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Abstract

A class of two-point boundary value problems whose highest-order term is a Ca-
puto fractional derivative of order α ∈ (1,2) with a reaction term is considered. It
focused on constructing Green’s function for corresponding homogeneous equation
by using Laplace transform and Mittag-Leffler function. Under the suitable condi-
tions, we established the existence of positive solution for Caputo fractional order
differential equation BVPs by applying fixed point index theorem.
Finally, we established the uniqueness of positive solution for Caputo fractional
order differential equation BVPs by applying Banach contraction principle.
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Acronym

Throughout this research, we denote the following notation.

• N is the set of positive integers.

• R is the set of real numbers.

• R+ is the set of non-negative real numbers.

• C is the set of complex numbers.

• L and L−1 is Laplace transform and Laplace inverse transform respectively.

• G(t,s) is Green’s function

• CDα

0+ and RLDα

0+is Caputo fractional and Riemann-Liouville derivative of or-
der α respectively.

• ∂Ω is boundary of omega.

• BVPs is boundary value problems.
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Chapter 1

Introduction
1.1 Background of the Study

The concept of the differential operator d
dx is familiar to all who have studied the

elementary calculus. And the suitable function f , the nth derivative of f , namely
Dn f (x) = dn f (x)

dxn is well defined provided that n is a positive integer.
In 1698 L’Hospital inquired of Leibniz what meaning could be ascribed to Dn f if
n is a fraction. But it was not until 1884 that the theory of generalized operators
achieved a level in its development suitable as point of departure for the modern
mathematician. The theory had been extended to include operators Dα where α

could be rational or irrational, positive or negative, real or complex. Thus the name
fractional calculus can the meaning of a derivative of integer order dny

dxn be extended
to have meaning when n is any number: fractional, irrational or complex. Because
the latter question was answered affirmatively, the name fractional calculus has be-
come a misnomer and might better be called integration and differentiation to an
arbitrary order.

Leibniz invented the notation dny
dxn . Perhaps it was a naive play with symbols that

prompted L’Hospital in 1695 to asked ”Leibniz what if n be 1
2”? Leibniz 1697

states that differential calculus might have been used to achieve this result. He used
the notation d1/2 to denote the derivative of order 1

2 .
In 1819 the first mention of derivative of arbitrary order appears in a text. S. F.
Lacroix 1819, developed a more mathematical exercise generalizing from a case
of integer order. Starting with y = xm where m is positive integer, Lacroix easily
developed the nth derivative.

dny
dxn =

m!
(m−n)!

xm−n where m≥ n.
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Using Lagrange’s symbol for the generalized factorial (the Gamma function),
he gets

dny
dxn =

Γ(m+1)
Γ(m−n+1)

xm−n.

He then gives the example for y = x and n = 1
2 , obtains

d1/2x
dx1/2 =

2
√

x√
π
.

There are also well-known approaches to fractional derivative, by Riemann-Liouville,
Grunwald-Letnikov and Caputo. The most commonly used definitions are Riemann-
Liouville and Caputo. Caputo introduced a definition which has the advantage of
defining integer order initial conditions for fractional order. Applied problems re-
quire definitions of fractional derivatives allowing the utilization of physically in-
terpretable initial conditions, which contains y(0),y′(0), etc.
The Caputo fractional order derivative is important because it allows traditional ini-
tial conditions to be included in the formulation of the problems with integer order
initial conditions.

Boundary value problems associated with linear as well as non-linear ordinary dif-
ferential equations or finite difference equations have great deal of interest and play
an important role in many fields of applied mathematics such as Engineering and
Technology, major industries like automobile, aerospace, optimization theory, elec-
tromagnetic potential and heat power transmission theory are few on the boundary
value problems to simulate complex phenomena at different scales for designing
and manufacturing of heat-technological products.

By using various fixed point theorem methods existence of positive solutions stud-
ied by different researchers such as L.H and Haiyan Wang 1994, Erbe, Hu and
Wang 1994, Lian, Wong and Yah 1996, Henderson and Wang in 1997, Karakostas
and Tsamatos in 2002, Hederson, Ntouyas and Purnaras in 2008, Dang Quang and
Ngo Thi Kim Quy in 2018, Zhanbing Bai, Sujing Sun, Zengji Du, Yang Quan Chen
in 2020.
Wang, Y. and Liu, L. (2017). Studied positive properties of Green’s function for
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two term fractional differential equation and its application.

−RLDα

0+u(t)+bu(t) = f (t,u(t)),

u(0) = 0, u(1) = 0,

where 1< α < 2 and 0 < t < 1.

Meng, X. and Stynes, M., (2018). Studied Green’s function and a maximum prin-
ciple for a Caputo two-point BVPs with a convection term by using two parameter
Mittag- Leffler functions.

−CDα

0+u(t)+bu′(t) = f (t), t ∈ (0,1),

u(0)−β0u′(0) = γ0, u(1)+β1u′(1) = γ1,

where the parameter α satisfies 1 < α < 2, the constants b,β0,β1,γ0,γ1 and the
function f ∈C[0,1] are given.

Bai, Z., et al, (2020). Studied Green’s function for a class of Caputo fractional
differential equations with a convection term by using Laplace transform.

−cDα

0+u(t)+bu′(t) = h(t), 0 < t < 1,

u(0)−β0u′(0) = 0, u(1)+β1u′(1) = 0,

where the parameter α satisfies 1 < α < 2, the constants b,β0,β1 and the function
h ∈C[0,1] are given.
Motivated by the above mentioned results, in this thesis, we investigated the exis-
tence and uniqueness of positive solutions for the following Robin type Caputo frac-
tional order differential equation of BVPs with parameter α satisfying 1 < α < 2
and t ∈ [0.1].

−CDα
0+u(t)+bu(t) = f (t,u(t)) (1.1)

α0u(0)−β0u′(0) = 0, (1.2)

γu(1)+δu′(1) = 0 (1.3)

where α0,γ > 0; δ ,β0 ≥ 0 and b a constant and the function f ∈ L1[0,1] by apply-
ing fixed point index theorem and Banach contraction principle.
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1.2 Statements of the Problem

Wang,Y. and Liu, L. (2017). Studied positive properties of the Green function for
two term fractional differential equation and its application.

−RLDα

0+u(t)+bu(t) = f (t,u(t)), 0 < t < 1,

u(0) = 0, u(1) = 0,

where 1< α < 2 and t ∈ (0,1). And Bai, Z., et al, (2020). Studied the Green
function for a class of Caputo fractional differential equations with a convection
term by using Laplace transform.

−CDα

0+u(t)+bu′(t) = h(t), 0 < t < 1,

u(0)−β0u′(0) = 0, u(1)+β1u′(1) = 0,

where the parameter α satisfies 1 < α < 2; b,β0,β1 are constants and the function
h ∈ C[0,1] are given. In this Research, the Author was studied the existence and
uniqueness of positive solutions for Caputo fractional order BVPs (1.1)- (1.3).
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1.3 Objectives of the Study

1.3.1 General Objective

The main objective of this study is to establish the existence and uniqueness of
positive solutions for Caputo fractional order differential equation of BVPs (1.1)-
(1.3) by applying fixed point index theorem and Banach contraction principle re-
spectively.

1.3.2 Specific Objectives

This study has the following specific objectives:

• To construct the Green function for corresponding homogeneous equation.

• To formulate the problem in the form of integral equation with considered
condition.

• To prove the existence of positive solution by using fixed point index theorem.

• To prove the uniqueness of positive solution by using Banach contraction
principle.
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1.4 Significance of the Study

The outcome of this study have the following importance:

• It may built the research skill and scientific communication skill of the re-
searcher.

• It may provide some background information for other researchers who want
to conduct a research on related topics.

• It may help to show existence and uniqueness of positive solution for some
fractional order differentiation.

1.5 Delimitation of the Study

This study was delimited to finding the existence and uniqueness of positive solu-
tion for Caputo fractional order differential equation of BVPs (1.1)- (1.3) by apply-
ing fixed point index theorem and Banach contraction principle.
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Chapter 2

Review of Related Literatures
Fractional differential equations have become important in recent years as math-
ematical models of phenomena in engineering, chemistry, physics, and other sci-
ences by using mathematical tools from the theory of derivatives and integrals of
fractional or non-integer order. Different Authors have proved the positive solutions
of fractional BVPs by using different methods and conditions. From this some of
them are listed as follow.
Bai, Z. and Lu, H., (2005). Studied positive solutions for BVP of nonlinear frac-
tional differential equation.

RLDα

0+u(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α ≤ 2 and f : [0,1]× [0,∞)→ [0,∞) is continuous function by means of
some fixed-point theorems on cone.

Zhang, S. (2006). Studied positive solutions for BVPs of nonlinear fractional dif-
ferential equations.

CDα

0+u(t) = f (t,u(t)), 0 < t < 1,

u(0)+u′(0) = 0, u(1)+u′(1) = 0

where 1 < α ≤ 2, and f : [0,1]× [0,∞)→ [0,∞) is continuous by means of a fixed-
point theorem on cones.

Benchohra, M., and Hedia, B. (2013). Studied multiple positive solutions for
boundary value problems with fractional order by using the Krasnosel’skii fixed-
point theorem in cones.
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CDα

0+y(t)+ϕ(t) f (t,y(t)) = 0, t ∈ J = [0,1], 0 < α ≤ 1.

ay(0)+by(1) = c,

where f : J×R→ [0,+∞) is continuous function, a,b,c are real constants with
a+b 6= 0 and ϕ : [0,1]→ R is a given function.

Meng, X. and Stynes, M., (2019). Studied Green’s functions, positive solutions
and Lyapunov’s inequality for a Caputo fractional-derivative BVPs by using Guo-
Krasnoseleskii fixed point theorem.

cDα

0+u(t)+q(t) f (t) = 0, a < t < b,

y(a)−β0y′(a) = 0, y(b)+β1y′(b) = 0,

where q ∈C[a,b], f is continuous function and 1 < α < 2.

8



2.1 Preliminaries

First we recall some known definitions that we used in the proof of our main results.

Definition 2.1.1 Let X be a non-empty set. A map T : X → X is said to be a self-

map with domain of T = D(T ) = X and range of T = R(T )⊂ X.

Definition 2.1.2 Let T : X → X be a self-map. A point x in X is called fixed point

of T if T x = x.

Definition 2.1.3 Let X = (X ,d) be a metric space. A mapping T : X → X is called

a contraction on X if there is a positive real number α ∈ [0,1) such that

d(T x,Ty)≤ αd(x,y) for all x, y ∈ X.

Theorem 2.1.1 (Contraction Mapping Theorem) If T is a contraction mapping on

a Banach space X with contraction constant α , with 0≤α < 1, then T has a unique

fixed point x̄ ∈ X.

Definition 2.1.4 A linear space X is called a normed linear space provided there

is a function ‖.‖ : X → R, called a norm, satisfying

i. ‖x‖ ≥ 0, for all x ∈ X and ‖x‖= 0 if and only if x = 0.

ii. ‖x+ y‖ ≤ ‖x‖+‖y‖, for all x,y ∈ X.

iii. ‖αx‖= |α|‖x‖, for all x ∈ X and α being a scalar.

Definition 2.1.5 We say that xn subset of normed space X is a Cauchy sequence

provided given any ε > 0 there is a positive integer N such that ‖xn− xm‖ < ε for

all n,m≥ N.

Definition 2.1.6 A normed linear space X is said to be complete, if every Cauchy

sequence in X converges to a point in X.

Definition 2.1.7 A Banach space is a complete normed linear space.
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Definition 2.1.8 Let E be a real Banach space and P a subset of E, P is called a

cone if and only if:

i. P is closed, nonempty and P 6= {0};

ii. a,b ∈ R, a,b≥ 0, x,y ∈ P implies that ax+by ∈ P;

iii. x ∈ P and −x ∈ P wich implies x = 0.

Definition 2.1.9 Mittag-Leffler function is a generalization of the exponential func-

tion.

(Mittag-Leffler, 1903) For α > 0, α ∈ R and z ∈ C, the series representation

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)

is called one parameter Mittag-Leffler function.

Definition 2.1.10 (Wiman, 1905) Two parameter Mittag-Leffler function is defined

by the series,

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
where α, β > 0, α, β ∈ R, z ∈ C.

Definition 2.1.11 Suppose that α > 0, t > a and for all α, a, t ∈R. The fractional

operator

Dα

0+ f (t) =


1

Γ(n−α)

∫ t
a

f (n)(τ)
(t−τ)α+1−n dτ where n−1 < α < n ∈ N

dn

dtn f (t) where α = n ∈ N

is called the Caputo fractional derivatives of order α.

Definition 2.1.12 Let f = f (t) be a function of R+. The Laplace transform F(s) is

given by the integral

F(s) = L[ f (t)] =
∫

∞

0
e−st f (t)dt, for s ∈ R.
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Chapter 3

Research Design and Methodology
This chapter contains study period and site, study design, source of information and
mathematical procedures.

3.1 Study Area and Period

The study was conducted at Jimma University under the department of mathematics
from September, 2020 G.C. to July, 2021 G.C.

3.2 Study Design

In order to achieve the objective of the study we followed analytical method of
design.

3.3 Source of Information

The relevant sources of information for this study are books, published articles
related to the area of the study and Internet.

11



3.4 Mathematical Procedure of the Study

In this study we followed the procedures stated below:

• Defining the Caputo fractional order BVPs.

• Constructing the Green function for the corresponding homogeneous equa-
tion of Caputo fractional order differential equation.

• Formulating equivalent operator equation for the BVPs.

• Determining the existence of positive solution by using fixed point index the-
orem.

• Proving the uniqueness of positive solution by using Banach contraction prin-
ciple.

12



Chapter 4

Main Result and Discussion
4.1 Construction of Green’s Function

In this section, we construct Green’s function for the homogeneous problems cor-
responding to (1.1)-(1.3).
For the constants α and b from (1.1) we let the auxiliary function

Fλ (x) = xλ−1Eα, λ (bxα), for λ ≥ 0 and x > 0. (4.1)

(Podlubny, 1999). Derivative of the series representation of two parameter Mittag-
Leffler function, for α > 0, λ ≥ 0, b ∈ R and β is an arbitrary,

Dβ

0+[x
λ−1Eα, λ (bxα)] = xλ−β−1Eα, λ−β (bxα). (4.2)

By the use of particular case of Formula (4.2) with β ∈ N, certain properties of Fλ

are list as follows:

(P1) : [Fλ+1(x)]
′ = Fλ (x), for λ ≥ 0 and x≥ 0;

(P2) : F1(0) = 1, and Fλ (0) = 0 for λ > 1, F1(1)> 0, F2(1)> 0;

(P3) : F1(x)> 0 for x > 0, and F2(x) is increasing for x≥ 0;

(P4) : Fα−1(x)≥ 0 for x > 0, and Fα(x) is increasing for x > 0.

Now we recall the fractional order BVP (1.1)-(1.3)

−CDαu(t)+bu(t) = f (t,u(t))

α0u(0)−β0u′(0) = 0, γu(1)+δu′(1) = 0

13



and we construct its Green’s function by using Laplace transform method.
The Laplace transform of the Caputo fractional derivative is given by,

L{CDα

0+u(t)}= sαU(s)−
n−1

∑
k=0

sα−k−1u(k)(0), where n−1 < α ≤ n. (4.3)

We apply the Laplace transform on both sides of Equation (1.1) and obtain

L{−CDα

0+u(t)+bu(t)}= L{ f (t,u(t))}

which implies that, L{−CDα

0+u(t)}+bL{u(t)}= L{ f (t,u(t))}

in (4.3) n = 2, we have

−sαU(s)+
1

∑
k=0

sα−k−1u(k)(0)+bU(s) = F(s,u(s))

by expanding the series we get that,

−sαU(s)+ sα−1u(0)+ sα−2u′(0)+bU(s) = F(s,u(s)).

When we collect like terms, we have,

U(s)[b− sα ] = F(s,u(s))− sα−1u(0)− sα−2u′(0)

So, dividing both side by b− sα we obtain,

U(s) =
F(s,u(s))− sα−1u(0)− sα−2u′(0)

b− sα

=
1

b− sα
F(s,u(s))− sα−1

b− sα
u(0)− sα−2

b− sα
u′(0).

=
1

b− sα
F(s,u(s))− sα−1

b− sα
u(0)− sα−2

b− sα
u′(0).

Applying Laplace inverse on both sides,

u(t) =−L−1
[

1
sα −b

F(s,u(s))− sα−1

(sα −b)
u(0)− sα−2

sα −b
u′(0)

]
.

=−L−1
[

1
sα −b

]
∗L−1 [F(s,u(s))]+L−1

[
sα−1

(sα −b)
u(0)

]
+L−1

[
sα−2

sα −b
u,(0)

]
.

14



Since, L−1

[
sα−λ

sα ±b

]
= tλ−1Eα,λ (±btα),

L−1
[

1
sα ±b

]
= tα−1Eα,α(±btα).

Consequently,

−L−1{ 1
sα −b

}∗L−1{F(s,u(s))}+L−1{ sα−1

(sα −b)
u(0)}+L−1{ sα−2

sα −b
u′(0)}

=−tα−1Eα,α(btα)∗ f (t,u(t))+ tλ−1Eα,λ (btα)u(0)+ tλ−1Eα,λ (btα)u′(0),

=−tα−1Eα,α(btα)∗ f (t,u(t))+ t1−1Eα,1(btα)u(0)+ t2−1Eα,2(btα)u′(0),

=−tα−1Eα,α(btα)∗ f (t,u(t))+Eα,1(btα)u(0)+ tEα,2(btα)u′(0)

=−Fα(t)∗ f (t,u(t))+F1(t)u(0)+F2u′(0).

Whence, by Convolution theorem,

u(t) =−
∫ t

0
Fα(t− s) f (s,u(s))ds+F1(t)u(0)+F2(t)u′(0) (4.4)

From equation (4.4), the properties (P1), (P2) and F1(t) = Eα,1(btα) is derivative
invariant, we obtain that,

u′(t) =−
∫ t

0
Fα−1(t− s) f (s,u(s))ds+bF1(t)u(0)+F1(t)u′(0). (4.5)

Letting t = 1 in equation (4.4) and (4.5), we get

u(1) =−
∫ 1

0
Fα(1− s) f (s,u(s))ds+F1(1)u(0)+F2(1)u′(0) (4.6)

u′(1) =−
∫ 1

0
Fα−1(1− s) f (s,u(s))ds+bF1(1)u(0)+F1(1)u′(0). (4.7)

Substituting equation (4.6) and (4.7) into the boundary condition

γu(1)+δu′(1) = 0, we obtain,
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γ[−
∫ 1

0
Fα(1− s) f (s,u(s))ds+F1(1)u(0)+F2(1)u′(0)]+δ [−

∫ 1

0
Fα−1(1− s) f (s,u(s))ds

+bF1(1)u(0)+F1(1)u′(0)] = 0.

u(0)[γF1(1)+δbF1(1)]+u′(0)[γF2(1)+δF1(1)]=
∫ 1

0
[γFα(1−s)+δFα−1(1−s)] f (s,u(s))ds.

(4.8)
Taking in to account α0, γ > 0 and β0, δ ≥ 0.
Combining equation (4.8) with the boundary condition α0u(0)−β0u′(0) = 0, we
have a system of equation

[γF1(1)+δbF1(1)]u(0)+ [γF2(1)+δF1(1)]u′(0) =
∫ 1

0
[γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds,

α0u(0)−β0u′(0) = 0.

(4.9)

Solving the system we get,

u′(0) =
α0
∫ 1

0 [γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds
(β0γ +δβ0b+α0δ )F1(1)+α0γF2(1)

.

And

u(0) =
β0
∫ 1

0 [γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds
(β0γ +δβ0b+α0δ )F1(1)+α0γF2(1)

.

Where (β0γ +δβ0b+α0δ )F1(1)+α0γF2(1) 6= 0.
Consequently, the solution of (1.1)-(1.3) expressed as ,

u(t) =−
∫ t

0
Fα(t− s) f (s,u(s))ds+F1(t)u(0)+F2(t)u′(0), (4.10)

as mentioned on (Kilbas, et al. 2002 and Podlubny, 1999). Substituting the result
of u(0) and u′(0) on (4.10) we obtain,

u(t) =−
∫ t

0
Fα(t− s) f (s,u(s))ds+F1(t)

β0
∫ 1

0 [γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds
(β0γ +δβ0b+α0δ )F1(1)+α0γF2(1)

+F2(t)
α0
∫ 1

0 [γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds
(β0γ +δβ0b+α0δ )F1(1)+α0γF2(1)
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Rearranging the terms we obtain

u(t) =
∫ t

0
σ(t)

[
[γFα(1− s)+δFα−1(1− s)]−Fα(t− s)

]
f (s,u(s))ds

+
∫ 1

t
σ(t)[γFα(1− s)+δFα−1(1− s)] f (s,u(s))ds.

(4.11)

where
σ(t) =

β0F1(t)+α0F2(t)
(α0δ +β0γ +δβ0b)F1(1)+α0γF2(1)

.

By setting

G(t,s) =


σ(t)[γFα(1− s)+δFα−1(1− s)]−Fα(t− s), 0≤ s≤ t.

σ(t)[γFα(1− s)+δFα−1(1− s)] 0≤ t ≤ s≤ 1.
(4.12)

Thus, (4.11) is rewritten as

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds. (4.13)

Here, G(t,s) is the Green function for the corresponding homogeneous BVPs (1.1)-
(1.3).

4.2 Bounds of Green’s Function

Lemma 4.2.1 The Green function G(t,s) in Equation (4.12) is nonnegative for all

t,s ∈ [0,1].

Lemma 4.2.2 The Green function G(t,s) which is given in Equation (4.12) satisfies

the following inequalities

i. G(t,s)≤ LG(s,s) for t,s ∈ [0,1], where L = max
{

1, β0F1(1)+α0F2(1)
β0

}
;

ii. G(t,s)≥MG(s,s) for t,s ∈ [0,1], where M = min
{

1, β0
β0F1(1)+α0F2(1)

}
.
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Proof: (i). First we prove (i) by two cases.
Case 1: Let t ≤ s then,

G(t,s)
G(s,s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]
σ(s)[γFα(1− s)+δFα−1(1− s)]

=
σ(t)
σ(s)

≤ 1.

Therefore, G(t,s)≤ G(s,s).
Case 2: Let s≤ t, then,

G(t,s)
G(s,s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]−Fα(t− s)
σ(s)[γFα(1− s)+δFα−1(1− s)]−Fα(s− s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]−Fα(t− s)

σ(s)[γFα(1− s)+δFα−1(1− s)]

≤ σ(t)[γFα(1− s)+δFα−1(1− s)]
σ(s)[γFα(1− s)+δFα−1(1− s)]

=
σ(t)
σ(s)

since, σ(t) =
β0F1(t)+α0F2(t)

(α0δ +β0γ +δβ0)F1(1)+α0γF2(1)
and

σ(s) =
β0F1(s)+α0F2(s)

(α0δ +β0γ +δβ0)F1(1)+α0γF2(1)

Then, ratio of the two is,

σ(t)
σ(s)

=

(
β0F1(t)+α0F2(t)

(α0δ +β0γ +δβ0)F1(1)+α0γF2(1)

)
.

(
(α0δ +β0γ +δβ0)F1(1)+α0γF2(1)

β0F1(s)+α0F2(s)

)

=
β0F1(t)+α0F2(t)
β0F1(s)+α0F2(s)

=
β0F1(1)+α0F2(1)

β0
.

This implies that,
G(t,s)
G(s,s)

≤ β0F1(1)+α0F2(1)
β0

.

Therefore, G(t,s)≤ LG(s,s) where L = max
{

1, β0F1(1)+α0F2(1)
β0

}
This completes the prove of (i).
Also, we can proof (ii) by two cases.
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Case 1: Let s≤ t then,

G(t,s)
G(s,s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]−Fα(t− s)
σ(s)[γFα(1− s)+δFα−1(1− s)]−Fα(s− s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]−Fα(t− s)

σ(s)[γFα(1− s)+δFα−1(1− s)]

≥ σ(t)
σ(s)

≥ 1.

Therefore, G(t,s)≥ G(s,s).
Case 2: If t ≤ s then,

G(t,s)
G(s,s)

=
σ(t)[γFα(1− s)+δFα−1(1− s)]
σ(s)[γFα(1− s)+δFα−1(1− s)]

=
σ(t)
σ(s)

=
β0F1(t)+α0F2(t)
β0F1(s)+α0F2(s)

≥ β0

β0F1(1)+α0F2(1)
= M

Therefore, G(t,s)≥MG(s,s) when M = min
{

1, β0
β0F1(1)+α0F2(1)

}
.

Hence, the proof of Lemma (4.2.2) is complete. 2

Definition 4.2.1 An operator T is completely continuous if T is continuous and

compact, i.e., T maps bounded sets into precompact sets.

Let X be a Banach Space and P be a cone in X. For k > 0, define

Pk = {x ∈ P : ‖x‖< k} and ∂Pk = {x ∈ P : ‖x‖= k}.

The following well-known fixed point index theorem will be the fundamental
tool to prove our main results.

Theorem 4.2.3 (Krasnoselskii, M., 1964). Let X be a Banach space and P be a

cone in X. Assume that T : Pk −→ P is completely continuous such that T x 6= x for

x ∈ ∂Pk

i. If ‖T x‖> ‖x‖ for x ∈ ∂Pk, then i(T,Pk,P) = 0.

ii. If ‖T x‖< ‖x‖ for x ∈ ∂Pk, then i(T,Pk,P) = 1.

Here i(T,Pk,P) is called the fixed point index of T on Pk with respect to P.
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4.3 Existence of Positive Solutions

In this section, we establish the existence of positive solution for Caputo fractional
order BVPs (1.1)-(1.3) by using fixed point index theory.
Let X = {u(t) : u(t) ∈ L1[0,1] for t ∈ [0,1]} be a Banach space with norm

‖u‖= max
t∈[0,1]

|u(t)| and let

P= { u∈X : u(t)> 0, t ∈ [0,1], min
t∈I
|u(t)| ≥M‖u‖ } where, M =min

{
1,

β0

β0F1(1)+α0F2(1)

}
.

We note that P is a cone in X . Let the operator T : P−→ X be defined as,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds. (4.14)

To obtain a positive solution of (1.1)-(1.3) we shall find a fixed point of the operator
T in the cone P.
Assume the following conditions hold throughout this thesis.

A1. 0 <
∫ 1

0 G(t,s) f (s,u(s))ds < ∞,

A2. f (t,u(t)) is a nondecreasing function.

Define the nonnegative extended real numbers f0, f 0, f∞ and f ∞ by,

f0 = lim
u→0+

mint∈[0,1]
f (t,u(t))

u(t)
, f 0 = lim

u→0+
maxt∈[0,1]

f (t,u(t))
u(t)

,

f∞ = lim
u→∞

mint∈[0,1]
f (t,u(t))

u(t)
, f ∞ = lim

u→∞
maxt∈[0,1]

f (t,u(t))
u(t)

.

Assuming that they will exist. When f 0 = 0 and f∞ = ∞ is called super-linear case
and f0 = ∞ and f ∞ = 0 is called the sub-linear case.

Lemma 4.3.1 The operator T : P−→ X defined by (4.14) is a self-map on P.

Proof: from (A1) and the positivity of the Green function of G(t,s) in Lemma
(4.2.1) that for u(t) ∈ P, Tu(t)≥ 0 on t ∈ [0,1].
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Now for u(t) ∈ P and by Lemma (4.2.2) we have,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≤ L
∫ 1

0
G(s,s) f (s,u(s))ds.

So that, ‖Tu(t)‖≤L
∫ 1

0
G(s,s) f (s,u(s))ds where L=max

{
1,

β0F1(1)+α0F2(1)
β0

}
.

Then, by Lemma (4.2.2) for u(t) ∈ P that

minTu(t) = mint∈I

∫ 1

0
G(t,s) f (s,u(s))ds

≥
∫ 1

0
G(t,s) f (s,u(s))ds

≥M
∫ 1

0
G(s,s) f (s,u(s))ds = M‖Tu(t)‖ where M = min

{
1,

β0

β0F1(1)+α0F2(1)

}
.

Therefore, T : P −→ P and hence the proof is complete . i.e., the map T is a self-
map. 2

Theorem 4.3.2 Assume that (A1) and (A2) are satisfied. If f 0 = 0 and f∞ = ∞,

then the BVPs (1.1)-(1.3) have a positive solution that lies in P.

Proof: Let T be the cone preserving, completely continuous operator defined by
(4.14).
since, f 0 = 0, we choose ζ1 > 0 and η1 > 0 such that ,

f (t,u(t))≤ ζ1u(t) for 0≤ u(t)< η1 where ζ1 satisfies,

ζ1

∫ 1

0
G(s,s) f (s,u(s))ds < 1. (4.15)

Now, Let u(t) ∈ P with ‖u(t)‖= η1. Then by Lemma (4.2.2) and for t ∈ [0,1]

we have, Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≤ L
∫ 1

0
G(s,s) f (s,u(s))ds

≤ ζ1

∫ 1

0
G(s,s) f (s,u(s))ds‖u(t)‖ ≤ ‖u(t)‖.

21



Therefore, ‖Tu(t)‖ ≤ ‖u(t)‖. If we set Ω1 = {u(t) ∈ X : ‖u(t)‖< η1} then,

‖Tu(t)‖ ≤ ‖u(t)‖, u(t) ∈ P∩∂Ω1. (4.16)

By Theorem (4.2.3) we have i(T,P∩∂Ω1,P) = 1.
Furthermore, since f∞ = ∞, there exist ζ2 > 0 and η2 > 0 such that,
f (t,u(t))> ζ2u(t) for u(t)≥ η2 where ζ2 satisfies

ζ2

∫
s∈I

G(s,s) f (s,u(s))ds≥ 1. (4.17)

Let η2 = max
{

2η1,
η2

M

}
, choose u(t) ∈ P and ‖u(t)‖= η2, then, mint∈Iu(t)≥M‖u(t)‖ ≥ η2.

Where M = min
{

1,
β0

β0F1(1)+α0F2(1)

}
and from Lemma (4.2.2), for t ∈ [0,1] we have,

‖Tu(t)‖=
∫ 1

0
G(t,s) f (s,u(s))ds

≥M
∫ 1

0
G(s,s) f (s,u(s))ds

≥ ζ2

∫ 1

0
G(s,s) f (s,u(s))ds

≥ ζ2

∫ 1

0
G(s,s) f (s,u(s))ds‖u(t)‖

≥ ‖u(t)‖.

This implies that, ‖Tu(t)‖ ≥ ‖u(t)‖. So, if we set Ω2 = {u(t) ∈ X : ‖u(t)‖ < η2}
then,

‖Tu(t)‖ ≥ ‖u(t)‖, u(t) ∈ P∩∂Ω2. (4.18)

By Theorem (4.2.3), we have i(T,P∩Ω2,P) = 0.
If η1 < η2, then i(T,P∩ (Ω2\Ω1),P) = i(T,P∩Ω2,P)− i(T,P∩Ω1,P) = 0−1 =

−1. It follows that T has a fixed point u ∈ P∩ (Ω2\Ω1) and that u is a positive
solution of the BVPs (1.1)-(1.3) .
If η1 > η2 then, i(T,P∩ (Ω1\Ω2,P)) = i(T,P∩Ω1,P)− i(T,P∩Ω2,P) = 1−0 =

1. It follows that, T has a fixed point u ∈ P∩ (Ω1\Ω2) and that u is the positive
solution of the BVPs (1.1)-(1.3). 2
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Now, we establish the existence of positive solution of the BVPs (1.1)-(1.3) for
sub-linear case.

Theorem 4.3.3 Assume that the condition (A1),(A2) are satisfied. If f0 = ∞ and

f ∞ = 0, then the BVPs (1.1)-(1.3) have a positive solution that lies in P.

Proof: Let T be the cone preserving completely continuous operator defined by
(4.14). Since f0 = ∞ there exist ζ̄ 1 > 0 and η̄1 > 0 such that,

‖ f (t,u(t))‖ ≥ ζ̄1u(t), 0 < u(t)< η̄1,

where, ζ̄1 > ζ2 and ζ2 is given in (4.17), then for u(t) ∈ P and ‖u(t)‖ = η̄1, we
have,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≥ mint∈I

∫ 1

0
G(t,s) f (s,u(s))ds

≥ ζ̄1

∫ 1

0
G(s,s) f (s,u(s))dsM‖u(t)‖ ≥ ‖u(t)‖

Therefore, ‖Tu(t)‖ ≥ ‖u(t)‖.

Now if we set, Ω3 = { u(t) ∈ X : ‖u(t)‖< η̄1 }, then ‖Tu(t)‖ ≥ ‖u(t)‖, for
t ∈ [0,1] and u(t) ∈ P∩∂Ω3.
Hence by Theorem (4.2.3), we have i(T,P∩Ω3,P) = 0.
Furthermore, since f ∞ = 0, then there exist ζ̄2 > 0 and η̄2 > 0 such that
f (t,u(t))≤ ζ̄2u(t) for u(t)≥ η̄2 where ζ̄2 ≤ ζ1 and ζ1 is given in (4.15).
Now, we consider two cases, f is either bounded or unbounded.

Case (i): Suppose that f is bounded. Then there exist N > 0 such that
f (t,u(t))≤ N for 0 < u(t)< ∞, in this case, we may choose,

η̄2 = max{2η1, L
∫ 1

0
G(s,s) f (s,u(s))ds}

then, for u(t) ∈ P and ‖u(t)‖= η̄2 we have
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Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≤ L
∫ 1

0
G(s,s) f (s,u(s))ds≤ η̄2 = ‖u(t)‖.

Therefore, ‖Tu(t)‖ ≤ ‖u(t)‖.

Case (ii): Suppose that f is unbounded, choose η̄2 > max{2η1,η2} such that

f (t,u(t))≤ f (t, η̄2) for 0 < u(t)< η̄2 then, for u(t) ∈ P and ‖u(t)‖= η̄2 we have,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≤
∫ 1

0
G(s,s) f (s,u(s))ds

≤ L
∫ 1

0
G(s,s) f (s,u(s))ds

≤ η̄2 = ‖u(t)‖ . Which implies that, ‖Tu(t)‖ ≤ ‖u(t)‖.

In either case by setting Ω4 = {u(t) : ‖u(t)‖ < η̄2} we have ‖Tu(t)‖ ≤ ‖u(t)‖, for
u(t) ∈ P∩∂Ω4. Hence by Theorem (4.2.3), i(T,P∩∂Ω4,P) = 1.

If η̄1 < η̄2 then, i(T,P∩ (Ω4\Ω3),P) = i(T,P∩Ω4,P)− i(T,P∩3,P) = 1−0 = 1.

It follows from Theorem (4.2.3) that T has a fixed point u(t) ∈ P∩ (Ω4\Ω3) and
u(t) is positive solution of the BVPs (1.1)-(1.3) and for η̄1 > η̄2 we have,

i(T,P∩ (Ω3\Ω4),P) = i(T,P∩Ω3,P)− i(T,P∩Ω4,P) = 0−1 =−1.

It follows from Theorem (4.2.3) that T has a fixed point u(t) ∈ P∩ (Ω3\Ω4) and
u(t) is a positive solution of the BVPs (1.1)-(1.3). 2
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4.4 Uniqueness of Positive Solutions

In this section by applying Banach Contraction Principle we verify the uniqueness
of the positive solution for BVPs (1.1)-(1.3).

Lemma 4.4.1 Assume f (t,u(t)) satisfies Lipschitz conditions with respect to the

second variable with Lipschitz constant k for all t ∈ [0,1], then the BVPs (1.1)-(1.3)
has a unique solution when 0 < k

∫ 1
0 G(t,s)ds < 1.

Proof: We consider the operator T defined on cone P given by,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds,u ∈ P.

Since, T is self-map on cone P. Then we prove that T satisfies the Banach contrac-
tion, for all u, v ∈ P and t ∈ [0,1].
Where,

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds,u ∈ P.

T v(t) =
∫ 1

0
G(t,s) f (s,v(s))ds,v ∈ P.

|Tu−T v|= |
∫ 1

0
G(t,s) f (s,u)ds−

∫ 1

0
G(t,s) f (s,v)ds|

= |
∫ 1

0
G(t,s)[ f (s,u)− f (s,v)]ds|

≤
∫ 1

0
|G(t,s)[ f (s,u)− f (s,v)]ds|

≤
∫ 1

0
G(t,s)k|u− v|ds

= k
∫ 1

0
G(t,s)ds|u− v|

= α|u− v|.

Therefore, |Tu(t)−T v(t)| ≤ α|u(t)− v(t)|.

Notice that when α = k
∫ 1

0 G(t,s)ds < 1, the operator T is a contraction. Hence, by
Banach contraction principle, T has a unique fixed point which is a unique positive
solution of BVP (1.1)-(1.3) in Cone P. 2
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Chapter 5

Conclusion and Future scope
5.1 Conclusion

In this thesis we considered Caputo fractional order differential equations with
Robin boundary conditions. By the use of the Laplace transform, the Green’s func-
tion for the corresponding homogeneous Caputo fractional order BVPs with a re-
action term was obtained in terms of two-parameter Mittag-Leffler functions. After
these we formulated equivalent operator for the BVPs (1.1)-(1.3) in the given in-
terval and established the existence of positive solution for Caputo fractional order
BVPs by applying fixed point index theorem.
Finally, we established, the uniqueness of positive solution for Caputo fractional
order BVPs by using Banach contraction principle.
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5.2 Future scope

This study focused on existence and uniqueness of positive solution for Caputo
fractional order 1 < α < 2 with reaction term and Robin type boundary condition.
So, any interested Researchers may conduct the research on:

• Existence and uniqueness of positive solution for Caputo fractional order
derivative differential equation by expanding the value of order α .

• Existence and uniqueness of positive solution for Caputo fractional order
derivative differential equation by changing the boundary condition.

• Existence and uniqueness of positive solution for Caputo fractional order
derivative by using another term.
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