂(t)〉〈b̂(t)b̂†(t)〉+ 〈b̂2(t)〉〈b̂†2(t)〉

]
×

[(
µ

κ− µ

)2

e−κτ +

(
κ

κ− µ

)2

e−µτ − 2κµ

(κ− µ)2
e−(κ+µ)τ/2

]
. (3.110)

This can be rewritten as

〈n̂b(t)n̂b(t+ τ)〉ss =
(∆n)2

b

(κ− µ)2

[
µ2e−κτ + κ2e−µτ − 2κµe−(κ+µ)τ/2

]
, (3.111)

in which (∆n)2
b is the steady-state photon number variance of light mode b given by

Eq. (3.76). With the help of Eq. (3.111), the spectrum of photon number fluctuations

can be put in the form

Sb(ω) =
(∆n)2

b

π(κ− µ)2
Re

[
µ2

∫ ∞
0

dτe−[κ−i(ω−ω0)]τ

+ κ2

∫ ∞
0

dτe−[µ−i(ω−ω0)]τ

− 2κµ

∫ ∞
0

dτe−[
(κ+µ)

2
−i(ω−ω0)]τ

]
(3.112)

and carrying out the integration, we obtain

Sb(ω) =
(∆n)2

b

(κ− µ)2

[
µ2κ/π

κ2 + (ω − ω0)2
− 2κµ(κ+ µ)/2π

(κ+µ
2

)2 + (ω − ω0)2
+

κ2µ/π

µ2 + (ω − ω0)2

]
. (3.113)

Now we realize that the photon number variance in the frequency interval be-

tween ω′ = −λ and ω′ = λ is expressible as

(∆n)2
b±λ =

∫ λ

−λ
Sb(ω

′)dω′, (3.114)

in which ω′ = ω − ω0. Therefore, substitution of Eq. (3.113) into Eq. (3.114) leads to

(∆n)2
b±λ =

(∆n)2
b

π(κ− µ)2

[ ∫ λ

−λ

µ2κdω′

κ2 + ω′2
−
∫ λ

−λ

2κµ(κ+ µ/2)dω′

(κ+µ
2

)2 + ω′2
+

∫ λ

−λ

κ2µdω′

µ2 + ω′2

]
.(3.115)
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Figure 3.7: Plots of z
′

b(λ)[Eq. 3.117] versus λ, for κ = 0.8, N = 50, Ω = 0.2,

and for different values of γc.

Employing the relation given by Eq. (3.36), the local photon number variance of

light mode b produced by the coherently driven nondegenerate three-level laser

with an open cavity and coupled to a two-mode vacuum reservoir is found to be

(∆n)2
b±λ = (∆n)2

bz
′

b(λ), (3.116)

where z
′

b(λ) is given by

z
′

b(λ) =
2µ2/π

(µ− κ)2
tan−1

(
λ

κ

)
+

2κ2/π

(κ− µ)2
tan−1

(
λ

µ

)
− 4κµ/π

(κ− µ)2
tan−1

(
2λ

κ+ µ

)
. (3.117)

We see from Eq. (3.116) along with the plot z
′

b(λ) that (∆n)2
b±λ increases with λ until

it reaches the maximum value of the global photon number variance. From the

plots in Figure (3.7), we indicated in table below:

Table 3.7: Numerical Values of z
′

b(λ) for N = 50, κ = 0.8 and Ω = 0.2.

γc z
′

b(0.5) z
′

b(1) z
′

b(2) z
′

b(4)

0.3 0.8835 0.9813 0.9982 1

0.1 0.908 0.9859 0.9987 1
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We see from these results, z
′

b(λ) in the absence of spontaneous emission (γ = 0)

is less than in the presence of spontaneous emission (γ 6= 0). Moreover, using the

above results of z
′

b(λ) and on account of Eq. (3.116), we have indicated in Table 3.8.

Table 3.8: Numerical Values of (∆n)2
b±λ for N = 50, κ = 0.8, and Ω = 0.2.

γc (∆n)2
b±0.5 (∆n)2

b±1 (∆n)2
b±2 (∆n)2

b±4

0.3 36.63 40.68 41.38 41.46

0.1 4.198 4.558 4.617 4.624

Tables 3.7 and 3.8 show that the total variance of photon number increases with

increasing the frequency interval just similar to the mean photon number of the

system.

3.2 Two-Mode Photon Statistics

In this section, applying the steady-state solutions of the equations of evolution of

the expectation values of the atomic operators and the quantum Langavin equa-

tions for the cavity mode operators, we seek to obtain the mean and variance of the

photon numbers for the two-mode light beam.

3.2.1 Two-Mode Mean Photon Number

Here we seek to calculate the steady-state mean photon number of the two-mode

cavity light beam. The mean photon number of the two-mode light beam, repre-

sented by the operators ĉ and ĉ†, is defined by

n̄ = 〈ĉ†ĉ〉. (3.118)

The steady-state solution of Eq. (2.73) is found to be

ĉ =
2g

κ
√
N
m̂. (3.119)

Hence at steady state the mean photon number goes over into

n̄ =
γc
κ

[
〈N̂a〉+ 〈N̂b〉

]
. (3.120)

We see from Eq. (3.120) that the mean photon number of the two-mode light beam

is the sum of the mean photon numbers of the separate single-mode light beams
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Figure 3.8: Plots of the two-mode mean photon number [Eq. (3.121)] versus Ω for

κ = 0.8, N = 50, and for different values of γc.

given by Eqs. (3.5) and (3.13). Therefore, on account of Eqs. (2.125) and (2.126), Eq.

(3.120) turns out to be

n̄ =
γc
κ
N

[
2Ω2

γ2
c + 3Ω2

]
. (3.121)

This is the steady-state mean photon number of a two-mode cavity light produced

by the coherently driven non-degenerate three-level laser in a closed cavity and

coupled to a two-mode vacuum reservoir. Figure 3.8 shows the variation of the total

mean photon number with γc and Ω. We observe that the mean photon number of

the two-mode light beam is greater when γc = 0.3 than when γc = 0.1 for Ω > 0.1?

Furthermore, we note that for Ω� γc, Eq. (3.121) reduces to

n̄ =
2γc
3κ

N. (3.122)
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3.2.2 Two-Mode Photon-Number Variance

Here we proceed to study the steady-state photon number variance of the two-

mode light beam, produced by the coherently driven nondegenerate three-level

laser in a closed cavity and coupled to a two-mode vacuum reservoir. The photon

number variance for the two-mode cavity light is expressible as

(∆n)2 = 〈ĉ†ĉĉ†ĉ〉 − 〈ĉ†ĉ〉2. (3.123)

Since ĉ is Gaussian variable with zero mean, the variance of the photon number can

be written as

(∆n)2 = 〈ĉ†ĉ〉〈ĉĉ†〉+ 〈ĉ†2〉〈ĉ2〉. (3.124)

With the aid of Eq. (3.119), one can easily establish that

〈ĉĉ†〉 =
γc
κ

[
〈N̂b〉+ 〈N̂c〉

]
(3.125)

〈ĉ2〉 =
γc
κ
〈m̂c〉. (3.126)

Since 〈m̂c〉 is real, then 〈ĉ2〉 = 〈ĉ†2〉. Therefore, with the aid of Eqs. (3.120), (3.125)

and (3.126), the variance of the photon number for the two-mode cavity light turns

out to be

(∆n)2 =

(
γc
κ

)2 [(
〈N̂a〉+ 〈N̂b〉

)(
〈N̂b〉+ 〈N̂c〉

)
+ 〈m̂c〉2

]
. (3.127)

We observe from Eq. (3.127) that the photon number variance of the two-mode

light beam does not happen to be the sum of the photon number variance of the

separate single-mode light beams given by Eqs. (3.65) and (3.74). Furthermore,

upon substituting of Eqs. (2.125)-(2.128) into Eq. (3.127), the steady-state variance

of the photon number goes over into

(∆n)2 =

(
γc
κ
N

)2 [
4Ω4 + 3Ω2γ2

c

(γ2
c + 3Ω2)2

]
. (3.128)

This is the steady-state photon number variance of the two-mode light beam, pro-

duced by the coherently driven nondegenerate three-level laser with a closed cavity

and coupled to a two-mode vacuum reservoir. Figure 3.9 indicates that the photon

number variance increases with γc and Ω.
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Figure 3.9: Plots of the two-mode photon number variance of [Eq. 3.128] versus Ω

for κ = 0.8, N = 50, and for different values of γc.

Furthermore, we note that for Ω� γc, Eq. (3.128) reduces to

(∆n)2 =

[
2γc
3κ

N

]2

(3.129)

and in view of Eq. (3.124), we have

(∆n)2 = n̄2, (3.130)

which represents the normally-ordered variance of the photon number for chaotic

light.



4

Quadrature Squeezing

In this chapter we seek to study the quadrature variance and the quadrature squeez-

ing of the light produced by coherently driven nondegenerate three-level laser with

a closed cavity and coupled to a two-mode vacuum reservoir via a single-port mir-

ror. Applying the steady-state solutions of the equations of evolution of the expec-

tation values of the atomic operators and the quantum Langevin equations for the

cavity mode operators, we obtain the global quadrature variances for light modes a

and b. In addition, we determine the global quadrature squeezing of the two-mode

cavity light.

4.1 Single-Mode Quadrature Variance

In this section we obtain the global quadrature variances of light modes a and b,

produced by the system under consideration.

A. Global quadrature variance of light mode a

We now proceed to calculate the quadrature variance of light mode a in the entire

frequency interval. The squeezing properties of light mode a are described by two

quadrature operators

â+ = â† + â (4.1)

and

â− = i(â† − â), (4.2)

where â+ and â− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while â† and â are the creation and an-

43
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nihilation operators for light mode a. With the help of Eqs. (4.1) and (4.2), we can

show that the two quadrature operators satisfy the commutation relation

[â−, â+] = 2i
γc
κ

[
N̂a − N̂b

]
. (4.3)

In view of this result, the uncertainty relation for the plus and minus quadrature

operators of mode a is expressible as

∆a+∆a− ≥
1

2

∣∣∣∣〈[â+, â−]〉
∣∣∣∣

∆a+∆a− ≥
∣∣∣∣〈ââ†〉 − 〈â†â〉∣∣∣∣, (4.4)

so that using Eqs. (4.3) and (4.4), there follows

∆a+∆a− ≥
γc
κ

∣∣∣∣〈N̂a〉 − 〈N̂b〉
∣∣∣∣. (4.5)

On account of Eq. (4.5), the uncertainty relation for the quadrature operators can

be put in the form

∆a+∆a− ≥ 0. (4.6)

Next we proceed to calculate the quadrature variance of light mode a. The vari-

ance of the plus and minus quadrature operators are defined by

(∆â+)2 = 〈â2
+〉 − 〈â+〉2 (4.7)

and

(∆â−)2 = 〈â2
−〉 − 〈â−〉2. (4.8)

With the aid of Eq. (4.1), Eq. (4.7) can be expressed in terms of the creation and

annihilation operators as

(∆â+)2 = 〈ââ†〉+ 〈â†â〉+ 〈â2〉+ 〈â†2〉 − 〈â〉2 − 〈â†〉2 − 2〈â〉〈â†〉. (4.9)

In addition, on account of Eqs. (4.2) and (4.8), we get

(∆â−)2 = 〈ââ†〉+ 〈â†â〉 − 〈â2〉 − 〈â†2〉+ 〈â〉2 + 〈â†〉2 + 2〈â〉〈â†〉, (4.10)
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so that inspection of Eqs. (4.9) and (4.10) shows that

(∆â±)2 = 〈ââ†〉+ 〈â†â〉 ± 〈â2〉 ± 〈â†2〉 ∓ 〈â〉2 ∓ 〈â†〉2 ∓ 2〈â〉〈â†〉. (4.11)

Moreover, with the help of Eqs. (4.9) and (4.10), we have

(∆â±)2 = 〈ââ†〉+ 〈â†â〉 (4.12)

and in view of Eqs. (4.5) and (4.12), there follows

(∆â±)2 =
γc
κ

[
〈N̂a〉+ 〈N̂b〉

]
. (4.13)

On account of Eq. (4.13), we see that

(∆â±)2 =
2γc
κ
〈N̂a〉. (4.14)

Now substitution of Eq. (4.14) into Eq. (4.13) results in

(∆â±)2 =
(γc
κ
N
)[ 2Ω2

γ2
c + 3Ω2

]
. (4.15)

This represents the quadrature variance of light mode a, produced by the coherently

driven nondegenerate three-level laser with a closed cavity and coupled to a two-

mode vacuum reservoir.

In addition, we note that for Ω� γc, Eq. (4.15) reduces to

(∆â±)2 =
2γc
3κ

N. (4.16)

It is not difficult to express Eq. (4.16) in the form

(∆â±)2 = 2n̄a, (4.17)

which is the normally ordered quadrature variance for chaotic light.

B. Global quadrature variance of light mode b

Here we wish to calculate the quadrature variance of light mode b in the entire fre-

quency interval, produced by the system under consideration. The squeezing prop-

erties of light mode b are described by two quadrature operators

b̂+ = b̂† + b̂ (4.18)



4.1 Single-Mode Quadrature Variance 46

and

b̂− = i(b̂† − b̂), (4.19)

where b̂+ and b̂− are Hermitian operators representing physical quantities called

plus and minus quadratures, respectively, while b̂† and b̂ are the creation and an-

nihilation operators for light mode b. With the help of Eqs. (4.18) and (4.19), we can

show that the two quadrature operators satisfy the commutation relation

[b̂−, b̂+] = 2i
γc
κ

[
N̂b − N̂c

]
. (4.20)

In view of this result, the uncertainty relation for the plus and minus quadrature

operators of mode b is expressible as

∆b+∆b− ≥
1

2

∣∣∣∣〈[b̂+, b̂−]〉
∣∣∣∣

≥
∣∣∣∣〈b̂b̂†〉 − 〈b̂†b̂〉∣∣∣∣, (4.21)

so that using Eqs. (4.20) and (4.21), there follows

∆b+∆b− ≥
γc
κ

∣∣∣∣〈N̂b〉 − 〈N̂c〉
∣∣∣∣, (4.22)

On account of Eqs. (4.21) and (4.22), the uncertainty relation of the quadrature op-

erators can be put the form

∆b+∆b− ≥
γc
κ
N

∣∣∣∣ γ2
c

γ2
c + 3Ω2

∣∣∣∣. (4.23)

Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.23), we readily get

∆b+∆b− ≥
γc
κ
N. (4.24)

Next we proceed to calculate the quadrature variance of light mode b. The vari-

ance of the plus and minus quadrature operators for light mode b are defined by

(∆b̂+)2 = 〈b̂2
+〉 − 〈b̂+〉2 (4.25)

and

(∆b̂−)2 = 〈b̂2
−〉 − 〈b̂−〉2. (4.26)
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On account of Eq. (4.18), Eq. (4.25) can be expressed in terms of the creation and

annihilation operators as

(∆b̂+)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉+ 〈b̂2〉+ 〈b̂†2〉 − 〈b̂〉2 − 〈b̂†〉2 − 2〈b̂〉〈b̂†〉. (4.27)

In addition, with the help of Eqs. (4.19) and (4.26), we see that

(∆b̂−)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 − 〈b̂2〉 − 〈b̂†2〉+ 〈b̂〉2 + 〈b̂†〉2 + 2〈b̂〉〈b̂†〉, (4.28)

so that inspection of Eqs. (4.27) and (4.28) shows that

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 ± 〈b̂2〉 ± 〈b̂†2〉 ∓ 〈b̂〉2 ∓ 〈b̂†〉2 ∓ 2〈b̂〉〈b̂†〉. (4.29)

Moreover, with the aid of Eqs. (4.27) and (4.28), we get

(∆b̂±)2 = 〈b̂b̂†〉+ 〈b̂†b̂〉 (4.30)

and in view of Eqs. (4.22) and (4.30), there follows

(∆b̂±)2 =
γc
κ

[
〈N̂b〉+ 〈N̂c〉

]
. (4.31)

Now on account of Eqs. (4.23) and (4.31), the quadrature variance of light mode b

takes, at steady-state, the form

(∆b̂±)2 =
γc
κ
N

[
γ2
c + 2Ω2

γ2
c + 3Ω2

]
. (4.32)

This represents the quadrature variance of light mode b, produced by the coherently

driven nondegenerate three-level laser with a closed cavity and coupled to a two-

mode vacuum reservoir. We therefore notice that the product of the uncertainties

in the two quadratures satisfies the minimum uncertainty relation In addition, we

note that for Ω� γc, Eq. (4.32) reduces to

(∆b̂±)2 =
2γc
3κ

N. (4.33)

In view of Eq. (4.33), this can be expressed as

(∆b̂±)2 = 2n̄b, (4.34)

which is the normally ordered quadrature variance for chaotic light. For Ω = 0, Eq.

(4.32) reduces to Eq. (4.24), implying that the product of the uncertainties of the

plus and minus quadrature operators of mode b satisfies the minimum uncertainty

principle.
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4.2 Two-Mode Quadrature Squeezing

In this section we proceed to study the quadrature variance and the quadrature

squeezing of the two-mode light beam produced by the coherently driven nonde-

generate three-level laser with a closed cavity and coupled to a two-mode vacuum

reservoir.

Now we seek to determine the quadrature variances of the two-mode light beam.

The squeezing properties of the two-mode cavity light are described by two quadra-

ture operators

ĉ+ = ĉ† + ĉ (4.35)

and

ĉ− = i(ĉ† − ĉ), (4.36)

where ĉ+ and ĉ− are Hermitian operators representing the physical quantities called

plus and minus quadratures, respectively while ĉ† and ĉ are the creation and annihi-

lation operators of the two-mode cavity light. With the aid of Eqs. (4.35) and (4.36),

we show that the two quadrature operators satisfy the commutation relation

[ĉ−, ĉ+] = 2i
γc
κ

[
N̂a − N̂c

]
. (4.37)

In view of this result, the uncertainty relation for the plus and minus quadrature

operators of the two-mode cavity light is expressible as

∆c+∆c− ≥
1

2

∣∣∣∣〈[ĉ+, ĉ−]〉
∣∣∣∣

≥
∣∣∣∣〈ĉĉ†〉 − 〈ĉ†ĉ〉∣∣∣∣, (4.38)

so that using Eqs. (4.37) and (4.38), there follows

∆c+∆c− ≥
γc
κ

∣∣∣∣〈N̂a〉 − 〈N̂c〉
∣∣∣∣. (4.39)

On account of Eqs. (4.38) and (4.39), the uncertainity relation for the plus and minus

quadrature operators is found to be

∆c+∆c− ≥
γc
κ
N

∣∣∣∣ γ2
c

γ2
c + 3Ω2

∣∣∣∣. (4.40)
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Moreover, we consider the case in which the deriving coherent light is absent. Thus

upon setting Ω = 0 in Eq. (4.40), we readily get

∆c+∆c− ≥
γc
κ
N. (4.41)

Next we proceed to calculate the quadrature variance of the two-mode cavity

light. The variance of the plus and minus quadrature operators of the two-mode

cavity light are defined by

(∆ĉ+)2 = 〈ĉ2
+〉 − 〈ĉ+〉2 (4.42)

and

(∆ĉ−)2 = 〈ĉ2
−〉 − 〈ĉ−〉2. (4.43)

On account of Eqs. (4.35) and (4.42), the plus quadrature variance can be expressed

in terms of the creation and annihilation operators as

(∆ĉ+)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉+ 〈ĉ2〉+ 〈ĉ†2〉 − 〈ĉ〉2 − 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉 (4.44)

and with the help of Eqs. (4.36) and (4.43), we get

(∆ĉ−)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 − 〈ĉ2〉 − 〈ĉ†2〉+ 〈ĉ〉2 + 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉, (4.45)

so that inspection of Eqs. (4.44) and (4.45) shows that

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉 ∓ 〈ĉ〉2 ∓ 〈ĉ†〉2 − 2〈ĉ〉〈ĉ†〉. (4.46)

In view of Eqs. (4.46), we see that

(∆ĉ±)2 = 〈ĉĉ†〉+ 〈ĉ†ĉ〉 ± 〈ĉ2〉 ± 〈ĉ†2〉. (4.47)

In addition, with the aid of Eqs. (4.45), (4.44) and (4.46), expression (4.47) goes

over into

(∆ĉ±)2 =
γc
κ

[
〈N̂a〉+ 2〈N̂b〉+ 〈N̂c〉 ± 〈m̂c〉 ± 〈m̂†c〉

]
. (4.48)

Now using Eqs. (4.47) and (4.48), the quadrature variance of the two-mode cavity

light is found to be

(∆ĉ±)2 =
γc
κ

[
N + 〈N̂b〉 ± 2〈m̂c〉

]
. (4.49)
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Figure 4.1: Plots of (∆c−)2 [Eq. (4.50)] versus Ω for κ = 0.8, N = 50 and

for different values of γc.

Finally, on account of Eqs. (4.48) and (4.49), the quadrature variance of the two-

mode cavity light takes, at steady-state, the form

(∆ĉ±)2 =
γc
κ
N

[
4Ω2 + γ2

c ± 2Ωγc
γ2
c + 3Ω2

]
. (4.50)

This represents the quadrature variance of the two-mode cavity light produced by

the coherently driven nondegenerate three-level laser with a closed cavity and cou-

pled to a two-mode vacuum reservoir. therefore, the minimum uncertainty relation

for the two-mode cavity vacuum state. We therefore notice that the uncertainties in

the two quadratures are equal and their product satisfies the minimum uncertainty

relation. In addition, we note that for Ω� γc, Eq. (4.50) reduces to

(∆ĉ±)2 =
4γc
3κ

N. (4.51)

This can be rewritten as

(∆ĉ±)2 = 2n̄, (4.52)

where n̄ is given by Eq. (4.52). We see that Eq. (4.52) represents the normally ordered

quadrature variance for chaotic light. Moreover, we consider the case in which the
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driving coherent light is absent. Thus upon setting Ω = 0 in Eq. (4.50), we get

(∆ĉ+)2
v = (∆ĉ−)2

v =
γc
κ
N, (4.53)

which is the normally ordered quadrature variance of the two-mode cavity vacuum

state. We note that for Ω = 0 the uncertainty in the plus and minus quadratures are

equal and satisfy the minimum uncertainty relation.

The result presented in Figure 4.1), in which the minimum value of the quadra-

ture variance can be obtained, are appeared below.

Table 4.1: Values of ∆c2
− for N = 50 and κ = 0.8.

γc ∆c2
− Ω

0.1 3.876 0.0532

0.2 7.095 0.0989

0.3 10.225 0.1526

Next we proceed to calculate the quadrature squeezing of the two-mode cavity light

in the entire frequency interval relative to the quadrature variance of the two-mode

vacuum state. We then define the quadrature squeezing of the two-mode cavity

light by [8]

S =
(∆ĉ−)2

v − (∆ĉ−)2

(∆ĉ−)2
v

. (4.54)

It then follows that

S = 1− (∆ĉ−)2

(∆ĉ−)2
v

. (4.55)

In view of Eqs. (4.50) and (4.53), the quadrature squeezing of the two-mode cavity

light takes, at steady-state, the form

S =

[
2Ωγc − Ω2

γ2
c + 3Ω2

]
. (4.56)

This represents the quadrature squeezing of the two-mode cavity light produced

by the coherently driven nondegenerate three-level laser with a closed cavity and

coupled to a two-mode vacuum reservoir.

We observe from this equation that unlike the mean photon number and the
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Figure 4.2: Plot of the quadrature squeezing [Eq. (4.56)] versus Ω forN = 50, κ = 0.8,

and for different values of γc.

quadrature variance, the quadrature squeezing does not depend on the number of

atoms. This implies that the quadrature squeezing of the two-mode cavity light is

independent of the number of photons.

Applying Eqs. (4.55) and (4.56), we find

〈b̂â〉 =
γc
κ
〈m̂c〉. (4.57)

Since 〈b̂〉 = 〈â〉 = 0, we see that light modes a and b are correlated. The squeezing

of the two-mode cavity light is due to this correlation. The two-mode light can be

used in experiments involving entangled light modes.

It is shown in Figure (4.2) that the maximum quadrature squeezing of the same

strength (42.976%) is produced for the considered stimulated emission decay con-

stants, γc = 0.1, γc = 0.2 and γc = 0.3, and occurs when the laser is operating at

Ω = 0.0532, Ω = 0.0989, and Ω = 0.1526, respectively.
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Entanglement Properties of the Two-mode Light

In this chapter we study the photon entanglement as well as atom entanglement

of a two-mode laser light beams produced by the coherently driven nondegenerate

three-level lasers with a closed cavity and coupled to the two-mode vacuum reser-

voir. Applying the solutions of the equations of evolution of the expectation values

of the atomic operators and the quantum Langavin equations for the cavity mode

operators, we obtain the entanglement of the two-mode light beams.

5.1 Photon Entanglement

Entanglement is an important manifestation of quantum mechanics. Highly entan-

gled states play a key role in an efficient realization of quantum information pro-

cessing [31]. Quantum entanglement is a physical phenomenon that occurs when

pairs or groups of particles cannot be described independently instead, a quantum

state may be given for the system as a whole. Measurements of physical proper-

ties such as position, momentum, spin, polarization, etc. performed on entangled

particles are found to be appropriately correlated. A pair of particles is taken to

be entangled in quantum theory, if its states cannot be expressed as a product of

the states of its individual constituents. The preparation and manipulation of these

entangled states that have nonclassical and nonlocal properties lead to a better un-

derstanding of the basic quantum principles. It is in this spirit that this section

is devoted to the analysis of the entanglement of the two-mode photon states. In

other words, it is a well-known fact that a quantum system is said to be entangled,

if it is not separable. That is, if the density operator for the combined state can-

not be described as a combination of the product of the density operators of the

53
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constituents,

ρ̂ 6=
∑
k

pkρ̂
(1)
k ⊗ ρ̂

(2)
k , (5.1)

in which pk � 0 and
∑

k pk = 1 to verify the normalization of the combined density

states. On the other hand, a maximally entangled CV state can be expressed as a

coeigenstate of a pair of EPR-type operators [32] such as x̂a− x̂b and P̂a−P̂b.The total

variance of these two operators reduces to zero for maximally entangled CV states.

According to the inseparable criteria given by Duan et al [33], cavity photon-states

of a system are entangled, if the sum of the variance of a pair of EPR-like operators,

ŝ = x̂a − x̂b, (5.2)

t̂ = p̂a + p̂b, (5.3)

where

x̂a =
1√
2

(
â+ â†

)
, (5.4)

x̂b =
1√
2

(
b̂+ b̂†

)
, (5.5)

p̂a =
i√
2

(
â† − â

)
, (5.6)

p̂b =
i√
2

(
b̂† − b̂

)
, (5.7)

are quadrature operators for modes a and b, satisfy

∆s2 + ∆t2 < 2N (5.8)

and recalling the cavity mode operators â and b̂ are Gaussian variables with zero

mean, we readily get

∆s2 + ∆t2 =

[
〈â†â〉+ 〈ââ†〉+ 〈b̂†b̂〉+ 〈b̂b̂†〉

]
−
[
〈âb̂〉+ 〈â†b̂†〉+ 〈b̂â〉+ 〈b̂†â†〉

]
. (5.9)

Thus with the aid of Eqs. (3.2) and (3.11), we see that

∆s2 + ∆t2 =
2γc
κ

[
N + 〈N̂b〉 − 2〈m̂c〉

]
. (5.10)

It then follows that

∆s2 + ∆t2 = 2∆c2
−. (5.11)
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where ∆c2
− is given by Eq. (4.53). One can readily see from this result that the degree

of entanglement is directly proportional to the degree of squeezing of the two-mode

light. Eq. (5.11) can easily be expressed at steady-state in the form

∆s2 + ∆t2 =
2γc
κ
N

[
γ2
c + 4Ω2 − 2Ωγc
γ2
c + 3Ω2

]
. (5.12)

This is the steady-state the photon entanglement of a two-mode cavity light pro-

duced by the system under consideration.

One can immediately see from Eq. (5.11) that, this particular entanglement mea-

sure is directly related the two-mode squeezing. This direct relationship shows that

whenever there is a two-mode squeezing in the system there will be entanglement

in the system as well. It is noted that the entanglement disappears when the squeez-

ing vanishes. This is due to the fact that the entanglement is directly related to the

squeezing as given by Eq. (5.11). It also follows that like the mean photon num-

ber and quadrature variance the degree of entanglement depends on the number

of atom. With the help of the criterion [33] that a significant entanglement between

the states of the light generated in the cavity. This is due to the strong correlation

between the radiation emitted when the atoms decay from the upper energy level

to the lower via the intermediate level.

We note that Eq. (5.12) reduces, for Ω� γc, to the form

∆s2 + ∆t2 =
8γc
3κ

N. (5.13)

This can also be rewritten as

∆s2 + ∆t2 = 4n̄, (5.14)

where n̄ is given by Eq. (3.122).

Figure 5.1 along with Table 5.1 show that as the stimulated emission decay con-

stant increases the photon entanglement. It is also worth noting that the stimulated

emission decay constant increases the squeezing and mean photon number of the

quantum system. From the plots of Figure 5.1 along with Eq. (5.12), we have indi-

cated the minimum values of the sum of the variances of the photon operators.
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Figure 5.1: Plots of the photon entanglement of the two-mode cavity light [Eq.

(5.12)] versus Ω for N = 50, κ = 0.8, and for different values of γc.

Table 5.1: The minimum values of ∆u2 + ∆v2, which correspond to the maximum

degree of photon entanglement, for N = 50 and κ = 0.8.

γc ∆s2 + ∆t2 Ω

0.1 7.74 0.0532

0.2 14.213 0.0989

0.3 20.45 0.1526

5.2 Cavity Atomic-States Entanglement

The quantum states of the atoms can also produce entanglement according to the

criterion developed by Duan-Giedke-Cirac-Zoller (DGCZ) [32], which is a sufficient

condition for entangled quantum states. According to DGCZ, a quantum state of the

atoms is said to be entangled if the sum of the variances of the EPR-like quadrature

operators, û and v̂, satisfy the inequality condition

∆u2 + ∆v2 < 2N2. (5.15)
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in which

û = x̂′a − x̂′b, (5.16)

v̂ = p̂′a + p̂′b, (5.17)

with

x̂′a =
1√
2

(
m̂a + m̂†a

)
, (5.18)

x̂′b =
1√
2

(
m̂b + m̂†b

)
, (5.19)

p̂′a =
i√
2

(
m̂†a − m̂a

)
, (5.20)

p̂′b =
i√
2

(
m̂†b − m̂b

)
. (5.21)

Since m̂a and m̂b are Gaussian variables with zero means, one can easily verify that

∆u2 + ∆v2 =

[
〈m̂†am̂a〉+ 〈m̂am̂

†
a〉+ 〈m̂†bm̂b〉+ 〈m̂bm̂

†
b〉 − 〈m̂

†
bm̂
†
a〉 − 〈m̂am̂b〉

]
. (5.22)

Now with the aid of Eqs. (2.53) and (2.54), Eq. (5.22) takes the form

∆u2 + ∆v2 = N
[
N + 〈N̂a〉 − 2〈m̂c〉

]
, (5.23)

which can be described at the steady state in the form

∆u2 + ∆v2 = N2

[
γ2
c + 4Ω2 − 2Ωγc
γ2
c + 3Ω2

]
. (5.24)

This is the cavity atomic-states entanglement of the two-mode cavity light pro-

duced by the coherently driven non-degenerate three-level laser with a closed cav-

ity and coupled to a two-mode vacuum reservoir. When we observe Eq. (5.24), the

cavity atomic-states entanglement of the two-mode cavity light highly depends on

the number of atoms.

In addition, we note that for Ω� γc, Eq. (5.24) reduces to

∆u2 + ∆v2 =
4

3
N2. (5.25)

Furthermore, when Ω = 0, Eq. (5.24) turns out to be

∆u2 + ∆v2 = N2. (5.26)
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Figure 5.2: Plots of the atom entanglement of the two-mode cavity light [Eq. (5.24)]

versus Ω for N = 50, κ = 0.8, and for different values of γc.

It is shown in Figure (5.2) that as the stimulated emission decay constant does not

alter the maximum attainable degree of atom entanglement. However, the maxi-

mum degree of atom entanglement, corresponding to different stimulated emission

decay constant, occurs at different values of Ω as indicated in table 3.2.

Table 5.2: The minimum values of ∆s2 + ∆t2, which correspond to the maximum

degree of atom entanglement, for N = 50 and κ = 0.8.

γc ∆u2 + ∆v2 Ω

0.1 1414 0.025479

0.2 1414 0.0501

0.3 1414 0.06356
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Conclusion

In this thesis, the squeezing, entanglement and photon statistics of a non-degenerate

three-level laser driven by coherent light, with a closed laser cavity containing N

non-degenerate three-level atoms, and coupled to two-mode vacuum reservoir

have thoroughly been analyzed using the quantum Langevin equations and large

time approximations. We have carried out the analysis by putting the noise opera-

tors associated with the vacuum reservoir in normal order and without considering

the interaction of the three-level atoms with the vacuum reservoir outside the cav-

ity. The interaction Hamiltonian and the quantum Langevin equations for the cav-

ity light are obtained. Applying these equations, the equations of evolution of the

cavity mode and the atomic operators are solved. Making use of the steady-state

solutions of atomic and cavity mode operators, the various quantities that help to

investigate the quantum and statistical properties of interest are determined.

The analysis has shown that the global and local mean photon numbers and

their fluctuations, quadrature squeezing, and photon entanglement within the laser

cavity are enhanced by increasing the stimulated emission decay constant. On the

other hand, the driving coherent light increases the intracavity global and local

mean photon numbers and their fluctuations. Moreover, the mean photon num-

ber and its fluctuation becomes more intense for large frequency interval. On the

other hand, the photon and atom entanglement, and squeezing are enhanced for

relatively small value of the driving coherent light but declined for large values. We

have also found that the squeezing and entanglement of the two-mode light are di-

rectly related. As a result, an increase in the degree of squeezing directly implies
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the improvement of the strength of the two-mode entanglement and vise versa.

The quantum system has exhibited 43% degree of entanglement and squeezing for

which the mean photon number is also significantly intense.

In general, it is possible to infer from this study that the proposed scheme can be

utilized as a source of the quantum and statistical properties which are easily man-

ageable by the various parameters involved in it. Therefore, the considered scheme

can be a potential resource to be used in quantum optical experiments for the de-

velopment of the quantum optics, quantum information and quantum technology.
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