
DEFLECTION OF LIGHT BY MASSIVE OBJECTS

By

Tsehaynew Abere

Supervisor: Dr. Tolu Biressa

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN PHYSICS

(Astrophysics)

AT

JIMMA UNIVERSITY

COLLEGE OF NATURAL SCIENCES

FEBRUARY 2021

© Copyright by Tsehaynew Abere, 2021



JIMMA UNIVERSITY
PHYSICS

The undersigned hereby certify that they have read and recommend to the
College of Natural Sciences for acceptance a thesis entitled Deflection of light by
massive objects” by Tsehaynew Abere in partial fulfillment of the requirements
for the degree of Master sciences in Astrophysics.

Date: February 2021

Supervisor:
Dr.Tolu Biressa

External Examiner:
Dr. Solomon Belay

Internal Examiner:
Dr. Menberu Mengesha

i



JIMMA UNIVERSITY

Date: February 2021

Author:Tsehaynew Abere

Title: Deflection of light by massive objects
Department: Physics

Degree: MSc.
Year: 2021

Permission is herewith granted to university to circulate and to have copied for

non-commercial purposes, at its discretion, the above title upon the request of individuals
or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE
THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE
USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN
BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY
WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

ii



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1
1.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 General objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory of general relativity 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Einstein field equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Cosmological constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Gravitational lensing 7
3.1 Introduction to gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 The early years, before general relativity . . . . . . . . . . . . . . . . . 8
3.1.2 Gravitational light deflection in GR . . . . . . . . . . . . . . . . . . . 8
3.1.3 Deflection of light near elliptical galaxies or stars . . . . . . . . . . . . 10

3.2 Forms of gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Strong gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Microlensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Applications of gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Measure mass and mass distribution . . . . . . . . . . . . . . . . . . . 18
3.3.2 Constraining the number density of mass concentrations . . . . . . . . 19
3.3.3 Providing estimates of cosmological parameters . . . . . . . . . . . . . 19
3.3.4 Lenses as natural telescopes . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 Searches for planets . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



CONTENTS

4 Gravitational Lensing in the standard ΛCDM Cosmology 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 General lens system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The deflection angle and effect of cosmological constant in gravitational lensing

through vacuum fluid approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Deflection angle in terms of matter and Cosmological constant . . . . . 23
4.3.2 Deflection angle contribution due to matter . . . . . . . . . . . . . . . 25
4.3.3 Deflection angle due to cosmological Constant contribution . . . . . . 26
4.3.4 The Lens Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Image magnification and distortion . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Image magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Image distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Angular distance measures in gravitational lensing . . . . . . . . . . . . . . . 34
4.5.1 Cosmographic parameters . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Comoving distance (line-of-sight) . . . . . . . . . . . . . . . . . . . . 35
4.5.3 Angular diameter distance . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Result and discussion 37
5.1 Lens equation in the presence of cosmological constant . . . . . . . . . . . . . 37
5.2 Data analysis for the four(4)Einstein’s ring extracted from observation . . . . . 37
5.3 Calculating angular distances . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Image position and magnifications . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Contribution of cosmological constant to image magnification . . . . . . . . . 39

6 Summary and Conclusion 41

iv



List of Tables

5.1 The angular distances in giga parsec (source:castles[1]) . . . . . . . . . . . . . 39
5.2 The image position in arcsec (source:castles[1]) . . . . . . . . . . . . . . . . . 39
5.3 The calculated image magnification (source:castles[1]) . . . . . . . . . . . . . 40

v



List of Figures

3.1 HST image of QSO 1957 +561(soucail et al.1987a) . . . . . . . . . . . . . . . 12
3.2 First observed giant gravitational arc(soucail et al.1987a) . . . . . . . . . . . . 14
3.3 Foreground galaxies in the cluster Abell 2218 distort the images of background

galaxies.Giant elliptical arcs surround the centeral region of the cluster at right . 15
3.4 A Hubble image of a gravitational lens. A foreground galaxy lenses a background

galaxy resulting in a large luminous arc around the lens. . . . . . . . . . . . . . 15
3.5 Q0047-2808 forming extended Einstein ring (source:castles[1]) . . . . . . . . . 18
3.6 Example for the use of a gravitational lens as a natural telescope. In a search

for very high redshift objects, deep multi-band HST images are taken near the
critical curves of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Set up of gravitational lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 A gravitational-lens system of point mass . . . . . . . . . . . . . . . . . . . . 27
4.3 A gravitational-lens system of point mass: The optical axis runs from the observer

O through the centre of the lens to O’. The angle between the source S and the
optical axis O’ is β, the angle between the image S’ and the optical axis O’ is θ.
The light ray towards the image is bent by the deflection angle â , measured at
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Abstract

The discovery of gravitational lensing made the deflection of light as an important tool for
astronomy and cosmology. Since Einstein introduced general theory of relativity for the expanding
universe, the cosmological constant (Λ) is still a part of studies upto now. And in this work our
main objective is in order to study the deflection of light by massive objects. Specifically we
derived the lens equation in the presence of cosmological constant. Then we evaluated the
contribution of cosmological constant to image size or image magnification. And finally we
estimated the effect of cosmological constant to angular distances and image positions. The
Einstein Field equation (EFE) is implemented to derive the lens equation in the presence of Λ.
And using this lens equation for point mass system, we calculated image sizes, angular distances
and image positions for the selected Einstein ringed systems. We expressed the results for the
selected Einstein ringed objects by tables. As we expressed at the end of this work, the calculated
image size or image magnification is a negative value and this implies that the image formed by
gravitational lensing is de-magnified. And also we have seen the effect of cosmological constant
to image position. The contribution of Λ for the Einstein correction part is 2% and this matches
with other previous works.

Keywords

Deflection of light, cosmological constant, image magnification, GR
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Chapter 1

Introduction

Deflection of light by gravity was predicted by General Relativity and observationally confirmed
in 1919. In the following decades various aspects of the gravitational lens effect were explored
theoretically. Among them the possibility of multiple or ring-like images of background sources,
the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility
to determine Hubble’s constant with lensing. Currently gravitational lensing became an observational
science after the discovery of the first doubly imaged quasar in 1979[2].

Although the deflection of light at the solar limb was very successfully hailed as the
first experiment to confirm a prediction of Einstein’s theory of General Relativity in 1919,
it took more than half a century to establish this phenomenon observationally in some other
environment. By now different realizations of lensing are known and observed[2].

Within the last 20 years gravitational lensing has changed from being considered a
geometric curiosity to a helpful and in some ways unique tool of modern astrophysics. And most
importantly a number of astrophysical problems makes it an attractive tool in many branches of
astronomy[3].

Gravitational lensing is a deflection of light from a background source due to the space-
time curvature caused by massive objects along the line of sight (lenses). Gravitational lensing
both magnifies (or de-magnifies) the flux and distorts the shape of the lensed source[3].

The formalism of gravitational lensing treats the propagation of light in the limit of
geometrical optics, meaning that light rays travel in straight lines until they are eventually
deflected by a gravitational lens. This is a simplification of the full framework of general
relativity, in which light follows the curvature of spacetime on null geodesics of the metric. The
approximation is valid where gravitation is weak enough to be linearised. Then it is possible to
separate the equations into a smooth background metric, in the following always assumed to be
a flat ΛCDM cosmology, and any number of perturbations which act as deflectors or lenses. The
simplest such deflector is a point mass M[2].

The ΛCDM or Lambda cold dark matter model is a standard cosmological model in
which cosmological issues of the universe we live in is estimated. The universe contains a
cosmological constant, which can be taken as fluid denoted by Lambda (Greek Λ), associated
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with dark energy, and cold dark matter (abbreviated CDM)[4]. Nowadays, the cosmological
constant is most often discussed in the context of Universes with the flat Euclidean geometry,
κ = 0

1.1 Statement of the problem

For many years the cosmological constant was almost universally considered to be 0. However,
recent improved astronomical techniques have found that a positive value of Λ is needed to
explain the accelerating universe. Einstein field equations have already initiated researchers on
cosmological issues. Nowadays gravitational lensing paved a way for astronoical studies and
many researchers did on this area. However,still there are several issues on discussion such as
deflection of light by massive objects,time delay of Radar echoes etc.

Research questions

– How does cosmological constant modify lens equation?
– What is the contribution of cosmological constant to image size?
– How does Λ affect angular distances and image positions?

1.2 Objectives

1.2.1 General objectives

To study deflection of light by massive objects.

1.2.2 Specific objectives

• to derive the lens equation in the presence of cosmological constant..

• to identify the effect of cosmological constant to image size.

• to calculate the angular distances and image positions in presence of Λ .

1.3 Methodology

Einstein field equations (EFE) are implemented to derive the lens equation in the presence of
cosmological constant. Then the derived lens equation is used to estimate angular distances and
image sizes for selected ringed objects.Mathematica-11 is used for the semi- analytical analysis.
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Chapter 2

Theory of general relativity

2.1 Introduction

General relativity is the geometric theory of gravitation. One of Einsteins great insights was
to make general relativity a geometric theory of gravitation. In special relativity, space-time
is the arena for physics. Spacetime consists of events, which require four numbers for their
complete specification: three numbers to give the spatial location with respect to some chosen
coordinate grid, and one number to give the time.Geometrically, space-time is represented by
a four-dimensional manifold (surface), each point in the manifold corresponding to an event in
spacetime.The general theory of relativity is a classical field theory of gravitation in which all
variables are assumed to be continuous and are uniquely specified. The basic philosophy of
general relativity is to relate the geometry of space time, which determines the motion of matter,
to the density of matter-energy, known as the stress energy tensor. This relation is accomplished
through the Einstein field equations. The geometry of space-time is dictated by the metric
tensor which defines the properties of that geometry and basically describes how travel in one
coordinate involves another coordinate, so that

ds2 = gµνdx
µdxν (2.1.1)

The elements of the metric tensor are dimensionless; for ordinary Euclidean space they are
all unity if µ = ν and zero otherwise. General relativity is defined on a four dimensional
Riemannian manifold[3]. Coordinates in this non-Euclidian space are denoted by xµ = (x0, x1, x2, x3).

Now the field equations relate second derivatives of the metric tensor to the properties
of the local matter-energy density expressed in terms of the stress-energy tensor. Specifically
the Einstein field equations are

Gµν =
8πG

c2
Tµν (2.1.2)

where,
Gµν -is known as the Einstein tensor and

Tµν - is the stress energy tensor in physical units (say grams per cubic centimeter).
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The quantity G/c2 is a very small number in any common system of units, which shows that the
departure from Euclidean space is small unless the stress-energy is exceptionally large.

2.2 Einstein field equation

The Einstein field equations (EFE; also known as Einsteins equations) comprise the set of
equations in Albert Einsteins general theory of relativity that describe the fundamental interaction
of gravitation as a result of space-time being curved by mass and energy. Similar to the way
that electromagnetic fields are determined using charges and currents via Maxwells equations.
The EFE are used to determine the space-time geometry resulting from the presence of mass
energy and linear momentum, i.e; they determine the metric tensor of space-time for a given
arrangement of stress energy in the space-time.

Einstein’s equation tells us how the presence of matter curves space-time, and so we
need to describe the matter under consideration. The Einstein field equations (EFE) may be
written in the form

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.2.1)

where,

• Rµν - is the Ricci curvature tensor

• R -is the scalar curvature

• gµν -is the metric tensor

• Λ-is the cosmological constant

• G -is Newton’s gravitational constant

• c -is the speed of light in vacuum, and

• Tµν -is the stress energy tensor.

The EFE is a tensor equation relating a set of symmetric 4 x 4 tensors. Each tensor
has 10 independent components. The four Bianchi identities reduce the number of independent
equations from 10 to 6, leaving the metric with four gauge fixing degrees of freedom, which
correspond to the freedom to choose a coordinate system.

In fact, when fully written out, the EFE are a system of ten coupled, non-linear, hyperbolic-
elliptic partial differential equations.One can write the EFE in a more compact form by defining
the Einstein tensor.

Gµν = Rµν −
1

2
Rgµν (2.2.2)

Which is a symmetric second-rank tensor that is a function of the metric. The EFE can then be
written as

Gµν + Λgµν =
8πG

C4
Tµν (2.2.3)
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In standard units, each term on the left has units of 1/length2 . With this choice of
Einstein constant as 8πG/c4 , then the stress-energy tensor on the right side of the equation must
be written with each component in units of energy-density (i.e., energy per volume = pressure).
Using geometrized units where G = c = 1, this can be rewritten as

Gµν + Λgµν = 8πGTµν (2.2.4)

The expression on the left represents the curvature of space-time as determined by the metric;
the expression on the right represents the matter/energy content of space-time. The EFE can
then be interpreted as a set of equations dictating how matter/energy determines the curvature of
spacetime.

2.3 Cosmological constant

Albert Einstein modified his original field equations to include a cosmological constant term Λ
proportional to the metric

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.3.1)

The energy conservation law is not affected because Λ is constant.
Einstein originally introduced the cosmological constant term.Despite Einstein’s motivation

for introducing the cosmological constant term, there is nothing inconsistent with the presence of
such a term in the equations. For many years the cosmological constant was almost universally
considered to be 0. However, recent improved astronomical techniques have found that a positive
value of Λ is needed to explain the accelerating universe. However, the cosmological constant
is negligible at the scale of a galaxy or smaller.

Einstein thought of the cosmological constant as an independent parameter, but its term
in the field equation can also be moved algebraically to the other side, written as part of the
stressenergy tensor

T (vac)
µν = − Λc4

8πG
gµν (2.3.2)

Then the resulting vacuum energy density is a constant and we have

ρ(vac)
µν =

Λc2

8πG
(2.3.3)

The existence of a cosmological constant is thus equivalent to the existence of a non-
zero vacuum energy. Thus, the terms ”cosmological constant” and ”vacuum energy” are now
used interchangeably in general relativity.

A positive vacuum energy density resulting from a cosmological constant implies a
negative pressure, and vice versa. If the energy density is positive, the associated negative
pressure will drive an accelerated expansion of the universe.
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Positive Value of Cosmological Constant

Observations announced in 1998 of distance redshift relation for Type Ia supernovae (Supernova
Cosmology Project (Perlmutter et al. (1999)) indicated that the expansion of the universe
is accelerating. When combined with measurements of the cosmic microwave background
radiation these implied a value of ΩΛ ∼ 0.7( Baker et al. (1999)) a result which has been
supported and refined by more recent measurements. There are other possible causes of an
accelerating universe, such as quintessence, but the cosmological constant is in most respects
the simplest solution. Thus, the current standard model of cosmology, the Lambda-CDM model,
includes the cosmological constant, which is measured to be on the order of 10−52m−2 , in
metric units. It is often expressed as 10−35s−2 or 10−122 (Barrow and Shaw (2011)) in other
unit systems. The value is based on recent measurements of vacuum energy density, ρvacuum =
5.96× 10−27kg/m3 or 10−47GeV 4 ,in other unit systems. As was only recently seen, by works
of ’t Hooft, Susskind and others, a positive cosmological constant has surprising consequences,
such as a finite maximum entropy of the observable universe[3].

In addition to the above when formulating general relativity, Einstein believed that the
Universe was static, but found that his theory of general relativity did not permit it. This is simply
because all matter attracts gravitationally. None of the solutions we have found correspond to
a static Universe with constant a. In order to arrange a static Universe, he proposed a change
to the equations, something he would later famously call his ”greatest blunder”. That was the
introduction of a cosmological constant.

The introduction of such a tenn is permitted by general relativity, and although Einstein’s
original motivation has long since faded, it is currently seen as one of the most important
and enigmatic objects in cosmology. The cosmological constant Λ appears in the Friedmann
equation as an extra term, giving

H2 =
8πG

3
ρ− κ

a2
+

Λ

3
(2.3.4)

In principle, Λ can be positive or negative, though the positive case is much more commonly
considered. Einstein’s original idea was to balance curvature, Λ and ρ to get H(t) = 0 and
hence a static Universe. In fact, this idea was rather misguided, since such a balance proves to be
unstable to small perturbations, and hence presumably couldn’t arise in practice. Nowadays, the
cosmological constant is most often discussed in the context of Universes with the flat Euclidean
geometry, κ = 0

The effect of Λ can be seen more directly from the acceleration equation. By using the
Friedmann equation as given above, gives

ä

a
=

4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(2.3.5)

A positive cosmological constant gives a positive contribution to ä, and so acts effectively
as a repulsive force. In particular, if the cosmological constant is sufficiently large, it can
overcome the gravitational attraction represented by the first term and lead to an accelerating
Universe [3].
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Chapter 3

Gravitational lensing

3.1 Introduction to gravitational lensing

Gravitational light deflection is determined by the gravitational field through which light propagates.
It is essential to realize that this simple fact implies that gravitational light deflection is independent
of the nature of the matter and of its state. Lensing is equally sensitive to dark and luminous
matter, and to matter in equilibrium or far out of it. On the negative side, this implies that lensing
alone cannot distinguish between these forms of matter, but on the positive side, it also cannot
miss one of these matter forms. Hence, lensing is an ideal tool for measuring the total mass of
astronomical bodies, dark and luminous.(Schneider 2006)

The deflection of light by the Sun can be measured during a total solar eclipse when
it is possible to observe stars projected near the Solar surface. Light deflection then slightly
changes their positions. A measurement of the deflection in 1919, with a sufficient accuracy
to distinguish between the ‘Newtonian’and the GR value, provided a tremendous success for
Einstein’s new theory of gravity.(Schneider)

Soon thereafter, Lodge (1919) used the term ‘lens’ in the context of gravitational light
deflection, but noted that ‘it has no focal length’. Chwolson (1924) considered a source perfectly
coaligned with a foreground mass, concluding that the source should be imaged as a ring around
the lens. In fact,only fairly recently did it become known that Einstein made some unpublished
notes on this effect in 1912 (Renn et al. 1997). Hence, calling them ‘Einstein rings’ is indeed
appropriate. If the alignment is not perfect, two images of the background source would be
visible, one on either side of the foreground star. Einstein, in 1936, after being approached by
the Czech engineer Rudi Mandl, wrote a paper where he considered this lensing effect by a star,
including both the image positions, their separation, and their magnifications. He concluded that
the angular separation between the two images would be far too small (of order milli-arcseconds)
to be resolvable, so that “there is no great chance of observing this phenomenon” (Einstein 1936)

7



3.1.1 The early years, before general relativity

The Newtonian theory of gravitation predicts that the gravitational force F on a particle of mass
m is proportional to m, so that the gravitational acceleration a = F/m is independent of m.
Therefore, the trajectory of a test particle in a gravitational field is independent of its mass but
depends, for a given initial position and direction, only on the velocity of the test particle. About
200 years ago, several physicists and astronomers speculated that, if light could be treated like
a particle, light rays may be influenced in a gravitational field as well. John Mitchell in 1784,
in a letter to Henry Cavendish, and later Johann von Soldner in 1804, mentioned the possibility
that light propagating in the field of a spherical mass M (like a star) would be deflected by
an angle âN = 2GM/c2ξ, where G and c are Newton constant of gravity and the speed of
light, respectively, and ξ is the impact parameter of the incoming light ray. At roughly the
same time, Pierre-Simon Laplace in 1795 noted “that the gravitational force of a heavenly body
could be so large, that light couldnot flow out of it” (Laplace 1975), i.e. , the escape velocity
ve =

√
2GM/R from the surface of a spherical mass M of radius R becomes the velocity of

light, which happens if R = Rs ≡ 2GM/c2 , now a days called the Schwarzschild radius of a
mass M [5].

3.1.2 Gravitational light deflection in GR

In November 1915, Albert Einstein (Nobel Prize in Physics 1921) presented his theory of gravity,
which he nicknamed General Relativity (GR) Einstein(1915), an extension of his theory of
special relativity. This was one of the greatest achievements in the history of science, a modern
milestone. It was based on the Equivalence Principle, which states that the gravitational mass
of a body is the same as its inertial mass. You cannot distinguish gravity from acceleration!
Einstein had already checked that this could explain the precession of the perihelion of Mercury,
a problem of Newtonian mechanics. The new insight was that gravity is really geometric in
nature and that the curving of space and time, space-time, makes bodies move as if they were
affected by a force. The crucial physical parameters are the metric of spacetime, a matrix that
allows us to compute infinitesimal distances (actually infinitesimal line elements or proper times
in the language of special relativity.) It became immediately clear that Einstein’s theory could be
applied to cosmological situations, and Karl Schwarzschild very soon found the general solution
for the metric around a massive body such as the Sun or a star[6].

In 1917, Einstein applied the GR equations to the entire Universe[7], making the implicit
assumption that the Universe is homogenous. If we consider cosmological scales large enough
such that local clusters of matter are evened out. He argued that this assumption fit well
with his theory and he was not bothered by the fact that the observations at the time did not
really substantiate his conjecture. Remarkably, the solutions of the equations indicated that the
Universe could not be stable. This was contrary to all the thinking of the time and bothered
Einstein. He soon found a solution, however. His theory of 1915 was not the most general one
consistent with the Equivalence Principle. He could also introduce a cosmological constant,
a constant energy density component of the Universe. With this Einstein could balance the
Universe to make it static.
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In the beginning of the 1920’s, the Russian mathematician and physicist Alexander
Friedmann studied the problem of the dynamics of the Universe using essentially the same
assumptions as Einstein, and found in 1922 that Einstein’s steady state solution was really
unstable [8]. Any small perturbation would make the Universe non-static. At first Einstein
did not believe Friedmann’s results and submitted his criticism to Zeitschrift für Physik, where
Friedmann’s paper had been published. However, a year later Einstein found that he had made a
mistake and submitted a new letter to the journal acknowledging this fact. Even so, Einstein did
not like the concept of an expanding Universe and is said to have found the idea “abominable”.
In 1924, Friedmann presented his full equations [9], but after he died in 1925 his work remained
essentially neglected or unknown, even though it had been published in a prestigious journal.

We have to remember that a true revolution was going on in physics during these
years with the advent of the new quantum mechanics, and most physicists were busy with this
process. In 1927, the Belgian priest and physicist Georges Lemaitre working independently
from Friedmann performed similar calculations based on GR and arrived at the same results
[10, 11]. Unfortunately, Lemaı̂tre’s paper was published in a local Belgian journal and again the
results did not spread far, even though Einstein knew of them and discussed them with Lemaitre.

In the beginning of the 20th century it was generally believed that the entire Universe
only consisted of our galaxy, the Milky Way. Many nebulae which had been found in the
sky were thought to be merely gas clouds in distant parts of the Milky Way. In 1912, Vesto
Slipher[12, 13],while working at the Lowell Observatory, pioneered measurements of the shifts
towards red of the light from the brightest of these spiral nebulae. The redshift of an object
depends on its velocity radially away from us, and Slipher found that the nebulae seemed to
move faster than the Milky Way escape velocity.

In the following years, the nature of the spiral nebulae was intensely debated. Could
there be more than one galaxy? This question was finally settled in the 1920s with Edwin
Hubble as a key figure. Using the new 100-inch telescope at Mt Wilson, Hubble was able to
resolve individual stars in the Andromeda nebula and some other spiral nebulae, discovering
that some of these stars were Cepheids, dimming and brightening with a regular period [14].

The Cepheids are pulsating giants with a characteristic relation between luminosity and
the time interval between peaks in brightness, discovered by the American astronomer Henrietta
Leavitt in 1912.

Hubble used Leavitt’s relation to estimate the distance to the spiral nebulae, concluding
that they were much too distant to be part of the Milky Way and hence must be galaxies of their
own. Combining his own measurements and those of other astronomers he was able to plot
the distances to 46 galaxies and found a rough proportionality of an object’s distance with its
redshift. In 1929, he published what is today known as ‘Hubble’s law’. A galaxy’s distance is
proportional to its radial recession velocity [15].

Even though Hubble’s data were quite rough and not as precise as the modern ones, the
law became generally accepted, and Einstein had to admit that the Universe is indeed expanding.
It is said, that he called the introduction of the cosmological constant his “greatest mistake”.
From this time on, the importance of the cosmological constant faded, although it reappeared
from time to time.

Hubble’s and others’ results from 1926 to 1934, even though not very precise, were
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encouraging indications of a homogeneous Universe and most scientists were quick to accept
the notion. The concept of a homogeneous and isotropic Universe is called the Cosmological
Principle. This goes back to Copernicus, who stated that the Earth is in no special, favoured
place in the Universe. In modern language it is assumed that the Universe looks the same on
cosmological scales to all observers, independent of their location and independent of in which
direction they look in. The assumption of the Cosmological Principle was inherent in the work
of Friedmann and Lemaitre but virtually unknown in large parts of the scientific society. Thanks
to the work of Howard Robertson in 1935-1936 [16] and Arthur Walker in 1936 it became well
known.

The evolution of the Universe is described by Einstein’s theory of general relativity. In
relativistic field theories, the vacuum energy contribution is given by an expression mathematically
similar to the famous cosmological constant in Einstein’s theory. The question of whether the
vacuum energy term is truly time independent like the cosmological constant, or varies with
time, is currently a very hot research topic.

Gravitational lensing (“lensing”) occurs when a gravitating mass distorts a space-time
and anything in it. The paths followed by electromagnetic radiation from a star, galaxy, or
other source are bent as well. This can be seen directly from equations of motion for photons.
Light can be modeled as a massless point particle following a worldline in the “geometric optics
approximation” [17]

Lensing provided the first experimental verification of GR through observations of starlight
bending around the Sun during an eclipse in 1919 [18] and continues to be a major source of
insight into gravitation [19]. Lensing magnifies the image relative to the source, modifies the
time it takes light to reach its destination, and distorts the image. The bending of light by massive
bodies was anticipated as early as the 18th century by Henry Cavendish [20].

Early calculations of light bending relied on the assumption that light was massive and
therefore attracted to a massive body viewing light as reacting to a force. In 1911, Einstein re
imagined light bending as a result of his principle of equivalence viewing light as traveling on
a null geodesic in a curved spacetime. In recent years, lensing has become a powerful probe of
many astrophysical and cosmological questions. Strong lensing, or systems in which multiple
images of a single source are detectable or in which an Einstein ring or part of one (an arc) is
visible, can inform us of the Hubble constant and other cosmological parameters [21].

Statistical measurements of lensing where the light deflection is too weak to detect in a
single background image, or weak lensing, provides a powerful probe of the matter distribution
in the universe [22]. Weak lensing is a particularly important probe of dark matter and has
been proposed as a tool to distinguish GR from alternative theories [23]. Microlensing, where a
transient lens causes a source to temporarily brighten, has provided a way to search for massive
compact halo objects (MACHOs) and extrasolar planets[23]. In short, gravitational lensing has
proven to be a versatile tool for examining a wide variety of questions.

3.1.3 Deflection of light near elliptical galaxies or stars

Newtonian gravity predicted deflection of light passing around a massive object[24]. In 1911,
Einstein calculated the value of bending of light for a spherically symmetric a massive object
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[24]. In 1916, when Schwarzschild calculated the gravitational field around a scal object such
as galaxy, star or a planet,then the first measurement was made by Eddington, Dayson and
Davidson , during the solar eclipse in 1919. In 1924, Chwolson mentioned fictitious double
star and the mirror-reversed nature of the secondary image. He also mentioned the symmetric
case of a star exactly behind star, resulting in a circular image. In 1936, Einstein reported about
the appearance of a luminous circle which today is called as Einstein-ring. Einstein and Fritz
Zwicky pointed out that galaxies are much more likely to be gravitationally lensed than stars
and that one can use the gravitational lens effect as a natural telescope. In 1988, Grossman and
Narayan studied simulation of lensing total of 101 randomly generated cluster and Bodenner
and Will calculated the deflection of light in a spherically symmetric body to the second order.
They used three different types of, Schwarzschild, Isotropic and Harmonic coordinates systems.
The gravitational field, and thus the deflection angle,depend neither on the nature of the matter
nor on its physical state but is depend to shape and geometry of object[24, 25].

3.2 Forms of gravitational lensing

Gravitational lensing was first proposed by Albert Einstein during the preparation of his theory
of general relativity. He noted that because massive objects curve space-time, the path of light
passing near those massive objects will bend light around them. In fact, it was gravitational
lensing that made Einstein a household name as the deflection of light around the sun was used
to test his theory during a solar eclipse. Since that time, gravitational lensing has become an
indispensable tool for astronomers.

3.2.1 Strong gravitational lensing

The first strong gravitational lens, discovered in 1979, was indeed linked to a quasar (QSO0957+
561[26], and although the phenomenon was expected on theoretical grounds, it left the astronomers
surprise. The existence of two objects separated by about 6̋(6 arcsec) and characterized by an
identical spectrum led to the conclusion that they were the doubled image of the same quasar,
clearly showing that Zwicky was perfectly right and that galaxies may act as gravitational lenses.

Afterwards, also the lens galaxy was identified, and it was established that its dynamical
mass, responsible for the light deflection, was at least ten-times larger than the visible mass.

This double quasar was also the first object for which the time delay (about 420 days)
between the two images [26], due to the different paths of the photons forming the two images,
has been measured. This has also allowed obtaining an independent estimate of the lens galaxy
dynamical mass. Observations can also show four images of the same quasar, as in the case
of the so-called Einstein Cross, or when the lens and the source are closely aligned, one can
observe the Einstein ring.

The macroscopic effect of multiple images formation is generally called strong lensing,
which also consists of the formation of arcs, as those clearly visible in the deep sky field images
by the Sloan Digital Sky Survey (SDSS). The sources of strong lensing events are often quasars,
galaxies, galaxy clusters and supernovae, whereas the lenses are usually galaxies or galaxy
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Figure 3.1: HST image of QSO 1957 +561(soucail et al.1987a)

clusters. The image separation is generally larger than a few tenths of an arcsec, often up to
a few arcsecs.

Strong gravitational lensing is nowadays a powerful tool for investigation in astrophysics[27].
Strong lensing gives a unique opportunity to measure the dynamical mass of the lens object
using, for example, the mass estimatorM(< RE) = πΣcrθ

2
E .

Light rays leaving a source in different directions are focused on the same point by the
intervening galaxy or cluster of galaxies. These are called strong lenses.

The first strong lensing observation was of the doubly imaged quasar Q0957 + 561
by Walsh,Carswell, and Weymann (1979). An optical image of QSO0957 + 561 taken by
HSTs WFPCII camera is shown in Figure 2.1. The magnification produced by strong lensing
affects the observable properties of active galaxies, quasars, and any other lensed sources. Strong
lensing also may provide information for cosmology. For example, the time delay among the
multiple images of a quasar can be used to measure the Hubble constant.

Figure3.1
The first large luminous arc produced by strong lensing (Figure 3.2) was found in the

massive nearby cluster, Abell 370, in 1986 by Lynds and Petrosian (1986) at Kitt Peak National
Observatory (KPNO) and by Soucail et al. (1987a) at the Canada France Hawaii Telescope
(CFHT). Giant arcs are due to the lensing effect of rich clusters of galaxies on background
galaxies, with huge magnifications that can distort the galaxy shapes into long arcs around the
clusters cores. The cluster Abell 2218 contains the most famous example of gravitationally
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lensed arcs (Figure 3.3). Until recently, the most massive galaxies and galaxy clusters have been
the object of gravitational lensing studies. Galaxy groups are comprised of a lower density of
galaxies than clusters, making them more difficult to detect.

After some controversy regarding whether ΛCDM (cold dark matter plus Cosmological
Constant) simulations predict enough dark matter substructures to account for the observations,
some indication is found of an excess of massive galaxy satellites), more recent analysis, taking
also into account the uncertainty in the lens system ellipticity, finds results consistent with
those predicted by the standard cosmological model. Three properties make strong gravitational
lensing a most useful tool to measure and understand the universe. Figure3.2

• Firstly,strong lensing observable - such as relative positions, flux ratios, and time delays
between multiple images - depend on the gravitational potential of the foreground galaxy
(lens or deflector) and its derivatives.

• Secondly, the lensing observable also depend on the overall geometry of the universe via
angular diameter distances between observer, deflector, and source.

• Thirdly, the background source often appears magnified to the observer, sometimes by
more than an order of magnitude.
As a result, gravitational lensing can be used to address three major astrophysical issues:

• Understanding the spatial distribution of mass at kpc and sub-kpc scale where
baryons and DM interact to shape galaxies as we see them.

Figure 3.3

• Determining the overall geometry, content, and kinematics of the universe.

• Studying galaxies, black holes, and active nuclei that are too small or too faint to be
resolved or detected with current instrumentation.

Strong lensing is characterized by a lens creating very substantial image distortions culminating
in multiple images, large luminous arcs, and occasionally Einstein rings. These image distortions
can be seen through telescopes. Figure3.4 shows a particularly clear example of a large arc
nearly forming an Einstein ring taken by the Hubble Telescope[28].

3.2.2 Weak lensing

In the deep field surveys of the sky, also arclets (i.e., single distorted images with an elliptical
shape) and weakly distorted images of galaxies, with an almost invisible individual elongation,
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Figure 3.2: First observed giant gravitational arc(soucail et al.1987a)

14



Figure 3.3: Foreground galaxies in the cluster Abell 2218 distort the images of background

galaxies.Giant elliptical arcs surround the centeral region of the cluster at right

Figure 3.4: A Hubble image of a gravitational lens. A foreground galaxy lenses a background

galaxy resulting in a large luminous arc around the lens.
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have been detected. This effect is known as weak lensing and is playing an increasingly important
role in cosmology.

The weak lensings main feature is the shape deformation of background galaxies, whose
light crosses a mass distribution (e.g., a galaxy or a galaxy cluster) that acts as a gravitational
lens. Actually, gravitational lensing gives rise to two distinct effects on a source image: convergence,
which is isotropic, and shear, which is anisotropic. In the weak lensing regime, the observer
makes use of the shear, that is the image deformation (sometimes related to the galaxy orientation),
while the convergence effect is not used, since the intrinsic luminosity and the size of the lensed
objects are unknown.

The first weak lensing event was detected in 1990 as statistical tangential alignment of
galaxies behind massive clusters , but only in 2000, coherent galaxy distortions were measured
in blind fields, showing the existence of the cosmic shear. The weak lensing cannot be measured
by a single galaxy, but its observation relies on the statistical analysis of the shape and alignment
of a large number of galaxies in a certain direction.

There are at least two major issues in weak lensing studies, one mainly relying on the
theory, the other one on observations: the former concerns finding the best way to reconstruct
the intervening mass distribution from the shear field γ = (γ1, γ2), the latter with looking for
the best way to determine the true ellipticity of a faint galaxy, which is smeared out by the
instrumental point spread function PSF). To solve these issues, several approaches have been
proposed, which can be distinguished into two broad families: direct and inverse methods. On
the theoretical side, the direct approaches are: the integral method, which consists of expressing
the projected mass density distribution as the convolution of by a kernel, and the local inversion
method, which instead starts from the gradient of φ (e.g., under and the references there in).
The inverse approaches work on the lensing potential, and they include the use of the maximum
likelihood or the maximum entropy methods to determine the most likely projected mass distribution
that reproduces the shear field. The inverse methods are particularly useful since they make it
possible to quantify the errors in the resultant lensing mass estimates, as, for instance, errors
deriving from the assumption of a spherical mass model when fitting a non-spherical system.

The inverse methods allow one also to derive constraints from external observations,
such as X-ray data on galaxy clusters strong lensing or CMB lensing. In particular, one can
compare mass measurements from weak lensing and X-ray observations for large samples of
galaxy clusters.

weak lensing observations showed that the mass was largely concentrated around the
galaxies themselves, and this enabled a clear, independent measurement of the amount of dark
matter.

Weak lensing is characterized by small deviations in the image of background galaxies
and galaxy clusters. The lensed images of background sources are still resolvable, however
statistical analysis is necessary to determine if gravitational lensing is taking place. This is
because the images are not distorted enough to differentiate between gravitational lensing and
the regular orientation of a galaxy.
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3.2.3 Microlensing

The Microlensing lensing is the phenomenon that occurs when θE is smaller than the typical
telescope angular resolution, as in the case of stars lensing the light from background stars.
If the source and the lens are aligned (first panel on the left), the circular symmetry of the
problem leads to the formation of a luminous annulus having radius θE around the lens position.
Otherwise, increasing the θS value, the secondary image gets closer to the lens position, while
the primary image drifts apart from it, and in the limit of θs � θE , the microlensing phenomenon
tends to disappear. However, observing multiple images during a microlensing event is practically
impossible with the present technology.(Jean Surdej and Jean-Franois Claeskens, 2007) For
instance,in the case in which the phenomenon is maximized, corresponding to the perfect alignment.

Gravitational lensing due to the close alignment of a foreground lens and a background
source star, what we now call microlensing, was first published by Einstein in 1936[29]. However,
he dismissed the practicality of microlensing, stating that ”there is no great chance of observing
this phenomenon.” Of course, he is correct in that the probability of close alignment of two stars
within our galaxy is on the order of 10−6 . Thus, the field of gravitational microlensing lay
dormant until the publication of Paczynski’s paper on the subject[30]. Paczynski recognized
that the advent of CCDs and the high speed computing required to analyze their images made
it possible to observe a large number of stars simultaneously. He concluded that such a survey
would make it possible, and likely, that microlensing could indeed be observed in modern times.

Microlensing was first used to search for Massive Compact Halo Objects (MACHO),which
are dark stars in the outer ring of our galaxy[31]. At the time, MACHOs were thought to be a
significant contribution to dark matter within our galaxy. Large scale surveys were conducted
and thousands of microlensing events have since been observed, although the idea that MACHOs
contribute to dark matter has largely been discredited.

Even before the first microlensing events were observed, Mao and Paczynski suggested
that microlensing could be used to exoplanets orbiting around lens[32]. A planet has a characteristic
effect on the overall amplification of a source star and thus could be detected using similar
techniques to that of the MACHO search. Gould and Loeb considered this and developed a ”two
tier” procedure for detecting planetary microlensing events[33]. First, a single survey monitors
a large number of stars in the galactic bulge, searching for the signature amplification due to the
primary lens. Second, an alert is put out to a large number of observatories to monitor the event
continuously for many days. Since the implementation of this procedure, 44 planets have been
detected by microlensing.

The final regime, microlensing, is characterized by very small deviations in the path of
light rays. The images formed are similar to that of strong lensing, but are too small to resolve
with current generation of telescopes. This doesn’t exclude microlensing from being incredibly
useful. The microlensing effects that can be measured, namely the amplification of a source
star’s brightness, is used to determine information about the lens such as mass and distance from
the earth. While strong and weak lensing focus primarily on the images formed by gravitational
lensing, microlensing focuses exclusively on the amplification of the background source.
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Figure 3.5: Q0047-2808 forming extended Einstein ring (source:castles[1])

3.3 Applications of gravitational lensing

3.3.1 Measure mass and mass distribution

Gravitational light deflection is determined by the gravitational field through which light propagates.
This in turn is related to the mass distribution via the Poisson equation (or its general relativity
generalization). It is essential to realize that this simple fact implies that gravitational light
deflection is independent of the nature of the matter and of its state. Lensing is equally sensitive
to dark and luminous matter, and to matter in equilibrium or far out of it. On the negative side,
this implies that lensing alone cannot distinguish between these forms of matter, but on the
positive side, it also cannot miss one of these matter forms. Hence, lensing is an ideal tool for
measuring the total mass of astronomical bodies, dark and luminous.

From the Einstein deflection law (schneider 2006), it is obvious that characteristic image
separations scale with the lens mass likeM1/2 . Hence, the observation of multiple images and
rings immediately allows an estimate of the mass of the lensing galaxy or more precisely, the
mass within a cylinder with a diameter of the image separation or the ring diameter, centered on
the lens. More detailed modeling, and additional observables, such as flux ratios, can yield very
precise mass estimates. Indeed, accurate mass estimates within galaxies, with an uncertainty of
a few percent, have been achieved by far the most precise mass determinations in (extragalactic)
astronomy. Similarly, from the locations of giant arcs in clusters, the masses of the central parts
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of clusters can be determined . With the advent of HST imaging and the discovery of multiple
image systems in some strong lensing clusters, detailed mass models have been obtained, which
led to very precise mass estimates in those clusters (needless to say, they confirm the dominance
of dark matter in clusters).

Weak lensing studies of clusters estimate the mass distribution to much larger radii
than the strong lensing regime, and, like strong lensing effects, probe for asymmetries and
substructures in the cluster mass. For example, already the strong lensing properties of the
cluster A2218 reveals the bimodal nature of the mass distribution. In fact, substructure in
the mass distribution of lens galaxies has been detected, thereby confirming one of the robust
predictions of the Cold Dark Matter model for our Universe. In addition, the mass distribution of
galaxies at large radii, where one runs out of local dynamical tracers, can be studied statistically
using an effect called galaxy–galaxy lensing (schneider 2006).

3.3.2 Constraining the number density of mass concentrations

The probability for a lensing event to occur (e.g., the fraction of high-redshift sources that are
multiply imaged, or the fraction of stars undergoing micro-lensing) depends on the projected
number density of potential lenses. Hence, by investigating statistically well-defined samples of
sources and their lensed fraction, we can infer the number density of lenses. Examples of such
studies are estimates of the number density of compact objects in the dark halo of our Galaxy,
the redshift evolution of the number density of galaxies acting as strong lenses, and the number
density of clusters producing strong and weak lensing signals. Upper limits on the number
of lensing events can also be translated into upper bounds on the number density of putative
lenses: e.g., the fact that nearly all multiply-imaged sources have a visible lens galaxy puts strong
upper bounds on the number density of dark lenses (they can at most provide a few percent of
the galaxy-mass objects), and the non-detection of lens systems with image separations of tens
of milli-arcseconds provides bounds on the number density of compact galaxies with masses
∼ 109M�. In fact, by now lensing has put stringent constraints on the population of compact
massive objects in the Universe over an extremely broad range of mass scales, from ∼ 10−3M�
(from upper limits on the variability of distant quasars) to ∼ 1016M� (from the absence of very
wide pairs of quasars), with only a few mass gaps within this range. Even lower-mass objects
(∼ 10−6M�) can be ruled out as significant contributors to the dark matter in our Milky Way
(schneider 2006).

3.3.3 Providing estimates of cosmological parameters

Following Refsdal’s idea, the Hubble constant can be obtained from the time delay in multiple
image systems. This method has the advantage of being independent of the usual distance ladder
used in determinations of H0 , and it also measures the Hubble constant on a truly cosmic
scale, in contrast to the quite local measurements based on Cepheid distances. Despite the
determination of time delays in a number of systems, values for H0 by lensing are burdened
with the uncertainties of the lens models. However, there is a trend toward slightly lower
values of the Hubble constant than obtained from Cepheids. Other cosmological parameters can
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Figure 3.6: Example for the use of a gravitational lens as a natural telescope. In a search for very

high redshift objects, deep multi-band HST images are taken near the critical curves of clusters

also be obtained from lensing. For example, the fraction of lensed high-redshift quasars when
combined with the distribution of image separations can be used to estimate the cosmological
model. Weak lensing by the large-scale structure is sensitive to the matter density parameter
and the normalization of the density fluctuations, and significant constraints on these parameters
have been obtained. In particular in combination with results from the anisotropy of the cosmic
microwave background, future cosmic shear studies will provide an invaluable probe of the
equation of state of the dark energy. Weak lensing has also successfully been used to determine
the bias parameter, which describes the relation between the statistical distribution of galaxies
and the underlying dark matter, and for which only few alternative methods are available (schneider
2006).

3.3.4 Lenses as natural telescopes

Since a lens can magnify background sources, these appear brighter than they would without
a lens. This makes it easier to investigate these sources in detail, e.g. through spectroscopic
observations. In some cases, this magnification is even essential to detect the sources in the first
place, provided their lensed brightness just exceeds the detection threshold of a survey or of the
current instrumental sensitivity. This magnification effect has in fact yielded spectacular results,
such as very detailed spectra of very distant galaxies, the detection of some of the highest redshift
galaxies behind cluster lenses, and the detection of very faint sub-millimeter sources in cluster
fields. In fact,the lens magnification can be very large in some rare cases, but these rare cases
truly stick out. Some of the most extreme sources, with regards to their apparent luminosity, are
strongly magnified such as the spectacular IRAS galaxy F10214.

3.3.5 Searches for planets

The light curves of Galactic microlensing events are affected by companions of the main lens.
For example, light curves of binary stars are readily identified as such, provided their separation
falls into a favorable range determined by the geometry of the lens system. Because of that,
even planets will leave an observable trace in the microlensing light curves if they are situated
at the right radius from the star and at the right orbital phase. Although these traces can be quite
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subtle, and last for a short time only, current observing campaigns aimed at the search for planets
have the sensitivity for their detection, and several candidate events for the detection of planetary
signals in microlensing light curves have been reported. Indeed, microlensing is considered to be
the simplest (and cheapest) possibility to detect the presence of low-mass planets around distant
stars.

21



Chapter 4

Gravitational Lensing in the standard

ΛCDM Cosmology

4.1 Introduction

In the past during the 1980s, most research focused on cold dark matter with critical density
in matter,around 95%CDM and 5% baryons. These showed success at forming galaxies and
clusters of galaxies, but problems remained. Notably, the model required a Hubble constant
lower than preferred by observations, and observations around 1988-1990 showed more large-
scale galaxy clustering than predicted. These difficulties sharpened with the discovery of CMB
anisotropy by COBE in 1992, and several modified CDM models, including ΛCDM and mixed
cold and hot dark matter, came under active consideration through the mid-1990s[34, 3].

The ΛCDM model then became the leading model following the observations of accelerating
expansion in 1998, and was quickly supported by other observations. In 2000, the BOOMER
and microwave background experiment measured the total (matter-energy) density to be close
to 100% of critical,whereas in 2001 the 2nd FGRS galaxy redshift survey measured the matter
density to be near 25%. The large difference between these values supports a positive Λ or
dark energy. Much more precise spacecraft measurements of the microwave background from
WMAP in 2003 - 2010 and Planck in 2013 - 2015 have continued to support the model and pin
down the parameter values, most of which are now constrained below 1% uncertainty[3, 2].

Nowadays, gravitational lenses are much more than just an interesting general relativistic
phenomenon. Now that a significant number of lens systems has been identified, lensing is
used more and more as an observation tool, allowing us to answer astrophysical as well as
cosmological questions, from estimates of the amount of dark matter contained in the lens mass
to the determination of fundamental parameters of the big bang models[3, 4].

The thesis was mainly adopted by Considering GR in the presence of positive cosmological
constant to derive gravitational lensing equation and effect of cosmological constant through
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vacuum fluid approach with the simple point Mass source model.
All the angular distances also consider the cosmological constant and the expanding

universe scenario by way of the transformation between the static and co-moving coordinates.
The lensing equation assumes the deflectors (the lens) and the sources positions angular distances
through the observed redshifts by Hubble law. Then, the analytically derived Lens equations are
being used to generate some numerical values to compare with observation, For the computation
Mathematica 11 is used.

4.2 General lens system

The basic setup for a gravitational lens scenario is displayed in figure (4.1).The three ingridients
in such a lensing situation are the source S,the lens L,and the observer O. In this scenario light
rays emitted by the source are deflected by the lens which will produce two images,S1 and S2.

Assuming a spherical-symmetric lens,the underlying spacetime around the lens is well
described by the Schwarzchild metric:

ds2 =

(
1− 2m

r

)
c2dt2 − dr2

1− 2m
r

− r2dθ2 − r2 sin2 θdφ2 (4.2.1)

4.3 The deflection angle and effect of cosmological constant in gravitational

lensing through vacuum fluid approach

4.3.1 Deflection angle in terms of matter and Cosmological constant

In [3],the total deflection angle is given by

∂n

∂r
= αdr (4.3.1)

where ,

• n-index of refraction

α = −
∫

1

n

∂n

∂r
dr (4.3.2)
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Figure 4.1: Set up of gravitational lens
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Now from the above total deflection angle, the deflection angle interms of matter and
Cosmological constant Λ for refractive index

(
n = 1 + 2GM
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− Λr2

3

)
is
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−DLS
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= −
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)

(4.3.3)

α(Λ,m) = −
∫ DL

−DLS

(
2GM

c2r3
− 2

3
Λ

)
ydx (4.3.4)

The integration limit, for the origin of the plane of the lens located at the center of the
lens, is all right. But the integration limit in the final result for the correction term is switched
only from the source to the plane of the lens.This effect neglects the lensing from the plane of
the lens to the observer, and so contradicts the starting assumption of the lensing system being
considered with varying refractive index from its center outwards or the reverse.

So with this comment we will have the following improved approximation on the effect
of the cosmological constant on lensing.

4.3.2 Deflection angle contribution due to matter

The first integral term of eqn.4.3.4 is represented by (m). Of course it is the deflection angle
contribution due to matter.

α(m) = −
∫ DL

−DLS

(
2GM

c2r3

)
ydx (4.3.5)

As DL and DLS get very large it is possible to replace the limit of integration from−∞
to +∞. So

α(m) = −
∫ +∞

−∞

(
2GM

c2r3

)
ydx (4.3.6)

α(m) =
2GM

c2y

∫ +∞

−∞

(
1

r3

)
dr (4.3.7)

For our Spacetime is spherical symmetry r has the r,θ and ϕ components

r =

r sin θ cos θ
r sin θ sinφ
r cos θ


then

∂r

∂r
=

∣∣∣∣∣∣
r sin θ cos θ
r sin θ sinφ
r cos θ

∣∣∣∣∣∣ =
∣∣∂r
∂r

∣∣ = 1
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∂r

∂θ
=

r cos θ cosφ
r cos θ sinφ
−r sin θ

 =
∣∣∂r
∂θ

∣∣ = r

∂r

∂φ
=

−r sin θ sinφ
r sin θ cosφ

0

 =
∣∣∣ ∂r∂φ ∣∣∣ = r sin θ

The surface element spaning from θ to θ + dθ and ϕto+ dϕ at constant spherical surface r∣∣∣ |∂r∂θ r̂ × ∂r
∂φ r̂
∣∣∣ |dθdφ = r2 sin θdθdφ

Hence, by integrating by part∫ 2π

φ=0
dφ

∫ π

θ=0
sin θdθ

∫ ∞
r=0

1

r3
dr = 4 (4.3.8)

then we have

α(m) =
2GM

c2y

∫ +∞

−∞

(
1

r3

)
dr

α(m) =
2GM

c2y

(∫ 2π

φ=0
dφ

∫ π

θ=0
sinθdθ

∫ ∞
r=0

1

r3
dr

)
This is easily integrated to give us

α(m) =
4GM

c2y
(4.3.9)

It seems that the integral depends on y, but the matter contribution is just within its
strong field. Hence for effective matter contribution of Einstein photon deflection

α(m) =
4GM

c2b
(4.3.10)

where b is the closest distance by the photon to the lensing. Of course it is possible to have
some additional terms from second to other higher order terms in GM/c2 , which revives the
Robertson - Walker metric expansion form.

4.3.3 Deflection angle due to cosmological Constant contribution

The integral of the cosmological effect part as in equation 4.3.4 is trivially integrated to give us

α(Λ) =
2

3
Λy

∫ DL

−DLS

dx =
2

3
ΛyDS (4.3.11)

Here we note that the effect is vacuum dominance and therefore one cannot treat the
effect in similar manner as that of the matter. With this understanding the deflection angle
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Figure 4.2: A gravitational-lens system of point mass
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arising due to cosmology varies with y over the whole space extended along the path of the
photon. So in equation 4.3.11 the value of y averaged over all the path length of the photon
must be used (fig.4.2). Though, it still needs further analysis (future work), we can reasonably
approximate the average value of y as in the following manner;

Let y1 is the average value of y along the path of photon from the source to the plane
of the lens. That means it varies from βDS to the closest distance b or θDL . Then for order of
cosmological distances it is quite reasonable to average it as,

y1 =
1

2
(y0 + yI) (4.3.12)

tanβ =
y0

Ds

y0 = βyDS

tan θ =
yI
DL

yI = θDL

Since DLS and DL are nearly the same order of magnitudes we can use DL as DLS and
for very small angle tanβ ≈ β, tan θ ≈ θ. Then for y1 is the average of y0 and yI

y1 =
1

2
(θDL + βDs) (4.3.13)

In a similar way we define y2 as the average of y over the path of the photon travel from
the plane of the lens to the observer given by

y2 =
1

2
θDL (4.3.14)

SinceDL andDLS are nearly the same order of magnitudes, we can once again reasonably
average y over y1 and y2 to obtain

yav =
1

2
(θDL +

1

2
βDS) (4.3.15)

So, the contribution of cosmological constant to the deflection of light in the vicinity of eqs.
4.3.11, 4.3.15 is given by

α(Λ) =

∫ DL

−DLS

−2

3
Λydx

= −2

3
Λy

∫ DL

−DLS
dx

= −2

3
Λyx|DL

−DLS

=
2

3
Λy(DL − (−DLS))

α(Λ) = −2

3
ΛyDS

(4.3.16)
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From the curved space-time background of vacuum fluid source the angular distance is
not additive i.e;

DS 6= DL +DLS (4.3.17)

From the curved space-time background of vacuum fluid source the angular distance is not
additive instead we use the distance in terms of redshift as follows[3]

DS(1 + zs) = DL(1 + zL) +DLS(1 + zs) (4.3.18)

α(Λ) = −2

3
Λ(

1

2
(θDL +

1

2
βDS)) (4.3.19)

α(Λ) = −2

3
Λ× 1

2
(θDL +

1

2
βDS)DS (4.3.20)

α(Λ) = −1

3
Λ

(
θDL +

1

2
βDS

)
DS (4.3.21)

by using eqs. 4.3.13 ,4.3.21 the angle of deflection for lensing through vacuum fluid
approach is given by

α(Λ,m) =
4GM

c2b
− 1

3
Λ

(
θDL +

1

2
βDS

)
yDs (4.3.22)

Or
α(Λ,m) =

4GM

c2DLθ
− 1

3
Λ(βDs)ds (4.3.23)

Where,b = θDL

4.3.4 The Lens Equation

Assuming spherical spacetime, From fig.4.3 below let

Ô′S = βDs

Ô′S′ = θyDS

ŜS′ = αDs

ŜS′ = âDLS

Then we have
αDs = âDLS

â =
aDs

DLS
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Figure 4.3: A gravitational-lens system of point mass: The optical axis runs from the observer

O through the centre of the lens to O’. The angle between the source S and the optical axis O’ is

β, the angle between the image S’ and the optical axis O’ is θ. The light ray towards the image is

bent by the deflection angle â , measured at the lens. The reduced deflection angle α is measured

at the observer

l
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Then now the lens equation measured at observer is derived as follows

Ô′S′ = Ô′S + ŜS′ (4.3.24)

Ô′S′ = βDs + âDLS (4.3.25)

Ô′S′ = θDs = βDs +

(
αDs

DLS

)
DLS (4.3.26)

~θ = ~β + ~α (4.3.27)

Let’s write in terms of θ
~a(θ) = ~θ − ~β(θ) (4.3.28)

And also

Ô′S = Ô′S′ − ŜS′ (4.3.29)

βDs = θDs − âDLS (4.3.30)

Then we have the lens equation as follows

β = θ − âDLS

DS
(4.3.31)

For small angles and with the angle expressed in radians, the point of nearest approach
y at an angle α for the lens L on a distance DL is given by y = θDL , For a source right
behind the lens, θDL = 0, and the lens equation for a point mass gives a characteristic value
for θ that is called the Einstein radius, denoted θE . Putting βDS = 0 and solving for θ gives
the Einstein radius for a point mass provides a convenient linear scale to make dimensionless
lensing variables. The Einstein radius most prominent for a lens typically halfway between the
source and the observer.

Then substituting eq. 4.3.23 in the lens equation 4.3.31 we get lens equation with the
effect of Cosmological constant;

β = θ − DLS

DS

(
4GM

c2DLθ
− 1

3
Λ

(
θDL +

1

2
βDS

)
DS

)
(4.3.32)

This is fundamental lens equation in the presence of cosmological constant.
Alignment
When the source is exactly behind the lens, the angular position of the source(S) and the

Optical sight(O) becomes Aligned;i.e β = 0 then

β = θ − DLS

DS

(
4GM

c2θDL
− 1

3
Λ

(
θDL +

1

2
βDS

)
DS

)
(4.3.33)

0 = θ − DLS

DS

(
4GMDS

c2θDL
− 1

3
ΛθDLDS − 0

)
(4.3.34)
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θ2(1 +
1

3
ΛDLDLS) = θ2

E (4.3.35)

Now by representing the Einsteins ring radius θ2
EΛ with cosmological correction in

Schwarzschild de Sitter metric in terms of the purely Schwarzschild metric θE as

θ2
EΛ =

θ2
E

1 + FΛ
(4.3.36)

Where θE is given by

θ2
E =

4GM

C2

DLS

DLDS
(4.3.37)

And FΛ is the correction factor to Einstein ring radius due to cosmological constant
given by

FΛ =
1

3
ΛDLDLS (4.3.38)

In conclusion we observe that the Einstein radius is affected by the factor

1

1 + FΛ
(4.3.39)

This implies that the deflection of light due to the presence of cosmological constant
decreases.

4.4 Image magnification and distortion

4.4.1 Image magnification

The ratio between the angular area of the image in the observer sky and the angular area of the
source in absence of lensing gives the (signed) amplification of the image,

µ =
sin θ

sinβ

dθ

dβ
(4.4.1)

The magnification of the apparent luminosity is given by correcting such a geometrical amplification
for the standard redshift factor. The derivative in Eq. (4.4.1) can be computed through the chain
rule by deriving the coordinate position of the source ϕ with respect to either β or θ and then
combining the results suitably. After introducing the scaled angular variables, the result can be
rearranged as a series in ε,

µ = µ0 + µ1ε + µ2ε2 +O(ε3) (4.4.2)

The first coefficients of the above expansion series are like pure Schwarzschild lensing,

µ0 =
θ4

0

θ4
0 − 1

, (4.4.3)
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and

µ1 = − 15πθ3
0

16
(
θ2

0 + 1
)3 (4.4.4)

The Λ correction shows up at the next order,

µ2 =
8θ2

0(
1− θ2

0

) (
1 + θ2

0

)3
[
θ4

0

(
4 + 2θ2

0 −
675π2

1024
(
1 + θ2

0

)2
)

+Dθ2
0(9− 10θ2

0 − 5θ4
0

)
−D

2

3

(
1 + 16θ2

0 − 23θ4
0 − 12θ6

0

)
+

θ2
0

4r2
Λε

]
(4.4.5)

Let us consider the microlening case when the two images can not be resolved and the
observable is the total magnification µtot = |µ+| + |µ−|. Using the above results,µtot can be
written in terms of the unlensed source position as

µtot '
β2 + 2

β
√
β2 + 4

− 15πε

8 (β2 + 4)3/2
− 4ε2

β (β2 + 4)3/2
×
[

1

r2
Λε

+ 4
(
6 + 6β2 + β4

)
− 675π2

256 (β2 + 4)
− 2D

(
12 + 30β2 + 5β4

)
+

4D2

3

(
18 + 35β2 + 6β4

)
(4.4.6)

The contribution of Λ to the total magnification is negative so that images are slightly de-
amplified. The cosmological constant is isotropic and does not perturb the spherical symmetry
of the lens. The caustic surface is still a line coincident with the optical axis behind the lens.
The tangential critical circle corresponding to the point-like caustics is a perturbed Einstein ring
with angular radius

θt ' θE
[
1 +

15π

32
ε+

(
4− 4D2

3
− 675π2

2048
− 1

2r2
Λε

)
ε2

]
(4.4.7)

Due to Λ the area of the Einstein ring slightly decreases.

4.4.2 Image distortion

One of the main features of gravitational lensing is the distortion which it introduces into the
shape of the sources. This is particularly evident when the source has no negligible apparent
size. For example, background galaxies can appear as very long arcs in galaxy clusters.

The distortion arises because light bundles are deflected differentially. Ideally the shape
of the images can be determined by solving the lens equation for all the points within the
extended source. In particular, if the source is much smaller than the angular size on which
the physical properties of the lens change.
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4.5 Angular distance measures in gravitational lensing

In cosmology (or to be more specific, cosmography, the measurement of the Universe) there are
many ways to specify the distance between two points, because in the expanding Universe, the
distances between comoving objects are constantly changing, and Earth-bound observers look
back in time as they look out in distance. The unifying aspect is that all distance measures
somehow measure the separation between events on radial null trajectories, ie,trajectories of
photons which terminate at the observer.

4.5.1 Cosmographic parameters

The Hubble constant (H 0)

The Hubble constant is the constant of proportionality between recession speed v and distance
d in the expanding Universe;

v = H0d (4.5.1)

The subscripted “0” refers to the present epoch because in general H changes with time. The
dimensions of H0 are inverse time, but it is usually written

H0 = 100hkms−1Mpc−1 (4.5.2)

where h is a dimensionless number parameterizing our ignorance. (Word on the street is that
0.6 < h < 0.9.) The inverse of the Hubble constant is the Hubble time tH

tH ≡
1

H0
= 9.79h−1yr = 3.09× 1017h−1s (4.5.3)

and the speed of light c times the Hubble time is the Hubble distance DH

DH ≡
c

H0
=

c

H0(1 + z)
(4.5.4)

where,Z is the redshift,for gravitational lensing at source ZS ,at LensZL These quantities set the
scale of the Universe, and often cosmologists work in geometric units with c = tH = DH = 1.

The mass density ρ of the Universe and the value of the cosmological constant Λ

These are dynamical properties of the Universe, affecting the time evolution of the metric, but in
these we will treat them as purely kinematic parameters. They can be made into dimensionless
density parameters ΩM and ΩΛ by

ΩM ≡
8πGρ0

3H2
0

(4.5.5)

ΩΛ ≡
Λc2

3H2
0

(4.5.6)
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where the subscripted “0”s indicate that the quantities (which in general evolve with time) are
to be evaluated at the present epoch. A third density parameter Ωκ measures the “curvature of
space” and can be defined by the relation

ΩM + ΩΛ + Ωκ = 1 (4.5.7)

Assuming the observed Flatness Ωκ = 0,ΩM = 0.3,ΩΛ = 0.7

4.5.2 Comoving distance (line-of-sight)

A small comoving distance δDC between two nearby objects in the Universe is the distance
between them which remains constant with epoch if the two objects are moving with the Hubble
flow. In other words, it is the distance between them which would be measured with rulers at
the time they are being observed (the proper distance) divided by the ratio of the scale factor of
the Universe then to now; it is the proper distance multiplied by (1 + z). The total line-of-sight
comoving distance DC from us to a distant object is computed by integrating the infinitesimal
δDC contributions between nearby events along the radial ray from z = 0 to the object.As
defined in[35],

E(z) ≡
√

ΩM (1 + z)3 + Ωκ(1 + z)2 + ΩΛ (4.5.8)

which is proportional to the time derivative of the logarithm of the scale factor (ie, a(t)/a(t)),
˙withz redshift and ΩM , Ωκ and ΩΛ the three density parameters defined above. (For this reason,
H(z) = H0E(z) is the Hubble constant as measured by a hypothetical astronomer working at
redshift z.) Since dz = da, dz/E(z) is proportional to the time-of-flight of a photon traveling
across the redshift interval dz, divided by the scale factor at that time. Since the speed of light
is constant, this is a proper distance divided by the scale factor, which is the definition of a
comoving distance[35]. The total line-of-sight comoving distance is then given by integrating
these contributions, or

Dc = DH

∫ z

0

dz′

E(z′)
(4.5.9)

where DH is the Hubble distance as shown in equation 4.5.4
In some sense the line-of-sight comoving distance is the fundamental distance measure

in cosmography since, as will be seen below, all others are quite simply derived in terms of it
[35]. The line-of-sight comoving distance between two nearby events (ie, close in redshift or
distance) is the distance which we would measure locally between the events today if those two
points were locked into the Hubble flow. It is the correct distance measure for measuring aspects
of large-scale structure imprinted on the Hubble flow, eg, distances between “walls,

4.5.3 Angular diameter distance

The angular diameter distance DA is defined as the ratio of an object’s physical transverse size
to its angular size (in radians). It is used to convert angular separations in telescope images into
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proper separations at the source. It is famous for not increasing indefinitely as z → ∞; it turns
over at z ∼ 1 and thereafter more distant objects actually appear larger

DA =
DM

1 + z
(4.5.10)

There is also an angular diameter distance DA between two objects at redshifts source
and observer at redshifts ZS and the observer and lens at ZL are frequently used in gravitational
lensing[35]. It is not found by subtracting the two individual angular diameter distances.

Then by using equation 4.5.9,
The angular distance from observer to lens DLis

DL =
c

H0(1 + zL)

∫ zL

o

dz′

E(z′)
(4.5.11)

The angular distance from observer to source DS is

DS =
c

H0(1 + zS)

∫ zS

o

dz′

E(z′)
(4.5.12)

And the angular distance from Lens to source DLS is

DLS =
c

H0(1 + zS)

∫ ZS

ZL

dz′

E(z′)
(4.5.13)

Where,
DH =

c

H0(1 + Z)
= the Hubble distance

c = speed of light

H0 = Hubble constant
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Chapter 5

Result and discussion

5.1 Lens equation in the presence of cosmological constant

Data source;www.cfa.harvard.edu/castles
By using the lens equation with cosmological constant(i.e,eq.4.3.32) and by considering the
point mass assumption we will see the effect of cosmological constant (Λ).The data selection is
based on the images that form einstein ring.

5.2 Data analysis for the four(4)Einstein’s ring extracted from observation

Then using equations (4.5.11,4.5.12,4.5.13) we can get the correction part as

FΛ =
ΩΛ

3

1

(1 + ZS) (1 + ZL)

∫ ZL

0

dz′

E (z′)

∫ ZS

ZL

dz′

E (z′)
(5.2.1)

Additionally,the Einstein ring is determined by the velocity dispersion given by

θE =
4πσ2

c2

DLS

DS
(5.2.2)

5.3 Calculating angular distances

By using mathemtica-11,we calculated the angular distances in giga parsec(Gpc) for the four
Einstein rings extracted from the data. To calculate the following tables we used the following
constants

c = 3.0× 108m/s

ΩΛ = 0.7
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Ωm = 0.3

Λ = 1× 10−52m−2

H0 = 71× 103m/s/Mpc
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Data of selected ring of the lens system and the angular distances
No. Lens System ZS ZL DS(Gpc) DL(Gpc)) DLS(Gpc)

1 Q0047-2808 3.60 0.48 1.47469 1.2151 1.08375

2 HST15433+5332 2.092 0.497 1.6943 1.23822 1.09481

3 MG1549+3047 1.17 0.11 1.68121 0.40815 1.47243

4 CFRS03+1077 2.941 0.938 1.57676 1.60374 0.788119

Table 5.1: The angular distances in giga parsec (source:castles[1])

Data of selected ring of the lens system
No. Lens System ZS ZL σ(m/s) FΛ θE(arcsec) θEΛ(arcsec) %

1 Q0047− 2808 3.6 0.48 229000 0.0418035 1.10991 1.08742 2.02684

2 HST1543 + 5332 2.092 0.497 108000 0.0430336 0.217064 0.212539 2.08463

3 MG1549 + 3047 1.17 0.11 227000 0.0190776 1.29974 1.28752 0.940447

4 CFRS03 + 1077 2.941 0.938 256000 0.0401232 0.943405 0.92503 1.94774

Table 5.2: The image position in arcsec (source:castles[1])

For this table we considered a flat cosmological model defined by the parameters ΩΛ =
0.7,ΩM = 0.3 and H0 = 71 × 103m/s/Mpc. From this table 5.2,the effect of Λ on image
position is 2%. This result matches with previous works of others[3, 4].

5.4 Image position and magnifications

In the symmetric case by using lens equation (4.3.36 and 4.3.37 the image magnification can be
written as

µ =

(
1−

[
θE
θEΛ

]4
)−1

(5.4.1)

Where,µ -is image magnification
θE-is the Einstein radius
The magnification of one image (the one inside the Einstein radius) is negative. For β → 0 the
magnification diverges. In the limit of geometrical optics the Einstein ring of a point source has
infinite magnification .

5.5 Contribution of cosmological constant to image magnification

After this by using the tables (table 5.1 and 5.2) lets investigate the effect of the cosmological
constant for the image magnification(µ). Now by applying eq.(5.4.1) as
The contribution of Λ to the total magnification is negative so that the images are slightly de-
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Data of selected ring of the lens system to calculate the magnification

No. Lens System θE θEΛ µ

1 Q0047− 2808 1.10991 1.08742 -11.7192

2 HST1543 + 5332 0.217064 0.212539 -11.3741

3 MG1549 + 3047 1.29974 1.28752 -0.3842

4 CFRS03 + 1077 0.943405 0.92502 -12.2166

Table 5.3: The calculated image magnification (source:castles[1])

amplified.
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Chapter 6

Summary and Conclusion

• By using simple point mass models for the Lens, we have derived the lens equation in the
presence of cosmological constant, i.e

• β = θ − DLS
DS

(
4GM
c2DLθ

− 1
3Λ
(
θDL + 1

2βDS

)
DS

)
• 1

3ΛDLSDL is the cosmological constant contribution to the deflection of light and it is
known as the correction factor, and it Contributes about 2% in my result.

• The contribution of Λ is completely involved in the form of the angular diameter distance
DA .

• In the symmetric case as we calculated in table 5.3, the magnification of the image is
negative.

• This implies that the images are de-magnified.

• The Λ correction for the magnification of the image does not exist for the zeroth and first
order, but it shows up on the second order.

• Generally,the angular distances, image sizes and image positions are affected by the cosmological
constant.
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