
GENERALIZED VOLTERRA TYPE INTEGRAL
OPERATORS ACTING BETWEEN GENERALIZED FOCK

SPACES

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS

IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DE-

GREE OF MASTERS OF SCIENCE IN MATHEMATICS

By: Gobena Dugassa

Advisor: Mafuz Humer(PhD)

July, 2021

Jimma, Ethiopia



Declaration

I, Gobena Dugassa Abetu, with student ID number RM0234/11, declare that this thesis

entitled ”Generalized Volterra-type integral operators acting between generalized Fock

spaces” is my own original work and it has not been submitted to any institution or Uni-

versity elsewhere for the award of any academic degree and sources of information that I

have been used or quoted are indicated and acknowledged.

Signature

Date

Gobena Dugassa Abetu.

The work has been done under the supervision and approval of:

Name: Mafuz Humer Worku (PhD)

Signature

Date

i



Acknowledgment

Firstly, I dedicate this thesis to Almighty God, my creator, my strong pillar, my source

of inspiration, wisdom, knowledge and understanding. He has been the source of my

strength throughout this MSc program.

I would also like to express my sincere gratitude to my advisor Dr. Mafuz Humer for the

continuous support of my MSc study and related research, for his patience, motivation

and immense knowledge. His guidance helped me in all the time of research and in writing

of this thesis. I could not have imagined having a better advisor and mentor for my MSc

study. I am grateful for his continual patience and constructive advice. He amends to

test myself and he is always in my memory.

I also dedicate my thesis work to my family and many friends. A special feeling of

gratitude to my loving parents, Dugassa Abetu and Madina Woyessa, whose words of

encouragement and push for tenacity ring in my ears. My wife, Gudetu Gemechu, my

daughters, Sifan Gobena and Sibrat Gobena, and my brother, Lemi Dugassa have never

left my side and are very special. I am grateful for all of their endless love and sacrifices

that they made on my behalf. Their prayers have sustained me thus far.

I would also like to thank Jimma University, Department of Mathematics for providing

me important information and related materials, which helped me to prepare this thesis.

ii



Abstract

The theory and study of integral operators is a wide history. Specially, boundedness and

compactness properties of different integral operators have been widely studied on several

spaces. Due to this, there is a big interest to study this properties for the generalized

Volterra-type integral operator also and have been studied by many researchers acting

between different spaces. In this thesis, we studied the and compactness properties of

generalized Volterra-type integral operator acting on generalized Fock spaces Fφp , where

0 < p ≤ ∞ and φ is a faster growing weight when compared with the Gaussian weight

function |z|2
2

.
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Chapter 1

Introduction

1.1 Background of the study

The study of boundedness and compactness of different linear operators on spaces of

analytic functions defined over a domain U ⊆ C is a rich history, where many authors are

participated and many papers and books are written on. Let X and Y be Banach spaces

and T : X → Y is a linear operator. If there is a constant c > 0 such that ‖Tx‖ ≤ c‖x‖,
x ∈ X, then we say that T is a bounded linear operator. Moreover, if ‖Txn‖ → 0

whenever xn → 0 weakly in X, then we say that T is compact. For a given space H(U)

of holomorphic or analytic functions on U , the Volterra-type integral operator on H(U)

induced by a holomorphic symbol g,

Vgf(z) =

∫ z

0

f(w)g′(w)dw,

is among the linear operators studied a lot acting between different spaces. The operator

is first introduced by (Pommerenke, 1977) and studied a lot by other authors with the aim

to explore the connection between their operator theoretic behaviors with the function-

theoretic properties of the symbols g. (Pommerenke, 1977) studied continuity of the

operator on the Hilbert space of Hardy space H2 and this result is extended to Hp, 0 < p <

∞, in general by (Aleman and Siskakis, 1995) and furthermore they studied compactness

property also. Later (Aleman and Siskakis, 1997), gave the analogous characterization

on the Bergman space. But, those studies are considered on spaces of analytic functions

defined over a disk. (Constantin, 2012) and (Mengestie, 2013) considered the problem

over a space defined over the whole complex plane , namely the classical Fock spaces .

(Li and Stevic, 2008) raised an idea to extend the Volterra-type integral operator Vg by

considering its product with composition operator Cψf = f(ψ) and they studied their

operator theoretic properties in terms of the inducing pair of symbols on some spaces of

analytic functions on the unit disk. They eventually considered the following operator
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induced by analytic functions g and ψ

V(g,ψ)f(z) =

∫ z

0

f(ψ(w))g′(w)dw.

Since a particular choice of ψ(z) = z reduce V(g,ψ) to the Volterra-type integral operator Vg,

the operator V(g,ψ) is called the generalized Volterra-type integral operator. Boundedness

and compactness of this operator have been studied on different spaces and the charac-

terization of these properties on the classical Fock space have been given by (Mengestie,

2014) and later by (Mengestie and Worku, 2018). The aim of this thesis is to characterize

boundedness and compactness of V(g,ψ) on generalized Fock spaces.

1.1.1 Generalized Fock Spaces

Notation:- C denotes the set of complex numbers.

R+ = [0,∞)→ R+ represents the set of all non-negative real numbers.

Let 0 < p ≤ ∞ and φ : R+ → R+ be a twice continuously differentiable function,

which can be extended to C by setting φ(z) = φ(|z|), z ∈ C. Then the generalized Fock

spaces Fpφ is given by,

Fpφ = {f ∈ H(C) : ‖f‖pFpΦ =

∫
C
|f(z)|pe−pφ(z)dm(z) <∞}

and

F∞φ = {f ∈ H(C) : ‖f‖F∞Φ = sup
z∈C
|f(z)|e−Φ(z) <∞}

where dm denotes the Lebesgue area measure in C. In particular, for the weight φ(z) = |z|2
2

called the Gaussian weight, we get the classical Fock spaces Fp, which is the space of entire

functions such that

‖f‖p =


(

p
2π

∫
C |f(z)|pe− p2 |z|2dm(z)

) 1
p

<∞, 0 < p <∞

supz∈C |f(z)|e−
|z|2

2 <∞, p =∞.

The space is named after the Soviet physicist Vladmir Aleksandrovich Fock (1898-1974)

and has an application in quantum physics, harmonic analysis on the Heisenberg group

and partial differential equations.
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We assume that the Laplacian of φ is positive and 1

τ(z) '

{
1, if 0 ≤ |z| < 1

(∆φ(|z|))− 1
2 , if |z| ≥ 1

where τ(z) is a radial positive differentiable function that decreases to zero as |z| → ∞
and limr→∞ τ

′(r) = 0. We suppose also that either there exists a constant α > 0 such

that τ(r)rα increases for large r or

lim
r→∞

τ ′(r) log
1

τ(r)
= 0.

The functions φ1(r) = rm,m > 2, φ2(r) = eβr, β > 0 and φ3(r) = ee
r

are some examples

of such weights with the above assumptions. This type of space have been introduced

over the complex plane C by (Constantin and Peláez, 2015) for finite exponent and by

(Mengestie and Ueki, 2015) for the infinite case, by imposing similar assumptions posed

over generalized Bergman spaces.

For a subharmonic functions φ and f , from Lemma 7 of (Constantin and Peláez, 2015),

we have a pointwise estimate

|f(z)|pe−βφ(z) .
1

σ2τ(z)2

∫
D(z,στ(z))

|f(w)|pe−βφ(w)dm(w) (1.1.1)

for all finite exponent p, any real number β, and a small positive number σ where

D(z, στ(z)) is a disc with center z and radius στ(z). The estimate implies that point

evaluation functionals are bounded on F2
φ and hence F2

φ is a reproducing kernel Hilbert

space, but an explicit formula for the kernel function is an open problem. We note that,

an explicit formula for the kernel function for the classical Fock space F2 is known, which

is given by

Kw(z) = ezw.

This is one of the difference between the classical Fock spaces and generalized Fock spaces

with the above assumptions and makes the study of operators on Fpφ difficult, since many

estimates are based on the kernel function. In (Constantin and Peláez, 2015) test functions

are constructed to overcome this problem and play the role of kernel function. For large

R, there exists a number η(R) such that for any w ∈ C with |w| > η(R), there exists an

entire function F(w,R) such that

|F(w,R)(z)|e−φ(z) ≤ C min

{
1,
(min{τ(w), τ(z)}

|z − w|

)R2

2

}
1The notation S(z) ' T (z) means both S(z) . T (z) and T (z) . S(z), where S(z) . T (z) (or

equivalently T (z) & S(z)) means that there is a constant C such that S(z) ≤ CT (z) holds.
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for all z ∈ C and for some constant C that depends on φ and R. In particular, the above

inequality shows that |F(w,R)(z)|e−φ(z) ' 1 whenever z ∈ D(w,Rτ(w)). Furthermore,

F(w,R) ∈ Fpφ, for all p with norm estimated by

‖F(w,R)‖Fpφ '

{
τ

2
p (w), η(R) ≤ |w|, 0 < p <∞

1, p =∞.

Thus, the normalized test function, F ∗(w,R), is given by,

F ∗(w,R) '


F(w,R)

τ(w)
2
p
, η(R) ≤ |w|, 0 < p <∞

F(w,R), p =∞,

and it converges uniformly to zero on compact subsets of C as |w| → ∞.

Another big difference between the two space is the inclusion property, which in the case

of classical Fock space is given by, Fp ⊆ Fq for p ≤ q, whereas the family of generalized

Fock space (Fpφ)p with the above assumptions is not nested. In fact, Fpφ \ F
q
φ 6= ∅ and

F qφ \ F
p
φ 6= ∅, for all p 6= q.

In (Constantin and Peláez, Mengestie and Ueki, 2015) the space Fpφ, for 0 < p ≤ ∞, have

been characterized in terms of the following Littlewood-Paley type formula

‖f‖pFpφ '

{
|f(0)|p +

∫
C
|f ′(z)|p

(1+φ′(z))p
e−pφ(z)dm(z), 0 < p <∞

|f(0)|+ supz∈C
|f ′(z)|

1+φ′(z)
e−φ(z), p =∞.

(1.1.2)

The description is very important in the study of integral operators and plays a big role

in this thesis.

1.2 Statement of the problem

As noted in the background of the study, boundedness and compactness of generalized

Volterra-type integral operator on the classical Fock space was studied by (Mengestie,

2014) in terms of Berezin type integral transforms. Later, ( Mengestie and Worku, 2018)

simplified the Berezin type characterization to a new simpler function to apply. But, the

characterization of boundedness and compactness of V(g,ψ) acting between generalized Fock

spaces is not studied yet, except for the case ψ(z) = z, which is studied in (Constantin

and Peláez, Mengestie and Ueki, 2015). Therefore, this thesis studies boundedness and

compactness of V(g,ψ) on generalized Fock spaces Fpφ, extending the results of (Constantin

and Peláez, Mengestie and Ueki, 2015).
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1.3 Objectives of the study

1.3.1 General objectives

The general objective of this thesis is to study boundedness and compactness properties

of generalized Volterra type integral operators acting between generalized Fock Spaces.

1.3.2 Specific objectives

The specific objectives of this study is;

- to describe boundedness of the generalized Volterra type integral operators and give

sufficient and necessary conditions for boundedness.

- to establish sufficient and necessary conditions for compactness of the generalized

Volterra type integral operators.

- to find a condition for which boundedness and compactness are equivalent.

- to provide examples that support the main results.

1.4 Significance of the study

The result of this study have the following importance:

1. It generalizes study of the operators into a more general space.

2. It may be used as a base for any researcher who is interested to study other properties

of the operators on the space.

3. Help the graduate students to acquire research skills and scientific procedures.

1.5 Delimitation of the study

This study was delimated to studying bounded and compact generalized Volterra type

integral operators acting between generalized Fock spaces.
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Chapter 2

Review of Related Literature

Ever since introduced by (Pommerenke, 1977) and after the works of (Aleman and

Siskakis, 1995), a number of researchers were motivated to study different properties

of the Volterra-type integral operator Vg on different spaces. (Constantin, 2012) studied

bounded, compact and other properties of Vg on the classical Fock spaces Fp. Then the

study was continued by (Mengestie, 2014) on the growth type classical Fock space F∞.

We state the two results by the following theorems.

Theorem 2.0.1 (Constantin, 2012 and Mengestie, 2014).

Let 0 < p ≤ q ≤ ∞. Then Vg : Fp → Fq is

(i) bounded if and only if g(z) = az2 + bz + c for a, b, c ∈ C.

(ii) compact if and only if g(z) = az + b for a, b ∈ C.

For the case when the operator maps from larger space to the smaller, there is a stronger

condition in which boundedness and compactness are equivalent.

Theorem 2.0.2 (Constantin, 2012 and Mengestie, 2014).

Let 0 < q < p ≤ ∞. Then the following are equivalent.

a) Vg : Fp → Fq is bounded,

b) Vg : Fp → Fq is compact,

c) q >


2p
p+2

, p <∞

2, p =∞
and g(z) = az + b for some a, b ∈ C.

(Mengestie, 2013) studied the extended operator, namely the generalized Volterra type

integral operators, on the classical Fock spaces Fp. Recently, (Mengestie and Worku, 2018)

studied also bounded and compact generalized Volterra type integral operator V(g,ψ) with

simpler characterization on classical Fock spaces Fp. They obtained the following results.
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Theorem 2.0.3 (Mengestie and Worku, 2018).

Let 0 < p ≤ q ≤ ∞ and (g, ψ) be pairs of nonconstant entire functions. Then

i) V(g,ψ) : Fp → Fq is bounded if and only if |g
′(z)|

1+|z| e
1
2

(|ψ(z)|2−|z|2) ∈ L∞(C, dm).

ii) V(g,ψ) : Fp → Fq is compact if and only if lim|z|→∞
|g′(z)|
1+|z| e

1
2

(|ψ(z)|2−|z|2) = 0.

Their result is different for the cases p ≤ q and q < p. For the latter case, we have a

stronger condition under which the boundedness implies compactness as stated below.

Theorem 2.0.4 (Mengestie and Worku, 2018).

Let 0 < q < p ≤ ∞ and (g, ψ) be pairs of nonconstant entire functions. Then the following

statements are equivalent.

i) V(g,ψ) : Fp → Fq is bounded;

ii) V(g,ψ) : Fp → Fq is compact;

iii) |g
′(z)|

1+|z| e
1
2

(|ψ(z)|2−|z|2) ∈

L
pq
p−q (C, dm), p <∞

Lq(C, dm), p =∞.

The purpose of this thesis is to find an analogous characterization for V(g,ψ) on Fpφ, which is

studied only for the Volterra-type integral operator in (Constantin and Peláez, Mengestie

and Ueki, 2015) and stated as follows.

Theorem 2.0.5 (Constantin and Peláez, Mengestie and Ueki, 2015).

Let 0 < p ≤ q ≤ ∞. Then Vg : Fpφ → F
q
φ is

(i) bounded if and only if
supz∈C

|g′(z)|∆φ(z)
q−p
pq

1+φ′(z)
<∞, q <∞

supz∈C
|g′(z)|∆φ(z)

1
p

1+φ′(z)
<∞, p < q =∞

supz∈C
|g′(z)|

1+φ′(z)
<∞, p = q =∞.

(ii) compact if and only if
lim|z|→∞

|g′(z)|∆φ(z)
q−p
pq

1+φ′(z)
<∞, q <∞

lim|z|→∞
|g′(z)|∆φ(z)

1
p

1+φ′(z)
<∞, p < q =∞

sup|z|→∞
|g′(z)|

1+φ′(z)
<∞, p = q =∞.
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Similarly, for the case q < p and the operator Vg maps from Fpφ into F qφ, we have the

following.

Theorem 2.0.6 (Constantin and Peláez, Mengestie and Ueki, 2015).

Let 0 < q < p ≤ ∞. Then the following are equivalent.

(i) Vg : Fpφ → F
q
φ is bounded;

(ii) Vg : Fpφ → F
q
φ is compact;

(iii) |g′(z)|
1+φ′(z)

∈ Lr(C, dm) where r =


pq
p−q , p <∞

q, p =∞.
.

Our results in Chapter 4 extends those results mentioned above either in terms of the

operator or in terms of the working space.
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Chapter 3

Methodology of the study

3.1 Study area and Period

The study was conducted in Jimma University department of mathematics under the func-

tional analysis stream from September, 2020 G.C. to July, 2021 G.C. Conceptually, the

study focused on generalized Volterra-type integral operators acting between generalized

Fock spaces.

3.2 Study design

In this research work we employed analytical method of design.

3.3 Source of information

The relevant sources of information for this study were journals, books, published articles

and related studies from Internet.

3.4 Mathematical Procedure of the study

The mathematical procedure that the researcher followed for this research work were the

following:

- Establishing theorems.

- Providing sufficient and necessary conditions for boundedness and compactness of

the operators.

- Characterizing boundedness and compactness of Volterra type integral operator.

- Giving conclusion based on the main findings.

9



Chapter 4

Main Result and Discussion

We start the chapter by defining a function M(g,ψ,φ) to be

M(g,ψ,φ)(z) :=
|g′(z)|

1 + φ′(z)
eφ(ψ(z))−φ(z)

for simplicity and our main results are also expressed in terms of this function. We then,

state some properties related to the function.

Lemma 4.0.1. Let (g, ψ) be a pair of nonconstant entire functions. Then

(i) if M(g,ψ,φ)(z) is bounded, then ψ(z) = az + b for some a, b ∈ C with |a| ≤ 1.

(ii) if ∆φ(z)
1
pM(g,ψ,φ)(z) for 0 < p <∞ is bounded, then ψ(z) = az+b for some a, b ∈ C

with |a| ≤ 1.

(iii) if ∆φ(z)
q−p
pq M(g,ψ,φ)(z) for 0 < p < q <∞ is bounded, then ψ(z) = az + b for some

a, b ∈ C with |a| ≤ 1.

Proof. The boundedness of M(g,ψ,φ) implies that,

|g′(z)| . 1 + φ′(z)

eφ(ψ(z))−φ(z)

and since g is nonconstant, we must have

φ(ψ(z))− φ(z) ≤ 0.

Otherwise, 1+φ′(z)

eφ(ψ(z))−φ(z) goes to zero as |z| → ∞, which implies g is constant and it is a

contradiction. Since φ is radial, we have

φ(|ψ(z)|) ≤ φ(|z|).
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Therefore, |ψ(z)| ≤ |z| and by Liouville’s theorem we get ψ(z) = az + b for some a, b ∈ C
with |a| ≤ 1.

The proofs for part (ii) and (iii) of the lemma follow from part (i), 0 < 1
p
, q−p
pq

<∞ and

unboundedness of the Laplacian of φ, which is from the assumption that τ(z) decreases

to zero as |z| → ∞.

Proposition 4.0.2. Let 0 < p ≤ q ≤ ∞ and (g, ψ) be a pair of nonconstant entire

functions. If V(g,ψ) : Fpφ → F
q
φ is bounded (respectively, compact), then

∆φ(z)
q−p
pq M(g,ψ,φ)(z), for p ≤ q <∞

∆φ(z)
1
pM(g,ψ,φ)(z), for p < q =∞

M(g,ψ,φ)(z), for p = q =∞

(4.0.1)

is bounded (respectively, the function in (4.0.1) goes to zero as |z| → ∞).

Proof. We consider different cases.

Case 1: 0 < p ≤ q <∞.

Applying V(g,ψ) to the test function F ∗(w,R) and using the estimate in (1.1.2),

‖V(g,ψ)‖ ≥ ‖V(g,ψ)F
∗
(w,R)‖Fqφ '

1

τ(w)
2
p

(∫
C

|F(w,R)(ψ(z))|q|g′(z)|q

(1 + φ′(z))q
e−qφ(z)dm(z)

) 1
q

≥ 1

τ(w)
2
p

(∫
D(w,δτ(w))

|F(w,R)(ψ(z))|qe−qφ(ψ(z))|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z)

) 1
q

&
τ(w)

2
q

τ(w)
2
p

(
|g′(w)|q

(1 + φ′(w))q
eqφ(ψ(w))−qφ(w)

) 1
q

= ∆φ(w)
q−p
pq M(g,ψ,φ)(w).

(4.0.2)

Thus, if V(g,ψ) is bounded, then ∆φ(w)
q−p
pq M(g,ψ,φ)(w) is bounded. Using the fact that

F ∗(w,R) converges to zero uniformly on compact subsets of C as |w| → ∞, if V(g,ψ) is com-

pact, then ‖V(g,ψ)F
∗
(w,R)‖Fqφ → 0 as |w| → ∞. From which and the above estimate, the

conclusion ∆φ(w)
q−p
pq M(g,ψ,φ)(w)→ 0 as |w| → ∞ follows.

Case 2: 0 < p < q =∞.

Following similar procedure as in the above case and using the Littlewood-Paley type

11



estimate in (1.1.2) we obtain

‖V(g,ψ)‖ & ‖V(g,ψ)F
∗
(w,R)‖F∞φ

' τ(w)−
2
p sup
z∈C

|F(w,R)(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z)

≥ τ(w)−
2
p
|F(w,R)(ψ(z))|e−φ(ψ(z))|g′(z)|

1 + φ′(z)
eφ(ψ(z))−φ(z)

' τ(z)−
2
p
|g′(z)|

1 + φ′(z)
eφ(ψ(z))−φ(z) ' ∆φ(z)

1
pM(g,ψ,φ)(z). (4.0.3)

The last estimate above is obtained by putting w = z and using the estimate

|F(z,R)(ψ(z))|e−φ(ψ(z)) ' 1.

Thus, if V(g,ψ) is bounded, then (4.0.3) impies that ∆φ(z)
1
pM(g,ψ,φ)(z) is bounded. If V(g,ψ)

is compact, then from (4.0.3) we conclude that ∆φ(z)
1
pM(g,ψ,φ)(z)→ 0 as |z| → ∞.

Case 3: p = q =∞.

Again by similar procedure as above, we have

‖V(g,ψ)‖ & ‖V(g,ψ)F
∗
(w,R)‖F∞φ ' sup

z∈C

|F(w,R)(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z)

≥
|F(w,R)(ψ(z))|e−φ(ψ(z))|g′(z)|

1 + φ′(z)
eφ(ψ(z))−φ(z) 'M(g,ψ,φ)(z), (4.0.4)

which by similar argument as above gives the conclusion.

From Lemma 4.0.1 and Proposition 4.0.2 we remark that, if the generalized Volterra-type

integral operator V(g,ψ) : Fpφ → F
q
φ for 0 < p ≤ q ≤ ∞ is bounded, then ψ(z) = az + b for

some a, b ∈ C.

Theorem 4.0.3. Let 0 < p ≤ q ≤ ∞ and (g, ψ) be a pair of nonconstant entire functions.

Then

(i) V(g,ψ) : Fpφ → F
q
φ is bounded if and only if


supz∈C ∆φ(z))

q−p
pq M(g,ψ,φ)(z) <∞, p ≤ q <∞

supz∈C ∆φ(z))
1
pM(g,ψ,φ)(z) <∞, p < q =∞

supz∈CM(g,ψ,φ)(z) <∞, p = q =∞.

12



(ii) V(g,ψ) : Fpφ → F
q
φ is compact if and only if


lim|z|→∞∆φ(z))

q−p
pq M(g,ψ,φ)(z) = 0, p ≤ q <∞

lim|z|→∞∆φ(z))
1
pM(g,ψ,φ)(z) = 0, p < q =∞

lim|z|→∞M(g,ψ,φ)(z) = 0, p = q =∞.

Proof. For the case 0 < p ≤ q < ∞, we notice that, for any entire function f , using the

Littlewood-Paley type formula in (1.1.2), we have

‖V(g,ψ)f‖qFqφ '
∫
C

|f(ψ(z))|q|g′(z)|q

(1 + φ′(z))q
e−qφ(z)dm(z)

=

∫
C
|f(z)|qdµ(q,ψ)(z)

where µ(q,ψ) is a pull-back measure given by

µ(q,ψ)(E) =

∫
ψ−1(E)

|g′(w)|q

(1 + φ′(w))q
e−qφ(w)dm(w)

for every Borel subset E of C. Thus, V(g,ψ) : Fpφ → F
q
φ is bounded (resp. compact) if

and only if the embedding operator Id : Fpφ → Lq(µ(q,ψ)) is bounded (resp. compact). By

Theorem 1 of (Constantin and Peláez, 2015), the embedding operator Id : Fpφ → Lq(µ(q,ψ))

is bounded if and only if for some δ > 0

sup
w∈C

1

τ(w)
2q
p

∫
D(w,δτ(w))

eqφ(z)dµ(q,ψ)(z) <∞.

Substituting back dµ(q,ψ), the above condition is equivalent to

sup
w∈C

1

τ(w)
2q
p

∫
D(w,δτ(w))

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z) <∞. (4.0.5)

If supw∈C
|g′(w)|(∆φ(w))

q−p
pq

1+φ′(w)
eφ(ψ(w))−φ(w) < ∞, then using the fact that τ(w) ' τ(z) for

z ∈ D(w, δτ(w)), we have

sup
w∈C

1

τ(w)
2q
p

∫
D(w,δτ(w))

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z)

. sup
w∈C

1

τ(w)
2q
p

∫
D(w,δτ(w))

1

(τ(z))
2(p−q)
p

dm(z) <∞.

On the other hand if (4.0.5) holds, then using the local estimate in (1.1.1) and the fact

13



that 1 + φ′(z) ' 1 + φ′(w) for z ∈ D(w, δτ(w)), we have

|g′(w)|q(∆φ(w))
q−p
p

(1 + φ′(w))q
eqφ(ψ(w))−qφ(w) .

τ(w)
−2q
p

(1 + φ′(w))q

∫
D(w,δτ(w))

|g′(z)|qeqφ(ψ(z))−qφ(z)dm(z)

' 1

τ(w)
2q
p

∫
D(w,δτ(w))

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z) <∞.

For the compactness part, from Theorem 1 of (Constantin and Peláez, 2015), the embed-

ding operator Id : Fpφ → Lq(µ(q,ψ)) is compact if and only if

lim
|w|→∞

1

τ(w)
2q
p

∫
D(w,δτ(w))

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z) = 0.

Proceeding as above this holds if and only if

lim
|w|→∞

|g′(w)|(∆φ(w))
q−p
pq

1 + φ′(w)
eφ(ψ(w))−φ(w) = 0.

For the case p ≤ q =∞ we note that, the forward implication of (i) and (ii) follows from

the estimates in (4.0.2), (4.0.3) and (4.0.4). Thus, we prove the backward implications.

First for p <∞, if ∆φ(z))
1
pM(g,ψ,φ)(z) is bounded, then using the local estimate in (1.1.1)

and nonconstant linearity of ψ (Lemma 4.0.1),

‖V(g,ψ)f‖F∞φ ' sup
z∈C

|f(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z)

. sup
z∈C

|g′(z)|
1 + φ′(z)

eφ(ψ(z))−φ(z)

(
1

σ2τ(ψ(z))2

∫
D(ψ(z),στ(z))

|f(ψ(ζ))|pe−pφ(ψ(ζ))dm(ζ)

) 1
p

. sup
z∈C

|g′(z)|‖f‖Fpφ
(1 + φ′(z))τ(ψ(z))

2
p

eφ(ψ(z))−φ(z) ' ‖f‖Fpφ sup
z∈C

τ(ψ(z))
−2
p M(g,ψ,φ)(z)

. ‖f‖Fpφ sup
z∈C

τ(z)
−2
p M(g,ψ,φ)(z) ' ‖f‖Fpφ sup

z∈C
∆φ(z)

1
pM(g,ψ,φ)(z).

(4.0.6)

The last estimate is by τ(ψ(z))
−2
p

τ(z)
−2
p

. 1, which is by an assumption on τ and linearity of

ψ(z) = az + b with |a| ≤ 1 (|az + b| . |z|). Therefore, from (4.0.6) we have V(g,ψ) is

bounded. Similarly, for p = ∞ if supz∈CM(g,ψ,φ)(z) < ∞, then using the estimate in

(1.1.2) and Lemma 4.0.1 we obtain,
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‖V(g,ψ)f‖F∞φ ' sup
z∈C

|f(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z)

≤
(

sup
z∈C

|g′(z)|
1 + φ′(z)

eφ(ψ(z))−φ(z)

)(
sup
z∈C
|f(ψ(z))|e−φ(ψ(z))

)
'
(

sup
z∈C

M(g,ψ,φ)(z)

)
‖f‖F∞φ

from which it follows that, V(g,ψ) : F∞φ → F∞φ is bounded.

For the compactness part, we let hn be arbitrary bounded sequence in Fpφ converging to

0 uniformly on a compact subsets of C as n→∞. Then for r > 0 and p <∞, using the

Littlewood-Paley type estimate (1.1.2), the local estimate (1.1.1) and Lemma 4.0.1,

‖V(g,ψ)hn‖F∞φ ' sup
z∈C

|hn(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z) =

(
sup
|z|≤r

+ sup
|z|>r

)
|hn(ψ(z))||g′(z)|

1 + φ′(z)
e−φ(z)

. sup
|z|≤r
||hn(ψ(z)|+ ‖hn‖Fpφ

(
sup
|z|>r

|g′(z)|
τ(ψ(z))

2
p (1 + φ′(z))

eφ(ψ(z))−φ(z)
)

. sup
|z|≤r
||hn(ψ(z)|+ sup

|z|>r

|g′(w)|∆φ(ψ(z))
1
p

1 + φ′(z)
eφ(ψ(z))−φ(z)

. sup
|z|≤r
||hn(ψ(z)|+ sup

|z|>r
∆φ(z)

1
pM(g,ψ,φ)(z).

Taking limit as n→∞, we obtain

lim
n→∞

‖V(g,ψ)hn‖F∞φ . sup
|z|>r

∆φ(z)
1
pM(g,ψ,φ)(z). (4.0.7)

Since sup|z|>r ∆φ(z)
1
pM(g,ψ,φ)(z)→ 0 as r →∞, letting r →∞ in (4.0.7) gives

lim
n→∞

‖V(g,ψ)hn‖F∞φ = 0

and therefore V(g,ψ) is compact. Similarly, if p =∞, then for r > 0,

‖V(g,ψ)hn‖F∞φ ' sup
z∈C

|hn(ψ(z))||g′(z)|
1 + φ′(z)

e−φ(z) ≤
(

sup
|z|≤r

+ sup
|z|>r

)
|hn(ψ(z))||g′(z)|

1 + φ′(z)
e−φ(z)

. sup
|z|≤r
|hn(ψ(z)|+ ‖hn‖F∞φ

(
sup
|z|>r

|g′(z)|
1 + φ′(z)

eφ(ψ(z))−φ(z)
)

. sup
|z|≤r
|hn(ψ(z)|+ sup

|z|>r

|g′(z)|
1 + φ′(z)

eφ(ψ(z))−φ(z).

By similar argument as in the case p <∞ above, we obtain the conclusion.
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Theorem 4.0.4. Let 0 < q < p ≤ ∞ and (g, ψ) a pair of nonconstant entire functions.

Then the following are equivalent.

(i) V(g,ψ) : FpΦ → F
q
Φ is compact.

(ii) V(g,ψ) : FpΦ → F
q
Φ is bounded.

(iii) The function M(g,ψ,φ) ∈ Lr(C, dm), where r =


pq
p−q , p <∞

q, p =∞.
.

Proof. For any entire function f , using the Littlewood-Paley type formula in (1.1.2), we

have

‖V(g,ψ)f‖qFqφ '
∫
C

|f(ψ(z))|q|g′(z)|q

(1 + φ′(z))q
e−qφ(z)dm(z)

=

∫
C
|f(z)|qdµ(q,ψ)(z),

where µ(q,ψ) is a pull-back measure given by

µ(q,ψ)(B) =

∫
ψ−1(B)

|g′(w)|qp
(1 + φ′(w))q

e−qφ(w)dm(w)

for every Borel subset B of C. Thus, V(g,ψ) : Fpφ → F
q
Φ is bounded (compact) if and only if

the embedding operator I : Fpφ → Lq(µ(q,ψ)) is bounded (compact), which by Proposition

3.2 of (Mengestie and Seyoum, 2019) for p =∞ and Theorem 1 of (Constantin and Peláez,

2015) for p <∞ holds if and only if the function

T (z) :=
1

τ(z)2

∫
D(z,δτ(z))

eqφ(ζ)dµ(q,ψ)(ζ)

belongs to Lq(C, dm) for p = ∞ and L
p
p−q (C, dm) for p < ∞, for some δ > 0. But for

p =∞,

T (z) =
1

τ(z)2

∫
D(z,δτ(z))

|g′(ζ)|q

(1 + φ(ζ))q
eqφ(ψ(ζ))−qφ(ζ)dm(ζ).

Thus, T belongs to Lq(C, dm) if and only if∫
C

1

τ(z)2q

∫
D(z,δτ(z))

|g′(ζ)|q

(1 + φ(ζ))q
eqφ(ψ(ζ))−qφ(ζ)dm(ζ)dm(z) <∞. (4.0.8)

First, we assume (4.0.8) holds. Using the estimate in (1.1.1) and the fact that 1 +φ′(z) '
1 + φ′(w) for z ∈ D(w, δτ(w)), we have
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∫
C

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z)

.
∫
C

1

τ(z)2q(1 + φ′(z))p

∫
D(z,δτ(z))

|g′(ζ)|qeqφ(ψ(ζ))−qφ(ζ)dm(ζ)dm(z)

.
∫
C

1

τ(z)2q

∫
D(z,δτ(z))

|g′(ζ)|q

(1 + φ′(ζ))q
eqφ(ψ(ζ))−pφ(ζ)dm(ζ)dm(z) <∞.

Therefore, M(g,ψ,φ) ∈ Lq(C, dm). On the other direction, if M(g,ψ,φ)(z) ∈ Lq(C, dm(z)),

then M(g,ψ,φ) is bounded and hence ψ is linear (Lemma 4.0.1). Then

‖V(g,ψ)f‖qFqφ '
∫
C

|f(ψ(z))|q|g′(z)|q

(1 + φ′(z))q
e−qφ(z)dm(z)

.

(
sup
z∈C
|f(ψ(z))|qe−qφ(ψ(z))

)(∫
C

|g′(z)|q

(1 + φ′(z))q
eqφ(ψ(z))−qφ(z)dm(z)

)
. ‖f‖qF∞φ .

Therefore, V(g,ψ) : F∞φ → F
q
Φ is bounded and hence (4.0.8) holds. Which concludes the

proof.

Similarly, for p < ∞, Substituting back µ(q,ψ), observe that T belongs to L
p
p−q (C, dm) if

and only if

∫
C

(
1

τ(z)2

∫
D(z,δτ(z))

|g′(ζ)|q

(1 + φ(ζ))q
eqφ(ψ(ζ))−qφ(ζ)dm(ζ)

) p
p−q

dm(z) <∞. (4.0.9)

Thus, suppose (4.0.9) holds. Using the estimate in (1.1.1) and the fact that 1 + φ′(z) '
1 + φ′(w) for z ∈ D(w, δτ(w)), for r = pq

p−q we have∫
C

|g′(z)|r

(1 + φ′(z))r
erφ(ψ(z))−rφ(z)dm(z)

.
∫
C

(
1

τ(z)2(1 + φ′(z))q

∫
D(z,δτ(z))

|g′(ζ)|qeqφ(ψ(ζ))−qφ(ζ)dm(ζ)

) p
p−q

dm(z)

.
∫
C

(
1

τ(z)2

∫
D(z,δτ(z))

|g′(ζ)|q

(1 + φ′(ζ))q
eqφ(ψ(ζ))−qφ(ζ)dm(ζ)

) p
p−q

dm(z) <∞.

On the other hand, if g′(z)
1+φ′(z)

eφ(ψ(z))−φ(z) ∈ Lr(C, dm(z)), then applying Hölder’s inequality
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gives

‖V(g,ψ)f‖qFqφ '
∫
C

|f(ψ(z))|q|g′(z)|q

(1 + φ′(z))q
e−qφ(z)dm(z)

.

(∫
C
|f(ψ(z))|pe−pφ(ψ(z))dm(z)

) q
p
(∫

C

|g′(z)|r

(1 + φ′(z))r
erφ(ψ(z))−rφ(z)dm(z)

) q
r

.

(∫
C
|f(ψ(z))|pe−pφ(ψ(z))dm(z)

) q
p

' ‖f‖qFpφ .

Where the last estimate is by linearity of ψ(z) = az+b with 0 < |a| ≤ 1. Therefore, V(g,ψ)

is bounded and hence (4.0.9) holds.

Corollary 4.0.5. Let 0 < p, q ≤ ∞. Then for a nonconstant entire inducing symbol g,

(i) Vg : Fpφ → F
p
φ is bounded (respectively, compact) if and only if |g′(z)|

1+φ′(z)
is bounded

(respectively, lim|z|→∞
|g′(z)|

1+φ′(z)
= 0).

(ii) if p < q, then Vg : Fpφ → F
q
φ is bounded (compact) if and only if lim|z|→∞

|g′(z)|
1+φ′(z)

= 0.

(iii) if q < p, then Vg : Fpφ → F
q
φ is bounded (compact) if and only if

∫
C
|g′(z)|r

(1+φ′(z))r
dm(z) <∞, Where r =


pq
p−q , p <∞

q, p =∞
.

Example :- Let 0 < p, q ≤ ∞ and φ(z) = |z|m,m > 2.

(i) If 0 < p < q ≤ ∞, then Vg : Fpφ → F
q
φ is bounded (or compact) if and only if g is a

polynomial degree ≤ m.

(ii) If p = q, the Vg : Fpφ → F
q
φ is bounded ( or respectively, compact) if and only if g is

a polynomial degree ≤ m, (respectively, g is a polynomial of degree < m.)

(iii) If 0 < q < p ≤ ∞, then Vg : Fpφ → F
q
φ is bounded (or compact ) if and only if

q >


2p
p+2

, p <∞

2, p =∞
and g is a polynomial degree < m.

18



Chapter 5

Conclusion and Future scope

5.1 Conclusion

This thesis includes a number of results, which characterize generalized Volterra-type

integral operators acting between generalized Fock spaces. Our results in chapter 4, which

is about boundedness and compactness are new and it is simple to apply to study other

properties defined whenever the operator is bounded. In addition, our results improve and

generalize some of the results that have been obtained for this important class of linear

operators. In particular, Theorem 4.0.3 and 4.0.4 generalize the results of (Constantin and

Peláez, 2015, Mengestie and Ueki, 2019) from Volterra-type integral to the generalized

Volterra-type integral operators, which is stated in Theorem 2.0.5 and 2.0.6. Moreover,

our result shows that the operator has wide number of inducing symbols g and φ, which

induces bounded and compact generalized Volterra-type integral operators on Fφp , when

we compare with the results obtained on the classical Fock spaces.

5.2 Future Scope

The study of generalized Volterra-type integral operator is an active area of research,

which attracted interest of many researchers to study acting on several functional spaces,

including the classical Fock spaces. Continuing in this area of research, any interested

researcher can study different other properties of the operator on the space. For instance,

one can study properties like compact difference, path-connected and connected com-

ponents in the space of bounded generalized Volterra-type integral operators, using the

results of this thesis.
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