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Abstract 

Due to its high abundance, low density, non-toxic nature, and low cost of production, Magnesium 

Silicide is very important for thermoelectric applications. In recent years enormous investigations 

have been done to improve the thermoelectric figure of merit (ZT) of Mg2Si-based thermoelectric 

(TE) material by both experimental and computational methods. In this study, the first-principles 

pseudopotentials based on density functional theory (DFT) had been applied to study the effect of 

Sr dopant on the lattice thermal conductivity of Mg2Si. The effects of Sr dopant on other properties 

like electronic structure, the density of state (DOS), and phonon properties of doped Mg2Si had 

also investigated. The lattice constant, Converged kinetic energy cutoff, and K-point grid had been 

optimized from Self-calculation field (SCF) calculations by quantum espresso software and 

CASTEP(Cambridge Serial Total Energy Package) code in Material studio software. After 

optimizations had been done, all other calculations related to the thermoelectric like  Seebeck 

coefficient, electrical conductivity, and thermal conductivity had calculated within various 

temperature ranges from 20K to 800K for both native and doped Mg2Si.  Finally, we acquired a 

very good result from Sr-doped (Mg16-xSi8Srx, where ‘x’ is the amount of dopant atom). The lattice 

thermal conductivity had highly minimized to (0.02) W/Km at the temperature of (800) K for x =2 

(Mg14Si8Sr2). It has shown a huge change when we compared to un-doped Mg16Si8 in temperature 

ranges of (200-1000) K. 

Key terms: Figure of merit, pseudopotentials, Density Functional Theory, Magnesium Silicide, 

Seebeck coefficient, Lattice thermal conductivity,  phonon, BoltzTrap 
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1. INTRODUCTION 

The current issues over future energy consumption and the impact of fossil fuels on the 

environment have initiated the plan to seek alternative energy sources. Consequently, there is 

a need for new sources of energy other than fossil fuels [1, 2]. In addition to new energy 

sources, energy conversion technologies are also needed. Because most of the energy produced 

is lost as heat in industrial environments and our daily life, and conversion of these large 

amounts of the lost heat energy cannot be properly done and is inevitably wasted in the 

environment [3]. Consequently, the invention of the thermoelectric effect, which converts 

directly heat to electricity by TE materials or vice versa is the one promising solution is [4, 5]. 

Due to their ability to directly converting heat into electricity, Thermoelectric (TE) materials 

have been attracting intensive attention and can play an important role in improving waste 

energy harvesting efficiency [6-8]. 

The current global energy crisis will have resolved by thermoelectric materials that recover 

waste heat and transform it into electricity or vice versa. The climate change resulting from 

global warming is also reduced by TE materials which create opportunities for the development 

of energy harvesting, smart sensors, and the new concept of automobiles, thermo power wave 

sources, woodstoves, and diesel power plants [9]. Even though the applications of 

thermoelectric materials are wide by enhancing their properties, it has mainly been used in 

small areas such as refrigerators, a cooling device for laser diodes, and cooling seats in 

automobiles because of its efficiency. In this work, the theoretical background of 

thermoelectric materials based on Mg2Si and related materials was briefly described in the 

following sections. The properties of undoped and doped Mg2Si were deeply studied by 

materials modeling and simulation techniques. First-principles calculation, based on the DFT 

method was implemented for optimization, properties calculation, and evaluation of data. 

Boltzmann electrons transport properties evaluation was used for electronic properties 

calculation like Seebeck coefficient, electrical conductivity, and electronic thermal 

conductivity, while phonopy and phono3py were used to evaluate the phonon properties like 

thermodynamic properties, specific heat capacity group velocity, and lattice thermal 

conductivity respectively. In addition CASTEP code, one of the Materials studio 2017 
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packages, was used for calculations of bandstructure, the density of states, and some phonon 

properties of our material. 

 Theoretical backgrounds    

1.1.1. Thermoelectric effects and Performance of Thermoelectric Materials   

The TE effect or “Seebeck effect” is the direct conversion of a temperature difference to an 

electrical voltage of the two dissimilar electrical conductors or semiconductors. This can happen 

when the two sides of materials are exposed to different temperatures and consequently generate 

voltages across the two sides of the materials [3, 9]. Conversely, the generation of a temperature 

difference by applying a voltage to the system is called the “Peltier effect”. So, thermoelectric 

materials are fundamentally focused on these two phenomena by which temperature differences 

create electricity or application of voltage creates temperature differences [10]. At the atomic scale, 

when a temperature gradient is applied at both end sides of a thermocouple, the electrons and holes 

have a lower density at the hotter side and move faster, resulting in diffusion of electrons/ holes 

toward the cold side[4]. As a result, the potential difference is created at the two end side of the 

materials and generate an electric field across the system [11]. 

 

  

Figure 1.1 A schematic representation of TE for charge carrier (a p- or an n-type material) ( 

Lazaros Tzounis reviews; BoD – Books on Demand, 2019 M10 30 - 140 pages) 

 



  

3 

 

1.1.1.1.  Seebeck coefficient 

The voltage generated by thermoelectric effects is equal to Sx∆T where ‘S’ is Seebeck coefficient 

and ∆T is temperature difference   

𝑆 =
∆𝑉

∆𝑇
                                                   (𝟏) 

An intrinsic property of the Seebeck coefficient is related to the electronic properties, which have 

a positive value for p-type and a negative value for n-type semiconductors.  Seebeck coefficient 

is fatherly determining the power factor (PF) combined with electrical conductivity which is 

given by                     

𝑃𝐹 = 𝑆2𝜎                                                                              (𝟐) 

Where ‘σ’ is electrical conductivity 

1.1.1.2. Thermoelectric materials Figure of merit ZT 

The figure of merit (ZT) is a dimensionless quantity in which the performances of thermoelectric 

materials and given by     

𝐙𝐓 =
𝐒𝟐𝛔𝐓

𝐤
                                                              (𝟑) 

Where ‘T’ and ‘k’ are absolute temperatures and thermal conductivities (k=ke +kl). Thermal 

conductivity has resulted from electronic transport and lattice vibration or phonon vibration [11-

13]. Maximizing the power factor S2σ and minimizing κ achieves a high ZT value. However, the 

interdependence between these transports coefficients makes optimization a challenging task. The 

complexity of optimizing both quantities leads the researchers to decay until a great reduction of 

thermal conductivity was both theoretically and experimentally proven in nanomaterials [14]. 

Since the electrical and thermal conductivities are interdependent through carrier concentration, 

optimizing one parameter will negatively affect the other parameter. Thus designing high-

performance TE materials is difficult and the development of TE materials delays for many years 

[15, 16].  
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The appropriate solutions that overcome these difficulties are the proper approximation of these 

parameters. This can be approximated by maximizing the values of the parameter that has a 

positive effect (Seebeck coefficient, electrical conductivity) and minimizing the values of 

parameters that have a negative effect (thermal conductivity) [1] by improving the properties of 

TE materials [17]. The electrical conductivity is improved by increasing the charge carrier. This 

will be done by doping the TE materials with the dopant that has one or more valance electrons 

than the host atom [1, 18]. The electrical conductivity is given by the equation:  

σ = neμ                                                                                       (4) 

Where n is the charge carrier density or concentration, μ is the mobility of charge carriers, and e 

is the charge of the unit carrier (electron or hole). However, doping the host atom can reduce 

electron mobility as a result of scattering. 

The contribution of electronic thermal conductivity and lattice thermal conductivity affects the TE 

materials on both sides (positively and negatively). But lattice thermal conductivity contributes 

maximum values in TE materials at high temperatures. Doping the material with another 

constituent and minimizing the mean free path reduces the overall thermal conductivity of the TE 

materials which incases increases the figure of merit.  

 Mg2Si based thermoelectric materials and their properties 

Because of abundance, low cost, low density, environmental compatibility, and thermal stability 

magnesium silicide and based alloys are preferable for thermoelectric materials [19, 20].  The 

crystal structure of Mg2Si is an anti-fluorite cubic structure [21] as shown in figure 1.3. This 

structure belongs to the space group of high symmetry with Fm-3m (225) and the experimental 

bandgap of this material is around 0.77 eV [22] and the bandgap from the different computational 

calculations is in the range of (0.2 – 0.3)eV. As mentioned in many references, magnesium silicide 

has an intrinsic carrier concentration from 3x 1017 cm-3 to 1021at 300 (K) and consisting of light 

atoms with a high symmetry structure that are strong covalently bonded, it has low electrical 

conductivity (2 Ω-1 cm-1 at 300 K) and high thermal conductivity (⁓10 W m-1K-1at 300 K). This 

leads to the figure of merit of pure Mg2Si is 0.0018 at 300 K which is a very low value. Since the 

efficiency of this material is not significantly improved even at high temperatures the appropriate 
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optimization of properties is very important. In this work, the properties of Mg2Si had been studied 

and its properties were improved via doping through the art of computational methodology. By 

doping the base materials with strontium(Sr) through substitutional at the magnesium site, the 

carrier concentration had reached up to ⁓10 21cm-3 at 300 K [19] which enhances the electrical 

conductivity. The thermal conductivity was reduced by forming scattering in the materials that had 

been more investigated in this work. The applications of Mg2Si based are applicable in the areas 

of thermoelectric generators for the automotive industry. 

 

Figure 1.2 Crystal structure of Mg2Si (ant-fluorite structure) [23]  

 Theoretical simulation 

  Density functional theory 

From the beginning of quantum theory, the theoretical approaches for studying the properties and 

the application of materials have been considerably developed. This approach is mainly focused 

on the Schrödinger equation and studies the electronic properties of solid materials[24]. In 

experimental fields, the structure-property relationships have been predicted by vibrational and 

solid-state NMR spectroscopy through analyzing and interpreting its spectra. Such kinds of 

progress are focused on the electronic structure of bulk and defect sites in semiconductor materials 

which severe many challenges [25]. For these purposes, Density functional theory (DFT) has been 
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used increasingly as an exploratory tool for materials discovery and computational experiments, 

crystal structure prediction. Hohenberg and Kohn (1964), later generalized by Levy (1979), are 

the theorem that facilitates the beginning Density functional theory. According to these theorem,  

the all ground-state properties are functionals of the charge density [24, 26]. The density functional 

theory (DFT) has been proven to be an enormously powerful tool to theoretically interpret the 

electronic and chemical properties of materials. The principle is based on the properties of a studied 

system as a function of the corresponding electron density, which is promising in achieving the 

goal of maximizing both efficiency and accuracy of the desired electronic properties. After 

significant development for the past decades, DFT now has become the most widely used theory 

for electronic structure study [27]. 

In the last decades, the number of publication that contains density functional theory has 

significantly increased and this reveals the significance DFT to the scientific community. The 

success of DFT is directly related to the great compatibility of the local density approximation to 

the model of a homogeneous electron gas in the condensed phase.  

 Approximating the exchange-correlation energy 

1.2.2.1. Local density approximation (LDA) and General gradient approximation(GGA) 

As mentioned above, the Kohn−Sham density functional theory (KS-DFT) has been one of the 

most powerful quantum mechanical methods for studying the ground-state properties of atoms, 

molecules, and bulk materials over the past decades [28]. However, due to the exact 

exchange−correlation (XC) energy, functional Exc in KS-DFT is unknown, many trials have been 

done to improving the accuracy of approximate XC energy functionals. The local density 

approximation (LDA) for the XC energy functional, Exc LDA, has been developed from an 

important system called a uniform electron gas (UEG). However, a problem associated with the 

LDA is the self-interaction error (SIE) [29] which can be efficiently reduced by incorporating the 

Hartree−Fock (HF) exchange energy Ex HF into the LDAXC energy functional Exc LDA.  

The electron density can be satisfactorily described with the LDA functional when dispersion or 

correlation effects are not strong which is common in solid-state materials [30]. More sophisticated 

approximations based on LDA, such as generalized gradient approximation (GGA) or hybrid 

functionals, have been proposed during the past decades and have shown significant improvement 
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in predicting the electronic structure of molecules [28, 29]. It is also shown that hybrid functionals 

also have a better description of the bandgap of condensed phase semiconductors. One of the 

enormously popular programs of DFT, which implementing many functions is the Quantum-

ESPRESSO software package. So this quantum espresso software was highly implemented in this 

work. 

  Electronic structure calculation 

 The structure of atoms, crystals, molecules, surfaces, and their interactions are calculated by 

Density Functional Theory (DFT) [31]. It is based on Hohenberg and Kohn and Sham 

approximation which may follow the local density approximation (LDA) or the generalized 

gradient approximation (GGA) to produce accurate results, for many structural and energetic 

properties of bulk materials and surfaces, interfaces, and point defects. Physical properties of 

molecules take their origin in electron assembly phenomena. To understand these properties, one 

has to investigate electron distributions and interactions which is contained in the electronic wave 

function governed by Schrödinger’s equation: 

             ĤѰ = EѰ,                                                                                                (5) 

Which is defining the N-electron Eigen function Ѱ and eigenvalue E of the Hamiltonian Ĥ. 

Hamiltonian Ĥ is given by, 𝐻 =
𝑃2

2𝑚
+ 𝑉(𝑟) for a single electron. Not all values for the energy are 

allowed and one calls the allowed values eigenvalues. The functions Ѱ which belong to the 

eigenvalues and which are a solution of the vibration equation and, in addition, satisfy the 

boundary conditions, are called Eigen functions of the differential equation. The non-relativistic 

Hamiltonian is written as a sum of different kinetic and potential contributing arising from 

interacting electrons and nuclei: 

           Ĥ = TN + Te +VNe + Vee + VNN                                                                      (6) 

Where TN, Te,  VNe,  Vee, and  VNN  are kinetic energy of nuclei, the kinetic energy of an electron, 

interaction potential between nuclei and electrons, interaction potential between electrons and 

electrons, and interaction potential between nuclei and nuclei. 
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According to the Born-Oppenheimer approximation (BOA) the nuclei are considered motionless 

due to their masses are much heavier than the electrons and their kinetic energy is much smaller 

and the problem is solved by considering only the electronic part of the Hamiltonian. Thus, the 

electronic Hamiltonian using atomic units given as: 

Ĥ𝑒𝑙𝑒𝑐 = ∑ (−
1

2𝑖 ∆i) − ∑ ∑
𝑍𝐴

𝑟𝑖𝐴
𝐴𝑖 +

1

2
∑ ∑

1

𝑟𝑖𝑗
𝑗𝑗≠𝑖                                                     (𝟕)                                                                                                                                             

   While the first two terms are mono-electronic, the third one is the electron-electron repulsion 

which excludes any analytical resolution of the many-body problem. Generally, DFT calculations 

allow investigating the electronic structure of nanomaterials and thus predicting their intrinsic 

properties, assist their characterization, rationalize the experimental results, and predict the 

potential application. The main equation of DFT was explained by Kohn-Sham. In this case, two 

theorems postulate the properties of any system. The first theorem explains as the ground state 

energy is the unique function of electron density i.e. E0 = E (no(r)) while the second theorem 

describes the electron density that minimizes the energy of the system as true ground electron 

density. based on this theorem if someone gets the electron density of the system it is easy to 

calculate the ground energy and know all properties of the system at ground states. The overall 

Kohn-sham equation is given as: 

⌊−
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)⌋ 𝜑𝑖(𝑟) = 𝐸𝜑𝑖(𝑟)                                 (𝟖)  

Where Vxc is exchanging correlation potentials that make difference from the previous formula. 

 Energy formation  

Energy formation is the potential energy due to the creation of vacancy or point defect in the 

system provided by the DFT code. It is the potential energy within the framework of the Born-

Oppenheimer approximation. It can be calculated from the total energy of the system and the total 

energy of its constituent parts by fixing the nuclei and calculate the energy of the system as the 

sum of the kinetic energy of the electronic cloud and the energies from the Coulomb interactions 

between electrons and nuclei. The formed energy between the base materials and dopant atoms are 

calculated as: 
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∆EMgsite = E (Mg 2-3xSiA3x) +3xE (Mg2) – E (Mg2Si) -3xE (A) E (Mg2Si)                    (9) 

∆ESisite = E (Mg2SiA1-3xA3x) +3xE (Si) – E (Mg2Si) -3xE (A)                                     (10) 

∆E4b site = E (Mg2SiA3x) - E(Mg2Si) – 3xE(A)                                                            (11) 

The above Equations correspond to the Mg, Si, and 4b sites occupied by atoms A= (Sr), and E 

represents the total energy values calculated.  

  K-Points 

K-point grid is a sampling point in the Brillouin zone that rises from the Bloch theorem. For our 

calculation, the K-points file has used to specify the Bloch vectors (k-points) to sample the 

Brillouin zone. Different mechanisms can specify the k-point grids in the K-points file. These can 

be by automatically generating a regular mesh of points, utilizing the beginning and end-points of 

line segments, or as an explicit list of points and weights. The actual values of the have optimized 

by quantum espresso code in SCF calculation and CASTEP code in Materials studio software and 

the optimized value had reported for other calculation purposes [55]. In the bulk solids, the 

boundary conditions are used to determine the set of k-points in which the electronic states are 

allowed.  An infinite number of k-points are accounted for an infinite number of electrons in the 

periodic solid. The problem of calculating an infinite number of electronic wave functions at an 

infinite number of k-points is solved by Bloch theorem changes. Block changes calculating a finite 

number of wave functions at an infinite number of k-point. Since occupied states at each k-point 

contribute to the electronic potential, an infinite number of calculations are needed. However, the 

electronic wave functions that are very close together at k-points will be almost identical. This 

suggests that the DFT expressions that contain a sum over k-points can be efficiently evaluated 

using a numerical scheme that performs summation over a small number of special points in the 

Brillouin zone. In addition, symmetry considerations suggest that only k-points within the 

irreducible segment of the Brillouin zone should be taken into account. Several prescriptions exist 

for generating such points and corresponding weights to be used in the summation. Using these 

methods, one can obtain an accurate approximation of the electronic potential and the total energy 

of an insulator by calculating electronic states at a very small number of k-points [56]. The 

calculations for metallic systems require a more dense set of k-points to determine the Fermi level 

accurately. 
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The magnitude of any error in the total energy due to limited k-point sampling can always be 

reduced by using a denser set of k-points, in much the same way as the convergence concerning 

the number of basis set functions is achieved. It is important to achieve high convergence 

concerning the k-point sampling when the energies of two systems with different symmetries are 

compared, for example, if you are looking at the relative stabilities of an FCC and an HCP structure 

[57]. There is no cancellation of errors in this case and both energies have to be converged. One 

of the most popular schemes for generating k-points was proposed by Monkhorst and Pack (1976). 

This scheme, which was later modified to include hexagonal systems [55], produces a uniform 

grid of k-points along the three axes in reciprocal space. The total energy is not variational 

concerning the number of k-points, so it can go up as well down in the convergence tests. This is 

different from the convergence concerning the cutoff energy of the plane-wave basis set, where 

the total energy should always decrease when the size of the basis set is increased. 

 Electronic transport properties 

The raises of the power factor and maintains the high performance of the TE materials introduced 

by Seebeck effect S because the Seebeck coefficient highly depends on carrier concentration [32]. 

The energy difference between the average energy of the mobile carrier and the Fermi energy is S 

as defined in the kinetic definition of S [33]. That is as the carrier concentration n increases the 

Fermi energy and the average energy increase. But the increment of Fermi energy is higher than 

that of average energy. Consequently, the Seebeck effect decreases, and the power factor (S2 σ) 

decreases rapidly. Thus to increase the ZT  of thermoelectric Materials, the carrier concentration 

(n) increases electrical conductivity(s) but reduces the Seebeck coefficient(S) [34]. According to 

the Boltzmann transport equation, the Seebeck effect is related to carrier concentration as follow; 

𝑆 =  
8𝜋2𝑘𝐵

2

3𝑒ℎ2
𝑚 ∗ 𝑇 (𝜋/3𝑛)

2
3                                                                                           (𝟏𝟐)  

Where ‘KB’ is Boltzmann constant, ‘h’ is plank constant, ‘m*’ is effective mass and ‘e’ is carrier 

electron. From this equation, the Seebeck effect is related to carrier concentrating by; S≈  (
𝜋

3𝑛
)

2

3 

which is an inverse relationship. In addition to Seebeck, the relation between electronic thermal 

conductivity κ and n is also another complicated term. Electronic thermal conductivity is related 

to electrical conductivity σ by the Wiedemann–Franz law. It is given by; 



  

11 

 

κ𝑒 = 𝐿σT                                                                                                                                        (𝟏𝟑) 

Where L = 2.44 × 10−8 WΩ K−2 is Wiedemann–Franz constant  

1.2.6.1.  Electronic Bandstructure 

In a solid, the band structure describes the range of energy levels that electrons may have within 

it, as well as the ranges of energy that they may not have (called band gaps or forbidden bands). 

The combination of bands and band gaps describes the band structure in band theory by examining 

the allowed quantum mechanical wave functions for an electron in a large, periodic lattice of atoms 

or molecules. The physical properties such as optical absorption, electrical resistivity, and 

electrical conductivities are successfully described by Band theory. 

  

Figure 1.3 Electronic band structure of Mg2Si under compressive strain [35] 

1.2.6.2. The density of states (DOS) and partial density of states (PDOS) 

1.2.6.2.1. The density of states (DOS) 

The density of states (DOS) for a given band n, Nn(E), is defined as: 

𝑁𝑛(𝐸) = ∫
𝑑𝑘

4𝜋3
𝛿(𝐸 − 𝐸𝑛(𝑘))                                                                                                  (𝟏𝟒)                                                                       

Where En (k) describes the dispersion of the given band and the integral is determined over the 

Brillouin zone. An alternative representation of the density of states is based on the fact that Nn(E) 

dE is proportional to the number of allowed wave vectors in the nth band in the energy range E to 

(E + dE). The total density of states, N(E), is obtained by summation over all bands. The integral 

of N(E) from minus infinity to the Fermi level gives the total number of electrons in the unit cell 
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[36, 37]. In a spin-polarized system, separate DOS for electrons with spin up and spin down can 

be introduced. Their sum produces the total DOS and their difference is referred to as the spin 

density of states. The DOS is a useful mathematical concept, allowing integration concerning 

electron energy to be used instead of integration over the Brillouin zone. In addition, the DOS is 

often used for quick visual analysis of the electronic structure. Characteristics such as the width of 

the valence band, the energy gap in insulators, and the number and intensity of the main features 

are helpful in qualitatively interpreting experimental spectroscopic data. DOS analysis can also 

help to understand the changes in electronic structure caused by, for example, external pressure. 

There are a variety of numerical techniques for evaluating the DOS. The simplest one is based on 

the Gaussian smearing of the energy levels of each band, followed by a histogram sampling. This 

method does not reproduce sharp features of the DOS, such as van Hove singularities, but it does 

satisfactorily reproduce the general shape of the DOS, even when only a small number of k-points 

are used. The most popular and reliable technique is unfortunately not well suited to the 

Monkhorst-Pack grid of special points, which is based on tetrahedron interpolation. So, CASTEP 

uses a simplified linear interpolation scheme which is based on linear interpolation in 

parallelepipeds formed by the points of the Monkhorst-Pack set. 

1.2.6.2.2. Partial and local density of states (PDOS) 

Partial density of states (PDOS) and local density of states (LDOS) represent useful semi-

qualitative tools for analyzing electronic structure shows the atoms that contribute various parts of 

the energy spectrum to electronic states in the system were qualified by LDOS. While these results 

are qualified by PDOS by resolving the contributions according to the angular momentum of the 

states. It is often useful to know whether the main peaks in the DOS are of s, p, or d character [38]. 

The Mulliken population analysis allows the contribution from each energy band to a given atomic 

orbital to be calculated, which is applied for PDO calculation. The summation of these 

contributions overall bands produces a weighted DOS 

 Phonon calculations 

Thermal conductivity in crystal rises from two mechanisms of heat transportation namely lattice 

thermal conductivities kl and electronic thermal conductivity ke [33]. Electronic thermal 

conductivity ke is due to electron flow in crystal and related to electrical conductivity by the 
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Wiedemann–Franz law: ke/ σ =LT where L is the Lorenz number. Since the electronic thermal 

conductivity is very low most of the time, the lattice thermal conductivity has a greater role in the 

total thermal conductivity. Consequently, we are mainly focused on the reduction of lattice thermal 

conductivity in this research. In the solid crystal, the lattice thermal conductivity rises from phonon 

vibration [39]. The Boltzmann theory was adapted by  Peierls to describe the transport of gases to 

phonon “gas” and postulating the Peierls–Boltzmann transport (PBTE) equation for calculating 

phonon lifetimes and κ, through a complex set of coupled integrodifferential equations, which is a 

complicated task [3]. In most cases, kl is related to sound wave velocity and mean free path [40] 

and thus a doped heavy atom interfere with this variable and reduces the lattice thermal 

conductivity which will be studied in this research. The phonon-glass electron crystal or PGEC is 

to disrupts the phonon transport properties without affecting electron transport. The disruption of 

phonon thermal conductivity is occurred by a well-known technique called, alloying and nano-

structuring [32]. This shows materials with a low thermal conductivity as in glass and high 

electrical conductivity as in crystal were preferred as the best thermoelectric materials [6]. So 

reducing the lattice thermal conductivity and optimizing the carrier concentration n, by introducing 

a scattering center were the normal way of optimizing the TE materials. Generally to calculate 

lattice thermal conductivity many packages like ShengBTE, phon03py, phonopy, etc are available. 

Among them, phono3py is the best code for accurately calculate the lattice thermal conductivity 

based on the direct solution of the linearized Boltzmann transport equation (LBTE) or based on 

relaxation time approximation (RAT). We have used RTA in this thesis to calculate lattice thermal 

conductivity. Calculating through RTA has a complicated equation that is guided in phono3py. It 

also gives the physical properties like phonon lifetime/line width, the imaginary part of self-

energy, and joint density of states. However, we have only considered the relationship between 

phonon lifetime imaginary part of the energy and lattice thermal conductivities. 

1.2.7.1. Phonon lifetime calculation 

The Relaxation Time Approximation (RTA) solves the problems non-diagonal form of the 

collision.  The solution is performed by assuming the rate at which a phonon wave vector (q) 

relaxes does not depend on the non-equilibrium situation of the phonons colliding with it. Phonon 

lifetime is calculated from imaginary self-energy and its full expression is written in Appendix A. 
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Assume if the imaginary part of self-energy is represented by, Гλ(ωλ) the inverse of it gives  the 

relaxation time; 

𝝉𝝀 =
𝟏

 Г𝜆(𝜔𝜆)
                                                                                                    (𝟏𝟓) 

1.2.7.2. Lattice thermal conductivity calculation 

In the Boltzmann transport equation, the lattice thermal conductivity κ is calculated based on 

relaxation time (RTA) as follows; 

κ =
1

NV0
∑ Cλνλ ⊗ νλτλ                                                                                        (𝟏𝟔)   λ                   

where N is the number of unit cells in the system, V0  of  the volume of the unit cell, the  symbol 

λ represents the phonon mode as the pair of phonon wave vector q, νλ is group velocity and Cλ is 

the mode heat capacity which given as; 

Cλ =  KB(  
ℏωλ

KBT
  )2

exp(
ℏωλ

KBT))

[exp (
ℏωλ

KBT) − 1]2
                                                                (𝟏𝟕) 

Where ωλ = ω(q,j) is the phonon frequency, T is the temperature, and ℏ denote the reduced Planck 

constant.  The group velocity is calculated as; 

𝜈𝛼(𝜆) ≡
𝛿 𝜔𝜆

𝛿𝑞𝜆
                                                                                                             (𝟏𝟖) 
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 Statements of problem 

Even though most thermoelectric materials like Bi2Te3, PbSn, etc have a high figure of merit ZT, 

the abundance and toxicity of these materials are great problems for effective use. To overcome 

this problem the development of thermoelectric materials based on Mg2Si is highly investigated in 

recent research areas. But due to the low ZT values of these materials, their applications were 

limited to lower areas such as refrigerators, a cooling device for laser diodes, and cooling seats in 

automobile cooling systems. From the invention of Mg2Si to the recent year the ZT value of these 

TE materials did not develop to high values [20, 41]. The low value of ZT is due to the 

interdependence of intrinsic properties of its parameters like electrical conductivity, Seebeck 

coefficient, thermal conductivity, and electronic thermal conductivity [42]. As mentioned in many 

references the improvement of electrical conductivity by increasing carrier concentration 

minimizes the Seebeck coefficient and increases electronic thermal conductivity, which negatively 

affects the figure of merit and prohibits its improvement for more than a century. However, 

minimization of lattice thermal conductivity is the best criteria to maximize a ZT value which had 

studied in this research by a theory-guided approach and computational methods (first principle 

calculation based on density functional theory (DFT).  

 Scopes 

The main focus of this thesis is the investigation of the effects of heavy doping on the efficiency 

of thermoelectric based on Mg2Si. The efficiency of thermoelectric materials is studied interims 

of the figure of merit ZT. The lattice thermal conductivity is calculated by varying the constituents 

of the dopant atom and lastly, the good figure of merit had reported by the characterization of 

electronic structure and properties using first principle calculation based on density functional 

theory (DFT) and Semi-classical Boltzmann theory. However, the calculation of relaxation time 

was very complicated, estimation based on references will have taken to estimate the exact values 

of thermoelectric power or the figure of merit. This work is limited to study the theoretical 

properties and enhancement of the efficiency of doped Mg2Si by simulating at the level of 

atomistic and electronic scale, which doesn't involve any experimental work. The computational 

costs were also limit us to use fewer supercell (2x1x1) and low k-point grids. 
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 Objective 

The main objective of this research was to minimize the lattice thermal conductivity for good TE 

performance by substitutional doping of strontium (Sr,) in the Mg site to the Mg2Si-based 

thermoelectric material. 

1.1.2. Specific objectives   

The specific objective of this research is: 

 To optimize the parameters (lattice constant, Energy cutoff, charge density cutoff, and k-point 

grid)  

 To calculate the band structure, density of state, and carrier density for each doped and undoped 

Mg2Si 

 To calculate the lattice thermal conductivities, electrical conductivities, Seebeck coefficient, 

and electronic thermal conductivity for each doped Mg2Si  
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 LITERATURE REVIEWS 

   Introduction 

The overall properties of thermoelectric materials are governed by basic parameters such as 

thermal conductivity, electrical conductivity, Seebeck coefficient, and temperature [40]. The 

combination of these parameters gives the figure of merit, which determines the efficiency of 

thermoelectric materials. Thermoelectric materials with a high figure of merit have high efficiency. 

But the interdependence of intrinsic properties of thermoelectric materials thermal conductivity 

(ke) which influences the ZT of thermoelectric materials prohibits the development of these 

materials and leads to low efficiency. As mentioned in the reference [3, 25] the Seebeck coefficient 

of thermoelectric materials is related to effective mass and carrier concentration.  By another way, 

the figure of merit (ZT) of thermoelectric (TE) materials has a square proportional to the Seebeck 

coefficient and linearly proportional to the electrical conductivity. But it has an inverse relationship 

to thermal conductivity. According to this relationship enhancing the ZT of thermoelectric 

materials needs the reduction of thermal conductivity and the increment of Seebeck coefficient 

and electrical conductivity. The overall thermal conductivity in solid crystals is resulted from 

thermal conductivity (k) due to electron (ke) and thermal conductivity due to lattice vibration 

(kl)[18]. The thermal conductivity due to electrons is related to electrical conductivity by the well 

know Wiedemann–Franz Law [1].  From this, we understand that increasing the electrical 

conductivity can increase the electronic thermal conductivity which negatively affects the ZT 

value. On the other hand, the electrical conductivity is enhanced by increasing the charge carrier 

by doping with other appropriate elements. However, the increment of charge carrier leads to the 

reduction of the Seebeck coefficient which reduces highly the ZT of TE materials [42]. From this 

observation, we can consider the improvement of the ZT of TE materials is very difficult due to 

the interdependence of the intrinsic properties of these materials. To improve these properties 

many researchers are focused on different mechanisms to acquire the best thermoelectric 

efficiency.  Among these,TE materials based on Mg2Si [22] ] are the recent research area due to 

the low cost of production, non-toxicity, and good thermal stability. 
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 Theoretical Review for Enhancing Thermoelectric Materials 

 Enhancing ZT in bulk materials 

The best thermoelectric materials are the materials that should have a low lattice thermal 

conductivity as in a glass, and a high electrical conductivity as in a crystal. Since the 

interdependence of thermoelectric materials is challenging, the normal techniques of managing are 

to enhance the power factor by optimizing the carrier concentration or to reduce the lattice thermal 

conductivity k by creating the scattering centers [6, 8]. In bulk materials, alloying and/or doping 

is the major approach to improve the thermoelectric properties by altering the lattice thermal 

conductivity without affecting the electrical conductivity [43]. Typically heavily doped 

semiconductors with low thermal conductivity can behave as a good thermoelectric material with 

high ZT [44, 45].  For Example, the figure of merit of Mg2Si reaches  ZT = 2.96 for p-type at 800 

K and1.68 for n-type at 1000 K by optimum doping of Ba,[41] which reduces the thermal 

conductivity by a large factor. In addition, the effect of heavy elements on ZT values is also 

reported in ref[42]. It also explains as the mass fluctuation in lattice crystal due to heavy elements 

enhances the ZT values by creating point defects, which minimizing the phonon-free path.  

According to reference[22], the pure Mg2Si has a ZT of less than 0.002 which later enhanced by 

doping with elements such as Sn, Ge, Sb, and Bi, and reported a maximum ZT value of 1.2 T = 

700 K for Mg2Si0.6Sn0.4 and  ZTmax = 0.7 - 0.86,  T = 823–862 for Mg2Si: Bi0.02 [13]. This property 

again enhanced ZTmax by n-type doping up to 1.4, at T = 823 K for Mg2Si0.53Sn0.4Ge 0.05 Bi0.02 and 

0.5 by p-type doping at the temperatures of 300K [13, 18]. Besides the experimental technique, 

the computational methods are highly applicable in recent progress to study the electronic 

properties and mechanism needed to improve this complexity [25, 27]. From all these references 

we conclude that minimizing the lattice thermal conductivity, which enhances the performance by 

high value [39, 41] is preferable relative to an increment of carrier concentration 

 Novel approach  

The novel approach is a strategic method used to minimize the lattice thermal conductivity without 

affecting electrical conductivity.  The most widely adopted methods to minimize lattice thermal 

conductivity are phonon scattering, using complex structures to separate electron crystal from 

phonon glass, mixing multiphase on low dimensional materials [3, 46]. In the phonon scattering 



  

19 

 

approach, scattering can be achieved in different frequency ranges by a mechanism such, mass 

fluctuation scattering, grain boundary scattering, and interface scattering with thin films [42]. The  

Complex crystal structures are also used to minimize lattice thermal conductivity by separating 

Electron- crystal from phonon-Glass which is sometimes called the phonon-glass electron-crystal 

(PGEC) approach [6].  Such kind of materials has the structures contain large voids. These voids 

can be filled with loosely bound atoms which leads to reduces phonon lifetimes. They also have 

the valence-balanced combination of cations and covalently bonded anionic units. This 

combination leads to higher charge mobilities than purely ionic compounds and large, complex 

unit cells with intrinsically low thermal conductivity [42]. 

 Mass fluctuation technique (Half Heusler Materials) 

Half Heusler compounds which contain many semiconductor materials are the best group of 

materials for the application of high temperature thermoelectric. In recent progress, these materials 

achieve good performance and have high ZT values above 1000 K in TE materials. It appears as 

both  n-type MNiSb (M = Ti, Zr, Hf) and p-type FeRSb (R = V, Nb) HH compounds [47]. It has 

been reported that the high content of heavier Hf dopant minimizes thermal conductivity without 

affecting the other thermoelectric properties. The reduction of lattice thermal conductivity 

enhanced by both the electron-phonon scatterings and point-defect [48], which is very important 

for thermoelectric application, was reported in these materials. Half Heusler Materials have shown 

good material stability, high power density, and has also a high power factor. However, the 

dimensionless figure of merit (ZT) of these materials is near 1 for a long time due to their high 

thermal conductivity [49]. Consequently, the ZT value of these materials has improved to 1.5 since 

2013, in the temperature range of 500–900 K for both n- and p-type compounds [50, 51]. 

 Nanostructured thermoelectric 

Another approach to improve low-cost bulk materials with poor thermoelectric properties which 

have been considered for many years was reduced dimensionality[6]. Enhancement of the DOS 

near the Fermi level throughout the quantum confinement and increasing the presence of interfaces 

and surfaces are the two distinct mechanisms being developed for improving the thermoelectric 

properties of a material using nanostructured morphologies [42, 52]. Quantum confinement 
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enhances the thermo-power by increasing the electronic DOS near the Fermi level while the 

presence of phonon scattering at the surface and interface enhances scatter of heat-conducting 

phonons without reducing electronic conduction [53]. Through the possible enhancement of the 

power factor, Nanostructured semiconductors have been widely investigated as the method for 

increasing ZT or the reduction of the thermal conductivity of the lattice [33]. From a practical 

perspective, increasing the ZT throughout modulation doping and quantum confinement is the best 

method while it has been found recently that dimensional restriction can lead to a much-enhanced 

efficiency over traditionally used bulk thermoelectrics [54]. So that dimensional restriction is also 

the best method to improve the efficiency of thermoelectric properties. 
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 COMPUTATIONAL METHODS  

The overall works and all calculations for this thesis were performed in different categories. These 

were; Geometry optimization, Bandstructure and DOS of calculation, Elastic properties 

calculation Electronic properties calculations, and phonon properties calculation. Geometry 

optimization contains the optimization of lattice parameters (a, b, c, and related angles), cutoff 

energy (plane-wave basis set), and k-point (Brillouin zone sampling). For these parameters 

optimization the CASTEP program which is one of the tasks in Materials Studio 2017, was used 

to provide an efficient implementation of DFT. In this work, our materials, are written in different 

forms. Mg2Si is the reduced general forms of magnesium silicide, which has an FCC crystal 

structure of space group 225, Fm-3m (225), α= β= γ= 90° and a=b=c [23, 41, 55, 56]. It has 12 

atoms per-unit cell in which 8 Mg occupies tetrahedral site 8c (0.25 0.25 0.25) and Si occupies all 

4a (0 0 0) sites. We have used 2 × 1× 1 to generate supercells. The supercell of Mg2Si generated 

is written as Mg16Si8. In this work, we have used 8.33% and 16.67% of Sr substitutional doping 

along Mg-site, which has 1Sr and 2Sr in unit cell respectively. The expression of supercell for 

8.33% is Mg14Si8Sr2 and Mg12Si8Sr4 for 16.67%. So we have used to express Mg8Si4, Mg7Si8Sr 

and Mg6Si8Sr2, in a unit cells for undoped, 8.33% and 16.67% Sr doped respectively. Only one 

lattice parameter (celldim)(1) was optimized and the possible k-point grids were adjusted for 

superstructures to simulate approximation. The calculations for lattice dimensions were performed 

by fixing both the cutoff and k-point grid. As explained in CASTEP dialogs, the cutoff has to be 

settled to maximum energy. To optimize the lattice dimension, the k-point was fixed to 4x4x4 and 

the cutoff energy was fixed to 380 eV. After minimum energies were acquired the optimum value 

of lattice dimension was taken and another task for cutoff and k-point calculations were provided 

with the same steps. In all calculations, the DFT calculations with the projector augmented-wave 

(PAW) method were used to describe interactions between electrons. For the exchange-correlation 

potential, the general-gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) 

prescription was used. In this calculation 2×1×1 supercell was generated by CASTEP and SCF 

with the convergence criteria for energy tolerance of 10-6 eV/atom was chosen between 

consecutive steps. The CASTEP implementation involves a Hessian in the mixed space of internal 

and cell degrees of freedom so that both lattice parameters and atomic coordinates can be 

optimized. For this Broyden-Fletcher-Goldfarb-Shanno (BFG) minimizer was used. OTFG 
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Ultrasoft was used to specify pseudopotentials of elements. To optimize cutoff Fast Fourier 

Transformation (TTF) with a density standard of 30×30×30 was used to maintain the efficient way 

to transform various entities between Hamiltonian and exchange-correlation function. 

After geometry optimization, Bandstructure and DOS were calculated by using CASTEP again. 

To calculate Bandstructure and DOS, 2×2×2 and 4×4x×4 k-points were used for supercell and unit 

cell respectively. From the optimized unit cell, the lattice dimension was chosen at 6.3562 A
ͦ
. The 

plane-wave cutoff energy for all calculations of the unit cell was set to 330 eV. The medium k-

point separation (0.025/A0) and band energy tolerance of about 10-5 eV were also used to perform 

all structural calculations. 

The electronic Transport properties include properties such as electrical conductivity, Seebeck 

coefficient, and electronic thermal conductivity. For these properties, the Boltzmann transport 

theory was implemented. Specifically, the BoltzTrap code with Quantum Espresso was used to 

calculate all these properties as shown in appendix A. GGA –PBE was used for exchange-

correlation potential calculation. For both native Mg16Si8 and Sr-doped (Mg14Si8Sr2, Mg12Si8Sr4). 

2×1×1 supercell was used for nSCF calculation that contains 24 atoms. The Brillouin zone was 

sampled by 18×18×18 Monkhorst–Pack k-point mesh (46 points in irreducible Brillouin zone) for 

electronic part calculation by using BoltzTrap code. The result of nSCF calculation was used to 

generate a file that contains all electronic transport properties by BoltzTrap code in python code 

and the output file was extracted to each parameter (Seebeck, electrical conductivity, electronic 

thermal conductivity). The Seebeck coefficient and electrical conductivity were calculated based 

on the relaxation time approximation by using Boltzmann transport equation BTE electron after 

calculating the carrier concentration and its distribution responding to temperature and chemical 

potential.  

Lattice thermal conductivity (phonon calculation) was done by Phono3py code and implemented 

in the Boltzmann transport equation of each structure calculation. For this nSCF calculation with 

6×6×6 k-point was used and 2×1×1 supercell was generated for all Mg16Si8 and Sr-doped 

(Mg14Si8Sr2, Mg12Si8Sr4).  SCF calculation of each supper cell was implemented for the calculation 

of force constants. . Its main inputs are sets of second-and third-order interatomic force constants. 

The second-order force constant is used to compute frequency, phonon distribution function and 
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velocity, while the third-order force constant measures the relaxation time and measure of 

deviation based on the equations in Appendix B. For second-order IFCs, calculation of the results 

from SCF of Phono3py was directly used, but for third-order IFCs, a 2×1×1 supercell was built 

and the calculation was implemented. After all, constant forces were collected 2×1×1 dimension 

and 25×25×25 q-point mesh were used to calculate lattice thermal conductivity. 
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 RESULT AND DISCUSSION 

4.1 Optimization and stability of crystal structures 

First-principles properties calculation is based on the information of crystals. This information is 

the crystal structure, plane-wave energy cutoff, k-point grids, and lattice dimensions. In this work 

these all parameters have been optimized before any calculations had been done. After 

optimization, the lattice parameters of Mg8Si4 were fixed to 6.3562 A
ͦ
 as shown in figure 4.1(c) 

which is very similar to the previous computational work [23, 36, 38] and experimental work 

(6.385 - 6.393) A
ͦ
 [57, 58] in unit cell. This values have increased in supercells of (2×1×1). It forms 

(13.438 A
ͦ
, 6.719 A

ͦ
 and 6.632 A

ͦ
), (13.016 A

ͦ
, 6.508 A

ͦ
 and 6.362 A

ͦ
), (12.6473 A

ͦ
, 6.3846 A

ͦ
, and 

6.38467A
ͦ
) in the lattice dimension (a,b and c) for Mg12Si8Sr4(16.66% Sr-doped),  Mg14Si8Sr2 

(8.33% Sr-doped) and Mg16Si8(undoped) respectively. From this we have observed as the 

symmetry of the crystal was reduced by increasing the concentration of Sr-dopant. The crystal 

imperfection affects the electronic properties while it improves thermal conductivities, which 

proves our hypothesis. Similarly, k-point grid and plane-wave cutoff energy were also optimized 

as shown in figure 4.1(a) and (c) respectively. After parameters optimization, the stability of the 

Mg8Si4 in the unit cell was checked by CASTEP code based on elastic constraints. In this paper, 

we have shown the stability of Mg8Si4 by calculating elastic constant (Cij) based on Boron-Huang’s 

lattice dynamic theory. For the cubic crystal system, the independent elastic constants C11, C12, and 

C44 must satisfy the equation 15 shown below [23, 41]. As shown in Table 4.1 the stability was 

proved since it was satisfied the rule. 

C11 > 0, C44 > 0, C11-C12 > 0, C11+2C12 > 0                                                               (19) 
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Table 4-1 Elastic constant (Cij) of undoped and Sr-doped Mg2Si 

Compounds   Elastic constant (Cij)(GPa) 

C11   C12  C44  C11 - C12  C11 + 2C12  

Mg8Si4 114.10 21.99 44.69 92.11 157.98 

Mg7Si4Sr 120.11 29.17 42.91 77.20 157.98 

Mg6Si4Sr2 112.32 24.71 36.53 87.61 161.74 

 

 

Figure 4.1 Geometry optimization a) optimized lattice) optimized k-points, c) optimized E-

cutoff and, d) bandgap optimization 
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4.2 Electronic properties Analysis 

4.2.1 Electronic Bandstructure and DOS analysis 

The electronic structure and properties of Mg8Si4, Mg7Si4Sr, and Mg6Si4Sr2 were computed by 

first-principle calculation. As shown in figure 4.2(a, b, and c) the maximum valance band coincides 

at Gamma (G) point while the minimum conduction band is located at X-points in the Brillouin 

Zone. From this, we conclude the materials are indirect bandgap. Accordingly the bandgap of 

Mg8Si4, Mg7Si4Sr, and Mg6Si4Sr2 are 0.227 eV, 0.241eV and 0.017 eV respectively. It shows the 

variation of bandgap as the concentration of dopant increases as shown in figure 4.1 (d). This is 

due to the increment of lattice distance caused by the dopant atom. We have introduced 

substitutional doping in our system in which Sr was substituted by Mg, in which the atomic radius 

of Sr is greater than that of Mg. This creates a tensile force on neighboring atoms and leads to the 

increments of lattice distance. An increment of lattice distance increases the interatomic distance, 

which reduces the binding energy. From the definition of bandgap energy, electrons with low 

bound energy can be exited to conduction band with minimum energy. The minimum energy gives 

to electrons to be in conduction band from valance band is bandgap.   The electronic structures of 

Mg is 1s2 2s2 2p6 3s2, for Si; 1s2 2s2 2p6 3s23p2 and 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 for Sr.  

Introducing another new orbital to the native (Mg2Si) increases the bandstructure energy of 

electrons near Fermi energy. The density of the state of doped compounds is greater than undoped 

compounds as shown in figure 4.2 (d), (e), and (f). This is due to introducing a new 5s2 from Sr 

atom to the system. Electron with higher energy occupies the higher position. Most of 3s2 from 

Mg and Si occupy around the energy level of -5ev to 0. However, the 3p from Si and 4s from Sr 

occupy above Fermi level (0 eV). 
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Figure 4.2 Bandstructure and DOS of Mg16Si8 (a and d), Mg14Si8Sr2 (b and e), and Mg12Si8Sr4, (c 

and f) respectively 

4.2.2 Electronic transport properties 

The objective of our work in this thesis is to reduce the lattice thermal conductivity by optimizing 

other properties like Seebeck coefficient electrical, conductivity, and electronic thermal 

conductivity. We have achieved our goal by introducing substitutional doping of Sr atom to Mg2si. 

We have done by calculating all these properties of the native compound and relatively compared 

it with the doped one by varying the concentration of the dopant atom. The electrical conductivity, 

Seebeck coefficient, and electronic thermal conductivity of un-doped Mg2Si were calculated by 

BoltzTrap code which is implemented by the Boltzmann transport equation. All equation used for 

this code is described in appendix A. The results of the Seebeck coefficient, electrical conductivity, 

and electronic thermal conductivity were shown in figures 4.3 (a), 4.4 (a), and 4.5(a) respectively. 

After we had known the properties of the native compound, we had calculated the properties of 
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the doped compound by using BoltzTrap code again. For undoped Mg16Si8, the contribution of 

elector and holes are almost similar as the temperature increases but the Seebeck coefficient 

continuously increases with temperature for p-type for all chemical potentials as shown in figure 

4.3 a).  

 

Figure 4.3 Seebeck coefficients as a function of temperature and chemical potentials for; 

electrical conductivity (a), Mg16Si8, (b) Mg14Si8Sr2, (c) Mg12Si8Sr4, and (d) comparison of the 

three 

For the doped compound (Mg12Si8Sr4 and Mg14Si8Sr2) the Seebeck coefficient increase with 

increasing dopant concentration and temperature as shown in figure 4.3(d).                                                        

The Seebeck coefficient increases more for n-type (-ve Seebeck coefficient) Mg12Si8Sr4 with 

temperature and reaches maximum values at 600K. It continuously increases for p-type (+ve 

Seebeck coefficient) with lower values than n-types. This shows that the electron contributes more 

to transport properties than holes. Generally, the Seebeck coefficient increases for doped 

compounds when related to the undoped compound.  For doped compound, the contribution of 
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electrons is higher than holes and shows the materials behaves as n-type and behaves p-type at 

higher temperature(above 800K). 

 

Figure 4.4 Electrical conductivity as a function of temperature and chemical potentials  for; (a), 

Mg16Si8, (b) Mg14Si8Sr2, (c) Mg12Si8Sr, and (d) comparison of the three 

In this work, all results from the BoltzTrap code were calculated under constant relaxation time in 

which its exact value is not calculated. But to know the exact values of electrical conductivity and 

electronic thermal conductivity the effect of relaxation time is very important. To evaluate the 

result it is possible to estimate the relaxation time since the relaxation time τ for most materials is 

in the orders of 10-15 to 10-14 [41]. However, this value is varied in materials due to effective mass 

and our estimation was roughly to check the optmization of these two properties. As shown in 

Figures 4.5 the electronic thermal conductivity increases with increasing temperature for all 

compounds. The electrical conductivities of the doped Mg2Si were reduced due to the formation 

of scattering caused by the reduction of symmetry as the concentration of Sr increases. Sr doping 

increases the phonon scattering and reduces the carrier mobility, which reduces electrical 
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conductivity and electronic thermal conductivity as shown in Figures 4.4 (d) and 4.5(d) 

respectively. 

 

Figure 4.5 Electronic thermal conductivity as a function of temperature and chemical potentials 

for; (a), Mg16Si8, (b) Mg14Si8Sr2, (c) Mg12Si8Sr, and (d) Effect of chemical potentials on all 

compounds respectively 

We have also observed as the carrier concentration increases when the concentration of Sr 

increases. Unlike undoped compounds, the electrical conductivity and electronic thermal 

conductivity of doped compounds are stable at high temperatures. As shown in Figures 4.7 (d) and 

4.6 (d), the continuous increment of electrical conductivity and electronic thermal conductivity of 

doped compounds with the number of carrier concentrations makes it better for thermoelectric 

application at higher temperatures. This shows that even though the electrical conductivity and 

electronic thermal conductivity reduced, due to reduction of carrier mobility as a result of 
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scattering, these two property continuously increases at a higher temperature for doped compound 

relative to undoped compound.               

 

Figure 4.6 Electronic thermal conductivity per-relaxation time for (a), Mg16Si8, (b) Mg14Si8Sr2, 

(c) Mg12Si8Sr, and (d) comparison of the three as a function of temperature and the number of 

carriers per unit volume respectively. 

At low carrier concentration Mg16Si8 show p-type behavior and n-type behavior while it shifts to 

n-type at the high number of carrier concentration for all temperatures. The properties do not varied 

with the temperature at a high number of carrier concentrations. But the variation of electrical 
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conductivity and electronic thermal conductivity with temperature is shown at the low number of 

carrier concentrations as shown in Figures 4.7 and 4.6 for all compounds. 

 

Figure 4.7 Electrical conductivity as a function of temperature and  the number of carriers for (a), 

Mg16Si8, (b) Mg14Si8Sr2, (c) Mg12Si8Sr, and (d) comparison of the three 

As shown in Figures 4.3, 4.4, 4.5, 4.7, and 4.8 electronic transport properties were studied as a 

function of temperature and carrier concentration. The Seebeck effect is independent of relaxation 

time and the values can be taken as pure values of the Seebeck coefficient. The doped compound 

has a higher number of carriers of undoped compounds. The Seebeck coefficient increases with 

increasing temperatures and shows good property for n-type. The graphs show sinusoidal function 

due to the existence of other factors that affect the properties. The electrical conductivity and 

electronic thermal conductivity shows the same behaviors as shown in figure 4.4  and 4.5. It  

Administrator
Typewriter
1

Administrator
Typewriter
2

Administrator
Typewriter
3



  

33 

 

increase with increasing temperature and show reduction behaviors at a large number of carriers. 

Both of them depend on relaxation time and their net values cannot be acquired without the 

knowledge of relaxation time. But the approximation may be taken if its value is necessarily 

needed. It is not an easy task to know the values of electronic transport properties by only 

describing the number of carrier concentrations, relaxation time, and temperature. It also needs 

other factors like the chemical potential to define the perfect correlation values with other 

properties. So in this work, we have also tried to show the effects of chemical potentials on these 

properties as shown in figure 4.8 by comparing each other as a function of carrier concentration 

and temperature for both doped and undoped compounds. 
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Figure 4.8 Seebeck coefficient as a function of temperature and  the number of carriers for (a), 

Mg16Si8, (b) Mg14Si8Sr2, (c) Mg12Si8Sr4, and (d) comparison of the three 

From all calculation of electronic parts, we can generalize the electronic properties by power 

factor which is the multiplication of the square of Seebeck with electrical conductivity (S2σ). The 

power factor increases with increasing dopant concentration as shown in figure 4.9. This is due 

to the increments of Seebeck coefficient in highly doped (Mg12Si8Sr4) as shown in figure 4.3 (d). 

 

Figure 4.9 Power factor per relaxation time for the three compound 

(Mg16Si8, Mg14Si8Sr2, and Mg12Si8Sr4) 

 

4.3  Phonon properties analysis 

Before calculating phonon properties we had computed the thermodynamic properties of the unit 

cell material. This is necessarily needed to compute the Debye temperature at which the phonon 

vibration is investigated. As shown in figure 4.10 (d) the heat capacity shows nearly constant 

values above the temperature of 800K. Above this temperature, the phonon vibration of our 

materials are reaching the ultimate values of vibration and all necessary properties can be studied 

beyond this temperature. As shown in figure 4.10(a) and b) the phonon density of states and 

phonon dispersion, which shows the existence of acoustic and optical phonon, are also computed. 
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The acoustic phonon, which is very important for lattice thermal conductivity examination, is 

occurred at a relatively low frequency in gamma (G) point in the first Brillouin zone. 

 

Figure 4.10 Thermodynamic properties of Mg2Si  

Phonon DOS(a), phonon dispersion(b),  Entropy, enthalpy and Gibbs free energy(c), (d) heat 

capacity  
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Figure 11 Thermodynamic properties of a) Mg16 Si8, (b) Mg14Si8Sr2, and (c) Mg12Si8Sr4   

The thermodynamic properties of doped compounds were changed when related to undoped 

compounds. The entropy, specific heat capacity, and free energy are all increased in both 

Mg14Si8Sr2 and Mg12Si8Sr4 as shown in figure 11 (b) and (d) respectively. From graphs of entropy, 

we understand that the disorder of the crystal system is increased as the concentration of Sr 

increases. This is due to the higher radius of Sr than Mg which introduces crystal distortion. 
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Figure 11 phonon dispersion and phonon DOS of Mg16 Si8(a, d), Mg14Si8Sr2(b, e), and 

Mg12Si8Sr4(c, f) 

As we introduce in the first chapter of this thesis, the lattice thermal conductivity is an important 

parameter for the good performance of thermoelectric materials. Materials with low thermal 

conductivity and high power factor can be preferred as the best thermoelectric materials. This 

characteristic can be acquired by introducing the dopant atom and optimize the other 

thermoelectric properties as described in the novel approach of the literature reviews in chapter 

two. This is the method we have used to minimize the lattice thermal conductivity in all of this 

work. We have used substitutional doping of strontium (Sr) at the magnesium (Mg) site of the 

Mg2Si compound. Introducing dopant atoms to the materials creates phonon scattering[59], which 

minimizes the mean free path. The lattice thermal conductivity is related to the mean free path by 

the Eq. (15) in Appendix B. phonon scattering time was not calculated in this work. 
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Figure 4.11 Lattice thermal conductivity of a) Mg16 Si8, (b) Mg14Si8Sr2, and (c) Mg12Si8Sr4 and 

all three (d) 

From the bandstructure, we understand that doping Sr into the materials minimizes the band energy 

and creates the formation of more scattering. For Mg14Si8Sr2 the band energy minimized and the 

bandgap increased in a small amount which favors the scattering of electron-phonon interaction as 

well as the phonon-phonon interaction at the band edges in the Brillouin zone [47, 60, 61]. As a 

result, the lattice thermal conductivity is minimized by a large value (from 8 W/Km to 0.2 W/K m 

at low T and from 1 W/K m to 0.02 W/K m at high T) when related to undoped Mg16Si8 as shown 

in figure 4.10 (a) and (b).  
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Figure 4.12 The ratio of lattice thermal conductivity to electronic thermal conductivity as a factor 

of temperature and chemical potential for electronic thermal conductivity. 

In this graph, we have estimated the relaxation time as (τ ≈ 10-14 s). 

Generally, the efficiency of the thermoelectric material is described by the figure of merit as 

described in Eq. (3).  Let us explain this equation in terms of electronic thermal conductivity and 

describe our results;  

The electrical conductivity and electronic thermal conductivity are the inter-dependent 

parameters and given by Eq. (13)      κ𝑒 = 𝐿σT       Where L = 2.44 × 10−8 WΩ K−2 is 

Wiedemann–Franz constant.  

From this                    𝛔 =
𝛋𝒆

𝑳𝐓
=                                                                                
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From this we can get, 

𝐙𝐓 =
𝐒𝟐/𝐋

𝟏 +
𝒌𝒍

𝒌𝒆

                                                                                               

Let ‘r’ is the ratio of lattice thermal conductivity to electronic thermal conductivity. So to have a 

good figure of merit materials must have a large Seebeck coefficient and low ‘r’. According to this 

statement and Eq. (B), Sr doped materials show very good performance than undoped materials as 

shown in the figure. 11. The doped materials also show a large Seebeck coefficient than undoped 

materials as shown in figure 4.3(d) for n-type and also the same situation for p-type as shown in 

figure 4.3 (a), (b), and (c). So the doped materials show better electronic properties and phonon 

properties when compared to undoped ones.  
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 CONCLUSION AND RECOMMENDATIONS 

Magnesium silicide (Mg2Si) is a newly emerged thermoelectric material that is easily available in 

the earth's crust. Due to its good stability, nontoxicity, and low weight, it is more preferable for 

thermoelectric material if its properties will have improved. In this work, we have tried to improve 

its properties by focusing on lattice thermal conductivity by optimizing other properties like the 

Seebeck effect, electrical conductivity, and electronic thermal conductivity. The computational 

methods of materials modeling and simulation based on density functional theory (DFT) were fully 

implemented in this work. Material studio 2017, BoltzTrap code, phonopy, and phono3py are the 

softwares that were used to evaluate all properties and characteristics of our modeled materials. 

All the electronic properties and phonon properties were governed by Boltzmann transport 

equations (BTE). After geometry optimization, the electronic properties and phonon properties 

were calculated. All properties show a very interesting result even after doping. A very good stable, 

the optimized electronic properties (figure 4.9), and the much-minimized lattice thermal 

conductivity (figure 4.11) we got initiate us to report this thesis. We have not seen in any references 

that the values of lattice thermal conductivity are less than our values in doped Mg2Si. Generally 

doping Mg2Si with strontium (Sr) gives the much-minimized lattice thermal conductivity. We have 

also seen that a high concentration of strontium (>17 % of the total atom in the unit cell) reduces 

the bandgap. Finally, recommend that if some improvement will have done on electronic 

properties, Sr-doped Mg2Si shows very interesting lattice thermal conductivity for thermoelectric 

application. The concentration of dopant atoms must be controlled (<17 % is recommended for 

less lattice thermal conductivity according to our investigation).  
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Appendices  

Boltzmann transport equation for Electron solution 

The thermoelectric properties calculation is mainly based on the Boltzmann transport theory 

(BTE), which assumption is based on a distribution function that measures the number of electrons 

occupation in the neighborhood. The distribution of electrons at thermal equilibrium follows the 

Fermi-Dirac statistics. To calculate the electronic properties the BoltzTrap code is used to solve 

the Boltzmann equation by computing all the necessary integrations based on interpolation of a 

band structure performed or computed with DFT [59]. Therefore all thermoelectric properties are 

calculated as follows; 

The Conductivity tensors 𝜎𝑖𝑗 is calculated as; 

𝜎𝛼𝛽(𝑖, 𝑘) = 𝑒2𝜏𝑖,𝑘𝜐𝛼(𝑖, 𝑘)𝜐𝛽(𝑖, 𝑘)                                                                           (1)     

 

𝜎𝛼𝛽𝛾(𝑖, 𝑘) = 𝑒2𝜏2
𝑖,𝑘𝜀𝑢𝜐𝜐𝛼(𝑖, 𝑘)𝜐𝜐(𝑖, 𝑘) 𝑀𝛽𝑢

−1                                                     (2) 

The group velocity and the inverse mass tensor is given by; 

 

𝜐𝛼(𝑖, 𝑘) =  
1𝛿𝜀𝑖,𝑘

ℏ𝛿𝑘𝛼
 ,   𝑀𝛽𝑢

−1(𝑖, 𝑘) =  
1𝛿2𝜀𝑖,𝑘

ℏ2𝛿𝑘𝛽𝛿𝑘𝑢
                                                      (3)  

The conductivity tensor based on energy  (𝜀)  in all K-points in Brillouin Zone and all bands is 

calculated; 

𝜎𝛼𝛽(𝜀) =  
1

𝑁
∑ 𝜎𝛼𝛽(𝑖, 𝑘)𝛿(𝜀 − 𝜀𝑖,𝑘)

𝑖,𝑘
                                                               (4) 

Where energy ε (i,k) band index i and k vector direction, N is the number of k-points 
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Now if g(ε) the density of states,   𝑛𝜐   number of valence electrons per volume, fμ(T; ε) is the 

Fermi distribution, Ω is the volume of the unit cell,  e the electron charge, T is temperature, and μ 

is chemical potential or Fermi level, the electrical conductivity (σij), Seebeck coefficient Sij, 

electronic thermal conductivity(𝜅𝛼𝛽
0 ), and  electron or hole carrier concentration n(T; ε ) is 

computed by BoltzTrap code as follows; 

The conductivity based on the electric field is calculated by; 

𝜎𝛼𝛽(𝑇;  𝜇) =  
1

𝛺
∫ 𝜎𝛼𝛽(𝜀) [−

𝛿𝑓𝜇(𝑇;  𝜀)

𝛿𝜀
] 𝑑𝜀                                                     (5) 

The conductivity based on the magnetic field is calculated by; 

𝜎𝛼𝛽𝛾(𝑇;  𝜇) =  
1

𝛺
∫ 𝜎𝛼𝛽𝛾(𝜀) [−

𝛿𝑓𝜇(𝑇;  𝜀)

𝛿𝜀
] 𝑑𝜀                                                 (6) 

The conductivity based on the thermal gradient is calculated by; 

𝜐𝛼𝛽(𝑇;  𝜇) =  
1

𝑒𝑇𝛺
∫ 𝜎𝛼𝛽(𝜀 − 𝜇) [−

𝛿𝑓𝜇(𝑇;  𝜀)

𝛿𝜀
] 𝑑𝜀                                        (7) 

The thermal conductivity due to electronic contribution is calculated by; 

𝜅𝛼𝛽
0 (𝑇;  𝜇) =  

1

𝑒2𝑇𝛺
∫ 𝜎𝛼𝛽(𝜀)(𝜀 − 𝜇)2 [−

𝛿𝑓𝜇(𝑇;  𝜀)

𝛿𝜀
] 𝑑𝜀                                  (8) 

The Seebeck coefficient is calculated by; 

𝑆𝑖𝑗 =  𝐸𝑖(△𝑗 𝑇)
−1

= (𝜎−1)𝛼𝑖𝜐𝛼𝑗                                                                    (9) 

The doping carrier concentration is calculated by; 

𝑛(𝑇;  𝜀) =  𝑛𝜐 −
1

Ω
∫ 𝕘(𝜀)𝑓𝜇(𝑇;  𝜖)𝑑𝜀                                                       (10)   
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APPENDIX B 

Boltzmann transport equation for Phonon properties calculation 

 Every calculation for thermal properties is based on Hamiltonian expansions. It is started from 

general and defines every parameter one by one. The general Hamiltonian is defined as; 

𝐻 =  𝛷0 +  𝛵 +  𝐻2 +  𝐻3 + ⋯                                                                                                           (1) 

Each parameter in the equations (1) is expressed as follows; 

𝑇 =  
1

2
 ∑ 𝑚𝑘[𝑢𝑎(𝑙𝑘)]2,                                                                                                                         (2)

𝑙𝑘𝑎

 

𝐻2 =
1

2
 ∑ ∑ Φ𝛼𝛽(𝑙𝑘,   𝑙′𝑘′)

𝑙′𝑘′𝛽

𝑢𝛼(𝑙𝑘)𝑢𝛽(𝑙′𝑘′),                                                                              (3)

𝑙𝑘𝑎

 

 

𝐻3 =
1

6
 ∑ ∑ ∑ Φ𝛼𝛽𝛾(𝑙𝑘,   𝑙′𝑘′, 𝑙′′𝑘′′)

𝑙′′𝑘′′𝛾𝑙′𝑘′𝛽

× 𝑢𝛼(𝑙𝑘)𝑢𝛽(𝑙′𝑘′)𝑢𝛾(𝑙′′𝑘′′),                                  (4)

𝑙𝑘𝑎

 

Where, 

Φ0 - is correspond to the constant potential,  

Hn – is n-body crystal potential terms,  

T - is kinetic energy, 

Φαβ - is the harmonic force constant, 

Φαβγ - is an anharmonic cubic force constant  

U (lk) - is the atomic displacement of kth atom in l th unit cell  

m - is the atomic mass of k-type, and the symbols α, β, and γ are represented the Cartesian 

indices.  



  

45 

 

According to the user guides of phono3py and phonopy and many references [59, 60, 62-65], the 

harmonic Hamiltonian H is defined by; 

𝐻 =  𝐻2 + 𝑇                                                                                                                                               (5) 

The atomic displacement is given by; 

𝑢𝛼 =  (
ℏ

2𝑁𝑚𝑘
)

1
2

∑ 𝜔
𝑞𝑗

−1
2  [ᾶ + ᾶ†

−𝑞𝑗]𝑒𝑖𝑞.𝑟(𝑙𝑘)𝑊𝛼(𝑘, 𝑞𝑗)                                                                 (6)

𝑞𝑗

 

Where ℏ is the reduced Planck constant, N is the number of unit cells in the crystal, ω is harmonic 

frequency, Wα(qj) polarization vector,  ᾶ, and ᾶ† are the phonon creation and annihilation operators 

of the wave vector q and normal mode of band index j,  and r(lk) is the equilibrium atomic position. 

The polarization vector Wα (qj) and is harmonic frequency ω(qj) are obtained from the eigenvalue 

problem of a dynamical matrix D(q) as follows; 

∑ 𝐷𝛼𝛽(𝑘𝑘′, 𝑞)𝑊𝛽(𝑘′, 𝑞𝑗) =  𝜔𝑞𝑗
2 𝑊𝑞𝑗(𝑘, 𝑞𝑗)                                                                                    (7)

𝑘′𝛽

 

 

𝐷𝛼𝛽(𝑘𝑘′, 𝑞) =
1

√𝑚𝑘𝑚𝑘′

∑ Φ𝛼𝛽(0𝑘, 𝑙′𝑘′)𝑒𝑖𝑞.[𝑟(𝑙′𝑘′)−𝑟(0𝑘)                                                          (8)

𝑙′

  

Using Eq. (6) we can easily express Hamiltonian for both harmonic (H2) and anharmonic (H3) as 

shown in Eq. (9) and (10). The harmonic part is expressed as the sum of harmonic oscillators, 

𝐻2 =  ∑ ℏ𝜔𝑞𝑗 (
1

2
+ ᾶ𝑞𝑗

† ᾶ𝑞𝑗)                                                                                                               (9)

𝑞𝑗

 

The anharmonic part is expressed as a sum of three phonon collisions, 

𝐻3 =  ∑ Φ𝜆𝜆′𝜆𝜆′′(ᾶ𝜆 + ᾶ−𝜆
† )((ᾶ𝜆′ + ᾶ

−𝜆′
† )(ᾶ𝜆′′ + ᾶ

−𝜆′′
† )                                                       (10)

𝜆𝜆′𝜆′′

 

 

 



  

46 

 

Where Φ(λλ' λλ'' ) is given as; 

Φ𝜆𝜆′𝜆𝜆′′ =  
1

√𝑁

1

3!
∑ ∑ 𝑊𝛼(𝜅, 𝜆)

𝛼𝛽𝛾𝑘𝑘′𝑘′′

𝑊𝛽(𝜅′, 𝜆′)𝑊𝛾(𝜅′′, 𝜆′′)√
ℏ

2𝑚𝜅𝜔𝜆

√
ℏ

2𝑚𝜅′𝜔𝜆′
√

ℏ

2𝑚𝜅′′𝜔𝜆′′

×  ∑ Φ𝛼𝛽𝛾(0𝑘, 𝑙′𝑘′𝑙′′𝑘′′)𝑒𝑖𝑞′.[𝑟(𝑙′𝑘′)−𝑟(0𝑘)]𝑒𝑖𝑞′′.[𝑟(𝑙′′𝑘′′)−𝑟(0𝑘)]  

𝑙𝑙′

× 𝑒𝑖(𝑞+𝑞′+𝒒′′)−𝑟(0𝑘)∆(𝑞 + 𝑞′ + 𝑞′′)                                                                      (11)    

Phonon lifetime calculation 

The Relaxation Time Approximation (RTA) solves the problems non-diagonal form of the 

collision.  The solution is performed by assuming the rate at which a phonon wave vector (q) 

relaxes does not depend on the non-equilibrium situation of the phonons colliding with it. Phonon 

lifetime is calculated from imaginary self-energy. Assume if the imaginary part of self-energy is 

represented by, Гλ(ωλ) 

 Г𝜆(𝜔) =  
18𝜋

ℏ2
∑ |𝜙_𝜆𝜆′𝜆′′ |2{(𝑛𝜆′ + 𝑛𝜆′′ + 1) 𝛿(𝜆′𝜆′′ ω − ω𝜆′ − ω𝜆′′ ) + (𝑛𝜆′ − 𝑛𝜆′′ )[𝛿(ω +

ω𝜆′ − ω𝜆′′ ) − 𝛿(ω − ω𝜆′ + ω𝜆′′ )]}                                                                                                 (𝟏𝟐)        

   Where λ phonon mode,   𝜙_𝜆𝜆′𝜆′′   constant potentials, ω  frequency and 𝑛𝜆′ is the phonon 

occupation number and give by; 

𝑛𝜆′ = [exp (
ℏω𝜆′

𝐾𝐵𝑇
) − 1]−1                                                                                                                   (𝟏𝟑) 

Now the relaxation time is given by; 

𝝉𝝀 =
𝟏

 Г𝜆(𝜔𝜆)
                                                                                                                                          (𝟏𝟒) 

Lattice thermal conductivity calculation 

In the Boltzmann transport equation, the lattice thermal conductivity κ is calculated based on 

relaxation time (RTA) as follows; 

κ =
1

NV0
∑ Cλνλ ⊗ νλτλ                                                                                                                   (𝟏𝟓)   λ                   
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where N is the number of unit cells in the system, V0  of  the volume of the unit cell, the  symbol 

λ represents the phonon mode as the pair of phonon wave vector q, νλ is group velocity and Cλ is 

the mode heat capacity which given as; 

Cλ =  KB(  
ℏωλ

KBT
  )2

exp(
ℏωλ

KBT))

[exp (
ℏωλ

KBT) − 1]2
                                                                                             (𝟏𝟔) 

Where ωλ = ω(q,j) is the phonon frequency, T is the temperature, and  kB denote the reduced 

Planck constant the group velocity is calculated as; 

𝜈𝛼(𝜆) ≡
𝛿 𝜔𝜆

𝛿𝑞𝜆
                                                                                                                                 (𝟏𝟕) 

=  
𝟏

𝟐𝝎𝝀
∑ 𝑾𝜷(𝜿, 𝝀)

𝜿𝜿′𝜷𝜸

𝜹𝑫𝜷𝜸(𝜿𝜿′, 𝒒)

𝜹𝒒𝜶
𝑾𝜸(𝜿′, 𝝀)                                                                   (𝟏𝟖) 
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