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Abstract 

Stethoscope-based auscultation is the most efficient, non-invasive and inexpensive technique for 

assessing lung conditions on the base of lung sounds analysis. However, it provides a subjective 

perception of lung sounds. Additionally, the stethoscope recording is highly vulnerable to 

different noises which could mask the important features of lung sounds and may lead to 

misdiagnosis. Moreover, given the non-stationary nature of lung sounds, the exclusive time or 

spectral domain analysis is not effective for analysis. Hence, the time-frequency analysis of lung 

sounds is paramount. In this research, a method for efficient analysis of lung sounds used for 

further classification of lung diseases has been proposed. An electronic stethoscope has been 

constructed for signal acquisition. The lung sound signals used in the study were normalized at a 

uniform sampling frequency of 44.1KHz, and16 bit-depth. We employed wavelet multiresolution 

analysis technique to analyze the lung sound signals. A six-level DWT was performed for better 

analysis of lung sound signals by decomposing them into details and approximation. Wavelet 

denoising technique was used for the pre-processing task. Four wavelet functions (Db4, Db10, 

Sym5, and Sym13) with soft and hard thresholding methods and four different threshold selection 

rules were used to analyze the required performance of denoising the lung sound signals. Sym13 

Wavelet function with soft thresholding method outperforms all other wavelet functions in 

denoising lung sound signals. In the feature extraction task, a total of 16 features have been 

extracted by following a DWT-based feature extraction procedure. Moreover, one-way ANOVA 

was applied for the feature selection task to select the most relevant features. After feature 

selection, a total of 13 features were used for final classification of data. A comparison among 

the classification accuracies of the different machine learning classifiers was performed and Fine 

Gaussian SVM has been selected due to its higher classification accuracy. At last, we optimized 

the selected model using Bayesian optimization technique and an accuracy, specificity, and 

sensitivity of 99%, 99.2%, and 99.04%, respectively, has been achieved on the unseen data. The 

proposed method delivered a considerable improved result for classification of lung diseases as 

asthma, pneumonia, COPD, URTI, LRTI, bronchiectasis, bronchiolitis or healthy. Furthermore, 

as a future work, the proposed method can be further improved using deep learning techniques 

especially for larger lung sound data. 

Key words: Auscultation, Denoising, Feature Extraction, Optimization, SVM, Wavelet MRA. 
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CHAPTER ONE 

INTRODUCTON 

1.1. Background of the Study 

Lung diseases include many disorders affecting the lungs. Respiratory problems caused by the 

lung disease may prevent the body from getting enough oxygen. There are many lung diseases 

affecting the lungs. These include COPD, asthma, pneumonia, URTI, LRTI, bronchiectasis, 

bronchiolitis, and others. COPD is a common chronic inflammatory lung disease [1,2,3]. 

Smoking is the main cause of COPD [1]. COPD causes breathing difficulty, cough, production 

of mucus (sputum), and wheezing [2,3]. These symptoms are also common in asthma disease [4]. 

Asthma is also one of the most common widespread lung diseases among children as well as 

adults and it associated with airway obstruction in the lungs [4,5,6].It causes recurrent episodes 

of wheezing, breathlessness, chest tightness, and coughing particularly at night or early in 

morning [5,6]. Pneumonia is an infection which can be caused by bacteria, viruses, and fungi and 

inflames the air sacs called alveoli in one or both lungs [7]. It causes coughing that may cause 

production of mucus, fever, chest pain, shortness of breath, and formation of adventitious lung 

sounds like rhonchi and crackles. URTI is a respiratory illness that occurs commonly both in 

children and adults and is a major cause of mild morbidity [8]. It is caused by several families of 

virus such as rhinovirus, coronavirus, parainfluenza, respiratory syncytial virus (RSV), 

adenovirus, human metapneumovirus, influenza, enterovirus, and recently discovered bocavirus 

[8]. URTI will affect upper respiratory tract including nose, sinuses, pharynx, or larynx [9,10]. 

Symptoms of LRTI vary and depend on the severity of the infection and it is the main cause of 

pediatric mortality and morbidity in low- and middle-income countries [10]. The less severe 

infections can have the same symptoms as bronchiolitis or bronchiectasis. Bronchiectasis is a 

long-term condition where the airways of the lungs become abnormally widened [11]. 

Bronchiectasis can make the lungs more vulnerable to infection by leading to a build-up of 

excess mucus. It causes a persistent cough which usually brings up phlegm (sputum), and 

breathlessness. Bronchiolitis is a common lung infection among infants, happens when small 

breathing tubes (bronchioles) become infected. 
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Generally, lung diseases cause a significant burden for public health systems. Currently, lung 

diseases are the third leading cause of death worldwide and cause an immense health, economic, 

and social burden [12]. Diagnosis of lung diseases, which are the third most common cause of 

death worldwide, is of great importance in the medical field. As a result, plenty of research 

efforts have been dedicated for improving early diagnosis and monitoring of patients with 

different respiratory diseases to allow for timely innervations [12]. Most recently, a number of 

researches has been focused in the auscultation and characteristics of lung sounds. 

Auscultation is the act of listening sounds within the body via the help of stethoscopes. 

Stethoscopes are valuable tools used for clinical lung auscultation diagnosis for assessing 

patient’s respiratory conditions using lung sounds [13]. Auscultation is an inexpensive and 

efficient technique for assessing respiratory conditions using lung sounds. Because, it provides 

direct information about the function of the lung when the pathological changes of the lung 

produce the characteristic sounds. Lung sounds are important indicators of respiratory health and 

disorders [14,15]. Moreover, the symptoms of all the above-discussed lung diseases are very 

common. This will cause a wrong diagnosis to be done by doctors. Hence, it is very useful to be 

able to identify or diagnose the disease using lung sounds without taking into account the rest of 

the symptoms. 

Due to these advantages of auscultation diagnosis, improving diagnosis of pulmonary diseases 

using lung sound signals is becoming the most common research hotspots in the present time. In 

this study, an attempt has been done to improve the efficacy of auscultation diagnosis of 

pulmonary diseases. Therefore, multiresolution analysis of lung sounds has been done in this 

study for further classification of pulmonary diseases. A DWT based multiresolution 

decomposition was performed for better analysis of the non-stationary lung sound signals. 

Following signal acquisition, pre-processing, and extraction of features from the lung sound 

signals, important features were selected and given as input to different machine learning 

classifiers. Finally, after comparing classification accuracy of the different machine learning 

classifiers, SVM algorithm particularly fine gaussian SVM has been chosen for final 

classification of lung diseases as COPD, URTI, LRTI, pneumonia, bronchiectasis, bronchiolitis, 

asthma or healthy. 
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1.2. Motivation of the Study 

At large lung diseases are among the leading cause of death worldwide. Diagnosis of lung 

diseases is often limited by the devices available to diagnose these disorders in low resource 

settings of the developing nations including our country Ethiopia. Devices such as chest x-ray 

(CXR), computed tomography (CT) scans, magnetic resonance imaging (MRI), spirometer, 

arterial blood gas analyzer, and auscultation with stethoscope can be used for diagnosis of lung 

diseases. The Imaging modalities (CXR, CT scans, and MRI) are highly accurate to diagnose the 

lung diseases [16]. However, their cost provides a high barrier for many patients of the third 

world countries with certain financial limitations. Such radiographic devices are not readily 

available in most health care settings of developing nations. 

Moreover, it is difficult to use them for a day-to-day assessment of lung problems due to the risk 

of repeated dose of radiation. Therefore, the risk of repeated dose of harmful radiation, cost of 

machines, and inconvenient to deploy in many healthcare settings are some challenges to get 

such diagnosis approaches. Spirometer is another commonly used device to perform lung 

function tests by measuring the amount of air entering and leaving the lungs before and after the 

use of inhaled bronchodilator. However, spirometer requires skilled operator, it is costly, it is not 

efficient to detect a mix of obstructive-restrictive defect, and it needs multiple number of 

patient’s breathing maneuvers [17]. Above all it needs forceful breathing which is difficult to 

apply for patients who are unable to breath forcefully. 

Arterial blood gas analyzer (ABG) is also used to assess the lung problems by taking blood 

sample from the patient with the help of a syringe and a thin needle [18]. ABG test is too 

expensive and invasive leads to patient discomfort and prone to misdiagnosis. Due to the 

problems or challenges associated with the above-mentioned diagnostic approaches, stethoscope 

is the most commonly used valuable tool for assessing the lungs status through chest auscultation 

diagnosis [19]. Despite the rapid and continuous developments of technology in the area of chest 

disease diagnosis approaches, auscultation is still the most commonly used and indispensable 

diagnostic method [19]. It is a useful, simple, cost-effective (cheap) and fully non-invasive 

diagnostic device used to diagnose the lung diseases on the base of lung sounds. 
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Therefore, the goal of this research was to take these advantages of stethoscope and integrate it 

with computer in order to easily acquire and analyze the lung sounds for further classification of 

pulmonary diseases. Most importantly, it is highly useful to be able to classify the lung diseases 

using lung sounds without taking into account the rest of similar symptoms of the diseases. 

These were the concrete reasons, which motivate us to do our research on classification of most 

common lung diseases based on lung sound analysis for improving the current existing 

stethoscope-based auscultation diagnosis of lung diseases. 

1.3. Statement of the Problem 

Lung diseases challenge millions of lives globally and annually. The economic impact of these 

respiratory problems is also very high. For example, in the UK, respiratory diseases cost the 

National Health service approximately 3 and 2 million GBP for asthma and chronic obstructive 

pulmonary disease (COPD) respectively [20]. Furthermore, lung diseases were among the top 10 

causes of death worldwide (ranked first for low-income countries and ranked fifth for high-

income countries) in 2016 [20]. Chronic respiratory diseases such as COPD and asthma affect 

over 15% of the world population. It is estimated that the prevalence of COPD is more than 250 

million cases reported annually, resulting in over 3 million deaths globally [21]. It is also 

estimated that more than 235 million people suffer from asthma worldwide, with the disease 

causing in excess of 300,000 deaths per year [21]. Based on the information provided by United 

Nations Children’s Fund (UNICEF), half of the morbidity from the recorded 5.9 million under-

five deaths has caused by infectious diseases in which pneumonia lies at first rank in 2015 [22].  

Acute respiratory infections are also the major problem in Ethiopia, accounting for about 10% of 

under-five deaths each year [23]. There are different clinical alternatives for diagnosing lung or 

respiratory diseases. Stethoscope-based auscultation is one of the simplest and a primary 

diagnostic approach used to evaluate lung diseases using lung sounds analysis. Stethoscopes are 

highly valuable tools used for clinical lung auscultation diagnosis. However, stethoscope-based 

auscultation provides limited and subjective perception of the respiratory sounds. The 

subjectivity results inconsistency during interpretation of lung sounds by the different medical 

experts. Such subjectivity and inconsistency are due to the physician’s hearing capacity, internal 

listening variability as well as their ability or experience to differentiate and characterize 

different sound patterns.  
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So, stethoscope-based auscultation technique requires highly advanced expertise to correctly 

analyze the sounds and accurately identify the associated lung diseases. In addition, the 

stethoscope recording is highly vulnerable to different noises. The noise signals will mask the 

important features of lung sound signals and lead to wrong diagnosis of lung diseases. 

Nowadays, the field of computer technology and the emerging of digital signal processing have 

made tremendous advancements in the early and rapid diagnosis of lung diseases from lung 

sounds. To overcome the limitations associated with stethoscope-based auscultation, 

improvements had been done following the development of digital signal processing techniques. 

Gogus, et al. [24], performed a comparative study for identification of pulmonary disorders using 

different spectral analysis methods such as fast Fourier transform (FFT), autoregressive (AR) 

and autoregressive moving average (ARMA). They estimated the power spectral density (PSD) 

of lung sounds using these spectral methods. Finally, they fed the features extracted from the 

PSD of lung sounds as inputs for the classifiers for further classification pulmonary diseases. 

Similarly, Islam, et al. [25], used Welch spectral method for estimation of PSD of lung sounds. 

They extracted different features from the PSD and fed to the classifiers to perform a three-class 

classification of lung diseases. Moreover, Kurt, et al. [26], did detection of lung abnormalities 

using Mel-frequency cepstral coefficient (MFCC) features of the lung sounds. Furthermore, 

Haider, et al. [27], also conducted respiratory sound-based classification of pulmonary diseases 

using median frequency and linear predictive coefficients of lung sound signals. It can be 

observed that the above-mentioned research works implemented spectral analysis techniques for 

analyzing the lung sound signals. However, Spectral analysis techniques couldn’t provide 

temporal information of signals. They only provide spectral information of signals. Moreover, 

spectral analysis techniques provide better results in the analysis of stationary signals. However, 

lung sounds signals are non-stationary signals whose statistical characteristics changes with time. 

Hence, given the non-stationary property of lung sounds, the spectral analysis techniques are not 

efficient for analyzing such signals. Therefore, to get important diagnostic information (such as 

presence or absence of adventitious sounds, and lung diseases types) from the non-stationary 

lung sounds, the time-frequency analysis of lung sounds is highly needed. It is therefore that the 

aim of this study is to undertake a multiresolution analysis of lung sounds for improving the 

efficacy of auscultation diagnosis of pulmonary diseases. 



____________________________________________________________________________________

6 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

1.4. Research Questions 

• Does wavelet-based signal pre-processing method is suitable for denoising the non-

stationary lung sound signals? 

• How to extract and select relevant features of lung sound signals which can be further 

used for classification of pulmonary diseases? 

• How to construct an electronic stethoscope by modifying the available acoustic 

stethoscope? 

• Does time-frequency multiresolution analysis is the best suited method for analyzing the 

non-stationary lung sound signals? 

1.5. Objectives of the Study 

1.5.1. General objective 

The main objective of this research is to construct a model for lung diseases classification based 

on multiresolution analysis of lung sounds towards improving the efficacy of auscultation 

diagnosis. 

1.5.2. Specific objectives 

This research strived to achieve the general purpose of the study by solving the following 

specific objectives, which are directed towards answering the research questions.  

1) To construct an electronic stethoscope by modifying the existing traditional acoustic 

stethoscope. 

2) To acquire lung sound signals from COPD, URTI, LRTI, bronchiectasis, 

bronchiolitis, pneumonia, asthma and healthy subjects. 

3) To decompose and denoise the lung sounds using wavelet denoising technique and 

reconstruct the signals using IDWT. 

4) To extract and select the most relevant features from the lung sound signals. 

5) To train and compare different classical machine learning classifiers and select the 

best for classification of lung diseases by feeding the extracted and selected features 

as inputs. 
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1.6. Significance of the Study 

Most recently, a number of researches has been focused in the auscultation and characteristics of 

lung sounds. This is due to the fact that the lung sounds are directly related to movement of air, 

changes within the lung tissues, and position of secretions within the tracheobronchial tree. 

Hence, lung sounds provide essential information about the health of the lungs. This is also due 

to the fact that the lung sounds can provide direct information about the function of the lung 

when the pathological changes of the lung produce the characteristic sounds. All these makes the 

lung sounds are valuable indicators of respiratory health and disorders. Acquisition and wavelet 

multiresolution analysis of lung sounds for accurate classification of most common lung diseases 

has been done in this study. This research can provide lots of advantages for the physicians in 

terms of storage, analysis and communication of sounds, graphical presentation of features of 

importance, correlation of lung sound with other physiological signals, comparison of lung sound 

obtained at different times during the progression of respiratory diseases or during the time of 

treatment. Most importantly, the study can be used for monitoring of lung sounds of patients who 

are in critical care units as well as for children who found difficulty to blow hard several times in 

the course of lung function tests. Moreover, this study will have a good potential to help 

researchers who are dedicated to study lung diseases classification on the base of lung sounds 

analysis. 

1.7. Scope and Limitation of the Study 

The study mainly covers construction of electronic stethoscope, signal acquisition, signal pre-

processing, feature extraction and selection, feature normalization, data splitting, model training 

and evaluation, and model optimization. Head of traditional acoustic stethoscope, condenser 

microphone sensor, poly vinyl chloride tubing (medical grade tubing), audio cable and computer 

installed with audacity software were used for construction of our electronic stethoscope. We 

recorded the lung sounds using our electronic stethoscope under quite supervision of the clinical 

collaborators. The local lung sound files were collected from Jimma University Medical Center 

(JUMC), Department of Internal Medicine, Pulmonology Unit. Additionally, we used some 

annotated lung sound records available online. Moreover, a discrete wavelet transform (DWT)-

based denoising of the lung sound signals which involves the three important steps, such as 

decomposition, detail coefficients thresholding, and reconstruction have been done. 
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Four wavelet functions (Db4, Db10, Sym5, and Sym13) and four different threshold selection 

rules (Rigrsure, Sqtwolog, Heursure, and Minmax) were used to analyze the required 

performance of denoising the lung sound signals. Moreover, a DWT-based feature extraction 

procedure involving two important steps (decomposition and reconstruction) was done to extract 

relevant features from the lung sound signals. After pertinent feature extractions, feature 

selection was done by implementing one-way ANOVA feature ranking method using 𝑚𝑖𝑛𝑚𝑎𝑥 

normalization scheme to select the most discriminative features. Following feature extraction and 

selection, normalization of features has been done by subtracting the mean and dividing the 

standard deviation of each column (𝑚𝑖𝑛𝑉𝑎𝑟approach). The final step was data splitting to 

prepare the data for model training. In this research, first the dataset has been split using the 

hold-out method. Once we create a cross-validation partition for data, an 8-fold cross-validation 

has been applied to the training dataset. The classification performance of different classical 

machine learning algorithms was compared to select the one with the highest classification 

accuracy. Finally, we optimized the selected model using Bayesian optimization technique to 

improve its accuracy. MATLAB software (R2019b) and the latest version of audacity (audacity 

2.4.2) software materials were used for the successful completion of   this research. 

The lung sound records used in this study were collected from only eight classes (COPD, URTI, 

LRTI, pneumonia, bronchiectasis, bronchiolitis, asthma and healthy subjects). Since the novel 

coronavirus pandemic is one of the respiratory cases, the respiratory medicine department of 

JUMC was under lockdown for many times.  Thus, only limited local lung sound records were 

used in this study. The other limitation of the study is that the lung sound signals were acquired 

using single channel data acquisition system. Multichannel data acquisition system (which 

requires high cost) will be helpful to gather more adequate information about the lungs 

pathology. Moreover, we only compared the classification performance of classical machine 

learning classifiers. Meaning, the study didn’t use the state-of-the-art of deep learning 

techniques. Deep learning techniques involve use of large amount of data and complex 

algorithms which require powerful computation hardware (i.e., computer). 
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1.8. Methodology of the Study 

1.8.1. Research Design 

This study followed an experimental research design to achieve its objective. Experimental 

research is a study carried out through a scientific approach using two or more variables [28]. It 

includes a collection of research designs that utilize manipulation and controlled testing to 

understand the causal process. In the experimental research design, one or more variables are 

manipulated to determine their effect on a dependent variable. Algorithms and datasets used in 

the study are the independent variables. While the performance and the parameters are the 

dependent variables. 

1.8.2. Data Collection and Preparation 

The major tasks which were performed in this stage were collection of lung sounds and 

preparation of the data for further processing. Both online and local lung sound records were 

used to achieve the study. The online lung sound records were collected from the international 

conference on biomedical and health informatics (ICBHI) respiratory sound database. The local 

lung sound records were acquired from patients found in Jimma University Medical Center 

(JUMC), Department of Internal Medicine, Pulmonology Unit. Following data collection, a 

wavelet-based denoising technique which involves three basic steps (i.e., decomposition, detail 

coefficients thresholding, and reconstruction) was conducted to denoise the lung sound signals.  

The denoising performances of the four wavelet functions (Db4, Db10, Sym5, and Sym13) with 

soft and hard thresholding methods along with the four threshold selection rules Sqtwolog, 

Rigrsure, Heursure, and Minmax) were investigated by calculating the SNR values. 

Additionally, the DWT feature extraction algorithm which involves series of steps has been 

implemented to extract important features from the lung sound signals. After pertinent feature 

extraction, one-way ANOVA was implemented for selection of the most relevant features. 

1.8.3. Implementation Tools for Modeling 

The study followed key steps to construct a model used for classification of lung diseases based 

on multiresolution analysis of lung sounds. These steps include lung sound data collection, data 

preparation, model training, optimization (parameter tunning), and performance evaluation. All 

the steps were performed using MATLAB software. 
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MATLAB is an ideal a multi-paradigm programming language and numeric computing 

environment designed for analyzing data, developing algorithms, creating models, and for 

different engineering, science, and economics tasks. It includes several new improvements, 

tweaks, and fixes with noticeable features which results in better workflow and improved 

working environment. Therefore, we utilized different MATLAB (R2019b) software toolboxes 

to construct the model. Signal processing toolbox and wavelet toolbox were used for pre-

processing and feature extraction stages. While statistics and machine learning toolbox were 

used for constructing a model, we used the classification learner application to interactively train 

and compare the classification accuracies of different classifiers. Moreover, Bayesian 

optimization technique was implemented to automatically optimize the model.  

1.8.4. Performance Evaluation 

The performance evaluation matrices such as sensitivity, specificity, and accuracy were used to 

evaluate the final optimized model. Sensitivity is a performance metric which represents the 

correctly classified positive samples to the total number of positive samples [29]. It is used to 

evaluate a model’s ability to predict true positive rates of each available category. Specificity is a 

performance metric which represents the correctly classified negative samples to the total 

number of negative samples [29]. It is used to evaluate a model’s ability to predict true negatives. 

Moreover, accuracy is one of the most commonly used performance measures used to evaluate a 

model’s ability to correctly differentiate observations from different category. It is defined as a 

ratio between the correctly classified samples to the total number of samples [29]. 
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1.9. Organization of the Thesis 

To understand the work easily, this thesis has been divided into five chapters. Chapter One 

introduces the background of the study, and subsequently followed by motivation of the study, 

the base problem, objectives, significance of the study, scope and limitation of the study, 

methodology, and organization of the study. Chapter Two is literature review. This chapter is 

divided into two sections. The first section holds the conceptual literature review. The second 

section holds a review of related works. In the second section, other lung sound related research 

works conducted by various researchers are clearly reviewed. The signal processing techniques 

and the classification methods they used for the classification of lung diseases via processing of 

lung sounds have been discussed. Chapter Three is methods and materials section. In this 

chapter, the different methods used for achieving the different tasks of this research are clearly 

described. Moreover, the materials used for the successful completion of the study are also 

described. Chapter Four is the results and discussion section. It summarizes all the results found 

in the study. Moreover, the interpretation of the results is found in this chapter under the 

discussion section. At last, Chapter Five draws conclusion and recommendation. This chapter 

holds the overall conclusion of the study and leaves a recommendation to be addressed in future. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Lungs 

Lungs are the primary organs of the human respiratory system which allow us to breath. 

Respiration or breathing is the main function of lungs. During respiration, oxygen from the 

incoming air enters in the blood and carbon dioxide (a waste gas) from the metabolism leaves the 

blood [30]. Figure 2.1 shows gas exchange between alveolus wall and capillary wall. The lungs 

which are the primary organs of the human respiratory system can be affected by different lung 

diseases. There are different clinical alternatives for diagnosis of pulmonary diseases. These 

includes chest x-ray, CT scans, MRI, spirometer, sputum culture, sputum cytology, rigid and 

flexible bronchoscopy, lung biopsy, and arterial blood gas analyzer can be used for diagnosis of 

lung diseases. Moreover, lung diseases can be identified on the basis of lung sounds through lung 

auscultation diagnosis. Stethoscope-based auscultation technique is the most commonly used 

primary diagnostic device used for assessing the lungs status. It is the simplest, cheapest, and 

non-invasive diagnostic device used to diagnose the lung diseases on the base of lung sounds. 

The goal of this research was to take these advantages of stethoscope and integrate it with 

computer in order to easily analyze the lung sounds and classify the most common lung diseases. 

 

Figure 2.1: Gas exchange between alveolus wall and capillary wall [30]. 
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2.1.1. Anatomy and Physiology of Lungs 

Lungs are paired organs which are connected to the trachea through the right and the left 

bronchi. The lungs consist of right and left sides, each side has their lobes. The right lung has 

three lobes namely upper lobe, middle lobe and lower lobe while the left lung has two lobes 

namely upper lobe and lower lobe. Lobes are smaller units which composed each lung. The 

lungs are bordered by the diaphragm on the inferior surface. The diaphragm is the flat, large 

dome-shaped muscle that contracts and relaxes during breathing, also separates the chest and 

abdominal cavity. The heart sits in the mid chest extending into the left side. The cardiac notch is 

an indentation on the surface of the left lung and it allows space for the heart. Figure 2.2 shows 

gross anatomy of the lungs. 

 

Figure 2.2: Gross Anatomy of the Lungs [31]. 

The functions of lungs include ventilation, diffusion, and transportation of gases such as oxygen 

and carbon dioxide [32]. Ventilation is the process of inhaling oxygenated air into the lungs and 

exhaling carbon dioxide. During a normal condition when the diaphragm contracts, it moves 

downward and increasing the diameter of the chest and elevating the lower ribs. This action 

decreases the amount of negative pressure within the alveoli, this change in pressure results in air 

being pulled into the lungs. When the lungs are now filled with air, the pressure within the lungs 

is greater than the pressure in the atmosphere, hence air is exhaled. 
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Ventilation includes the following four main functions of the respiratory systems such as 

supplying oxygen to the body, removing waste (carbon dioxide) from body tissues, maintain 

hemostasis (acid-base balance) of arterial blood, and maintaining heat exchange [32]. Any injury 

or disease process which impacts the lungs could impact one or all of these ventilation functions 

of the respiratory system. Diffusion is the exchange of gases from region of higher to region of 

lower concentration gradient. Diffusion occurs when the oxygen molecules move from the 

alveoli into the blood stream and the carbon dioxide molecules move from the blood stream into 

the alveoli. During inspiration, the oxygen in the lungs is at high concentration, moves across the 

respiratory membrane in the pulmonary arterioles where the oxygen concentration is rather low. 

At the same time, the high concentration of carbon dioxide moves out of the blood into the lungs. 

Transportation is the final step in respiration. It is the transport of oxygen and carbon dioxide to 

the cells. Oxygen can be transported in the blood in two ways such as by bounding to 

hemoglobin on the red cells and by dissolving in the plasma. Until the molecule is fully 

saturated, hemoglobin binds to dissolved oxygen in the blood. Finally, the amount of hemoglobin 

saturated with oxygen will be measured using pulse oximeter as SpO2 and the remaining oxygen 

is dissolved in the plasma and can be measured by the arterial blood gas sampling as paO2. The 

normal values of SpO2 and paO2 are about above 95% and 80 to 100 mm Hg (mercury) 

respectively [33]. 

One of the fundamental concepts used for understanding how oxygenation cooccurs is the 

oxyhemoglobin dissociation curve, shown using Figure 2.3. According to this curve, as the 

amount of oxygen in the atmosphere (external oxygen supplied to the patient) increases the paO2 

will increase but only up to a certain point.  Generally, the oxyhemoglobin dissociation curve 

flattens out at about 60% oxygen and there will be a relatively little change in the oxygen 

saturation [34]. The predictability of the oxyhemoglobin dissociation curve relies on factors such 

as the patient being normothermic and the PH being within the normal range [34]. When one of 

these factors is impacted, the oxyhemoglobin dissociation curve will be impacted and an increase 

in oxygen will not have effect on the oxygenation of the blood. 
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Figure 2.3: Oxyhemoglobin dissociation curve [34]. 

The second key part of transportation is the elimination of carbon dioxide (the product of cellular 

wastes). Carbon dioxide can be transported in the blood in three ways such as combined with the 

hemoglobin molecules, dissolved in the plasma, and can also be carried in the form of 

bicarbonate. The lungs which are the primary organs of the human respiratory system can be 

affected by different lung diseases and lung sounds are important indicators of respiratory health 

and disorders. Meaning, diagnosis of lung problems can be simply done on the basis of lung 

sound analysis. The following section deals about lung sounds, physics of lung sounds, 

mechanism of lung sounds production, and overview of signal processing techniques. 

2.2. Lung Sounds 

Lung sounds are also called respiratory sounds, which covers all the respiratory sounds heard or 

detected over the chest wall. The lung sounds detected over the chest wall can be mainly 

classified into two major categories such as normal and adventitious or abnormal respiratory 

sounds. Normal respiratory sounds heard over the chest wall are characterized by a low noise 

during inspiration and hardly audible during expiration [35]. Over the trachea, normal respiratory 

sounds are characterized by a border spectrum of noise (for example containing high frequency 

components) and are audible both during inspiratory and expiratory phase [35,36]. 
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Adventitious respiratory sounds are abnormal sounds which can be detected over the chest wall. 

These sounds can be continuous, discontinuous or some of them like squawks may have both 

characteristics [35]. Some of the most known adventitious or abnormal respiratory sounds 

include wheezes, crackles, squawks, stridors, and rhonchi. Wheezes are continuous adventitious 

sounds having a musical character. Wheezes are high-pitched sounds and can be heard during 

inspiration, expiration, or both. Acoustically, wheeze sounds are characterized by periodic 

waveforms having a dominant frequency usually more than 100 Hz with a time duration of 

greater than or equal to 100 ms [36]. Crackles are discontinuous, explosive and transient 

adventitious sounds in nature. Such sounds are more frequently occurs in cardiorespiratory 

disease and generally appear during inspiratory phase. Acoustically, crackles are characterized 

by their specific waveform with a wide frequency content and time duration less than 20 ms 

[36,37]. Squawks are short inspiratory wheezes, that occur primarily in restrictive lung diseases 

like interstitial lung disorders; are mixed sounds with short musical component (short wheeze) 

proceeded by crackles, often begin with a crackle. Acoustically, their waveform looks like short 

wheezes but different from those of the wheezes in obstructive lung disease. The time duration of 

squawks may vary between 50 and 400ms [37,38]. Stridors are very low wheezes; most 

frequently heard during inspiratory phase and can appear during in whooping cough, laryngeal or 

tracheal stenosis [38,39]. Such sounds may be audible at a distance of mouth, trachea, and over 

the chest wall without the help of stethoscope. Stridors are characterized by a prominent peak at 

about 1000 Hz [38]. Rhonchi are a low- pitched, rattling and bubbling wheeze sounds. 

Acoustically this sounds are characterized by periodic waveforms having a time duration above 

100 ms and a frequency range of below 300 Hz [39]. Such sounds may occur during inspiratory, 

expiratory or in both phases and can be found in patients having chronic bronchitis. 

2.2.1. Physics of lung sounds 

Breath sounds have two major characters such as frequency and amplitude (intensity) which 

enables us to differentiate sounds [40]. 

I. Frequency and Pitch 

Frequency is the measure of the number of sound waves or vibrations per a given amount of 

time. It is an objective measurement measured in hertz (Hz). It depends on the wavelengths.  
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When the wavelengths are shorter, there are a greater number of sound waves per second, and 

the frequencies will be higher and when there is a longer wavelength, the frequencies will be 

lower. Wavelength commonly designated by the Greek letter lambda (ƛ), is the distance from the 

peak of one sound or pressure wave to the peak of the next sound or pressure wave. It depends 

on the speed of the sound waves, the medium where the sound waves are traversing and the 

temperature of the medium. Pitch is a perceptual property of sounds; it is a subjective perception 

of the sound’s frequency. Pitch depends on the frequency. The human ear can perceive sound 

waves in the range of frequencies ranging from 20 to 20K Hz. 

II. Amplitude or Loudness 

Amplitude is related to the energy of the sound waves while loudness is the subjective perception 

of amplitude. Amplitude is measured from the height or the peak of sound waves to the center 

line position. The range of amplitude of sound waves is extremely wide, hence it is measured on 

a logarithmic scale and is expressed by decibels (dB). A decibel (dB) is defined as one tenth of a 

bel. The bel is an amplitude unit defined for sound as the log (base 10) of the intensity relative to 

some reference intensity as shown in Equation (2.1) [40]. 

Amplitudeinbels
= log1o (

SignalIntensity

ReferenceIntensity
) … … … … … … … … … … … … … (2.1) 

The choice of reference intensity or power determines the particular choice of dB scale. Signal 

intensity, power and energy are always proportional to the square of the signal amplitude, shown 

in Equation (2.2) [40]. 

Amplitudeinbels
= log10 (

Amplitude2

Amplitude2 ref
) = 2log10 (

|Amplitude|

|Amplituderef|
) … … … … . . (2.2) 

Since decibel (dB) is one tenth of a bel, there are 10 decibels to a bel. Hence the amplitude is 

given in decibel (dB) using Equation (2.3) [40]: 
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AmplitiudeindB
= 20log10 (

|Amplitude|

|Amplituderef|
) = 10log10 (

Intensity

Intensityref
)

= 10log10 (
Power

Powerref
)

= 10log (
Energy

Energyref
) … … … … … … … … … … … … … (2.3) 

2.2.2. Mechanism of Lung Sounds production 

Air flow along the trachea-bronchial tree is the prerequisite for the production of normal breath 

sounds [41]. However, not all air flow types can produce breath sounds. Only turbulent and 

vortices air flow types are responsible for the production of breath sounds [41]. Laminar flow is 

silent flow and occurs in low flow situation. It is the characteristic of small peripheral airways. 

For example, it is so slow that airflow in the alveoli comes to an end. In laminar air flow, the 

streams of air flow are parallel to the walls and are parabolic in shape as shown in Figure 2.4.  

 
Figure 2.4: Laminar flow [42]. 

In laminar flow, air in the central layers moves faster than in the peripheral layers. The pattern of 

laminar flow follows the Poiseuille equation given in Equation (1.4) [42]. Laminar flow is 

directly proportional to the driving pressure (P), shown in Equation (2.4). 

Q =
ΔPᴨr4

8ηl
… … … … … … … … … … … … … … … … … … … … … … . . . (2.4) 

Where; Q is volume flow rate, P is the driving pressure, r is the radius, 𝜼 is viscosity, and l is 

length. 

Turbulent flow is the disorganized gas or liquid flow in which the fluid undergoes irregular 

fluctuations or mixing [42,43]. It is chaotic in nature and depends on the density of air more than 

viscosity. It is very rapid, complex and typical of large central airways such as trachea and major 

bronchi. 
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In turbulent air flow, the air molecules randomly collide against each other and onto the airway 

walls, hence this air movement is characteristically noisy. Turbulent air flow will occur when 

high velocity of flow passes through a large diameter air way such as through irregular airway 

walls [43]. As shown in Figure 2.5, for example, turbulent flows through bronchi and trachea or 

in the airway with sudden branching. Turbulent flow produces noise as the air molecules collide 

each other and with the air way wall. 

 

Figure 2.5: Turbulent flow [42]. 

The development of vortices is another mechanism for the production of breath sounds [43]. 

Vortices also called whirlpools are developed when a stream of gas emerges from a circular 

orifice to a wider channel as shown in Figure 2.6. Vortices usually occurs between the fifth and 

thirteenth generations of bronchial tree. The vortices air flow is also called mixed or transitional 

flow, because it resembles both laminar and turbulent airflow, shown in Figure 2.6. It is a bit 

faster and typical of medium-sized branching airways. Branching separates airflows into 

different layers with different velocities. The interaction among the different layers generates 

eddies and makes vortices all noisy. 

 

Figure 2.6: Transitional flow [43]. 
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Voice sounds are produced by the larynx. The lung sounds are different from the transmitted 

voice sounds generated by the larynx. Lung sounds also called respiratory sounds consists of 

normal breath sounds and adventitious or abnormal sounds heard or detected over the chest wall. 

The mechanism of production of normal breath sounds has been discussed above. The 

production or generation of abnormal or adventitious sounds associated with inflammation or 

infection of the small bronchi, bronchioles, and/or alveoli. The generation of abnormal or 

adventitious lung sounds are indication of the occurrence of lung diseases. Table 2.1 below 

shows adventitious respiratory sounds and their characteristics with the associated possible lung 

diseases. 

2.3. Signal Processing Techniques 

Signal analysis or processing is an area of electrical engineering, systems engineering, and 

applied mathematics which deals with analyzing, modifying, and synthesizing signals such as 

sound, images, and scientific measurements. There are various analysis techniques which can be 

used for analyzing signals using computers. These analysis techniques can be broadly classified 

into time-domain, frequency-domain and time-frequency domain analysis. 

Table 2.1: Adventitious respiratory sounds and possible lung diseases [44]. 

 

Adventitious 

sound types 

 

Characteristics  

 

 

Possible lung diseases 

Wheezes Continuous high-pitched adventitious 

sounds. Characterized by periodic 

waveforms having a dominant frequency 

usually more than 100 Hz with a time 

duration of greater than or equal to 100 ms. 

Asthma and cystic fibrosis. 

Crackles Discontinuous adventitious sounds. 

Characterized by their specific waveform 

with a wide frequency content and time 

duration less than 20 ms. 

Pulmonary fibrosis, pneumonia, 

alveolitis, asbestosis, congestive 

heart failure, chronic bronchitis, 

bronchiectasis.  

Stridors Continuous very low wheeze sounds. Tracheal stenosis, vocal cord 
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Characterized by a prominent peak at about 

1000 Hz. 

paralysis, laryngomalacia, 

laryngitis, tumors, airway 

inflammation following 

extubating. 

Rhonchi Continuous low- pitched, rattling and 

bubbling wheeze sounds. Characterized by 

periodic waveforms having a time duration 

above 100 ms and a frequency range of 

below 300 Hz. 

Pneumonia, chronic obstructive 

pulmonary disease (COPD), 

tumors, and chronic bronchitis. 

Squawks The time duration of squawks may vary 

between 50 and 400ms. 

Pulmonary fibrosis, interstitial 

fibrosis and allergic alveolitis. 

 

2.3.1. Time-domain Analysis 

Time domain analysis is the analysis of electronic signals, physical signals, biological signals 

like lung sound signals, mathematical functions, or time series of economic or environmental 

data in reference to time [45]. It is the process of analyzing data over a time period, the variable 

is always measured against time. For example, for electronic signals, the time domain analysis is 

usually based on the current-time plot or the voltage-time plot. Furthermore, a time domain 

graph shows how a signal changes with time while the frequency domain graph show how much 

of the signal lies within each given frequency band over a range of frequencies. 

                            Time Domain  

                             Input                                                                                         Output 

 𝑋(𝑡)                                                                                       𝑌(𝑡) = ℎ(𝑡) ∗ 𝑋(𝑡) 

Figure 2.7: Time-domain approach [46]. 

When we analyze an audio signal using time domain approach, the X-axis is time. So, the value 

of the Y-axis depends on the change in signal with respect to time. The time-domain waveform 

representations of the lung sound signals of the COPD, URTI, LRTI, pneumonia, bronchiectasis, 

bronchiolitis, asthma, and healthy subjects are shown using Figures 2.8, 2.9, 2.10, and 2.11. 

Impulse  

Response 

ℎ(𝑡) 
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Figure 2.8: Time-domain waveform representation of lung sound signals; (top), bronchiectasis 

(bottom) asthma subjects. 
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Figure 2.9: Time-domain waveform representation of lung sound signals; (top), bronchiolitis 

(bottom) healthy subjects. 
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Figure 2.10: Time-domain waveform representation of lung sound signals; (top), LRTI (bottom) 

COPD subjects. 
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Figure 2.11: Time-domain waveform representation of lung sound signals; (top), URTI (bottom) 

pneumonia subjects. 

The time domain graph presented using Figures 2.8 - 2.11 showed us the changes in a lung sound 

signal over a range of time while the frequency domain graph displays how much of the signals 

exist within a given frequency band concerning a span of frequencies. 
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2.3.2. Frequency-domain Analysis 

Both time domain analysis and frequency domain analysis are widely used in different fields 

such as acoustics (sound processing), telecommunications, electronics and many other areas [45]. 

However, time-domain analysis provides only temporal information of signals. Time-domain 

analysis didn’t provide frequency or spectral information of signals whereas frequency-domain 

analysis can provide it. Frequency domain analysis is the analysis of mathematical functions, 

physical signals, biological or electrical signals in reference to frequency. It is a method used to 

analyze data over range of frequencies. It is widely used in different fields such as electronics, 

statistics, and control systems engineering [45]. Frequency domain analysis is most widely used 

to analyze signals or functions which are periodic over time, but this doesn’t mean that frequency 

domain analysis cannot be used to analyze signals or functions which are not periodic. 

Transformation is the most important concept used in the frequency domain analysis. It is used to 

convert a time domain function to a frequency domain function and vice versa. Fourier 

transformation is the most common transformation used in the frequency domain analysis. It is 

used to convert a signal of any shape into a sum of infinite number of sinusoidal waves [46]. 

Analyzing sinusoidal functions is much easier than analyzing a general shaped function.  

         Frequency Domain (Fourier)  

                                Input                                                                                  Output 

 𝑋(ϳω)                                                                               𝑌(ϳω) = 𝐻(ϳω)𝑋(ϳω) 

Figure 2.12: Frequency-domain approach [46]. 

The Fourier analysis representation of any energy function x(t) of a finite duration is given by the 

sum of sinusoids 𝑒ϳω, shown in Equation (2.5) [47].  

𝑥(𝑡) =
1

2𝜋
∫ 𝑥(𝜔)

∞

−∞

𝑒ϳ𝜔𝑡𝑑𝜔 … … … … … … … … … … … … … … … … … … … … … … . (2.5)  

The amplitude x(ω) for each of the sinusoidal wave function 𝑒ϳ𝜔𝑡 is equal to correlation of 𝑒ϳ𝜔𝑡 

with x, which is also called as Fourier transform, given in Equation (2.6) [47]. 

 

Impulse  

Response 

𝐻(ϳω) 
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𝑥(𝜔) =
1

2𝜋
∫ 𝑥(𝑡)

∞

−∞

𝑒−ϳ𝜔𝑡𝑑𝑡 … … … … … … … … … … … … … … … … … … … … … … . (2.6) 

The more regular the function, 𝑥(𝑡), the faster will be the decay of the amplitude ⎥x(ω)⎥, when 

the frequency ω is increased. The above pair of equation (Equation (2.5) and Equation (2.6)) is 

called a Fourier transform pair. FFT is the most commonly used frequency-domain analysis 

technique used for sound processing. Let 𝑘 be currently sampling point and 𝑛 for all 𝑁 sampling 

points within a period, then FFT converts time domain signals into the frequency domain to 

facilitate energy distribution in the frequency spectrum, shown in Equation (2.7) [47].  

𝑋[𝑘] =  ∑ 𝑥~[𝑛]𝑒−
𝑗2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0

… … … … … … … … … … … … … … … … … … … (2.7) 

The frequency-domain waveform representations of the lung sound signals of the COPD, URTI, 

LRTI, pneumonia, bronchiectasis, bronchiolitis, asthma, and healthy subjects have been found 

using fast Fourier transform (FFT), shown using Figures 2.13, 2.14, and 2.15. 

 

(a) 
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(b) 

 

(c) 

Figure 2.13: Frequency-domain waveform representation of lung sound signals; (a), 

bronchiectasis (b) asthma and (c) bronchiolitis subjects. 
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(d) 

 

(e) 
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(f) 

Figure 2.14: Frequency-domain waveform representation of lung sound signals; (e), healthy (d) 

LRTI and (f) COPD subjects. 

 

(g) 
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(h) 

Figure 2.15: Frequency-domain waveform representation of lung sound signals; (g), URTI (h) 

pneumonia subjects. 

The frequency-domain analysis technique such as Fourier transform will give very good results 

when used to analyze signals which are uniformly regular or linearly time-invariant. Fourier 

transform is the most popular transformation which provides better result in the analysis of 

stationary signals whose frequency content is unchanged over time [48]. However, it is not 

suitable for analysis of non-stationary signals whose statistical characteristics change with time. 

Because Fourier transform only provides the signal’s frequency information, it loses the signal’s 

time information. Although Fourier transform is a suitable frequency domain analysis method 

used for best analysis of time-invariant signals, it is not suitable for the analysis of non-stationary 

signals. For signals such as lung sounds, which are non-stationary, it is difficult to use the 

Fourier analysis alone. Therefore, to get important diagnostic information from lung sounds, the 

mutual inclusive time and frequency analysis of lung sounds is highly needed. Other signal 

analysis techniques such as STFT, and wavelet analysis can be used for time-frequency analysis 

of signals. 
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2.3.3. Time-Frequency domain Analysis 

2.3.3.1. Short time Fourier transforms (STFT) 

STFT is a sequence of Fourier transforms of a windowed signal. The standard Fourier transform 

provides the frequency information of a signal averaged over the entire signal time interval; 

whereas STFT provides the time-localized frequency information of a signal whose frequency 

components change over time. Fourier transform (FT) decomposes a given signal into sinusoidal 

components invariant over time. Considering a signal (𝑡) , then its Fourier transform is given in 

Equation (2.7) [49]. 

𝐹𝑇𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 … … … … … … … … … … … … … … … (2.7) 

The amplitude of the complex value of 𝐹𝑇𝑋(𝑓) represents strength of the oscillatory components 

at the frequency (𝑓) contained in the signal 𝑥(𝑡). However, no information is given on the time 

localization of such component of the signal. The STFT introduces a temporal dependence of a 

signal by just applying the FT to the portion of it but not to the entire time interval of the signal. 

Hence, the short time Fourier transform of a signal is given in Equation (2.8) [49]. 

𝑆𝑇𝐹𝑇𝑋,𝑊(𝜏, 𝑓) =  ∫ 𝑥(𝑡)𝑤 ∗ (𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 … … … … … … … … … … … … … … … (2.8) 

At each instant time (𝜏), we can get a spectral decomposition obtained through applying the FT 

to the portion of the given signal 𝑥(𝑡) viewed through the window, 𝑤 ∗ (𝑡 − 𝜏) centered at (𝜏). 

Therefore, STFT is made up of those spectral components relative to the signal around the 

instant time (𝜏). The mathematical expression of STFT given in Equation 2.8, can be interpreted 

as a convolution and then as output of a filter. Meaning, we can consider STFT as frequency 

shifting of the signal 𝑥(𝑡) by (−𝑓)followed by a low pass filtering given by convolution with the 

function 𝑤(−𝑡)as shown in Equation (2.9) [49]. 

𝑆𝑇𝐹𝑇𝑋,𝑊(𝜏, 𝑓) =  ∫ [𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡]𝑤(𝑡 − 𝜏)𝑑𝑡
∞

−∞

 … … … … … … … … … … … … … … … (2.9) 
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The window 𝑤(𝑡 − 𝜏) should be normalized to unitary energy to preserve the energy and to get 

the energy distribution of the signal 𝑥(𝑡)  in the time-frequency plane as shown in Figure 2.16 

[49]. 

 
Figure 2.16: Short Time Fourier Transform (STFT) [49]. 

Generally, STFT is one of the most frequently used tools in audio and speech signals analysis 

and processing. The basic procedure for computing STFT of a given signal is to divide a longer 

time signal into shorter segments of equal length, then compute the FT separately over each 

shorter segment. This reveals the Fourier spectrum on each shorter segment. Though the Fourier 

spectrum is a vector, the output of STFT is a matrix; i.e., complex-valued. As a result, we can’t 

directly visualize the complex-valued output of STFT. Instead, the outputs of STFT are usually 

visualized using their two-dimensional log-spectra called spectrogram. A spectrogram is a visual 

way of representing the signal strength or loudness (for audio signals) of a signal over time at 

different frequencies present in a particular waveform [50]. From the spectrogram of a signal, 

one can see whether there is more or less energy at different frequencies, and can also see how 

energy levels change over time. 

2.3.3.2. Wavelet Analysis 

The term wavelets mean small waves. The sinusoids used in Fourier analysis are big waves while 

a wavelet is small wave, an oscillation that decays quickly. Wavelet analysis is a new branch of 

mathematics which is widely used in signal processing and analysis, image processing, and 

numerical analysis [51]. 
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It is a new method used for solving different difficult problems in mathematics, physics, and 

engineering. Wavelet analysis has been applied in a wide range of applications such as data 

compression, signal processing, image processing, pattern recognition, computer graphics, the 

detection of artifact and submarines and another medical image technology. Wavelet transform 

decomposes a signal into a set of basic functions called wavelets. wavelets allow to decomposed 

complex information such as music, sound, speech, images and patterns into elementary forms at 

different positions and scales and can subsequently reconstruct them with high precision [51]. 

Wavelet transform (WT) can be manipulated in two ways such as translation and scaling. 

Translation is shifting the central portion of wavelet along the time axis, meaning in WT the 

operation of frequency shifting characteristic of STFT is replaced by a change of scale over time. 

Translation is done to extract the time information of a signal. In scaling the amplitude and time 

duration of the wavelet functions are changed to obtain frequency information of a signal. As a 

result, due to translation and scaling, the wavelet is localized in time-frequency domain analysis 

of a given signal. Mathematically, given the function ℎ(𝑡) in Equation (2.8) [52], which is a 

mother wavelet then the basic elements of the transform can be obtained through change of scale. 

ℎ𝜏,𝛼 (𝑡) =
1

√⎥𝛼⎥

 ℎ [
𝑡 − 𝜏

𝛼
] … … … … … … … … … … … … … … … … … … … … … … . . (2.8) 

where α ɛ R is a scale factor. The term 
1

√⎥𝛼⎥

 , is introduced to normalize the energy of the 

different wavelets. Therefore, the continuous wavelet transform (CWT) is defined as follows 

using Equation (2.9) [52]. 

𝐶𝑊𝑇𝑋(𝜏, 𝛼) =  ∫ 𝑥(𝑡)
∞

−∞

ℎ𝜏,𝛼∗ (𝑡)𝑑𝑡 … … … … … … … … … … … … … … … … . (2.9) 

Based on Equation (2.9), the WT at a given time instant τ and at a certain scale α is the inner 

product between the signal 𝑥(𝑡)and the wavelet ℎ𝜏,𝛼 (𝑡) with scale α centered at the time τ. So, 

the CWT indicates that how the signal 𝑥(𝑡) close to the function ℎ𝜏,𝛼 (𝑡)and as the function 

ℎ𝜏,𝛼 (𝑡) will be more or less concentrated in time around τ. This similarity criterion will take into 

account the behavior of the signal 𝑥(𝑡) in a neighborhood of the time τ. 
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Since, ℎ𝜏,𝛼 (𝑡) =
1

√⎥𝛼⎥

 ℎ [
𝑡−𝜏

𝛼
] , then CWT can also be written as follows as shown in Equation 

(2.10). 

𝐶𝑊𝑇𝑋(𝜏, 𝛼) =  
1

√⎥𝛼⎥

∫ 𝑥(𝑡)
∞

−∞

 ℎ ∗ [
𝑡 − 𝜏

𝛼
] 𝑑𝑡 … … … … … … … … … … … … … … … … . (2.10) 

With increasing the scale factor (growing α), the function ℎ  becomes wider over time and WT 

takes account of the slow behavior of the signal 𝑥(𝑡). Then, the CWT behaves as a filter bank 

with impulse response ℎ, whose extension increases with a scale factor α. 

On the other hand, the following expression of CWT, shown in Equation (2.11) emphasizes that, 

as the scale factor α grows, the signal 𝑥(𝑡) is compressed then a wider interval is covered by the 

function ℎ, which now remains constant in width. In this way, the more compressed signal 𝑥(𝑡) 

can be filtered by the same filter with fixed impulse response ℎ. Large scale (large α) factor 

provides an overview while the small-scale factor (small α) allows highlighting of details. 

𝐶𝑊𝑇𝑋(𝜏, 𝛼) =
1

√⎥𝛼⎥

∫ 𝑥(𝛼𝑡)
∞

−∞

 ℎ ∗ [𝑡 −
𝜏

𝛼
]𝑑𝑡 … … … … … … … … … … … … … … … … . (2.11) 

Though the continuous wavelet transforms (CWT) expressed in terms of scale factor (α) shown 

in the above equations, it can also be defined in terms of frequency by choosing the following 

expression for the parameter α. 

α =
fo

𝑓
… … … … … … … … … … … … … … … … … … … … … … … . (2.12) 

 

where, fo is the center frequency of the Fourier spectrum of h(t) with 𝑓 > 0. Then by substituting 

Equation (2.12) into Equation (2.11), we can obtain the CWT defined in terms of time and 

frequency shown in Equation (2.13). 

𝐶𝑊𝑇𝑥
ℎ(𝜏, 𝑓) = √│

𝑓

𝑓𝑜
│ ∫ 𝑥(𝑡)

∞

−∞

 ℎ ∗ [ 
𝑓

𝑓0
(𝑡 − 𝜏 ]𝑑𝑡 … … … … … … … … … … … … … … … … . (2.13) 
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A comparison between STFT and WT is shown using Figure 2.17 [52]. The difference between 

them is the former has constant width; hence their amplitude spectrum is only shifted in 

frequency, the latter are scaled versions of each other, so with increasing frequency the time 

width decreases and the spectrum widens (meaning, with the increase of frequency, the wavelet 

becomes narrower in time but wider in frequency). In short, a constant window region is used in 

STFT analysis while the variable window region is used in WT analysis. Figure 2.17 also 

showed that the wavelet is compressed if the scale is low and stretched if the scale is high. 

 

Figure 2.17: Window regions of STFT (left) and WT (right) analyses [52]. 

Generally, CWT measures how the signal 𝑥(𝑡) close to the mother wavelet, i.e., the function 

ℎ𝜏,𝛼 (𝑡). Meaning, it measures the similarity between the signal and the wavelet by continuously 

translating and scaling the mother wavelet. To represent the wavelet coefficients, an infinite 

number of wavelets are required which increases the redundancy. CWT is extremely redundant 

because a two-dimensional representation for one dimensional entity through the use of a 

continuous translation and a continuous scale is extremely redundant. Similarly, STFT overcome 

the drawback of Fourier transform by mapping a signal into a two-dimensional space of time and 

frequency. It mainly shows the presence of some specific frequency components of a signal in a 

single range of location. STFT can’t show the existence of frequency components of a signal at 

any specific location. The main drawback of STFT is that it uses a single and fixed window 

which will make it unable to extract and provide different features of a signal. Therefore, 

analysis of the lung sound signals in a multiresolution perspective is highly important. 
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In this research, we employed wavelet multiresolution analysis technique to analyze the lung 

sound signals by decomposing them using discrete wavelet transforms (DWT). DWT is the best-

suited wavelet signal processing method for multiresolution analysis of signals. Because DWT 

can decompose low-frequency components of a signal with fine frequency resolution and coarse 

time resolution and can also decompose high-frequency components of a signal with a fine time 

resolution and coarse frequency resolution. Moreover, DWT-based multiresolution analysis 

helps to a better understanding of a signal and is helpful in feature extraction applications. 

Generally, as compared to the Fourier transform and STFT, Wavelet signal processing using 

DWT will enable multiresolution analysis of the non-stationary lung sound signals. 

2.4. Related Works 

Following the development of modern digital signal analysis techniques, different scholars made 

lots of contribution for improving the current method of lung auscultation by applying different 

analysis techniques to the recorded lung sounds. In this section, we reviewed some of the earlier 

related works conducted on classification of lung diseases via processing of lung sounds using 

different techniques. 

Gogus, et al. [53], performed a comparative study for identification of pulmonary disorders using 

different spectral analysis methods such as fast Fourier transform (FFT), autoregressive (AR) 

and autoregressive moving average (ARMA). The highest classification accuracy was found by 

analyzing the lung sounds in AR-Burg than FFT-Welch and ARMA spectral analysis methods. 

The highest classification accuracy of 93% was achieved by using artificial neural network 

(ANN) classifier trained with back-propagation algorithm. Similarly, Islam, et al. [54], used 

Welch spectral method for estimation of power spectral density (PSD) of lung sounds. Features 

were extracted from the PSD for classification of lung diseases as normal, asthma, and COPD. 

ANN and SVM classifiers were used for classification, and claimed the highest classification 

accuracy (93.3%) using SVM classifier. 

Kurt, et al. [55], did detection of lung abnormalities using Mel-frequency cepstral coefficient 

(MFCC) features of the lung sounds. An accuracy of 86%, 75%, 80%, and 62% respectively 

were found using SVM classifier for the four classification categories such as healthy versus 

pathological classification (1), rale, rhonchus, and normal sound classification (2), Singular 

respiratory sound classification (3), and audio type classification with all sound types (4). 
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Likewise, Saha, et al. [56], also evaluated cepstral features for recognition of lung sounds. ANN 

was used for the classification of lung sounds as normal, wheeze, and crackle, and claimed an 

overall accuracy of 97.83%. Choudhry, et al. [57], applied empirical mode decomposition 

(EMD) to analyze lung sounds for further for classification of pulmonary conditions as normal, 

bronchitis, and asthma. Further investigation has been done by using the same features on 

different kernels of KNN and demonstrated the highest accuracy using Fine KNN. Mondal, et al. 

[58], also used EMD and a first order differentiation algorithm for further decomposition and 

denoising of lung sound signals. Detection of the lungs status has been done by analyzing the 

morphological complexities of the lung sound signals. Hilbert transform (HT) algorithm was 

used for the extraction of the morphological or structural features of lung sounds. Extreme 

learning machine (ELM) classifier was employed for final classification of data (normal or 

abnormal class) and claimed an accuracy of 92.86%, specificity of 86.90% and sensitivity of 

86.30%. Haider, et al. [59], also conducted respiratory sound-based classification of pulmonary 

diseases as normal or COPD. A maximum classification accuracy of 83.6% was achieved by the 

SVM classifier using the most relevant lung sound parameters such as median frequency and 

linear predictive coefficients. Vora, et al. [60], performed a comparative study between the SVM 

and K-nearest neighbor (KNN) classifiers to classify COPD severity into four stages. An 

accuracy of 96.7% and 92.30% were claimed using SVM and KNN respectively. 

Moreover, Hidayat, et al. [61], analyzed the lung sound signals complexity using fractal 

dimension for improving accuracy of lung sound classification. Fractal dimension was calculated 

in multiscale scheme using coarse-grained procedure. The highest classification accuracy of 99% 

was found using SVM with the scale of 1-5. Flietstra, et al. [62], also classified crackles found in 

patients with pneumonia, congestive heart failure, and interstitial pulmonary fibrosis. The crackle 

features were analyzed using a 16-channel lung sound analyzer and classified using SVM and 

back propagation neural network. An overall classification accuracy of 88% and 78% were found 

using SVM and ANN respectively. Don [63], performed random subset feature selection and 

sequential forward selection algorithms to choose the best subset of features for classification of 

lung sounds. The random subset feature selection (RSFS) algorithm provides significant 

improvement for classification of lung sounds as normal or abnormal, and claimed highest 

accuracy (94.1%) using KNN classifier. An accuracy of 89.5% was obtained for both SVM and 

Naive Bayes classifiers. 
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Rizal, et al. [64], performed pulmonary crackle detection using multiscale tsallis entropy. Tsallis 

entropy measurements were carried out through several orders and the pulmonary crackle signals 

were decomposed using coarse grained procedure. Multilayer perceptron neural network was 

used for classification of pulmonary conditions as normal or crackle. The highest classification 

accuracy of 97.67% was obtained at the second order tsallis entropy on the scale of 1-15. 

Similarly, Nugroho, et al. [65], compared multiscale entropy techniques for lung sound 

classification. The results of the comparison showed that the multiscale permutation entropy 

(MPE) provides the highest accuracy of 97.98% using Multilayer perceptron for five lung sound 

classes (asthma, friction rub, normal bronchial, and stridor). 

Moreover, Lmtiaz, et al. [66], reviewed a paper which used features derived from continuous 

wavelet transform (CWT) for classification of lung sounds. ANN classifier trained using resilient 

back propagation algorithm was implemented to classify the lung sounds and an overall accuracy 

of 94.02% was claimed. Aykanat, et al. [67], used CNN to perform lung abnormalities detection 

involving four classification categories such as healthy versus pathological classification (1), 

rale, rhonchus, and normal sound classification (2), singular respiratory sound classification (3), 

and audio type classification with all sound types (4). By using spectrogram images of the lung 

sound signals obtained through STFT, they obtained an accuracy of 86%, 76%, 80%, and 62% 

respectively for the above-mentioned four classification categories. Likewise, Quan, et al. [68], 

performed classification of asthma severity using DNN trained with back-propagation algorithm 

to classify the data obtained from NIS (National Inpatient Sample) and MIMIC-III (‘Medical 

Information Mart for Intensive Care’). An accuracy of 86% and 91.1% were found to classify the 

data obtained from NIS and MIMIC-III databases respectively, using the demographic 

information found in the databases. 

Hosseini, et al. [69], applied deep convolutional neural networks (DCNNs) to diagnose 

pulmonary diseases using auditory and demographic information and a 78% classification 

accuracy was claimed using only the auditory information and 83% accuracy using a 

combination of auditory information with demographic information. Similarly, Demir, et al. [70], 

employed CNN based approach for efficient classification of lung diseases (crackles, crackles 

combined with wheezes, wheezes, and normal). An accuracy of 65.5% and 63.09% was claimed 

using SVM classifier and DCNNs via spectrogram images, respectively. 
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Fraiwan, et al. [71], used a deep learning network architecture consisted of two stages such as 

CNN and bidirectional long short-term memory (BDLSTM) units for recognition of pulmonary 

diseases from lung sounds. The highest average accuracy of 99.62% was obtained using CNN 

and BDLSTM. Table 2.2 shows a summary of the above-mentioned previous research works 

done by various scholars in different times. In Table 2.2, the methods which the researchers 

used, the accuracy they achieved, and the existing gaps associated with each of the researches 

have been summarized. 

Table 2.2: A summary of previous related researches. 

Authors  Applied methods  

Results 

(Accuracy 

%) 

Research gap 

Islam, et 

al., 2018. 

[54] 

FFT-Welch and 

SVM 

93.3 The study didn’t consider temporal auditory 

information of signals. Limited spectral 

features extracted from the power spectral 

density (PSD) of lung sounds for 

classification. 

Kurt, et al., 

2017. [55] 

 

MFCC and SVM 

Max accuracy 

of 86% for 

category 1 

Only spectral features of lung sounds (i.e., 

Mel-frequency cepstral coefficients of lung 

sounds) were used for classification. 

Haider, et 

al., 2019. 

[59] 

Median frequency, 

Linear predictive 

coefficients & 

SVM 

 

83.6 

Limited spectral features were used for binary 

classification (normal or COPD). 

Vora, et al., 

2019. [60] 

SVM 

KNN 

96.7 

92.3 

Limited for classification of COPD using 

KNN and SVM algorithms. 

Hidayat, et 

al., 2018. 

[61] 

Fractal dimension 

and SVM 

99 The study didn’t consider spectral auditory 

information, only used temporal features of 

lung sounds obtained through the coarse-

grained procedure for classification. 
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Mondal, et 

al., 2014. 

[58] 

EMD, HT and 

ELM 

92.86 Limited spectral features characterizing the 

morphology of lung sounds were considered 

for binary classification (normal or abnormal). 

Don, 2020. 

[63] 

RSFS and KNN 94.1 Computationally costly due to random subset 

feature selection method for binary 

classification (normal or abnormal). 

Gogus, et 

al., 2016. 

[53] 

ANN with AR-

Burg 

93 The study didn’t consider temporal auditory 

information of lung sounds. Limited spectral 

features were considered for classification. 

Saha, et al., 

2016. [56] 

Cepstral features 

and ANN  

97.83 Only spectral features (i.e., cepstral 

coefficients of lung sounds) were employed 

for classification. The study didn’t consider 

temporal auditory information of lung sounds. 

Rizal, et 

al., 2018. 

[64] 

MSE and 

Multilayer 

perceptron neural 

network  

97.67 The study didn’t consider spectral auditory 

information, only temporal features of lung 

sounds obtained through multiscale tsallis 

technique for binary classification (normal or 

crackle). 

Nugroho, 

et al., 2018. 

[65] 

MSE and 

Multilayer 

perceptron neural 

network  

97.98 Only temporal features of lung sounds 

obtained through multiscale tsallis technique 

for classification, i.e., there is loss of spectral 

information. 

Lmtiaz, et 

al., 2019. 

[66] 

CWT and ANN 94.02 Extremely redundant due to continuous 

translation and scaling, and is computationally 

costly. 

Aykanat, et 

al., 2017. 

[67] 

CNN, STFT Max accuracy 

of 86% for 

category 1 

Unable to extract different features from the 

lung sound’s spectrograms due to fixed 

window region of STFT. 

Quan, et 

al., 2017. 

[68] 

Demographic info, 

DNN with 

91.1 The study didn’t consider auditory 

information of lung sounds, and the study is 
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MIMIC-III limited for classification of asthma. 

Hosseini, et 

al., 2020. 

[69] 

Auditory & 

Demographic info 

with DCNN 

83 Unable to extract different features from the 

lung sound’s spectrograms due to fixed 

window region of STFT. 

Demir, et 

al., 2019. 

[70] 

STFT and SVM 65.5 Unable to extract different features from the 

lung sound’s spectrograms due to fixed 

window region of STFT. 

 

2.4.1. Summary 

Generally, there are various signal analysis techniques which can be used for analyzing lung 

sounds. Most researchers proposed spectral analysis techniques such as FT, FFT-Welch, AR, 

AR-Burg, ARMA, MFCC, and others to analyze the acquired lung sound signals for further 

detection of the lung pathologies [54,55,59,60,63,53,56]. Time-domain analysis techniques such 

as statistical methods, empirical mode decomposition (EMD), or fractal analysis methods were 

used by some researchers for classifying abnormal lung sounds [61,62,57,58]. Multiscale entropy 

(MSE) proposed by Costa et al. with a coarse-grained procedure is one of the popular biological 

signal analysis methods. Meanwhile, MSE has been proposed in literature to analyze lung sounds 

for further detection of pulmonary abnormalities [64,65]. However, frequency-domain as well as 

time-domain analysis techniques alone couldn’t provide enough information when used on non-

stationary signals like lung sounds. Therefore, to get important diagnostic information from the 

lung sounds, time-frequency analysis of lung sounds is crucial. Some researchers were employed 

time-frequency analysis techniques such as short time Fourier transform (STFT) and wavelet 

transform (WT) for analysis of lung sounds [66,67,70]. STFT overcome the drawback of 

frequency-domain analysis techniques by mapping a signal into a two-dimensional space of time 

and frequency but with a single fixed window, unable to extract different features. Studying the 

lung sounds in a multiresolution perspective is very important. Naturally, signals including the 

lung sounds usually contain both the low and high frequency components which will vary with 

time. The low-frequency components of such signals vary slowly with time, which need fine 

frequency resolution and coarse time resolution. 
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While the high frequency components of a signal vary quickly with time, which need fine time 

resolution and coarse frequency resolution. Multiresolution analysis (MRA) method is used to 

analyze such non-stationary signals having both high and low frequency components and whose 

frequency vary along with time [72]. To do this, wavelet signal processing is naturally a 

multiresolution analysis method because of the window dilation process. Lung sound signal 

features derived from continuous wavelet transform were used in literature for classification of 

lung sounds using ANN [66]. CWT is extremely redundant because a two-dimensional 

representation for one dimensional entity through the use of a continuous translation and a 

continuous scale is extremely redundant. 

Discrete wavelet transforms (DWT) are best-suited processing method for multiresolution 

analysis of signals [72]. Because, DWT can decompose high-frequency components of a signal 

with a fine time resolution and coarse frequency resolution and can decompose low-frequency 

components of a signal with fine frequency resolution and coarse time resolution. So, DWT 

enable multiresolution analysis of the non-stationary lung sound signals by decomposing the 

signal into detail (high frequency) coefficients and approximation (low frequency) coefficients 

using successive high pass and low pass filtering operations. Therefore, a method involving 

DWT based analysis of lung sounds for further multiple classification of pulmonary diseases has 

been proposed in this study. After acquisition, pre-processing, and extraction of features from the 

lung sound signals, important features were selected and given as input to different machine 

learning classifiers. At last, after comparing classification accuracy of the different machine 

learning classifiers, SVM algorithm particularly fine gaussian SVM has been chosen for final 

classification of lung diseases as COPD, URTI, LRTI, pneumonia, bronchiectasis, bronchiolitis, 

asthma or healthy. 
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CHAPTER THREE 

METHODS and MATERIALS 

3.1. Overview 

The general procedure used in this study for classification of pulmonary diseases from the lung 

sounds is shown in Figure 3.1. An electronic stethoscope has been constructed by modifying the 

existing traditional acoustic stethoscope and is used for lung sounds acquisitions. Discrete 

wavelet transform (DWT) was used for multiresolution decomposition of the non-stationary lung 

sound signals. Moreover, a DWT-based denoising of lung sounds which proceeds three steps 

such as decomposition, detail coefficients thresholding, and reconstruction have been done. 

Following signal decomposition and reconstruction, different features have been extracted for 

classification of the lung sound signals of healthy, COPD, URTI, LRTI, pneumonia, 

bronchiectasis, bronchiolitis, and asthma diseased subjects. Feature ranking using filter selection 

method has been done to select the most relevant features. Additionally, feature normalization 

has been done to normalize the extracted features before using them for model training and data 

classification. Finally, we trained a supervised machine learning classifier for final classification 

of lung diseases by feeding the selected and normalized features as inputs. The activity of a task 

using machine learning requires the accomplishment of tasks such as: import data and structure 

it, data pre-processing, feature extraction, feature selection or ranking, train, and optimize 

classification models. Therefore, the general procedure presented using Figure 3.1 consists of 

series of steps including construction of electronic stethoscope, signal acquisition, pre-

processing, feature extraction, feature selection, feature visualization and normalization, data 

splitting, model training and evaluation, model optimization, and data classification. 
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Figure 3.1: A general procedure for classification of lung diseases. 

3.2. Construction of Electronic Stethoscope 

Lung sounds are best recorded using stethoscope. Stethoscope is a medical device used for 

listening the internal sounds of human body such as Korotkoff sounds, heart sounds, lung 

sounds, and other internal body sounds [73,74]. The main parts of the stethoscope are ear tips, 

ear tube, tubing, headset, stem, chest-piece, diaphragm, and bell.  
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A proper combination of these parts creates a functioning stethoscope, which allows doctors, 

nurses, and other medical professionals to listen to a wide range of sounds so that they can 

quickly determine and treat potential medical issues. The air tips of the stethoscope are the parts 

which goes into the user’s ear and used to receive the sounds that come from the chest-piece. The 

ear tubes are the metal or steel parts of the stethoscope connecting the ear tips and the synthetic 

or PVC tubing, which connects to the stem of the chest-piece. Tubing is the soft flexible line of 

the stethoscope and its purpose is to maintain and transfer the sound level that is acquired by the 

diaphragm or bell to the ear tubes. The headset is the part of the stethoscope holding the 

combined components of the upper half of the stethoscope including ear tubes, tension springs 

and ear tips. Stem is another metal or steel part of the stethoscope which basically connects the 

tubing to the chest-piece. The chest-piece is the head of the stethoscope which is composed of 

the connected stem, diaphragm and /or bell. The diaphragm is the larger circular end of the chest-

piece used to listen higher-frequency sounds while bell is the smaller circular end of the chest 

piece used to listen lower-frequency sounds. Figure 3.2 shows labeled image of a stethoscope 

with its main components discussed above.  

 

Figure 3.2: Labeled image of a stethoscope [75]. 
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Generally, stethoscope is a useful medical device used by doctors, nurses, and other medical 

professionals to perform checks on the heart and lung functions [75]. However, the function of 

traditional stethoscopes particularly an acoustic stethoscope types which are available in many 

health care settings of the developing nations, are limited to analog filtering and amplification of 

bio-sounds for further interpretations by trained health professionals [76]. To avoid such 

limitations and subjectivity issues, developing an electronic stethoscope by doing certain 

modifications over the traditional acoustic stethoscope is highly important. The main function of 

an electronic stethoscope is to convert analog sound signals into digital ones.  

One of the goals of this research was to develop a cost-effective electronic stethoscope which 

can be used for lung sounds acquisitions and interfaced it with computer for further analysis of 

lung sounds. To create an electronic stethoscope via modifying the traditional acoustic 

stethoscope, a transduction mechanism is required which will be used for converting acoustic 

waves into an equivalent electrical signal. After looking for different types of sensors which will 

be used for transducing acoustic signals into electrical signals, we used a condenser microphone 

due to its flat frequency response, high SNR, better sensitivity and can be affordable at low-cost 

[76]. Moreover, selection of the sensor (microphone) has been done following the context of 

computerized respiratory sound analysis (CORSA) specification recommendations [76]. CORSA 

offers standard considerations for proper selection of a condenser microphone which will be used 

for respiratory recordings, described in Table 3.1. 

Table 3.1: Recommended specifications of sensor that detects human lung sounds [76]. 

 

Parameter 

 

Specification 

Frequency 

response  

✓ 50-5000 Hz. 

Dynamic 

range  

✓ 60 dB 

Sensitivity  ✓ It is the voltage being generated in response to an input sound pressure of 

0.1 Pa. 

✓ Its typical value is 1mv/Pa. 
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✓ It must be stable across all frequencies, sound directions, and varying 

noise. 

 SNR ✓ It is the ratio of the output voltage to the noise when no input signal is 

applied. 

✓ According to CORSA recommendation, it is recommended to be > 60 dB 

Coupling ✓ Piezoelectric: contact. 

✓ Condenser microphones: conical, diameter 10 to 25 mm. 

Fixing  ✓ Adhesive ring for piezoelectric sensors. 

✓ Adhesive ring or elastic belt for condenser microphones. 

Noise and 

interference 

✓ Shielded microphone for protection from mechanical vibrations or EM 

shielded twisted pair or coaxial cable. 

 

The above table 3.1 describes the recommended specifications provided by computerized 

respiratory sound analysis (CORSA) for sensors that detect human respiratory sounds. Therefore, 

based on the standard specification set by CORSA, we used an electret microphone, shown in 

Figure 3.7. An electret condenser microphone is the most common type of transducer used to 

detect sound signals and produces an equivalent electrical signal. It has two plates inside it just 

like a capacitor. The distance between the plates is directly proportional to the sound present in 

the environment. The capacitor is rated for 20 Hz to 16,000 Hz, so any sound waves in that range 

will be picked up by this microphone. The frequency range of lung sounds found in this range; 

hence it can be used to detect the lung sounds acquired by the stethoscope head and convert it 

into an equivalent electrical signal. Therefore, in this research we used an electret microphone 

having an operating frequency range 20 Hz to 16,000 Hz, high SNR (more than 62 dB), and had 

high sensitivity (High SNR). 
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3.3. Signal Acquisition 

In this research, both online and local lung sound records were used. We used some annotated 

lung sound recordings from the international conference on biomedical and health informatics 

(ICBHI) respiratory sound dataset. This dataset was created by two independent research teams 

based in Greece and Portugal [77]. The lung sound records found in this dataset were acquired 

from 126 participants annotated with eight types of respiratory conditions such as COPD, URTI, 

LRTI, pneumonia, bronchiectasis, bronchiolitis, asthma, and healthy. The duration of each 

record ranges from 10 to 90 seconds and were recorded from different chest locations such as left 

and right anterior, left and right posterior, and left and right lateral regions of the chest, shown in 

Figure 3.3. 

 

Figure 3.3: Lung auscultation points for the recordings of lung sounds marked in red [77]. 

The lung sound records found in the ICBHI respiratory sound dataset were acquired through 

auscultation of the stethoscope at different points such as, left and right anterior (marked 1 and 

2), left and right posterior (marked 3 and 4), and left and right lateral (marked 5 and 6) regions of 

the chest wall shown in Figure 3.3. The ICBHI respiratory sound dataset is highly imbalanced 

with around 86% of the data belonging to COPD. Therefore, in this study, besides to the online 

lung sound data, we collected some local lung sound recordings using our electronic stethoscope. 

The collection of local lung sound data was held at Jimma University Institute of Health, Jimma 

University Medical Center (JUMC), Department of Internal Medicine, Pulmonology Unit. A 

total of 287local lung sound records where;60 asthma, 49bronchiectasis, 23 pneumonia, 15 

URTI, 47bronchiolitis, 48LRTI, 30 healthy, and 15COPD records were collected. Each of the 

records were taken from the clinically admitted subjects. 
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9 subjects with asthma condition, 6 subjects with bronchiectasis condition, 4 subjects with 

pneumonia condition, 3 subjects with URTI condition, 6 subjects with bronchiolitis condition, 7 

subjects with LRTI condition, 6 subjects with COPD condition, and 6 healthy subjects were 

selected to record the local lung sound records. Once we acquired the online and local lung 

sounds, we did multiresolution analysis of the signals using DWT. 

3.4. Multiresolution Decomposition of Lung Sound Signals using DWT 

The discrete wavelet transforms (DWT) have been widely used in biomedical signal processing 

of different signals including the non-stationary signals. In this study, DWT has been used for 

multiresolution decomposition of the non-stationary lung sound signals. Because DWT can 

decompose high frequency components of a signal with a fine time resolution and coarse 

frequency resolution and can also decompose low frequency components of a signal with fine 

frequency resolution and coarse time resolution. Therefore, DWT can be efficiently realized by 

decomposing the given signal into detail (high frequency) coefficients and approximation (low 

frequency) coefficients. The central frequency and the frequency bandwidth of the detail 

coefficients decrease by half when the decomposition level increases by one. For example, the 

central frequency and the frequency bandwidth of the second detail coefficient (D2) are half that 

of the first detail coefficient (D1). The approximation at a certain resolution contains all of the 

information about the signal at any coarser resolutions. For instance, the frequency band of the 

second approximation (A2) covers the frequency bands of the third approximation and detail 

coefficients (A3 and D3). 

Generally, DWT is used to analyze the lung sound signals by decomposing the signal into its 

coarse approximation and its detailed information by using successive high pass and low pass 

filtering operations. The procedure and the stages involved during multiresolution decomposition 

of a signal 𝑥[𝑛] using DWT is schematically shown using Figure 3.4. Each stage involves two 

digital filters (low pass and high pass filters) and two down samplers by 2. Each filter divides the 

input signal into two half-band frequencies. The first filter ℎ[𝑛]  is the discrete mother wavelet, 

which is high pass in nature and is used to extract the upper half of the frequencies of the signal 

which is referred to as its detail information. The second filter 𝑔[𝑛]  is the mirror version of 

ℎ[𝑛], which is low pass in nature and is used to extract the lower half of the frequencies of the 

signal which is referred to as its approximation information. 
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The scheme presented using Figure 3.4 also showed that the down sampled outputs of the first 

high pass and low pass filters provide the first detail information D1 and the approximation 

information A1 respectively. As shown in Figure 3.4, every decomposition level has a filtering 

and down sampling blocks in which the down sampling is done by a factor of 2. The first 

approximation information (A1) of the signal is further decomposed and the process will be 

continued until the end of the required level of decomposition. The approximation obtained at 

the first level i.e., A1 is the summation of the approximation and the detail at the second level. 

Similarly, the approximation obtained at the second level i.e., A2 is the summation of the 

approximation and the detail at the third level. Hence, as the level of decomposition increases, 

the approximation (low frequency components of a signal) will be obtained in such a way. Figure 

3.4 shows a three-level wavelet decomposition of a signal. In this research, we implemented a 

six-level wavelet decomposition for better analysis of lung sound signals by following the same 

procedure shown in Figure 3.4. 

 D1  

    

x[n]    D2   

    D3 

 A1           

                                        A2 

              A3… 

   

Figure 3.4: A procedure for a three-level wavelet decomposition of a signal. 

3.5. Pre-processing 

Signal pre-processing, particularly signal denoising is the critical step in signal processing which 

involves the removal of artifacts that can corrupt the acquired signals. The stethoscope recording 

is also vulnerable to different noises. Therefore, to denoise the noises without altering important 

features of the lung sounds, wavelet-based denoising technique is used in this research. 
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Since wavelet transform is a time-frequency signal analysis method and has a good localization 

in both time and frequency domains, it is highly helpful to remove unwanted signals altering the 

lung sounds both in time and frequency content. 

3.5.1. Pre-processing of Lung Sound Signals using Wavelet Denoising Technique 

A discrete wavelet transform (DWT)-based denoising of lung sounds proceeds in three steps 

such as decomposition, detail coefficients thresholding, and reconstruction. The decomposition 

step involves selection of an appropriate wavelet function or the mother wavelet and 

determination of the number of wavelet decomposition level. So, this is done by choosing a 

suitable mother wavelet and conduct the wavelet decomposition of the original signal 𝑆 at level 

𝑁. In the second step, for each wavelet decomposition level from 1 to 𝑁, we applied soft 

thresholding to the detail (high frequency) coefficients of the signal 𝑆. The final step is the 

reconstruction. The reconstruction is done upon the original approximation coefficients of level 

𝑁 and the modified detail coefficients of levels from 1 to 𝑁. In this research, we followed the 

following procedure shown in Figure 3.5 to implement the DWT-based denoising of the lung 

sound signals. 

 

 

  

 

 

 

 

 

Figure 3.5: A procedure for wavelet-based denoising of lung sound signals. 
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The objective of this wavelet-based denoising technique, shown in Figure 3.5 is to recover a 

signal with less noise than the original signal by using an appropriate wavelet function and a 

suitable thresholding method. As shown in Figure 3.5, decomposition is the first step in DWT 

based denoising procedure. DWT is basically used to analyze the signal by splitting the given 

signal into its detail (high frequency) coefficients and approximation (low frequency) 

coefficients. Such splitting process is called signal decomposition. Therefore, DWT is used to 

decompose the lung sound signals into two parts such as high frequency and low frequency 

components by employing successive high pass and low pass filtering operations. During DWT-

based signal decomposition, the signal is passed through a series of high pass filters to analyze 

the high frequency components of the signal and low pass filters to analyze the low frequency 

components of the signal. After looking the results of different wavelet functions, we conducted 

a 6th level decomposition of lung sound signals using Sym13 wavelet function. Following the 

decomposition, the next step is to apply the thresholding method to remove the noise from the 

wanted signal. For thresholding, two most commonly used thresholding methods such as soft and 

hard thresholding methods were used in this study. Soft thresholding method is based on the 

process of setting zero coefficients whose absolute values are lower than the settled threshold 

value (λ), otherwise the coefficient value is modified, as shown in Equation (3.1). The 

thresholding is equal to the value of a sign function which multiplies the difference value 

between a coefficient (𝑊𝑗) and the threshold (λ). The mathematical equation for the soft 

thresholding function representing the input-output characteristics of the process is given in 

Equation (3.1) [78]. 

𝑓𝑆 =  {
𝑠𝑔𝑛(𝑊𝑗)(│𝑊𝑗│ − 𝜆), 𝑓𝑜𝑟 │𝑊𝑗│ ≥ 𝜆

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
} … … … … … … … … … … … … … . (3.1) 

Where, (𝑊𝑗) is the wavelet coefficient, (λ) is the threshold value and 𝑓𝑆 is the soft thresholding 

function.  

Hard thresholding is the process of establishing to zero to the coefficients whose absolute values 

are lower than the threshold vale (λ), otherwise the coefficient value is not modified as shown in 

Equation (3.2). The mathematical equation for the hard thresholding function representing the 

input-output characteristics of the process is given in Equation (3.2) [78]. 
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𝑓𝐻 =  {
𝑊𝑗 , 𝑓𝑜𝑟 │𝑊𝑗│ ≥ 𝜆

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
} … … … … … … … … … … … … … . (3.2) 

Where, (𝑊𝑗) is the wavelet coefficient, (λ) is the threshold value and 𝑓𝐻 is the hard thresholding 

function. 

Hard thresholding method had a problem of discontinuity, it leads to a certain fluctuation in the 

reconstruction of the original signal. conversely, soft thresholding method is more stable than 

hard thresholding method. Moreover, in this study, the performances of these thresholding 

methods for the denoising of lung sounds were investigated using the four well-known standard 

threshold selection rules such as heursure, rigrsure, minimaxi and sqtwolog. 

Sqtwolog rule: This rule was proposed by Donoho and Johnstone. Based on this criterion, the 

threshold values (λ) are calculated by using universal threshold (square root log) method given 

by Equation (3.3) [79].  

𝜆𝑗 =  𝜎𝑗√2𝑙𝑜𝑔(𝑁𝑗)…………………………………………….................(3.3) 

𝜎𝑗is given as, 𝜎𝑗 =
𝑀𝐴𝐷𝑗

0.6745
=

𝑚𝑒𝑑𝑖𝑎𝑛(│𝑊│)

0.6745
… … … … … … … … … … … … … … . (3.4) 

Where, 𝑁𝑗 is the length of the noisy signal at 𝑗𝑡ℎ scale, 𝜎𝑗  is Median Absolute Deviation (MAD) 

at 𝑗𝑡ℎ scale, and 𝑊 represents wavelet coefficients at scale 𝑗. 

Rigrsure rule: This is an adaptive thresholding method, where the threshold value (λ) is selected 

based on the principle of the Stein’s unbiased risk estimate (SURE) quadrature loss function. It is 

a soft threshold estimator, starting with an estimate of risk for a particular threshold value (λ), the 

algorithm minimizes the risks in λ to yield an appropriate threshold value. In rigrsure criterion, 

the threshold can be calculated using Equation (3.5) [79]. 

𝜆𝑗 =  𝜎𝑗√𝑤𝑏 … … … … … … … … … … … … … … (3.5) 

Where,𝑤𝑏 is the 𝑏𝑡ℎ squared wavelet coefficient (coefficient at minimal risk) chosen from the 

vector 𝑊 containing the square of wavelet coefficients from small to large as 𝑊 =

[𝑤1, 𝑤2, . . 𝑤𝑁]and 𝞂 is the standard deviation of the noisy signal. 
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Heursure rule: It is a mixed threshold method. In this criterion, the threshold is selected using a 

combination of Sqtwolog and Rigrsure methods. If the SNR (signal to noise ratio) is very small, 

the SURE method’s estimation is poor. In such cases, the Sqtwolog method gives better threshold 

estimation [80]. 

Minimaxi rule: The principle of minimaxi method is to minimize the maximum risk of 

estimation. Based on the minimaxi criterion, a fixed threshold is chosen to yield minimax 

performance for mean square error against an ideal procedure [80]. 

In this research, we applied soft thresholding method using Sqtwolog threshold selection rule for 

the denoising of the lung sound signals. After decomposition and thresholding, the final step is 

the reconstruction of the original signal. This is the step where the noise free lung sound signal or 

the denoised lung sound signal is generated by performing inverse discrete wavelet transform 

(IDWT). During DWT-based decomposition, successive high pass and low pass filters were 

used. The outputs of the high pass and low pass filters are called the DWT coefficients. These 

coefficients in turn enable the reconstruction of the original signal, such process is called IDWT. 

Finally, after the denoising process, a performance measure called signal to noise ratio (SNR) 

was used to measure the performance of the denoising algorithms. In DWT-based denoising 

process, after decomposition, thresholding, and reconstruction, looking for the performance of 

the denoising algorithm is paramount. Otherwise, it is difficult to say the algorithm is best 

without showing its denoising performance. In case of signal denoising, computing SNR is the 

common way to show the performance of the denoising algorithm. To do this, addition of white 

Gaussian noise to the lung sound signals is the most suitable way to see the effect of noise added 

to the lung sound signals [81].  Next, for the lung sound signals containing the desired level of 

white Gaussian noise, the performance of the denoising algorithms can be measured by 

calculating SNR. We computed the SNR values using the following mathematical equation 

shown in Equation (3.6) [82]. 

𝑆𝑁𝑅𝑑𝐵 = 10 log10 (
𝑋𝑠𝑖𝑔𝑛𝑎𝑙

𝑋𝑛𝑜𝑖𝑠𝑒
)

2

… … … … … … … … … … … … … … . . (3.6) 

Where,𝑋𝑠𝑖𝑔𝑛𝑎𝑙 is the the root mean square amplitude of the signal and  𝑋𝑛𝑜𝑖𝑠𝑒 is the root mean 

square amplitude of the noise. 
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3.6. Feature Extraction 

Audio signal processing algorithms involves analysis of signals in different domains, extracting 

its features, predicting its behaviors, recognizing if any pattern is present in the signal, and 

determining how a particular signal is correlated to another similar signals [83]. Any parameter 

which has a potential to discriminate between different classes is termed as a feature. So, feature 

extraction (i.e., extraction of discriminative features of signals) is one of the most vital parts of 

machine learning process. Moreover, feature extraction or featurization is the process of mapping 

an input from 𝑋 to a vector in 𝑅𝑑, shown in Figure 3.6. 

                         

                           Raw input                                                                       Feature vector 

𝑋𝜙(𝑋)  𝑅𝑑
 

Figure 3.6: Feature extraction [84]. 

Generally, feature extraction is the process of transforming the input data into set of 

discriminatory features. The extraction of discriminatory features in the signal enhances the 

reduction of the length of the input data vector by eradicating redundancy in the signal and 

compressing the relevant information into a feature vector of significantly lower dimension. 

Once the lung sound signals are acquired, analyzed, and preprocessed, we need to determine 

features by employing feature extraction techniques. There are different feature extraction 

techniques. The temporal analysis techniques can be used for extraction of statistical distribution 

features by analyzing the time domain waveform representation of a signal while the spectral 

analysis techniques utilize the spectral representation of the audio signal for extraction of 

spectral features. In this research, different features have been extracted using discrete wavelet 

transform (DWT) feature extraction technique to discriminate between the lung sound signals of 

healthy, COPD, URTI, LRTI, pneumonia, bronchiectasis, bronchiolitis, and asthma diseased 

subjects. The DWT feature extraction technique is highly useful for extraction of wavelet 

features from the non-stationary lung sound signals. Thus, for such non-stationary lung sound 

signals an appropriate method for analysis and extraction of features should be used. Therefore, 

DWT feature extraction technique has been chosen for this purpose.  

Feature  

Extraction  
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Basically, the DWT-based feature extraction procedure involves two steps. First, decompose the 

given signal into 𝑁 levels using filtering and decimation to get the approximation and detailed 

coefficients. This can be done by employing successive high pass and low pass filtering 

operations. The Second step is followed by the reconstruction of the signal. This can be done by 

performing inverse discrete wavelet transform (IDWT). The features extracted from the IDWT 

of signals are considered highly useful features for input of the classifiers due to their effective 

time-frequency representation of the non-stationary signals. In this research, we applied the 

following procedure shown in Figure 3.7 to implement the DWT-based feature extraction 

algorithm for the extraction of features of the lung sound signals. As shown in Figure 3.7, the 

DWT feature extraction algorithm involves series of steps. The various steps involved during the 

DWT feature extraction algorithm are discussed as follows: 

Step 1: The lung sound signals decomposed into six detail sub bands using DWT at level 𝑁 = 6. 

The sub bands are the details (high-frequency band coefficients) and the approximation 

(low-frequency band coefficients). 

Step 2: The approximation coefficients are further decomposed to extract localized information 

from the sub bands of detail coefficients. In this study, a six-level decomposition was 

done using Sym13 wavelet. 

Step 3: All the six level detail band coefficients were taken for further analysis and processes. 

Step 4:  For six detail sub bands, the frequency vector (in radians/sample) is extracted using 

periodogram function in MATLAB. 

Step 5: Finally, after decomposition the signals are reconstructed using IDWT.  

Step 6: Then the features were computed from the reconstructed signal by using the syntax or by 

implementing the formula.  

Step 7: At last, the extracted features for all the lung sound classes were tabulated in feature table 

for classification.  

 

 



____________________________________________________________________________________

58 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

Figure 3.7: A procedure for DWT-based feature extraction. 

Following the procedure presented in Figure 3.7, different features were extracted from the lung 

sound signals. These features extracted for the classification of lung diseases are clearly 

discussed as follows. 
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Sample rate = 44.1KHz. 
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DWT-Decomposition: 

Sym13 wavelet at 6th level to 6 detail sub bands. 
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Mean: Mean is one of the basic statistical time domain features of a signal. Mean value is the 

average value of a signal. It can be calculated by summing all the samples and dividing by the 

number of samples (𝑁). Mathematically, the arithmetic mean value of a signal can be calculated 

using Equation (3.7). 

𝑋𝑚𝑒𝑎𝑛 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
… … … … … … … … … … … … … … … … … … … … . . (3.7) 

Standard deviation (𝝈): Standard deviation is the amount of variation in the set of data values 

from the mean value. It is a statistic which measures the dispersion of a dataset relative to its 

mean value. Mathematically, 𝜎 can be calculated as the square of the variance, given in Equation 

(3.8). If the data points are further from the mean, there is the higher deviation within the dataset; 

hence, the more spread out the data, the higher the 𝜎.  

𝜎 =
√(∑(𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2)

𝑁
… … … … … … … … … … … … … … … … … . . (3.8) 

Root mean square (RMS): RMS value of a signal can be calculated by squaring each value and 

finding the arithmetic mean of those squared values, then taking the square root of the result. 

Simply, RMS represents the average power of a signal, mathematically given in Equation (3.9). 

𝑋𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑋𝑖

2

𝑁

𝑖=1

 … … … … … … … … … … … … … … … … … … … … . (3.9) 

Shape factor: Shape factor is another important basic statistical time domain features of a signal. 

It is dependent on the shape of the signal while being independent of the signal dimensions. 

Mathematically, shape factor can be calculated by dividing RMS by the mean of the absolute 

value of a signal, given in Equation (3.10). 

𝑋𝑆𝐹 =
𝑋𝑅𝑀𝑆

1

𝑁
∑ │𝑋𝑖│

𝑁
𝑖=1

 … … … … … … … … … … … … … … … … … … … … … … (3.10) 
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Kurtosis: Kurtosis is one of the higher order statistical time domain features of a signal. It is the 

length of a signal distribution, or equivalently it is to mean how outlier prone the signal is. The 

positive value of kurtosis shows that the signal is peaked and the negative value of kurtosis 

shows the signal is flat. Mathematically, kurtosis can be determined using Equation (3.11). 

𝑋𝑘𝑢𝑟𝑡 =

1

𝑁
∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)𝑁

𝑖=1
4

(
1

𝑁
∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2)𝑁

𝑖=1
2  … … … … … … … … … … … … … … … … … … . (3.11) 

Skewness: Skewness is another important higher order statistical time domain feature of the 

signal. It is the asymmetry of a signal distribution. Meaning, it is the measure of the asymmetry 

of the data. Mathematically, skewness can be calculated using Equation (3.12). 

𝑋𝑠𝑘𝑒𝑤 =

1

𝑁
∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)𝑁

𝑖=1
3

(
1

𝑁
∑ (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)2)𝑁

𝑖=1
3/2

 … … … … … … … … … … … … … … … . . (3.12) 

Peak value: Peak value is among the extracted impulsive metrics statistical feature. It is the 

maximum absolute value of the input signal given as 𝑋𝑝 = max │𝑋𝑖│. 

Crest factor: Crest factor is another extracted impulsive metrics feature. It is the ratio of the 

maximum absolute value to the RMS value of the input signal. Therefore, mathematically crest 

factor can be calculated by dividing the peak value by the signal RMS, given in Equation (3.13). 

𝑋𝑐𝑟𝑒𝑠𝑡 =
𝑋𝑝

√
1

𝑁
∑ 𝑋𝑖

2𝑁
𝑖=1

 … … … … … … … … … … … … … … … … … … … . (3.13) 

Impulse factor: Impulse factor is the ratio of the maximum absolute value to the mean of the 

absolute value of the input signal. Meaning, it is a measure of comparison between the height of 

a peak to the mean level of the signal. Mathematically, impulse factor can be calculated using 

Equation (3.14).  

𝑋𝐼𝐹 =
𝑋𝑃

1

𝑁
∑ │𝑋𝑖│

𝑁
𝑖=1

 … … … … … … … … … … … … … … … … … … … (3.14) 
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Clearance factor: It is the ratio of the maximum absolute value to the squared mean of the 

absolute value’s square root. Therefore, clearance factor can be calculated as the peak value 

divided by the squared mean value of the square roots of the absolute value amplitudes, given in 

Equation (3.15). 

𝑋𝑐𝑙𝑒𝑎𝑟 =
𝑋𝑝

(
1

𝑁
∑ √│𝑋𝑖│

𝑁
1 )

2 … … … … … … … … … … … … … … … … … (3.15) 

Signal to noise ratio (SNR): SNR is the ratio of signal power to noise power, and its unit of 

measurement is typically decibels (dB). It is a measurement parameter that compares the level of 

the desired signal to the level of background noise.  

Total harmonic distortion (THD): THD is the measure of the harmonic distortion present in the 

signal. It is the ratio of total harmonic component power to fundamental power. Meaning, it is 

the ratio of the sum of all the powers of harmonic components to the power of fundamental 

frequency, given in Equation (3.16). 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓𝑎𝑣𝑔) =
∑ 𝑓𝑖𝑋𝑝𝑖

𝑛
𝑖−1

∑ 𝑝𝑖
𝑛
𝑖=1

… … … … … … … … . (3.16) 

Where 𝑝 is power spectral density and 𝑓 is frequency vector. 

Signal to noise and distortion ratio (SINAD): SINAD is the ratio of total signal power to total 

noise plus the distortion power. In addition, other frequency domain/spectral features were also 

extracted from the lung sound signals of the different subjects for the classification of most 

common lung diseases. 

Peak amplitude: The peak amplitude of a sinusoidal waveform signal is the maximum or 

negative deviation of a waveform from its zero-reference level. For a symmetrical sinusoidal 

waveform, the positive peak value is the same as the negative peak value. Generally, peak 

amplitude is the spectral feature generated based on the amplitude of the peaks. It is the 

maximum amplitude value of the signal. 
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Peak frequency: Peak frequency (𝑓𝑝) is the maximum frequency value of the signal within the 

selected spectral region. 𝑓𝑝 is commonly estimated from the spectra found from sampled data. It 

is the spectral peak generated based on the frequency of the peaks. 

Band power: Band power is defined as the area under the spectrum curve within the selected 

band limits. It represents the power of the signal in the chosen frequency band. After pertinent 

feature extractions, the next step was feature selection to select the most discriminative features 

used for classification of data. 

3.7. Feature Selection 

Feature selection is the process of reducing input variables or features used for training the given 

machine learning model. It is the process of selecting and retaining only the most important 

features used for classification. Feature selection is highly important because it reduces the 

computational cost and makes the model time efficient. It reduces the training time, avoids 

overfitting, and improves accuracy of the model. The two main types of feature selection 

methods used in machine learning are supervised and unsupervised methods. Since we used the 

supervised machine learning models for classification of lung diseases, we focused on the 

supervised feature selection methods. There are various supervised feature selection methods 

which can be grouped into three main categories such as wrapper, filter, and embedded methods 

[85]. The wrapper methods include forward selection, backward selection, and stepwise selection 

algorithms. These methods used the model performance to select the best features for 

classification. The two main disadvantages of wrapper methods are increasing the overfitting risk 

and are computationally expensive. Wrapper methods are computationally more expensive 

compared to filter and embedded methods due to the repeated learning steps. For example, in 

case of sequential forward selection algorithm, it is a greedy search algorithm to get the optimal 

feature subset by interactively selecting the features based on the performance of the model. In 

doing so, we have to train the model for each feature subset combination until the optimal 

features are found. Therefore, this approach is much more computationally expensive than filter 

and embedded approaches. In filter methods, the features are selected or filtered based on the 

general characteristics of dataset like the correlation with the dependent variable to predict. 
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These methods include ANOVA, Pearson correlation, Chi-square test, information gain, and 

variance thresholding. Filter methods are faster, better approach, and avoids overfitting during 

classification. Embedded methods have been recently proposed by combing the advantages of 

wrapper and filter methods. These methods perform the feature selection in the learning or the 

model building phase. It includes the regularization methods such as LASSO, Ridge regression, 

Elastic net, and decision trees. Embedded methods are less computationally expensive than 

wrapper methods and less prone to overfitting. Table 3.2 shows a short comparison between the 

above-mentioned feature selection methods.  

Table 3.2: Comparison among the three feature selection methods [85]. 

 

 

Criteria  

 

Feature selection methods 

Wrapper method Filter method Embedded method 

Selection 

mechanism  

It uses predictive 

model.  

It uses poxy measure. Feature selection is 

embedded in the model 

building phase. 

Speed  Slower. Computationally faster. Medium. 

Overfitting  Prone to overfitting. Avoids overfitting. Less prone to overfitting. 

 

From Table 3.2, we can see that filter methods are fast, and effective methods to select relevant 

features. These methods are also helpful to avoid overfitting that will happen during final data 

classification. In this study, we select and applied one of the statistical filter feature selection 

methods i.e., one-way ANOVA. We used Figure 3.8 for the selection of ANOVA method among 

the other filter methods. Figure 3.8 is an overview sketch used for selection of filter methods in 

machine learning.  
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Figure 3.8: An overview sketch for selection of filter methods [86]. 

From Figure 3.8, we can see that for numerical input and categorical output classification issues, 

ANOVA is the preferred method [86]. Therefore, we used one-way ANOVA for selecting the 

most relevant features for final classification of lung diseases. Feature selection using one-way 

ANOVA is the process of ordering or ranking the extracted features by the value of some scoring 

function, 𝑆(𝑓𝑖). It usually measures the relevance of features [86]. The scoring function (𝑆(𝑓𝑖)) is 

computed from the training data, measuring some criteria of feature 𝑓𝑖. Selection of relevant 

features using feature or variable ranking is the simplest method. It is simply to select the 𝑘 

highest ranked feature according to 𝑆. Generally, one-way ANOVA feature selection method is 

simple, computationally faster, and avoids overfitting during model training and final data 

classification. Therefore, in this research, we implemented the one-way ANOVA feature ranking 

method using 𝑚𝑖𝑛𝑚𝑎𝑥 normalization scheme, given in Equation (3.17). The selected features 

have the discriminative power to discriminate the lung sound signals of COPD, URTI, LRTI, 

pneumonia, bronchiectasis, bronchiolitis, asthma and healthy subjects. 

𝐹𝑛𝑒𝑤 =
𝐹 − min(𝐹)

max(𝐹) − min (𝐹)
… … … … … … … … … … (3.17). 

Input variable 

 

Numerical  

 

Output variable 

 

Numerical  

 

Categorical  

 

Pearson’s  

 

Spearman’s  

 

ANOVA  

 

Categorical  

 

Output variable 

 

Kendall’s  

 

Chi-Squared 

 

Mutual  

Information   

 

Numerical  

 

Categorical  
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3.8. Feature Visualization and Normalization 

After ranking the features and selecting the most relevant features, we noticed that the features 

were not on the same scale. This will bias the classifier during data training and classification 

[87]. It is always better to make the features at the same scale. Therefore, after visualizing the 

features, we normalized the features to have the same scale before training the classifier. Next 

data splitting was done. 

3.9. Data Splitting 

Data splitting is the step to prepare the data for training and testing. In data science, the dataset is 

usually split into three parts such as training, validation and testing sets. The training set is the 

dataset in which the model is trained on while the validation dataset is used to validate the 

model. The testing set is the one used to see or evaluate how well the model performs on unseen 

data. There are two most commonly used validation methods in machine learning used for data 

splitting. These are hold-out validation and cross-validation methods. The hold-out validation 

method split the dataset into train and test sets. It is recommended for large datasets. The hold-

out validation method is dependent on just one train-test split. This makes the hold-out validation 

method score dependent on how the dataset is split into train and test sets. On the other hand, 

cross-validation method is dependent on multiple train-test splits. It is usually the preferred 

method, because it gives our model the opportunity to train on multiple train-test splits. This 

gives a better indication of how well our model will perform on unseen or new data. 

Additionally, the cross-validation method protects against overfitting by partitioning the data into 

folds and estimating accuracy on each fold. Moreover, cross-validation or ′𝑘′ fold cross-

validation is when the dataset is randomly split into multiple ′𝑘′ groups. Hence, one of the 

groups is used as the test set and the remaining are used as the training set. Then the model is 

trained on the training set and scored on the test set, the process is repeated until each unique 

group used as the test set. In this research, first the dataset has been split using the hold-out 

method. Then we applied an 8-fold cross-validation, shown in Figure 3.9. 
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Split 1 

Split 2 

Split 3 

Split 4 

Split 5 

Split 6 

Split 7 

Split 8 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 1 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 2 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 3 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 4 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 5 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 6 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 7 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Metric 8 

 

 

Figure 3.9: 8-fold cross-validation. 

The ′𝑘′ fold cross-validation (8-fold cross-validation in our case), shown in Figure 3.9 is a 

statistical method of evaluating and comparing different learning models by dividing data into 

two segments which are the training and validation segments. Then the training and validation 

sets should cross-over in successive rounds so that each data point has a chance of being 

validated against 8 separate times. 

3.10. Model Training and Evaluation 

After a successful completion of all the above tasks (data acquisition, data structuring, data pre-

processing, feature extraction, feature ranking or selection, feature visualization and 

normalization, and data splitting), the final step is model training for data classification i.e., 

classification of most common lung diseases using features extracted from the lung sounds. This 

is a very important stage to interactively train, validate and tune different machine learning 

classification models. In this study, we select and trained four important machine learning 

models for final classification of most common lung diseases. Selection of the best classifier 

types depends on the data being processed. For selection of our models, we took into account the 

characteristics of different supervised machine learning algorithms, shown in Table 3.3.  

 

 

 

Training data Test data 
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Table 3.3: Characteristics of different supervised machine learning algorithms [88]. 

Classifier Prediction speed Memory usage Interpretability 

Decision Trees Fast  Small  Easy  

Discriminant Analysis  Fast  Small for linear and large 

for quadratic 

Easy  

Logistic Regression Fast  Medium  Easy  

Support Vector 

Machines  

Medium for linear 

and slow for others  

Medium for linear, 

medium for multiclass and 

large for binary. 

Easy for linear SVM 

and hard for all other 

kernel types  

Nearest Neighbor 

Classifiers  

Slow for cubic and 

medium for others  

Medium  Hard  

Ensemble Classifiers  Fast to medium 

depending on the 

choice of algorithm  

Low to high depending on 

the choice of the 

algorithm 

Hard  

Naïve Bayes 

Classifiers  

Medium for simple 

distributions and 

slow for kernel 

distributions or high 

dimensional data  

Small for simple 

distributions and medium 

for kernel distributions or 

high dimensional data  

Easy  

 

Table 3.3 shows the typical characteristics of different supervised machine learning algorithms 

and we used it as a guide for selection of our models. After choosing the best classification 

models, we trained them to classify the lung diseases as COPD, URTI, LRTI pneumonia, 

bronchiectasis, bronchiolitis, asthma, or as healthy. In this research, due to their best 

characteristics presented in Table 3.3, we selected and trained four important machine learning 

models including Naive Bayes, K-nearest neighbor (KNN), Ensemble and support vector 

machine (SVM) models for classification of most common lung diseases. Naive Bayes models or 

classifiers are a group of classification algorithms based on the Bayes’ theorem. Meaning, it is 

not a single algorithm but a family of algorithms which considers that each attribute in 

unclassified tuple 𝑋  is conditionally independent [89]. 
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Naive Bayes algorithms classify the data in two steps. In the first step, using the training data, the 

method estimates probability distribution of the parameters by assuming each predictor are 

conditionally independent given the class. Finally, in the prediction step for any unseen data, the 

method computes the posterior probability distribution of that sample belonging to each class. 

𝑃(𝐶1|𝑋) =  ∏ 𝑃(𝑋𝑖│𝐶1)𝑃(𝐶1)
𝑛

1
… … … … … … … … … … … … … … … (3.18) 

Where: 𝑃(𝐶1|𝑋) is the probability of tuple 𝑋 belongs to class 1, 𝑃(𝐶1) is the probability of class 

1 that exists in the training set and ∏ 𝑃(𝑋𝑖│𝐶1)𝑛
1   is the production of each attribute in tuple 𝑋 for 

each labeled class, and the tuple will be classified to the class with the maximum probability 

[89].  

KNN classifiers classify the object based on the distance between the new object and the defined 

objects. The new object is assigned to the class K that has the shortest distance to class K which 

defined as the nearest neighbor [89]. Ensemble classifiers mix results from many weak learners 

into one high-quality ensemble model. SVM algorithm represents the training data as points in a 

flat separated space by an apparent gap. Then the new objects are mapped into space with the 

forecast category based on which side of the gap they fall [89]. It classifies the data by finding 

the best hyperplane which separates data points of one class from those of the other classes. 

Finally, after we trained different machine learning models, we choose the best model with 

higher classification accuracy. In the first run result, we found SVM particularly Fine Gaussian 

SVM is the best model with higher classification accuracy. 

Therefore, due to its higher classification accuracy, a Fine Gaussian SVM algorithm has been 

selected for final classification of data. Next, we assessed the classification performance of the 

selected algorithm (Fine Gaussian SVM algorithm) using confusion matrices. Confusion matrix 

is a table which helps us to visualize the performance of a supervised machine learning 

algorithm. It helps us to identify the areas where the classification algorithm has performed 

poorly. It holds the number of observations for each class, true positive rates (TPR), false 

negative rates (FNR), positive predictive values (PPV), and false discovery rates (FDR).  In each 

of the confusion matrix presented in the results section, each of the rows show the instances in 

the true class while each of the columns show the instances in the predicted class. A brief 

summary about the SVM model is presented below. 



____________________________________________________________________________________

69 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

3.10.1. Support Vector Machine (SVM) 

SVM is a supervised machine learning algorithm used for solving classification and regression 

issues. Today, it is widely used in different research zones such as speech recognition, face 

recognition, medicinal conclusion, and so on. SVM algorithm represents the training data as 

points in a flat separated space by an apparent gap or a separating hyperplane. Then the new 

objects are mapped into space with the forecast category based on which side of the gap they fall. 

However, as shown in Figure 3.10 (a), there could be an infinite number of separating 

hyperplanes. SVM solves this problem using the concept of the smallest distance between any of 

the data samples and the decision boundary. Meaning, as shown in Figure 3.10 (b), the best 

hyperplane which corresponds to the one giving the largest margin between the classes is 

selected. Therefore, SVM classifies the data by finding the best hyperplane which separates data 

points of one class from those of the other class [90]. The best hyperplane for an SVM means the 

one with the largest margin between the two classes. Margin is the maximal width of the slab 

parallel to the hyperplane that has no interior support vectors. Support vectors are the data points 

which are closest to the separating hyperplane. These points are found on the boundary of the 

slab, shown in Figure 3.10. Figure 3.10 illustrates an overview sketch of SVM algorithm. 

 

Figure 3.10: An overview sketch of SVM algorithm [90]. 
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Support vector machines (SVM) algorithm was originally designed for binary case classification 

issues. However, real world problems need classification of more than two categories. As a 

result, multiclass SVM become widely used in a wide range of applications such as speech 

recognition, optical character recognition, and in the area of bioinformatics. Multiclass SVM 

aims to designate labels to instances by using support vectors, where the labels are drawn from a 

finite set of several elements. The classification learner uses 𝑓𝑖𝑡𝑐𝑠𝑣𝑚 function to train the 

classifier for binary case classification, where there are exactly two classes. When there are more 

than two classes (multiclass classification case), the classification learner uses 𝑓𝑖𝑡𝑐𝑒𝑐𝑜𝑐 function 

to reduce the multiclass classification problem to a set of binary classification subproblems with 

one SVM learner for each subproblem. Figure 3.11 shows a multi-class SVM method which can 

be used for classification of more than two categories. 

 

Figure 3.11: Multi-class SVM method. 

Generally, the basic approach for using binary classification algorithms for multi-classification 

issues is to split the multi-class classification dataset into multiple binary classification datasets 

and fit a binary classification model on each.  There are two important heuristic approaches such 

as One-vs-All (OVA) and One-vs-One (OVO) strategies, used to split a multiclass classification 

problem into multiple binary classification datasets and train a binary classification model. The 

One-vs-All strategy also called One-vs-Rest is a heuristic method used for using binary 

classification algorithms for multi-class classification. 
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It splits the multi-class classification into one binary classification problem per class. Meaning, 

One-vs-All method splits a multi-class dataset into multiple binary classification problems. Then 

a binary classifier is trained on each binary classification problem so that predictions are made 

using the most confident model. One-vs-One is another heuristic approach used for using binary 

classification algorithms for multi-class classification. It splits the multi-class classification into 

one binary classification problem per each pair of classes. Meaning, like OVA, OVO splits a 

multi-class classification dataset into binary classification problems. Unlike OVA which splits a 

multi-classification dataset into one binary for each class, OVO approach splits a multi-

classification dataset into one dataset for each class versus every other class. So, it trains one 

learner for each pair of classes to distinguish one class from every other class. Figure 3.12 

illustrates the SVM principle and of the One-vs-One (OVO) multiclass classification SVM for 

three classes. In this research, One-vs-One (OVO) multiclass classification SVM was applied to 

classify most common lung diseases into eight separate classes by following the same procedure 

shown in Figure 3.12. 

 

Figure 3.12: Illustration of One-vs-One (OVO) multiclass SVM for three classes. 
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3.11. Model optimization 

The fundamental goal of machine learning is to create a model that performs well and gives 

higher classification accuracy in predicting a particular set of cases. To achieve a more accurate 

model, we need to apply machine learning optimization techniques. Optimization by itself is the 

problem of finding a set of inputs to an objective function that results in a maximum or minimum 

function evaluation. It is the process of adjusting the hyperparameters in order to minimize the 

cost function by using one of the optimization techniques [91]. Hyperparameters can have a 

direct impact on training of machine learning models. Hence, to achieve a maximal performance, 

it is better to know how to optimize them. 

Some of the common hyperparameter tunning strategies used in machine learning includes grid 

search, random search, and Bayesian optimization [91]. Grid search method is the most basic 

hyperparameter tunning method. In this method, a model will be built for each possible 

combination of the hyperparameter values provided. Then evaluating each model, and the 

architecture which produces the best results will be selected. Random search builds up a grid of 

hyperparameter values and selects random combinations to train the model. This method allows 

us to explicitly control the number of parameter combinations. However, tunning by means of 

using these common hyperparameter tunning techniques can be a time-consuming challenge 

especially with large parameters spaces. 

Hyperparameters can also be tunned manually. Traditionally, hyperparameters were optimized or 

tuned manually by means of trial-and-error method. However, there is a continual improvement 

for faster, better, and more automatic methods to optimize hyperparameters. Bayesian 

optimization is another most important optimization technique used to optimize 

hyperparameters. There are different ways to perform Bayesian optimization technique including 

𝑓𝑖𝑡𝑐𝑎𝑢𝑡𝑜 and 𝑓𝑖𝑡𝑟𝑎𝑢𝑡𝑜, classification learner and regression learner apps, fit function, and 

𝑏𝑎𝑦𝑒𝑠𝑝𝑜𝑡. After we choose a particular type of model to train, for example a decision tree or a 

support vector machine (SVM), we can tune the model by selecting different advanced options. 

For instance, we can change the maximum number of splits for a decision tree or the box 

constraint of an SVM. Instead of manually selecting these options, we can use hyperparameter 

optimization within the classification learner app to automate the selection of hyperparameter 

values. 



____________________________________________________________________________________

73 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

For a given model type, the app tries different combinations of hyperparameter values using an 

optimization scheme that seeks to minimize the model classification error, and returns a model 

with the optimized hyperparameters. In this study, we used classification learner app to 

automatically build optimized model using Bayesian optimization scheme. Therefore, in this 

study, we used Bayesian optimization technique to optimize our model for improving accuracy 

of the selected model. At last, several performance metrics such as TPR, FNR, TNR, and FPR 

were measured for determining accuracy, sensitivity, and specificity of the final model. 

Therefore, by using the performance metrics obtained from the confusion matrices, the accuracy, 

sensitivity, and specificity of the final model were calculated using Equations 3.19, 3.20, and 

3.21. 

Sensitivity is the performance metric which evaluates a model’s ability to predict true positives 

of each available category. The equation for calculating sensitivity of a model is given in 

Equation (3.19). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … … … … … … … … … … … … … … … … (3.19) 

Specificity is the performance metric which evaluates a model’s ability to predict true negatives 

of each available category. It determines a model’s ability to predict if an observation does not 

belong to a specific category. The equation for calculating specificity of a model is given in 

Equation (3.20). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
… … … … … … … … … … … … … … … … … … (3.20) 

Accuracy is another performance metric that evaluates a model’s ability to correctly differentiate 

observations from different category. It is defined as the percentage of correct predictions for the 

test data. Accuracy can be calculated by dividing the number of correct predictions by the 

number of total predictions, mathematically given in Equation (3.21).   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
… … … … … … … … … … … … (3.21) 

Where, true positives (TP) are when a model predicts an observation belongs to a class and it 

actually belong to that class. 
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True negatives (TN) are when a model predicts an observation doesn’t belong to a class and it 

actually doesn’t belong to that class. False positives (FP) are when a model predicts an 

observation belongs to a class when in reality it doesn’t belong to that class. False negatives (FN) 

are when a model predicts an observation doesn’t belong to a class when in reality it does belong 

to that class.  

3.12. Materials 

For a successful completion of this research, different software and hardware materials have 

been used. The software materials were used for solving, and performing mathematical 

calculations, managing codes, files, and data, processing and analysis of signals. Two important 

software materials such as MATLAB (an abbreviation of “matrix laboratory”) and audacity 

software were used in this study. We used MATLAB R2019b software to perform the above-

mentioned tasks. Additionally, we used the latest version of audacity software (audacity 2.4.2). 

Audacity is a free and open-source digital multi-track audio recorder and editor application 

software used to display, edit, and amplify lung sound records. It is also used to annotate the lung 

sound records or label sound tracks to identify specific events. Moreover, the hardware materials 

(traditional stethoscope head, medical grade tubing, condenser microphone, audio cable and 

computer installed with audacity software) were used for the construction of our electronic 

stethoscope.  
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CHAPTER FOUR 

RESULTS and DISCUSSION 

 

4.1. Construction of Electronic Stethoscope 

First of all, we made an electronic stethoscope for lung sound acquisitions by modifying the 

existing conventional or traditional acoustic stethoscope which is readily available in our most 

health care institutions. As shown in Figure 4.1, the materials we used for the construction of our 

electronic stethoscope were head of traditional stethoscope, medical grade tubing, condenser 

microphone, audio cable and computer installed with audacity software. 

 

Figure 4.1: Hardware materials used for the construction of electronic stethoscope. 

The head of the normal stethoscope was placed over the patient chest wall as usual to pick up the 

lung sounds through its diaphragm and bell end. We used head of yuwell traditional stethoscope, 

which is locally and readily available in most health care organizations of Ethiopia, shown in 

Figure 4.2. 
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Incorporating the head of traditional stethoscope in the design gave significant advantages such 

as patient comfort and most importantly to get standard and valuable sound. Figure 4.3 shows 

head of yuwell traditional stethoscope (diaphragm and bell ends) which we used for the 

construction of our electronic stethoscope. 

 

Figure 4.2: Yuwell traditional acoustic stethoscope. 

 

Figure 4.3: Head of yuwell traditional stethoscope; (a), the diaphragm end (b) bell end. 

The medical grade tubing was used to create connection between head of the traditional 

stethoscope and the condenser microphone. In this research, a moisture proof PVC tube which 

can replace the stethoscope tubing was used to create connection between the stethoscope head 

and the microphone. Figure 4.4 shows one end of the medical grade tubing connected to the head 

of the stethoscope. 
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Figure 4.4: Medical grade tubing connected to head of stethoscope. 

For the transduction purpose a reliable, cost-efficient, small and lightweight condenser 

microphone having reproducible frequency response has been selected and mounted onto the 

head of the stethoscope. A condenser microphone (SG electret microphone, shown in Figure 4.5) 

was selected and mounted onto the head of the stethoscope to convert the acoustic sound picked 

up by the stethoscope head into an equivalent electrical signal. 

 

Figure 4.5: SG electret microphone. 
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One end of the condenser microphone is mounted on the head of the stethoscope through the 

medical grade tubing and the other end is connected to computer through audio cable; so that it 

can easily interfaced with computer for further recording and processing of lung sounds. We 

used an audio cable shown in Figure 4.6 to connect one end of the condenser microphone to 

computer. Figure 4.7 shows a condenser microphone sensor connected to an audio cable.       

 

Figure 4.6: Audio cable. 

 

Figure 4.7: SG electret microphone connected to an audio cable. 
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Besides to the above discussed components, an audacity software was used in the construction of 

our electronic stethoscope. Audacity is a free and open-source digital multi-track audio recorder 

and editor application software available for windows, macOS, GNU/Linux and other operating 

systems. Once we captured the lung sounds, audacity software gives us the power to display, 

edit, amplify, filter, changing playback rate, and show spectrograms of signals. Additionally, it is 

used to annotate the lung sound records or used to label sound tracks to identify specific events. 

Generally, as compared to the traditional stethoscope, our electronic stethoscope allows 

amplification of the acoustic signals, electronic removal of noise artifacts, and recording for 

playback onto computer for further processing of lung sound signals. Once, the lung sounds are 

acquired through this constructed electronic stethoscope, the next computerized processing of 

lung sounds held using different modern digital signal processing techniques. 

 

Figure 4.8: SG electret microphone connected to head of traditional stethoscope and an audio 

cable. 
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Finally, we made our electronic stethoscope by doing certain modifications over the available 

traditional stethoscope; so that it will be best solution for limited resource health care settings in 

terms of simplicity, patient comfort, and cost effectiveness by solving the existing limitations of 

current traditional stethoscopes.  

 
 

 

 

Audio cable       System          Electret microphone       Stethoscope head 

 

Figure 4.9: An electronic stethoscope for acquisition of lung sounds. 

 

4.2. Signal Acquisition 

The local lung sound collection was held at Jimma University Institute of Health, Jimma 

University Medical Center (JUMC), Department of Internal Medicine, Pulmonology Unit. The 

lung sounds were recorded sequentially from each of the subjects at sitting position, shown in 

Figure 4.10. 
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Figure 4.10: Lung sound recording from patients at JUMC, Department of Internal Medicine, 

Pulmonology unit; (top), COPD (bottom) bronchiectasis subjects. 

Table 4.1 summarizes a number of lung sound records for each class used in this study. 

According to the data presented using Table 4.1, a total of 500 lung sound records where; 75 

healthy, 70 asthma, 60 pneumonia, 60 URTI, 50 LRTI, 60 COPD, 65 bronchiectasis, and 60 

bronchiolitis records were used in this study. 
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Table 4.1: Number of lung sound records for each class used in the study. 

Pulmonary conditions 
Number of lung sound records 

Total 
Local Online 

Asthma 60 10 70 

Bronchiectasis   49 16 65 

Pneumonia  23 37 60 

URTI  15 45 60 

Bronchiolitis   47 13 60 

LRTI 48 2 50 

Healthy  30 45 75 

COPD  15 45 60 

 

Total  

 

287 

 

213 

 

500 

 

4.3. Pre-processing 

A discrete wavelet transform (DWT)-based denoising of the lung sound signals which involves 

the three important steps such as decomposition, detail coefficients thresholding, and 

reconstruction have been done. Signal decomposition is the first step in DWT-based denoising 

process. Therefore, the wavelet decomposition of the lung sound signals of healthy, COPD, 

URTI, LRTI, pneumonia, bronchiectasis, bronchiolitis, and asthma subjects are demonstrated in 

Figures 4.11 – 4.14. 
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Figure 4.11: Wavelet decomposition of lung sound signals using Sym13 at 6th level; (top), COPD 

(bottom) asthma subjects. 
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Figure 4.12: Wavelet decomposition of lung sound signals using Sym13 at 6th level; (top), 

healthy (bottom) LRTI subjects. 
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Figure 4.13: Wavelet decomposition of lung sound signals using Sym13 at 6th level; (top), 

bronchiectasis (bottom) bronchiolitis subjects. 



____________________________________________________________________________________

86 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

 

 

Figure 4.14: Wavelet decomposition of lung sound signals using Sym13 at 6th level; (top), 

pneumonia (bottom) URTI subjects. 
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Following the decomposition, the denoising was performed by applying Sym13 wavelet function 

with soft thresholding method and Sqtwolog, threshold selection rule. Figures 4.15, 4.16, and 

4.17 shows the effect of Sym13 wavelet function on denoising of the lung sound signal of healthy 

and some diseased subjects such as COPD, bronchiectasis, bronchiolitis, pneumonia and URTI. 

 

 

Figure 4.15: Denoising of lung sound signals using Sym13 wavelet function at 6th level with soft 

thresholding method; (top), healthy (bottom) COPD subjects. 
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Figure 4.16: Denoising of lung sound signals using Sym13 wavelet function at 6th level with soft 

thresholding method; (top), bronchiectasis (bottom) bronchiolitis subjects. 
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Figure 4.17: Denoising of lung sound signals using Sym13 wavelet function at 6th level with soft 

thresholding method; (top), pneumonia (bottom) URTI subjects. 
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Moreover, the effect of the two thresholding methods (soft and hard thresholding) were studied 

by computing the SNR results when denoising the lung sound signals using different wavelet 

functions. Table 4.2 shows the SNR results obtained when denoising the lung sound signals 

using Db4, Db10, Sym5, and Sym13 wavelet functions at different level of decomposition with 

the two thresholding methods. 

Table 4.2: SNR results obtained when denoising the lung sound signals using different wavelet 

functions at different level of decomposition with soft and hard thresholding methods (Sqtwolog 

threshold selection rule was applied). 

 

SNR (dB) 

 

Wavelet 

function 

 

Level 3 Level 4 Level 5 Level 6 Level 7 

Soft  Hard  Soft  Hard  Soft  Hard  Soft  Hard  Soft  Hard  

 

Db4 

 

16.7345 

 

15.9934 

 

18.3210 

 

17.8921 

 

20.2870 

 

20.2946 

 

20.3753 

 

20.3253 

 

20.014 

 

19.8754 

 

Db10 

 

17.3240 

 

16.6587 

 

19.1032 

 

18.9821 

 

21.4465 

 

21.4312 

 

22.3861 

 

22.3758 

 

21.3201 

 

20.986 

 

Sym5  

 

16.8341 

 

16.0241 

 

19.6565 

 

18.7694 

 

20.3309 

 

20.4181 

 

21.3416 

 

21.3472 

 

20.9788 

 

19.8320 

 

Sym13 

 

17.8934 

 

17.2301 

 

19.6587 

 

19.2789 

 

21.5857 

 

21.4880 

 

22.5011 

 

22.4848 

 

21.6542 

 

21.3057 

 

According to Table 4.2, the SNR results for the different wavelet functions were calculated at 

different level of decomposition (3rd to 7th level of decomposition). Moreover, the results were 

found by applying Sqtwolog threshold selection rule with the two thresholding methods such as 

soft and hard thresholding methods. A total of 240 lung sound signals (30 for each class) for the 

initial round and 400 lung sound signals (50 for each class) for final test were used and the better 

SNR results were found still at six level of decomposition. During the selection of the wavelet 

function, the level of decomposition and the thresholding method are the important parameters to 

be taken into account.  
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This is due to the fact that the level of decomposition and the thresholding method could affect 

the performance or the SNR values of the wavelet function, shown in Table 4.2. Based on the 

result shown in Table 4.2, the highest SNR values were observed for the Db10 and Sym13 

wavelet functions at 6th level of decomposition. The SNR values for the Db10 wavelet function 

were 22.3861 dB and 22.3758 dB with soft and hard thresholding methods respectively. For 

Sym13 wavelet function, the SNR results were 22.5011dB and 22.4848 dB with soft and hard 

thresholding methods respectively. Furthermore, we used the following column chart to visually 

compare these SNR values of the different wavelet functions. Figure 4.18 shows a column chart 

used for comparing the SNR values obtained when using Db4, Db10, Sym5, and Sym13 wavelet 

functions with soft and hard thresholding methods. 

 

Figure 4.18: A comparison of SNR values obtained using different wavelet functions with soft 

and hard thresholding methods at 6th level of decomposition. 

According to the result shown in Figure 4.18, the wavelet function particularly Sym13 function 

gives the highest SNR value with soft thresholding method. The SNR value of Sym13 at 6th level 

of decomposition with soft thresholding method was 22.5011 dB. This is the highest SNR value 

as compared to the other wavelet functions SNR values.  
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Therefore, in this research, Sym13 wavelet function at 6th level decomposition with soft 

thresholding method has been selected for decomposition and denoising of the lung sound 

signals. At last, the effect of the four threshold selection rules such as Rigrsure, Sqtwolog, 

Heursure, and Minmax were also studied by computing the SNR results when denoising the lung 

sound signals using the selected wavelet function. Table 4.3 shows the performance of the 

selected wavelet function (Sym13) in terms of SNR for denoising of lung sound signals of 

healthy, COPD, URTI, LRTI, bronchiectasis, bronchiolitis, pneumonia, and asthma subjects. 

Table 4.3: SNR values of the four threshold selection rules for denoising some lung sound 

signals using Sym13 wavelet function at 6 level decomposition with soft thresholding method. 

 

Thresholding method  

 

Soft  

 

 

Wavelet function  

 

Sym13 at 6th level decomposition 

 

 

Threshold selection rules  

 

Heursure  

 

Rigrsure  

 

Minimax  

 

Sqtwolog 

 

Performance measure  

 

SNR (dB) 

 

SNR (dB) 

 

SNR (dB) 

 

SNR (dB) 

 

Asthma  

 

22.5274 

 

7.9084 

 

20.8074 

 

22.5437 

 

Bronchiectasis  

 

18.3032 

 

18.3383 

 

18.3459 

 

18.3573 

 

Bronchiolitis  

 

22.7513 

 

22.7919 

 

22.7030 

 

22.7142 

 

COPD 

 

11.8043 

 

6.7031 

 

11.6804 

 

11.8150 

 

Healthy  

 

22.5302 

 

22.4980 

 

22.4411 

 

22.4537 

 

Pneumonia  

 

21.8823 

 

21.9152 

 

21.9101 

 

21.8736 

 

LRTI 

 

22.5367 

 

22.6272 

 

22.4426 

 

22.5723 

 

URTI  

 

22.3549 

 

22.2753 

 

22.3364 

 

22.3901 

 

Table 4.3 shows the performance of Sym13 wavelet function in terms of SNR values for 

denoising of different lung sound signals. 
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From this table, we can observe that the performance (SNR values) of Sym13 wavelet function 

with soft thresholding method was different for the four threshold selection rules. According to 

the result shown in Table 4.3, the highest SNR values of Sym13 wavelet function were observed 

in using Sqtwolog threshold selection rule. Sqtwolog threshold selection rule gave the maximum 

performance of the selected wavelet function for denoising of lung sound signals of healthy, 

COPD, URTI, LRTI, bronchiectasis, bronchiolitis, pneumonia, and asthma subjects, shown using 

Table 4.3. Therefore, in this research, Sqtwolog was found the best threshold selection rule for 

the best denoising of the lung sound signals using Sym13 wavelet function with soft thresholding 

method. Finally, the spectrograms for the input or original, noisy, and denoised lung sound 

signals are shown using Figure 4.19. 

 

Figure 4.19: Spectrograms of lung sound signals; original/input lung sound signal (left), noisy 

lung sound signal (middle), and denoised lung sound signal (right). 

The spectrograms shown using Figure 4.19 are used to show the clarity of lung sound segments 

obtained after applying the selected algorithm. After applying Sym13 wavelet function at 6th 

level with soft thresholding method using Sqtwolog threshold selection rule, we can observe that 

the lung sounds are clear in the denoised lung sound signal spectrogram, shown in Figure 4.19.  
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4.4. Feature Extraction 

Important features were extracted from the lung sound signals. The extracted features were used 

for final classification of data. Some of the extracted features include mean, standard deviation, 

root mean square, kurtosis, skewness, peak frequency, band power, total harmonic distortion, and 

others. Therefore, we create a feature table to view the values of the selected features. Table 4.4 

shows sample of the extracted features stored in the feature table. 

Table 4.4: Feature table holding sample of extracted features. 

 

Now, the extracted features are computed and stored in feature table as shown in Table 4.4. The 

next step is to rank features to see which features contributes significant roles to distinguish the 

lung sound signals of the different subjects. For example, when we create and look for feature 

histogram plot of the lung sound signals of the different subjects, there are lots of overlapping 

between the features as shown in Figure 4.20. 
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(a) 

 

(b) 

 

(c) 

Figure 4.20: A sample of feature histogram plot of some of the extracted features; (a), mean (b) 

SNR and (c) THD. 
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There is a lot of overlapping between the feature’s histogram plot of the different subject’s lung 

sound signals, shown in Figure 4.20. Due to this overlapping, it is really hard to tell the most 

useful discriminative feature by looking the histogram plots. As a result, feature ranking is highly 

important. It helps us to get the best predictors or features used to discriminate different classes. 

4.5. Feature Selection 

In this research, One-way ANOVA feature ranking method was employed for selection of most 

discriminative features. One-way ANOVA is a common technique used to characterize features 

by doing one-way analysis of variance. The result of ranking features using one-way ANOVA is 

shown using Table 4.5 and Figure 4.21. Table 4.5 shows the features sorted by importance using 

one-way ANOVA feature ranking method. 

Table 4.5: Features sorted by importance using one-way ANOVA feature ranking method. 

(Std=standard deviation, RMS= root mean square, SNR= signal-to-noise ratio, SINAD= signal-

to-noise and distortion ratio.) 

Feature 

 

One-way ANOVA score values 

 

Shape factor 875.078 

Std 550.53 

RMS 550.312 

Crest factor 450.617 

Clearance factor 432.095 

Impulse factor 419.692 

SNR 419.064 

SINAD 416.626 

Band power 231.186 

Peak amplitude 95.6772 

Mean 65.935 

Kurtosis 61.0681 

Peak frequency 29.0683 

Skewness 19.7747 

Peak value 2.3584 

THD 0 

 



____________________________________________________________________________________

97 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

Moreover, we used the following bar chart to see the importance of extracted features for 

classifying the data using one-way ANOVA, shown using Figure 4.21. 

 

Figure 4. 21: One-way ANOVA feature ranking result. 

Generally, when we are using machine learning models for classification, we choose features 

with high ANOVA score and leave out others with much smaller ANOVA score. Meaning, a 

high score is an indicative for a valuable or relevant feature. From the result shown using Table 

4.5 and Figure 4.21, we can notice that the last three time-domain features such as skewness, 

peak value, and total harmonic distortion (THD) were not playing important role in 

distinguishing lung sound signals of different subjects. Therefore, we only removed these 

features while all the other features were kept in the feature table for training. Generally, ranking 

features using one-way ANOVA helps us to select the top relevant features. This in turn help us 

to get higher accuracy value during training and classification of final data. Table 4.6 shows the 

feature table holding only the selected features and their corresponding values for different 

classes. 
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Table 4.6: Feature table holding a sample of selected features after feature ranking. 

 

4.6. Feature Visualization and Normalization 

After extraction of different features from the lung sound signals, we ranked and selected the 

most useful features for final training and classification of most common lung diseases. 

However, we saw the selected features were not on the same scale. This will bias the classifier 

and affect the accuracy during data training and classification. Therefore, it is always encouraged 

to first visualize the data features before training the classifiers. Sometimes, feature visualization 

will give some insight on how to increase the accuracy. We visualized the extracted data features 

as shown in Table 4.7, which shows sample of feature values before normalization. 

Table 4.7: Sample of feature values before normalization. 
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From the result shown in Table 4.7, we can notice that the features are not on the same scale. 

This will bias the classifier. So, normalizing the features is needed before training the classifier. 

In this research, normalization of features is done by subtracting the mean and dividing the 

standard deviation of each column. The result of feature normalization is shown in Table 4.8. 

The features are now almost on the same scale. 

Table 4.8: Sample of feature values after normalization. 

 

4.7. Data Splitting 

After feature normalization (making features to have the same scale) shown in Table 4.9, the 

next step is to prepare the data for training and testing programmatically. At last, the result of 

data splitting into sample data features used for training and testing is shown using Table 4.9 and 

4.10 respectively. Therefore, the data features presented using Table 4.9 were used for training 

and validating our model while the data features given in Table 4.10 were used to test our model. 
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Table 4. 9: Sample of data features used for training. 

 

Table 4.10: Sample of data features used for testing. 
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4.8. Model Training and Evaluation 

This was the final step to interactively different classification models. In this research, we trained 

important machine learning models such as Naive Bayes, K-nearest neighbor (KNN), Ensemble 

and support vector machine (SVM) models for classification of most common lung diseases 

using the features extracted from the lung sound signals. The results of all these machine 

learning models for final classification of data are shown using Figure 4.22 and Table 4.11. 

 

Figure 4.22: Accuracy achieved on different machine learning classifiers. 

A column chart presented using Figure 4.22 shows the comparison in accuracy achieved by 

different machine learning classifiers for classification of lung diseases. The highest 

classification accuracy was achieved using SVM model particularly Fine Gaussian SVM 

algorithm. Table 4.11 also shows the accuracy of each classifier in ascending order. 
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Table 4.11: Classification accuracy results in ascending order. 

 

Classifiers 

 

 

Algorithms 

 

Accuracy (%) 

 

KNN 

 

 

Cubic KNN 

 

88.3% 

 

Medium KNN 

 

89.3% 

 

Naive Bayes 

 

Gaussian Naive Bayes 

 

94.8% 

 

Kernel Naive Bayes 

 

95.8% 

 

Ensemble 

 

 

RUSBoosted trees 

 

96.5% 

 

Bagged trees 

 

97.3% 

 

SVM 

 

Cubic SVM 

 

97.5% 

 

Fine Gaussian SVM 

 

97.8% 

 

After training multiple models, we compare their classification accuracy side-by-side as shown 

in Table 4.11. The accuracy of all the classifiers is ranged between 88.3% and 97.8%. According 

to the results shown using Table 4.11, in the first run result we found that SVM model 

particularly Fine Gaussian SVM is the best model with its higher classification accuracy of 

97.8%. Next, we assessed the classification performance of the selected classifier (Fine Gaussian 

SVM) using confusion matrices. 
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Table 4.12: A number of correctly and misclassified observations for each class. 

 

Table 4.12 shows a number of correctly and misclassified observations of each class obtained in 

training Fine Gaussian SVM. From this table we have noticed that 56 lung sound records 

acquired from asthma patients were used for training of which 55 records were correctly 

classified and 1 record is misclassified. Similarly, 52 lung sound records acquired from 

bronchiectasis patients were used for training of which 51 records were correctly classified and 1 

record is misclassified. For bronchiolitis patients, 48 lung sound records were used for training 

and all of them were correctly classified. Likewise, 48 lung sound records acquired from COPD 

patients were used for training and all of them were correctly classified. For healthy subjects, 60 

lung sound records were used for training and all the records were correctly classified. Among 

40 lung sound records of LRTI patients used for training, 37 records were correctly classified 

and the remaining 3 records were misclassified. Similarly, 48 lung sound records acquired from 

pneumonia patients were used for training of which 46 records were correctly classified and 2 

records were misclassified. At last, 48 lung sound records acquired from URTI patients were 

used for training of which 46 records were correctly classified and 2 records were misclassified. 
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We also visualized the performance of a classifier performed per true class in terms of true 

positive rates (TPR) and false negative rates (FNR). TPR is the proportion of correctly classified 

observations per true class while FNR is the proportion of incorrectly classified observations per 

true class. The confusion matrix presented using Table 4.13 shows the performance of a 

classifier performed per true class. The last two columns on the right side of Table 4.13 show 

TPR and FNR per true class, whereas the first column is the TPR column and the second column 

is the FNR column. 

Table 4.13: Performance of the first selected classifier performed per true class. 

 

For example, from Table 4.13, the first row from the top shows all lung sound records with the 

true class asthma. The columns show the predicted classes. 98% of the lung sound records from 

asthma are correctly classified as from asthma, so 98% is the TPR for correctly classified points 

in the class, shown in the green cell in the TPR column. The other 2% lung sound records in the 

asthma row are incorrectly classified. Hence, the FNR for incorrectly classified points in the 

class is 2%, shown in the pink cell in the FNR column. Similarly, the second row from the top 

shows all lung sound records with the true class bronchiectasis. 98% of the lung sound records 

from bronchiectasis are correctly classified as from bronchiectasis, so 98% is the TPR for 

correctly classified points in the class, shown in the green cell in the TPR column. The other 2% 

lung sound records in the bronchiectasis row are incorrectly classified. 
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Hence, the FNR for incorrectly classified points in the class is 2%, shown in the purple cell in the 

FNR column. Generally, Table 4.13 can be interpreted in the same fashion for each row. We also 

assessed the performance of a classifier performed per predicted class instead of true class to 

investigate false discovery rates (FDR). In addition to FDR, we also investigate positive 

predictive values (PPV). FDR is the proportion of incorrectly classified observations per 

predicted class while PPV is the proportion of correctly classified observations per predicted 

class. The confusion matrix presented using Table 4.14 shows the performance of a classifier 

performed per predicted class. The last two rows found at the bottom of Table 4.14 show PPV 

and FDR per predicted class, where the first row is the PPV row and the second row is the FDR 

row. 

Table 4.14: Performance of the first selected classifier performed per predicted class. 

 

Table 4.14 shows the performance of a classifier performed per predicted class in terms of PPV 

and FDR. Positive predicted values (PPV) are shown in green for the correctly predicted points 

in each class. 
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The false discovery rates (FDR) are shown in pink for the incorrectly predicted points in each 

class. Now, the performance of the first selected and trained model has been evaluated using 

confusion matrix. Next, we tried to optimize it to improve its’ accuracy. 

4.9. Model optimization 

In this research, we applied Bayesian optimization technique to automatically optimize our 

previous trained and selected model. After, playing with the parameters/hyperparameters using 

Bayesian optimization technique, the accuracy of our model become 98.8%. After optimization, 

we evaluate the performance of an optimized model using confusion matrices as we did 

previously for the first trained and selected model. 

Table 4.15: A number of correctly and misclassified observations for each class after 

optimization. 

 

From Table 4.15, we have noticed that among 56 lung sound records acquired from asthma 

patients, 55 records were correctly classified and 1 record is misclassified. A total of 52 lung 

sound records acquired from bronchiectasis patients were used for training and all of them were 

correctly classified. For bronchiolitis and COPD patients, 48 lung sound records for each were 

used for training and all of them were correctly classified.  
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Likewise, among 60 lung sound records of healthy subjects used for training, 59 lung sound 

recordings were classified correctly and the remaining 1 record was misclassified. For LRTI 

patients, 40 lung sound records were used for training of which 39 records were correctly 

classified and the remaining 1 record was misclassified. A total of 48 lung sound records 

acquired from pneumonia patients were used for training of which 47 records were correctly 

classified and 1 record is misclassified. At last, 48 lung sound records acquired from URTI 

patients were used for training and all of the records were correctly classified. We also visualized 

the performance of an optimized classifier performed per true class in terms of true positive rates 

(TPR) and false negative rates (FNR). The confusion matrix presented using Table 4.16 shows 

the performance of an optimized classifier performed per true class. The last two columns on the 

right side of Table 4.16 showed TPR and FNR per true class, where the first column is the TPR 

column and the second column is the FNR column. 

Table 4.16: Performance of an optimized classifier performed per true class. 

 

For example, from Table 4.16, the last row (the eighth row) shows all lung sound records with 

the true class URTI. 100% of the lung sound records from URTI were correctly classified as 

from URTI, so 100% is the TPR for correctly classified points in the class, shown in the green 

cell in the TPR column. 
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Previously, for the first trained unoptimized model, the TPR and FNR were 96% and 4% 

respectively. This shows that there is improvement in the model to correctly classify the true 

class URTI. Similarly, in Table 4.16, the seventh row shows all lung sound records with the true 

class pneumonia. 98% of the lung sound records from pneumonia were correctly classified as 

from pneumonia, so 98% is the TPR for correctly classified points in the class, shown in the 

green cell in the TPR column. Before optimizing the model, for the first trained unoptimized 

model the TPR and FNR were 96% and 4% respectively. This also shows that there is 

improvement in the model to correctly classify the true class pneumonia. Generally, Table 4.16 

can be interpreted in the same fashion for each row. We also assessed the performance of an 

optimized classifier performed per predicted class instead of true class to investigate false 

discovery rates (FDR) and positive predictive values (PPV). The confusion matrix presented 

using Table 4.17 shows the performance of an optimized classifier performed per predicted class. 

The last two rows show PPV and FDR per predicted class, where the first row is the PPV row 

and the second row is the FDR row. 

Table 4. 17: Performance of an optimized classifier performed per predicted class. 
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Table 4.17 shows the performance of an optimized classifier performed per predicted class in 

terms of PPV and FDR. Positive predicted values (PPV) are shown in green for the correctly 

predicted points in each class, and false discovery rates (FDR) are shown in pink for the 

incorrectly predicted points in each class. From Table 4.17, we have noticed that there are 

improvements in the optimized model to correctly predict classes such as healthy, LRTI, 

pneumonia, and URTI predicted classes. Furthermore, the minimum classification error plot for 

the optimized model was shown using Figure 4.23. The plot showed estimated minimum 

classification error, observed minimum classification error, best point hyperparameters, and 

minimum error hyperparameters. Each light blue point shown in the plot correspond to the 

estimated minimum classification error computed by the optimization process. The minimum 

classification error is estimated based on an upper confidence interval of the current 

classification error objective model, mentioned in the best point hyperparameters description. 

Each dark blue point in the plot correspond to the observed minimum classification error 

computed during the optimization process. For example, the dark blue point at the third iterations 

corresponds to the classification error observed in the first, second, and third iterations. Best 

point hyperparameters shown as red square in the plot indicates the iteration that correspond to 

the optimized hyperparameters. The optimized hyperparameters didn’t always provide the 

observed minimum classification error. For example, when the hyperparameter optimization is 

done by using Bayesian optimization, it selects the set of hyperparameter values which 

minimizes an upper confidence interval of the classification error objective model, instead of the 

set which minimizes the classification error. The yellow point in the plot indicates that the 

iterations which correspond to the hyperparameters that yield the observed minimum 

classification error.  
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Figure 4.23: Minimum classification error plot for the optimized model. 

From Figure 4.23, we have observed that the optimal model parameter results such as box 

constraint level and kernel scale were 417.8791 and 24.8176 respectively. Now, the performance 

of the optimized model has been evaluated using confusion matrices as well as the results of 

optimization are discussed above. After optimizing the model, we exported the final optimized 

model to make predictions using the new data. When we exported the final optimized model 

from the classification learner to MATLAB workspace, we get an optimized trained structure 

which we can use to make predictions using the un seen data. A total of 100 lung sound records 

(asthma = 14, bronchiectasis = 13, bronchiolitis = 12, COPD = 12, healthy = 14, LRTI = 10, 

pneumonia = 13, URTI = 12) were used for testing the final optimized model. The model 

correctly classified all new observations of the actual classes except observations from 

pneumonia class. Among the 13 observations or records from the true class pneumonia, 12 

observations were correctly classified and only 1 record was misclassified. All the records from 

the true class asthma, bronchiectasis, bronchiolitis, COPD, healthy, LRTI, and URTI were 

correctly classified. At last, sensitivity, specificity, and accuracy values of the final optimized 

model were calculated. We have noticed that the overall accuracy of the final optimized model 

on the un seen data was 99% with sensitivity of 99.04% and specificity of 99.2%. 



____________________________________________________________________________________

111 

Jimma University, Jimma Institute of Technology, School of BME, Bio-Instrumentation Stream 

4.10. Discussion 

In this study, besides to the online lung sound records, we collected some local lung sound 

records using our electronic stethoscope. An electronic stethoscope has been constructed by 

modifying the existing acoustic stethoscope and we used it for local lung sound collection. The 

collection of local lung sounds was done following the legal procedures. Moreover, the 

collection of local lung sounds was done following the same fashion as the online lung sounds 

acquired. Therefore, the duration of each local lung sound records is similar to the online lung 

sound records which ranges from 10 to 90 seconds. Furthermore, the local lung sound records 

were normalized at a uniform sampling rate of 44.1KHz and bit depth of 16 bit-depth, as of the 

online lung sound records. In addition, the local lung sound records were acquired from different 

chest locations such as left and right anterior, left and right posterior, and left and right lateral 

regions of the chest wall. Since the ICBHI respiratory sound dataset is highly imbalanced, we 

took only some annotated lung sound records of each class. Besides to the ICBHI respiratory 

sound dataset, we also took some annotated lung sound records available online. Finally, we 

combined these online lung sound records with the local lung sound records collected at Jimma 

university medical center (JUMC). Generally including the online and local lung sound records, 

a total of 500 lung sound records where; 75 healthy, 70 asthma, 60 pneumonia, 60 URTI, 50 

LRTI, 60 COPD, 65 bronchiectasis, and 60 bronchiolitis records were used in this study. 

After collection of lung sound signals, wavelet-based denoising of the lung sound signals which 

involves the three important steps such as decomposition, detail coefficients thresholding, and 

reconstruction have been done. A 6th-level DWT multiresolution decomposition of lung sound 

signals have been carried out. Following the decomposition, the DWT-based denoising of lung 

sounds has been done by applying different wavelet thresholding to remove the noise from the 

lung sound signals. In this research, four wavelet functions (Db4, Db10, Sym5, and Sym13) and 

four different threshold selection rules (Rigrsure, Sqtwolog, Heursure, and Minmax) were used 

to analyze the required performance of denoising the lung sound signals. After applying a 

threshold, the effects of noise on the lung sound signals were removed and finally the denoised 

signals were reconstructed using IDWT. 
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The SNR results for the different wavelet functions were calculated at different level of 

decomposition (3rd to 7th level of decomposition). In doing so, the SNR values increased from 3rd 

to 6th level. But after 6th level of decomposition, the SNR values become decreased. This shows 

6th level decomposition is enough to decompose the lung sound signals to get the required 

information (details and approximation). After this level, decomposing the signals will miss the 

required information. The algorithm was tested using the above-mentioned most widely used 

wavelet functions. The tested lung sound signals were noised by the white gaussian noise added 

at SNR = 5dB as an initial value to test the performance of the denoising algorithm for noise 

reduction. A total of 240 lung sound signals (30 for each class) were used for the initial test. 

Moreover, when we increased the tested signals to 400 (50 for each class), the better SNR result 

was found still at six level of decomposition. After evaluating the performance of the above-

mentioned wavelet functions, Sym13 wavelet function at 6th level decomposition with soft 

thresholding method and Sqtwolog threshold selection rule was found the best algorithm for 

denoising of the lung sound signals. Following signal acquisition and pre-processing, we 

extracted features which could be used for final classification of data. 

In this research, we applied DWT feature extraction technique to extract important features from 

the lung sound signals. Fundamentally, the DWT-based feature extraction procedure involves 

two important steps. First, decompose the given signal into 𝑁 (𝑁 =6 in this study) levels using 

filtering and decimation. The second step is followed by the reconstruction of the signal using 

IDWT. The features extracted from the IDWT of signals are considered highly useful features 

for input of the classifiers due to their effective time-frequency representation of the non-

stationary signals. A total of 16 features were extracted from the lung sound signals. Each of the 

features have been discussed in chapter three under feature extraction section. Subsequently, 

feature selection by a means of variable or feature ranking was done to select the most 

discriminative features used for classification. We implemented the one-way ANOVA feature 

ranking method using 𝑚𝑖𝑛𝑚𝑎𝑥 normalization scheme. After feature ranking, we got the three 

features such as skewness, peak value and total harmonic distortion (THD) had lesser score as 

compared to other features. Therefore, we removed these features and a total of 13 most 

discriminative features were selected to train different machine learning models. 
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After feature selection, feature visualization and normalization have been done to avoid bias of 

the classifier during model training and data classification. Normalization of features has been 

done by subtracting the mean and dividing the standard deviation of each column. After 

normalization, the features become on the same scale. The next step was data splitting to prepare 

the data for model training. In this research, first the dataset has been split using the hold-out 

method. A common split using the hold-out method is using 80% of data for training and the 

remaining 20% of data for testing. Hence, we split our dataset into training (80%) and testing 

(20%) using the function 𝑐𝑣𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛. A total of 500 lung sound records were used in this study. 

Since we split the data as 80% of data for training and the remaining 20% of data for testing, the 

number of lung sound records for training and testing were 400 and 100 respectively. Once we 

create a cross-validation partition for data, next an 8-fold cross-validation has been applied to the 

training dataset. Then the training and validation sets should cross-over in successive rounds so 

that each data point has a chance of being validated against 8 separate times. 

After data splitting, the next step was model training and evaluation. Before training and 

evaluating classification models, it was necessary to convert the label in training and testing 

datasets from categorical array to string array. Therefore, the label in training and testing data 

has been converted into string. The final step was to interactively train different classification 

models. We trained important machine learning models such as Naive Bayes, K-nearest neighbor 

(KNN), Ensemble and support vector machine (SVM) models for final classification of data. 

Cubic KNN and Medium KNN algorithms gives an accuracy of 88.3% and 89.3% respectively. 

KNN classifiers typically have best predictive accuracy in low dimensions but might not in high 

dimensions. Additionally, KNN classifiers have high memory usage and are not easy to interpret. 

Gaussian Naive Bayes and Kernel Naive Bayes algorithms gives an accuracy value of 94.8% and 

95.8% respectively. Naive Bayes classifiers are easy to interpret and useful for multiclass 

classification. However, the Naive Bayes algorithms need a small amount of training data for 

estimating the vital parameters which made the algorithms extremely fast compared to more 

sophisticated methods. Moreover, ensemble algorithms such as RUSBoosted trees and Bagged 

trees were trained and provide an accuracy value of 96.5% and 97.3% respectively. Ensemble 

classifiers tend to be slow to fit because they often need many weak learners. 
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Moreover, SVM algorithms such as Cubic SVM and Fine Gaussian SVM gives higher 

classification accuracy of 97.5% and 97.8% respectively. After we trained different machine 

learning models, we choose the best model with higher classification accuracy (i.e., Fine 

Gaussian SVM algorithm) and we assessed its performance using confusion matrices. Next, we 

tried to improve optimized the accuracy of the selected model. There are different ways to 

improve the accuracy of a machine learning model. These includes reframe the problem, use 

meaningful features, apply cross-validation, comparing different classification algorithms, and 

model optimization i.e., hyperparameter tuning. In this research, after collecting enough data, we 

reframe our data in a suitable way. This is due to the fact that machine learning models are only 

good as good as our data. It is difficult to fit machine learning models on raw data directly due to 

some reasons such as implementations require data to be numeric, algorithms impose specific 

requirements, raw data contains errors, and columns may be redundant or irrelevant. After we 

prepared and reframe the data, we extracted meaningful features from the lung sound signals and 

we ranked the features to select the most discriminative features. 

After extracting and ranking features, we visualize and normalized the features to have the same 

scale in order to avoid bias of the classifier. We also applied a cross-validation partition (8-fold 

cross-validation) to protect overfitting by partitioning the dataset into 8 folds and estimating 

accuracy on each fold. Moreover, we optimized the selected model using Bayesian optimization 

technique to improve its accuracy. After, playing with the parameters/hyperparameters using 

Bayesian optimization technique, the accuracy of our model has been improved to 98.8%. 

Furthermore, the minimum classification error plot for the optimized model was shown and the 

optimal model parameter values of box constraint level and kernel scale were found 417.8791 

and 24.8176 respectively. Finally, we exported the final optimized model to make predictions for 

the new data and the overall accuracy of the final model has been reached to 99% with 

sensitivity of 99.04% and specificity of 99.2%. Table 4.18 shows a comparison between the 

proposed method and the previous conducted researches. 
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Table 4.18: A comparison between the proposed method and the previous methods. 

 

S. No 

 

Year 

 

Authors 

 

Applied methods 

 

Results 

(Accuracy %) 

1 2018 Islam, et al., [54]. FFT-Welch and SVM 93.3 

2 2017 Kurt, et al., [55]. MFCC and SVM 75.75 

3 2019 Haider, et al., [59]. (Median frequency, 

Linear predictive 

coefficients) and SVM 

83.6 

4 2014 Mondal, et al., [58]. (EMD, HT) and ELM 92.86 

5 2020 Don [63]. RSFS and KNN 94.1 

6 2016 Gogus, et al., [53]. AR-Burg and ANN 89 

7 2016 Saha, et al., [56]. Cepstral features and 

ANN  

97.83 

8 2018 Rizal, et al., [64]. MSE and MPNN 97.67 

9 2018 Nugroho, et al., [65]. MPE and MPNN 97.98 

10 2019 Lmtiaz, et al., [66]. CWT and ANN 94.02 

11 2017 Aykanat, et al., [67]. CNN and STFT 76 

12 2019 Demir, et al., [70]. STFT and SVM 

STFT and DCNN 

65.5 

63.09 

13 2020 Hosseini, et al., 2020. [69]. DCNN and (Auditory & 

Demographic info) 

83 

14 2021 Proposed method.  MRA (i.e., DWT) and 

SVM  

99 

 

From Table 4.18, we can see that different researchers applied different techniques for analysis 

of lung sounds and further classification of lung diseases. 
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Most of the researchers used spectral analysis techniques such as FT, FFT-Welch, AR, AR-Burg, 

ARMA, MFCC, and others [42,55,59,63,56]. These techniques can be used for spectral analysis 

of lung sound signals because the process of converting time domain to frequency domain can be 

easily achieved through such methods. However, frequency-domain analysis techniques couldn’t 

provide temporal information of signals. Similarly, time domain analysis techniques such as 

empirical mode decomposition and multiscale entropy techniques have been used for analysis of 

lung sounds [58,64,65]. These techniques lost spectral information of signals. Time-frequency 

domain analysis techniques has been also used in literature for analysis of the non-stationary 

lung sound signals [66,67,70]. STFT-based analysis techniques provide both time and frequency 

information of signals but unable to extract multiple features due to single and fixed window 

region. CWT can also provide time-frequency analysis of signals but a two-dimensional 

representation for one dimensional entity through the use of a continuous translation and scaling 

is extremely redundant. 

In this research, we applied MRA (i.e., DWT) analysis technique for better time-frequency 

analysis of the non-stationary lung sound signals. A 6th level decomposition of lung sound 

signals has been conducted using Sym13 wavelet function. The performances of the two 

thresholding methods (soft and hard thresholding methods) have been evaluated using four 

important threshold selection rules (Rigrsure, Sqtwolog, Heursure, and Minmax). Through the 

use of DWT, we got important features of the signals which we used for final classification of 

lung diseases. In this study, we trained different important classical machine learning classifiers 

and we compared their classification performance. Finally, we choose the model with higher 

classification performance for further improvements. Furthermore, feature scaling for 

normalization of extracted features, 8-fold cross validation and model optimization using 

Bayesian optimization technique has been done for improving the accuracy of the final model. 

The overall accuracy of the model has been reached to 99% during prediction of the new data. 

Generally, we can conclude that our method is strong enough for the classification of lung 

diseases as COPD, URTI, LRTI, pneumonia, bronchiectasis, bronchiolitis, asthma, or healthy. 
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CHAPTER FIVE 

CONCIUSION and RECOMMENDATION 

5.1. Conclusion 

Nowadays, improving a stethoscope-based auscultation diagnosis of pulmonary diseases by 

combining modern digital signal analysis techniques and AI applications is one of the main 

research hotspots. In this study, an attempt has been done to analyze the lung sound signals using 

wavelet multiresolution analysis for further classification of pulmonary diseases. 

The study has showed the performance of different wavelet functions along with different 

thresholding methods and threshold selection rules for further better decomposition and 

denoising of the non-stationary lung sound signals. The performance of the denoising algorithm 

was evaluated by computing the SNR values at different level of decomposition. Moreover, 

DWT-based feature extraction was performed for extraction of different features from the lung 

sound signals. The study has also showed the features extracted from the IDWT of signals are 

highly useful features for the input of the classifiers due to their effective time-frequency 

representation of the non-stationary lung sound signals. At last, feature ranking was done to 

select the most discriminative features and a total of 13 features were used to train different 

machine learning models. During classification, we achieved 97.8% accuracy using Fine 

Gaussian SVM algorithm. Furthermore, we optimized the model by applying Bayesian 

optimization technique and the accuracy of the model was improved to 98.8%. Finally, the 

accuracy of the optimized model has been reached to 99% with sensitivity of 99.04% and 

specificity of 99.2% in making predictions for the new data. Generally, the proposed method 

delivered a considerable improved result for the classification of most common lung diseases on 

the base of lung sound analysis. 

From this study we can conclude that, wavelet multiresolution analysis can be an ideal solution 

for better analysis of lung sound signals which can be used for further classification of 

pulmonary diseases. The proposed method has some major weakness. One of the major 

weaknesses of this study is the data acquisition system. 
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In this study, the lung sound signals were acquired using single channel data acquisition system 

where a single microphone sensor placed over a stethoscope head. Moreover, the study didn’t 

apply the state-of-the-art deep learning techniques.  

5.2. Recommendation 

The proposed method can provide more reliable way of diagnosis of lung diseases by combing 

the model with the knowledge base. Therefore, it is recommended to design a user interface (UI) 

and connect the model proposed in this study with the knowledge base so as to develop an 

intelligent system to detect the type of lung disease.  

Multichannel data acquisition system (which requires high cost) will be helpful to gather more 

adequate information about the lungs pathology. It can be used for high quality recordings of 

lung sounds, on the basis of which lung diseases and pathological lung conditions can be 

assessed more objectively. The accumulation of more information will help to improve better 

classification performance in combined channel scenario than in single channel scenario. 

Therefore, it is recommended to construct multichannel lung sound data acquisition system to 

collect huge data for classification with more classes. 

In this research, limited numbers of wavelet functions were used for lung sound analysis. The 

performance of other wavelet families for best analysis of lung sounds needs to be investigated. 

The classification performance of other classical machine learning models can also be studied in 

future. Moreover, we recommend the accuracy of the presented algorithm can be further 

improved using other deep learning techniques for larger lung sound datasets. Deep learning 

techniques involve use of large amount of data and complex algorithms which require powerful 

computation hardware (i.e., computer). 

Furthermore, the proposed method is an indication for classification of any abnormalities 

associated with other bio-sound signals such as Korotkoff sounds, heart sounds, and other 

internal human body sound signals. At last, we would like to recommend the researchers 

working in bio-sound signal processing to look for the opportunity of using lung sound signals 

for classification of Corona virus disease (COVID-19), the current world pandemic issue.  
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Annex 

Sample MATLAB source codes written for some specific tasks 

## The following is part of the MATLAB script written for 

structuring the data holding the lung sounds to categories in 

folder. 

 

clear 

close all 

clc 

warning("off") 

 

% structure the data into categories in folder 

% import the dataset of each class 

datafolder = "Respiratory_Sound_Database/audio"; 

 

% Labels Class/Categories 

Data_Class = 

categorical(["COPD","URTI","LRTI","Pneumonia","Bronchiectasis","

Bronchiolitis","Asthma","Healthy"]); 

 

for i=1:1:length(Data_Class) 

      

mkdir(strcat("Respiratory_Sound_Database\structure1\",string(Dat

a_Class(i)))); 

end 

currentfolder = pwd; 

cd(datafolder); 

listdir=dir; 

h=1; 

L=1; 

for i=4:1:length(listdir) 

    cd(listdir(i).name) 

    inside=dir; 

for k=4:1:length(inside) 

    index=strfind(inside(k).name,'-'); 

    Labels(h)=Data_Class(str2num(inside(k).name(index(1)+1))+1); 

movefile(inside(k).name,strcat(currentfolder,"\Respiratory_Sound

_Database\structure1\",string(Labels(h)))); 

    h=h+1; 

end 

    cd(strcat(currentfolder,'\',datafolder)); 

end 
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## The following is part of the MATLAB script written to 

visualize and listen the lung sounds data (Wav. file). 

 

% Visualize and Listen the Data (Wav. file) 

figure() 

datafolder = "Respiratory_Sound_Database/structure1"; 

currentfolder = pwd; 

cd(datafolder); 

listdir=dir;   

for i=3:1:length(listdir) 

    cd(listdir(i).name) 

    inside=dir; 

    subplot(3,4,i-2); 

    [y,fs]=audioread(inside(4).name); 

    plot(y(:,:));  

    soundsc(y(:,:),fs); 

    grid on; 

    title(listdir(i).name) 

    drawnow; 

    pause(2) 

    cd(strcat(currentfolder,'\',datafolder)); 

end 

 

## The following is part of the MATLAB script written for 

understanding the distribution of dataset, where only two 

commands (audioDatastore and countEachLabel) were used. 

% look the distribution of dataset 

datafolder = "Respiratory_Sound_Database\structure1"; 

 

ads = audioDatastore(datafolder, ... 

'IncludeSubfolders',true, ... 

'FileExtensions','.wav', ... 

'LabelSource','foldernames'); 

 

% count each label/class/category 

G1=countEachLabel(ads); 

 

## The following is part of the MATLAB script written for 

checking how much percentage of data are on a specific sampling 

rate and bit-depth, and number of channels. 
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% Check how much percentage of the data are on a specific 

Sampling Rate 

for i=1:1:length(ads.Files) 

    [y,fs(i)]=audioread(ads.Files{i}); 

end 

Overall 

=table(categories(categorical(fs)),countcats(categorical(fs))'); 

Overall.Properties.VariableNames{1}='Frequency'; 

Overall.Properties.VariableNames{2}='Occurences'; 

 

% Check how much percentage of the data are recorded on a 

specific Bit depth 

for i=1:1:length(ads.Files) 

    info = audioinfo(ads.Files{i}); 

if strcmp(info.CompressionMethod,'Uncompressed') 

         Bits(i)=info.BitsPerSample; 

else 

        Bits(i)=0; 

end 

end 

% Check how much percentage of the data are Mono / Stereo (i.e., 

number of channels) 

mono=1; 

stereo=1; 

for i=1:1:length(ads.Files) 

    y=audioread(ads.Files{i}); 

if size(y,2) == 1 

        mono=mono+1; 

else 

        stereo=stereo+1; 

end 

end 

 

## The following is part of the MATLAB script written for 

normalizing our data in terms of sampling rate and bit-depth. 

 

%To doup convert or down convert 

%From the information in the previous steps choose which what 

would you do? 

 

for i=1:1:length(ads.Files) 

    y =audioread(ads.Files{i}); 

if size(y,2) == 1 

        result = y; 

else 

        result = (y(:,1)+y(:,2))/2; 

end 
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    audiowrite(ads.Files{i},result,44100,'BitsPerSample',16); 

    clear yFsresult 

end 

% Let visualize and listen to the data again 

figure() 

datafolder = "Respiratory_Sound_Database/structure"; 

currentfolder = pwd; 

cd(datafolder); 

listdir=dir;   

for i=3:1:length(listdir) 

    cd(listdir(i).name) 

    inside=dir; 

    subplot(3,4,i-2); 

    [y,fs]=audioread(inside(randi([44,100])).name); 

    plot(y(:,:));  

    soundsc(y(:,:),fs); 

    grid on; 

    title(listdir(i).name) 

    drawnow; 

    pause(2) 

    cd(strcat(currentfolder,'\',datafolder)); 

end 

 
## The following is part of the MATLAB script written for 

denoising lung sound signals using discrete wavelet transform 

(DWT). 

 

clear, clc, close all 

 

% Denoising lung sound Signal using discrete wavelet transform 

(DWT) 

% 

% The denoising procedure proceeds in three steps: 

%[1] 

% Decomposition. select a wavelet (i.e. mother wavelet), and 

choose a decomposition level (N) 

% Then Compute the wavelet decomposition of the signal s at 

level N. 

% 

 

%[2] 

% Detail coefficients thresholding. For each level from 1 to N, 

select 

% a threshold and apply soft thresholding to the detail 

coefficients. 

% 
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%[3] 

% Reconstruction. Compute wavelet reconstruction based on the 

original  

% approximation coefficients of level N and the modified detail 

coefficients  

% of levels from 1 to N. 

 

fprintf('--- Denoising lung sound signal using discrete wavelet 

transform ---\n\n'); 

 

% load sample of lung sound 

fprintf('-> Step 1/6: Load "track.wav" - '); 

[originalsignal, fs] = audioread('track.wav');                                  

amp = 20; 

originalsignal = amp*originalsignal;                

N = length(originalsignal); 

fprintf('OK\n'); 

 

%----------------------------% 

%  add white Gaussian noise  % 

%----------------------------% 

fprintf('-> Step 2/6: Add white Gaussian noise - '); 

% the scalar SNR specifies the signal-to-noise ratio per sample, 

in dB 

sn = 5; 

% add white Gaussian noise to a signal 

originalsignalN = awgn(originalsignal,sn,'measured');               

fprintf('OK\n'); 

 

%---------------------------% 

%           DWT :           % 

%   wavelet decomposition   % 

%---------------------------% 

fprintf('-> Step 3/6: Decompose the lung sound signal - '); 

level = 6; 

fprintf('\n   Input the number of specific wavelet: (1) db4, (2) 

db10, (3) sym5 or (4) sym13'); 

wname = input('\n   wname = '); 

if wname == 1 

    wt = 'db4'; 

elseif wname == 2 

    wt = 'db10'; 

elseif wname == 3 

    wt = 'sym5'; 

elseif wname == 4 

    wt = 'sym13'; 

end 
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% computes four filters 

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wt);         

[C,L] = wavedec(originalsignalN,level,Lo_D,Hi_D); 

cA6 = appcoef(C,L,wt,level);          

% extract the levels 6, 5, 4, 3, 2, and 1 detail coefficients 

from C 

[cD1,cD2,cD3,cD4,cD5,cD6] = detcoef(C,L,[1,2,3,4,5,6]);   

% reconstruct the level 6 approximation from C 

A6 = wrcoef('a',C,L,Lo_R,Hi_R,level); 

% reconstruct the details at levels 1, 2, 3, 4, 5, and 6, from C 

D1 = wrcoef('d',C,L,Lo_R,Hi_R,1); 

D2 = wrcoef('d',C,L,Lo_R,Hi_R,2); 

D3 = wrcoef('d',C,L,Lo_R,Hi_R,3); 

D4 = wrcoef('d',C,L,Lo_R,Hi_R,4); 

D5 = wrcoef('d',C,L,Lo_R,Hi_R,5); 

D6 = wrcoef('d',C,L,Lo_R,Hi_R,6); 

% a = approximation 

% d = detail 

fprintf('OK\n'); 

 

%---------------------------% 

%        thresholding       % 

%---------------------------% 

fprintf('-> Step 4/6: Thresholding - '); 

% TPTR = 'rigrsure', adaptive threshold selection using 

principle of Stein's 

% Unbiased Risk Estimate 

% TPTR = 'heursure', heuristic variant of the first option 

% TPTR = 'sqtwolog', threshold is sqrt(2*log(length(X))) 

% TPTR = 'minimaxi', minimax thresholding 

fprintf('\n   Input the number of threshold selection rule : (1) 

heursure, (2) rigrsure, (3) minimaxi or (4) sqtwolog'); 

tr = input('\n   threshold selection rule = '); 

if tr == 1 

    tptr = 'heursure'; 

elseif tr == 2 

    tptr = 'rigrsure'; 

elseif tr == 3 

    tptr = 'minimaxi'; 

 

elseif tr == 4 

    tptr = 'sqtwolog' ;    

end 

thr_D1 = thselect(D1,tptr); 

thr_D2 = thselect(D2,tptr); 

thr_D3 = thselect(D3,tptr); 

thr_D4 = thselect(D4,tptr); 
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thr_D5 = thselect(D5,tptr); 

thr_D6 = thselect(D6,tptr); 

% Hard thresholding is the simplest method but soft thresholding 

has nice 

% mathematical properties. Hard threshold signal is x if x>thr, 

and is 0 if 

% x<=thr. And the soft threshold signal is sign(x)(x-thr) if 

x>thr and is 0 

% if x<=thr 

fprintf('\n   Input the number of threshold type: (1) soft or 

(2) hard'); 

sh = input('\n   threshold = '); 

if sh == 1 

    sorh = 's'; 

elseif sh == 2 

    sorh = 'h'; 

end 

% threshold coefficient of details 

tD1 = wthresh(D1,sorh,thr_D1); 

tD2 = wthresh(D2,sorh,thr_D2); 

tD3 = wthresh(D3,sorh,thr_D3); 

tD4 = wthresh(D4,sorh,thr_D4); 

tD5 = wthresh(D5,sorh,thr_D5); 

tD6 = wthresh(D6,sorh,thr_D6); 

fprintf('OK\n'); 

 

%--------------------------% 

%   compute Inverse DWT    % 

%--------------------------% 

fprintf('-> Step 5/6: Compute Inverse DWT - '); 

denoised = A6 + tD1 + tD2 + tD3 + tD4 + tD5 + tD6; 

err = max(abs(originalsignalN-denoised)); 

fprintf('OK\n'); 

 

%---------------------------% 

%       compute SNR         % 

%---------------------------% 

fprintf('-> Step 6/6: Compute SNR - '); 

% SNR - Signal to Noise Ratio 

SNR = snr(originalsignal,originalsignalN); 

NoisySNR = 20*log10(norm(originalsignal(:)) / norm 

(originalsignal(:)-originalsignalN(:)) ); 

SNR = snr(originalsignal,denoised); 

DenoisedSNR = 20*log10(norm(originalsignal(:)) / norm 

(originalsignal(:)-denoised(:)) ); 

fprintf('OK\n'); 
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%-----------------    Display Figures   ------------------------

------------       

 

figure(1) 

subplot(6,1,1); plot(originalsignal); title('Original lung sound 

signal');  

subplot(6,2,3); plot(A6); title('Approximation A6') 

subplot(6,2,4); plot(D6); title('Detail D6') 

subplot(6,2,5); plot(D5); title('Detail D5') 

subplot(6,2,6); plot(D4); title('Detail D4') 

subplot(6,2,7); plot(D3); title('Detail D3') 

subplot(6,2,8); plot(D2); title('Detail D2') 

subplot(6,2,9); plot(D1); title('Detail D1') 

figure(2) 

subplot(6,1,1); plot(originalsignal); title('Original lung sound 

signal');  

subplot(6,2,3); plot(A6); title('Approximation A6') 

subplot(6,2,4); plot(tD6); title('Denoised Detail D6') 

subplot(6,2,5); plot(tD5); title('Denoised Detail D5') 

subplot(6,2,6); plot(tD4); title('Denoised Detail D4') 

subplot(6,2,7); plot(tD3); title('Denoised Detail D3') 

subplot(6,2,8); plot(tD2); title('Denoised Detail D2') 

subplot(6,2,9); plot(tD1); title('Denoised Detail D1') 

% display the comparison of original signal, noisy signal, and 

denoised signal 

figure(3) 

subplot(3,1,1); plot(originalsignal); title('Original lung sound 

signal'); 

xlabel('Samples'); ylabel('Amplitude'); 

subplot(3,1,2); plot(originalsignalN); title('Noisy lung sound 

signal'); 

xlabel('Samples'); ylabel('Amplitude'); 

subplot(3,1,3); plot(denoised); title('Denoised lung sound 

signal'); 

xlabel('Samples'); ylabel('Amplitude'); 

figure(4) 

subplot(1,3,1); specgram(originalsignal,512,fs); title('Original 

lung sound signal'); 

subplot(1,3,2); specgram(originalsignalN,512,fs); title('Noisy 

lung sound signal'); 

subplot(1,3,3); specgram(denoised,512,fs); title('Denoised lung 

sound signal'); 
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## The following is part of the MATLAB script written for 

visualizing and normalizing the extracted features. 

 

clear, clc, close all 

% the visualization will give me some insight on how to increase 

the 

% accuracy 

tablefordiagnostic = FeatureTable1; 

head(FeatureTable1); 

 

% now, normalize the features by substracting the mean and 

dividing the standard 

% deviation of each column 

FeatureTable1{:,1:13} = 

normalize(FeatureTable1{:,1:13},'range'); 

head((FeatureTable1)); 

 

## The following is part of the MATLAB script written for 

splitting the dataset into training, validation and test sets. 

 

clear, clc, close all 

% creat cross-validation partition for data. 

 

rng(1) 

cvp = cvpartition(FeatureTable1.Label,'HoldOut',0.2); 

 

dataTrain_Validation = FeatureTable1(cvp.training,:); 

dataTest = FeatureTable1(cvp.test,:); 

 

 

## The following is part of the MATLAB script written for 

converting the label in dataTrain-Validation and dataTest from 

categorical to string array before training the model. 

clear, clc, close all 

% convert the lable in dataTrain-Validation and dataTest from 

categorical to string. 

 

dataTrain_Validation{:,15}=string(dataTrain_Validation{:,14}); 

dataTrain_Validation(:,14)=[]; 

dataTrain_Validation.Properties.VariableNames{14} = 'Label'; 

 

dataTest{:,15}=string(dataTest{:,14}); 

dataTest(:,14)=[]; 

dataTest.Properties.VariableNames{14} = 'Label'; 

 

 


	Declaration
	Abstract
	Acknowledgment
	List of Figures
	List of Tables
	List of Abbreviations
	CHAPTER ONE
	INTRODUCTON
	1.1. Background of the Study
	1.2. Motivation of the Study
	1.3. Statement of the Problem
	1.4. Research Questions
	1.5. Objectives of the Study
	1.5.1. General objective
	1.5.2. Specific objectives

	1.6. Significance of the Study
	1.7. Scope and Limitation of the Study
	1.8. Methodology of the Study
	1.8.1. Research Design
	1.8.2. Data Collection and Preparation
	1.8.3. Implementation Tools for Modeling
	1.8.4. Performance Evaluation

	1.9. Organization of the Thesis

	CHAPTER TWO
	LITERATURE REVIEW
	2.1. Lungs
	2.1.1. Anatomy and Physiology of Lungs

	2.2. Lung Sounds
	2.2.1. Physics of lung sounds
	2.2.2. Mechanism of Lung Sounds production

	2.3. Signal Processing Techniques
	2.3.1. Time-domain Analysis
	2.3.2. Frequency-domain Analysis
	2.3.3. Time-Frequency domain Analysis
	2.3.3.1. Short time Fourier transforms (STFT)
	2.3.3.2. Wavelet Analysis


	2.4. Related Works
	2.4.1. Summary


	CHAPTER THREE
	METHODS and MATERIALS
	3.1. Overview
	3.2. Construction of Electronic Stethoscope
	3.3. Signal Acquisition
	3.4. Multiresolution Decomposition of Lung Sound Signals using DWT
	3.5. Pre-processing
	3.5.1. Pre-processing of Lung Sound Signals using Wavelet Denoising Technique

	3.6. Feature Extraction
	3.7. Feature Selection
	3.8. Feature Visualization and Normalization
	3.9. Data Splitting
	3.10. Model Training and Evaluation
	3.10.1. Support Vector Machine (SVM)

	3.11. Model optimization
	3.12. Materials

	CHAPTER FOUR
	RESULTS and DISCUSSION
	4.1. Construction of Electronic Stethoscope
	4.2. Signal Acquisition
	4.3. Pre-processing
	4.4. Feature Extraction
	4.5. Feature Selection
	4.6. Feature Visualization and Normalization
	4.7. Data Splitting
	4.9. Model optimization
	4.10. Discussion

	CHAPTER FIVE
	CONCIUSION and RECOMMENDATION
	5.1. Conclusion
	5.2. Recommendation

	References
	Annex

