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Abstract

In this thesis, we deal with a monotone hybrid finite difference method for singularly perturbed

Burgers’ equation. First, we apply quasilinearization process to tackle the non-linearity in the

equation. We constructed a numerical scheme that comprises of an implicit second-order finite

difference method to discretize the time derivative on uniform mesh and a monotone hybrid fi-

nite difference method to discretize the space derivative with piecewise uniform Shishkin mesh.

The method has been shown to be second-order uniformly accurate in the time variable, and in

the spatial direction it is first-order parameter uniform convergent in the outer region and almost

second-order parameter uniform convergent in the boundary layer region. For small values of the

parameter ε , a boundary layer is in the neighborhood of right part of the domain. Accuracy and

uniform convergence of the proposed method is demonstrated by numerical experiments.
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Chapter 1

Introduction

1.1 Background of the Study
Numerical Analysis is concerned with mathematical derivation of numerical methods, designing

an algorithm for the methods, implementation of these algorithms on computers and analysis of the

errors associated with the methods all to solve mathematical problems. It does not strive for exact-

ness. Instead, attempts to devise a method which yields an approximation differing from exactness

by less than a specified tolerance, or by an amount which has less than a specified probability of

exceeding that tolerance. The ultimate aim of the field of numerical analysis is to provide conve-

nient methods for obtaining useful solutions to mathematical problems and for extracting useful

information from available solutions which are not expressed in tractable forms. Such problems

may each be formulated, for example, in terms of algebraic or transcendental equation, an ordinary

or partial differential equation, or in terms of a set of such equations. The wide use of comput-

ing methods, combined with the demands of scientific and technical practices, has stimulated the

development of numerical methods to a great extent, and in particular, methods for solving dif-

ferential equations. The efficiency of such methods is governed by their accuracy, simplicity in

computing the discrete solution and also their relative insensitivity to parameters in the problem

(Shishkin and Shishkina, 2009). At present, numerical methods for solving partial differential

equations, in particular, finite difference scheme, are well developed for wide classes of problems

(Morton, 1996).
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A partial differential equations (PDEs) is an equation that involves two or more independent

variables, as unknown function (dependent on those variables), and partial derivatives of the un-

known function with respect to the independent variables. In real life, we often encounter many

problems which are described by parameter dependent differential equations. The behavior of the

solution of these types of differential equation depends on the magnitude of the parameter. Any

differential equation in which the highest order derivative is multiplied by a small positive param-

eter ε(0 < ε << 1) is called singular perturbation problem (SPP) and the parameter is known as

the perturbation parameter. A boundary layer is small part of the region in which solution changes

very rapidly to satisfy the given condition. SPPs arise very frequently in diversified fields of ap-

plied mathematics and engineering, for instance fluid mechanics, elasticity, hydrodynamics, quan-

tum mechanics, elasticity, chemical-reaction theory, aerodynamics, plasma dynamics, rarefied-gas

dynamics, oceanography, meteorology, modeling of semiconductor devices, diffraction theory and

reaction-diffusion processes and many other allied areas (Roos et al., 2008).

Nonlinear phenomena appear in a wide variety of scientific applications such as plasma physics,

solid state physics, optical fibers, biology, fluid dynamics and chemical kinetics. The nonlinear par-

tial differential equation is a homogenous quasi-linear parabolic partial differential equation which

encounters in the theory of shock waves, mathematical modeling of turbulent fluid and in contin-

uous stochastic processes (Arora and Singh, 2013). Such type of partial differential equation is

introduced by Bateman (1915) and he proposes the steady-state solution of the problem. Burger

(1939, 1948) used the nonlinear partial differential equation to solve problems in fluid dynamics

involving turbulence; later on it is widely referred as Burgers’ equation. The distinctive feature of

the Burgers’ equation is that it contains the non-linear convection term and the diffusion term with

viscosity coefficient.

The study of the general properties of the Burgers’ equation has attracted attention of scien-

tific community due to its applications in many areas of science and engineering fields such as

gas dynamics, heat conduction, elasticity, modelling of traffic flow, modelling of fluid dynamics

involving turbulence and fluid flow (Kadalbajoo et al., 2005). The numerical solution of Burgers’
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equation is an active area of research for the last many years to develop better numerical schemes

to approximate its solution. Many researchers have been defined various numerical methods for

numerical solutions of Burgers’ equation such as Galerkin finite element method by Abdulkadir

(2004), quadratic B-spline finite element method by Aksan (2006), modified cubic B-spline dif-

ferential quadrature method by Arora and Singh (2013), automatic differentiation method by Asai

(2010), cubic B-spline method by Dag et al. (2005), fourth-order finite difference method by Has-

sanien et al. (2005), Haar wavelet quasilinearization approach by Jiwari (2012), weighted average

differential quadrature method by Jiwari (2013), a hybrid numerical scheme Jiwari (2014), a nu-

merical method based on Crank-Nicolson by Kadalbajoo and Awasthi (2006), spectral collocation

method by Khater et al. (2008), quartic B-spline differential quadrature method by Korkmaz et

al. (2011), polynomial based differential quadrature method by Korkmaz and Dag (2011), least-

square quadratic B-spline finite element method by Kutulay et al. (2004), an implicit fourth-order

compact finite difference scheme by Liao (2008), modified cubic B-splines collocation method by

Mittal and Jain (2012), a numerical scheme based on differential quadrature method by Mittal et al.

(2013), finite element method by Ozis et al. (2003), non-polynomial spline approach by Ramadan

et al. (2007), quartic B-spline collocation method by Saka and Dag (2007), etc. All the above

review reports confirm that the numerical solutions for Burgers’ equation are with high coefficient

of viscosity. Therefore, the main purpose of this study is to propose fitted numerical method for

Burgers’ equation with very small coefficient of viscosity.

1.2 Statement of the Problem
Recently, research has been conducted on semi-linear and nonlinear types of singularly perturbed

problems. For instance, Kabeto and Duressa (2021) developed numerical method for singularly

perturbed semilinear parabolic differential difference equations. Very few scholars presented the

numerical solution of nonlinear singularly perturbed Burgers’ equation. For instance, Kadalba-

joo et al. (2005) constructed an implicit upwind difference scheme for solving nonlinear singu-

larly perturbed Burgers’ equation whose convergence behavior in the global maximum norm is

parameter-uniform. Gupta and Kadalbajoo (2016) developed B-spline collocation with implicit
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Euler method on a piecewise uniform mesh of Shishkin type for solving nonlinear singularly per-

turbed Burgers’ equation. Gowrisankar and Natesan (2019) studied singularly perturbed viscous

Burgers’ equation. Difficulties arise in the numerical solution of nonlinear singularly perturbed

Burgers’ equation which corresponds to the boundary layers produced in the neighborhood of

right part of the spatial domain, by the steeping effect of the non-linear convection term. It is well

known facts that, for small values of ε standard numerical methods for solving such problems are

unstable and do not give accurate results on uniform mesh. Therefore, it is important to develop

efficient numerical methods for solving these problems, whose accuracy does not depend on the

value of parameter ε , i.e., methods that are convergent ε−uniformly. However, a fitted mesh nu-

merical method has not been sufficiently developed yet for seeking accurate and efficient numerical

solutions of nonlinear singularly perturbed Burgers’ equation. Therefore, the main purpose of this

study is to develop fitted mesh monotone hybrid numerical method for solving singularly perturbed

Burgers’ equation. Due to this, the present study attempted to answer the following questions:

• How do we describe fitted mesh monotone hybrid method for the Burgers’ equation?

• To what extent the proposed method converges?

• To what extent the proposed method accurate?

1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this study is to formulate monotone hybrid numerical method for solving

singularly perturbed Burgers’ equation.

1.3.2 Specific Objectives

The specific objectives of the study was:

• To describe fitted mesh monotone hybrid method for singularly perturbed Burgers’ equation.

• To establish the uniform convergence of the proposed method.
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• To validate the accuracy of the proposed method.

1.4 Significance of the Study
The result obtained from this study may

• Used as a reference material for scholars who works on this area.

• Able the graduate students to acquire research skills and scientific procedures.

• Provide a numerical method for solving nonlinear singularly perturbed Burgers’ equations.

1.5 Delimitation of the Study
Singular perturbation problems are perhaps arises in variety of mathematical and physical systems.

Though singular perturbation problems are vast topics and has many applications in the real world,

this study is delimited to focus on presenting monotone hybrid numerical method for singularly

perturbed Burgers’ equation of the form:

Lεu(x, t)≡∂u
∂ t
− ε

∂ 2u
∂x2 +u

∂u
∂x

= 0, (x, t) ∈ D = Ωx×Ωt = (0,1)× (0,T ], (1.1)

with the following initial and boundary conditions, respectively

u(x,0) = φ(x), 0≤ x≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,
(1.2)

where ε is the diffusion parameter and assume the functions φ(x) is sufficiently smooth.
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Chapter 2

Review of Related Literatures

2.1 Singular Perturbation Theory
Lundwing Prandtl was the first introduce the concept layer in 1904 at the Third International Con-

gruence of Mathematics in Heidelberg Germany. His hypothesis was in the setting of fluid dynam-

ics, fluid adjacent to the boundary sticks to the edge in a thin boundary layer due friction but this

friction has no effect to the flow on the interior by (Prandtl, 1904). The term singular perturbation

appears to have been first coined (Friedrichs and Wasow, 1946). Wasow continued to the con-

tribute to the area of asymptotic methods over many years and his book ” Asymptotic expansion

for ordinary differential equation ” Vasil’eva (1963), attracted much interest in the area of singu-

lar perturbed boundary value problems. In Russia, mainly at Moscow State University, research

activity on singular perturbations for ordinary differential equations, originated and developed by

Tikhonov (1952) and his students, especially Vasil’eva (1994) continues to be vigorously pursued

even today. A brief survey for the historical development of singular perturbation problems is cov-

ered in the recent book (O’Malley, 1991) and (Roos et al., 2008). More precisely, a perturbation

problem is problem that contains a small parameter ε , called perturbation parameter. If the solu-

tion of the problem can be approximated by setting the value of the perturbation parameter equal

to zero, then the problem is called regular perturbation problem, otherwise it is called singular per-

turbation problem. That is, if it is impossible to approximate the solution by asymptotic expansion

as the perturbation parameter tends to zero, then the problem is called singular.
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Some numerical methods for solving singularly perturbed problems have been studied exten-

sively in the literature. Singularly perturbed differential equations are characterized by the presence

of a small parameter multiplying the highest-order derivatives. Such problems arise in many areas

of applied mathematics and engineering. Among these are the Navier-Stokes equations of fluid

flow at high Reynolds number, mathematical models of liquid crystal materials and chemical re-

actions, control theory, reaction-diffusion processes, quantum mechanics, and electrical networks.

An overview of some existence and uniqueness results and applications of singularly perturbed

problems can be found (Roos et al., 2008).

2.2 Singularly Perturbed Burgers’ Equation

Kadalbajoo et al. (2005) studied the following singularly perturbed Burgers’ equation of the

form 
Lεu(x, t)≡ ∂u

∂ t +u∂u
∂x = ε

∂ 2u
∂x2 , (x, t) ∈ D = Ωx×Ωt = (0,1)× (0,T ],

u(x,0) = f (x), 0 < x < 1,

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ T,

(2.1)

where 0 < ε << 1 is the coefficient of kinematic viscosity and the prescribed function f (x) is

sufficiently smooth. The authors first semi-discretize the original non-linear Burgers’ equation

in the temporal direction by backward Euler scheme with the constant time step which produces

a set of stationary Burgers’ equations. Then using the quasilinearization process, the stationary

Burgers’ equation obtained from semi-discretization will be linearized. For totally discrete scheme,

the authors discretize the set of linear problems resulting from the time semi discretization using

the simple upwind finite difference scheme defined on an appropriate piecewise uniform mesh of

Shishkin type.

Gupta and Kadalbajoo (2016) studied qualitative analysis and numerical solution of Burgers’

equation via B-spline collocation with implicit Euler method on piecewise uniform mesh for the

problem of type (1.1)-(1.2). They constructed a numerical scheme that comprises of implicit Euler

method to discretize in temporal direction on uniform mesh and a B-spline collocation approach to

7



discretize the spatial variable with piecewise uniform Shishkin mesh. Quasi-linearization process

is used to tackle the non-linearity and shown that quasi-linearization process converges quadrati-

cally. Asymptotic bounds for the derivatives of the solution are established by decomposing the

solution into smooth and singular components. These bounds are applied in convergence analysis

of the proposed method on Shishkin mesh. The method has been shown to be first-order convergent

in the temporal variable and almost second order accurate in the spatial variable.

Gowrisankar and Natesan (2019) studied problem of type (1.1)-(1.2). They proposed a pa-

rameter uniformly convergent numerical method for viscous Burgers’ equation. In order to find a

numerical approximation to Burgers’ equation, they linearize the equation to obtain sequence of

linear PDEs. The linear PDEs are solved by a finite difference scheme, which comprises of the

backward-difference scheme for the time derivative and upwind finite difference scheme for the

spatial derivatives. Layer-adapted nonuniform meshes are invoked at each time level to exhibit

layer nature of the solution. The nonuniform meshes are obtained by equidistribution of a positive

integrable monitor function, which involves the derivative of the solution. It is shown that the

methods converges uniformly with respect to the perturbation parameter. Numerical experiments

are carried out to validate the ε−uniform error estimate of O(N−1 +∆t).

Kadalbajoo and Awasthi (2017) considered singularly perturbed modified Burgers’ turbulence

model 
Lεu(x, t)≡ ∂u

∂ t + ktn/2u∂u
∂x = ε

∂ 2u
∂x2 , 0 < ε << 1, (x, t) ∈ D = Ω× (0,T ],

u(x,0) = f (x), 0 < x < 1,

u(0, t) = 0 = u(1, t), 0 < t ≤ T,

(2.2)

where k is a positive constant, n = 1 or n = 2, and Ω = (0,1). The authors proposed a numerical

method which comprises of Euler implicit scheme in time and hybrid scheme in space direction.

First, they discretize the continuous problem in temporal direction by Euler implicit method, which

yields a set of ordinary differential equations at each time level. The resulting set of differential
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equations are approximated by a hybrid scheme on Shishkin mesh i.e. upwind in regular region

(non-boundary layer region) and central difference in boundary layer regions. The convergence

of proposed method has been shown parameter uniform. Some numerical experiments have been

carried out to corroborate the theoretical results. As can be seen in the above literature review,

very few researchers are tried to find the numerical solution for singularly perturbed nonlinear

Burgers’ and modified Burgers’ equation. As far as the review report is concerned, the numerical

solution for singularly perturbed nonlinear Burgers’ and modified Burgers’ equation is at the initial

stage. Therefore, the main purpose of this study is to develop fitted numerical method for solving

singularly perturbed nonlinear Burgers’ equation.

2.3 Quasilinearzation Technique
The nonlinear partial differential equation is linearized around a nominal solution of the nonlinear

partial differential equation which satisfies the boundary conditions. Suppose u(k)(x) is the nom-

inal solution of the nonlinear partial differential equation. The quasilinearization process yields

a sequence < u(k) > of linear equations (Bellman and Kalaba, 1965). They developed the quasi-

linearzation technique which is used to reduce the given nonlinear boundary value problem into

the corresponding sequence of linear boundary value problem. The quasilinearzation technique

of reducing nonlinear boundary value problem into a sequence of linear boundary value problem

involves some steps. First, we linearize the semi-linear ordinary differential equation around a

nominal solution, which satisfies the specified boundary conditions. Second, we solve a sequence

of boundary value problems in which the solution of the linear boundary value problem satisfies

the specified boundary conditions and is taken as the nominal profile for the linear boundary value

problem. Quasilinearzation technique is used to linearize the original semi-linear singular pertur-

bation problem into a sequence of linear singular perturbation problems.

2.4 Numerical versus Analytical Methods
Suppose we have a differential equation and we want to find a solution of the differential equa-

tion. The best is when we can find out the exact solution using calculus, trigonometry and other
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techniques. The techniques used for calculating the exact solution are known as analytic methods

because we used the analysis to figure it out. Analytical solution is continuous. The exact solution

is also referred to as a closed form solution or analytical solution. But this tends to work only for

simple differential equations with simple coefficients, but for higher order or non-linear differen-

tial equations with complex coefficient, it becomes very difficult to find exact solution. Therefore,

we need numerical methods for solving the equations. Numerical methods are commonly used for

solving mathematical problems that are formulated in science and engineering where it is difficult

or even impossible to obtain exact solutions. Numerical solution is discrete. Numerical methods,

on the other hand, can give an approximate solution to an equation.

2.5 Finite Difference Methods
Most problems cannot be solved analytically, henceforth finding good approximation solutions

using numerical methods will be very useful. From different classification of numerical methods

such as finite difference method, spectral method, finite element method, finite volume method,

spline method, finite difference method seems to be the simplest approach for the numerical solu-

tion of boundary value problems (Roos et al., 2008). Finite difference methods are widely used by

the scientific community and it is always a convenient choice for solving boundary value problems

because of their simplicity. In finite difference methods, derivatives appearing in the differential

equations are replaced by finite difference approximations obtained by Taylor series expansions at

the grid points. This gives a large algebraic system of equations to be solved by Thomas Algo-

rithm in place of the differential equation to give the solution value at the grid points and hence

the solution is obtained at grid points. Some of the finite difference methods include forward

approximation, backward approximation, central difference approximation.
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Chapter 3

Research Methodology

3.1 Study Area and Period
This study was conducted at Jimma University department of Mathematics from September 2020

to June 2021.

3.2 Study Design
This study employed both documentary review and numerical experimental design.

3.3 Source of Informations
The relevant source of information for this study are books and published articles from internet.

3.4 Mathematical Procedures
In order to achieve the aforementioned objectives, the study followed the following steps:

1. Define the problem.

2. Apply the quasilinearization technique to linearize the nonlinear problem.

3. Discretize the temporal interval and replace the differential term with respect to time deriva-

tive by second-order finite difference approximation.

4. Discretize the spatial interval using piecewise uniform mesh and formulate the monotone

hybrid method.

11



5. Establish the convergence of the formulated method.

6. Write MATLAB code for the method.

7. Present the numerical illustrations.

12



Chapter 4

Derivation of the Method, Convergence

Analysis and Numerical Results

4.1 Derivation of the Method
In this study, we consider the following singularly perturbed nonlinear one-dimensional Burgers’

equation with the initial and boundary conditions, respectively


Lεu(x, t)≡∂u

∂ t
− ε

∂ 2u
∂x2 +u

∂u
∂x

= 0, (x, t) ∈ D = (0,1)× (0,T ],

u(x,0) = φ(x), 0≤ x≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,

(4.1)

where ε is the perturbation parameter and assume the function φ(x) must be continuous on [0,1]

and continuously differentiable on (0,1).

4.1.1 The Quasilinearization Technique

To linearize the nonlinear term in Eq. (4.1), we re-write Eq. (4.1) in the form


F(x, t,u,

∂u
∂x

) =
∂u
∂ t
− ε

∂ 2u
∂x2 , (x, t) ∈ D = (0,1)× (0,T ],

u(x,0) = φ(x), 0≤ x≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,

(4.2)
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where F(x, t,u, ∂u
∂x ) = −u∂u

∂x . A reasonable initial approximation u(0)(x, t) for the function u(x, t)

is used to linearize the term F(x, t,u, ∂u
∂x ) = −u∂u

∂x by applying the quasilinearization technique

(Bellman and Kalaba, 1965). For the reasonable initial guess of the form

u(0)(x, t) = φ(x)e−ct = u(0), (4.3)

satisfying the initial and boundary conditions of the problem so that the constant c is taken from the

coefficients of the initial condition (Gowrisankar (2019)). Expanding the nonlinear term F(x, t,u(0), ∂u(0)
∂x )

around the point u(0), we obtain:

F
(

x, t,u(1),
∂u(1)

∂x

)
∼=F
(

x, t,u(0),
∂u(0)

∂x

)
+
(
u(1)−u(0)

)∂F
∂u


(x,t,u(0), ∂u(0)

∂x )

+

(
∂u(1)

∂x
− ∂u(0)

∂x

)
∂F

∂ (∂u
∂x )


(x,t,u(0), ∂u(0)

∂x )

+ · · ·
(4.4)

Putting Eq. (4.4) into Eq. (4.2), we obtain

F
(

x, t,u(0),
∂u(0)

∂x

)
+
(
u(1)−u(0)

)∂F
∂u


(x,t,u(0), ∂u(0)

∂x )

+

(
∂u(1)

∂x
− ∂u(0)

∂x

)
∂F

∂ (∂u
∂x )


(x,t,u(0), ∂u(0)

∂x )

=
∂u(1)

∂ t
− ε

∂ 2u(1)

∂x2

(4.5)

From Eq. (4.5), we get

∂u(1)

∂ t
− ε

∂ 2u(1)

∂x2 −
∂F

∂ (∂u
∂x )


(x,t,u(0), ∂u(0)

∂x )

∂u(1)

∂x
− ∂F

∂u


(x,t,u(0), ∂u(0)

∂x )

u(1)

= F
(

x, t,u(0),
∂u(0)

∂x

)
− ∂F

∂ (∂u
∂x )


(x,t,u(0), ∂u(0)

∂x )

∂u(0)

∂x
− ∂F

∂u


(x,t,u(0), ∂u(0)

∂x )

u(0)
(4.6)
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At the first iteration, we obtain the following linearized parabolic differential equation


Lεu≡

(
∂u
∂ t
− ε

∂ 2u
∂x2 +a

∂u
∂x

+bu
)
(x, t) = f (x, t),

u(x,0) = φ(x), 0≤ x≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,

(4.7)

where a(x, t) =− ∂F
∂ ( ∂u

∂x )


(x,t,u(0), ∂u(0)

∂x )

, b(x, t) =−∂F
∂u


(x,t,u(0), ∂u(0)

∂x )

,

f (x, t) = F
(

x, t,u(0), ∂u(0)
∂x

)
− ∂F

∂ ( ∂u
∂x )


(x,t,u(0), ∂u(0)

∂x )

∂u(0)
∂x −

∂F
∂u


(x,t,u(0), ∂u(0)

∂x )

u(0).

Specifically, we can write a(x, t) = u(0), b(x, t) = ∂u(0)
∂x and f (x, t) = u(0) ∂u(0)

∂x .

4.1.2 Time discretization

Now, we first discretize the time derivative by means of an implicit second-order finite difference

method on a uniform mesh. Let N be a positive integer different from one, we divide the time

interval [0,T ] with uniform step length ∆t. Hence, the interval [0,T ] is partitioned into N equal

sub-intervals with each nodal points satisfying 0 = t0 < t1 < · · · < tN−1 < tN = T. Thus, the time

nodal points are generated by tn = n∆t, ∆t = T
N , n= 0, · · · ,N, where N denotes the number of mesh

intervals in the time direction.

The semi-discretized problem in Eq. (4.7) at the point (x, tn+ 1
2
) becomes

LN
ε Un+ 1

2 (x)≡
(

∂U
∂ t
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU
)
(x, tn+ 1

2
) = f (x, tn+ 1

2
), (4.8)

Using Taylor series expansion about (x, tn+ 1
2
) gives

U(x, tn+1) =U(x, tn+ 1
2
)+

∆t
2

∂U(x, tn+ 1
2
)

∂ t
+

∆t2

8

∂ 2U(x, tn+ 1
2
)

∂ t2 +
∆t3

48

∂ 3U(x, tn+ 1
2
)

∂ t3 + · · · (4.9)

U(x, tn) =U(x, tn+ 1
2
)− ∆t

2

∂U(x, tn+ 1
2
)

∂ t
+

∆t2

8

∂ 2U(x, tn+ 1
2
)

∂ t2 − ∆t3

48

∂ 3U(x, tn+ 1
2
)

∂ t3 + · · · (4.10)
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From Eqs. (4.9) and (4.10), we obtain

∂U(x, tn+ 1
2
)

∂ t
=

Un+1(x)−Un(x)
∆t

+T E, (4.11)

where T E =−∆t2

24

∂ 3U(x,t
n+ 1

2
)

∂ t3 .

From this truncation error, we obtain the following error bound in time semi-discretization

‖E‖∞ ≤C∆t2, (4.12)

where C is an arbitrary constant given by C = 1
24 |

∂ 3U(x,t
n+ 1

2
)

∂ t3 |.

Averaging of all the terms in Eq. (4.8) yields

(
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU− f
)
(x, tn+ 1

2
)

=
1
2

[(
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU− f
)
(x, tn+1)+

(
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU− f
)
(x, tn)

] (4.13)

Putting Eqs. (4.11) and (4.13) into Eq. (4.8) gives

U(x, tn+1)−U(x, tn)
∆t

+
1
2

[(
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU− f
)
(x, tn+1)

+

(
− ε

∂ 2U
∂x2 +a

∂U
∂x

+bU− f
)
(x, tn)

]
= T E.

(4.14)

Multiplying both sides Eq. (4.14) by 2 gives the following form

(
− ε

d2U
dx2 +a

dU
dx

+(b+
2
∆t

)U
)
(x, tn+1) = Z(x, tn+1), (4.15)

subject to the initial-boundary conditions, respectively


U(x,0) = φ(x), 0≤ x≤ 1,

U(0, tn+1) = 0, U(1, tn+1) = 0, 0≤ t ≤ T,
(4.16)
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where Z(x, tn+1) = f (x, tn+1)+ f (x, tn)+
(

ε
d2U
dx2 −adU

dx − (b− 2
∆t )U

)
(x, tn). Assume that the coef-

ficients an+1(x) and bn+1(x) are sufficiently smooth and bounded functions satisfying the following

conditions an+1(x)≥ α > 0, bn+1(x)≥ β > 0. These conditions ensure that the boundary layer is

located at x = 1.

4.1.3 Properties of the Semi-discretized Problem

The differential operator in Eq. (4.15)-(4.16) satisfies the following continuous maximum princi-

ple.

Lemma 4.1 Let Ψn+1(x) ∈ C2(Ω̄) be a smooth function satisfying Ψn+1(0) ≥ 0, Ψn+1(1) ≥ 0.

Then, LΨn+1(x)≥ 0, ∀x implies that Ψn+1(x)≥ 0, ∀x.

Proof: Let x∗ be such that Ψn+1(x∗) = min
x∈Ω̄

Ψn+1(x) and assume that Ψn+1(x∗)< 0. It is clear that

x∗ /∈ {0,1}. Therefore, we have (Ψn+1)x = 0 and (Ψn+1)xx ≥ 0. Then,

LΨ
n+1(x∗) =−εΨ

n+1
xx (x∗)+a(x∗)Ψn+1

x (x∗)+b(x∗)Ψn+1(x∗)< 0,

which contradicts the assumption that LΨn+1(x) ≥ 0, ∀x. It follows that Ψn+1(x∗) ≥ 0 and thus

Ψn+1(x)≥ 0, ∀x ∈ Ω̄. 2

Bounds for the solution of the semi-discretized problem in Eq. (4.15)-(4.16) and its derivatives

are established in the following theorem. We need this bounds for the convergence analysis of the

fully discrete scheme in next subsection.

Theorem 4.2 Let Un+1(x) be the solution of Eq. (4.15). Then, the bounds of the solution and its

derivatives satisfy

∥∥∥∥∂ iUn+1(x)
∂xi

∥∥∥∥
Ω̄

≤C
(

1+ ε
−i exp(

−α(1− x)
ε

)

)
, i = 1,2,3,

where the constant C is independent of ε .
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Proof: The proof of this theorem is found (Kadalbajoo et al., 2005) and (Kadalbajoo and Gupta,

2010). 2

4.1.4 Decomposition of Solution

To obtain the stronger bounds on the solution of problem (4.1), we decompose the solution as the

sum Un+1(x) = vn+1(x)+wn+1(x), where vn+1(x) is the solution of the regular component and

wn+1(x) is the singular component solution. The bounds of vn+1(x), wn+1(x) and their derivatives

are given by the following theorem.

Theorem 4.3 The regular component vn+1(x) satisfies the bound

∥∥∥∥∂ ivn+1

∂xi

∥∥∥∥
Ω̄

≤C
(
1+ ε

2−i), i = 0,1,2,3,

and the singular component wn+1(x) satisfies the bound

∥∥∥∥wn+1(x)
∥∥∥∥

Ω̄

≤C exp(
−α(1− x)

ε
), ∀x ∈Ω,∥∥∥∥∂ iwn+1

∂xi

∥∥∥∥
Ω̄

≤Cε
−i, i = 1,2,3,

where C is a constant independent of ε and mesh points.

Proof: The detailed proof of this theorem is established (Kadalbajoo et al., 2005). 2

4.1.5 Spatial Discretization

Spatial discretization was made using a hybrid method which is a combination of the upwinding

difference scheme in the outer region and the central difference scheme in the inner region based

on a piecewise-uniform Shishkin mesh. The construction of a piecewise uniform mesh of Shishkin

type was made in such a way that more mesh points are generated in the boundary layer region

than outer region. We divide the spatial interval Ω̄M
x = [0,1] into two sub-domains [0,1−σ ] and

[1−σ ,1] by placing a uniform mesh with M/2 mesh intervals in each of the sub-domains where

σ is the transition point defined as σ = min{1
2 ,

2ε

α
ln(M)}, with M ≥ 8. For σ = 1/2, the mesh

18



is uniform and for σ = 2ε

α
ln(M), the mesh points get condensed at the right side of the domain.

For error analysis, we assume that σ = 2ε

α
ln(M). The spatial mesh points condensing at the right

boundary point x = 1 is given by

xm =


2(1−σ)m

M , if m = 0(1)M
2 ,

1−σ +
2σ

(
m−M

2

)
M , if m = (M

2 +1)(1)M,

The spatial mesh widths for m = 0,1,2, · · · ,M can be defined as

hm = xm− xm−1 =


h̃1 =

2(1−σ)
M , if m = 1(1)M

2 ,

h̃2 =
2σ

M , if m = (M
2 +1)(1)M,

where h1 and h2 are the spatial step size in [0,1−σ ] and [1−σ ,1], respectively. We define the

first- and second-order difference operators in space for any discrete function z(xm, tn)≈ zn
m

D+zn
m =

zn
m+1− zn

m

hm+1
, D0zn

m =
zn

m+1− zn
m−1

ĥm
, D−zn

m =
zn

m− zn
m−1

hm
, δ

2
x zn

m =
2(D+

x zn
m−D−x zn

m)

ĥm
.

where ĥm = hm + hm+1 for m = 1,2, · · · ,M− 1. The monotone hybrid difference scheme which

is a combination of the upwinding difference scheme on the coarse mesh region and the central

difference scheme on the fine mesh region. We discretize Eq. (4.15) by the monotone hybrid

difference scheme, where we use the upwind finite difference scheme

L̃M,N
ε,upUn+1

m ≡− εδ
2
x Un+1

m +an+1
m D−x Un+1

m +(bn+1
m +

2
∆t

)Un+1
m

=εδ
2
x Un

m−an
mD−x Un

m− (bn
m−

2
∆t

)Un
m + f n+1

m + f n
m, for m = 1, · · · , M

2
,

(4.17)

on the coarse mesh region and central difference scheme

L̃M,N
ε,cenUn+1

m ≡− εδ
2
x Un+1

m +an+1
m D0

xUn+1
m +(bn+1

m +
2
∆t

)Un+1
m

=εδ
2
x Un

m−an
mD0

xUn
m− (bn

m−
2
∆t

)Un
m + f n+1

m + f n
m, for m =

M
2
+1, · · · ,M−1

(4.18)
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in the fine mesh region. Substituting the above defined operators into Eqs. (4.17) and (4.18), we

have the following on the coarse mesh region for m = 1, · · · , M
2

L̃M,N
ε,upUn+1

m ≡−2ε

ĥm

(
Un+1

m+1−Un+1
m

hm+1
−

Un+1
m −Un+1

m−1

hm

)
+an+1

m

(
Un+1

m −Un+1
m−1

hm

)
+(bn+1

m +
2
∆t

)Un+1
m

=
2ε

ĥm

(
Un

m+1−Un
m

hm+1
−

Un
m−Un

m−1

hm

)
−an

m

(
Un

m−Un
m−1

hm

)
− (bn

m−
2
∆t

)Un
m + f n+1

m + f n
m.

(4.19)

Again, we have the following on the fine mesh region m = M
2 +1, · · · ,M−1

L̃M,N
ε,cenUn+1

m ≡−2ε

ĥm

(
Un+1

m+1−Un+1
m

hm+1
−

Un+1
m −Un+1

m−1

hm

)
+an+1

m

(
Un+1

m −Un+1
m−1

ĥm

)
+(bn+1

m +
2
∆t

)Un+1
m

=
2ε

ĥm

(
Un

m+1−Un
m

hm+1
−

Un
m−Un

m−1

hm

)
−an

m

(
Un

m−Un
m−1

ĥm

)
− (bn

m−
2
∆t

)Un
m + f n+1

m + f n
m.

(4.20)

The totally discrete monotone hybrid numerical scheme now takes the following form

L̃M,N
ε Un+1

m =



U0
m = φ(xm), m = 0,1, · · · ,M,

L̃M,N
ε,upUn+1

m = Hn
up, for 1≤M ≤ M

2 ,

L̃M,N
ε,cenUn+1

m = Hn
cen, for M

2 < m < M.

Un+1
0 = 0, Un+1

M = 0, 0≤ n≤M,

(4.21)

where the discrete operator L̃M,N
ε Un+1

m is defined as



L̃M,N
ε,upUn+1

m ≡

−2ε

ĥm

(
Un+1

m+1−Un+1
m

hm+1
−

Un+1
m −Un+1

m−1

hm

)
+an+1

m

(
Un+1

m −Un+1
m−1

hm

)
+(bn+1

m +
2
∆t

)Un+1
m ,

for 1≤ m≤ M
2
,

L̃M,N
ε,cenUn+1

m ≡

−2ε

ĥm

(
Un+1

m+1−Un+1
m

hm+1
−

Un+1
m −Un+1

m−1

hm

)
+an+1

m

(
Un+1

m −Un+1
m−1

hm

)
+(bn+1

m +
2
∆t

)Un+1
m ,

for
M
2

< m < M.

(4.22)
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Rearranging Eq. 4.22 in three term recurrence relation form, we obtain the following totally dis-

crete problem 

U0
m = φ(xm), m = 0,1, · · · ,M,

r−mUn+1
m−1 + rc

mUn+1
m + r+mUn+1

m+1 = Hn
up, for 1≤ m≤ M

2 ,

s−mUn+1
m−1 + sc

mUn+1
m + s+mUn+1

m+1 = Hn
cen, for M

2 < m < M,

Un+1
0 = 0, Un+1

M = 0, 0≤ n≤M,

(4.23)

where the coefficients for 1≤ m≤M/2 and M/2+1≤ m≤M−1 are given by, respectively

r−m =−
(

2ε

ĥmhm
+

an+1
m
hm

)
, rc

m =
2ε

hmhm+1
+

an+1
m
hm

+bn+1
m +

2
∆t

, r+m =−
(

2ε

ĥmhm+1

)
,

Hn
up = f n+1

m + f n
m +

2ε

ĥm

(
Un

m+1−Un
m

hm+1
−

Un
m−Un

m−1

hm

)
−an

m
Un

m−Un
m−1

hm
− (bn

m−
2
∆t

)Un
m,

(4.24)

s−m =−
(

2ε

ĥmhm
+

an+1
m

ĥm

)
, sc

m =
2ε

hmhm+1
+bn+1

m +
2
∆t

, s+m =−
(

2ε

ĥmhm+1
− an+1

m

ĥm

)
,

Hn
cen = f n+1

m + f n
m +

2ε

ĥm

(
Un

m+1−Un
m

hm+1
−

Un
m−Un

m−1

hm

)
−an

m
Un

m+1−Un
m−1

ĥm
− (bn

m−
2
∆t

)Un
m,

(4.25)

The coefficient matrix of the monotone hybrid numerical scheme in (4.23) gives an (M−1)×(M−

1) linear equations which can easily be solved by Thomas Algorithm.

4.2 Convergence Analysis

In this section, we establish the stability and ε−uniform error estimate for the fully discrete scheme

by decomposing the approximate solution Un
m in an analogous manner as that of the continuous

solution Un(x) at nth time step. For the sake of simplicity, we denote the discrete solution Un
m by

UM,N(xm, tn) during convergence analysis. In order to attain a monotone discrete operator L̃M,N
ε ,

we impose the following mild assumption on the minimum number of mesh points

h2‖a‖Ω̄

2ε
< 1,

M
logM

> 2
‖a‖

Ω̄

α
. (4.26)
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The analysis is based on the discrete maximum principle and barrier function technique. We start

with stating the following discrete maximum principle.

Lemma 4.4 Under the assumption in Eq. (4.26), the totally discrete scheme in Eq. (4.21) sat-

isfies a discrete maximum principle for any mesh function Z(xm, tn) defined on Ω̄M,N such that if

Z(x0, tn)≥ 0, Z(xm, tn)≥ 0 and L̃M,N
ε Z(xm, tn)≥ 0, ∀(xm, tn) ∈Ω, then Z(xm, tn)≥ 0, (xm, tn) ∈ Ω̄.

Proof: Under the assumption in Eq. (4.26), we establish the discrete maximum principle by simply

check the following inequalities to show that the associated system matrix is an M-matrix

r−m < 0, r+m < 0, r−m + rc
m + r+m > 0, m = 1,2, · · · ,M/2,

s−m < 0, s+m < 0, s−m + sc
m + s+m > 0, m = M/2+1, · · · ,M−1.

From these sign patterns, it is easily seen that the system matrix L̃M,N
ε is an irreducible M-matrix

and so has a positive inverse. Moreover, discrete system Eq. (4.21) satisfies the desired discrete

maximum principle. 2

To prove uniform convergence of the proposed scheme, first we construct the following barrier

functions for all n∆t ≤ T .

ψ
n
m(α) =


m
∏
j=1

(
1+ αh j

ε

)−1
, m = 1, · · · ,M,

1, m = 0.

(4.27)

Lemma 4.5 The barrier functions ψn
m(α) satisfy the following inequalities

L̃M,N
ε ψ

n
m(α)≥ C(α)∆t

ε +αhm
ψ

n
m(α), for m = 1,2, · · · ,M−1, n∆t ≤ T.

for some positive constant C(α).

Proof: From the definition of barrier functions, we have
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ψn
m(α)−ψn

m−1(α)

hm
=

αψn
m−1(α)

ε
,

ψn
m+1(α)−ψn

m−1(α)

hm+hm+1
= α

ε

(
hm+1ψn

m(α)+hmψn
m−1(α)

hm+hm+1

)
. Now, applying the oper-

ator L̃M,N
ε on the barrier function ψn

m(α) and and doing some simplifications, we obtain

L̃M,N
ε ψ

n
m(α) =



[
1+∆t

(
α

ε+αhm

(
− 2αhm

hm+hm+1
+am +bm

ε+αhm
α

))]
ψn

m(α), m = 1,2, · · · ,M/2,[
1+∆t

(
α

ε+αhm

(
− 2αhm

hm+hm+1
+am +bm

ε+αhm
α

))]
ψn

m(α)

+bm

(
α2hmhm+1

ε2(hm+hm+1)

)
, i = M/2+1, · · · ,M−1,

from which we deduce the desired result. 2

Furthermore, we give the following truncation error bounds for upwind and central difference

operators employed in L̃M,N
ε .

Lemma 4.6 At the time level tn, for un(x) ∈ C4(Ω̄x), the local truncation error at spatial dis-

cretization stage for the operator L̃M,N
ε is given by

|τup
m |= |L̃

M,N
ε (un

m)− L̃M,N
ε u(xm, tn)|,

≤C∆t
[

ε

∫ xm+1

xm−1

∣∣∣∣∂ 3un

∂ s3

∣∣∣∣ds+
∫ xm

xm−1

∣∣∣∣∂ 2un

∂ s2

∣∣∣∣ds
]
, m = 1,2, · · · ,M/2,

|τcen
m |= |L̃

M,N
ε (un

m)− L̃M,N
ε u(xm, tn)|,

≤C∆thm

[
ε

∫ xm+1

xm−1

∣∣∣∣∂ 4un

∂ s4

∣∣∣∣ds+
∫ xm+1

xm−1

∣∣∣∣∂ 3un

∂ s3

∣∣∣∣ds
]
, m = M/2+1, · · · ,M−1,

where C is a positive constant depends on ‖a‖ and ‖a′‖.

Proof: By using the valid Taylor series expansion with the integral form of the remainder, or

Peano’s theorem by Davis (1963), we obtain the desired truncation error estimates. 2

To prove the uniform convergence of the proposed scheme, we use the following estimate.

Lemma 4.7 For each m and α > 0, we have

M

∏
j=m+1

(
1+

αh j

ε

)−1 ≥ exp
(
−α

(1− xm)

ε

)
.

23



Lemma 4.8 For the Shishkin mesh defined above, there exists a constant C, such that

M

∏
j=m+1

(
1+

αh j

ε

)−1 ≤


CN−2, ∀m = 0,1, · · · ,M/2.

CN−4(1−m/N), ∀m = M/2+1, · · · ,M−1.

Proof: For m = 0,1, · · · ,M/2, we have

M

∏
j=m+1

(
1+

αh j

ε

)−1 ≤
M

∏
j=M/2+1

(
1+

αh j

ε

)−1
,

≤ exp
(
−α(1− xM/2)/(ε +α h̃2)

)
, (Lemma 4.1(b) by Kellogg and Tsan (1978),

= exp
(
−ασ/(ε +2ασM−1)

)
,

= exp
(
−2logM/(1+4M−1 logM)

)
,

= M−2/(1+4M−1 logM)

≤CM−2.

The required bound for m = M/2+ 1, · · · ,M− 1 also follows using the same argument given in

Lemma 4.1(b) (Kellogg and Tsan, 1978). 2

To estimate the error in the regular component and singular component separately in the spatial

direction at the nth time step, we decompose the discrete solution UM,N(xm, tn) into a regular and

singular part as

UM,N(xm, tn) =V M,N(xm, tn)+W M,N(xm, tn), ∀xm ∈ Ω̄
M
x , n∆t ≤ T,

where the regular component V M,N(xm, tn) satisfies the non-homogeneous equation

L̃M,N
ε V M,N(xm, tn) = H(xm, tn), ∀xm ∈Ω

M
x , n∆t ≤ T,

V M,N(xm, tn) = v(xm, tn),
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and the singular part W M,N(xm, tn) is the solution of the problem

L̃M,N
ε W M,N(xm, tn) = 0, ∀xm ∈Ω

M
x , n∆t ≤ T,

W M,N(xm, tn) = w(xm, tn).

Therefore, we have

(UM,N−u)(xm, tn) = (V M,N− v)(xm, tn)+(W M,N−w)(xm, tn), ∀xm ∈Ω
M
x , n∆t ≤ T.

Now, we estimate the error bound in the regular and singular components separately.

Theorem 4.9 Under the assumption (4.26), the error in the regular component V M,N(xm, tn) sat-

isfies the following error estimate at the nth time level

|(V M,N− v)(xm, tn)| ≤


CM−1, m = 0,1, · · · ,M/2, n∆t ≤ T,

CM−2, m = M/2+1, · · · ,M, n∆t ≤ T.

Proof: From Lemma (4.6), the truncation error in the regular component is given by

|L̃M,N
ε (V M,N− v)(xm, tn)| ≤



CN−2
[

ε(hm +hm+1)‖∂ 3v
∂x3‖Ω̄x

+hm‖∂ 2v
∂x2‖Ω̄x

]
,

m = 1,2, · · · ,M/2, n∆t ≤ T,

CN−2
[

hm(hm +hm+1)

(
ε‖∂ 4v

∂x4‖Ω̄x
+‖∂ 3v

∂x3‖Ω̄x

)]
,

m = M/2+1, · · · ,M−1, n∆t ≤ T,

Note that hm+1 + hm ≤ 2M−1 is always true for both the cases of uniform mesh and piecewise

uniform Shishkin mesh. Moreover, using the bounds on the derivatives of v given in Theorem
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(4.3), we get

|L̃M,N
ε (V M,N− v)(xm, tn)| ≤


CN−2M−1(ε +1), m = 1,2, · · · ,M/2, n∆t ≤ T,

CN−2M−2, m = M/2+1, · · · ,M−1, n∆t ≤ T.

An application of Lemma (4.4) yield the desired bounds. 2

Theorem 4.10 Under the assumption (4.26), the error in the singular component W M,N(xm, tn)

satisfies the following error estimate at the nth time level

|(W M,N−w)(xm, tn)| ≤


CM−2, m = 0,1, · · · ,M/2, n∆t ≤ T,

CM−2 ln2 M, i = M/2+1, · · · ,M, n∆t ≤ T.

Proof: In the sub-interval [0,1−σ ] with no boundary layer, both W M,N and w are small. After

applying triangle inequality, it it is sufficient to find the bounds on w and W M,N separately. Here,

we note that

L̃M,N
ε W M,N(xm, tn) = 0, ∀xm ∈Ω

M
x , n∆t ≤ T,

|W M,N(x0, tn)|= |w(x0, tn)| ≤C exp(−α/ε)≤C
M

∏
j=1

(
1+

αh j

ε

)−1
, n∆t ≤ T,

and

|W M,N(xM, tn)|= |w(1, tn)| ≤C, n∆t ≤ T.

Furthermore, to obtain the bound on W M,N , we consider the following mesh function φ n
m(α) for

sufficiently large C and n∆t ≤ T ,

φ
n
m(α) =C

[ M

∏
j=1

(
1+

αh j

ε

)−1]
ψ

n
m(α).
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Now, using Lemma (4.5), we have

L̃M,N
ε φ

n
m(α)≥ C∆t

ε +αhi

M

∏
j=m+1

(
1+

αh j

ε

)−1

≥ 0, m = 1, · · · ,M−1, n∆t ≤ T,

and

φ
n
0 (α) =C

M

∏
j=1

(
1+

αh j

ε

)−1

, since ψ
n
0 (α) = 1,

φ
n
M(α) =C, n∆t ≤ T.

Therefore, φ n
m(α) is a barrier function for {W M,N(xm, tn)}. Discrete maximum principle gives

|W M,N(xm, tn)| ≤ φ
n
m(α) =C

M

∏
j=m+1

(
1+

αh j

ε

)−1

, m = 0, · · · ,M, n∆t ≤ T. (4.28)

Using triangular inequality, we have

|(W M,N−w)(xm, tn)| ≤ |W M,N(xm, tn)|+ |w(xm, tn)|,

≤C
M

∏
j=m+1

(
1+

αh j

ε

)−1

+C exp(−α(1− xm)

ε
),

≤C
M

∏
j=m+1

(
1+

αh j

ε

)−1

, (using Lemma (4.7)).

In particular, using Lemma (4.8), we get

|(W M,N−w)(xm, tn)| ≤CM−2, m = 0, · · · , M
2
, n∆t ≤ T. (4.29)

On the other hand, we use barrier function technique to estimate |(W M,N −w)(xm, tn)| in the fine

mesh region [1− σ ,1]. Moreover, truncation error estimate in Lemma (4.6) for m = M/2 +
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1, · · · ,M−1 leads to the following estimate

|L̃M,N
ε (W M,N−w)(xm, tn)≤CN−2h̃2

[
ε

∫ xm+1

xm−1

∥∥∥∥∂ 4w
∂x4

∥∥∥∥
Ω̄x

dx+
∫ xm+1

xm−1

∥∥∥∥∂ 3w
∂x3

∥∥∥∥
Ω̄x

dx
]
,

≤CN−2h̃2

[
1
ε3

∫ xm+1

xm−1

exp
(
− α(1− x)

ε

)
dx
]
,

=
CN−2h̃2

ε2α

[
exp
(
− α(1− xm+1)

ε

)
− exp

(
− α(1− xm−1)

ε

)]
,

=
CN−2h̃2

ε2α
exp
(
− α(1− xm)

ε

)
sinh

(
α h̃2

ε

)
,

Since sinh(ξ )≤Cξ , for 0≤ ξ ≤ 1, the truncation error estimate reduces to

|L̃M,N
ε (W M,N−w)(xm, tn)≤

CN−2

ε
M−2 ln2 M exp

(
− α(1− xm)

ε

)
,

≤ CN−2

ε
M−2 ln2 M

M

∏
j=m+1

(
1+

αh j

ε

)−1

, by Lemma (4.7).
(4.30)

It is easy to see that for m = M/2 in Eq. (4.30), we have

|(W M,N−w)(xM/2, tn)| ≤CM−2.

Furthermore, we have

|(W M,N−w)(xM, tn)|= 0.

Using Eq. (4.30), we construct the mesh function

φ
n
m(α) =CM−2

(
1+ ln2 M

M

∏
j=m+1

(
1+

αh j

ε

)−1

ψ
n
m(α)

)
, i = M/2, · · · ,M,

for sufficiently large value of C. With the help of Lemma (4.5), it is easy to see that

|L̃M,N
ε φ

n
i (α)| ≥ |L̃M,N

ε (W M,N−w)(xm, tn)|, m = M/2+1, · · · ,M−1, n∆t ≤ T,

φ
n
M/2(α) =CM−2

[
1+ ln2 M

M

∏
j=M/2+1

(
1+

αh j

ε

)−1]
≥ |(W M,N−w)(xM/2, tn)|,
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and

|φ n
M(α)|=CM−2(1+ ln2 M

)
≥ |(W M,N−w)(xM, tn)|.

Therefore, φ n
m(α) is a barrier function for (W M,N −w)(xm, tn) and consequently by the discrete

maximum principle, we have

|(W M,N−w)(xM, tn)| ≤ φ
n
m(α), m = M/2, · · · ,M, n∆t ≤ T.

Now, Lemma (4.8) gives the estimate

|(W M,N−w)(xm, tn)| ≤C max{M−2,M−6+4m/M ln2 M}, m = M/2, · · · ,M, n∆t ≤ T. (4.31)

Hence, combining the results from the Eq. (4.30) and Eq. (4.31) proves the theorem. 2

Theorem 4.11 Let UM,N(xm, tn) be the hybrid finite difference approximation in the spatial direc-

tion to the solution un(x) ∈ C4(Ω̄x) of the semi-discrete problem in Eq. (4.15) at nth time level.

Then, under the assumption in Eq. (4.26) following error estimates hold for the proposed scheme

in the spatial discretization process at the nth time level

‖(UM,N−u)(xm, tn)‖Ω̄x
≤


CM−1, m = 0,1, · · · ,M/2, n∆t ≤ T,

CM−2 ln2 M, m = M/2+1, · · · ,M, n∆t ≤ T.

Proof: The proof follows from Theorem (4.9) and Theorem (4.10). 2

The above discussions leads us to the following main convergence theorem.

Theorem 4.12 Let u(x, t) be the continuous solution of problem in Eq. (4.1), Un(x) be the solution

of the semi-discrete problem in Eq. (4.15) after the quasilinearization process and the time dis-

cretization and UM,N(xm, tn) be the solution of the totally discrete problem in Eq. (4.21), then under
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the assumption in Eq. (4.26) following error estimates satisfies for the totally discrete scheme

‖(UM,N−u)(xm, tn)‖Ω̄M,N ≤


C
(
M−1 +∆t2), m = 0,1, · · · ,M/2, n∆t ≤ T,

C
(
M−2 ln2 M+∆t2), m = M/2+1, · · · ,M, n∆t ≤ T,

where C is a constant independent of ε and the mesh parameters.

Proof: The proof follows by combining the estimates given in Eq. (4.11) and Theorem (4.11). 2

4.3 Numerical Results
In this section, we do numerical experiments to support the theoretical results.

Example 4.1 Consider the following singularly perturbed Burger’s equation



∂u
∂ t − ε

∂ 2u
∂x2 +u∂u

∂x = 0, (x, t) ∈ (0,1)× (0,1],

u(x,0) = sin(πx), x ∈ [0,1],

u(0, t) = 0 = u(1, t), t ∈ [0,1].

Example 4.2 Consider the following singularly perturbed Burger’s equation



∂u
∂ t − ε

∂ 2u
∂x2 +u∂u

∂x = 0, (x, t) ∈ (0,1)× (0,1],

u(x,0) = x(1− x2), x ∈ [0,1],

u(0, t) = 0 = u(1, t) = 0, t ∈ [0,1].

Since the exact solutions for the test examples are not available, we use the double mesh principle

to estimate the maximum errors. For each ε , the maximum errors and rate of convergence are given

eM,∆t
ε = max

0≤m≤M; n∈[0,T ]

∣∣UM,∆t(xm, tn)−U2M,∆t/2(xm, tn)
∣∣, rM,∆t

ε = logeM,∆t
ε −e2M,∆t/2

ε

log2 .
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where UM,∆t denote the numerical solution obtained using the mesh points (xm, tn) whereas U2M,∆t/2

denote the numerical solution obtained when the space mesh interval is multiplied by 2 and the time

mesh interval is divided by 2.

Table 4.1: Computed maximum absolute errors for Example (4.1).

ε ↓ M = 32, ∆t = 1
10 64, 1

20 128, 1
40 256, 1

80 512, 1
160

10−2 1.1940e-02 6.2077e-03 3.2758e-03 1.6864e-03 8.5065e-04
10−4 1.4536e-02 7.9277e-03 4.1608e-03 2.1526e-03 1.0981e-03
10−6 1.4601e-02 7.9617e-03 4.1773e-03 2.1610e-03 1.1024e-03
10−8 1.4602e-02 7.9620e-03 4.1775e-03 2.1611e-03 1.1025e-03
10−10 1.4602e-02 7.9620e-03 4.1775e-03 2.1611e-03 1.1025e-03
10−12 1.4602e-02 7.9620e-03 4.1775e-03 2.1611e-03 1.1025e-03

Table 4.2: Comparison of maximum absolute errors and rate of convergence using the proposed
method and the method in the literature for Example (4.1).

ε ↓ M = 64, ∆t = 1
20 128, 1

40 256, 1
80 512, 1

160
Our Result

10−2 6.2077e-03 3.2758e-03 1.6864e-03 8.5065e-04
0.9222 0.9579 0.9873 -

10−4 7.9277e-03 4.1608e-03 2.1526e-03 1.0981e-03
0.9300 0.9508 0.9711 -

10−6 7.9617e-03 4.1773e-03 2.1610e-03 1.1024e-03
0.9305 0.9509 0.9711 -

Gowrisankar and Natesan (2019)
10−2 1.1303e-1 6.1846e-2 2.7592e-2 1.4072e-2

0.8700 1.1644 0.9714 -
10−4 2.5946e-1 1.4418e-1 6.8426e-2 3.2474e-2

0.8477 1.0752 1.0753 -
10−6 2.7194e-1 1.5667e-1 6.9863e-2 3.3902e-2

0.7955 1.0432 1.0432 -

The calculated maximum absolute errors for Example 4.1 are given in Table 4.1. As demonstrated

in Table 4.2, comparison of maximum errors and rate of convergences are given for Example 4.1

with the method in the literature showing that the present method gives accurate results than the
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existing method. Numerical solution using surface plot for Example 4.1 is depicted in Figure

4.1. Numerical solution in terms of line graph is plotted in Figure 4.2 by showing the effect

of perturbation parameter ε . The corresponding log-log plot of the maximum absolute errors are

sketched in Figure 4.3 which also reveals the uniform convergence of first-order. Numerical results

in Table 4.3 confirms that the present method gives a better numerical results than some existing

method in the literature for Example 4.2. Solution profile for Example 4.2 is plotted in Figure

4.4. Numerical solution in terms of line graph for Example 4.2 is sketched in Figure 4.5 and the

corresponding maximum point-wise errors using log-log scale is plotted in Figure 4.6. From all

the graphs plotted for Example 4.1 in Figures 4.1 and 4.2 and Example 4.2 in Figures 4.4 and 4.5,

we conclude that the problem 4.1 has parabolic boundary layer near the boundary x = 1.

Table 4.3: Comparison of computed maximum absolute errors for Example (4.2).

ε ↓ M = 32, ∆t = 1
20 64, 1

40 128, 1
80 256, 1

160
Our Result

2−4 9.8309e-04 5.4418e-04 2.6362e-04 1.4044e-04
2−8 2.3372e-03 1.1961e-03 7.9129e-04 9.4747e-04
2−10 2.4469e-03 1.2578e-03 6.4145e-04 3.2368e-04
2−12 2.4767e-03 1.2753e-03 6.5173e-04 3.2927e-04
2−14 2.4853e-03 1.2806e-03 6.5468e-04 3.3090e-04
2−16 2.4878e-03 1.2820e-03 6.5550e-04 3.3135e-04
2−18 2.4884e-03 1.2824e-03 6.5572e-04 3.3147e-04

Liu et al. (2020)
2−4 2.2788e-02 1.3365e-02 7.2769e-03 3.8441e-03
2−8 4.4450e-02 2.0109e-02 1.0519e-02 5.9653e-02
2−10 8.3339e-02 6.6120e-02 4.0769e-02 1.9284e-02
2−12 1.8762e-01 8.4106e-02 5.7234e-02 3.8309e-02
2−14 1.9755e-01 1.5347e-01 8.3864e-02 4.6945e-02
2−16 2.1340e-01 1.5016e-01 1.1582e-01 6.1958e-02
2−18 2.8299e-01 1.7036e-01 1.1805e-01 7.4251e-02
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Figure 4.1: Numerical solution using surface plot for Example (4.1) at M = 64, N = 20, ε = 10−4.
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Figure 4.2: Numerical solution in terms of line graph for Example (4.1) at M = 64, N = 20 and
various values of ε .
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Figure 4.3: Loglog plot of maximum point-wise errors for Example (4.1) using Table (4.1).
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Figure 4.4: Numerical solution using surface plot for Example (4.2) at M = 64, N = 40, ε = 2−14.
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Figure 4.5: Numerical solution in terms of line graph for Example (4.2) at M = 32, N = 20 and
various values of ε .
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Figure 4.6: Loglog plot of maximum point-wise errors for Example (4.2) using Table (4.3).
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Table 4.4: Comparison of rate of convergence for Example (4.2).

ε ↓ M = 32, ∆t = 1
20 64, 1

40 128, 1
80

2−4 0.8532 1.0456 0.9085
2−8 0.9664 0.5961 0.9013
2−10 0.9601 0.9715 0.9868
2−12 0.9576 0.9685 0.9850
2−14 0.9566 0.9680 0.9844
2−16 0.9565 0.9677 0.9842
2−18 0.9564 0.9677 0.9842

Liu et al. (2020)
2−4 0.7698 0.8771 0.9207
2−8 1.1443 0.9348 0.8183
2−10 0.3339 0.6976 1.0801
2−12 1.1575 0.5553 0.5792
2−14 0.3643 0.8718 0.8371
2−16 0.5076 0.3746 0.9025
2−18 0.7322 0.5292 0.6689
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Chapter 5

Conclusion and Future Scope

5.1 Conclusion

In this thesis, a finite difference scheme based on a monotone hybrid finite difference scheme on

a piecewise uniform mesh of Shishkin type on spatial direction and an implicit second-order finite

difference method on time direction is constructed to solve singularly perturbed Burgers equation.

The qualitative aspects of the singularly perturbed Burgers equation have been established. One

of the major difficulties occur corresponding to the non-linearity of the Burgers equation, which

we resolved by using the layer-adapted mesh of Shishkin type. A brief analysis has been carried

out to prove the uniform convergence of the proposed scheme. We show the second-order uniform

convergence in the temporal variable and first-order uniform convergence in the coarse region

and almost second-order convergence in the boundary layer region for the spatial variable. The

numerical results presented in error tables indicate that the proposed scheme is convergent for

sufficiently small value of the singular perturbation parameter ε . We observe from the error tables

that for a fixed value of ε , point wise errors and maximal nodal errors decrease as the number of

mesh points increases. Thus, the present method works nicely for very small values of the singular

perturbation parameter ε ∈ (0,1] and the numerical results support the theoretical predictions and

exhibit good physical behavior.
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5.2 Future Scope
The technique presented in this thesis may also be applicable to the construction and study of

ε−uniform numerical methods for more complicated non-linear problems.
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