

JIMMA UNIVERSITY

SCHOOL OF POST GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING CHAIR

Investigation of Integrated Sono-direct and Sono-alternative Current Electro Coagulation process for the treatment of Domestic wastewater

This Thesis submitted to the School of Post Graduate Studies of Jimma University in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering.

BY

LELISA REGEA MENGISTU

July, 2021

Jimma, Ethiopia

JIMMA UNIVERSITY SCHOOL OF POST GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING CHAIR

Investigation of Integrated Sono-direct and Sono-alternative Current Electro Coagulation process for the treatment of Domestic wastewater

A Thesis is submitted to the School of Post Graduate Studies of Jimma University in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering.

By

LELISA REGEA MENGISTU

Main Advisor: Dr. Zerihun Asmelash Co-advisor: Mr Chali Dereje (MSc)

July, 2021

Jimma, Ethiopia

DECLARATION

I declare that this research entitled Investigation of Integrated sono-direct current and sonoalternative current electrocoagulation process for the treatment of domestic wastewater is my original work and has not been submitted as a requirement for the award of any degree in Jimma University or elsewhere.

LELISA REGEA MENGISTU NAME

SIGNATURE

DATE

As research Adviser, I hereby certify that I have read and evaluated this thesis paper prepared under my guidance, by Lelisa Regea Mengistu entitled "Integrated sono-direct current and sonoalternative current electrocoagulation process for the treatment of domestic wastewater. And recommend and would be accepted as a fulfilling requirement for the Degree Master of Science in Environmental Engineering.

Main Advisor: Dr. Zerihun Asmelash (PhD)

Name

Signature

Co advisor: Mr. Chali Dereje (MSc)

Name

Signature

ABSTRACT

Integrated sono-alternative and direct current Electrocoagulation process is simple technology needed in the treatment of domestic wastewater only by applying electric current with sacrificial electrode. The main objective of this study was to analyze the influence of Integrated Sono-Alternative and Direct –current on electrocoagulation process in terms of percent COD, percent color and percent turbidity removal from domestic wastewater. Furthermore; this study was conducted to explore and to capture the application of Sono Alternative and Direct current electrocoagulation process in terms of percent color removal efficiency by UV spectrophotometer, percent Turbidity removal efficiency by turbidometery and percent COD removal efficiency by COD digester and using chemical that may use for the determination of COD removal along with electrical energy consumption. The data obtained from the laboratory were analyzed by using Response Surface Methodology (RSM). The percentage of COD, color and turbidity removal was about 82.6%, 97.5 and 95.28% respectively with Direct – Current Electrocoagulation (DCE), For Alternating–Current Electrocoagulation (ACE), it was 86.58%, 98.3% and 96.2%, respectively and COD, color and turbidity removal were about 88.6%, 98.7 and 98.27 % with sono-direct current (SDCE) and 92.5%, 99.9% and 99.76%, with sono alternative current(SACE), at the optimal experimental condition of COD – 960 mg/L, initial wastewater pH - 6.8, current density -0.4 A/dm2, inter-electrode spacing -1 cm, combination of electrode – Al/Al, and treatment time 1 hr. The ACE and SACE wer more successful in eliminating %COD, % color and %turbidity with less electrical energy consumption than DCE and SDCE process In DCE and SDCE, the formation of an impermeable oxide layer on the cathode and the occurrence of corrosion on the anode due to oxidation have decreased the efficiency of this process compared to the ACE and SDCE process. As a result, experimental findings have shown that with less electrical energy usage and process efficiency, the ACE and SACE could be a more promising solution to removing pollutants from wastewater and domestic effluent than the DCE and SDCE method.

Keywords: Alternative current, Direct current Electrolyte, Integrated sono electrocoagulation, University wastewater

ACKNOWLEDGMENTS

First of all, I would like to thank Almighty GOD who made it possible, to begin and finished my researchs. My gratitude and appreciation also go to my advisors, Dr. Zerihun Asmelash and Mr. Chali Dereje for giving general constructive comment and suggestion to prepare this research Secondly, my appreciation goes to those who helped me in giving information on research writing and share their ideas.

Lastly but not least, the Environmental Engineering Chair for their valuable approval of my title is acknowledged and Finally, I would like to thank to Jimma University Institute of Technology

TABLE OF CONTENTS

ABSTRACT	. i
ACKNOWLEDGMENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	ii
ACRONOMYS	X
CHAPTER ONE	1
1 INTRODUCTION	1
1.1 Background	4
1.2 Statement of the Problems	4
1.3 Objective of the research	5
1.3.1 General objective	5
1.3.2 Specific Objective	5
1.4 Research Questions	6
1.5 Significance of the Study	6
1.6 Scope of the study	6
CHAPTER TWO	7
2 LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Physicochemical characteristics of Waste water	7
2.2.1 Turbidity	7
2.2.2 Total solids (TS)	7
2.2.3 Total dissolved solids (TDS)	7
2.2.4 Electrical Conductivity (EC)	8
2.2.5 Chemical oxygen demand (COD)	8
2.2.6 Color determination	8
2.2.7 Major contents (impurities) of domestic wastewater	8
2.3 Waste water treatment methods	9
2.4 Electro coagulation (EC) process of wastewater treatment.	9
2.4.1 Alternative and Direct current (AC/DC) electro coagulation Process of waste wate treatment methods	r 0

4	2.5	Ultra	asound technology (US) to wastewater treatment	11	
-	2.6	Sono-electrocoagulation (SEC) of wastewater 11			
4	2.7	Integ	gration of Sono-Direct current and Sono-Alternative current Electrocoagulation		
]	Proces	ss for	domestic wastewater treatment	13	
CH	IAPT	ER T	HREE	14	
3	MA	TER	IALS AND METHODS	14	
	3.1	Stud	ly Setting/Area	14	
	3.2	Stud	ly Period	15	
	3.3	Stud	ly Design	15	
	3.4	Expe	erimental procedure	15	
	3.5	Mate	erials	15	
	3.6	Expe	erimental set-up	16	
	3.7	Sam	ple Size and Sampling Procedures	17	
	3.7.	1	Sample Size	17	
	3.7.	2	Sampling Procedure	18	
	3.7.	3	Dependent Variable	18	
	3.7.	4	Independent Variables	19	
	3.8	Sam	ple Collection Process	19	
	3.9	Reag	gent Preparation	19	
	3.9.	1	Materials and Chemicals Required for COD	20	
	3.10	Data	Processing and Analysis	21	
CH	IAPT	ER F	OUR	22	
4	RES	SULT	S AND DISCUSSIONS	22	
2	4.1	Cha	racteristic of wastewater	22	
2	4.2	Rem	noval Efficiency of COD, Color and Turbidity	22	
2	4.3	Com	parison of DCE and ACE with SDCE and SACE process	23	
	4.3.	1	Al-Al electrode combination	24	
4	1.4	Effe	ct of Sono-Direct Current and Sono-Alternating current electrocoagulation		
((SAC/SDC)				
2	4.5	Som	e Laboratory Illustrations of Sono-Direct current and Sono-Alternative		
]	Electr	ocoag	gulation (SACE/SDCE) By Aluminum electrode	30	
4	4.6	Fact	ors Affecting Sono-Electrocoagulation	31	

4.7 Op	timization with Response surface methodology (Design Expert11)	
4.7.1	Optimization of Operating Parameters by DC Electrocoagulation	
4.7.2	Interactions of Different parameters and Responses by DC	
4.7.3	Optimization of Operating Parameters AC Electrocoagulation	
4.7.4	Interactions of Different parameters and Responses for ACE	
4.7.5	Optimization of Operating Parameters SDC Electrocoagulation	
4.7.6	Interactions of Different parameters and Responses for SDCE	
4.7.7	Optimization of Operating Parameters SAC Electrocoagulation	
4.7.8	Interactions of Different parameters and Responses for SACE	51
4.8 Op	timization of COD, Color and Turbidity by RSM	51
CHAPTER	FIVE	53
5 CONCI	LUSSIONS AND RECOMMENDATIONS	53
5.1 CC	ONCLUSSIONS	53
5.2 RE	ECOMMENDATIONS	54
REFERENC	CES	55
APPENDIC	CIES	
Annex 1.		
Annex 2		

LIST OF TABLES

Table 4.1 Characteristic of domestic wastewater before treatment	22
Table 4.2 Input Data and removal percentage by DC electro coagulation	24
Table 4.3 Input Data and removal percentage by AC electro coagulation	25
Table 4.4 Input Data and removal percentage by SDC electro coagulation	26
Table 4.5 Input Data and removal percentage by SAC electro coagulation	27
Table 4.6 ANOVA for the percentage of COD Removal quadratic model by DC	
electrocoagulation	33
Table 4.7 ANOVA for the percentage of Color Removal quadratic model by DC	
electrocoagulation	34
Table 4.8 ANOVA for the percentage of Turbidity Removal quadratic model by DC	
electrocoagulation	34
Table 4.9 Sequential Model Sum of Squares and Model Summary Statistics for COD by DC.	35
Table 4.10 Sequential Model Sum of Squares and Model Summary Statistics for Color by DC	35
Table 4.11 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by	,
DC	36
Table 4.12 ANOVA for the percentage of COD Removal quadratic model by AC	
electrocoagulation	38
Table 4.13 ANOVA for the percentage of color Removal quadratic model by AC	
electrocoagulation	38
Table 4.14 ANOVA for the percentage of Turbidity Removal quadratic model by AC	
electrocoagulation	39
Table 4.15 Sequential Model Sum of Squares and Model Summary Statistics for COD by AC	. 40
Table 4.16 Sequential Model Sum of Squares and Model Summary Statistics for Color by AC	2 40
Table 4.17 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by	7
AC	41
Table 4.18 ANOVA for the percentage of COD Removal quadratic model by SDC	
electrocoagulation	42
Table 4.19 ANOVA for the percentage of Color Removal quadratic model by SDC	
electrocoagulation	43
Table 4.20 ANOVA for the percentage of Turbidity Removal quadratic model by SDC	
electrocoagulation	44
Table 4.21 Sequential Model Sum of Squares and Model Summary Statistics for COD by SD	C44
Table 4.22 Sequential Model Sum of Squares and Model Summary Statistics for Color by SD	C
Table 4.23 Sequential Model Sum of Squares and Model Summery Statistics for Turbidity by	43 ,
sole 4.25 Sequential model sum of squares and model summary statistics for furbidity by	15
Table $A 24$ ANOVA for the percentage of COD Removal quadratic model by SAC	43
electrocoagulation	17
~1~~u_bululoll	·· T/

Table 4.25 ANOVA for the percentage of Color Removal quadratic model by SAC
electrocoagulation
Table 4.26 ANOVA for the percentage of Turbidity Removal quadratic model by SAC
electrocoagulation
Table 4.27 Sequential Model Sum of Squares and Model Summary Statistics for COD by SACE
Table 4.28 Sequential Model Sum of Squares and Model Summary Statistics for Color by SACE
Table 4.29 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by
SACE

LIST OF FIGURES

Figure 1.1 Electrocoagulation Process	. 3
Figure 3.1.Location of Jimma University Institute of Technology by GIS	14
Figure 3.2 Schematic diagram of Electrocoagulation process (Asaithambi, P. et al.(2020)	16
Figure 3.3.Real setup of Sono-Electrocoagulation process	16
Figure 3.4 Flow chart of Sampling Procedure	18
Figure 4.1 COD Removal efficiency versus different factors (a), (b) and (c), using Al-Al	
electrode	28
Figure 4.2 Color Removal efficiency versus different factors (a), (b) and (c), using Al-Al	
electrode	29
Figure 4.3 Turbidity Removal efficiency versus different factors (a), (b) and (c), using Al-Al	
electrode	30
Figure 4.4 Plot for relationship between experimental and predicted value for color, turbidity no	ł
COD by DC electrocoagulation	37
Figure 4.5. Three dimensional response surface graphs for COD (a) ,Color (b), Turbidity (c),	
versus pH, current and time for DCE	37
Figure 4.6 Plot for relationship between experimental and predicted value for COD, color and	
Turbidity for ACE	41
Figure 4.7.Three dimensional response surface graphs for COD (a), Color (b), Turbidity (c),	
versus pH, time and current for ACE	42
Figure 4.8 Plot for relationship between experimental and predicted value for COD, color and	
Turbidity for SDCE	46
Figure 4.9.Three dimensional response surface graphs for COD (a) ,Color (b)and Turbidity (c)	
versus pH, time and current for SDCE	47
Figure 4.10.Plot for relationship between experimental and predicted value for, COD, color and	l
turbidity for SACE	51
Figure 4.11. Three dimensional response surface graphs for COD (a), Color (b) and Turbidity (c))
versus pH, time and current for SACE	51

ACRONOMYS

AC	Alternative Current
BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
CCD	Central composite Design
DC	Direct current
EC	Electrocoagulation
FAS	Ferrous ammonium sulphate
IR	Infrar radiation
JUEEL	Jimma university Environmental Engineering Laboratory
Jit	Jimma Institute of Technology
JU	Jimma University
RSM	Response Surface Methodology
TDS	Total Dissolved Solids
TSS	Total Suspended Solids
SACE	Sono alternative Current Electrocoagulation
SDCE	Sono direct Current Electrocoagulation
SPSS	Statistical Package for Social Science

CHAPTER ONE1INTRODUCTION

Water, a natural resource, is essential for the existence of life. Although water is present in abundance, only a limited amount of usable water is available. Water and energy are the major challenges for the 21st century. Water also plays a central part in irrigated agriculture, for drinking, in industries, factories, construction and influences the health of many ecosystems. Wastewater is the spent water after used from a different area like homes, commercial establishments, industries, public institutions, and similar entities have used their waters for various purposes. Water quality is a crucial problem, particularly for third world countries, because of increased pollution from point and non-point sources. The domestic wastewater prevails as one of the world's leading source of pollution (Tchamango et al., 2020). Domestic effluent is a dark brown liquid with high levels of chemical oxygen demand (COD) and biological oxygen demand (BOD) due to the presence of large quantities of organic substances, including proteins, polyphenols, organic acids and polysaccharides. Untreated wastewater from the Domestic waste water can lead to a high degree of soil pollution and water contamination (Cerqueira, S. et al. 2014). As a result, domestic wastewater has also been seen as a barrier in traditional treatment systems. Electrocoagulation and electro flotation is the promising method based on electrochemical technology (Chaturvedi, 2013). There has been a growing interest in seeking creative ways to efficiently extract toxins from water, soil and air in recent years (Marti and Ferro, 2006). The discharge of untreated domestic effluent, however, could lead to significant water contamination in both surface and ground water and a possible increase in the concentration of these contaminants could pose a serious threat to plants and animals, the environment and humans (Eyvaz, 2016). Experiments for the treatment of domestic waste water containing various impurities was performed in this research (Nippatla and Philip, 2019).

EC is one of the electrochemical process using sacrificial soluble iron (Fe) and/or aluminum (Al) as anodes and/or cathodes, in which anodic oxidation process release metal ions $(Fe^{2+} \text{ or } Fe^{3+} Al^{3+})$. The mechanism of electrocoagulation process is discussed below

Anode Reaction $M \longrightarrow Mn + _{+} ne^{-}$(1) Cathode Reaction $nH_2O + ne^- \longrightarrow n/2H_2 + nOH^-$(2) The overall reaction $_{M}n+ + nH_{2}O \longrightarrow M(OH)_{n} + nH^{+}....(3)$ In the overall reaction M (OH) n formed were used up as a coagulant in system. This may be Aluminum hydroxide or Iron hydroxide depending on the electrode we used in the technique. $Fe(s) \longrightarrow Fe^{2+(aq)} + 2e^{-\dots}$ (4) Cathode reaction $2H_2O(l) + 2e^{-} \longrightarrow H_2(g) + 2OH^{-}(aq)$ (5) **Overall** reaction Fe + 2H₂O _____ Fe (OH)₂(s) + H₂ (g)(6) When aluminum is used as an electrode material, the reactions are as follows Anodic reaction Al (s) _____ Al³⁺ (aq) + 3e⁻ (7) Cathode reaction **Overall** reaction

 $Al^{3+}(aq) + 3H_2O(l) \longrightarrow Al(OH)_3(s) + 3H_+(aq) \dots (9)$

Electrocoagulation process described in the figure below

Figure 1.1 Electrocoagulation Process

EC process has its own advantages and disadvantages (Mollah

et al., 2004)

Compared to other traditional methods, the main advantages of the EC process are simple experimental set-up and operation, less treatment time, no addition of chemicals, faster flock sedimentation and less sludge development, high efficiency in the removal of pollutants with lower use of electrical energy (Asaitham, P. et al. 2020). Direct current is widely used in the EC process for the treatment of various wastewaters. The major disadvantages of the Direct –Current Electrocoagulation (DCE) process, however, are the inevitable formation of an impermeable oxide layer on the cathode and the formation of corrosion on the anode due to oxidation; which prevents the active current transport between anode and cathode. In order to avoid the disadvantage of the DCE process with cathode passivation, either anode or cathode may occasionally be substituted with each other in direct current mode operation, or the Alternating Current Electrocoagulation (ACE) process may be preferred

1.1 Background

Electrocoagulation has been called associate chemistry development since the last century (Wan, 2010). It has been used antecedently for treating varied styles of waste product (Wan, 2010). Since 1970, Electrocoagulation method has become progressively well liked round the world for the treatment of commercial waste product containing significant metals (Mohora, E.et al. 2019). Electrocoagulation method offers a substantial potential for removing soluble ionic species from wastewater, significantly significant metals (Wan, 2010).

Different chemical science processes like chemical activity and reverse diffusion of biological natural action, adsorption, thermolysis and biological processes of designed wetlands and different rising technologies like advanced oxidization processes and membrane technology have presently been adopted for the treatment of domestic waste product (Alimohammadi, M.et al 2019). The chemical science methodology isn't efficient, needs chemicals being overused, and creates vital amounts of sludge. At identical time, high dilution is required by the biological treatment methodology and it's a slow and long procedure.

Ultra-sonication (**US**) is transmitted to the material by waves compressing its molecules and stretching them. The cavitation bubbles are generated when the negative pressure is large enough to disturb the distance between the liquid molecules (Dizge,A. *et al.*, 2018). Very high temperatures and pressures can be generated by the collapse of these bubbles and these conditions may cause the water molecules inside the cavitation bubbles to break down. The sonolytic cleavage of water molecules therefore produces reactive OH percent radicals that are non-selective oxidants in waste water for organic pollutants (Dizge,A. *et al.*, 2018)

This method improves the production of radical ultrasound, so greater reaction rate and pollutant degradation can be achieved and high pollutant removal efficiency can be achieved when combined.

1.2 Statement of the Problems

The issues caused by discharging of liquid waste product to the setting imparts high concentration of material body, COD toxic shock and cytotoxic chemicals found in it and it

would like appropriate treatment before discharging to the water body. A correct treatment technology that is well tested and applied is needed to discharge this waste product to water bodies. Otherwise, it will have an effect on the setting and human life (Bhagawan *et al.*, 2018).

Sono-Electrocoagulation is becoming a promising wastewater treatment technology- appearing with substantial reduction of chemical cost and significant reduction of sludge production. Sono-electrocoagulation (SEC) have a high application potential, principally derived from the high reactivity and low property of the hydroxyl group radicals.

Direct current and Alternative current electrocoagulation treatment technology have been distinctly studied and their corresponding treatment efficiency and limitations are well identified under different settings. However, integrated Sono-direct current and sono-alternative current electrocoagulation potential is not yet well investigated. For present study integrated Sono-direct current and sono-alternative current electrocoagulation is investigated under Jimma University setting.

1.3 Objective of the research

1.3.1 General objective

The main objective of this study is to investigate the effect of integrated sono direct current (SDC) and Sono-alternating current (SAC) electro coagulation process to treat wastewater generated from Jimma University (JU) student cafeteria.

1.3.2 Specific Objective

- To identify the characteristics of wastewater generated from Jimma University (JU) student cafeteria;
- > To determine the removal efficiency of COD, color and Turbidity ;
- To Compare DCE and ACE with SDCE and SACE electrocoagulation process for treatment of domestic wastewater that generated from Jimma University (JU)
- To identify factors affecting sono- electrocoagulation process on removal efficiency such as COD, Color, and turbidity ; and

1.4 Research Questions

During the study different questions were answered that include:

- 1. What are the characteristics of wastewater generated from Jimma University (JU) student cafeteria?
- 2. How to determine the removal efficiency of COD, color and Turbidity?
- 3. Which one is more efficient among DC, AC, SDC and SAC electrocoagulation process to treat domestic wastewater?
- 4. What are the factors that affecting sono-electrocoagulation process on removal efficiency such as COD, Color and turbidity?

1.5 Significance of the Study

This study was conducted to University, student and Jimma community benefit. It was a significant endeavor in domestic wastewater treatment that generated from Jimma University by integrated sono-direct and integrated sono-alternative current electro coagulation. Also helps to improve the efficiency of integrated sono-direct and integrated sono-alternative current electro coagulation to remove pollutants from wastewater. Domestic wastewater treatment was the great demand for the need and for more effective acceptance before disposal. More over the university were helpful to manage the waste generation and apply wastewater treatment technology. It also serve as feature reference for researchers on the subject of integrated sono-direct current and integrated sono-alternative current electro coagulation technology is more preferable compared to other technologies since the process needs only electric current, which is an environmental friendly.

1.6 Scope of the study

The scope of this study is to determine the difference in effluent quality of the domestic waste water that generated from Jimma University (JU) student cafeteria before and after treatment through the integrated sono Alternative and Direct current (AC/DC) electro-coagulation process and also to determine the removal efficiency of Color, COD, Turbidity. To identify factors affecting son-electrocoagulation process on removal efficiency such as pH, electric density.

CHAPTER TWO

2 LITERATURE REVIEW

2.1 Introduction

The demand for drinking water quality is increasing globally and environmental laws concerning sewer water discharge are getting progressively tight. Several developing countries have issues in managing their domestic sewer water. Untreated institutional sewer water might build a retardant of environmental deterioration in rivers, lakes and different public water bodies. It's been increasing significantly over the past decade. the most sources of pollution area unit domestic wastewater (Va *et al.*, 2018).Therefore, this research was to know the quality of domestic wastewater generated.

2.2 Physicochemical characteristics of Waste water

2.2.1 Turbidity

The presence of suspended particles of different diameters, ranging from very tiny colloidal particles to large flocks, which spread and absorb electromagnetic radiation in the IR and VIS ranges, induces water turbidity. Particles in surface waters can be of both mineral and organic origin, but organic suspended matter is typically observed in effluent treatment plants (Mucha, 2016).

2.2.2 Total solids (TS)

When referring to any substance suspended or dissolved in water or waste water that can be physically separated either by filtration or by evaporation, the term solids is commonly used. It is possible to classify solids as either filterable or non-filterable. Either settleable or non-settleable solids can be filterable. Solids can be categorized as organic or inorganic as well. Complete Solids is the term applied to the residue of the substance remaining in the vessel after a sample has been evaporated and subsequently dried at a given temperature in an oven (Baxter, 2017a)

2.2.3 Total dissolved solids (TDS)

The term total dissolved solids refer to materials that are completely dissolved in water. These solids are filterable in nature. It is defined as residue upon evaporation of filterable sample. The term total

suspended solids can be referred to materials which are not dissolved in water and are non-filterable in nature. TDS values ranged within 385.3 to 531.4mg/L (Baxter, 2017b).

2.2.4 Electrical Conductivity (EC)

EC samples of the raw and processed waste water for domestic wastewater selected were carried out with the help of a salinometer. It is known as residue upon non-filterable sample evaporation on a filter paper. The electrical conductivity depends on temperature. With increasing temperature of liquids, the motion of ions increase which leads to increase in conductivity (Prieto *et al.*, 2001)

2.2.5 Chemical oxygen demand (COD)

In order to indirectly confirm organic compounds in water, the chemical gas demand is wide used. Chemical gas demand (COD) could be a live of the capability of water to consume gas throughout the decomposition of organic matter gift in an exceedingly effluent sample. COD measurements square measure ordinarily created on samples of wastewaters or of natural waters contaminated by domestic or industrial wastes. It's expressed in milligrams per litre (mg/L), indicating the gas mass absorbed per litre of resolution. COD is that the calculation of the number of gas absorbed in water for waste material chemical reaction. underneath explicit conditions, COD specifies the number of gas required to oxidize the organic matter in an exceedingly sample of water or waste water (Khan and Shahid, 2011).

2.2.6 Color determination

Removal of the color from waste water has been studied because of its toxic effect to living organisms as well as to the environmental pollution. Absorbance measurements were performed to determine color removal efficiency. Color was assayed at 420 nm on a UV spectrophotometer and calibrated against deionized water (Dizge, A., *et al.*, 2018).

2.2.7 Major contents (impurities) of domestic wastewater

Since the domestic wastewater is one of the main water users and produces a significant volume of waste water containing high concentrations of organic matter, nutrients, suspended matter and highly acidic wastewater, domestic wastewater produce very high pollution load wastewater. pH, temperature, turbidity and electrical conductivity, BOD5, COD, TDS and TSS are essential components in domestic waste water (Tekle *et al.*, 2015)

2.3 Waste water treatment methods

Treatment systems may be based on traditional technologies, including physical, biological and chemical approaches, depending on the form and quality of agro-industrial waste. In addition to classical methods, advanced technologies such as membrane separation processes, reverse osmosis, ultrafiltration, Sono electro coagulation and advanced oxidation processes, which are increasingly being introduced, can also be used to pick a treatment method based on the self-purification ability of streams, acceptable levels of pollutants in water bodies and the economic interests of industries (Amor *et al.*, 2019). The traditional methods of water treatment allowing small organic molecules to be extracted are adsorption, biological treatment, nan filtration, AOPs, such as photo catalysis and photo degradation of the EO, US, Fenton process, zonation, persulphate oxidation, radiolysis (Electrodes, 2016). The dumping of waste water into the rivers has a detrimental effect on the quality of water supplies and endangers human and animal life (Aghdam, K et al 2015). Therefore, it has become important to establish more efficient water purification treatment methods and/or improve the operation of current methods. Sono Electrocoagulation is very crucial to optimize the removal efficiency of pollutants.

2.4 Electro coagulation (EC) process of wastewater treatment.

Electrocoagulation (EC) is one of the important technologies that combine the advantages of conventional coagulation, flotation, and adsorption in water and wastewater treatment. Electrocoagulation is an inexpensive method for the treatment of different industrial effluents and the removal of a broad variety of waste water contaminants (Asaithambi *et al.*, 2016). One of the most interesting electrochemical technologies for the treatment of different wastewaters is electrocoagulation (EC) technique (Yahiaoui, 2018). Process depends on dissolution of the anode electrode. Oxidation reactions take place on anode while reduction reactions occur on cathode (Dizge, A *et al.*, 2018). The process of electrocoagulation (EC) has received a great deal of attention for the treatment of different forms of wastewater, such as domestic waste and paper, distillery, organic fertilizer, petrochemical, pharmaceutical, automotive industry, potentially toxic metals, tannery metal plating wastewater, rice mill effluent, model Wastewater humic acid

removal real industrial wastewater landfill leachate by using sono alternative and Direct current electrocoagulation process

2.4.1 Alternative and Direct current (AC/DC) electro coagulation Process of waste water treatment methods

The key innovation of this study is to increase the synergistic effect of the combined alternative current (AC) and direct current (DC)electrocoagulation process for further color reduction, turbidity and COD removal (Dizge, A. et al. 2018). Combined ultrasound and electrocoagulation (Farooq et al., 2002) of direct and alternative current electrocoagulation to remove COD, Color and Turbidity. AC/DC Electrocoagulation method has been examined for other effluents and demonstrated successful results (Aghdam, K. et al 2015) and (Afsharnia et al., 2018). A few research studies on the treatment of pulp and paper waste water using electrocoagulation have been published (Aghdam, K. et al 2015). In view of these fascinating aspects, the use of ultrasound is a technologically advanced application of oxidation in effluent treatment to speed up the degradation of liquid-phase pollutants (Picchio et al., 2020). The effect of AC/DC electrolysis parameters and other generic parameters as stated earlier with the hybrid weather combination of Fe-Al, Al-Al or Fe-Fe electrodes where be conducted during experiments to track optimum operating conditions (Xu et al., 2017). Usually, in EC processes, direct current (DC) is used, which inherently contributes to increased anode consumption due to oxidation. In this work, it was shown that the use of an alternating current (AC) field minimizes the consumption of electrodes (Weisbart et al., 2020). The use of an alternating current (AC) field has been shown to reduce electrode consumption in this research (Butler et al., 2011). Surface Methodology (RSM) was used to optimize the impact of experimental color removal (CR) conditions, removal of COD and turbidity removal (Access, 2014). In practice, in an electrocoagulation process, direct current (DC) is used. The adoption of alternating current (AC) in electrocoagulation processes has decreased these drawbacks of DC (Vasudevan, 2011). In an electrocoagulation process, the use of alternating current provides an alternative to traditional electrocoagulation methods where direct current is used (Vasudevan, 2011). Investigating the layout of electrodes and evaluating the effects of alternating current (AC) and direct current (DC) on the phase of electrocoagulation (EC) carried out in a batch reactor (Taylor et al., 2017).

The cyclic energization between the anode-cathode in the alternating current (AC) system is believed to simulate manual polarity reversal (Cerqueira, S. et al, 2014). The alternative and direct current treatment for domestic waste water in these analysis new forms of pair electrodes (simultaneously applying Aluminum and aluminum electrodes) were examined. For the improved oxidation of organic compounds, a combination of the Alternative Current (AC) and Direct Current (DC) electro coagulation method was developed (Babuponnusami and Muthukumar, 2012). An impermeable oxide layer may form on the cathode when direct current (DC) is used in electrocoagulation processes and corrosion of the anode may occur due to oxidation. This prevents efficient current transfer between the anode and the cathode, thereby reducing the efficiency of the electrocoagulation process. By adopting alternating current, these drawbacks of DC were minimized by (AC) (Vasudevan et al., 2011). Recent research has shown that electrochemistry provides an enticing alternative to the conventional waste-water treatment methods mentioned above. Electrocoagulation, based on the electrochemical processing of destabilizing agents that eliminate pollutants by charge neutralization, has been used as one of these techniques for water or waste water treatment (Vasudevan et al., 2011). In this research, the treatment of real domestic waste water was investigated using electrode plating in the AC and DC electrocoagulation processes. To achieve the optimum removal of COD, turbidity and color, electrolysis time, pH and voltage were chosen as variable parameters (Aghdam, K et. al, 2015).

2.5 Ultrasound technology (US) to wastewater treatment

Ultrasound technology is non-selective and is also appropriate for the application of industrial waste water treatment (Electrodes, 2016). It does not require chemicals to be applied to the treatment process and can easily be automated. Ultra-sonication alone, however, is often unable to achieve full organic pollutant mineralization and has low degradation rates. Ultrasound is combined with other treatment methods in order to provide synergetic effects and better degradation efficiency of organic pollutants.

2.6 Sono-electrocoagulation (SEC) of wastewater

The combinations of treatment processes are one of the hot topics in environmental engineering. Especially, the highly-polluted wastewater can be treated effectively using combined processes. Sono-electrocoagulation process was successfully applied for the removal of COD, Color, and turbidity (Shah, T. et al., 2018). The institutional waste water was processed by a Sonoelectrocoagulation reactor to test the efficiency of the Sono-electrocoagulation process (Afsharnia et al., 2018). Ultrasound (US) and electrochemical (EC) techniques consist of the sono-electrochemical (SEC) phase. This method improves the output of ultrasound radicals, so higher reaction rates and pollutant degradation can be achieved (Dizge, A., et al., 2018). By employing the ultrasonic waves with the EC process, the OH radicals are generated in wastewater which favor the subsequent oxidation of pollutants (Shah, T. et al, 2018). In sonication process, the energy of sound is applied to stimulate particles in samples for different aims. Ultrasound generates localized microenvironments with high-energy in a medium, based on the frequency (Afsharnia et al., 2018). Sono electrocoagulation is a reliable, quick and costeffective method of treating institutional wastewater (Qian et al., 2018). Theoretical aspects of power ultrasound in this study include the effects on mass transport and electrode surface cleaning, experimental considerations on the application of ultrasound to electrocoagulation experiments and the use of power ultrasound in electrochemical pollutant degradation, including direct and alternative current electrocoagulation. All organic water contaminants can be broken down into two categories of scale. The first group involves polymers with a particle size of around 10 - 100 nm. Heterogeneous blending of polymers with water (colloidal solutions). Removal of organic water contaminants of high molecular weight normally accomplished by their coagulation, flocculation, flotation, electro flotation electrocoagulation as well as micro and ultrafiltration(Electrodes, 2016). Tiny organic molecules with a mean size of 1 to 10 nm, forming a homogeneous mixture of water or molecular solution, constitute the second group. In addition, clear treated waste water will be created with full color removal, turbidity removal and COD removal, suggesting the application of sono-electrocoagulation for institutional wastewater treatment.

2.7 Integration of Sono-Direct current and Sono-Alternative current Electrocoagulation Process for domestic wastewater treatment

Integration of Sono-Alternative and Direct current Electrocoagulation Process is to optimize the removal efficiency of dependent parameters by combining electro coagulation and Ultrasound using AC/DC method. The impacts of SAC/SDC, current density, pulse duration, electrode distance and electrolysis period on the removal efficiencies of COD, turbidity and color was studied by using Al-Al electrode and simulated wastewater. Integrated processes have been intensively studied in recent years to improve the performance of wastewater treatment (Dizge, A *et al.*, 2018). The effects of various parameters, including electrolysis time, voltage and pH, on reducing the demand for chemical oxygen (COD), turbidity and color in institutional waste water was investigated in this study and as anode and cathode, aluminum was used. In particular, the amount of published literature on alternative and direct current applications for electrocoagulation appears to have risen significantly over the last few years. Electrocoagulation is the mechanism by which suspended, emulsified or dissolved pollutants are destabilized in an aqueous medium by adding electric current into the medium (Aghdam, K et al, 2015).

An electrocoagulation reactor may, in its simplest form, consist of an electrolytic cell with one anode and one cathode. Conductive metal plates are generally referred to as 'sacrificial electrodes' and can be constructed of the same or varying materials (anode and cathode). The effects of various voltages on COD, turbidity and color removal w studied(Aghdam, K et al, 2015). The impacts of alternating current and direct current electrocoagulation time, initial pH, initial COD removal performance, color and turbidity and current density and other factors on the removal rate was investigated in this experiment (Xu *et al.*, 2019). The electrode surface was polished with sandpaper before each experiment and then rinsed with dilute HCl solution (0.1 M).The effect of alternating current (AC) and direct current (DC) with sonication on COD, turbidity and color removal was investigated.

CHAPTER THREE 3 MATERIALS AND METHODS

3.1 Study Setting/Area

Jimma is the biggest town in the southwestern Ethiopia. It is located at 345 kilometers away from Addis Ababa with a geographic location of $6^{0}40'0"$ to $7^{0}40'0"$ N latitude and $36^{0}60'0"$ E to $37^{0}30'0"$ longitudes. The town occupies a total area of nearly 4623 hectares, of which about 26% is a residential area. Jimma has a warm and humid climate with daily average temperature of 20 0 C and mean annual rainfall varying between 1450 and 1800 millimeter (Abebaw and Ayenew, 2006).

Figure 3.1.Location of Jimma University Institute of Technology by GIS

3.2 Study Period

To perform the study in deep and reliable way, the study period is for six months from January $1^{\text{st}}2021$ to June $30^{\text{th}}2021$.

3.3 Study Design

The study was performed through experiment in Laboratory by using sono-direct and sonoalternative current electrocoagulation of sacrificial parallel electrode and analyzed using RSM (Design Expert 11) is used for optimization by Central Composite Design and Excel software. The schematic setup of Electrocoagulation process is simple and easy to understand.

3.4 Experimental procedure

All tests were performed in laboratory at normal temperature. Tests were performed in batch reactor such that one liter of waste water sample was taken in glass beaker for one electrode combination. Aluminum Aluminum electrodes are used up for this EC process with a weight of 30.70g as well as dimensions of 13cm x 6cm x 1cm length, width and thickness respectively. Copper wires were connected to DC/AC power source and at one end the wires are connected to electrodes by electrical clips. Then the power was supplied and the result was conducted at different affecting parameters.

3.5 Materials

Batch Reactor (DC/AC electrocoagulation cell),DC/AC power supply, Ultrasonic (US) ,Parallel Electrode (Iron and Aluminum),Magnetic Stirrer, Copper Wires, Magnetic Bar Stirrer, Electrical Clips, Local available chip woods (Holding electrodes),turbidometry ,kits, Spectrophotometry, wash bottle

3.6 Experimental set-up

Fig. 3.2 illustrates the DCE and ACE process arrangement used for the treatment of domestic wastewater effluent and Fig 3.3 illustrates the SDCE and SACE process arrangement used for the treatment of domestic wastewater effluent.

Figure 3.2 Schematic diagram of Electrocoagulation process (Asaithambi, P. et al.(2020).

Figure 3.3.Real setup of Sono-Electrocoagulation process

3.7 Sample Size and Sampling Procedures

3.7.1 Sample Size

The size of the sample is based on the requirement of the level of precision needed for the analysis in laboratory. The rotatable experimental plan was performed with the three independent variables at three coded levels (-1, 0, +1). Actual values are original values that given to different factors and code values are also given for the levels of factors (Sharma and Simsek, 2020). For the more accurate and precise result, appropriate data sampling obtained. In this research, the CCD model with three factors was applied to optimize the parameters. The experimental design was based on two-level full factorial design to which central and star points were also added. The total number of experiments (N) can be calculated by:

$$N = N_a^{\ n} + N_o + N_c = (2^3 + 6 + 6) = (8 + 6 + 6 = 20).$$
 (10)

where, N number of runs, "n" is number of factors, N_a represents the number of two-level experiments in a full factorial design or replicates of factorial points (2³=8), N₀ is the number of replications in the central point (6 replications) for evaluation of net error, and N_c denotes the number of replicates of axial (star) points (2*3=6) by using alpha = 2 fourteen (8+6 = 14) factorial points and 6 replicates of central point in the total 20 experimental runs were provided by software for single process. That means (20 by using DC and 20 by using AC) and also by integrating with ultrasonic (20 by using SDC and 20 by using SAC) totally (20*4=80) running was done. Six center point of the design to evaluate the pure error and consequently the lack of fit. Lack of fit test was performed to assess the fit of the final model. The experimental results were analyzed using RSM algorithm and were fitted to the predictive quadratic polynomial Equation. Second-order model equation for prediction of the optimal conditions can be expressed by the following equation:

$$Y_{i} = \beta_{0} + \sum_{i=1}^{4} \beta_{i} \cdot X_{i} + \sum_{i\leq j}^{4} \sum_{j}^{4} \beta_{ij} \cdot X_{i} \cdot X_{j} + \sum_{i=1}^{4} \beta_{ii} \cdot X_{i}^{2} + e.....(11)$$

where Y_i , is the response variable, β_0 is the model (regression) constant, β_i is the linear terms, β_{ii} are the squared terms (second-order), β_{ij} is the interaction terms, X_i and X_j are independent

Exactly the sample required for the experiment was eighty liters of waste water since the preferred method combination of four methods, for each combination twenty liters of waste water was selected based on RSM (Design Expert 11) combination.

3.7.2 Sampling Procedure

The sampling procedure was performed in the correct way by considering different factors that may affect the sample. Wastewater was taken from different places in order to obtain the accurate result. The maximum holding time is kept in and performed based on the WHO/UNEP 2004 standard protocol and laboratory manuals.

Figure 3.4 Flow chart of Sampling Procedure

3.7.3 Dependent Variable

COD, turbidity and color are dependent variables used for the evaluation of the efficiency or the Performance of the wastewater treatment technology.

3.7.4 Independent Variables

Independent variables are operating parameters like: time, pH and electric density are controlling variables

3.8 Sample Collection Process

The study sample collection process begins with the looking for available literatures related to Sono-Direct current and Sono-Alternative current electrocoagulation process especially for Jimma University (JU) student cafeteria wastewater treatment. Then the materials needed for this process was prepared as much as possible with minimum cost. In this study grap/hand sampling technique were used to take samples from Jimma University student cafeteria processing effluent sample point by direct filling of the container. Clean Plastic containers (polyethylene terephthalate (PET) were used for sample collection after cleaned with detergent, rinsed with tap water, soaked in 10% of concentrate nitric acid and rinsed with deionized water. Finally the collected sample was transported in to JUEE laboratory and preserved in a refrigerator at 4°C in order to minimize the chance of their characteristics changes until analysis were done.

3.9 Reagent Preparation

Based on the independent variables reagent preparation is mandatory before experimental investigation, data processing and analysis. Especially this preparation of reagent is for the determination of COD that can be determined by titration

- 1. Reagent for COD
 - a) Principles

The organic matter present in sample gets oxidized completely by potassium dichromate $(K_2Cr_2O_7)$ in the presence of Sulphuric Acid (H_2SO_4) , Silver Sulphate $(AgSO_4)$ and Mercury Sulphate $(HgSO_4)$ to produce CO_2 and H_2O . The sample is refluxed with a known amount of Potassium Dichromate $(K_2Cr_2O_7)$ in the Sulphuric Acid medium and the excess Potassium Dichromate $(K_2Cr_2O_7)$ is determined by titration against Ferrous Ammonium Sulphate, using Ferroin as an indicator.

3.9.1 Materials and Chemicals Required for COD

- I. Apparatus Required: COD Digester, Burette & Burette stand, Kits(Tubes), 250 mL conical flask (Erlenmeyer Flask), Pipettes, Wash Bottle
- II. Chemicals Required for COD: Potassium Dichromate, Sulfuric Acid, Ferrous Ammonium Sulphate, Silver Sulphate, Mercury Sulphate, Ferroin indicator and Organic free distilled water

III. Procedure

a. Preparation of Standard Potassium Dichromate Reagent - Digestion Solution

First accurately 4.913 g of Potassium Dichromate is measured and dried at 103 ^oC for 2 - 4 hours and transferred to a beaker ('Method 410 . 3 : Chemical Oxygen Demand (Titrimetric , High Level for Saline Waters) by Titration TITLE ':, 1978). Then exactly 33.3g of Mercuric Sulphate was weighted and added to the same beaker. After that 167 mL of concentrated Sulphuric Acid was measured using clean dry measuring cylinder and transferred to the beaker. The contents are dissolved and cooled to room temperature. 1000 mL standard measuring flask was taken and a funnel was placed over it. Carefully the contents were transferred to the 1000 mL standard flask and made up to 1000 mL using distilled water. Hence, this was the standard Potassium Dichromate solution used for digestion

b. Sulphuric Acid Reagent - Catalyst Solution

For the preparation of Sulphuric Acid reagent, 5.5 g of Silver Sulphate crystals were accurately weighted to a dry clean 1000 mL beaker. To this carefully about 500 mL of concentrated Sulphuric Acid was added and allowed to stand for 24 hours (so that the Silver Sulphate crystals dissolved completely).

c. Standard Ferrous Ammonium Sulphate solution ... (Fe(NH₄)₂(SO₄)₂.6H₂O

Accurately 39.2g of Ferrous Ammonium Sulphate crystals were Weighted and dissolved in distilled water. Then 1000 mL standard measuring flask was taken and a funnel was placed over it. Carefully the contents were transferred to the 1000 mL standard flask and made up to 1000 mL marked using distilled water.

IV. Testing of sample

- 2.5 ml of sample and 2.5 ml of distilled water was taken into different kit (tube)
- > 1.5.ml of Potassium Dichromate was added to both tubes
- > 3.5 ml of Sulphuric Acid was carefully added to both tubes
- Tightly both tubes are closed and kept in open COD digester for two hours at 150 °C.
- After two hours tubes were cooled to room temperature and the contents are transferred to conical flask.
- > Then the burette was filled with FAS solution.
- > Then 2-3 drops of Ferroin indicator was added to sample in conical flask
- The contents were titrated for both blank and sample until the color was changed to grey to reddish brown and COD was calculated based on the value titrated.

3.10 Data Processing and Analysis

Data processing and analysis was done through laboratory based on the sample obtained from selected place and optimized using RSM (Design Expert11). Waste water parameters like color, COD and turbidity was determined in laboratory analysis from the sample taken by integrated sono AC/DC electrocoagulation process. Finally, data was processed and analyzed through calculation and RSM (Design Expert11) software was used for optimization to check the feasibility of integrated sono AC/DC electrocoagulation process.

4.1 Characteristic of wastewater

4

The effluent was obtained from the institutional wastewater located in Oromia, Jimma University. The water quality parameters such as color – dark brown, odor – burnt sugar, COD - 960 mg/L, wastewater pH – 6.8 were analyzed for the institutional effluent.

No	Parameters	Quantity	Unit
1	pН	6.8	-
2	color	3	-
3	turbidity	116	NTU
4	COD	960	mg/L

Table 4.1 Characteristic of domestic wastewater before treatment

4.2 Removal Efficiency of COD, Color and Turbidity

The removal efficiency (%) was measured based on COD, color and turbidity of domestic effluent before and after the integrated SDCE and SACE process.

The Eqs. (14),(15) and (16) were used to determine the percentage of COD, percentage of color and percentage of turbidity removal efficiency.

$$COD = \frac{Vblank - Vsample}{Vsampletaken} * N * 8 * 1000 \dots (12)$$

Where, V_{blank} – Volume of FAS used for Blank

V_{sample} – Volume of FAS used for sample solution

N – Normality of FAS

$$Normality of FAS = \frac{Weight of FAS used in FAS solution preparation}{Equivalent weight of FAS} = \frac{39.2}{392} = 0.1N \dots(13)$$

COD reoval (%) = $\frac{Ci-Ct}{Ci} * 100$ (14) Where: Ci =COD before treatment Ct =COD after treatment **Color reoval** (%) = $\frac{Ai-At}{Ai} * 100$(15) Where: Ai – Initial absorbance At –Absorbance after treatment.

Turbidity removal (%) = $\frac{Ti - Tf}{Ti} * 100$ (16)

Where: Ti - Initial turbidity and

Tf-turbidity after treatment (in NTU)

4.3 Comparison of DCE and ACE with SDCE and SACE process

Experiments were conducted to compare the DCE, ACE SDCE and SACE process using the domestic waste water and analyzed for the removal of percentage color percentage turbidity and percentage COD. The operating conditions like: COD – 960 mg/L, wastewater pH – 6.8, current density – 0.50 A, inter-electrode spacing – 1 cm, combination of electrode – Al/Al, and reaction time – 1 h were used and the results are schematically shown in Fig. 4.1. It is evident from Fig. 4.1 that percentage color, percentage turbidity and percentage COD removing institutional wastewater was higher in the ACE than in DCE process and higher in the integrated SACE than integrated SDCE. In the case of ACE and SACE, the production of sludge and formation of the impermeable layer was lower than that of the DCE and SDCE process. Thus, when comparing the DCE with ACE and integrated SDCE with integrated SACE method was more suitable than using the DCE process and integrated SACE method was more suitable than using the DCE process. Results are obtained from sample taken and performed in laboratory based on different parameters. Totally eighty running and for each twenty running was conducted.

Eighty experiments was done in the laboratory and from eighty liters of wastewater sample twenty experiments were performed for Direct current, twenty were performed for Alternative current, twenty for sono direct current and twenty for sono-alternative current. In those all experiments absorbance of Color, COD and Turbidity were determined by considering different parameters like; pH, Current Density and Reaction time. All Laboratory results are tabulated under appendices in annex one that consists of factors affecting parameters and absorbance of color at 420 nm wavelength, COD titrated at each treatment interval and turbidity.

4.3.1 Al-Al electrode combination

In this experiment two Aluminum electrodes were combined parallel by considering different factors (Science, 2018, Kuokkanen *et al.*, 2013, Apaydin and Kurt, 2009) for the removal efficiencies of Color, COD and Turbidity respectively.

4.4 Effect of Sono-Direct Current and Sono-Alternating current electrocoagulation (SAC/SDC)

Usually direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. These prevent the effective current transport between the anode and cathode, so the efficiency of electrocoagulation processes declines (Vasudevan and Lakshmi, 2012). These disadvantages of DC have been overcome by adopting alternating current (AC) in electrocoagulation processes ,Vasudevan and Lakshmi, 2012).

Run	Factor1	Factor 2	Factor 3	Response 1	Response 2	Response 3
	A:pH	B:Current	C:Time	COD removal	Color removal	Turbidity removal
		(A)	(minute)	efficiency (%)	efficiency (%)	efficiency (%)
1	7	0.4	60	75.33	92.56	91.23
2	5	0.4	40	78.5.	94.93	92.72
3	9	0.5	50	70.21	91.03	89.59
4	3	0.5	50	82.66	97.53	95.28
5	9	0.4	40	69.33	88.93	88.84
6	5	0.4	40	78.60	95.25	92.56
7	7	0.4	40	75.15	91.34	90.12
8	9	0.5	30	68.92	86.32	88.73
9	3	0.5	30	80.23	96.83	95.32

Table 4.2 Input Data and removal percentage by DC electro coagulation
Inve	Investigation of Integrated Sono-Direct and Sono-Alternative Current Electrocoagulation process (SDC/SAC)										
10	5	0.4	40	79.87	95.15	92.50					
11	3	0.3	30	76.23	94.66	94.23					
12	7	0.4	20	71.28	85.43	89.73					
13	5	0.2	40	73.82	91.69	90.57					
14	7	0.4	40	74.80	91.36	90.23					
15	9	0.3	30	69.25	83.45	87.53					
16	7	0.4	40	75.18	91.55	90.53					
17	3	0.3	50	79.21	95.26	94.56					
18	9	0.4	40	69.33	88.16	88.96					
19	5	0.5	50	79.32	95.78	92.81					
20	3	0.3	40	78.63	94.83	94.29					

In table 4.2, factors like pH, electric current, and reaction time were considered with different ranges. Similarly, the removal efficiency for Color, Turbidity and COD were determined. Hence, using Al-Al electrode consumption by DC electro coagulation the removal efficiency up to 97.5% of Color, 95.281% of turbidity and 82.6667% of COD respectively.

Run	Factor 1	Factor 2	Factor 3	Response 1	Response 2	Response 3
	A:pH	B:Current	C:Time	COD removal	Color removal	Turbidity removal
		(A)	(minute)	efficiency (%)	efficiency (%)	efficiency (%)
1	7	0.4	60	79.62	93.96	92.51
2	5	0.4	40	84.69	95.93	93.72
3	9	0.5	50	78.43	92.54	90.15
4	3	0.5	50	86.58	98.35	96.12
5	9	0.4	40	75.36	89.65	89.84
6	5	0.3	30	82.36	94.65	93.56
7	7	0.4	40	79.31	92.55	91.13
8	9	0.5	30	75.69	90.58	89.75
9	3	0.5	30	83.52	96.25	96.17
10	5	0.4	40	82.69	95.94	93.50
11	3	0.3	30	81.65	95.68	95.25
12	7	0.4	20	75.36	89.35	91.28
13	5	0.2	40	79.23	92.58	89.19
14	7	0.4	40	79.32	92.68	91.82
15	9	0.3	30	75.25	87.54	89.32
16	7	0.4	40	79.29	92.38	91.54
17	3	0.3	50	82.36	96.23	94.95
18	9	0.4	40	75.36	90.56	89.90
19	5	0.5	50	85.56	96.95	93.81
20	3	0.3	40	83.25	95.68	94.18

 Table 4.3 Input Data and removal percentage by AC electro coagulation

In the table 4.3, factors like pH, electric current and reaction time were considered with different ranges just like that of table 4.2. Similarly the removal efficiency for Color, Turbidity and COD were determined by considering all those factors. Hence, using AC electrocoagulation the removal efficiency up to 98.352% of Color, 96.125% of Turbidity, 86.58% of COD.

Run	Factor 1	Factor 2	Factor 3	Response 1	Response 2	Response 3
	A:pH	B:Current	C:Time	COD removal	Color removal	Turbidity removal
		(A)	(minute)	efficiency (%)	efficiency (%)	efficiency (%)
1	7	0.4	60	85.54	94.83	93.6
2	5	0.4	40	86.69	97.19	95.23
3	9	0.5	50	81.87	92.59	91.59
4	3	0.5	50	88.58	98.55	98.27
5	9	0.4	40	78.38	93.25	90.59
6	5	0.4	40	86.72	96.94	92.55
7	7	0.4	40	82.38	94.96	92.17
8	9	0.5	30	79.26	91.57	90.53
9	3	0.5	30	86.52	97.39	96.83
10	5	0.4	40	86.84	96.82	92.62
11	3	0.3	30	84.25	95.85	95.63
12	7	0.4	20	78.56	92.45	91.73
13	5	0.2	40	78.54	91.45	91.93
14	7	0.4	40	82.48	94.93	92.18
15	9	0.3	30	79.26	90.78	89.87
16	7	0.4	40	82.57	94.88	92.16
17	3	0.3	50	84.36	97.46	95.29
18	9	0.4	40	80.98	92.87	91.22
19	5	0.5	50	87.21	96.89	94.56
20	3	0.3	40	83.25	96.91	95.26

Table 4.4 Input Data and removal percentage by SDC electro coagulation

In the table 4.4, factors like pH, electric current and reaction time were considered with different ranges just like that of table 4.3. Similarly the removal efficiency for Color, Turbidity and COD were determined by considering all those factors. Hence, using SDC electrocoagulation the removal efficiency up to 98.55% of Color, 98.27% of Turbidity, 88.581 % of COD

Run	Factor 1	Factor 2	Factor 3	Response 1	Response 2	Response 3
	A:pH	B:Current	C:Time	COD removal	Color removal	Turbidity removal
		(A)	(minute)	efficiency (%)	efficiency (%)	efficiency (%)
1	7	0.4	60	86.98	94.40	94.26
2	5	0.4	40	89.51	97.17	96.55
3	9	0.5	50	83.43	93.35	91.83
4	3	0.5	50	92.35	99.95	99.76
5	9	0.4	40	82.91	92.25	91.02
6	5	0.4	40	89.42	97.17	96.53
7	7	0.4	40	86.93	93.22	93.76
8	9	0.5	30	82.24	92.09	91.35
9	3	0.5	30	91.52	97.91	97.94
10	5	0.4	40	89.52	97.16	96.46
11	3	0.3	30	89.78	96.59	95.83
12	7	0.4	20	84.52	92.90	91.94
13	5	0.2	40	86.82	96.33	94.45
14	7	0.4	40	86.72	94.57	93.65
15	9	0.3	30	81.25	90.81	90.14
16	7	0.4	40	86.52	93.83	93.75
17	3	0.3	50	89.87	97.88	97.52
18	9	0.4	40	82.98	91.92	91.81
19	5	0.5	50	90.22	98.65	96.73
20	3	0.3	40	90.15	97.76	96.31

Table 4.5 Input Data and removal percentage by SAC electro coagulation

In the table 4.5, factors like pH, electric current and reaction time were considered with different ranges. Similarly the removal efficiency for Color, Turbidity and COD were determined by considering all those factors. Hence, using SAC electrocoagulation the removal efficiency up to 99.952% of Color, 99.76% of Turbidity, 92.35% of COD. Furthermore, the removal efficiency of COD, Color and Turbidity are clearly explained in the figure 4.1 with respect to different factors.

(c)

Figure 4.1 COD Removal efficiency versus different factors (a), (b) and (c), using Al-Al electrode

(c)

Figure 4.2 Color Removal efficiency versus different factors (a), (b) and (c), using Al-Al electrode

Time

(C)

Figure 4.3 Turbidity Removal efficiency versus different factors (a), (b) and (c), using Al-Al electrode

4.5 Some Laboratory Illustrations of Sono-Direct current and Sono-Alternative Electrocoagulation (SACE/SDCE) By Aluminum electrode

During Electrocoagulation system, there are a number of processes takes place whatever types of electrodes used up. Especially, the formation of flocs on the upper part of the electrocoagulation cell due to the formation of Hydrogen gas and formation of small quantity of sludge at the bottom of electrocoagulation cell.

a) Before treatment

b) After Treatment by DC

C) After treatment By AC D) After treatment By SAC

4.6 Factors Affecting Sono-Electrocoagulation

Electrocoagulation is clearly defined in introduction part such that the process of only applying electric current for the treatment of wastewater without using any coagulant. However, the treatment of waste water by electrocoagulation process can be done by considering different factors. In this paper pH, Current Density and Reaction Time considered as a factors to treat the waste water from Jimma University.

a) **pH**

Initial pH (pH₀) exhibits a significant impact on the (SDC and SAC) electro coagulation process. There are different allowable concentrations of hydroxyl radicals and different forms of aluminum hydroxide complexes under the condition of various pH solutions. Under the acidic conditions (pH < 5), the most favorable species are $Al(OH)^{2+}$, $Al(OH)^{+}_{2}$, and $Al(OH)^{2-}$, which easily reacts with H₂O₂ to produce ·OH (Kong *et al.*, 2020). There is the maximum concentration of Al^{2+} at pH 3 solution and more ·OH is generated through the reaction of H₂O₂.

In this experiment, the sample regulated the pH by using sulphuric acid solution and sodium hydroxide to pH 3-9. These ranges will give the data about how acidic pH, neutral pH and bases pH will affect the electrocoagulation efficiency in the removal of COD, Color and

Turbidity by DC,AC,SDC and SAC respectively that contain in the samples (Prasetyaningrum *et al.*, 2019). For all pH COD, Color and turbidity is decreased; but with a maximal reduction recorded at pH 3 (82.7%) and (97.5%) and (95.281) respectively. (Taylor, 2008) by Direct current electrocoagulation, (86.58%), (98.352%),(96.1255%) by Alternative current electrocoagulation and (88.585), (98.55%), (98.27%) by sono direct current and (92.35%),(99.952%),(99.76%)by Sono-Alternative current respectively.

b) Current

It is the amount of electric current in Ampere applied to waste water taken during electrocoagulation process. By varying the value of electric current applied to the sample with different parameters the removal efficiency also varies. Increasing the current in Ampere increases the removal efficiency of pollutants. Higher removal value of pollutants is observed while gradual increment of electric current applied. With the increase of current density from 0.2 A to 0.5A removal efficiency also increases (Prasetyaningrum *et al.*, 2019). This is due to the higher amount of ions produced on the electrodes promoting destabilization of the pollutant molecules.

c) **Reaction Time**

Reaction time is also another factor that affects electrocoagulation process. It is the time required to complete the reaction process of sample taken by electrocoagulation. According to this activity the reaction time is one hour in which the removal efficiency checked at different minute's interval using the initial value as a base line. In this paper the laboratory result shows one hour reaction time is somewhat enough to remove pollutants. Increase the reaction time increase the removal efficiency of pollutants from wastewater (Singh and Awasthi, 2017).

4.7 Optimization with Response surface methodology (Design Expert11)

The RSM is a mathematical and statistical technique that is useful for the optimization of chemical reactions and industrial processes and is commonly used for experimental designs (Abu *et al.*, 2014). Response Surface Methodology is a particular set of mathematical and statistical methods that includes experimental design, model fitting and validation as well as condition

optimization. The aim of RSM (Design Expert11) is to optimize response of interest which is influenced by numerous variables. Response surface methodology (Design Expert11) is a useful statistical method for the optimization of chemical reactions and/or industrial processes and widely used for experimental design

4.7.1 Optimization of Operating Parameters by DC Electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	358.33	9	39.81	93.12	< 0.0001	significant
A-pH	177.14	1	177.14	414.32	< 0.0001	
B-I	2.25	1	2.25	5.27	0.0446	
C-Time	9.57	1	9.57	22.39	0.0008	
AB	4.22	1	4.22	9.88	0.0104	
AC	1.20	1	1.20	2.81	0.01245	
BC	0.0175	1	0.0175	0.0410	0.00843	
A ²	10.03	1	10.03	23.45	0.0007	
B ²	3.78	1	3.78	8.84	0.0140	
C ²	5.45	1	5.45	12.75	0.0051	
Residual	4.28	10	0.4275			
Lack of Fit	3.06	5	0.6124	2.52	0.1663	not significant
Pure Error	1.21	5	0.2427			-
Cor Total	362.61	19				

Table 4.6 ANOVA for the percentage of COD Removal quadratic model by DC
 electrocoagulation

According to Table 4.6 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. In this case A, B, C, AB, A², B², C² are significant model terms. The quadratic model regression equation for COD removal is obtained by RSM (DesignExpert11) given below.

COD removal (%) = 75.0595 -4.2886 A + 0.613219B + 0.900932C -0.555552AB - 0.27277AC-0.0509426BC-0.749057A²-0.56374B²-0.456059 C²......(17)

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	293.15	9	32.57	159.92	< 0.0001	significant
A-pH	97.07	1	97.07	476.60	< 0.0001	
B-I	9.27	1	9.27	45.52	< 0.0001	
C-Time	36.67	1	36.67	180.06	< 0.0001	
AB	0.0036	1	0.0036	0.0176	0.0089	
AC	9.38	1	9.38	46.07	< 0.0001	
BC	0.0223	1	0.0223	0.1096	0.00747	
A ²	1.92	1	1.92	9.45	0.0118	
B ²	0.3382	1	0.3382	1.66	0.02266	
C ²	12.89	1	12.89	63.29	< 0.0001	
Residual	2.04	10	0.2037			
Lack of Fit	1.65	5	0.3306	4.31	0.0674	not significant
Pure Error	0.3837	5	0.0767			-
Cor Total	295.19	19				

Table 4.7 ANOVA for the percentage of Color Removal quadratic model by DC electrocoagulation

According to Table 4.7 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant In this case A, B, C, AC, A², C² are significant model terms.

The quadratic model regression equation for Color removal is obtained by RSM (Design

Expert11) given below:

Table 4.8 ANOVA for the percentage of Turbidity Removal quadratic model by DC

 electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	106.14	9	11.79	525.26	< 0.0001	significant
A-pH	31.93	1	31.93	1422.11	< 0.0001	
B-I	1.47	1	1.47	65.43	< 0.0001	
C-Time	1.59	1	1.59	70.83	< 0.0001	
AB	0.0474	1	0.0474	2.11	0.01769	
AC	0.1898	1	0.1898	8.45	0.0156	
BC	0.0084	1	0.0084	0.3721	0.05555	
A²	1.07	1	1.07	47.75	< 0.0001	

B ²	0.8383	1	0.8383	37.34	0.0001	
C ²	0.0051	1	0.0051	0.2290	0.03425	
Residual	0.2245	10	0.0225			
Lack of Fit	0.1175	5	0.0235	1.10	0.4604	not significant
Pure Error	0.1070	5	0.0214			
Cor Total	106.36	19				

According to Table 4.8 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. . In this case A, B, C, AC, A², B² are significant model terms. The quadratic model regression equation for Turbidity removal is obtained by RSM (DesignExpert11) given below

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.132E+05	1	1.132E+05			
Linear vs Mean	326.77	3	108.92	48.63	< 0.0001	
2FI vs Linear	11.06	3	3.69	1.93	0.1740	
Quadratic vs	20.50	3	6.83	15.98	0.0004	Suggested
2FI						
Cubic vs	3.06	5	0.6124	2.52	0.1663	Aliased
Quadratic						
Residual	1.21	5	0.2427			
Total	1.136E+05	20	5677.58			
M 110	α , β , β					

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	1.50	0.9012	0.8826	0.8555	52.38	
2FI	1.38	0.9317	0.9001	0.6946	110.75	
Quadratic	0.6539	0.9882	0.9776	0.8982	36.91	Suggested
Cubic	0.4926	0.9967	0.9873			Aliased

Table 4.10 Sequential Model Sum of Squares and Model Summary Statistics for Color by DC

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.695E+05	1	1.695E+05			
Linear vs	267.25	3	89.08	51.03	< 0.0001	
Mean						
2FI vs Linear	11.38	3	3.79	2.98	0.0706	
Quadratic vs	14.52	3	4.84	23.76	< 0.0001	Suggested

2FI							
Cubic	VS	1.65	5	0.3306	4.31	0.0674	Aliased
Quadratic							
Residual		0.3837	5	0.0767			
Total		1.698E+05	20	8488.73			
		~					

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	1.32	0.9054	0.8876	0.8388	47.60	
2FI	1.13	0.9439	0.9180	0.8093	56.30	
Quadratic	0.4513	0.9931	0.9869	0.9013	29.15	Suggested
Cubic	0.2770	0.9987	0.9951			Aliased

Table 4.11 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by

 DC

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.674E+05	1	1.674E+05			
Linear vs	104.17	3	34.72	253.54	< 0.0001	
Mean						
2FI vs Linear	0.3577	3	0.1192	0.8453	0.4933	
Quadratic vs	1.61	3	0.5364	23.89	< 0.0001	Suggested
2FI						
Cubic vs	0.1175	5	0.0235	1.10	0.4604	Aliased
Quadratic						
Residual	0.1070	5	0.0214			
Total	1.675E+05	20	8375.62			

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	0.3701	0.9794	0.9755	0.9637	3.86	
2FI	0.3756	0.9828	0.9748	0.9529	5.01	
Quadratic	0.1498	0.9979	0.9960	0.9876	1.32	Suggested
Cubic	0.1463	0.9990	0.9962			Aliased

(a) COD removal (%) (b) Color removal (%) (c) Turbidity removal (%)

Figure 4.4 Plot for relationship between experimental and predicted value for color, turbidity nd COD by DC electrocoagulation

The comparison between the experimental and predicted value from the model is expressed in the above figure. It was observed that the model predictions matched the experimental values and the data points lay close to the diagonal line indicated above. This indicate the analysis of variance of regression model was highly significant (P<0.0001).

4.7.2 Interactions of Different parameters and Responses by DC

(a) COD removal (%)

84 82 80 78. 76. 74. 72. 70

(b) Color removal (%)

Turbidity removal (%)

Figure 4.5. Three dimensional response surface graphs for COD (a), Color (b), Turbidity (c), versus pH and current for DCE.

4.7.3 Optimization of Operating Parameters AC Electrocoagulation

Table 4.12 ANOVA for the percentage of COD Removal quadratic model by AC
 electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	238.38	9	26.49	23.44	< 0.0001	significant
A-pH	116.06	1	116.06	102.73	< 0.0001	
B-I	11.28	1	11.28	9.98	0.0102	
C-Time	6.28	1	6.28	5.56	0.0401	
AB	0.0125	1	0.0125	0.0111	0.9184	
AC	0.2537	1	0.2537	0.2246	0.6457	
BC	8.11	1	8.11	7.18	0.0231	
A ²	7.05	1	7.05	6.24	0.0316	
B ²	0.0262	1	0.0262	0.0232	0.8820	
C ²	7.74	1	7.74	6.85	0.0257	
Residual	11.30	10	1.13			
Lack of Fit	9.29	6	1.55	3.08	0.1478	not significant
Pure Error	2.01	4	0.5023			
Cor Total	249.68	19				

According to Table 4.12 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. In this case A, B, C, BC, A², C² are significant model terms. The quadratic model regression equation for COD removal is obtained by RSM (DesignExpert11) given below

COD removal (%) = 79.9591 -3.48698 A + 1.37078B + 0.710239 C -0.0300148AB -0.124931 AC + 1.03489BC -0.627884 A² -0.0475851 B² -0.553833C²......(20)

Table 4.13 ANOVA for the percentage of color Removal quadratic model by AC electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	157.95	9	17.55	38.12	< 0.0001	significant
A-pH	66.16	1	66.16	143.72	< 0.0001	
B-I	10.97	1	10.97	23.83	0.0006	
C-Time	9.64	1	9.64	20.93	0.0010	
AB	1.56	1	1.56	3.39	0.0953	
AC	0.2414	1	0.2414	0.5243	0.4856	
BC	1.36	1	1.36	2.96	0.1162	
A²	1.68	1	1.68	3.65	0.0850	

B ²	0.2012	1	0.2012	0.4370	0.5235	
C ²	2.26	1	2.26	4.90	0.0513	
Residual	4.60	10	0.4604			
Lack of Fit	4.15	6	0.6911	6.05	0.0516	not significant
Pure Error	0.4572	4	0.1143			
Cor Total	162.55	19				

According to Table 4.13 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. In this case A, B, C are significant model terms. The quadratic model regression equation for Turbidity removal is obtained by RSM (DesignExpert11) given below

Table 4.14 ANOVA for the percentage of Turbidity Removal quadratic model by AC

 electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	98.79	9	10.98	45.05	< 0.0001	significant
A-pH	30.08	1	30.08	123.46	< 0.0001	
B-I	1.25	1	1.25	5.15	0.0467	
C-Time	0.1542	1	0.1542	0.6329	0.4448	
AB	0.1096	1	0.1096	0.4498	0.5176	
AC	0.1830	1	0.1830	0.7511	0.4064	
BC	0.4206	1	0.4206	1.73	0.0182	
A ²	1.23	1	1.23	5.03	0.0488	
B ²	6.79	1	6.79	27.85	0.0004	
C²	0.5161	1	0.5161	2.12	0.1762	
Residual	2.44	10	0.2437			
Lack of Fit	2.18	6	0.3636	5.71	0.0569	not significant
Pure Error	0.2549	4	0.0637			
Cor Total	101.23	19				

According to Table 4.14 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. In this case A, B, A², B² are significant model terms. The quadratic model regression equation for Turbidity removal is obtained by RSM (DesignExpert11) given below

Turbidity Removal (%) = 91.5619-1.77523 A + 0.457193 B + 0.111264 C-0.0889244AB + 0.1061AC + 0.235679 BC + 0.261887 A² - 0.765569 B² + 0.143006 C²......(22)

Source		Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total		1.288E+05	1	1.288E+05			
Linear vs Mea	n	215.93	3	71.98	34.12	< 0.0001	Suggested
2FI vs Linear		9.31	3	3.10	1.65	0.2261	
Quadratic	VS	13.14	3	4.38	3.88	0.0448	Suggested
2FI							
Cubic	vs	9.29	6	1.55	3.08	0.1478	Aliased
Quadratic							
Residual		2.01	4	0.5023			
Total		1.290E+05	20	6450.64			
Madal Carrier		a					

Table 4.15 Sequential Model Sum of Squares and Model Summary Statistics for COD by AC

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	1.45	0.8648	0.8395	0.7883	52.86	Suggested
2FI	1.37	0.9021	0.8569	0.7437	64.00	
Quadratic	1.06	0.9548	0.9140	0.4612	134.52	Suggested
Cubic	0.7087	0.9920	0.9618		*	Aliased

Table 4.16 Sequential Model Sum of Squares and Model Summary Statistics for Color by AC

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.749E+05	1	1.749E+05			
Linear vs Mean	151.29	3	50.43	71.63	< 0.0001	Suggested
2FI vs Linear	2.89	3	0.9640	1.50	0.2618	
Quadratic vs 2FI	3.77	3	1.26	2.73	0.0999	
Cubic vs	4.15	6	0.6911	6.05	0.0516	Aliased
Quadratic						
Residual	0.4572	4	0.1143			
Total	1.750E+05	20	8751.35			

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	0.8391	0.9307	0.9177	0.8893	17.99	Suggested
2FI	0.8025	0.9485	0.9247	0.8439	25.38	
Quadratic	0.6785	0.9717	0.9462	0.8032	32.00	
Cubic	0.3381	0.9972	0.9866		*	Aliased

2021

Source	Sum of	df	Mean Square	F-value	p-value	Prob>F
	Squares					
Mean vs Total	1.707E+05	1	1.707E+05			
Linear vs Mean	90.03	3	30.01	42.88	< 0.0001	
2FI vs Linear	0.8703	3	0.2901	0.3652	0.7793	
Quadratic vs 2FI	7.89	3	2.63	10.80	0.0018	Suggested
Cubic vs	2.18	6	0.3636	5.71	0.0569	Aliased
Quadratic						
Residual	0.2549	4	0.0637			
Total	1.708 E+05	20	8539.96			

Table 4.17 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by

 AC

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	0.8366	0.8894	0.8686	0.7828	21.99	
2FI	0.8913	0.8980	0.8509	0.6709	33.31	
Quadratic	0.4936	0.9759	0.9543	0.6451	35.93	Suggested
Cubic	0.2524	0.9975	0.9880		*	Aliased

a)COD removal (%)

b) Color removal (%) (C) Turbidity removal (%)

Figure 4.6 Plot for relationship between experimental and predicted value for COD, color and Turbidity for ACE

The comparison between the experimental and predicted value from the model is expressed in the above figure. It was observed that the model predictions matched the experimental values and the data points lay close to the diagonal line indicated above. This indicate the analysis of variance of regression model was highly significant (P<0.0001).

COD removal efficienny (%) 0.5 05 0.425 0.425 0.425 0.35 0.35 0.275 0.275 B: I (A) A: pH 0.275 A: pH B: I (A) A: pH B: I (A) 0.2 3 0.2 3 0.2 3

4.7.4 Interactions of Different parameters and Responses for ACE

a) COD removal (%) b) Color removal (%)

c) Turbidity removal (%)

Figure 4.7.Three dimensional response surface graphs for COD (a), Color (b), Turbidity (c), versus pH, time and current for ACE.

4.7.5 Optimization of Operating Parameters SDC Electrocoagulation

Table 4.18 ANOVA for the percentage of COD Removal quadratic model by SDC electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	193.49	9	21.50	11.18	0.0004	significant
A-pH	63.58	1	63.58	33.06	0.0002	
B-I	7.60	1	7.60	3.95	0.0748	
C-Time	17.97	1	17.97	9.35	0.0121	
AB	2.72	1	2.72	1.42	0.0415	
AC	0.4300	1	0.4300	0.2237	0.0264	
BC	2.14	1	2.14	1.11	0.0162	
A²	2.24	1	2.24	1.16	0.0063	
B ²	8.99	1	8.99	4.67	0.0559	
C ²	1.57	1	1.57	0.8166	0.3874	
Residual	19.23	10	1.92			
Lack of Fit	15.82	5	3.16	4.65	0.0585	not significant
Pure Error	3.40	5	0.6807			
Cor Total	212.72	19				

According to Table 4.18 the model is significant. That means all P values less than 0.0500 indicate the model terms are significant. In this case A, C are significant model terms.

The quadratic model regression equation for COD removal is obtained by RSM

(DesignExpert11) given below

COD Removal (%) =83.3598 -2.56923A + 1.12626 B + 1.23451 C -0.446068 AB + 0.163127 AC + 0.562812 BC-0.353705 A² -0.869186 B² -0.24478 C²......(23)

Table 4.19 ANOVA for the percentage of Color Removal quadratic model by SDC electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	105.86	9	11.76	453.63	< 0.0001	significant
A-pH	35.64	1	35.64	1374.65	< 0.0001	
B-I	1.52	1	1.52	58.43	< 0.0001	
C-Time	4.17	1	4.17	160.92	< 0.0001	
AB	0.1387	1	0.1387	5.35	0.0433	
AC	0.0606	1	0.0606	2.34	0.1572	
BC	0.0125	1	0.0125	0.4837	0.5026	
A²	0.0249	1	0.0249	0.9594	0.3504	
B ²	13.20	1	13.20	509.03	< 0.0001	
C ²	3.00	1	3.00	115.87	< 0.0001	
Residual	0.2593	10	0.0259			
Lack of Fit	0.1172	5	0.0234	0.8248	0.5811	not significant
Pure Error	0.1421	5	0.0284			
Cor Total	106.12	19				

According to Table 4.19 the model is significant. That means all P values less than 0.0500 indicate model terms are significant. In this case A, B, C, AB, B², C² are significant model terms.

The quadratic model regression equation for COD removal is obtained by RSM

(DesignExpert11) given below

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	101.18	9	11.24	25.01	< 0.0001	significant
A-pH	12.24	1	12.24	27.23	0.0004	
B-I	2.53	1	2.53	5.64	0.0390	
C-Time	6.61	1	6.61	14.71	0.0033	
AB	2.83	1	2.83	6.29	0.0311	
AC	0.1596	1	0.1596	0.3551	0.5645	
BC	0.3450	1	0.3450	0.7675	0.4015	
A ²	5.88	1	5.88	13.08	0.0047	
B ²	1.21	1	1.21	2.69	0.1321	
C ²	0.4787	1	0.4787	1.07	0.3264	
Residual	4.49	10	0.4494			
Lack of Fit	1.82	5	0.3648	0.6831	0.6570	not significant
Pure Error	2.67	5	0.5341			
Cor Total	105.67	19				

Table 4.20 ANOVA for the percentage of Turbidity Removal quadratic model by SDC electrocoagulation

According to Table 4.13 the model is significant. That means all P values less than 0.0500 indicate model terms are significant. In this case A, B, C, AB, A² are significant model terms.

The quadratic model regression equation for COD removal is obtained by RSM

(DesignExpert11) given below

Turbidity Removal (%) = 91.8009-1.12714 A + 0.650306B + 0.748792C -0.454289 AB - 0.0993755 AC-0.225915BC + 0.573586 A² -0.318724 B² -0.135157C².....(25)

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Mean vs Total	1.386E+05	1	1.386E+05			
Linear vs	169.73	3	56.58	21.06	< 0.0001	Suggested
Mean						
2FI vs Linear	9.41	3	3.14	1.22	0.3434	
Quadratic vs	14.35	3	4.78	2.49	0.1202	
2FI						
Cubic vs	15.82	5	3.16	4.65	0.0585	Aliased
Quadratic						
Residual	3.40	5	0.6807			
Total	1.388E+05	20	6940.79			

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	1.64	0.7979	0.7600	0.6790	68.29	Suggested
2FI	1.61	0.8422	0.7693	0.3993	127.77	
Quadratic	1.39	0.9096	0.8283	0.1374	183.49	Prob>F
Cubic	0.8250	0.9840	0.9392		*	Aliased

Model Summary Statistics

Table 4.22 Sequential Model Sum of Squares and Model Summary Statistics for Color by SDC

Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
1.802E+05	1	1.802E+05			
88.35	3	29.45	26.52	< 0.0001	
1.14	3	0.3795	0.2967	0.8272	
16.37	3	5.46	210.47	< 0.0001	Suggested
0.1172	5	0.0234	0.8248	0.5811	Aliased
0.1421	5	0.0284			
1.804E+05	20	9017.57			
	Sum of Squares 1.802E+05 88.35 1.14 16.37 0.1172 0.1421 1.804E+05	Sum of Squaresdf1.802E+05188.3531.14316.3730.117250.142151.804E+0520	Sum of SquaresdfMean Square1.802E+0511.802E+0588.35329.451.1430.379516.3735.460.117250.02340.142150.02841.804E+05209017.57	Sum of SquaresdfMean SquareF-value1.802E+0511.802E+0526.5288.35329.4526.521.1430.37950.296716.3735.46210.470.117250.02340.82480.142150.02849017.57	Sum of SquaresdfMean SquareF-valuep-value1.802E+0511.802E+0526.52<0.0001

Model Summary Statistics

Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
1.05	0.8325	0.8011	0.7041	31.40	
1.13	0.8433	0.7709	0.2398	80.68	
0.1610	0.9976	0.9954	0.9848	1.61	Suggested
0.1686	0.9987	0.9949		*	Aliased
	Std. Dev. 1.05 1.13 0.1610 0.1686	Std. Dev. R ² 1.05 0.8325 1.13 0.8433 0.1610 0.9976 0.1686 0.9987	Std. Dev.R2Adjusted R21.050.83250.80111.130.84330.77090.16100.99760.99540.16860.99870.9949	Std. Dev.R2Adjusted R2Predicted R21.050.83250.80110.70411.130.84330.77090.23980.16100.99760.99540.98480.16860.99870.9949	Std. Dev.R2Adjusted R2Predicted R2PRESS1.050.83250.80110.704131.401.130.84330.77090.239880.680.16100.99760.99540.98481.610.16860.99870.9949*

 Table 4.23 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by

 SDC

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.721E+05	1	1.721E+05			
Linear vs Mean	91.42	3	30.47	34.21	< 0.0001	
2FI vs Linear	2.67	3	0.8894	0.9979	0.4247	
Quadratic vs	7.09	3	2.36	5.26	0.0195	Suggested
2FI						
Cubic vs	1.82	5	0.3648	0.6831	0.6570	Aliased
Quadratic						
Residual	2.67	5	0.5341			
Total	1.722E+05	20	8612.21			

S	Source		Std.	R ²	Adjusted	Predicted	PRESS	Prob>F
			Dev.		R ²	R ²		
Linear			0.9439	0.8651	0.8398	0.7666	24.67	
2FI			0.9440	0.8904	0.8398	0.6944	32.29	
Quadrati	ic		0.6704	0.9575	0.9192	0.8253	18.46	Suggested
Cubic 0	.7308	0.9747	0.9040			*	Aliased	

Model Summary Statistics

a) COD removal (%) b) Color removal (%) C) Turbidity removal (%)

Figure 4.8 Plot for relationship between experimental and predicted value for COD, color and Turbidity for SDCE

The comparison between the experimental and predicted value from the model is expressed in the above figure. It was observed that the model predictions matched the experimental values and the data points lay close to the diagonal line indicated above. This indicate the analysis of variance of regression model was highly significant (P<0.000)

4.7.6 Interactions of Different parameters and Responses for SDCE

a) COD removal (%) b) Color removal (%) C) Turbidity removal (%)

Figure 4.9.Three dimensional response surface graphs for COD (a) ,Color (b)and Turbidity (c) versus pH, time and current for SDCE

4.7.7 Optimization of Operating Parameters SAC Electrocoagulation

Table 4.24 ANOVA for the percentage of COD Removal quadratic model by SAC electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	210.62	9	23.40	840.61	< 0.0001	significant
A-pH	104.63	1	104.63	3758.18	< 0.0001	
B-I	2.38	1	2.38	85.56	< 0.0001	
C-Time	3.68	1	3.68	132.25	< 0.0001	
AB	0.5132	1	0.5132	18.43	0.0016	
AC	0.3726	1	0.3726	13.39	0.0044	
BC	0.0243	1	0.0243	0.8742	0.0218	
A ²	4.00	1	4.00	143.59	< 0.0001	
B ²	0.8663	1	0.8663	31.12	0.0002	
C ²	1.52	1	1.52	54.42	< 0.0001	
Residual	0.2784	10	0.0278			
Lack of Fit	0.1855	5	0.0371	2.00	0.2332	not significant
Pure Error	0.0929	5	0.0186			
Cor Total	210.90	19				

According to Table 4.24 the model is significant. **P-values** less than 0.0500 indicate model terms are significant. In this case A, B, C, AB, AC, A², B², C² are significant model terms. The

2021

quadratic model regression equation for COD removal is obtained by RSM (Design Expert11) given below:

COD Removal (%) = $86.6929 - 3.29592 \text{ A} + 0.630435B + 0.558774C - 0.193618AB + 0.151853 \text{ AC} + 0.0600054BC - 0.473002A^2 - 0.269835B^2 - 0.240449C^2$(26)

Sum of Squares df Mean Square **F-value** Source p-value significant Model 130.66 9 14.52 41.57 < 0.0001 A-pH 58.72 1 58.72 168.16 < 0.0001 B-I 4.77 4.77 13.67 0.0041 1 C-Time 2.29 2.29 1 6.56 0.0283 AB 0.0242 1 0.0242 0.0693 0.0277 AC 0.5702 0.5702 0.0302 1 1.63 BC 0.4768 0.4768 1.37 0.0397 1 A² 1.82 1.82 5.22 0.0454 1 B² 1.11 1.11 3.19 0.1043 1 C^2 1.48 1 1.48 4.22 0.0669 Residual 3.49 10 0.3492 0.1566 not significant Lack of Fit 2.53 5 0.5057 2.62 5 Pure Error 0.9634 0.1927 **Cor Total** 134.15 19

Table 4.25 ANOVA for the percentage of Color Removal quadratic model by SAC electrocoagulation

According to Table 4.25 the model is significant. **P-values** less than 0.0500 indicate model terms are significant. In this case A, B, C, A² are significant model terms.

The quadratic model regression equation for Color removal is obtained by RSM (Design

Expert11) given below:

Table 4.26 ANOVA for the percentage of Turbidity Removal quadratic model by SAC electrocoagulation

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	132.49	9	14.72	90.98	< 0.0001	significant
A-pH	54.35	1	54.35	335.94	< 0.0001	
B-I	2.22	1	2.22	13.74	0.0041	
C-Time	3.37	1	3.37	20.86	0.0010	

AB	0.7803	1	0.7803	4.82	0.0528	
AC	0.3074	1	0.3074	1.90	0.0281	
BC	0.1197	1	0.1197	0.7400	0.0398	
A ²	0.6196	1	0.6196	3.83	0.0788	
B ²	0.0122	1	0.0122	0.0755	0.7891	
C ²	1.25	1	1.25	7.72	0.0195	
Residual	1.62	10	0.1618			
Lack of Fit	1.30	5	0.2590	4.01	0.0767	not significant
Pure Error	0.3227	5	0.0645			
Cor Total	134.10	19				

According to Table 4.26 the model is significant **P-values** less than 0.0500 indicate model terms are significant. In this case A, B, C, C² are significant model terms. The quadratic model regression equation for Turbidity removal is obtained by RSM (Design Expert11) given below:

Table 4.27 Sequential Model Sum of Squares and Model Summary Statistics for COD by SACE

Source		Sum of Squares	s df	Mean Square	F-value	p-value	Prob>F
Mean vs To	otal	1.520E+05	5 1	1.520E+05			
Linear vs N	/Iean	201.69	3	67.23	116.83	< 0.0001	
2FI vs Line	ear	2.16	5 3	0.7216	1.33	0.3066	
Quadratic v	vs 2FI	6.76	5 3	2.25	80.99	< 0.0001	Suggested
Cubic vs Q	uadratic	0.1855	5 5	0.0371	2.00	0.2332	Aliased
Residual		0.0929	9 5	0.0186			
Total		1.522E+05	5 20	7611.62			
Model Sumn	nary Statist	ics					
	•						
Source	Std. Dev.	. R ²	Adjust	ed R ² Predi	icted R ²	PRESS	Prob>F
Linear	0.758	6 0.9563	(0.9482	0.9358	13.53	
2FI	0.736	0 0.9666	(0.9512	0.7898	44.33	
Quadratic	0.166	9 0.9987	(0.9975	0.9742	5.44	Suggested

0.9983

0.9996

0.1363

Cubic

Aliased

*

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F	
Mean vs Total	1.816E+05	1	1.816E+05				
Linear vs Mean	125.98	3	41.99	82.21	< 0.0001	Suggested	
2FI vs Linear	0.9072	3	0.3024	0.5411	0.6625		
Quadratic vs 2FI	3.77	3	1.26	3.60	0.0537	Suggested	
Cubic vs	2.53	5	0.5057	2.62	0.1566	Aliased	
Quadratic							
Residual	0.9634	5	0.1927				
Total	1.818E+05	20	9088.76				
Model Summary Statistics							

Table 4.28 Sequential Model Sum of Squares and Model Summary Statistics for Color by SACE

Source	Std. Dev.	R²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	0.7147	0.9391	0.9277	0.8958	13.97	Suggested
2FI	0.7476	0.9458	0.9208	0.8439	20.95	
Quadratic	0.5909	0.9740	0.9505	0.8879	15.04	Suggested
Cubic	0.4389	0.9928	0.9727		*	Aliased

 Table 4.29 Sequential Model Sum of Squares and Model Summary Statistics for Turbidity by

 SACE

Source	Sum of Squares	df	Mean Square	F-value	p-value	Prob>F
Mean vs Total	1.788E+05	1	1.788E+05			
Linear vs Mean	129.01	3	43.00	135.12	< 0.0001	
2FI vs Linear	1.70	3	0.5679	2.18	0.1395	
Quadratic vs 2FI	1.77	3	0.5902	3.65	0.0521	Suggested
Cubic vs	1.30	5	0.2590	4.01	0.0767	Aliased
Quadratic						
Residual	0.3227	5	0.0645			
Total	1.790E+05	20	8949.15			

Model Summary Statistics

Source	Std. Dev.	R ²	Adjusted R ²	Predicted R ²	PRESS	Prob>F
Linear	0.5642	0.9620	0.9549	0.9419	7.79	
2FI	0.5105	0.9747	0.9631	0.9120	11.80	
Quadratic	0.4022	0.9879	0.9771	0.8244	23.55	Suggested
Cubic	0.2541	0.9976	0.9909		*	Aliased

a) COD removal (%) b) Color removal (%) c) turbidity removal (%)

Figure 4.10.Plot for relationship between experimental and predicted value for, COD, color and turbidity for SACE

4.7.8 Interactions of Different parameters and Responses for SACE

a) COD removal (%) b) Color removal (%) C)Turbidity removal (%)

Figure 4.11.Three dimensional response surface graphs for COD (a),Color (b) and Turbidity (c) versus pH, time and current for SACE

4.8 Optimization of COD, Color and Turbidity by RSM

One of the main advantages of Response Surface Methodology by Central composite Design is to obtain the optimum conditions for the removal of pollutants based on the laboratory experiments.

The results were optimized using the regression equation of RSM (Design Expert 11) based on the Central Composite Design. In the optimization of pH (A), current (B), Time(C) were selected

as within range and the responses such as COD, color and turbidity removal efficiency were maximized. For Direct current electrocoagulation the optimum value was obtained at pH 3, current 0.5A and time 50min. such that the optimum value of COD Color and turbidity were 82.6%,97.8% and 95.8%, respectively. Similarly for Alternative current electrocoagulation the optimum value was obtained at pH 3, current 0.5A, time 50 such that the optimum value of COD, Color and turbidity were 86.6%, 98.5% and 96.5% respectively.

For Sono-Direct current electrocoagulation the optimum value was obtained at pH 3, current 0.5A and time 50min. such that the optimum value of COD Color and turbidity were 88.5%,98.7% and 98.27%, respectively. Similarly for Sono-Alternative current electrocoagulation the optimum value was obtained at pH 3, current 0.5A, time 50 such that the optimum value of COD, Color and turbidity were 92.5%, 99.9% and 99.76% respectively.

CHAPTER FIVE

5 CONCLUSSIONS AND RECOMMENDATIONS

5.1 CONCLUSSIONS

The present research has demonstrated that the application of the DCE and ACE process to the treatment of Domestic wastewater. At the optimum experimental conditions, the % COD, color and % Turbidity removal were higher for the ACE than for the DCE process and SDCE than for SACE. The % COD removal Color removal and Turbidity removal from Domestic wastewater by means of an ACE and SACE method were influenced by the current density, initial pH of wastewater, and initial time. With ACE and SACE the production of sludge was lower and the recovery of water was very high than the DCE and SDCE process. An Electrocoagulation technology is one of the mentioned waste water treatment technology that is simple and easy to implement. It was observed that the integrated sono-Alternative and direct current electrocoagulation process treatment achieves a fast and effective removal of COD, color and turbidity. The treatment efficiency was found to be a function of the initial pH, inter electrode distance, applied current density and electrolysis time under the optimal values of the process parameters. During the laboratory activities different operating parameters are considered which affects the removal efficiency of pollutants by using Al electrodes. Those are pH having the values of 3, 5, 7 and 9, Electric current is 0.2A, 0.3A, 0.4 A 0.5A, Distance between electrodes with ranges of 1cm, and reaction time of one hour is selected as a constant parameters. By using those all parameters for DCE, ACE, SDCE and SACE different value of removal efficiencies are obtained for COD Color, and turbidity. This indicates that using Alternative current electrocoagulation wastewater treatments have the ability to remove more pollutants than Direct current electro coagulation. And for optimization Sono-Alternative current electro coagulation wastewater treatments have the ability to remove more pollutants than Sono-Direct current electro coagulation.

5.2 **RECOMMENDATIONS**

Electrocoagulation technology is a simple technology to use and implement for wastewater treatment. It was done by applying a source of energy power either from electric power or solar power depending on their availability.

However, there are a number of precautions needed during applying electrocoagulation for wastewater treatment.

- Since the source of energy is electric power, it may suddenly stop or may be off during the process, to cover this source like generator must be provided to minimize the effect of electric power.
- On another hand electrodes are the best material needed in electrocoagulation, during the process there is electrode dissolution and it must be replaced regularly for proper treatment.
- There some sludge produced during electrocoagulation technology applied for wastewater treatment.
- > Laboratory safety should be applied in order to apply the technique.
- Hence, proper disposal area of sludge produced must be provided especially when the wastewater going to be treated is from Institution.

Generally, this treated water is not recommended for drinking. However it is used for irrigational purpose, toilet flushing other household purpose.

REFERENCES

- Abebaw, D. and Ayenew, M. (2006) 'Demand for Improved Solid Waste Services in Jimma Town, Ethiopia ':, *Ethiopian Journal of Economics*, pp. 1–19.
- Abu, S., S,H., Amr,A., Abdul,B., Mohammed J. K. (2014) 'Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone', pp. 231–239.
- Access, O. (2014) 'We are IntechOpen , the world 's leading publisher of Open Access books Built by scientists , for scientists TOP 1 %'.
- Afsharnia, M.,Biglari, H.,Rasouli, S. S.,Karimi, A.,Kianmehr, .(2018) 'Sono-Electrocoagulation of Fresh Leachate from Municipal Solid Waste ; Simultaneous Applying of Iron and Copper Electrodes', 13, pp. 472–484.
- Aghdam, M. A., Kariminia, H. and Safari, S. (2015) 'Removal of lignin, COD, and color from pulp and paper wastewater using electrocoagulation', 1040461, pp. 1–7.
- Alimohammadi, M., Mesdaghinia, A. and Khanjani, M. H. S. H. J. M. N. (2019) 'The efficiency of the electrocoagulation process in reducing fluoride : application of inductive alternating current and polarity inverter', *International Journal of Environmental Science and Technology*,
- Amor, C., Marchão, L., Lucas, M.S., Peres, J. A. (2019) 'Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review', *Water* (*Switzerland*), 11(2).
- Apaydin, O. and Kurt, U. (2009) 'An Investigation on the treatment of tannery wastewater by Electrocoagulation an investigation on the treatment of tannery wastewater by', (September 2014).
- Asaithambi, P.,Govindarajan,R.,Busier,M.,Selvakumar, P. (2020) 'Journal of Environmental Chemical Engineering Investigation of direct and alternating current –electrocoagulation process for the treatment of distillery industrial effluent.

- Asaithambi, P.,Sajjadi, B.,Raman, A.,Aziz, A.,Mohd, W.,Bin, A.,Daud. W(2016) 'Performance evaluation of hybrid electrocoagulation process parameters for the treatment of distillery industrial effluent', *Process Safety and Environmental Protection*, 104, pp. 406–412.
- Babuponnusami, A. and Muthukumar, K. (2012) 'Advanced oxidation of phenol : A comparison between Fenton , electro-Fenton , sono-electro-Fenton and photo-electro-Fenton processes', *Chemical Engineering Journal*, 183, pp. 1–9.
- Baxter, T. E. (2017a) 'AMBL-105-A Total Solids by Gravimetric Determination', pp. 1-5.
- Baxter, T. E. (2017b) 'AMBL-105-B Total Dissolved Solids by Gravimetric Determination', pp. 1–6.
- Bhagawan, D., Chandan, V., Srilatha, K., Shankaraiah, G., Rani, M. Y., Himabindu, V. (2018)
 'Industrial wastewater treatment using electrochemical process', *IOP Conference Series: Earth and Environmental Science*, 191(1).
- Butler, E., Hung, Y., Yeh, R., Yu-li., S, Mohammed., A.Al. (2011) 'Electrocoagulation in Wastewater Treatment', pp. 495–525.
- Cerqueira, A. A., Souza, P. S. A. and Marques, M. R. C. (2014) 'Effects of direct and alternating current on the treatment of oily water in an electroflocculation process', 31(03), pp. 693– 701.
- Chaturvedi, S. I. (2013) 'Electrocoagulation : A Novel Waste Water Treatment Method', 3(1), pp. 93–100.
- *Color Removal of Some Textile Dyes from Aqueous Solutions Using' (2018), 45(4), pp. 499– 507.
- Dagnaw, W. (2018) 'Treatment and characterization of wastewater from Kulfo River and Arba Minch textile factory effluents by selective adsorbents (Coagulants), Southern Nations ', 4(1), pp. 5–12.
- Dizge, N., Akarsu, C., Ozay, Y., Gulsen, H. E., Adiguzel, S. K., Mazmanci, M. A. (2018) 'Sonoassisted electrocoagulation and cross-flow membrane processes for brewery wastewater

treatment', Journal of Water Process Engineering, 21(February), pp. 52-60.

- Dizge, N., Akarsu, C., Ozay, Y., Gulsen, H. E., Adiguzel, S. K., Mazmanci, M. A. (2018) 'Sonoassisted electrocoagulation and cross-flow membrane processes for brewery wastewater treatment Journal of Water Process Engineering Sono-assisted electrocoagulation and cross- fl ow membrane processes for brewery wastewater treatment', *Journal of Water Process Engineering*, 21(February), pp. 52–60.
- Electrodes, T. T. O. (2016) ultrasound-assisted electrochemical treatment of wastewaters containing organic pollutants by using novel.
- Eyvaz, M. (2016) 'Treatment of Brewery Wastewater with Electrocoagulation : Improving the Process Performance by Using Alternating Pulse Current', 11, pp. 4988–5008.
- Farooq, R., Wang, Y., Lin, F., Shaukat, S. F., Donaldson, J., Chouhdary, A. J. (2002) 'Effect of ultrasound on the removal of copper from the model solutions for copper electrolysis process', *Water Research*, 36(12), pp. 3165–3169.
- Ghalwa, N. M. A., Musabeh, A. Z. and Farahat, N. B. (2016) 'Optimization of Electrocoagulation (EC) Process for the Purification of Water from 2 , 4-Dichlorophenoxyacetic Acid (2 , 4-D) Using', pp. 2760–2778.
- Iso, E. N. (no date) 'Turbidity and Suspended Solids Turbidity', pp. 34–39.
- Khan, A. M. and Shahid, H. A. (2011) 'Correlation of COD and BOD of Domestic Wastewater with the Power Output of Bioreactor Correlation of COD and BOD of Domestic Wastewater with the Power Output of Bioreactor', (April).
- Kuokkanen, V.,Kuokkanen, T.,Rämö, J.,Lassi, U. (2013) 'Recent Applications of Electrocoagulation in Treatment of Water and Wastewater — A Review', (August 2014).
- Martı, C. A. and Ferro, S. (2006) 'Electrochemical oxidation of organic pollutants for the wastewater treatment : direct and indirect processes { {', pp. 1324–1340.

'Method 410.3: Chemical Oxygen Demand (Titrimetric, High Level for Saline Waters) by

2021

Titration Title ': (1978), pp. 3–6.

- Kong, X.,Zhou, Y.,Xu, T.,Hu, B.,Lei, X.,Chen, H. (2020) 'Research Article A novel technique of COD removal from electroplating wastewater by Fenton — alternating current electrocoagulation'.
- Mohora, E., Agbaba, J. and Zrnic, K. (2019) 'Effects of combined fe-al electrodes and groundwater temperature on arsenic removal by effects of combined fe-al electrodes and groundwater temperature on arsenic removal', (June).
- Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., Cocke, D. L. (2004) 'Fundamentals , present and future perspectives of electrocoagulation', 114, pp. 199– 210.
- Mucha, Z. (2016) 'Turbidity measurements as a tool of monitoring and control of the SBR ef fl uent at the small wastewater treatment plant – preliminary study', 42(3), pp. 33–36.
- Nippatla, N. and Philip, L. (2019) 'Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater', *Process Safety and Environmental Protection*, 125, pp. 143–156.
- Pardede, A. and Budihardjo, M. A. (2018) 'The Removal of Turbidity and TSS of the Domestic Wastewater by Coagulation-Flocculation Process Involving Oyster Mushroom as Biocoagulant', 05007.
- Picchio, V., Cammisotto, V., Pagano, F., Carnevale, R., Chimenti, I. (2020) 'We are IntechOpen, the world 's leading publisher of Open Access books Built by scientists, for scientists TOP 1 %', *Intechopen*, (Cell Interaction-Regulation of Immune Responses, Disease Development and Management Strategies), pp. 1–15. Available at: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
- Prasetyaningrum, A., Bakti, Dh., Yudhy, P., I R. (2019) 'The Effect of pH and Current Density on Electrocoagulation Process for Degradation of Chromium (VI) in Plating Industrial

Wastewater The Effect of pH and Current Density on Electrocoagulation Process for Degradation of Chromium (VI) in Plating Industrial Wastewater', (Vi).

- Prieto, F. (2001) 'Measurement of Electrical Conductivity of Wastewater for Fast Determination of Metal Ion Concentration', (February 2019). doi: 10.1023/A.
- Qian, G., Ye, L., Li, L., Hu, X., Jiang, B., Zhao, X. (2018) 'Influence of electric field and iron on the denitrification process from nitrogen-rich wastewater in a periodic reversal bioelectrocoagulation system', *Bioresource Technology*.
- Rezaee, R.,Maleki, A.,Jafari, A.,Mazloomi, S.,Zandsalimi, Y.,Mahvi, A. H. (2014)
 'Environmental Health Application of response surface methodology for optimization of natural organic matter degradation by UV / H 2 O 2 advanced oxidation process', pp. 1–8.
- Saravanan, M., Pabmanavhan, N. and Sivarajan, M. (2010) 'Treatment of Acid Blue 113 Dye Solution Using Iron Electrocoagulation', 38, pp. 565–571.
- Science, E. (2018) 'Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate'.
- Shah, A. R., Tahir, H. and Sadiq, S. (2018) 'Optimization of Sono-Electrocoagulation Process for the Removal of Dye Modeling and Optimization of Electrocoagulation Process for the Removal of Yellow145 dye Based on Central Composite Design').
- Singh, A. K. and Awasthi, M. (2017) 'treatment of hospital wastewater using', (7), pp. 4-9.
- Taylor, P. (2008) 'Effect of pH on Electrocoagulation of Bentonite Suspensions in Batch Using Iron Electrodes Access details : Access Details : [subscription number 904521927]
 Effect of pH on Electrocoagulation of Bentonite Suspensions in Batch Using Iron Electrodes', (October 2014).
- Taylor, P.,Secula, M. S.,Zaleschi, L.,Stan, C. S.,Ioan, M. (no date) 'Desalination and Water Treatment Effects of electric current type and electrode configuration on the removal of Indigo Carmine from aqueous solutions by electrocoagulation in a batch reactor', (March 2015), pp. 37–41.

- Tchamango, S. R.,Ngayo, K. W.,Désiré, P.,Belibi, B.,Nkouam, F.,Ngassoum, M. B.,Raoul, S. (2020) 'Treatment of a dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes Treatment of a dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes', *Separation Science and Technology*, 00(00), pp. 1–12.
- Tekle, D.Y., Hailu, A. B.Wassie, T. A., Tesema, A. G. (2015) 'Effect of coffee processing plant effluent on the physicochemical properties of receiving water bodies, Jimma zone Ethiopia', 4(2), pp. 83–90.
- Va, V., Setiyawan, A. S., Soewondo, P., Putri, D.W. (2018) 'the characteristics of domestic wastewater from office buildings in bandung , west java , indonesia', 1(2), pp. 199–214.
- Vasudevan, S. (2011) 'Current (DC) in Electrocoagulation Process', 9999(Dc), pp. 1-10.
- Vasudevan, S.,Kannan, B. S.,Lakshmi, J.M. ,Subramanian.S.G.(2011) 'Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water', (November 2010), pp. 428–436.
- Vasudevan, S. and Lakshmi, J. (2012) 'Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water', (1), pp. 353–360.
- Wan, W. (2010) 'Arsenic Removal From Drinking Water By Electrocoagulation', (January).
- Weisbart, C.,Raghavan, S.,Muralidharan, K.,Potter, B.G. (2020) 'Journal of Water Process Engineering Feasibility of removal of graphene oxide particles from aqueous suspensions by DC / AC electrocoagulation', *Journal of Water Process Engineering*, 36(March), p. 101249.
- Xu, L.,Huang, Q.,Xu, X.,Cao, G.,He, Ch.,Wang, Y.(2017) 'Simultaneous removal of Zn 2 + and Mn 2 + ions from synthetic and real smelting wastewater using electrocoagulation process : Influence of pulse current parameters and anions', *Separation and Purification Technology*, 188, pp. 316–328.
- Xu, T.,Zhou, Y.,Lei, X.,Hu, B.C., Hong,Yu. G. (2019) 'Study on highly efficient Cr (VI) removal from wastewater by sinusoidal alternating current coagulation', *Journal of Environmental Management*, 249(July), p. 109322.
Yahiaoui, I. (2018) *Treatment of Medical Waste Using Electrocoagulation Process*. Springer International Publishing.

APPENDICIES

Annex 1

All Lab Results

Table 4.1a: Experiment 1 & 2 for DCE

Date: 16/	3/2021				Day: Tuesday			
System: Bat	ch system				Experiment No: 1&2			
				Ef	Effect of operating parameters			
pH: 3								
					Electrod	e material:		
Direc	ct current	electroc	oagulation			Anode and Catl	node: Al	
Current Ampere: 0.3A					In-between electrode distance: 1cm			
Reaction Time:1hr								
minu	ite				Mode of Electrode Connection: Parallel			
Treatment	Time		Colo	or				
Interval	(min.)	Volts	Waveleng	th(nm)	Abs.	Turbidity(NTU)		
1	0	-	420		3	116		
2	20	2.8	420		0.103	4.9		
3	40	2.8	420		0.202	4.87		

 Table 4.1b: Experiment 1&2 COD determination for DCE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.42	0.42	0.42	1.62	1.2	1.2	249
40	1.2	1.6	0.4	0.4	1.62	1.2	1.22	256
						2		

Table 4.2a: Experiment 3&4 for DCE

Date: 17/3	/2021			Day: Wednesday			
System: Ba	atch syster	n		Experiment No: 3&4			
			Effect	of oper	ating parar	neters	
pH: 3				Electrode material:			
Direct curr	rent electro	ocoagulati	ion				
					Anode and Cathode: Al		
Current Ampere: 0.5A					In-between electrode distance: 1cm		
Reaction Ti	me:1hr mi	inute			Mode of Electrode Connection: Parallel		
Treatme	Time		Col	or			
nt							
Interval	(min.)	Volts	Waveler	ngth(n	Abs.	Turbidity(NTU)	
			m)				
1	30	2.9	420		0.39	4.7	
2	50	2.9	420		0.401	4.75	

Table 4.2b: Experiment 3&4 COD determination for DCE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)								
			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
30	0	0.42	0.42	0.42	1.62	1.2	1.2	249
50	1.2	1.6	0.4	0.4	1.62	1.22	1.22	256

Table 4.3a: Experiment 5 for DCE

Date: 18/3/2	2021		Day: Th	ursday			
System: Bat	tch system	-	Experin	Experiment No: 5			
			Effect	of operati	ng parame	eters	
pH: 5					Electrod	e material:	
Direct current electrocoagulation			tion				
				Anode and Cathode: Al			
Current Ampere: 0.2A					In-betwe	en electrode distanc	e: 1cm
Reaction Time:40 minute				Mode of Electrode Connection: Para			on: Parallel
Treatme	Time		Color				
nt	(min.)						
Interval							
1	40	Volts	Wavelength(nm)		Abs.	Turbidity(NTU)	
		2.1	420		0.58	9.6	

Table 4.3b: Experiment 5 COD determination for DCE

	Sample			Blank				
		·						
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.32	0.32	0.34	1.56	1.22	1.22	281

Table 4.4a: Experiment 6,7&8 for DCE

Date: 19/20	21		Day: Friday					
System: Bat	tch system		Experiment No: 6	Experiment No: 6,7&8				
			Effect of operati	Effect of operating parameters				
pH: 5				Electrod	e material:			
Direct current electrocoagulation			ion					
				Anode and Cathode: Al				
Current Am	pere: 0.4A	A		In-between electrode distance: 1cm				
Reaction 7	Time:1 hr			Mode of	Electrode Connecti	on: Parallel		
Treatme	Time		Color					
nt	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)			
interval			_					

1	20	3.7	420	0. 225	6.15	
2	40	3.7	420	0.15	5.58	
3	60	3.7	420	0.05	4.6	

Table 4.4b: Experiment 6,7&8 COD determination for DCE

	Sample)		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	1.2	1.2	1.2	2.2	1	1	320
40	1	1.8	0.8	0.8	1.6	0.8	0.8	256
60	0.8	2	1.2	1.2	1.7	0.5	0.5	160

Table 4.5a: Experiment 9 for DCE

Date: 20/3/2	2021		Day: Saturday				
System: Bat	tch system	l	Experiment No: 9	Experiment No: 9			
			Effect of operati	Effect of operating parameters			
pH: 5				Electrode material:			
Direct current electrocoagula			ion				
				Anode and Cathode: Al			
Current Ampere: 0.5A				In-between electrode distance: 1cm			
Reaction Ti	me:50 mii	nute		Mode of Electrode Connection: Paralle			
Treatme	Time		Color				
nt							
interval							
1	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
	50 2.7 420		420	0.224	10.6		

2021

Table 4.5b: Experiment 9 COD determination for DCE
--

	Sample			Blank				
		ſ						
Time	Initi	Final	FAS	Initial	Final	FAS Volume	FAS	COD
	al							
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(m					
			L)					
50	0	0.46	0.46	0.46	1.68	1.22	1.22	243

Table 4.6a: Experiment 10,11&12 for DCE

Date: 22/3/2	2021		Day: M	onday				
System: Bat	ch system	-	Experin	nent No:	10,11&12			
			Effect	of oper	ating parame	eters		
pH: 7					Electrod	e material:		
Direct curr	ent electro	ocoagulati	ion					
				Anode and Cathode: Al				
Current Ampere: 0.4A Reaction Time: 1hr minute					In-between	1cm		
Reaction Time: 1hr minute					Mode of E	Electrode Connection: Parallel		
Treatme	Time		Col	Color				
ntinterva	(min.)	Volts	Waveler	ngth(n	Abs.	Turbidity(NTU)		
1			m)				
1	20	3.7	420	0.706		10.6		
	40	3.7	420	0.224		8.96		
2				+20 0.22+				
3	60	3.7	420	0.172		6.1		

2021

Table 4.6b: Experiment 10,11&12 COD determination for DCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL					
)					
20	0	0.65	0.65	0.65	1.85	1.2	1.2	176
40	1.2	1.97	0.77	0.77	2.3	1.54	1.54	246
60	1.54	2	0.46	0.46	1.6	1.2	1.2	236

Table 4.7a: Experiment 13 for DCE

Date: 23/3/2	2021		Day: Tu	esday			
System: Ba	tch system		Experim	nent No: 13	3		
			Effect	Effect of operating parameters			
pH: 9						e material:	
Direct cur	rent electroco	oagulati	ion	on and a second s			
				Anode and Cathode:			Al
Current Ampere: 0.3A					In-betwe	en electrode distanc	e: 1cm
Reaction 7	Гime:30				Mode of	Electrode Connecti	on: Parallel
minute							
Treatme	Time		Color				
nt	(min.)	Volt	Wa	velength(n	m)	Turbidity(NTU)	
Interval			Abs.	_			
1	30	2	420		0.235	11.26	

2021

Table 4.7b: Experiment 13 COD determination for DCE

	Sa	mple		Blank				
Time	Initi	Final	FAS	Initial	Final	FAS Volume	FΔS	COD
Time	al	1 11141	1715	miniai	1 mai	TAS Volume	176	COD
(min.)			Volume			down the	volum	(mg/L)
							e	
			down the			burette(mL)	(mL)	
			burette(mL)					
30	0	0.4	0.4	0.4	1.6	1.2	1.2	360

Table 4.8a: Experiment 14 for DCE

Date: 24/3	/2021	Day:	Wednesda	ay					
System: B	atch systen	n Expe	eriment No: 14						
		Eff	fect of open	rating pa	arai	meters			
pH: 9			Electrode material:						
Direct current electrocoagulation									
		_				Anode and Cathode: Al			
Current Ampere: 0.4A						In-between electrode distance: 1cm			
Reaction 7 minute	Time:40				Mode of Electrode Connection: Par			on: Parallel	
Treatme	Time		Color						
nt Interval	(min.)	Volt s	Volt Wavelength(n m)			Abs.	Turbidity(NTU)		
1	40	3	420		-	0.269	11.14		

Table 4.8b: Experiment 14 COD determination for DCE

	Sam	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.2	0.2	0.2	1.4	1.2	1.2	320

Table 4.9a: Experiment 15 for DCE

Date:25/3/	/2021	Day:	Thursday							
System: B	atch system	Expe	riment No	: 15						
		Eff	ect of open	rating pa	ara	meters	meters			
pH: 9			Electrode material:							
Direct current electrocoagulation										
			Anode and Cathode: Al				Al			
Current Ampere: 0.5A						In-betwo	een electrode distanc	ce: 1cm		
ReactionT	ReactionTime:50min					Mode of	Electrode Connecti	on: Parallel		
ute										
Treatme	Time		Col	or						
nt	(min.)	Volt	Waveler	ngth(n		Abs.	Turbidity(NTU)			
Interval s			m)						
1	50	3.1	420			0.332	14.06			

Table 4.9b: Experiment 15 COD determination for DCE

	Sar	nple		Blank				
Tim	Initia	Final	FAS	Initial	Final	FAS Volume	FAS	COD
e	1							
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	0	0.2	0.2	0.2	1.06	0.86	0.86	211

Table 4.10a: Experiment 16 for DCE

Date:26/3/	/2021			Day: 1	Fri	iday			
System: B	atch system			Exper	Experiment No: 16				
		Eff	ect of oper	rating pa	ara	ameters			
pH: 7						Electrod	e material:		
Direct current electrocoagulation									
			Anode and Cathode: Al			Al			
Current Ampere: 0.4A						In-between electrode distance: 1cm			
ReactionT	'ime:40min					Mode of	Electrode Connecti	on: Parallel	
ute									
Treatme	Time		Color						
nt	(min.)	Volt	Waveler	ngth(n	1	Abs.	Turbidity(NTU)		
Interval		s m)							
1	40	3.1	420			0.23	8.96		

Table 4.10 b: Experiment 16 COD determination for DCE

	Sai	mple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	1.97	0.75	0.75	2.3	1.55	1.55	246.2

Table 4.11a: Experiment 17 for DCE

Date:29/3/2	2021			Day:	Mc	onday			
System: Ba	tch system			Experiment No: 17					
			Effect	of oper	atiı	ting parameters			
pH: 7						Electrod	e material:		
Direct curre	n								
						A	Anode and Cathode:	Al	
Current Ampere: 0.4A					In-between electrode distance: 1cm				
ReactionT	ime:40min					Mode of	Electrode Connecti	on: Parallel	
ute									
Treatme	Time		Color						
nt	(min.)	Volt	Waveler	ngth(n	A	Abs.	Turbidity(NTU)		
Interval		S	m)						
1	40	3.1	420			0.231	8.9		

Table 4.11 b: Experiment 17 COD determination for DCE

	Sai	mple		Blank				
Time	Initi	Final	FAS	Initial	Final	FAS Volume	FAS	COD
	al							
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.55	2.29	0.75	0.75	2.27	1.52	1.52	246.4

Table 4.12a: Experiment 18 for DCE

Date:30/3/	/2021			Day: '	Tu	esday			
System: B	atch system			Exper	rim	ent No: 1	8		
		Eff	ect of open	rating pa	arai	ameters			
pH: 7						Electrode material:			
Direct cur	rent electroco	oagulati	ion						
		-				Anode and Cathode: Al			
Current A	Current Ampere: 0.4A						In-between electrode distance: 1cm		
ReactionT	ime:40min					Mode of	Electrode Connecti	on: Parallel	
ute									
Treatme	Time		Color						
nt	(min.)	Volt	Waveler	ngth(n	A	Abs.	Turbidity(NTU)		
Interval		S	s m)						
1	40	3.1	420	420			8.91		

Table 4.12 b: Experiment 18 COD determination for DCE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.52	2.28	0.76	0.76	2.26	1.51	1.51	240

Table 4.13 a: Experiment 19 for DCE

Date:1/4/2	2021			Day: '	We	dnesday			
System: B	atch system			Exper	rim	ent No: 1	9		
		Eff	fect of open	rating pa	arar	neters			
pH: 7				Electrode material:					
Direct cur	rent electroc	oagulat	ion						
							Anode and Cathode: Al		
Current Ampere: 0.4A					In-between electrode distance: 1cm			e: 1cm	
ReactionTime:40min						Mode of	Electrode Connecti	on: Parallel	
ute									
	Time		Color						
Treatme	(min.)	Volt	Waveler	ngth(n	A	Abs.	Turbidity(NTU)		
nt		s	m)	m)					
Interval									
1	40	3.1	420			0.232	8.92		

Table 4.13 b: Experiment 19 COD determination for DCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.52	2.28	0.76	0.77	2.25	1.51	1.51	243

Table 4.14 a: Experiment 20 for DCE

Date:2/4/2	2021			Day:	We	ednesday		
System: B	atch system			Expe	rim	ent No: 2	0	
		Eff	ect of open	rating pa	ara	meters		
pH: 5						Electrode material:		
Direct cur	rent electroco	oagulati	ion					
	-					Anode and Cathode: Al		
Current A	Current Ampere: 0.4A					In-between electrode distance: 1cm		
ReactionT	ime:40min					Mode of	Electrode Connecti	on: Parallel
ute								
Treatme	Time		Color					
nt	(min.)	Volt	Waveler	ngth(n	A	Abs.	Turbidity(NTU)	
Interval		s m)						
1	40	2.6	420			0.152	6.15	

Table 4.14 b: Experiment 20 COD determination for DCE

	Sai	nple		Blank				
—	T 1 1	T ¹ 1	E 4 C	T 1	T ¹ 1	DAG M 1	E 4 G	COD
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0.43	1	0.57	0.57	1.3	0.73	0.73	233.6

Table 5.1a: Experiment 1 &2 for ACE

Date: 3/4/2	021		Day: T	Thursday			
System: Ba	tch system	1	Experi	iment No: 1 &2			
			Effect of opera	ting para	meters		
pH: 3							
				Electrode material:			
Alternative	Current e	lectroco	agulation	1	Anode and cathode A	1	
Current Am	npere: 0.3	A		In-between electrode distance: 1cm			
Reaction Ti minute	ime:1hr			Mode of Electrode Connection: Parallel			
Treatment	Time		Color				
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
1	0	2.8	420	3	116		
2 20 2.8 420				0.066	5.8		
3	30 2.8 420				4.5		

Table 5.1b: Experiment 1&2 COD determination for ACE

	Sample	;		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.89	0.89	0.89	2.09	1.2	1.2	99.2
30	1.2	2.08	0.88	0.88	2.08	1.2	1.2	102.4

Table 5.2a: Experiment 3&4 for ACE

Date: 4/4/2	021		Day: H	Friday			
System: Ba	tch system	1	Exper	iment No: 3&4			
			Effect of opera	ting para	meters		
pH: 3							
				Electrode material:			
Alternative	Current e	lectroco	agulation		Anode and cathode: A	A1	
Current An	npere: 0.5	A		In-between electrode distance: 1cm			
Reaction Ti minute	ime:1hr			Mode of Electrode Connection: Parallel			
Treatment	Time		Color				
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
1	0	3.2	420	3	116		
2 30 3.2 420				0.081	7.2		
3 50 3.2 420				0.032	3.8	1	

Table 5.2b: Experiment 3&4 COD determination for ACE

	Sample	¢		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
30	0	0.89	0.89	0.89	2.09	1.2	1.2	99.2
50	1.2	2.1	0.9	0.9	2.1	1.2	1.2	96

Table 5.3a: Experiment 5 for ACE

Date: 7/4/2	021		Da	y: M	Ionday		
System: Ba	tch system	1	Exj	Experiment No: 5			
			Effect of op	perat	ing parai	meters	
pH: 5							
					Electrod	le material:	
Alternative Current electrocoagulation					Anode and cathode : Al		
Current An	pere: 0.2	4			In-between electrode distance: 1cm		
Reaction Ti minute	ime:40				Mode of	f Electrode Connectio	n: Parallel
Treatment	Time		Color				
Interval (min.) Volts Wavelength(nm			ım)	Abs.	Turbidity(NTU)		
1 40 1.6 420					0.075	4.34	

Table 5.3b: Experiment 5 COD determination for ACE

	Sam	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.9	0.9	0.9	2.175	1.275	1.275	120

Table 5.4a: Experiment 6,7&8 for ACE

Date: 8/4/20	21		Day:	Day: Tuesday			
System: Bate	ch system	1	Expe	periment No: 6,7&8			
			Effect of oper	rating para	meters		
pH: 5							
				Electroc	le material:		
Alternative (Current e	lectroco	agulation	Anode and cathode: Al			
Current Am	pere: 0.4	A		In-betw	een electrode distance	e: 1cm	
Reaction Tir	ne:1hr			Mode of	f Electrode Connectio	on: Parallel	
Treatment	Time		Color				
Interval	(min.)	Volts	Wavelength(nm) Abs.	Turbidity(NTU)		
1	20	2.8	420	0.211	5		
2	40 2.8 420			0.15	4.2		
3	60	2.8	420	0.023	3.4		

Table 5.4b: Experiment 6,7&8 COD determination for ACE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.92	0.92	0.92	1.4	0.48	0.48	153.6
40	0.48	1.08	0.6	0.6	1.12	0.52	0.52	128
60	0.52	1	0.48	0.48	0.8	0.52	0.52	102

Table 5.5a: Experiment 9 for ACE

Date: 9/4/2	021			Day: W	Vednesda	У		
System: Ba	tch system	1		Experin	eriment No: 9			
	Effect of opera					neters		
pH: 5	pH: 5							
					Electrod	le material:		
Alternative	Current e	lectroco	agulation		Anode and cathode : Al			
Current Am	pere: 0.5	A			In-between electrode distance: 1cm			
Reaction Ti minute	ime:50				Mode of	f Electrode Connection	n: Parallel	
Treatment	ent Time Color			r				
Interval	Interval (min.) Volts Wavelength(nm)					Turbidity(NTU)		
1	50 3.1 420					4.54		

Table 5.5b: Experiment 9 COD determination for AC

	Samp	ole		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
	·		down the			burette(mL)	(mL)	
			burette(mL)					
50	0	0.82	0.82	0.82	2.02	1.2	1.2	121

Table 5.6a: Experiment 10,11&12 for ACE

Date: 10/4/	2021		Da	y: T	hursday			
System: Ba	tch systen	1	Exj	Experiment No: 10,11&12				
			Effect of op	bera	ting parai	meters		
pH: 7								
					Electrode material:			
Alternative Current electrocoagulation					Anode and cathode: Al			
Current Ampere: 0.4A					In-between electrode distance: 1cm			
Reaction Transminute	ime:1hr				Mode of	f Electrode Connectio	on: Parallel	
Treatment	Time		Color					
Interval	(min.)	Volts	Wavelength(n	ım)	Abs.	Turbidity(NTU)		
1	20	2.1	420		0.168	6.8		
2	40 2.1 420				0.106	4.46		
3	60	2.1	420		0.093	4.4	-	

 Table 5.6b: Experiment 10,11&12 COD determination for ACE

	Sampl	e		Blank				
Time	Initia 1	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.88	0.88	0.88	2.08	1.2	1.2	102
40	1.2	2.02	0.82	0.82	2.02	1.2	1.2	121
60	1.2	2.07	0.87	0.87	2.07	1.2	1.2	105.6

Table 5.7a: Experiment 13 for ACE

Date: 11/4/2	2021		Γ	Day: Fr	riday			
System: Ba	tch system	1	E	Experiment No: 13				
	Effect of operative				ing parar	neters		
pH: 9								
					Electrod	le material:		
Alternative Current electrocoagulation					Anode and cathode : Al			
Current Am	pere: 0.3	4			In-betwe	een electrode distance	: 1cm	
Reaction Ti minute	ime:30				Mode of	f Electrode Connectio	n: Parallel	
Treatment	t Time Color							
Interval	Interval (min.) Volts Wavelength(nm			l(nm)	Abs.	Turbidity(NTU)		
1 30 2.1 420					0.09	7.76		

Table 5.7b: Experiment 13 COD determination for ACE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL					
)					
30	0	0.88	0.88	0.88	2.08	1.2	1.2	102.4

Table 5.8a: Experiment 14 for ACE

Date: 14/4/2	2021		Day	y: N	Ionday			
System: Ba	tch system	l	Exp	Experiment No: 14				
Effect of oper				erat	ting parar	neters		
pH: 9	pH: 9							
					Electrod	le material:		
Alternative Current electrocoagulation					Anode and cathode : Al			
Current Am	pere: 0.4A	Ą			In-betwe	een electrode distance	: 1cm	
Reaction Ti minute	me:40				Mode of	f Electrode Connectio	n: Parallel	
Treatment	t Time Color							
Interval	Interval (min.) Volts Wavelength(nm			m)	Abs.	Turbidity(NTU)		
1	1 40 2.2 420				0.278	18.6		

Table 5.8b: Experiment 14 COD determination for ACE

	Sai	nple		Blank				
Time	Initi	Final	FAS	Initial	Final	FAS Volume	FAS	COD
	al							
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.7	0.7	0.7	1.9	1.2	1.2	160

Table 5.9a: Experiment 15 for ACE

Date: 15/4/2	2021			Day: T	uesday			
System: Bat	tch system	l		Experin	Experiment No: 15			
			Effect o	of operat	ing para	meters		
pH: 9								
					Electrode material:			
Alternative Current electrocoagulation					Anode an	nd cathode: Al		
Current Am	pere: 0.5A	4			In-betwo	een electrode distance	:: 1cm	
Reaction Ti minute	ime:50				Mode of	f Electrode Connectio	n: Parallel	
Treatment	atment Time Color			or				
Interval	Interval (min.) Volts Wavelength(nm			th(nm)	Abs.	Turbidity(NTU)		
2	50 2.4				0.111	5.66	1	

Table 5.9b: Experiment 15 COD determination for ACE

	Sa	mple		Blank				
Time	Initi al	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)	ui		Volume			down the	volum e	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	1.2	2.02	0.82	0.82	2.02	1.2	1.2	121.6

Table 5.10a: Experiment 16 for ACE

Date: 16/4/2	2021			Day: W	Vednesda	у		
System: Bat	tch system	1		Experin	ment No:	16		
			Effect of	of operat	ing para	neters		
pH: 7								
					Electrode material:			
Alternative Current electrocoagulation					Anode and cathode: Al			
Current Ampere: 0.4A					In-betwo	een electrode distance	: 1cm	
Reaction Ti minute	me:40				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Time		Colo	or				
Interval	Interval (min.) Volts Wavelength(nm			gth(nm)	Abs.	Turbidity(NTU)		
1	40	2.1	420		0.105	4.45]	

Table 5.10b: Experiment 16 COD determination for ACE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L)
							e	
			down the			burette(mL)	(mL)	
			burette(mL					
)					
40	1.2	2	0.8	0.8	2	1	1.19	121.2

Table 5.11a: Experiment 17 for ACE

Date: 17/4/2	2021			Day: Tl	hursday				
System: Ba	tch system	1		Experin	Experiment No: 17				
			Effect of	of operat	ing parar	neters			
pH: 7									
					Electrode material:				
Alternative Current electrocoagulation						Anode an	nd cathode: Al		
Current Am	Current Ampere: 0.4A					In-between electrode distance: 1cm			
Reaction Ti minute	ime:40				Mode of	f Electrode Connectio	n: Parallel		
Treatment	Time		Colo	or					
Interval (min.) Volts Wavelength(nm			gth(nm)	Abs.	Turbidity(NTU)				
1	40	2.1	420		0.105	4.45			

Table 5.11b: Experiment 17 COD determination for ACE

	Sai	nple		Blan				
				k				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	2	0.8	0.8	2	1	1.19	121.2

Table 5.12a: Experiment 18 for ACE

Date: 18/4/2	2021			Day: F	riday			
System: Ba	tch system	l		Experin	Experiment No: 18			
			Effect of	of operat	ting parar	neters		
pH: 7								
					Electrode material:			
Alternative Current electrocoagulation					Anode and cathode: Al			
Current Am	pere: 0.4A	Ą			In-between electrode distance: 1cm			
Reaction Ti minute	me:40				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Time		Cole	or				
Interval (min.) Volts Wavelength(nm			gth(nm)	Abs.	Turbidity(NTU)			
1	40	2.1	420		0.105	4.45		

Table 5.12b: Experiment 18 COD determination for ACE

	Sai	mple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L)
							e	
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	2	0.8	0.8	2	1	1.19	121.2

Table 5.13a: Experiment 19 for ACE

Date:21/4/2	.021			Day: 1	Mc	onday		
System: Ba	tch system			Exper	im	ent No: 1	9	
			Effect	of oper	atiı	ng parame	eters	
pH: 7						Electrode material:		
Alternative current								
<u> </u>						Anode and Cathode: Al		
Current Ampere: 0.4A						In-between electrode distance: 1cm		
ReactionT	ime:40min					Mode of	Electrode Connecti	on: Parallel
ute								
Treatment	Time		Color					
Interval	(min.)	Volt	Waveler	ngth(n	Ā	Abs.	Turbidity(NTU)	
S			m))				
1	40	3.1	420 0.1			06	4.47	

Table 5.13 b: Experiment 19 COD determination for ACE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	2	0.81	0.81	2	1.19	1.18	121.3

Table 5.13a: Experiment 19 for ACE

Date:22/4/	2021			Day:	Tuesday			
System: B	atch system			Expe	riment No: 1	9		
		Eff	ect of open	rating pa	arameters			
pH: 7					Electrode material:			
Alternativ	e current							
					Anode and Cathode: Al			
Current Ampere: 0.4A					In-between electrode distance: 1cm			
ReactionT	ime:40min				Mode of E	lectrode Connection	: Parallel	
ute								
Treatment	Time		Cole	or				
Interval	(min.)	Volt	Waveler	ngth(n	Abs.	Turbidity(NTU)		
	s m))				
1	40	3.1 420			0.106	4.47		

Table 5.13 b: Experiment 19 COD determination for ACE

	Sam	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	2	0.81	0.81	2	1.19	1.18	121.3

Table 5.14a: Experiment 20 for ACE

Date:23/4/	2021			Day:	We	ednesday			
System: B	atch system			Exper	im	ent No: 2	0		
		Eff	ect of open	rating pa	ara	meters			
pH: 5						Electrode material:			
Alternativ	e current								
						Anode and Cathode: Al			
Current A	In-betwe	n-between electrode distance: 1cm							
ReactionT	ime:40min				Ν	Iode of E	lectrode Connection	: Parallel	
ute									
Treatment	Time		Color						
Interval	(min.)	Volt	Waveler	ngth(n	1	Abs.	Turbidity(NTU)		
		s m)					-		
1	40	3.1	420 0.			06	4.47		

Table 5.14 b: Experiment 20 COD determination for ACE

	Samj	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.2	2	0.81	0.81	2	1.19	1.18	121.3

Table 6.1a: Experiment 1&2 for SDCE

Date: 24/4/	2021		Day: T	hursday			
System: Ba	tch system	1	Experi	iment No: 1&2			
			Effect of operation	ting parai	meters		
pH: 3							
				Electroc	le material:		
Sono-direct	Current e	electroco	oagulation	1	Anode and cathode : A	A1	
Current An	pere: 0.3	A		In-between electrode distance: 1cm			
Reaction Ti minute	ime:50			Mode of	f Electrode Connectio	n: Parallel	
Treatment	Time		Color				
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
1	0	-	420	3	116		
2	2 20 2.7 420				5.4		
3	30	2.7	420	0.045	4.1		

 Table 6.1b: Experiment 1 &2 COD determination for SDCE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.87	0.87	0.87	2.07	1.2	1.2	105.6
30	1.2	2.14	0.94	0.94	2.14	1.2	1.2	83.2

Table 6.2a: Experiment 3&4 for SDCE

Date: 25/4/2	2021		Day: I	Friday				
System: Ba	tch system	1	Exper	iment No: 3&4				
			Effect of opera	ating parai	neters			
pH: 3								
				Electroc	le material:			
Sono-direct	Current e	electroco	agulation		Anode and cathode : Al			
Current Am	pere: 0.5	A		In-betwo	een electrode distance	:: 1cm		
Reaction Ti minute	ime:50			Mode of	f Electrode Connectio	n: Parallel		
Treatment	Time		Color					
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)			
1	0 - 420				116			
2	20	2.4	420	0.092	5.6			
3	30	2.4	420	0.072	4.5	1		

 Table 6.2b: Experiment 3&4 COD determination for SDCE

	Sampl	e		Blank				
Time (min.)	Initi al	Final	FAS	Initial	Final	FAS Volume	FAS	COD
			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.6	0.6	0.6	1.4	0.8	0.8	256
30	0.8	2	1.2	1.2	1.8	0.6	0.6	192

Table 6.3a: Experiment 5 for SDCE

Date: 28/4/2	Date: 28/4/2021 D							
System: Ba	tch system	1		Experin	periment No: 5			
			Effect o	f operat	ting parai	meters		
pH: 5								
					Electrode material:			
Sono-direct Current electrocoagulation					Anode and cathode: Al			
Current Am	pere: 0.2A	4			In-betwo	een electrode distance	: 1cm	
Reaction Ti minute	ime:40				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Time		Colo	r				
Interval	nterval (min.) Volts Wavelength(n			th(nm)	Abs.	Turbidity(NTU)		
1	0 - 420				3	116		
2	2 40 2.3 420					4.82		

Table 6.3b: Experiment 5 COD determination for SDCE

	San	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L)
							e	
			down the			burette(mL)	(mL)	
			burette(mL					
)					
40	0	0.7	0.7	0.7	1.9	1.2	1.2	160

Table 6.4a: Experiment 6,7 &8 for SDCE

Date: 29/	4/2021					Day: Tuesday		
System: Bat	ch system				Ex	xperiment No: 6,7&8		
				Ef	ffect of operating parameters			
pH: 5								
•						Electrode materia	մ:	
Sono-direct Current electrocoagulation					Anode and cathode: Al			
Current Ampere: 0.5A					In-between electrode distance: 1cm			
Reaction Time:50								
minu	ıte				Mode	of Electrode Connect	ion: Parallel	
Treatment	Time		Col	or				
Interval	(min.)	Volts	Waveleng	gth(nm)	Abs.	Turbidity(NTU)		
1	0	-	420		3	116		
2	20	2.6	420		0.76	5.9		
3	40	2.6	420		0.076	4.7		
4	60	2.6	420		0.05	3.8		

 Table 6.4b: Experiment 6,7&8
 COD determination for SDCE

	Sample			Blank				
Time	Initi al	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.6	0.4	0.4	1	0.6	0.6	64
40	0.6	1.6	0.8	0.8	1.2	0.4	0.4	128
60	0.8	0.8	0.8	0.8	1.4	0.6	0.6	192

Table 6.5a: Experiment 9 for SDCE

Date: 30/4/2	2021			Day: W	vednesdag	У		
System: Ba	tch system	1		Experir	Experiment No: 9			
Effect of operation				f operat	ing parar	neters		
pH: 5								
					Electrode material:			
Sono-direct Current electrocoagulation					I	Anode and cathode: A	1	
Current Am	pere: 0.5A	4			In-betwe	een electrode distance	: 1cm	
Reaction Ti minute	ime:50				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Treatment Time Color			r				
Interval (min.) Volts Wavelength(nm			h(nm)	Abs.	Turbidity(NTU)			
1 50 2.5 420					3	116		

Table 6.5b: Experiment 9 COD determination for SDCE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	0	0.6	0.4	0.4	1	0.6	0.6	64

Table 6.6a: Experiment 10,11&12 for SDCE

Date: 1/5	5/2021					Day: Thursday		
System: Bat	ch system				Exp	eriment No:10,11&1	2	
				Ef	ffect of operating parameters			
pH: 7								
	1					Electrode materia	ıl:	
Sono-direct Current electrocoagulation					Anode and cathode: Al			
Current Ampere: 0.4A					In-between electrode distance: 1cm			
Reaction Time:1hr								
minu	ıte				Mode of Electrode Connection: Parallel			
Treatment	Time		Cole	or				
Interval	(min.)	Volts	Waveleng	gth(nm)	Abs.	Turbidity(NTU)		
1	0	-	420		3	116		
2	20	2.4	420		0.125	5		
3	40	2.4	42	0	0.073	4.8		
4	60	2.4	42	0	0.048	4.65		

Table 6.6b: Experiment 10,11&12 COD determination for SDCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.81	0.81	0.81	2.02	1.21	1.21	124
40	1.21	2.05	0.84	0.84	2.04	1.2	1.2	115.2
60	1.2	2.08	0.88	0.88	2.08	1.2	1.2	102.4

Table 6.7a: Experiment 13 for SDCE

Date: 2/5/2021				Day: Friday							
System: Batch system				Experiment No:13							
Effect of operating parameters											
pH: 9											
					Electrode material:						
Sono-direct Current electrocoagulation					Anode and cathode: Al						
Current Ampere: 0.3A					In-between electrode distance: 1cm						
Reaction Time:30 minute					Mode of Electrode Connection: Parallel						
Treatment	Time		Color								
Interval	(min.)	Volts	Wavelength(nn	n)	Abs.	Turbidity(NTU)					
1	0	-	420		3	116					
2	30	2.2	420		0.082	5.8					

Table 6.7b: Experiment 13 COD determination for SDCE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
30	0	0.88	0.88	0.88	2.08	1.2	1.2	102.4
Table 6.8a: Experiment 14 for SDCE

Date: 5/5/20	021		Γ	Day: M	y: Monday			
System: Bat	tch system	1	E	Experir	riment No:14			
			Effect of	operat	ing parar	neters		
pH: 9								
					Electrode material:			
Sono-direct Current electrocoagulation					Anode and cathode: Al			
Current Ampere: 0.4A					In-between electrode distance: 1cm			
Reaction Ti minute	me:40				Mode of	Electrode Connectio	n: Parallel	
Treatment	Time		Color					
Interval (min.) Volts Wavelength(nm				n(nm)	Abs.	Turbidity(NTU)		
1 0 - 420					3	116		
2 40 2.5 420					0.09	6		

Table 6.8b: Experiment 14 COD determination for SDCE

	Sai	nple		Blank				
Time	Initi	Final	FAS	Initial	Final	FAS Volume	FAS	COD
	al							
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.84	0.84	0.84	2.04	1.2	1.2	115.2

Table 6.9a: Experiment 15 for SDCE

Date: 6/5/2	021		Ι	Day: T	uesday				
System: Ba	tch system	1	F	Experii	periment No:15				
			Effect of	operat	ting para	meters			
pH: 9									
					Electrod	le material:			
Sono-direct Current electrocoagulation					Anode: Al				
Current An	Current Ampere: 0.5A					In-between electrode distance: 1cm			
Reaction Ti minute	ime:50				Mode of Electrode Connection: Parallel				
Treatment	Time		Color						
Interval (min.) Volts Wavelength(nm				n(nm)	Abs.	Turbidity(NTU)			
1 0 - 420					3	116			
3 50 2.3					0.07	4.8]		

 Table 6.9b: Experiment 15 COD determination for SDCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	1.2	2.09	0.89	0.89	2.09	1.2	1.2	99.2

Table 6.10a: Experiment 16 for SDCE

Date:7/5/2	2021			Day:	We	ednesday		
System: B	atch system			Exper	rim	ent No: 1	6	
		Eff	ect of open	rating pa	araı	meters		
pH: 7						Electrod	e material:	
Sono-direc	ct current							
						Anode and Cathode: Al		
Current Ampere: 0.4A			In-betwe			In-betwe	en electrode distance: 1cm	
ReactionT	ReactionTime:40min					Mode of	Electrode Connecti	on: Parallel
ute	. <u></u>							
Treatme	Time		Color					
nt								
Interval	(min.)	Volt	Waveler	ngth(n	A	Abs.	Turbidity(NTU)	
		S	m)					
1	40	2.1	420 0.0			74	4.81	

Table 6.10b: Experiment 16 COD determination for SDCE

	Sam	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.201	2.05	0.84	0.84	2.04	1.2	1.2	115.2

Date:8/5/2	2021			Day: Th	ursday		
System: B	atch system			Experin	nent No: 1	7	
		Eff	ect of open	rating para	meters		
pH: 7					Electrode material:		
Sono-dire	ct current						
	Comment Americano 0.4A				Anode and Cathode: Al		
Current Ampere: 0.4A			In-betwe			en electrode distance: 1cm	
ReactionT	ReactionTime:40min				Mode of	Electrode Connecti	on: Parallel
ute	•					•	
Treatme	Time		Color				
nt							
Interval	(min.)	Volt	Wa	velength(n	ım)	Turbidity(NTU)	
		S	Abs.				
1	40	2.3	420 0.0		732	4.82	

Table 6.11a: Experiment 17 for SDCE

Table 6.11b: Experiment 17 COD determination for SDCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.201	2.05	0.84	0.84	2.04	1.2	1.2	115.1

Table 6.12a: Experiment 18 for SDCE

Date:9/5/20)21			Day:	Fri	iday		
System: Ba	tch system			Expe	rim	nent No: 1	8	
			Effect	of oper	ati	ng parame	eters	
pH: 7				Electrode material:				
Sono-dire	ct current							
						Anode and Cathode: Al		
Current Ampere: 0.4A						In-between electrode distance: 1cm		
ReactionT	'ime:40min					Mode of	Electrode Connecti	on: Parallel
ute								
Treatme	Time		Color					
nt	(min.)	Volt	Waveler	ngth(n	1	Abs.	Turbidity(NTU)	
Interval s		S	m)					
1	40	2.3	420 0.0		72	4.804		

Table 6.12b: Experiment 18 COD determination for SDCE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL					
)					
40	1.201	2.05	0.84	0.84	2.04	1.2	1.2	115.3

Table 6.13a: Experiment 19 for SDCE

Date:12/5/2	2021			Day: 1	Mor	nday		
System: Ba	tch system			Exper	rime	ent No: 1	19h	
			Effect	of operation	atin	ing parameters		
pH: 7						Electroc	le material:	
Sono-direct current								
<u> </u>						Anode and Cathode: Al		
Current Ampere: 0.4A						In-between electrode distance: 1cm		
ReactionTime:40min						Mode of	f Electrode Connecti	on: Parallel
ute								
Treatme	Time		Cole	or				
nt								
Interval	(min.)	Volt	Waveler	ngth(n	Α	lbs.	Turbidity(NTU)	
		S	m)					
1	40	2.2	420 0.0).07	'3	4.805	

Table 6.13b: Experiment 19 COD determination for SDCE

	San	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	1.201	2.05	0.839	0.839	2.04	1.2	1.2	115.5

Table 6.14a: Experiment 20 for SDCE

Date:13/5/	/2021			Day:	Tu	esday			
System: B	atch system			Expe	rim	nent No: 2	0		
		Eff	ect of open	rating pa	ara	meters			
pH: 5						Electrode material:			
Sono-direc	Sono-direct current								
	Current Amperes 0.4A						Anode and Cathode: Al		
Current Ampere: 0.4A						In-between electrode distance: 1cm			
ReactionT	ReactionTime:40min					Mode of	Electrode Connecti	on: Parallel	
ute									
Treatment	Time		Color						
Interval	(min.)	Volt	Waveler	ngth(n	4	Abs.	Turbidity(NTU)		
S			m)						
1	40 2.3 420				0.0	07	4.82		

Table 6.14b: Experiment 20 COD determination for SDCE

	Sar	nple						
				Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.2	0.2	0.2	0.6	0.4	0.4	128

Table 7.1a: Experiment 1& 2 for SACE

Date: 14/5/	2021		Da	ıy: W	/ednesda	у		
System: Ba	tch systen	1	Ex	perii	iment No: 1& 2			
			Effect of op	perat	ting parar	neters		
pH: 3								
					Electrode material:			
Sono-alternative Current electrocoagulation					Anode and cathode: Al			
Current An	npere: 0.3.	A			In-between electrode distance: 1cm			
Reaction T minute	ime:50				Mode of Electrode Connection: Parallel			
Treatment	Time		Color					
Interval (min.) Volts Wavelength(nm)					Abs.	Turbidity(NTU)		
1 20 2.1 420					0.053	4.72	1	
2 30 2.1 420					0.04	3.7		

 Table 7.1b: Experiment 1& 2 COD determination for SACE

	Sa	imple		Blank				
Time (min.)	Initi al	Final	FAS	Initial	Final	FAS Volume	FAS	COD
			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.9	0.9	0.9	2.1	1.2	1.2	96
30	1.2	2.12	0.92	0.92	2.12	1.21	1.21	92.8

Table 7.2a: Experiment 3&4 for SACE

Date: 15/5/2	2021			Day: T	hursday			
System: Ba	tch system	1		Experin	iment No: 3&4			
			Effect o	f operat	ing parar	neters		
pH: 3								
					Electrode material:			
Sono-alternative Current electrocoagulation					Anode and cathode : Al			
Current An	pere: 0.5	A			In-between electrode distance: 1cm			
Reaction Ti minute	ime:50				Mode of Electrode Connection: Parallel			
Treatment	Time		Colo	r				
Interval (min.) Volts Wavelength(nm)				th(nm)	Abs.	Turbidity(NTU)		
1 20 2.4 420					0.082	5.06		
2 30 2.4 420					0.075	4.23		

 Table 7.2b: Experiment 3&4 COD determination for SACE

	Sam	ple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.75	0.75	0.75	1.95	1.2	1.2	144
30	1.2	1.7	0.5	0.5	1.2	0.7	0.7	224

Table 7.3a: Experiment 5 for SACE

Date: 16/5/	2021			Day: F	riday			
System: Ba	tch systen	1		Experi	xperiment No:5			
			Effect of	of operat	ting parai	neters		
pH: 5								
					Electrode material:			
Sono-alternative Current electrocoagulation					Anode and cathode: Al			
Current An	npere: 0.2.	A			In-between electrode distance: 1cm			
Reaction Ti minute	ime:40				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Treatment Time Color							
Interval (min.) Volts Wavelength(nm)					Abs.	Turbidity(NTU)		
1 40 2.4 420					0.042	3.96		

Table 7.3b: Experiment 5 COD determination for SACE

	Sar	nple		Blan				
				k				
Time(Initia	Final	FAS	Initial	Final	FAS Volume	FAS	COD
min.)	1							
			Volume			down the	volum	(mg/L
							e)
			down the			burette(mL)	(mL)	
			burette(mL					
)					
40	0	0.91	0.91	0.91	2.11	1.2	1.2	92.8

Table 7.4a: Experiment 6,7&8 for SACE

Date: 17/5/2	2021]	Day: Saturday				
System: Ba	tch system	1]	Experi	iment No: 6,7&8			
Effect of operat					ting parar	meters		
pH: 5								
					Electrod	le material:		
Sono-alternative Current electrocoagulation					Anode and cathode : Al			
Current An	npere: 0.4A	4			In-betwo	een electrode distance	: 1cm	
Reaction Ti	ime:1hr				Mode of Electrode Connection: Parallel			
Treatment	Time		Color					
Interval	(min.)	Volts	Wavelengt	h(nm)	Abs.	Turbidity(NTU)		
1 20 2.5 420					0.064	4.4		
2	2 40 2.5 420				0.058	4		
3	60	2.5	420		0.048	3.4		

 Table 7.4b: Experiment 6,7&8
 COD determination for SACE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.92	0.92	0.92	0.92	2.15	1.23	99.2
40	1.23	1.8	0.57	0.57	1.2	0.63	0.63	201
60	0.63	2	1.37	1.37	2.2	0.83	0.83	265.6

Table 7.5a: Experiment 9 for SACE

Date: 19/5/2	2021			Day: M	Ionday			
System: Ba	tch system	1		Experin	xperiment No: 9			
			Effect of	of operat	ting paraı	meters		
pH: 5								
					Electrode material:			
Sono-alternative Current electrocoagulation				tion	Anode and cathode: Al			
Current An	pere: 0.5	A			In-between electrode distance: 1cm			
Reaction Ti minute	ime:50				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Treatment Time Color			or				
Interval (min.) Volts Wavelength(nm)			th(nm)	Abs.	Turbidity(NTU)			
1	1 50 - 420				0.053	4.2		

 Table 7.5b: Experiment 9 COD determination for SACE

	Sar	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	0	1	1	1	1.8	0.8	0.8	256

Table 7.6a: Experiment 10,11&12 for SACE

Date: 20/5/	2021		Day: T	Tuesday			
System: Ba	tch syster	n	Experi	iment No:10,11&12			
			Effect of opera	ting para	meters		
pH: 7							
				Electroc	le material:		
Sono-altern	native Cur	rent elec	trocoagulation	Anode and cathode: Al			
Current An	npere: 0.4	A		In-between electrode distance: 1cm			
Reaction Transminute	ime:1hr			Mode of Electrode Connection: Parallel			
Treatment	Time		Color				
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
1	20	2.2	420	0.105	4.84		
2	2 40 2.2 420				4.4	1	
3	60	2.2	420	0.045	4.2		

 Table 7.6b: Experiment 10,11 &12 COD determination for SACE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
20	0	0.87	0.87	0.87	2.09	1.22	1.22	112
40	1.22	2.11	0.89	0.89	2.11	1.2	1.2	99.2
60	1.2	2.1	0.9	0.9	2.1	1.2	1.2	96

Table 7.7a: Experiment 13 for SACE

Date: 21/5/2	2021		Day	Day: Wednesday					
System: Ba	tch system	1	Exp	perin	eriment No:13				
			Effect of op	perati	ng parar	neters			
pH: 9									
					Electrod	le material:			
Sono-altern	ative Cur	rent elec	trocoagulation		Anode and cathode: Al				
Current Am	pere: 0.3	A			In-between electrode distance: 1cm				
Reaction Ti minute	ime:30				Mode of Electrode Connection: Parallel				
Treatment	reatment Time Color								
Interval	(min.)	Volts	Wavelength(n	ım)	Abs.	Turbidity(NTU)			
1	30	2.4	420		0.079	5.32			

 Table 7.7b: Experiment 13 COD determination for SACE

	Sample		Blank					
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
30	0	0.98	0.98	0.98	2.2	1.22	1.22	76.8

Table 7.8a: Experiment 14 for SACE

Date: 22/5/2	2021			Day: T	hursday				
System: Ba	tch system	1		Experin	Experiment No:14				
			Effect of	of operat	erating parameters				
pH: 9									
					Electrod	le material:			
Sono-altern	ative Cur	rent elec	trocoagula	tion	Anode and cathode : Al				
Current Am	pere: 0.4	A			In-between electrode distance: 1cm				
Reaction Ti minute	ime:40				Mode of	f Electrode Connectio	n: Parallel		
Treatment	Treatment Time Color								
Interval	(min.)	Volts	Waveleng	gth(nm)	Abs.	Turbidity(NTU)			
1	40	2.4	420		0.064	4.4			

Table 7.8b: Experiment 14 COD determination for SACE

	Sample			Blank				
T '	T 1/1	T ' 1	TAG	T '.'	T ' 1	EAG V 1	TAC	COD
Time	Initial	Final	FAS	Initia	Final	FAS Volume	FAS	COD
				1				
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.91	0.91	0.91	2.13	1.22	1.22	99.2

Table 7.9a: Experiment 15 for SACE

Date: 23/5/2	2021		Da	ay: Fi	riday			
System: Ba	tch system	1	Ex	Experiment No:15				
			Effect of o	perat	rating parameters			
pH: 9								
					Electrod	le material:		
Sono-alternative Current electrocoagulation					Anode and cathode: Al			
Current Am	pere: 0.5	4			In-between electrode distance: 1cm			
Reaction Ti minute	ime:50				Mode of	f Electrode Connectio	n: Parallel	
Treatment	Time	me Color						
Interval	(min.)	Volts	Wavelength(nm)	Abs.	Turbidity(NTU)		
1	50	2.4	420		0.064	4.16		

Table 7.9b: Experiment 15 COD determination for SACE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	 Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
50	0	0.92	0.92	0.92	2.12	1.2	1.2	89.6

Date:24/5/	2021				Day:	Sa	turday			
System: Ba	atch syster	n			Experiment No: 16					
				Effect	of oper	ati	ng param	eters		
pH: 7							Electrod	le material:		
Sono-alter	native Cu	rre	nt elect	rocoagulat	ocoagulation					
				-			I	Anode and Cathode:	Al	
Current Ampere: 0.4A							In-betwe	In-between electrode distance: 1cm		
ReactionTime:40min						Mode of	f Electrode Connecti	on: Parallel		
ute								-		
Treatme	Time			Cole	or					
nt										
Interval	(min.)		Volt	Wavelength(n			Abs.	Turbidity(NTU)		
			S	m)						
1	40		2.3	420	0.064			4.4		

Table 7.10 a: Experiment 16 for SACE

Table 7.10b: Experiment 16COD determination for SACE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.89	0.89	0.89	1.2	0.3	0.3	99.2

Table 7.11 a: Experiment 17 for SACE

Date:26/5/	2021				Day:	M	onday		
System: Ba	atch syster	n			Exper	Experiment No: 17			
				Effect	of oper	ating parameters			
pH: 7					Electrode material:				
Sono-alter	native Cu	rre	nt elect	rocoagulation					
		-			A	Anode and Cathode:	Al		
Current Ampere: 0.4A							In-between electrode distance: 1cm		
ReactionT	ime:40mii	n					Mode of Electrode Connection: Parallel		
ute									
Treatment	Time			Cole	or				
Interval	(min.)		Volt	Waveler	ngth(n	4	Abs.	Turbidity(NTU)	
			S	m)					
1	40		2.6	420	0.064			4.4	

Table 7.11 b: Experiment 17 COD determination for SACE

	Sample			Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.89	0.89	0.9	1.2	0.31	0.31	99.3

Date:27/5/		Day: Tuesday								
System: Ba		Experiment No: 18								
				Effect	of operation	of operating parameters				
pH: 7							Electro	le material:		
Sono-alternative Current electrocoagulat					ion					
	-				Anode and Cathode: Al					
Current Ampere: 0.4A							In-betw	In-between electrode distance: 1cm		
ReactionT	ReactionTime:40min						Mode of Electrode Connection: Parallel			
ute										
Treatme	Time			Cole	or					
nt										
Interval	(min.)		Volt	Wavelength(n			Abs.	Turbidity(NTU)		
			S	m)						
1	40		2.5	420	0.065			4.42		

Table 7.12 a: Experiment 18 for SACE

Table 7.12 b: Experiment 18 COD determination for SACE

	Sai	nple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.89	0.89	0.9	1.22	0.32	0.32	102

Table 7.13 a: Experiment 19 for SACE

Date:28/5/		Day: Wednesday								
System: Ba		Experiment No: 19								
			Effect	of operating parameters						
pH: 7							Electrod	e material:		
Sono-alter	rocoagulation									
							A	Anode and Cathode: Al		
Current An				In-between electrode distance: 1cm						
ReactionT	ime:40mii	n					Mode of Electrode Connection: Parallel			
ute										
Treatment	Time			Cole	or					
Interval	(min.)		Volt	Wavelength(n		1	Abs.	Turbidity(NTU)		
			S	m)						
1	40		2.5	420	0.0652			4.44		

Table 7.13 b: Experiment 19 COD determination for SACE

	Sa	mple		Blank				
Time	Initia 1	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
40	0	0.91	0.91	0.91	1.21	0.31	0.31	99.2

Table 7.14 a: Experiment 20 for SACE

Date:29/5/		Day: Thursday								
System: Ba		Experiment No: 20								
				Effect	of opera	of operating parameters				
pH: 5							Electro	de material:		
Sono-alternative Current electrocoagulat					ion					
	-	Anode and C			Anode and Cathode:	Lathode: Al				
Current Ampere: 0.4A							In-betw	In-between electrode distance: 1cm		
ReactionT	ReactionTime:40min						Mode of Electrode Connection: Parallel			
ute								-	•	
Treatme	Time			Cole	or					
nt										
Interval	(min.)		Volt	Wavelength(n		4	Abs.	Turbidity(NTU)		
			S	m)						
1	40		2.6	420	0.064			4.4		

Table 7.14b: Experiment 20 COD determination for SACE

	Sai	mple		Blank				
Time	Initial	Final	FAS	Initial	Final	FAS Volume	FAS	COD
(min.)			Volume			down the	volume	(mg/L)
			down the			burette(mL)	(mL)	
			burette(mL)					
0	0.89	0.89	0.89	0.89	1.2	0.31	0.31	99.2

Annex 2

Some Figures Illustrate Lab activities.

a) During COD determination

b) During Color determination

C) During Turbidity determination

2021