
JIMMA UNIVERSITY

JIMMA INSTITUTE OF TECHNOLOGY

SCHOOL OF GRADUATE STUDIES

Offline Handwritten Amharic Word Recognition using
Deep Learning

By: EYOB SISAY

Advisor: DR. GETACHEW ALEMU

Co-Advisor: MR. FETULHAK ABDURAHMAN

A thesis submitted to School of Graduate Studies, Jimma University

in fulfillment of the requirements for the degree of Masters of Science

in the field of

Computer Engineering

November 8, 2021

Jimma, Ethiopia

http://www.ju.edu.et
https://www.ju.edu.et/jit/
https://www.ju.edu.et/?q=school-graduate-studies
https://sites.google.com/view/eysi
http://www.aait.edu.et/professor/dr-getachew-alemu
https://www.researchgate.net/profile/Fetulhak_Abdurahman
https://www.ju.edu.et/?q=school-graduate-studies
http://www.ju.edu.et
https://www.ju.edu.et/jit/?q=academics/schools-departments/electrical-computer-engineering

JIMMA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

FACULTY OF ELECTRICAL AND COMPUTER ENGINEERING

MASTERS THESIS ON

Offline Handwritten Amharic Word Recognition using
Deep Learning

APPROVED BY THE BOARD OF EXAMINERS

Chairperson:

ASST. PROF. KRIS C.

CALPOTURA

Signed: Date:

/ /

Internal Examiner:

DR. KINDE ANLAY

Signed: Date:

/ /

External Examiner:

DR. MICHAEL MELESE

Signed: Date:

/ /

http://www.ju.edu.et
https://www.ju.edu.et/?q=school-graduate-studies
https://www.ju.edu.et/jit/?q=academics/schools-departments/electrical-computer-engineering

i

Declaration

I, EYOB SISAY, declare that this thesis titled, “ Offline Handwritten Amharic Word

Recognition using Deep Learning ” and the work presented herein are my own, ex-
cept where explicitly stated otherwise in the text, and with the guidance of my advi-
sor. I confirm that the work has not previously been submitted for a degree or any
other qualification at this or any other University or institution, this has been clearly
stated. Moreover, all sources of materials that used in the thesis are acknowledged.

Student Name:

EYOB SISAY SEYFU

Signed: Date:

/ /

As research Adviser, I hereby certify that I have read and evaluated this thesis paper
prepared under my guidance, by EYOB SISAY SEYFU entitled “ Offline Handwritten

Amharic Word Recognition using Deep Learning ” and recommend and would be
accepted as a fulfilling requirement for the Degree Masters of Science in the field of
Computer Engineering.

Main Advisor:

DR. GETACHEW ALEMU

Co-Advisor:

MR. FETULHAK ABDURAHMAN

Signed: Date:

/ /

https://www.ju.edu.et/jit/?q=academics/schools-departments/electrical-computer-engineering
http://www.aait.edu.et/professor/dr-getachew-alemu
https://www.researchgate.net/profile/Fetulhak_Abdurahman

ii

Abstract

Amharic (Amarñña: አማርኛ) is the official language of the Federal Government of
Ethiopia, with more than 27 million speakers. But it is a low-resourced language, and
only a few attempts have been made so far for handwritten Amharic text recognition.
This is challenging due to the very high similarity between many of the alphabets, and
handwriting calligraphy is personal. This paper presents offline handwritten Amharic
word recognition using deep learning architecture, which comprises convolutional
neural networks (CNNs) for feature extraction from input word images, bidirectional
recurrent neural networks (BRNNs) for sequence encoding, moreover connectionist
temporal classification (CTC) as a loss function.

To the authors knowledge, there was no any publicly available handwritten Amharic
text dataset. Therefore, we commenced from preparing the dataset from scratch. We
chose A* path-planning and scale space algorithms respectively for line and word
level segmentation from the raw handwritten text image. We have collected 12 064
word-images for our dataset. Data augmentation was employed by applying random
transformations to the word-images of the training set to enhance performance of the
proposed models.

In the main process, we have developed a custom model with CNN-BRNN-CTC
framework, and Bayesian algorithm was used to set values for hyper-parameters.
We have then compared four different state-of-the-art CNN models: EfficientNet,
DenseNet, ResNet and VGG for robust feature extraction. We did this experiment by
modifying their architectures to fit our problem domain. We have measured the word
error rate (WER) and character error rate (CER) using our test set, which contains
1200 word images (they are randomly selected 10% of the total dataset). Hence,
the outperforming model with DenseNet201 feature extractor network has achieved
WER of 9.00 % and CER of 2.51 % on the non-augmented 64 × 256 word-image
dataset and become advanced in WER of 6.83 % and CER of 1.82 % on augmented
one. Whereas, the custom model has also achieved competitive performance on the
offline handwritten Amharic word recognition with the state-of-the-art models.

Keywords: Deep learning, CNN-BRNN-CTC, offline handwritten Amharic word
recognition.

iii

Acknowledgements

I’m thankful to GOD in everything. To the Jimma University and specifically to
Faculty of Electrical and Computer Engineering, which provided me with basic re-
quirements of the research. For all the teachings. And, special thanks to my teachers
and advisors, DR. GETACHEW A. and MR. FETULHAK A. without their help it
couldn’t have been possible.

Thanks to my aunt MRS. TEWABECH S. and my family, for having helped and
supported in the different stages of my life, guiding me and believing in me at all
times. I’m result of your efforts. To all my friends without you all it would have
been harder and, above all, more boring.

http://www.ju.edu.et
https://www.ju.edu.et/jit/?q=academics/schools-departments/electrical-computer-engineering

iv

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

Acronyms ix

1 Introduction 1
1.1 Background . 1

1.1.1 Amharic Language and Basics of its Writing System 3
1.2 Motivation . 4
1.3 Problem Statement . 5
1.4 Research Questions . 6
1.5 Objectives . 7

1.5.1 General Objective . 7
1.5.2 Specific Objectives . 7

1.6 Significance . 7
1.7 Scope and Limitations . 8
1.8 Thesis Structure . 9

2 Background Theory and Literature Review 11
2.1 Classical Machine Learning Approaches 11

2.1.1 Hidden Markov Model (HMM) 11
2.2 Deep Learning Approaches . 12

2.2.1 Overview of Neural Network (NN) 12
2.2.2 Convolutional Neural Network (CNN) 13
2.2.3 Recurrent Neural Network (RNN) 14
2.2.4 Connectionist Temporal Classification (CTC) 17

2.3 Commonly used Convolutional Neural Networks 19

v

2.3.1 Visual Geometry Group (VGG) 19
2.3.2 Residual Network (ResNet) 20
2.3.3 Dense Convolutional Network (DenseNet) 21
2.3.4 Efficient Network for CNNs (EfficientNet) 21

2.4 Literature Reviews . 23
2.4.1 Related Works . 23

3 Methodology 27
3.1 Proposed End-to-End HAWR Model 27
3.2 Data Collection . 28
3.3 Data Pre–processing . 28

3.3.1 Binarization . 29
3.3.2 Image Cropping . 30
3.3.3 Segmentation . 30
3.3.4 Word Image Labeling . 31
3.3.5 Data Augmentation . 31
3.3.6 Data Standardization . 32

3.4 Experimental Setup . 34
3.4.1 CNN Based Feature Extraction 34
3.4.2 BRNN Based Sequence Modeling 37
3.4.3 CTC Based Transcription 39

3.5 Bayesian Optimization Algorithm 40
3.6 Evaluation Metrics . 42
3.7 HAWR Model Training . 43

4 Experimental Results and Discussion 45
4.1 Optimization Results of the Custom Model 45
4.2 Experimental Results of the Commonly used CNN Architectures

with the Custom Model . 46
4.3 Experimental Results using Augmented Data 47
4.4 10 – Fold Cross – Validation Result 48
4.5 Sample prediction Results . 51

5 Conclusion and Recommendation 53
5.1 Conclusion . 53
5.2 Recommendation . 54

References 55

A Amharic Writing System 61

vi

A.1 Alphasyllabary . 61
A.2 Punctuation and Numerals . 63

B CTC–Labels Representation 64
B.1 CTC–Labels for Amharic Characters 64

C Bayesian Hyper-optimization 65
C.1 Bayesian Optimization Source Code 65
C.2 Bayesian Optimization Sample Result for the Custom Model 70

vii

List of Figures

1.1 Types of text recognition based on data acquisition. 2
1.2 A sample handwritten Amharic text. 4

2.1 An illustration of biological neuron. 12
2.2 An illustration of artificial neuron model. 12
2.3 An illustration of convolution. 13
2.4 An illustration of LSTM unit. 15
2.5 An example of output sequence CTC is fixing. 17
2.6 An illustration of the architecture of VGG-19 model for ImageNet. . 19
2.7 An illustration of the architecture of dense block. 21
2.8 An illustration of model scaling. 22

3.1 General overview of the proposed HAWR model. 27
3.2 Challenges such as noise in binarization. 29
3.3 The word level segmentation from text image. 30
3.4 An illustration of word images and labels. 31
3.5 Samples showing application of data augmentation. 32
3.6 An example of gray-level handwritten Amharic word-image. 32
3.7 Conversion of the word-image to shape (4, 8, 1) and normalization. . 33
3.8 Conversion of the normalized image to numpy array. 33
3.9 Feature extraction: Convolutional neural nets (CNN). 35
3.10 Architecture of bidirectional gated-recurrent units (BGRU) for se-

quence modeling. 38
3.11 Sequence labellings with CTC loss function. 39
3.12 An illustration of the dataset in 10-fold CV. 43

4.1 Graph of average accuracy while training 10-fold CV. 48
4.2 Graph of average loss while training 10-fold CV. 49
4.3 Graph of average CER while training 10-fold CV. 49
4.4 Graph of average loss while training 10-fold CV. 49
4.5 Sample prediction results during model evaluation with the test set. . 52

viii

List of Tables

1.1 The inter-class shape similarity problem of the script. 3

2.1 An architecture of ResNet152 model for ImageNet. 20
2.2 Summary of some related works. 26

3.1 Description of dataset. 28
3.2 A table for an architecture of custom HAWR model. 36
3.3 Configuration of commonly used CNNs using input shapes of (32,128,1)

with 31 and (48,192,1) with 47 as a maximum width of feature map
at the last convolutional layer. 37

3.4 Configuration of commonly used CNNs using input shape of (64,256,1)
with maximum width of 31 at the last convolutional layer. 37

4.1 The effect of input image size and RNN input length on the accura-
cy/loss in the custom HAWR model. 46

4.2 Result of the commonly used CNN based model on the non-augmented
dataset. 47

4.3 Result of the recognition models on the augmented dataset. 48
4.4 10 fold CV result of the recognition models on the two dataset. . . . 50

A.1 Chart of Amharic fidels. 61
A.2 Amharic punctuation. 63
A.3 Ethiopic numerals. 63

B.1 Amharic characters encoding in CTC–labels. 64

C.1 A sample result during hyper-tuning for 50 trials. 70

ix

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange

BERT Bidirectional Encoder Representations from Transformers

BGRU Bidirectional Gated Recurrent Unit

BLSTM Bidirectional Long Short Term Memory

BRNN Bidirectional Recurrent Neural Network

CER Character Error Rate

CNN Convolutional Neural Network

CRF Conditional Random Fields

CTC Connectionist Temporal Classification

CV Cross Validation

DC District of Columbia

DIP Digital Image Processing

ELMo Embeddings from Language Models

FLOPS FLoating point OPerations per Second

GAN Generative Adversarial Network

G-CNN Gated Convolutional Neural Network

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HAW-DB Handwritten Amharic Word Database

HAWR Handwritten Amharic Word Recognition

HMM Hidden Markov’s Model

HTR Handwritten Text Recognition

KNN K-nearest Neighbors Network

LSTM Long Short Term Memory

MDLSTM Multi-Directional Long Short Term Memory

x

NLP/U Natural Language Processing and Understanding

OCR Optical Character Recognition

RAM Random Access Memory

RNN Recurrent Neural Network

SVM Support Vector Machine

WER Word Error Rate

US United States

xi

Dedicated to my aunt
TEWABECH SEYFU

1

Chapter 1. Introduction

1.1 Background

As described in [1], text either in printed or handwritten form has been used widely
for storing, accessing and transmitting information. An electronic document in this
aspect has a great advantage to users of a language since it can be easily edited,
shared, stored, and managed using text processing devices and tools. Whereas, hand-
written and printed documents cannot be processed by computers which makes them
difficult to easily edit, store, share and distribute them electronically. A large amount
of printed and handwritten documents are available in the form of historical archives,
invoices, tax forms, various documents in offices, etc. In order to convert such printed
and handwritten documents in to computer readable format either it should be keyed
manually, which is very time consuming and labor intensive, or systems of auto-
mated text recognition should be used [2]. Automated text recognition is a document
digitization process using the techniques of pattern recognition, computer vision and
natural language processing. Text recognition can be done either for machine printed
or handwritten documents. The recognition of machine printed documents is much
easier than the handwritten documents due to its specific structure of the document
which makes the pre-processing task such as segmentation of characters, words and
lines easier [3], [4]. However, the handwritten text recognition is more challenging
due to the cursive nature of the document, myriad writing style of the individual,
moreover, it is difficult to collect and prepare handwritten text dataset than machine
printed document to develop automated text recognition models.

Although the field of text recognition has been studied for the past few decades and
various techniques and systems have been implemented, it is still an active research
area. Nowadays, optical character recognition (OCR) system for machine printed
documents are able to digitize with a reliable performance. However, despite the
huge effort made on the development of handwritten text recognition systems by
various scholars and companies their performance is still limited. In order to achieve
a reliable performance for recognition of handwritten text researchers investigated
different sub-problems by applying some constraints on the recognition approach of
the HTR task. One such constraint is on the process of data acquisition, the HTR task
can be online where the handwriting is captured online using some kind of digitizer

CHAPTER 1. INTRODUCTION 2

input device and the recognition system do have both the temporal pen trajectory as
well as text image information as an input. In the offline scenario, only the scanned
image of the handwritten document is available for the recognition system as input,
which makes it the more difficult one [5]. Figure 1.1 shows the general overview of
text recognition system pipeline.

FIGURE 1.1: Types of text recognition based on data acquisition.

An handwritten text recognition (HTR) system often involves an interpretation of
handwritten text image by a vector of feature values and normalization before the
model, then convert into sequence of characters. And, the variation of handwritten
documents is a major challenge for recognition of text. Therefore over the past years,
researchers have proposed various text recognition techniques. By using classical
machine learning-based HTR approaches such as hidden Markov’s model (HMM
[6]), which automatically learns from manually extracted features of handwritten
text, have shown good results for the HTR task due to the sequential nature of a
text. However, HMM based approaches become ineffective as the feature extracted
from the handwritten text become too many and complex in variance. Recently, the
use of artificial neural networks (ANNs) for learning feature representation from the
scanned images of handwriting text benefit the HTR task. Many HTR researches
have been done so far in the field of artificial intelligence (AI) for Arabic, Hebrew,
Latin, Greek, Urdu, Hindi, Chinese, Japanese, etc. scripts [7]–[10]. Intuitively, mod-
els using the deep learning approach extract and learn the specific features of the data
each with respect to a sequence of labels hierarchically using artificial neural network
(ANN [11]) layers. State-of-the-art deep learning-based approach for solving HTR
problems consists of the convolutional neural networks (CNNs), recurrent neural
networks (RNNs), long-short term memory (LSTM) or gated recurrent units (GRU)
with the addition of the connectionist temporal classifications (CTC) algorithm that
perform the final labeling task from the RNN’s output enhance the performance.

CHAPTER 1. INTRODUCTION 3

1.1.1 Amharic Language and Basics of its Writing System

The Ethiopian official language, Amharic (Amarñña: አማርኛ) uses the Ethiopic script
as a syllabary [12]. It is second-most common language of Ethiopia (after Oromo)
and second-most commonly spoken Semitic language in the world (after Arabic).
It is spoken as a first language by the Amharas majorly in North Central Ethiopia.
There are Amharic speakers in a number of other countries, particularly in Egypt,
Israel, Sweden1, also by many Ethiopians residing in some cities and towns of the
US like: Washington, D. C. and New York City2. Also, Amharic is considered as a
holy language by the Rastafarian religion followers worldwide.

Amharic text is written unlike the majority of its Semitic scripts but like the Latin
script from left to right, and separate words by blank space and top to bottom for
newlines. But unlike the Latin, there is no lowercase and uppercase letters.

Amharic alphabets, also called “Fidel” is a syllable writing system where consonants
and vowels co-exist within each graphic symbol. In total, a “Fidel” has 238 core
characters and 27 labialized forms (which have two sounds such as: ሏ, ፏ, ጧ,
etc.) [5]. It has 34 base characters from which other six or more families formed
by changing its shape (see Appendix A), which causes intra-class similarity. This
similarity can be observed in the different orders of the writing system, for example:
ሰ and ስ, ረ and ሪ, ም and ሞ, ዉ and ው, ፉ and ፋ, ፓ and ፖ, etc. Also, it contains
7 derived characters such as: ሸ from ሰ, ኸ from ከ, ጨ from ጠ, etc. Besides, the
variability between classes is insignificant. This results in the inter-class similarity
of characters in different families. In the same order, for example, ለ and ሰ, ደ and ጸ,
ዐ and ፀ, ጰ and ጸ, ፈ and ረ, ኀ and ነ are which differs with a single stroke or mark.
The inter-class shape similarity problem can also be observed in the numerals and
punctuation as shown in the Table 1.1.

TABLE 1.1: The inter-class shape similarity problem of the script.

1Wikipedia: Amharic, 28. April 2019, Sunday, 9:06 AM.
2Wikipedia: Ethiopian Americans, 28. April 2019, Sunday, 9:41 AM.

https://en.wikipedia.org/wiki/Amharic
https://en.wikipedia.org/wiki/Ethiopian_Americans

CHAPTER 1. INTRODUCTION 4

There are also ten among the base alphabets don’t have unique sound (such as:
{ሀ,ሐ,ኀ,ኸ}, {ሠ,ሰ}, {አ,ዐ}, {ጸ,ፀ}) and the characters enclosed in a brace can
be used interchangeably in written documents. For example: ኃይል can be written
as ሃይል or ሀይል. Likewise, the same word can have multiple spelling variants (e.g.
አንበሳ, አምበሳ).

FIGURE 1.2: A sample handwritten Amharic text.

Handwritten Amharic word recognition (HAWR) is still active research area for the
language, which transcribe handwritten word images into its respective digital forms.
This thesis aims to develop an offline recognition algorithm that takes handwritten
Amharic words as input and produces labelled sequence in digitized format. This
is different from the one as character-level, line-level segmented, or as a page (text-
level) kind of recognition mechanism in such a way handwritten word-level images
serve as input to the system. As a sample text in Figure 1.2 shows that we often
face some cursive nature in handwriting of Amharic words that makes it difficult
to segment individual characters. In order to avoid such difficulties it is better to
segment words having a blank space between them and feed the recognition model
with the word images.

1.2 Motivation

The Amharic as one of the most commonly spoken language in Ethiopia, there are
a bulk number of documents which are written in this language which are found in
handwritten form in various locations including historical documents in churches and
mosques, official and administrative documents, etc. Despite the availability of such
huge number of documents in Amharic language which should be converted to digital
form to make them easily stored and shared electronically, there are only a very few
research attempts done for the handwritten Amharic text recognition task. Also, most
of them focus on recognition of printed documents and recognition of handwritten
documents at character level. In addition to that, most of the existing works use the

CHAPTER 1. INTRODUCTION 5

classical machine learning approaches which are claimed with low performance and
unable to generalize in domain shift. In this thesis, we in detail have investigated the
applicability of state-of-the-art deep leaning models for the very challenging hand-
written Amharic word recognition. Also, the other motivation was absence of any
public dataset for development of handwritten Amharic text recognition system. We
have released a public dataset which can be used by other researchers for the future
improvement of the recognition task.

1.3 Problem Statement

Handwritten documents will be used in various application areas including storage
of historical documents, bank check processing and others. Due to age and various
natural disaster, these documents may be damaged and can not be recovered again.
Amharic language being used as one of the major languages in Ethiopia various
handwritten documents are available which holds historical data of a given society
or the country, medical and magical contents and other official document in govern-
mental and non-governmental organizations. The conversion of these documents in
to digital or editable form is crucial for storing, communicating and preserving these
documents.

Even-though there are few research studies done for the Amharic language hand-
written text recognition, most of them are done for isolated character recognition
and printed document recognition. Few of the research works done for handwritten
word recognition use classical machine learning approach with handcrafted features
which are claimed by researchers they have low performance and unable to general-
ize in data domain shifts. The isolated character recognition based models for hand
written text recognition struggle to segment characters compared with word and line
level handwritten text recognition models since the cursive handwriting nature of the
Amharic language. Handwritten text recognition is more challenging than printed
text recognition due to the myriad writing styles, interconnection between adjacent
characters, variation in size and shape of characters written by different writers or
with in the same writer.

One of the major challenge in conversion of handwritten text in to digital form is
the lack of consistency in writing style of different writers and the cursive nature of
handwritten document. In addition, the writing system and vocabulary varies from
language to language which makes it difficult to adopt developed OCR models of one
language to the other. Due to the inherent complex morphology, large vocabulary
size and the intra- and inter-class similarity between characters, the development of

CHAPTER 1. INTRODUCTION 6

HTR models for the Amharic language is very challenging. Also, the calligraphy
and nature of handwriting differs personally in the writers. Every individual has
a different use of white spaces or lines, and style of writing and even the style of
a particular person also changes in different instances of writing time. In contrast
with the printed text, poor quality of the handwritten text pose harder hurdles in
transcribing it to machine readable text.

Another challenge in development of HTR models is to extract relevant features from
an handwritten text image which is used in the transcription to the target text in the
image. In this thesis, we applied current the state-of-the-art deep learning feature
extractors based on CNNs to extract features from an input word image. In addition,
we approach the Amharic word recognition task as a sequence learning problem and
applied the state-of-the-art deep learning based sequence learning algorithms based
on RNN architecture. Even-though the existing handwritten text recognition models
for other languages achieved state-of-the-art performance using deep learning tech-
niques, they cannot be applied directly to the Amharic language due to its peculiar
characteristics. In this thesis, we address these problems by using deep learning
techniques, particularly such as: CNN, BGRU/BLSTM and CTC for transcribing
handwritten Amharic words into the digital forms with robust feature extractions.

1.4 Research Questions

In this thesis, we want to answer the following research questions:

1. How effective are state-of-the-art deep learning based handwritten text recog-
nition models for recognition of Amharic handwritten words?

2. Which model hyper-parameters should be optimized to benefit the recognition
models to achieve high recognition rate for the Amharic handwritten word
recognition problem?

CHAPTER 1. INTRODUCTION 7

1.5 Objectives

1.5.1 General Objective

The main objective of this study is to develop offline HAWR system using deep
learning approaches.

1.5.2 Specific Objectives

The specific objectives of the study include:

• To review related works for understanding the concept of existing HTR models
developed using the state-of-the-art deep learning approach.

• To collect, preprocess and standardize the dataset for handwritten Amharic
words and for training the proposed HAWR model.

• To develop architecture of HAWR model using different combinations of deep
learning approach.

• To optimize values for the hyper-parameters’ setting of HAWR model.

• To analyze the application of pre-trained state-of-the-art models for HAWR
task.

• To evaluate and perform comparative analysis of among the proposed HAWR
models after training on the dataset with and without augmentation.

• To release publicly a new dataset for handwritten Amharic word.

1.6 Significance

Nowadays, usage of digital technologies arises in most sectors and many aspects
of life to store and transfer information. People communicate through handwriting,
but they still desire it’s transcription into electronic text. Writers such as columnist,
novelists, researchers, police officers, medical doctors, etc. can continuously have
handwritten text and want it in computer text version. The purpose of this study is to
expose the operation of deep learning models on handwritten Amharic words, where
it has been preferred to offer a robust theoretical foundation of the proposed model,
emphasizing from input data preparation to testing the developed model, pursuing
high performance in the recognition task. Thus, the system is capable of taking an
input word image and return a transcribed word, in the form of character sequence.

CHAPTER 1. INTRODUCTION 8

The potential HAWR applications include assists in preserving historical heritages
and old historic documents (medicinal or magical books and manuscripts) all from
being damaged and passing to the future generation. And also, it solves trouble in
industries like bank, healthcare, insurance, etc. and transcribes students and lectures
handwritten notes into digital format in education centers. The system can also be
used in search engines, machine translations, other machine learning areas such as
natural language processing and understanding (NLP/U) for the analysis of the text
syntactic and semantics on a computer or an underlying machine. For transcription
of offline handwritten Amharic word to the corresponding editable digital form, this
thesis contributions are as follows:

1. There is no public dataset for handwritten Amharic text recognition. In this
study, we produced a new and the first handwritten Amharic word dataset
called HAW-DB to alleviate this issue. HAW-DB can be used for future studies
and comparing related works.

2. We cross-validated different combinations of CNN and RNN architectures by
using Bayesian hyper-parameter tuning, a model-based method for finding
minimum of loss function. So, it has been used to tune the hyper-parameters’
setting until a well-performing model found. As well as, we experimentally
evaluated different input word image sizes with different RNN input lengths.
And, we also analyzed the effect of data augmentation.

3. We investigated different state-of-the-art CNN models, such as EfficientNet,
DenseNet, ResNet and VGG with modification to fit the problem domain, for
robust feature extraction from handwritten Amharic words images. Finally, we
have achieved state-of-the-art recognition accuracy for handwritten Amharic
words using the proposed method.

1.7 Scope and Limitations

This thesis focuses on the recognition of handwritten Amharic word images, and
on developing a deep learning model that results in the best performance for testing
output sequence. Only an offline scenario is considered and recognizes handwritten
Amharic words after trained with the dataset prepared by ourselves. Offline methods
involve recognizing text once it’s written-down often on a paper and scanned image
of the document, which is with some background noises and possible degradation of
part of the text, is given as an input to the recognition model. Thus, unlike online
methods, there is no information to the strokes or the directions involved during
writing. In general, this thesis is to come up with a model for an offline handwritten

CHAPTER 1. INTRODUCTION 9

Amharic word recognition purpose using deep learning approach and particularly
CNN+BRNN+CTC frameworks. The main goal herewith deals not who is the writer,
but instead what is written in an image for the computer to represent by its symbols,
Unicode or ASCII.

The proposed model is writer-independent hence it is able to recognize handwritten
Amharic word images whoever writes in a variety of writing styles. Also, these word
images are inherently unconstrained and written in a natural handwriting. It knows
a new word containing any character that’s in the characters set which is given to
train the recognition model. This indeed informs flexibility of the model besides
increasing the language usability.

The proposed model did not consider the complete vocabulary of the language. Thus,
the model do not handle any misspellings made in the source or by classifications in
the model itself. In relation to that, some of Amharic alphabets have the same sound
is still challenging to the recognition model; for instance, words in free handwriting
varies with writers choice of characters to use even when writing the same word,
which means there can be spelling variations for a single Amharic word. Because,
the writers simply focuses on the message needed to be forwarded.

Unwanted stroke detection and removal is also an issue for the HTR models which
has not been addressed perfectly yet and including the current work. Consequentially,
this leads to incorrect spelling of the output. But in the recognition model, other than
using dictionary to replace the output with a right version, it can integrate automatic
spelling correction. It’s left as future work to correct spellings of words that may
occur due to human mistakes, part of text degradation or addition of noise by using
state-of-the-art deep neural networks, generative adversarial network (GAN).

1.8 Thesis Structure

This thesis work have been done and organized as follows:

Chapter 1: Introduction to handwritten Amharic word recognition. In this chapter,
we give the background of the study, problem statement, objectives, overview of the
methods, significance, scope and limitations of the study.

Chapter 2: Review of some research related to the study that we can learn through
two parts: Machine learning and deep learning approaches, usage model and the
achieved results with brief description on their strength and weakness.

Chapter 3: Presents data collection and dataset preparation with the dataset statistics
and word segmentation approaches, and data augmentation. This chapter also goes

CHAPTER 1. INTRODUCTION 10

into details on the fundamental knowledge serving as the neural network in deep
learning used in custom network architecture, and applications of standard networks.

Chapter 4: The test results obtained carried out. Two tests have been performed on
the system to evaluate its performance in the transcription of handwritten Amharic
words: (1) the train-test split, and (2) a 10 fold cross-validation by using our own
handwritten Amharic words dataset. In the following sections we show an extract of
the results obtained in these tests.

Chapter 5: Summary of the thesis work done, recommendation and future works.
We write the conclusions obtained and propose possible future related works, which
either seek to solve the shortcomings and errors that throughout our approach we
have been able perform, or proposed alternative ways to tackle further problems.

11

Chapter 2. Background Theory and
Literature Review

In this chapter, we provide background information by briefly introducing the meth-
ods of HTR task by categorizing them into two parts: statistical (classical machine
learning) and deep neural network based recognition approaches. In addition, we
provide detail review of literature related to our work by summarizing the existing
HTR techniques both in the classical machine learning based approach and current
deep learning text recognition techniques.

2.1 Classical Machine Learning Approaches

Machine learning can enable Artificial Intelligence (AI) systems to learn from data.
Learning simply means “a computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P if its performance at

tasks in T , as measured by P , improves with experience E” [13]. Based on the way
that experience E is updated, machine learning algorithms are classified into three
main categories: supervised, unsupervised, and reinforcement learning. The HTR
algorithms are under supervised learning, thus they need labeling of every input data
and they learn to predict the output from the data. Hidden Markov models (HMMs)
and also conditional random fields (CRFs) that is a predominant sequence labeling
framework [14] are among the common ones.

2.1.1 Hidden Markov Model (HMM)

The HMM is a statistical model that was first proposed by Baum L.E. [15] uses a
Markov process that contains hidden (unknown) events. When we need to compute
a probability for a sequence of observable events, Markov’s chain is useful.

Generally, there are some drawbacks that exist when using HMM algorithms includ-
ing adequate task-oriented knowledge is needed while designing HMM state models,
and the assumptions need also be with explicit dependency to make their inference
tractable or the assumption that observations in HMM should be independent. Also,
HMM has discriminate sequence labeling although the training is generative.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 12

2.2 Deep Learning Approaches

Deep learning, a powerful set of techniques use of artificial neural network (ANN),
provide the best models for HTR tasks. There are multiple layers between the input
and output layers for the sake of learning. The three often used deep learning models
in HTR are convolutional neural network (CNN), recurrent neural network (RNN)
and connectionist temporal classification (CTC).

2.2.1 Overview of Neural Network (NN)

The background of artificial neuron is the biological nervous system [16]. Thus, for
example, Figure 2.1 shows an electrochemical process taking place to identify NaCl
concentration.

FIGURE 2.1: An illustration of biological neuron.

In ANN, a neuron is a node or a point at which certain mathematical operation is
performed. There are two criteria need to be satisfied for a neuron to perform its
task. First, the function it is going to perform must be known. Second, it has to have
an input by which the function is executed. Generally, an artificial neuron structure
is shown in Figure 2.2. Where, x is the input signals or vector and if f is already
known neuron activation function, then y = f(x).

FIGURE 2.2: An illustration of artificial neuron model.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 13

Depending on the value of executed function, the neuron is excited or is inhibited.
Thus, a neuron is excited if the executed function is greater than certain threshold
else it is inhibited.

2.2.2 Convolutional Neural Network (CNN)

CNN is inspired by the primary visual cortex of the brain. It is a specialized ANN
for processing visual information of static or moving objects and feature extraction.
From a computational point of view, the main advantage of this type of ANN lies in
operating on the elements of an input tensor taking into account the value, position
and neighborhoods of them. These operations are convolutions between the input
tensor and the network’s tensors, called filters.

C(i, j) = (I∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n) (2.1)

The CNN is composed of a set of convolutional kernels where each neuron acts as a
kernel. The convolutional layer has also weight sharing ability so that it exploits most
relevant feature-maps by sliding kernel with the same set of weights on the image.
Equation 2.1 gives the common 2D convolution operation used in deep learning for
a 2-dimensional image I with a 2-dimensional kernel K.

FIGURE 2.3: An illustration of convolution.

CNN involves convolution of the input tensors in two dimensions to give the out-
put. The output size of the CNN with given an input size N and receptive fields
F is determined by the formula (N − F)/strides + 1. For Figure 2.3 with 3 × 3

connectivity and stride equals 1 is applied to 7 × 7 input image so that the output
would be 5 × 5. Generally, the choice of kernel size, stride and zero padding along
axis j, which forms the receptive fields affect the output size of axis j [17]. CNN
often followed by nonlinear activation functions like ReLU or tanh. This results in
local networks, where each region of the input is connected to a neuron in the output.
Every CNN layer can apply different filters and give well chained results.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 14

2.2.3 Recurrent Neural Network (RNN)

When dealing with language data, it is very common to work with sequences, such
as words (sequences of characters), sentences (sequences of words) and the so on.
RNN which is initially proposed by Elman in 1990 [18] and explored for use in
HTR [19], [20] is best suited for decoding and extracting features from sequential
data. Especially, RNN output is a function of not only the current input but also
of the previous output, which is encoded into a hidden state h. That means, RNN
has also a memory of the previous timestep by which it can encode the information
present in the sequence itself. RNN can therefore model multivariate time-series (e.g.
sequence labeling in pattern recognition tasks like HTR) and output a class prediction
by considering the whole temporal sequence. RNN updates its memory as indicated
in Equation 2.2.

ht = g [Wxt + Uht−1] , at = V ht (2.2)

Where ht represents the hidden state at time-step t. The weight matrices W , U and
V are input-to-hidden, hidden-to-hidden and hidden-to-output respectively. Finally,
an activation a at time-step t given by the product of V and ht.

2.2.3.1 Bidirectional Long Short Term Memory (BLSTM)

Bidirectional long short-term memory (BLSTM) is a kind of bidirectional recurrent
NNs (BRNNs), which is to connect two hidden layers of opposite directions to the
same output and first proposed in [21]. The output layer can get information from
past (backwards) and future (forward) states simultaneously.

Each LSTM consists of more sophisticated and recurrently connected sub-nets, known
as “memory cells”. The activation of each cell is controlled by three multiplicative
gate units such as the input gate, forget gate and output gate, so allow information to
have long range inter-dependencies. This is adding new values on to the activation
as it goes deeper through the layers, thereby avoiding the vanishing gradient problem
that makes LSTM much similar with the residual neural networks, or ResNets [22].
Equation 2.3, 2.4, 2.5, 2.6 and 2.7 define general behavior of the LSTM units. The
input gate controls whether the input of the cell is contained in the cell state.

atl =
I∑

i=1

wilx
t
i +

H∑
h=1

whlz
t−1
h +

C∑
c=1

wcls
t−1
c (2.3)

atϕ =
I∑

i=1

wiϕx
t
i +

H∑
h=1

whϕz
t−1
h +

C∑
c=1

wcϕs
t−1
c (2.4)

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 15

FIGURE 2.4: An illustration of long short-term memory unit [23].

Whereas, the outputs of these gates given by: ztl = f(atl) and ztϕ = f(atϕ) and
the forget gate controls if the previous state is contained in the cell state, or if it is
forgotten.

atc =
I∑

i=1

wicx
t
i +

H∑
h=1

whcz
t−1
h (2.5)

The cell state is the sum of the previous state, scaled by the forget gate, and of the
cell input, scaled by the input gate: stc = ztϕs

t−1
c + ztlg(a

t
c). Most of the time, an

activation function f, g and h for the gates are sigmoid functions. The output gate
controls whether the LSTM unit emits the activation h(stc).

atω =
I∑

i=1

wiωx
t
i +

H∑
h=1

whωz
t−1
h +

C∑
c=1

wcωs
t
c (2.6)

Therefore, ztω = f(atω) and as depicted in Figure 2.4 also, the cell output is computed
by applying the activation function h to the cell state, scaled by the output gate.

ztc = ztωh(s
t
c) (2.7)

For RNN component of HTR system, LSTMs with their very deep residual networks
are notoriously difficult to train and still they have very long gradient paths even-
though there is propagating gradient from the end all the way transformation cells
over the beginning. Whereas, the GRUs have internal gates by which they can reset
all long temporal information. Hence, they are easier in order to train than LSTMs.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 16

2.2.3.2 Bidirectional Gated – Recurrent Unit (BGRU)

GRUs with the assumption of x = (x1, ..., xt, ..., xT) for xt ∈ Rn be a sequence of
T observations and y ∈ C where C is ground truth class label [24]. A GRU cell
receives xt and outputs an activation ht ∈ Rm at every time-step t as calculated in
Equation 2.8.

hj
t = (1−zjt)h

j
t−1 + zjt h̃

j
t (2.8)

While applying activation at previous time-step ht−1 and the update gate factor zt
is given by Equation 2.9 for optimizable parameters Wz ∈ Rm×n and Uz ∈ Rm×m

shared across all t and a sigmoid function σ that outputs values in an interval [0, 1].

zjt = σ(Wzxt + Uzht−1)
j (2.9)

Likewise the update gate, the reset gate rt is provided by Equation 2.10.

rjt = σ(Wzxt + Uzht−1)
j (2.10)

The h̃j
t , called a candidate activation, can be obtained by using Equation 2.11. When

the element-wise dot product
⊙

is done between rt and the previous time-step ht−1.

h̃j
t = tanh(Wxt + U(rt

⊙
ht−1))

j (2.11)

The log-it value zi in a dense layer is given by Equation 2.12 after the final GRU
activation at time T is input to the dense layer with softmax activation function.

zi =
∑
j

wij
s h

j
T (2.12)

For the softmax layer weights wij
s contained in Ws and for the stacked layers of

BGRU,
[
hj
fw,T , h

j
bw,0

]
implies to concatenate the forward and backward GRUs acti-

vation. Thus, the log-it value is modified as expressed by Equation 2.13.

zi =
∑
j

wij
s

[
hj
fw,T , h

j
bw,0

]
(2.13)

The softmax activation realizes the final sequence labeling as given by Equation 2.14.

softmax(zi) =
ez

i∑
j ez

j (2.14)

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 17

2.2.4 Connectionist Temporal Classification (CTC)

The CTC eliminates duplicates in the output sequence, e.g. aaabb becomes ab. But,
a problem arises when the original word has some consecutively repeated letter, such
as “see” or “book”, the system transcribes them as a single letter. To overcome this,
a blank symbol ∅ is used to represent a no label observations.

(A) The path is (aaa_b) in this example.

(B) The thin lines are the paths
giving “a” and the dashed line
is the path giving labeling ∅.

FIGURE 2.5: An example of output sequence CTC is fixing.

The CTC corresponds to the task of labeling unsegmented sequence data with RNNs
[25]. It applies the output of the RNNs (the sequence of symbols of interest, such as
a word or the sequence of characters) to an input sequence, and there is no need of
one target at each timestep (unlike sliding window approach over each frame). Thus,
it does not require pre-segmented data while training the network and the output is
already sequence of characters that do not need any post-processing. Hence, let’s
assume the input sequence x = (x1, ..., xt, ..., xT), whose length is T , target space
Z = L∗ which is the set of all sequences over an alphabet of each label L. The
target sequence z = (z1, ..., zu, ..., zU), and the length U is always less or equal
to T (i.e. |z| ≤ |x|). A many-to-one mapping B is L′T 7→ L≤T , where L≤T is a
set of possible label sequences whereas the output alphabet that contains a blank:
L′T = L∪{∅}. Finally, by eliminating all blanks and repeated labels from the paths,
for instance: B(∅bbo∅oo∅∅kk) = B(book). An RNN with m inputs, n outputs and
weight vector w as a continuous map Nw: (Rm)T 7→ (Rn)T . We assume its outputs
do not have any connection for different timesteps, and y = Nw(x) as the sequence
of the outputs, and denote by ytk which is the activation of output label k at time t.
Equation 2.15 is the probability of observing π, defining a distribution over the set of
sequences L′T , given the input sequences x.

p (π|x) =
∏
t

ytπt
, ∀π ∈ L′T (2.15)

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 18

Next, the many-to-one mapping B is used to compute the posterior probability of a
label sequence l by simply summing up all one by one, as given in Equation 2.16.

p (l|x) =
∑

π∈B−1(l)

p (π|x) , ∀l ∈ L≤T (2.16)

To train the network with unsegmented data S =
{
(x, z), ∀z ∈ L≤|x|

}
formulated by

maximizing the correct labelling and by minimizing the CTC-loss in Equation 2.17.

ECTC = −
∑

(x,z)∈S
log p (z|x) (2.17)

The use of forward and backward algorithm in a CTC graph, which represents each
of the possible label sequences, are defined as Equation 2.18 and 2.19 respectively
for πt = l′s where l′ ∈ L′T and l ∈ L≤T .

αt(S) = p
(
π1:t : B(π1:t) = l1:s/2|x

)
=

∑
π:B(π1:t)=l1:s/2

(
t∏

t′=1

yt
′

πt′

)
(2.18)

βt(S) = p
(
πt+1:T : B(πt+1:T) = ls/2:|l||x

)
=

∑
π:B(πt:T)=ls/2:|l|

 T∏
t′=t+1

yt
′

πt′

 (2.19)

The recurrence natures for the two variables are given by Equation 2.20 and 2.21.

αt(S) =

 ytl′s
∑1

n=0 αt−1(S − n) , if l′s = ∅ or l′s = l′s−2

ytl′s
∑2

n=0 αt−1(S − n) , otherwise.
(2.20)

βt(S) =

 yt+1
l′s+1

βt+1(S + 1) + yt+1
l′s

βt+1(S) , if l′s = ∅ or l′s = l′s−2

yt+1
l′s+1

βt+1(S + 1) + yt+1
l′s

βt+1(S) + yt+1
l′s+2

βt+1(S + 2) , otherwise.

(2.21)
Equation 2.22 shows that a probability of l given by the product of α and β at time t.

p(l|x) =
T∑
t=1

|l|∑
s=1

αt(S)βt(S)
ytls

=
|l′|∑
s=1

αt(S)βt(S) (2.22)

If a set where label k is located be lab(l, k) = {s : z′s = k}. Equation 2.23 is
derivatives of the loss with respect to the activation atk before the softmax.

∂ECTC

∂atk
= ytk −

∑
s∈lab(z,k)

αt(S)βt(S)∑|z′|
s′=1 αt(S ′)βt(S ′)

(2.23)

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 19

2.3 Commonly used Convolutional Neural Networks

In this subsection, we described in detail the most common CNN architectures which
we have also used them in our proposed model during the early feature extraction
step. These deep convolutional neural networks architectures have been modified to
fit to our problem domain by seeing their performance experimentally.

2.3.1 Visual Geometry Group (VGG)

One of the deep convolutional neural net architecture, so called VGG was created
by Visual Geometry Group at University of Oxford [26]. The VGG architecture is
deeper than previously existing CNN architectures. In the VGG architecture blocks
of CNN layers are grouped together with growing number of feature map sizes.
There are various versions of the VGG architecture and we have used VGG19 in
this study due to its high performance in feature extraction. The VGG19 is a latest
version of the VGG architecture that is used to classify images. It has a total of 19
weight layers out of which 16 are the layers of CNNs and it can reduce computation
by implementing layers of 3×3 filter size. Among its advantage, its implementations
are easily available in keras and other deep learning frameworks.

FIGURE 2.6: An illustration of the network architecture of VGG-19
model for ImageNet: conv (convolution), FC (fully connected) [27].

VGG19 first was used for competition on ImageNet dataset. It is composed of 3× 3

convolutional layers stacked on top of each other in increasing depth. Diminishing
size of volume is handled by max-pooling. Finally, each of two fully-connected
layers with 4,096 nodes are then followed by a classifier which is softmax.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 20

2.3.2 Residual Network (ResNet)

Microsoft Research proposed ResNet, which scaled up CNN layers from 18 to 200.
It uses a technique called skip connections (or a shortcut connections) to overcome
the problem of vanishing or exploding gradients despite the network is deep. IfH(x)
is representation of stacked layers and x is the inputs to the first of these layers, a
residual function F can be approximated to H(x) − x. The same dimensions of the
input and output leads to identity shortcuts: y = F(x, {Wi})+x, where F(x, {Wi})
is denoting residual mapping to be learned on multiple CNN layers, and y is output
vectors. The F + x is done by a shortcut connection and element-wise addition [28].

2.3.2.1 ResNet152 Architecture

When the network depth increased, and multiplied n of these large numbers become
exploded, multiplied n of these small numbers become vanished. Despite the fact that
deeper networks suffered a degradation problem, ResNet achieved more accuracy as
the network depth increased without the accuracy got saturated. The deeper ResNet
has smaller magnitudes of responses. Thus, 152-layer ResNet (11.3 billion FLOPs)
has lower complexity than the shallower VGG19 model (19.6 billion FLOPs).

TABLE 2.1: An architecture of ResNet152 model for ImageNet,
Down-sampling is performed by conv3_1, conv4_1, and conv5_1

with a stride of 2. [28]

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 21

2.3.3 Dense Convolutional Network (DenseNet)

DenseNet was developed by Tsinghua University and Facebook AI Research (FAIR)
in Cornwell University. Unlike ResNet, the outputs of the preceding CNN layers
within “dense blocks” of DenseNet are not summed but concatenated to the current
layer output. This is shown in Figure 2.71. Thus, each layer receives a “collective
knowledge” from all of the preceding layers. Each layer adds k feature-maps of its
own to this state. The growth rate regulates how much new information each layer
contributes to the global state. The global state is not replicated layer by layer, instead
it is written once and can be updated from everywhere within the network. There is
also bottleneck layer to improve computational efficiency by reducing the number
of input feature-maps [29]. DenseNet variants are: DenseNet-264, DenseNet-121,
DenseNet-169 or DenseNet-201. DenseNet-264 (k = 48) outperformed.

FIGURE 2.7: An illustration of the architecture of dense block.

2.3.4 Efficient Network for CNNs (EfficientNet)

As reported in [30], EfficientNets achieved greater efficiency than those models used
previously on the ImageNet. Both accuracy and FLOPS can be effectively optimized.
Intuitively, this was empirical evidence showing that the compound scaling method
can be applied on the three dimensions of network width, depth, and resolution. This
used a set of fixed scaling coefficients to uniformly scaled up all the three dimensions.

Hence, there are two steps followed to invent EfficientNet models. First, search-
ing once on the smallest baseline network, which is EfficientNet-B0 (it has residual
blocks of MobileNetV2 as a bottleneck and squeeze-and-excitation blocks). Next,
scaling the baseline network using different compound coefficient, then EfficientNet-
B1 to B7 are obtained. These EfficientNet models consistently reduce parameters and
FLOPS.

1Review: Dense Convolutional Network (Image Classification) by Sik-Ho Tsang, Nov 25, 2018.

https://towardsdatascience.com/

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 22

FIGURE 2.8: An illustration of model scaling. (a) is an example of
baseline network; (b)-(d) are conventional scaling that only increases
one dimension; (e) is compound scaling method that uniformly scales

all three dimensions with a fixed ratio [30].

As it is depicted in Figure 2.8, the researchers note that there are three primary ways
that is used to expand the network, these are in accordance with the comprehensive
width, depth and resolution. Figure 2.8a is a baseline network, which is what we
call the baseline. Figures 2.8b, 2.8c, and 2.8d expand the width, depth, and input
resolution of the baseline network, and Figure 2.8e map for compound scaling. Thus
mathematically, if the whole convolutional network is N , and its ith convolutional
layer can be seen as a function map in Equation 2.24.

Yi = Fi(Xi) (2.24)

Where, Yi is the output tensor, Xi is the input tensor, assuming that the dimension
of Xi is 〈Hi,Wi, Ci〉. By using the signal of the stage 1...s, the ith layer Lth, and
F th that has Lth in the ith stage with the same structure convolutional layer, then
the neural network N will have multiple identical convolutional layers, so it can be
expressed as Equation 2.25.

N =
⊙

i=1...s

FLi
i (X⟨Hi,Wi,Ci⟩) (2.25)

Now, having the three parameters including the depth Li, the number of channels Ci,
which is the width of the network, and the third one is resolution given by Hi and Wi,
therefore the researchers main aim is that all convolutional layers of a convolutional
network must be uniformly expanded by the same proportional constant.

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 23

2.4 Literature Reviews

The first handwriting recognition was in the 1995 which is character-level online-
HTR based on Hidden Markov Models (HMMs) [31]. However, for a given character
in a word HMMs inherently do not consider the previous or following characters.
This ultimately limited the attainable accuracy and extension of such models [32].

An HTR system from traditional works that use of support vector machine (SVM),
k-nearest neighbors (K-NN) algorithm, hidden Markov model (HMM) or any other
classical machine learning approach has emerged to deep neural networks (DNNs),
and hybrid of DNNs with machine learning algorithms [33] for its implementation.

For HAWR task, feature-level concatenation method outperformed over HMM-level
concatenation across different document qualities and varying sizes of training and
test data [5]. In this method some sample features of training words are generated
by feature sets of constituent characters. The feature set stores a variety of sample
features for each character reflecting different real-world writing styles. However,
HMMs are not enough to withstand many of the usual challenges especially that are
associated with offline handwriting recognition: the input is a variable-sized two-
dimensional image, the output is a variable-sized series of character, with no direct
relation to the input size, and the prior segmentation into characters become difficult
due to cursive nature of free-handwriting.

2.4.1 Related Works

Unfortunately, only few literature have been done for developing HAWR. Most of the
existing handwritten recognition for Amharic language are based on the transcription
of isolated handwritten characters [34]–[37]. An HMM for recognition of Amharic
handwritten words used a traditional hand-engineered feature to represent character
symbols [5]. Hence, the segmentation process for each of the characters from the
handwritten text is more challenging due to cursive nature of the free-handwriting.
And, this is one of the reason for the less accuracy of such a character based HTR
models.

Recently, there are only two researches done for printed and synthesized Amharic
text-line images and published on the Amharic, printed and synthetic documents
recognition (ADOCR2) [38], [39]. The studies attempted end-to-end learning to
Amharic OCR and employed CNN for feature extraction and BLSTM (for sequence
learning) and CTC for sequence labeling. They trained serially over a dataset curated

2http://www.dfki.uni-kl.de/belay/

CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW 24

using OCRopus. The dataset contains 337 332 Amharic text-line images, scaled them
to 48 × 128 of spatial dimensions while data preprocessing, and trained with Adam
optimizer. But, the dataset was limited to only two Amharic font types.

According to the baseline model used, there are also many other studies related and
some of which are summarized in Table 2.2. Most of these are using different datasets
so that it does not allow us to compare to one another. Nevertheless, as far as we
know, there is no research work particularly on offline handwritten Amharic word
recognition using Deep learning. In this study, we proposed our own custom model
with convolutional neural nets (CNNs) plus recurrent neural nets (RNNs) plus CTC
loss function and RNN output sequence decoding algorithms, which is the state-of-
the-art technique, for offline HTR systems. In addition, we have publicly provided a
dataset for Amharic words consisting of 33 672 handwritten word-images3.

3Handwritten Amharic word dataset (HAW-DB) used in this thesis is available online at this link:
https://sites.google.com/view/hawdb-v1.

C
H

A
PT

E
R

2.
B

A
C

K
G

R
O

U
N

D
T

H
E

O
RY

A
N

D
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
25

Year Authors Target scripts/Database Baseline models Results/Accuracy/CER Citation

2020 B. Belay, T. Habtegebrial,
Million Meshesha, G. B.
Gebremeskel et al.

ADOCR: printed and synthetic
benchmark Amharic Optical Char-
acter Recognition (OCR) database

CNN + BLSTM + CTC CER of 6.98% and 1.05%
for printed and synthetic
fonts of Visual Geez and
Power Geez, respectively.

[38]

2020 José C. Aradillas,
J.J. Murillo-Fuentes
and Pablo M. Olmos

small English handwritting
ICFHR 2018 competition database,
Washington and Parzival

CNN + LSTM + CTC
(with transfer learning)

CER (up to 6% in some
cases) in the test set.

[40]

2020 S. Bansal, P. Krishnan
and C.V. Jawahar

a collection of synthetic text in the
Hindi language

CRNN (uses Embed-
Net, a pre-trained word
image embedding net-
work)

Word recognition accuracy
(WRA) of 85.364% at K
textual transcriptions = 20.

[41]

2019 R. Ghosh, C. Vamshi and
P. Kumar

Indian Devanagari and Bengali
Characters

CNN + LSTM and
BLSTM + CTC

99.50% for Devanagari and
95.24% for Bengali

[42]

2019 H.P. Tran, A. Smith, and
E. Dimla

IAM Handwriting English
Sentence Database [43]

CNN + BLSTM + CTC 88.18% on test data [44]

2019 Xinfeng Zhang
and Kunpeng Yan

offline Chinese handwritten text, a
dataset collected from students

CNN + BRNN 83.0% on test set data [45]

2019 R. Chamchong, W. Gao
and M. D. McDonnell

Thai handwritten dataset collected
from ancient archive documents

CNN + BLSTM + CTC CER of 11.9% with the
best architecture.

[46]

C
H

A
PT

E
R

2.
B

A
C

K
G

R
O

U
N

D
T

H
E

O
RY

A
N

D
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
26

2018 A. Granet, E. Morin, H.
Mouchére, S. Quiniou and
C. Viard-Gaudin

French and Italian language using
Italian Comedy (CI) dataset from a
pre-trained model on RIMES (RM),
Los Esposalles (ESP) and Georges
Washington (GW) dataset

CNN + BLSTM + CTC
(with transfer learning)

This shows a possibility
of transfer learning across
languages, but it’s model
recognition rate is low.

[47]

2018 R. Maalej
and M. Kherallah

Arabic handwritten text
IFN/ENIT database [48]

CNN + BLSTM + CTC The recognition rate of
92.21%

[49]

TABLE 2.2: Summary of some related works.

27

Chapter 3. Methodology

In this thesis, we have followed the experimental research approach in which we
developed our custom CNN+BRNN+CTC architecture for the handwritten Amharic
word recognition technique and we did extensive experimental study to evaluate and
compare the performance of the handwritten Amharic word recognition (HAWR)
models by optimizing various hyper-parameters of the architectures. The methods
used in this study are described in this chapter including the procedures on how the
dataset is prepared. As output from the pre-processing and input for HAWR model,
we prepared a dataset which consists of a set of Amharic word images, with their
corresponding transcripts, in the standard format. Then, a special emphasis has been
placed on the deep learning components of the recognition system including: CNN,
BRNN (such as BLSTM or BGRU) and CTC that make up the architecture.

3.1 Proposed End-to-End HAWR Model

In the proposed end-to-end HAWR model, we employed the state-of-the-art deep
learning based HTR architecture, which comprises of three popular components
namely CNN for feature extraction from input handwritten Amharic word images,
RNN variants for sequence learning from the extracted features outputted from the
CNN part and finally CTC as a loss function and sequence decoder algorithm. Figure
3.1 shows the general system overview of the CNN based feature extractor, BRNN
based sequence modeling, and CTC based output transcription components.

FIGURE 3.1: General overview of the proposed HAWR model.

CHAPTER 3. METHODOLOGY 28

Thus, the input data is prepared in the form of handwritten word images after data
preprocessing, which is given as an input to stacked CNN layers. These layers are
used to extract feature that represent the input word-image. The extracted feature
from the CNN component is converted into one dimensional sequence of features
before fed as an input to the RNN for learning temporal information of the characters
in the input word image. Finally, the CTC is used to calculate the error made with
the predicted, which are taken as output sequence, and actual word in the image.

3.2 Data Collection

There is no publicly available dataset for handwritten Amharic text or words. Due to
this, we collected handwritten Amharic text afterwards conducted certain procedures
for automatic word segmentation. We randomly split the original dataset into training
set and test set then we did the data augmentation on the training set. Next, we
applied data pre-processing on both dataset with and without augmentation, and the
test set for standardizing their format.

A total of 60 writers, who are with different age groups and educational background,
were asked to write the textual content of documents with their free hand-writing
style. Four documents from different aspects of views were selected, written with
a pen on A4 paper and captured as image. These include the Aristotle monograph
(writer: Hailegiorgis Mamo), Astronomy newsletter (columnist: Zemene Yohannes,
Zoskales), Ethiopian constitution, and “Thus Spake Zarathustra” (author: Friedrich
Nietzsche; translated by: Esubalew Amare) as shown in Table 3.1. 4309 are unique
and 2733 are single, which are written only one time out of the words in the dataset.

TABLE 3.1: Description of dataset.

Data Sources Pages Lines Words
Aristotle monograph [50] 7 178 1,389
Astronomy newsletter [51] 7 188 1,476
Ethiopian constitution [52] 50 1,074 7,817
Thus Spake Zarathustra [53] 6 163 1,382

Total 70 1,574 12,064

3.3 Data Pre–processing

Data pre-processing was early stage that mainly categorized into five processes: an
handwritten text image binarization, segmentation into word images, the word image
labeling, data augmentation and data standardization.

CHAPTER 3. METHODOLOGY 29

3.3.1 Binarization

Binarization, is a digital image processing (DIP) technique, was applied to the text
image and reduced it to binary form (often represented 1’s on a background of 0’s)
using a thresholding transformation function followed by a thinning.

Thinning process used to thin the characters until they become strings of binary.
Some types of binarization include:

• OTSU: A threshold selection method from gray-level histogram (1979).

• NIBLACK: An introduction to digital image processing (1986).

• SAUVOLA: Adaptive document binarization (1997).

• WOLF: Text localization, binarization and enhancement in multimedia docu-
ment (2002).

• SU: Binarization of historical document images using local maximum and
minimum (2010).

We have used some variance of cameras and few of them were with less resolutions.
Therefore, we chose Wolf for most of our text images at this stage. However, Otsu
finds an optimal threshold to apply it for every pixels in the text image. But, Otsu’s
and Sauvola’s algorithms are ineffective on complicated background, or incapable to
correctly delete the graphics that are present in some images. This results false lines
detection and an error in the line localization and consequently to the entire method.

FIGURE 3.2: Challenges such as noise in binarization.

CHAPTER 3. METHODOLOGY 30

In addition, some noise creates broken strings of characters with gaps of a few pixels
in the binarization and thinning processes. One way to “repair” the gaps is applying
an averaging mask over the binary image to blur it, so that bridges of nonzero pixels
between the gaps. After bridging the gaps, it is desired to threshold the image in order
to convert it back to binary form. In Figure 3.2, on the left upper side image is taken
in flash light, which results in loss of some black-pixels after the binarization process
as shown on the right upper side. The potential solution to this problem is to use
high-pass filter before the process as shown in followed pictures. We then chose an
adaptive binarization the so called “Efficient illumination compensation techniques
for text images,” (2012) contributed for balancing image illumination to help with
the process of adaptive binarization.

3.3.2 Image Cropping

The image was scanned and cropping frame was limited to handwriting text in the
image. This was done by detecting the predominant contour in the image and by
using four separate points of perspective transformation. Then, it was cropped.

3.3.3 Segmentation

Segmentation was employed to segment handwriting text image in levels of lines and
words. A* path–planning algorithm [54] was performed to determine the path that
separates each pair of lines; then, each line was segmented. Afterwards, deslanting

technique applied for the removal of cursive and sloped handwriting styles from the
line images [55]. Among the latest works in word segmentation, we used the scale
space word partitioning algorithm [56] which provided easy, fast and good results in
the process. It’s importance is scale selection, that is, finding the optimum scale at
which blobs correspond to words. This was done by finding the maximum over scale
of the extent or area of the blobs. Finally, this process terminates after it saves each
image file containing only that one binarized word as PNG format (see Figure 3.3).

FIGURE 3.3: The word level segmentation from text image.

CHAPTER 3. METHODOLOGY 31

3.3.4 Word Image Labeling

Word image labeling process refers to the way by which every word image is mapped
to its content in digital form. The word image filename and other basic details along
with the ground truth used to be recorded row-by-row in a text file. These information
are single-space separated and would be used later in the data pre-processing stage.

Figure 3.4 illustrates the general overview of how the dataset for handwritten Amharic
words (HAW-DB) is organized. The word image’s filename is in the first column, a
status flag (ok/err) of the file is in the second, a threshold gray level is next, a pair
of integers indicating an initial point or x, y–coordinates for the word’s bonding box
in a line image, also width and height of the word image are put into the subsequent
columns, and lastly a grammatical form and the label are the final columns.

FIGURE 3.4: An illustration of word images and labels.

3.3.5 Data Augmentation

The size of dataset is an issue while training a deep learning model. Only 12 024
original handwritten Amharic word images contained in HAW-DB. And, this was
relatively small dataset that very likely to cause over-fitting. The training set initially
was 10 824 and could be extended to a total of 32 472 word-images with the addition
of 21 648 augmented data, which were regenerated by the application of multiple
random combination of transformation functions (we took care of that word-images
should not have a function like flipping, instead we applied up to 10◦ x-and-y axis
rotation, not more than 4 pixel erode, dilate and shifting, up to 10% resizing (zoom
in, or zoom out), adding Gaussian noise and light intensity, opening or closing, etc.
see samples in Figure 3.5). But the test set was remained the same for both the orig-
inal and new dataset containing augmented ones, therefore to make fair comparison
experiment. This new dataset when the test set added became 33 672 word images.

CHAPTER 3. METHODOLOGY 32

FIGURE 3.5: Samples showing application of data augmentation.

3.3.6 Data Standardization

These steps implemented the task of standardizing the format of the input data for
training the model in Keras with TensorFlow backend. Thus, we established the
same scale for all images to allow the design of the system architecture knowing at
all times the dimensions of the data flow through the different layers.

FIGURE 3.6: An example of gray-level handwritten Amharic word-
image with its associated tensor for a word “ጊዜ”.

This was carried out by giving all of them a height of 64 pixels and adding padding
until reaching a width of 256 pixels, maintaining their aspect ratio. However, the
system could be designed for variable size images, but it would complicate the code
without adding value to the project.

After image scaling, the gray-scale tones have been inverted, by transforming their
associated tensor in the process. Thus, we achieved that the pixels corresponding to
written parts of the image are represented with high values within the tensor.

CHAPTER 3. METHODOLOGY 33

Next, we normalized the word-images tensor so that every elements in it inclusively
lies between 0 and 1. Then, transform every input sequences to Numpy array using
numpy.asarray which is in-built function of Python Numpy library.

Appendix B, Table B.1 shows HAW-DB’s total number of unique Amharic alphabets,
numbers and punctuation marks. Finally, labels are encoded and post-padded to same
lengths. This label is denoted by Y and the input images by X in the Algorithm 1.

Algorithm 1: Transforming to numpy array, and padding labels.
X ← images /* images are preprocessed word-images */
Y ← labels
C ← length(char_list) /* total number of characters */
/* finding the inputs’ and labels’ maximum length */
Xmaxlen ← getMaxLength(Xlength)
Ymaxlen ← getMaxLength(Ylength)

/* converting the inputs to numpy arrays */
X ← numpy.asarray(X)
Xlen ← numpy.asarray(Xmaxlen)
Ylen ← numpy.asarray(Ymaxlen)

/* post-padding the labels */
Ypadded ← pad_sequences(Y,maxlen = Ymaxlen, padding = post, value = C)

For instance, scaling to size of 4 × 8, inverting and normalizing the word-image
depicted in Figure 3.6 results as shown in Figure 3.7.

FIGURE 3.7: Conversion of the word-image to shape (4, 8, 1) and
normalization.

In Figure 3.7, the right two columns are filled with zeros to reach the pre-specified
width (this case, 8). Eventually, when transforming it to the numpy array format,
produced as it is depicted in Figure 3.8.

FIGURE 3.8: Conversion of the normalized image to numpy array.

The word label “ ጊዜ” would be encoded as [206, 169] and let the maximum label
length is three in words’ set, then post-padded sequence would become [206, 169, 300]
by appending 300 for making all labels to the same length in that domain.

CHAPTER 3. METHODOLOGY 34

3.4 Experimental Setup

In this section, we detailed the experimental analysis and investigation of optimal
combination for the three major components (CNN, BRNN and CTC) by using dif-
ferent input handwritten Amharic word image. For the optimization experiment, we
chose Bayesian algorithm and optimized the hyper-parameter settings of the CNN
and BRNN architectures. In addition to the neural architecture search, we analyzed
different input word image sizes and feature lengths that the BRNN received as input,
and investigated their effect in a recognition performance of the model.

During all experiments, we randomly split the dataset with approximately 80% for
training, 10% for validation and the remaining 10% for testing set. The more detail
experimental settings for each component in our HAWR model is discussed in the
following sub-sections.

3.4.1 CNN Based Feature Extraction

CNNs are well known techniques for extraction of spatial information from an input
image. Hence, we did extensive experiments by using various architectures of CNN
as feature extractors for robust representation of the input handwritten Amharic word
images. We designed a custom CNN architecture by carefully optimizing values for
the hyper-parameters of the network using our training and validation sets. Also, we
applied the commonly used CNN architectures including VGG, ResNet, DenseNet
and EffecientNet by modifying their architectures so as to fit our problem domain.

We modified the commonly used CNN architectures by removing the top n-layers
until (H × W × C) feature map could be obtained at the last convolution layer,
where the spatial dimensions H is height, W is width and C is channel. When we in-
creased the depth of CNN architecture, the down-sampled feature maps would have
higher semantic information but the projected receptive field would cover larger area
in the original image. Decreasing width of the feature map too much due to down-
sampling would cause overlapping of features for two or more adjacent characters,
which degrades performance of the whole model. In order to prevent such feature
overlapping problem, we experimentally selected optimal values for the height and
width of the feature map at the last convolution layers of our CNN architectures (both
for the custom and commonly used CNN architectures). We did this by modifying
strides of the max pooling layers at different layers of the proposed CNN architec-
tures. We have achieved the best performance for our proposed CNN models with
feature map dimensions, height (H) of 1 and width (W) of 31 generated at the last
CNN layer.

CHAPTER 3. METHODOLOGY 35

3.4.1.1 Custom CNN Architecture

A custom CNN architecture that we designed for the comparable feature extraction
task with the existing commonly used CNN architectures at less computational cost.
We experimentally tuned each hyper-parameter including number of CNN layers,
kernel size, pooling layer size, application of batch normalization and activation
functions. Figure 3.9 illustrates the custom CNN layers used in our architecture.
Each of these layers, consist the types of operations such as: convolutional, batch
normalization and pooling layers.

FIGURE 3.9: Feature extraction: Convolutional neural nets (CNN).

Our custom model consists of twelve CNN layers from bottom to top: each two 64

and 128, then each four 256 and 512 filters with 3 × 3 kernel size except the last
layer which is 2 × 2. Batch Normalization [57] to resolve the internal covariate
shift and rectified linear unit (ReLU) [58] non-linear activation function is applied at
every convolution unit as depicted in table 3.2. Max-pooling layers are added after
the second, fourth, sixth, eighth and tenth convolution layers. In the last three max-
pooling layers, we set the pooling size to (2, 1) in order to keep the width of the
feature map at the last convolution layer at 31.

In the HAWR model, the custom CNN architecture is used to extract spatial features
(a feature map) from the input word images. The maximum width of 31 and height of
1 is experimentally selected to be outputted at the last convolution layer of our custom
CNN architecture, which is also used as the input sequence length of the RNN unit.
The extracted feature map then was squeezed using map-to-sequence function to
make it a one dimensional feature before feeding it to the RNN sequence learning
component of our HAWR model. The CNN component provides the mapping onto
a matrix (often it is one-dimensional input sequence), which is input for the two-
layered BGRU (or BLSTM). Table 3.2 shows all the detailed layers of our custom

CHAPTER 3. METHODOLOGY 36

CNN+BRNN+CTC architecture. In addition to our custom CNN architecture we
investigate in detail the applicability of other commonly used CNN architectures
such as VGG, ResNet, denseNet and others as part of our HAWR model feature
extractors. Their detail is provided in the next sub-section.

TABLE 3.2: Custom HAWR model architecture
Abbreviations: Conv (convolutional layer), MaxPool (max pooling

layer) and BN (batch normalization layer).

Type Description Output size
Input Gray-level word-image 64× 256× 1
Conv1 + ReLU + BN1 kernel 3× 3 64× 256× 64
Conv2 + ReLU + MaxPool1 kernel 3× 3, pool 2× 2 32× 128× 64
Conv3 + ReLU + BN2 kernel 3× 3 32× 128× 128
Conv4 + ReLU + MaxPool2 kernel 3× 3, pool 2× 2 16× 64× 128
Conv5 + ReLU + BN3 kernel 3× 3 16× 64× 256
Conv6 + ReLU + MaxPool3 kernel 3× 3, pool 2× 2 8× 32× 256
Conv7 + ReLU + BN4 kernel 3× 3 8× 32× 256
Conv8 + ReLU + MaxPool4 kernel 3× 3, pool 2× 1 4× 32× 256
Conv9 + ReLU + BN5 kernel 3× 3 4× 32× 512
Conv10 + ReLU + BN6 + MaxPool5 kernel 3× 3, pool 2× 1 2× 32× 512
Conv11 + ReLU + BN7 kernel 3× 3 2× 32× 512
Conv12 + ReLU kernel 2× 2 1× 31× 512
Map to sequence function remove dimension 31× 512
BGRU (or BLSTM) + dropout each with 512 hidden cells 31× 1024
BGRU (or BLSTM) + dropout each with 512 hidden cells 31× 1024
Dense layer + softmax (301 classes) project onto 301 characters 31× 301
CTC decode or loss calculation ≤ 31

3.4.1.2 Commonly Used CNN Architectures

In this thesis, as a feature extraction unit, we also applied four state-of-the-art CNN
architectures including VGG, ResNet, DenseNet and EfficientNet. Experimentally,
we then compared their performance to see their effect in obtaining discriminating
feature for the input handwritten Amharic word images. For a given input tensor with
a shape of (H×W ×C), where H and W are spatial dimension and C is the channel
dimension and for RNN input length ℓ of feature sequence desired at the last layer of
the convolutional network, we modified these feature extractors by removing n top
layers until it outputs (1× ℓ× C) feature map and by keeping the network patterns.
But, the size of C at the last CNN layer varies from architecture to architecture.

Hence, we truncated the layers of the commonly used CNNs at different locations and
add a new layer extension that is taken from our custom CNN architecture starting at
MaxPool4, which are the eighth and above layers of the custom CNN architecture.

CHAPTER 3. METHODOLOGY 37

The truncation layer of a given CNN architecture vary based on the input shape of
the word image and the maximum width of the feature map outputted at the last
convolutional layer. Experimentally, we selected three input word image sizes of
32 × 128, 48 × 192 and 64 × 256 based on their performance in terms of accuracy
and loss.

TABLE 3.3: Configuration of commonly used CNNs using input
shapes of (32,128,1) with 31 and (48,192,1) with 47 as a maximum

width of feature map at the last convolutional layer.

Id CNN model Truncation layer
A VGG19 10th layer [block3_conv4]

B ResNet152V2 29th layer [conv2_block3_preact_relu (Activaton)]

C DenseNet121 50th layer [pool2_conv (Conv2D)]

D DenseNet201 50th layer [pool2_conv (Conv2D)]

E EfficientNet-B7 157th layer [swish_30]

TABLE 3.4: Configuration of commonly used CNNs using input
shape of (64,256,1) with maximum width of 31 at the last convolu-

tional layer.

Id CNN model Truncation layer
A VGG19 15th layer [block4_conv4]

B ResNet152V2 119th layer [conv3_block8_preact_relu (Activaton)]

C DenseNet121 139th layer [pool3_conv (Conv2D)]

D DenseNet201 139th layer [pool3_conv (Conv2D)]

E EfficientNet-B7 261th layer [swish_51]

In the experimental setup, we named the models from the commonly used CNNs into
five different models: Model A through E. Each of the models differ from one another
by their CNN feature extraction unit. Table 3.3 shows the different configurations of
the commonly used CNN architectures for the models using input word images sizes
of 32× 128 and 48× 192 and table 3.4 shows for input word image size of 64× 256.

3.4.2 BRNN Based Sequence Modeling

RNNs are a powerful dynamic network for sequence learning tasks. In the networks
of bidirectional RNN (BRNN), each pair of RNN cells allow to consider the opposite
direction, from left to right as well as from right to left. Thus, BRNN, which is a full
gradient version of RNN, outperform unidirectional RNNs and uses past features

CHAPTER 3. METHODOLOGY 38

(through forward states) and the newer (by the backward) for a particular time frame.
Figure 3.10 shows the architecture of BRNN with BGRU.

FIGURE 3.10: Architecture of bidirectional gated-recurrent units
(BGRU) for sequence modeling.

In this work, we employed BRNNs to encode sequential context information of input
word images extracted by using our CNN models described in the previous section.
We have used the two abundantly used state-of-the-art BRNN frameworks, namely:
the BGRU and BLSTM. We have compared different combinations of these two
BRNN architectures by combining the two or using them separately, varying the
number of layers and their hidden unit size. We have achieved optimal performance
across all experiments when we use them separately rather than combining the two
architectures. In addition, BGRU was much faster learning algorithm than BLSTM
and better in terms of accuracy, since our dataset is not very large. BGRU is also
often chosen over BLSTM because hidden states are totally exposed and so that they
are easier to interpret. BGRU cells can reset all long-temporal information using
internal gates and parameters are able to be optimized.

CHAPTER 3. METHODOLOGY 39

Two-layer architectures of both BLSTM and BGRU with a hidden unit size of 512
and dropout of 0.5 at each layer show better recognition performance in all setups
our experiments. In our final HAWR model, we chose BGRU which performs better
with such a small size of our dataset. For the output activation, we adopted softmax
[59] with slightly better results than other candidates.

3.4.3 CTC Based Transcription

We employed CTC networks for two tasks, which include loss calculation and final
decoding of the softmax layer output sequence into the correct labels with greedy
search techniques. The softmax layer output sequence were represented by a matrix,
which were used for two purposes including first for calculating the loss value while
training the model and later for transcription (or decoding) the matrix to get the text
contained in the handwritten Amharic word image. Figure 3.11 shows the ℓ labelling
with respect to each time steps.

FIGURE 3.11: Sequence labellings with CTC loss function.

A CTC loss function controls the model training. We only fed the output sequence
from the BRNN component of our HAWR model and the corresponding ground-truth
(GT) text of the input word image to the CTC loss function. Empirically, it tries all
possible alignments of the GT text in the image and takes the sum of all scores (the
score of a GT text is high if the sum over the alignment-scores has a high value). The
outputted probability distributions from the softmax layer at the end of the BRNN
sequence modeling unit are used by the CTC to calculate the conditional probability
of a possible alignment path given an input sequence.

In this thesis, CTC was given the probability distributions of a total of 301 symbols
(300 character sequences and one extra character for representing the CTC blank

CHAPTER 3. METHODOLOGY 40

label) as input. Using these, the CTC finds the maximum probable label sequence.
Thereupon, we could obtain character-scores for each sequence-element from the
CTC. Therefore, the CTC decoder finally outputs a sequence (a word) which could
have 31 characters at most. In addition, CTC implicitly used to model the correct
inter-label dependencies and hierarchical CTC, where the labellings at one level (e.g.
word) become inputs for the labellings at the next (e.g. character).

3.5 Bayesian Optimization Algorithm

Neural architecture search is one of the techniques to select the best optimal hyper-
parameters of a given deep neural network. Researchers propose various techniques
for neural architecture search. Bayesian optimization is one of the recent and best
suited optimization technique to search optimal network hyper-parameters. This op-
timization approach uses Bayes theorem. This theorem works based on Bayes rule,
which calculates a conditional probability of an event. Hence, the rule states that the
probability p of hypothesis h is true under condition data D is observed, p(h|D) is
given by Equation 3.1.

p(h|D) =
p(D|h)× p(h)

p(D)
(3.1)

This algorithm provides efficient and effective search of the minimum or maximum
cost of a global optimization problem and works better than the Naive grid search
and sampling random combinations of values for hyper-parameters when it used to
predict regions of hyper-parameter space that might yield best results. It computes
the probability how well a new combination will do and models the uncertainty of
that prediction. It optimizes explorations while it is predicting the result with a new
hyper-parameter settings from knowing the different results so far obtained.

The Bayesian hyper-parameter tuning algorithm was used in this thesis to set values
for hyper-parameters in our neural network (NN) model. In other words, this helps us
to find a vector of hyper-parameters that works well on our problem domain. Hyper-
parameters including number of CNN layers, number of filters, number hidden units,
kernel size, batch size, learning rate, and dropout rates were optimized. Bayesian
optimization was invoked as shown in Algorithm 2. Initially, we were required to fix
the total number of iterations and the number of random points. The random search
guide the optimization process to begin on which iterations first. The algorithm used
to create models based on points for each iteration then find the more optimized one.

CHAPTER 3. METHODOLOGY 41

Algorithm 2: Bayesian hyper-parameters optimization algorithm.
inputShape← trainImages.shape[1 :] /* e.g. (64,254,1) */

numClasses← len(charList) + 1 /* characters plus null */

maxEpoches← 100 /* initializing epoches */

earlyStopEpoches← 10

learningRateEpoches← 5

/* parameters that must be saved for each iteration */

listEarlyStopEpoches← {}
listV alidationLosses← {}
listSavedModelNames← {}

/* begin the optimizer with hyperparameter bounds */

opt← BayesianOptimization(function← model,
parameterBounds← {numCNNs(6 : 24), numFilters(64 : 512),
numUnits(128 : 2048), kernelSize(1 : 4), batchSize(8 : 32),
learningRate(0.0001 : 0.01), dropout(0.2 : 0.6)})

opt.maximize(initialPoints← randomPoints, numIterations← numIter)

/* displaying the best result from the set */

print(′′The best result :′′, opt.max)

/* saving the parameters for each iteration */

for res in opt.result: /* opt.result is a list parameters */

dataFrameForEpoches← listEarlyStopEpoches [id]

dataFrameForLosses← listV alidationLosses [id]

dataFrameForModels← listSavedModelNames [id]

dataFrameForBayesErrors← res [′target′]

CHAPTER 3. METHODOLOGY 42

3.6 Evaluation Metrics

During our experimental analysis, we have used different evaluation metrics to test
and interpret a performance of the recognition model. For measurement of the
HAWR model performance, we determined and selected four quantitative standard
evaluation metrics and these are: loss, accuracy, character error rate (CER) and word
error rate (WER).

As we mentioned in subsection 3.4.3, the loss and accuracy [60] were calculated by
the CTC loss function. Loss is a distance between the ground truth (GT), which
refers to the actual word contained in the word image, and the predicted word by
the recognition model while accuracy is simply a measure of how many correctly
predicted words are made by the model.

Next, we made the HAWR model performance evaluation by measuring similarity
or dissimilarity (distance) between two text strings (i.e. the ground truth (GT) and
the predicted text). The CER and WER are therefore the standard numerical error
measures. The CER is the number of edit operations to match the recognized text
with the GT, which essentially is the Levenshtein edit-distance, divided by the GT
text length (see Equation 3.2).

CER =
insertions+ deletions+ substitutions

length(GT)
(3.2)

For instance, when the GT is “How are they” but recognized as “Hoxare xhex”.
The character edit-distance is 3, the GT length is 12, so that CER = 3/12 = 25%.
For WER, the text is split into a sequence of words so that the unique words are
w1 = “How”, w2 = “Hox”, w3 = “are”, w4 = “they”, w5 = “xhex”, put into a
table with unique identifiers. Then, each word is replaced by its identifier from the
table, so that the three words become “w1w3w4” and “w2w3w5”. The word distance
is 2, the ground truth length is 3, then WER = 2/3 = 66.66% 1. If the number of
edit operations exceeds the (GT) text length, then the value of CER and WER can be
greater than 100%. For example, let’s assume “abcd” is recognized but the ground
truth is “yz”, the CER becomes 4/2 = 200%.

1Digitization & Handwritten Text Recognition. By: D. Alvermann and E. Heigl on 14. May 2020.

https://rechtsprechung-im-ostseeraum.archiv.uni-greifswald.de/

CHAPTER 3. METHODOLOGY 43

3.7 HAWR Model Training

During model training we split and grouped the handwritten Amharic word recog-
nition dataset into three sets, these are: training, validation and testing. The set of
handwritten Amharic word images that the model trains and learns was contained
in the training set, and the dataset that we held back from training used to provide
an unbiased assessment of the model skill on the training set was contained in the
validation set. These two sets were used while training the model but the test set
was used to validate the model skill with data that has not been before after training
is done. In addition, we have used 10-fold cross validation [61] to make unbiased
evaluation and increase the generalization capability of the recognition models. This
method was carried out for 10 independent evaluations, and with different definitely
separated partitions of training and validation sets from each other. Figure 3.12 illus-
trates that in each evaluation, the system is trained with 90% of handwritten Amharic
word images in the dataset and validated with the remaining 10%.

FIGURE 3.12: An illustration of the dataset in 10-fold CV.

The training was carried out on Google Co-laboratory (COLAB) with GPU (8 GiB
Tesla T4, NVIDIA) and 12 GiB of RAM, which currently has the highest percent-
age of use and popularity. In all the experiments, the proposed HAWR models are
trained using stochastic gradient decent (SGD) approach. And, we experimentally
selected an optimizer Adamax [62] with initial learning rate of 0.001 and an epoch
of 100 with mini-batch size of 10 to train all the models. Furthermore, we experimen-
tally optimized four input handwritten word image sizes, these are: 16 (height)× 64,
32 (height) × 128, 48 (height) × 192 and 64 (height) × 256, and four RNN input
lengths of 15, 31, 47 and 63 by exploring their effect on performance of the different

CHAPTER 3. METHODOLOGY 44

recognition models. During this experiment, we faced a challenge of incompati-
bility between the input size (word image size and RNN sequence length) and the
custom model architecture. To solve such problem, the CNN architecture should be
slightly modified in accordance with the given input size. Hence, we have modified
max pooling layer size of MaxPool2 from (2, 2) to (3, 3) and omitted MaxPool3

for the combinations of the input word image size of 48 (height) ×192 with RNN
input sequence length of 31. Similarly, for RNN input sequence length of 63, we
have modified size of the pooling layer MaxPool1 from (2, 2) to (2, 1), MaxPool2

from (2, 2) to (3, 3) and omitted MaxPool3. For the input word image size of 32
(height) ×128, we omitted MaxPool3 when the RNN input sequence length is 31

and modified size of MaxPool2 from (2, 2) to (2, 1) when the sequence length is 63.
Likewise, we omitted MaxPool2 and MaxPool3 for 16 (height)×64 input size and
31 sequence length, and modified MaxPool1 from (2, 2) to (2, 1).

We also did experimental analysis by training all the recognition models using the
augmented data to improve models’ recognition performance and to avoid over-
fitting problem.

We have designed different models for HAWR task, which we call them Model A,
Model B, Model C, Model D, Model E and Custom model. All these models have
similar sequence modeling unit with two layers of BGRU with 512 hidden units
each and a dropout unit of 0.5 added at each GRU layers. They also have similar
CTC loss and decoding function. These models differ from one another on the CNN
feature extraction component where we use VGG-19, ResNet-152V2, DenseNet-
121, DenseNet-201, EfficientNet-B7 and our custom CNN architecture as a feature
extractor in Model A, Model B, Model C, Model D, Model E and Custom model

respectively. For all the recognition models, we have done an experimental analysis
using non-augmented data and input handwritten word image sizes of 16 (height)
× 64, 32 (height) × 128, 48 (height) × 192 and 64 (height) × 256. We have also
did an experimental analysis using the augmented data and input word image sizes
which show better performance on the non-augmented data, these are: 32 (height)
× 128 and 64 (height) × 256.

45

Chapter 4. Experimental Results and
Discussion

This chapter presented the results of the different recognition models proposed
for the handwritten Amharic word recognition (HAWR) task. Detailed experiments
were conducted to analyze the effects of different model parameters and data pre-
processing techniques including data augmentation. We have used the test dataset
with randomly selected 1200 word images, which is 10% of the total dataset to test
performance of the models in all the experiments.

4.1 Optimization Results of the Custom Model

We have done detailed experimental evaluations to obtain an optimized custom model
for the HAWR task by analysing different hyper-parameters of our custom model.
We have done the optimization techniques for the input word image size and input
sequence length through trial and error approach, where as we use the Bayesian al-
gorithm for the rest of hyper-parameters including the number of CNN layers, filter
sizes, kernel sizes, dropout rates, batch sizes and RNN units, which hyper-tuned the
model for achieving improved recognition performance. Based on the Bayesian opti-
mization result, we have achieved high performance for our custom model with CNN
layers, filter sizes, kernel sizes, dropout rates, batch sizes and RNN units as shown
in the red colored results in Table C.1 of Appendix C.

In addition, the selection of an optimal size of input for the neural network has a
profound effect on the performance HAWR models. When the optimal input word
image size is used, CNNs can easily extract more relevant feature and more correctly
represent the word in the image. Similarly, the maximum input sequence length to
the BRNN affects the performance of the HAWR model. Hence, we have optimized
input images size along with the RNN input length. Table 4.1 shows the experimental
results in terms of accuracy and loss by varying the input word image size and the
RNN input sequence length. The results in Table 4.1 are based on the custom model
when trained and evaluated using non-augmented data.

From the experiment results shown in Table 4.1 using input word image size of 48
(height) ×192 and RNN input sequence length of 47 we achieved the least loss from

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 46

TABLE 4.1: The effect of input image size and RNN input length on
the accuracy/loss in the custom HAWR model.

Abbreviation: seq. (sequence)

RNN input
seq. length

Input image size
16 × 64 32 × 128 48 × 192 64 × 256

15 76.92 / 1.220 84.17 / 0.834 81.42 / 1.002 83.00 / 0.810

31 81.92 / 0.903 84.25 / 0.697 80.83 / 0.857 86.17 / 0.682

47 82.17 / 0.899 84.17 / 0.754 85.92 / 0.598 85.00 / 0.665

63 80.00 / 0.921 85.83 / 0.680 73.33 / 1.120 85.33 / 0.676

the rest of test results, but less accuracy than the word image size of 64 (height)×256
with RNN input sequence length of 31. And, input word image size of 64 (height)
×256 with RNN input length of 31 resulted in the greatest accuracy than the rest
due to its high input word image resolutions, but it has higher loss. Finally, we have
chosen an input word image resolution of 64 (height) ×256 with RNN input length
of 31, since we could minimize the loss by adjusting other hyper-parameters settings
of the custom model.

4.2 Experimental Results of the Commonly used CNN
Architectures with the Custom Model

We have done comprehensive experimental analysis and evaluation of commonly
used CNN models which use the CNN architectures described in section 3.4.1.2 for
the handwritten Amharic text recognition task using out test set data. Table 4.2 shows
the experimental results of the five models (Model A through Model E) using an
input word image size of 32 (height)× 128, 48 (height)× 192 and 64 (height)× 256,
which are selected as best performing values from the custom model optimization.
The results in Table 4.2 are shown for the commonly used CNN models trained and
evaluated using a non-augmented dataset. Additionally we have shown the results
of the custom model in Table 4.2 for comparative analysis with the commonly used
CNN based models. As we can see from the table, Model D, which is based on
the architecture of DenseNet201 has shown higher recognition performance with a
WER of 9.000% and CER of 2.506% using input word image size of 64× 256 when
compared to the rest of HAWR models. This is due to DenseNet201’s of its network
architecture design which enables for extraction of robust feature representation from
the input word image and high resolution input word image size compared with the
other models.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 47

TABLE 4.2: Result of the commonly used CNN based model on the
non-augmented dataset. [Patience (early stopping) : 7]

Input shape Model Test
accuracy(%)

Loss CER(%) WER(%)

A 86.67 0.669 3.547 11.08

B 85.75 0.712 3.910 12.33

(32, 128, 1) C 86.83 0.648 3.519 11.58

D 84.58 0.723 3.564 12.42

E 83.67 0.790 4.080 13.92

CUSTOM 88.17 0.669 3.245 10.58

A 88.00 0.565 2.926 10.00

B 84.00 0.773 3.704 12.92

(48, 192, 1) C 85.50 0.639 3.543 11.58

D 86.17 0.602 2.900 10.42

E 85.08 0.805 3.942 12.50

CUSTOM 88.75 0.582 2.816 9.167

A 82.17 0.839 4.610 14.75

B 87.50 0.625 3.293 11.00

(64, 256, 1) C 87.08 0.645 2.996 10.33

D 89.42 0.564 2.506 9.000
E 84.33 0.826 4.151 13.08

CUSTOM 88.58 0.557 2.813 9.167

4.3 Experimental Results using Augmented Data

We have also conducted an experimental analysis to investigate the effect of data aug-
mentation on the proposed HAWR models. The augmentation of data has enhanced
the performance of the models by increasing the data variation in training data. Table
4.3 shows the results of addition of 2-times augmented input word-images with size
of 64 (height) × 256 selected for the model training and evaluation. As it is shown
from our experimental result, by training the HAWR models using data augmentation
much better performance is achieved on the test set data due to the increased num-
ber of training samples, which is enabling the models to learn more robust features
from the data variations and this technique contributes for preventing over-fitting
problem and higher variance within data and symbols. From the experimental result
the best performing model in all our proposed models is Model D, which is using
DenseNet201, and has achieved a WER of 6.833 and a CER of 1.819.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 48

TABLE 4.3: Result of the recognition models on the augmented
dataset [Patience (early stopping) : 7].

Input shape Model Test
accuracy(%)

Loss CER(%) WER(%)

(32, 128, 1)
D 90.50 0.538 2.298 8.167

CUSTOM 90.42 0.569 2.374 8.417

(64, 256, 1)
D 92.17 0.445 1.819 6.833

CUSTOM 90.17 0.498 2.319 8.250

4.4 10 – Fold Cross – Validation Result

Furthermore, we have employed 10-fold cross validation technique as a part of the
experimental analysis in addition to the one that we split the dataset into training,
validation and testing sets, which is discussed in the previous sections. The reason
behind we have chosen this cross validation was that our dataset is small, and this
approach has shown promising result by training and evaluating the model in varied
set of samples during the learning process. During these experiments, we have used
both the non-augmented and augmented dataset with the two input word image sizes
of 32 (height) × 128 and 64 (height) × 256, and compared the performance of two
HAWR models (particularly, the Model D and custom model).

Herewith, we reported the result graphically using non-augmented dataset with input
word image sizes of 32 (height) × 128. Figure 4.1 shows a graph that is given by
tracking each accuracy in the 10 folds of the Model D and custom model at the end
of each fold, and the abscissa is the fold’s number.

FIGURE 4.1: Graph of average accuracy while training 10-fold CV.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 49

As the graph in Figure 4.2 reveals that the same is done to compare the models’ loss.

FIGURE 4.2: Graph of average loss while training 10-fold CV.

Thus, the dataset has been trained and evaluated using the 10-fold CV concept, and
we have achieved the average validation accuracy of (82.90 ± 0.993)% and loss of
(0.6279 ± 0.0515) with the custom model, and the average validation accuracy of
(84.14 ±0.86)% and loss of (0.6279 ±0.0515) with the Model D. In similar fashion,
the graphs depicted in Figure 4.3 and 4.4 indicate each CER and WER of the models.

FIGURE 4.3: Graph of average CER while training 10-fold CV.

FIGURE 4.4: Graph of average loss while training 10-fold CV.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 50

Generally, Model D employing DenseNet201 for feature extraction has considerable
performance so far as our experimental results. Table 4.4 also reveals that it is out-
performing when compared to the custom model.

TABLE 4.4: 10 fold CV result of the recognition models on the two
dataset [Patience (early stopping) : 5].

Data
augm-
entation

Input
shape Model

Test
accur-
acy(%)

Loss CER(%) WER(%)

without
(32, 128, 1)

D 84.08 0.731 4.220 14.05

CUSTOM 82.90 0.882 4.489 14.87

(64, 256, 1)
D 86.25 0.649 3.653 12.65

CUSTOM 84.75 0.664 4.289 13.20

with
(32, 128, 1)

D 88.83 0.680 0.765 2.586

CUSTOM 87.58 0.793 0.807 2.832

(64, 256, 1)
D 89.83 0.621 0.725 2.584

CUSTOM 88.17 0.631 0.829 3.095

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 51

4.5 Sample prediction Results

In this section, we have shown some examples of recognition results on sample hand-
written Amharic word images taken from the test dataset for visual analysis in Figure
4.5. From Figure 4.5a, it can be seen that for randomly selected word images those
our recognition models have predicted wrongly by deleting, substituting or inserting
some of the characters in the transcribed text while Figure 4.5b shows some of the
correct predictions. Amharic alphabets, the so-called “Fidel”, there are characters
that have almost similar shapes with the only difference in a single stroke from the
base character or from inter-character families. This similarity in shape becomes one
of the challenges for Amharic handwritten recognition, unlike Latin script, which
has completely different character shapes from one character family to other family.
This makes the Amharic handwritten text recognition task very challenging and it
needs thousands if not millions of training samples to achieved reliable and robust
performance in recognition of Amharic language vocabulary symbols. One of the
limitation for this thesis was lack of enough training data, which is containing all the
vocabulary symbols in various shapes and types. As it is shown in the Figure 4.5a,
the incorrectly predicted character "ሙ" in the second row is due to its almost similar
shape with the character from another family "ው". In some of the wrongly predicted
symbols, the data augmentation technique creates its own effect when an input word
image is dilated it creates a problem for the recognition model to understand the char-
acter shape well. For example, in the last row the characters are too much dilated and
our recognition model wrongly predict the character "ራ" into two characters "ራ"
and "በ". In General, most of the failure cases in our recognition model occur due to
disconnected character parts during handwriting, cursive nature of handwritten text,
and character shape variation due to pre-processing which in cumulatively contribute
a character shape difference compared with the ground truth (GT).

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 52

(A) Incorrect predictions (B) Correct predictions

FIGURE 4.5: Sample prediction results during model evaluation with
the test set.

53

Chapter 5. Conclusion and
Recommendation

This chapter summarizes the thesis within the first section, Conclusion. Also, the
section assesses the outcome of the thesis in terms of the initial set of objectives.
And, it outlines suggestions to be done for the progress and possible future works
within the second section, Recommendation.

5.1 Conclusion

This thesis presented the development of models for handwritten Amharic word
recognition (HAWR) task using deep learning approach. Firstly, we have designed
the model with a CNN-BGRU-CTC framework and implemented with deep learn-
ing libraries on Google Co-laboratory (COLAB) with GPU. While designing phase,
different models have been implemented and tested, to make fine adjustments of the
hyper-parameters being assisted with the Bayesian optimization algorithm. Hence,
we hyper-tuned and cross-validated the number of CNN layers, filters, kernel size,
dropout rate, batch size and RNN units to reach our best performing custom model.

Next, we have compared the non-augmented dataset with its augmented version. To
do this experiment, first we regenerated a total of 33 672 word-images “by dirtying”
the original (i.e. by applying randomly from: adding some kind of noise to the
images, by shifting or by blurring, etc.) and second, we have used the same model
algorithm trained on the augmented dataset like the one used on the non-augmented.
Another experiment that we have conducted is the 10-fold cross validation for the
entire data. Hence, Model D (using DenseNet201) scored an average accuracy of
89.83% (±0.86%) and loss of 0.649 (±0.051) on the augmented data.

At the end, we have concluded that Model D is outperforming with WER of 9.000
and CER of 2.506 on the non-augmented dataset as well as WER of 6.833 and CER
of 1.819 on the augmented version. Thus, we have achieved up to 4.95× and 1.94×
smaller of the CER and WER respectively using the augmented data on the same test
set. The model with the designed custom CNN architecture has shown a comparable
with the performance obtained when existing commonly-used CNN architectures
incorporated into the recognition model as a feature extractor.

CHAPTER 5. CONCLUSION AND RECOMMENDATION 54

5.2 Recommendation

Even-though, this thesis contributed a lot for the attempt to design and develop hand-
written Amharic word recognition system, we believe that improvements can be done
by applying transformer into it. Thus, by placing attention layer immediately after
the CNNs (feature extractor component) and by applying language models: BERT,
ELMo, etc. And, we recommend to realize transfer learning of the model, training
that’s already trained on other datasets shows promising result.

This thesis also made efforts to solve the challenge especially in the experiments
conducted on word-image augmentation; because, as the dataset size is increased that
the model to be trained with, it is obvious that higher performance can be achieved.
In the future use, this dataset size can be increased, or another dataset can be prepared
by collecting a number of digital images of aged historical handwritten documents
(also called “Brana”).

Moreover, sometimes handwritten text won’t be easily recognizable due to human
mistakes, broken characters or addition of noise. Also, historical documents usually
lose some features of characters due to aging and potentially contain part of text
degradation. Therefore, incorporating some post-processing methods that can fix the
model predictions to their correct form, or modifying the pre-processing by adding
the state-of-the-art neural networks to correct spellings of words or some feature
recovery techniques should be studied in future.

55

References

[1] Afiqah Amirah Hamzah, Saiful Farik Mat Yatin, Nurul Athirah Ismail, et al.
“Data Capturing: Methods, Issues and Concern”. In: International Journal of

Academic Research in Business and Social Sciences 8.9 (20 October 2018),
pp. 617629. DOI: 10.6007/IJARBSS/v8- i9/4642. URL: http:
//dx.doi.org/10.6007/IJARBSS/v8-i9/4642.

[2] Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, et al. “Text recognition in the wild:
A survey”. In: ACM Computing Surveys (CSUR) 54.2 (2021), pp. 1–35.

[3] Fitehalew Demilew and Boran Sekeroglu. “Ancient Geez script recognition
using deep learning”. In: SN Applied Sciences 1 (Nov. 2019). DOI: 10.1007/
s42452-019-1340-4.

[4] Deepak Sinwar, Vijaypal Dhaka, Nitesh Pradhan, et al. “Offline script recog-
nition from handwritten and printed multilingual documents: a survey”. In: In-

ternational Journal on Document Analysis and Recognition (IJDAR) 24 (June
2021). DOI: 10.1007/s10032-021-00365-5.

[5] Y. Assabie and J. Bigün. “Offline handwritten Amharic word recognition”. In:
Pattern Recognit. Lett. 32 (2011), pp. 1089–1099.

[6] J. A. Sánchez and U. Pal. “Handwritten Text Recognition for Bengali”. In:
2016 15th International Conference on Frontiers in Handwriting Recognition

(ICFHR). 2016, pp. 542–547. DOI: 10.1109/ICFHR.2016.0105.
[7] Rio Anugrah and Ketut Bintoro. “Latin Letters Recognition Using Optical

Character Recognition to Convert Printed Media Into Digital Format”. In: Jur-

nal Elektronika dan Telekomunikasi 17.2 (2017), pp. 56–62. ISSN: 2527-9955.
DOI: 10.14203/jet.v17.56-62. URL: https://www.jurnalet.
com/jet/article/view/163.

[8] Najwa Altwaijry and Isra Al-Turaiki. “Arabic handwriting recognition system
using convolutional neural network”. In: Neural Computing and Applications

33 (December 2021). DOI: 10.1007/s00521-020-05070-8.
[9] Shahbaz Hassan, Ayesha Irfan, Ali Mirza, et al. “Cursive Handwritten Text

Recognition using Bi-Directional LSTMs: A Case Study on Urdu Handwrit-
ing”. In: 2019 International Conference on Deep Learning and Machine Learn-

ing in Emerging Applications (Deep-ML). 2019, pp. 67–72. DOI: 10.1109/
Deep-ML.2019.00021.

https://doi.org/10.6007/IJARBSS/v8-i9/4642
http://dx.doi.org/10.6007/IJARBSS/v8-i9/4642
http://dx.doi.org/10.6007/IJARBSS/v8-i9/4642
https://doi.org/10.1007/s42452-019-1340-4
https://doi.org/10.1007/s42452-019-1340-4
https://doi.org/10.1007/s10032-021-00365-5
https://doi.org/10.1109/ICFHR.2016.0105
https://doi.org/10.14203/jet.v17.56-62
https://www.jurnalet.com/jet/article/view/163
https://www.jurnalet.com/jet/article/view/163
https://doi.org/10.1007/s00521-020-05070-8
https://doi.org/10.1109/Deep-ML.2019.00021
https://doi.org/10.1109/Deep-ML.2019.00021

REFERENCES 56

[10] Wenchao Wang, Jun Du, and Zi-Rui Wang. “Parsimonious HMMs for Offline
Handwritten Chinese Text Recognition”. In: (March 2018).

[11] Reeve Ingle, Yasuhisa Fujii, Thomas Deselaers, et al. “A Scalable Handwritten
Text Recognition System”. In: ICDAR. 2019. URL: https://arxiv.org/
abs/1904.09150.

[12] Edward Ullendorff. “Studies in the Ethiopic Syllabary”. In: Africa: Journal of

the International African Institute 21.3 (1951), pp. 207–217. ISSN: 00019720,
17500184. URL: http://www.jstor.org/stable/1156593.

[13] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997. ISBN:
978-0-07-042807-2.

[14] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. “Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data”. In: Proceedings of the Eighteenth International Conference on

Machine Learning. ICML ’01. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001, pp. 282289. ISBN: 1558607781.

[15] Leonard E. Baum and Ted Petrie. “Statistical Inference for Probabilistic Func-
tions of Finite State Markov Chains”. In: Ann. Math. Statist. 37.6 (Dec. 1966),
pp. 1554–1563. DOI: 10.1214/aoms/1177699147. URL: https://
doi.org/10.1214/aoms/1177699147.

[16] Jingtao Fan, Lu Fang, Jiamin Wu, et al. “From Brain Science to Artificial
Intelligence”. In: Engineering 6.3 (2020), pp. 248 –252. ISSN: 2095-8099.
DOI: https://doi.org/10.1016/j.eng.2019.11.012. URL:
http://www.sciencedirect.com/science/article/pii/

S2095809920300035.
[17] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for

deep learning. 2018. arXiv: 1603.07285 [stat.ML].
[18] J. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2 (1990),

pp. 179–211.
[19] Alex Graves and Jürgen Schmidhuber. “Offline Handwriting Recognition with

Multidimensional Recurrent Neural Networks”. In: Advances in Neural Infor-

mation Processing Systems. Ed. by D. Koller, D. Schuurmans, Y. Bengio, et al.
Vol. 21. Curran Associates, Inc., 2009, pp. 545–552.

[20] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural Networks 61 (2015), pp. 85 –117. ISSN: 0893-6080. DOI: https:
//doi.org/10.1016/j.neunet.2014.09.003.

[21] Mike Schuster and Kuldip Paliwal. “Bidirectional recurrent neural networks”.
In: Signal Processing, IEEE Transactions on 45 (Dec. 1997), pp. 2673 –2681.
DOI: 10.1109/78.650093.

https://arxiv.org/abs/1904.09150
https://arxiv.org/abs/1904.09150
http://www.jstor.org/stable/1156593
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/https://doi.org/10.1016/j.eng.2019.11.012
http://www.sciencedirect.com/science/article/pii/S2095809920300035
http://www.sciencedirect.com/science/article/pii/S2095809920300035
https://arxiv.org/abs/1603.07285
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/78.650093

REFERENCES 57

[22] Asifullah Khan, Anabia Sohail, Umme Zahoora, et al. “A Survey of the Recent
Architectures of Deep Convolutional Neural Networks”. In: Artificial Intelli-

gence Review 53 (Dec. 2020). DOI: 10.1007/s10462-020-09825-6.
[23] Théodore Bluche. “Deep Neural Networks for Large Vocabulary Handwritten

Text Recognition”. In: 2015.
[24] K. Cho, B. Van Merriënboer, D. Bahdanau, et al. “On the properties of neu-

ral machine translation: Encoder-decoder approaches”. In: arXiv (2014). DOI:
arXiv:1409.1259.

[25] Alex Graves, Santiago Fernández, Faustino Gomez, et al. “Connectionist Tem-
poral Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks”. In: Proceedings of the 23rd International Conference on

Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery, 2006, pp. 369376. ISBN: 1595933832. DOI: 10.
1145/1143844.1143891. URL: https://doi.org/10.1145/
1143844.1143891.

[26] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].
[27] Yufeng Zheng, Clifford Yang, and Aleksey Merkulov. “Breast cancer screen-

ing using convolutional neural network and follow-up digital mammography”.
In: May 2018, p. 4. DOI: 10.1117/12.2304564.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learn-
ing for Image Recognition”. In: CoRR abs/1512.03385 (2015). arXiv: 1512.
03385. URL: http://arxiv.org/abs/1512.03385.

[29] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Connected Con-
volutional Networks”. In: CoRR abs/1608.06993 (2016). arXiv: 1608.06993.
URL: http://arxiv.org/abs/1608.06993.

[30] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”. In: CoRR abs/1905.11946 (2019). arXiv:
1905.11946. URL: http://arxiv.org/abs/1905.11946.

[31] Yoshua Bengio, Yann LeCun, Craig Nohl, et al. “LeRec: A NN/HMM Hybrid
for On-Line Handwriting Recognition”. In: Neural Computation 7.6 (1995),
pp. 1289–1303. DOI: 10.1162/neco.1995.7.6.1289. eprint: https:
//doi.org/10.1162/neco.1995.7.6.1289. URL: https:
//doi.org/10.1162/neco.1995.7.6.1289.

[32] Alex Graves and Jürgen Schmidhuber. “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks”. In: Advances in Neural Infor-

mation Processing Systems 21. Ed. by D. Koller, D. Schuurmans, Y. Bengio,
et al. Curran Associates, Inc., 2009, pp. 545–552. URL: http://papers.

https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/arXiv:1409.1259
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/1409.1556
https://doi.org/10.1117/12.2304564
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.1162/neco.1995.7.6.1289
https://doi.org/10.1162/neco.1995.7.6.1289
https://doi.org/10.1162/neco.1995.7.6.1289
https://doi.org/10.1162/neco.1995.7.6.1289
https://doi.org/10.1162/neco.1995.7.6.1289
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf

REFERENCES 58

nips.cc/paper/3449-offline-handwriting-recognition-

with-multidimensional-recurrent-neural-networks.pdf.
[33] Norhidayu Abdul Hamid and Nilam Nur Amir Sjarif. “Handwritten Recog-

nition Using SVM, KNN and Neural Network”. In: CoRR abs/1702.00723
(2017). arXiv: 1702.00723. URL: http://arxiv.org/abs/1702.
00723.

[34] Mesay Samuel Gondere, Lars Schmidt-Thieme, Abiot Sinamo Boltena, et al.
Handwritten Amharic Character Recognition Using a Convolutional Neural

Network. 2019. arXiv: 1909.12943 [cs.CV].
[35] F. Abdurahman. “Handwritten Amharic Character Recognition System Using

Convolutional Neural Networks”. In: Engineering Sciences 14 (2019), pp. 71–
87.

[36] M. Meshesha and C. Jawahar. “Optical Character Recognition of Amharic
Documents”. In: African J. of Inf. and Commun. Technology 3 (Aug. 2007).
DOI: 10.5130/ajict.v3i2.543.

[37] J. Cowell and F. Hussain. “Amharic character recognition using a fast sig-
nature based algorithm”. In: Proceedings on Seventh International Confer-

ence on Information Visualization, 2003. IV 2003. 2003, pp. 384–389. DOI:
10.1109/IV.2003.1218014.

[38] B. Belay, Tewodros Habtegebrial, M. Meshesha, et al. “Amharic OCR : An
End-to-End Learning”. In: Applied Sciences 10 (2020), p. 1117.

[39] B. Belay, Tewodros Habtegebrial, M. Liwicki, et al. “Amharic Text Image
Recognition: Database, Algorithm, and Analysis”. In: 2019 International Con-

ference on Document Analysis and Recognition (ICDAR) (2019), pp. 1268–
1273.

[40] José Carlos Aradillas, Juan José Murillo-Fuentes, and Pablo M. Olmos. “Boost-
ing Handwriting Text Recognition in Small Databases with Transfer Learn-
ing”. In: CoRR abs/1804.01527 (2018). arXiv: 1804.01527. URL: http:
//arxiv.org/abs/1804.01527.

[41] K. Dutta, P. Krishnan, M. Mathew, et al. “Offline Handwriting Recognition on
Devanagari Using a New Benchmark Dataset”. In: 2018 13th IAPR Interna-

tional Workshop on Document Analysis Systems (DAS). 2018, pp. 25–30.
[42] Rajib Ghosh, Chirumavila Vamshi, and Prabhat Kumar. “RNN based online

handwritten word recognition in Devanagari and Bengali scripts using hori-
zontal zoning”. In: Pattern Recognition 92 (2019), pp. 203 –218. ISSN: 0031-
3203. DOI: https : / / doi . org / 10 . 1016 / j . patcog . 2019 .
03.030. URL: http://www.sciencedirect.com/science/
article/pii/S0031320319301384.

http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
https://arxiv.org/abs/1702.00723
http://arxiv.org/abs/1702.00723
http://arxiv.org/abs/1702.00723
https://arxiv.org/abs/1909.12943
https://doi.org/10.5130/ajict.v3i2.543
https://doi.org/10.1109/IV.2003.1218014
https://arxiv.org/abs/1804.01527
http://arxiv.org/abs/1804.01527
http://arxiv.org/abs/1804.01527
https://doi.org/https://doi.org/10.1016/j.patcog.2019.03.030
https://doi.org/https://doi.org/10.1016/j.patcog.2019.03.030
http://www.sciencedirect.com/science/article/pii/S0031320319301384
http://www.sciencedirect.com/science/article/pii/S0031320319301384

REFERENCES 59

[43] U. Marti and H. Bunke. “The IAM-database: an English sentence database
for offline handwriting recognition”. In: International Journal on Document

Analysis and Recognition 5 (2002), pp. 39–46.
[44] Hong-Phuong Tran, Andrew Smith, and Eric Dimla. “Offline Handwritten

Text Recognition using Convolutional Recurrent Neural Network”. In: Nov.
2019, pp. 51–56. DOI: 10.1109/ACOMP.2019.00015.

[45] Xinfeng Zhang and Kunpeng Yan. “An Algorithm of Bidirectional RNN for
Offline Handwritten Chinese Text Recognition”. In: Intelligent Computing

Methodologies. Ed. by De-Shuang Huang, Zhi-Kai Huang, and Abir Hussain.
Cham: Springer International Publishing, 2019, pp. 423–431.

[46] R. Chamchong, W. Gao, and M. D. McDonnell. “Thai Handwritten Recog-
nition on Text Block-Based from Thai Archive Manuscripts”. In: 2019 Inter-

national Conference on Document Analysis and Recognition (ICDAR). 2019,
pp. 1346–1351.

[47] Adeline Granet, Emmanuel Morin, Harold Mouchère, et al. “Transfer Learn-
ing for Handwriting Recognition on Historical Documents”. In: 7th Interna-

tional Conference on Pattern Recognition Applications and Methods (ICPRAM).
Madeira, Portugal, 2018. URL: https://hal.archives-ouvertes.
fr/hal-01681126.

[48] H. El Abed and V. Margner. “The IFN/ENIT-database - a tool to develop Ara-
bic handwriting recognition systems”. In: 2007 9th International Symposium

on Signal Processing and Its Applications. 2007, pp. 1–4.
[49] R. Maalej and M. Kherallah. “Convolutional Neural Network and BLSTM for

Offline Arabic Handwriting Recognition”. In: 2018 International Arab Con-

ference on Information Technology (ACIT). 2018, pp. 1–6.
[50] M. Hailegiorgis. Aristotle Monogragh. wisdom from Pilate. Addis Ababa, ET,

2010. URL: http://www.aau.edu.et/chls/hailegiorgis-
mamo/.

[51] Y. Zemene. Zoskales Astronomy newsletter. 2007. URL: https://dirzon.
com/Zon/DldAsync/Ftarget/Dtelegram/Azamanayohanese(zosekaalase)

.pdf.
[52] Constitution of the Federal Democratic Republic of Ethiopia Proclamation

No. 1/1995. Federal Negarit Gazeta. Addis Ababa, ET, 21 Aug. 1995. URL:
https://ethiopianembassy.be/wp-content/uploads/Constitution-

of-the-FDRE.pdf.
[53] A. Esubalew. Thus Spoke Zarathusra. URL: https://drive.google.

com/file/d/1nHYtt2jkYFQMo_mNHTJHEoX_kNRu7aFk/view.

https://doi.org/10.1109/ACOMP.2019.00015
https://hal.archives-ouvertes.fr/hal-01681126
https://hal.archives-ouvertes.fr/hal-01681126
http://www.aau.edu.et/chls/hailegiorgis-mamo/
http://www.aau.edu.et/chls/hailegiorgis-mamo/
https://dirzon.com/Zon/DldAsync/Ftarget/Dtelegram/Azamana yohanese (zosekaalase).pdf
https://dirzon.com/Zon/DldAsync/Ftarget/Dtelegram/Azamana yohanese (zosekaalase).pdf
https://dirzon.com/Zon/DldAsync/Ftarget/Dtelegram/Azamana yohanese (zosekaalase).pdf
https://ethiopianembassy.be/wp-content/uploads/Constitution-of-the-FDRE.pdf
https://ethiopianembassy.be/wp-content/uploads/Constitution-of-the-FDRE.pdf
https://drive.google.com/file/d/1nHYtt2jkYFQMo_mNHTJHEoX_kNRu7aFk/view
https://drive.google.com/file/d/1nHYtt2jkYFQMo_mNHTJHEoX_kNRu7aFk/view

REFERENCES 60

[54] O. Surinta, M. Holtkamp, F. Karabaa, et al. “A Path Planning for Line Segmen-
tation of Handwritten Documents”. In: 2014 14th International Conference on

Frontiers in Handwriting Recognition. 2014, pp. 175–180. DOI: 10.1109/
ICFHR.2014.37.

[55] Alessandro Vinciarelli and Juergen Luettin. “A new normalization technique
for cursive handwritten words”. In: Pattern Recognition Letters 22.9 (2001),
pp. 1043 –1050. ISSN: 0167-8655. DOI: https://doi.org/10.1016/
S0167-8655(01)00042-3. URL: http://www.sciencedirect.
com/science/article/pii/S0167865501000423.

[56] R. Manmatha and J. L. Rothfeder. “A scale space approach for automatically
segmenting words from historical handwritten documents”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 27.8 (2005), pp. 1212–
1225. DOI: 10.1109/TPAMI.2005.150.

[57] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.
03167.

[58] Jason Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU).
Machine Learning Mastery. 8January 2019, Retrieved 27 July 2020.

[59] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “6.2.2.3 Softmax Units
for Multinoulli Output Distributions”. In: Deep Learning, MIT Press abs/1502.03167
(2016), pp. 180184.

[60] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[61] Yoonsuh Jung. “Multiple predicting K -fold cross-validation for model selec-
tion”. In: Journal of Nonparametric Statistics 30 (July 2017), pp. 1–19. DOI:
10.1080/10485252.2017.1404598.

[62] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. 2017. arXiv: 1412.6980 [cs.LG].
[63] Peter T. Daniels and William Bright. The World’s Writing Systems. New York

: Oxford University Press, 1996. Chap. Ethiopic Writing, p. 573. ISBN: 978-
0-19-507993-7.

https://doi.org/10.1109/ICFHR.2014.37
https://doi.org/10.1109/ICFHR.2014.37
https://doi.org/https://doi.org/10.1016/S0167-8655(01)00042-3
https://doi.org/https://doi.org/10.1016/S0167-8655(01)00042-3
http://www.sciencedirect.com/science/article/pii/S0167865501000423
http://www.sciencedirect.com/science/article/pii/S0167865501000423
https://doi.org/10.1109/TPAMI.2005.150
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1080/10485252.2017.1404598
https://arxiv.org/abs/1412.6980

61

Appendix A. Amharic Writing System

A.1 Alphasyllabary

TABLE A.1: Chart of Amharic fidels [63].

APPENDIX A. AMHARIC WRITING SYSTEM 62

APPENDIX A. AMHARIC WRITING SYSTEM 63

A.2 Punctuation and Numerals

Punctuation includes the following:

TABLE A.2: Amharic punctuation.

፠ section mark
፡ word separator
። full stop (period)
፣ comma
፤ semicolon
፥ colon
፦ preface colon (introduces speech from a descriptive prefix)
፧ question mark
፨ paragraph separator

The Ethiopic numerals include:

TABLE A.3: Ethiopic numerals.

፩ 1 ፳ 20
፪ 2 ፴ 30
፫ 3 ፵ 40
፬ 4 ፶ 50
፭ 5 ፷ 60
፮ 6 ፸ 70
፯ 7 ፹ 80
፰ 8 ፺ 90
፱ 9 ፻ 100
፲ 10 ፼ 10000

64

Appendix B. CTC–Labels Representation

B.1 CTC–Labels for Amharic Characters

TABLE B.1: Amharic characters encoding in CTC–labels.

0 ሀ 38 ረ 76 ቦ 114 ን 152 ዊ 190 ዲ 228 ጯ 266 ፖ
1 ሁ 39 ሩ 77 ቧ 115 ኖ 153 ዋ 191 ዳ 229 ጰ 267 ፗ
2 ሂ 40 ሪ 78 ቨ 116 ኗ 154 ዌ 192 ዴ 230 ጱ 268 !
3 ሃ 41 ራ 79 ቩ 117 ኘ 155 ው 193 ድ 231 ጲ 269 ፦
4 ሄ 42 ሬ 80 ቪ 118 ኙ 156 ዎ 194 ዶ 232 ጳ 270 ‹
5 ህ 43 ር 81 ቫ 119 ኚ 157 ዏ 195 ዷ 233 ጴ 271 (
6 ሆ 44 ሮ 82 ቬ 120 ኛ 158 ዐ 196 ጀ 234 ጵ 272 «
7 ለ 45 ሯ 83 ቭ 121 ኜ 159 ዑ 197 ጁ 235 ጶ 273 ፥
8 ሉ 46 ሰ 84 ቮ 122 ኝ 160 ዒ 198 ጂ 236 ጷ 274 %
9 ሊ 47 ሱ 85 ቯ 123 ኞ 161 ዓ 199 ጃ 237 ጸ 275 »
10 ላ 48 ሲ 86 ተ 124 ኟ 162 ዔ 200 ጄ 238 ጹ 276)
11 ሌ 49 ሳ 87 ቱ 125 አ 163 ዕ 201 ጅ 239 ጺ 277 ›
12 ል 50 ሴ 88 ቲ 126 ኡ 164 ዖ 202 ጆ 240 ጻ 278 .
13 ሎ 51 ስ 89 ታ 127 ኢ 165 ዘ 203 ጇ 241 ጼ 279 +
14 ሏ 52 ሶ 90 ቴ 128 ኣ 166 ዙ 204 ገ 242 ጽ 280 ፣
15 ሐ 53 ሷ 91 ት 129 ኤ 167 ዚ 205 ጉ 243 ጾ 281 -
16 ሑ 54 ሸ 92 ቶ 130 እ 168 ዛ 206 ጊ 244 ጿ 282 ።
17 ሒ 55 ሹ 93 ቷ 131 ኦ 169 ዜ 207 ጋ 245 ፀ 283 /
18 ሓ 56 ሺ 94 ቸ 132 ኧ 170 ዝ 208 ጌ 246 ፁ 284 0
19 ሔ 57 ሻ 95 ቹ 133 ከ 171 ዞ 209 ግ 247 ፂ 285 1
20 ሕ 58 ሼ 96 ቺ 134 ኩ 172 ዟ 210 ጎ 248 ፃ 286 2
21 ሖ 59 ሽ 97 ቻ 135 ኪ 173 ዠ 211 ጐ 249 ፄ 287 3
22 መ 60 ሾ 98 ቼ 136 ካ 174 ዡ 212 ጓ 250 ፅ 288 4
23 ሙ 61 ሿ 99 ች 137 ኬ 175 ዢ 213 ጠ 251 ፆ 289 5
24 ሚ 62 ቀ 100 ቾ 138 ክ 176 ዣ 214 ጡ 252 ፈ 290 6
25 ማ 63 ቁ 101 ቿ 139 ኮ 177 ዤ 215 ጢ 253 ፉ 291 7
26 ሜ 64 ቂ 102 ኀ 140 ኳ 178 ዥ 216 ጣ 254 ፊ 292 8
27 ም 65 ቃ 103 ኁ 141 ኸ 179 ዦ 217 ጤ 255 ፋ 293 9
28 ሞ 66 ቄ 104 ኂ 142 ኹ 180 ዧ 218 ጥ 256 ፌ 294 ፡
29 ሟ 67 ቅ 105 ኃ 143 ኺ 181 የ 219 ጦ 257 ፍ 295 ፤
30 ሠ 68 ቆ 106 ኄ 144 ኻ 182 ዩ 220 ጧ 258 ፎ 296 …
31 ሡ 69 ቋ 107 ኅ 145 ኼ 183 ዪ 221 ጨ 259 ፏ 297 *
32 ሢ 70 በ 108 ኋ 146 ኽ 184 ያ 222 ጩ 260 ፐ 298 #
33 ሣ 71 ቡ 109 ነ 147 ኾ 185 ዬ 223 ጪ 261 ፑ 299 ?
34 ሤ 72 ቢ 110 ኑ 148 ዀ 186 ይ 224 ጫ 262 ፒ 300 null
35 ሥ 73 ባ 111 ኒ 149 ዂ 187 ዮ 225 ጬ 263 ፓ
36 ሦ 74 ቤ 112 ና 150 ወ 188 ደ 226 ጭ 264 ፔ
37 ሧ 75 ብ 113 ኔ 151 ዉ 189 ዱ 227 ጮ 265 ፕ

65

Appendix C. Bayesian Hyper-optimization

C.1 Bayesian Optimization Source Code
1 def create_models_bayesian_opt(num_random_points, num_iterations,

2 results_dir, ml_algo_name):

3

4 input_shape = X_train.shape[1:] # (H, W, C) - input shape

5 number_of_classes = len(char_list)+1

6 #print(input_shape)

7 # parameters for NN that do NOT have to be saved

8 maximum_epochs = 100

9 early_stop_epochs = 3

10 learning_rate_epochs = 3

11

12 # parameters that change for each iteration that must be saved

13 list_early_stop_epochs = []

14 list_validation_loss = []

15 list_saved_model_name = []

16

17 start_time_total = time.time()

18

19 def create_model(num_cnn_blocks,

20 learning_rate,

21 num_filters,

22 kernel_size,

23 num_units,

24 batch_size,

25 drop_out):

26

27 model_name = ml_algo_name + ’_’ +

28 str(np.random.uniform(0,1,))[2:9]

29

30 # variable parameters

31 dict_params = {’num_cnn_blocks’:int(num_cnn_blocks),

32 ’learning_rate’:int(learning_rate),

33 ’num_filters’:int(32*num_filters),

34 ’kernel_size’:int(kernel_size),

35 ’num_units’:int(128*num_units),

36 ’batch_size’:int(8*batch_size),

37 ’drop_out’:drop_out}

APPENDIX C. BAYESIAN HYPER-OPTIMIZATION 66

38 # RNN input length

39 size = 32

40 train_inp_len=[]

41 for i in range(trn_set):

42 train_inp_len.append(size)

43 train_inp_len=np.asarray(train_inp_len)

44 test_inp_len=[]

45 for i in range(val_set):

46 test_input_len.append(size)

47 test_input_len=np.asarray(test_inp_len)

48

49

50 input_tensor = Input(shape=input_shape)

51 x = BatchNormalization()(input_tensor)

52

53 # start of cnn coding

54 cnns = dict_params[’num_cnn_blocks’]

55

56 # 1st iteration for CNN blocks

57 for i in range(3*cnns):

58 x = Conv2D(filters=((dict_params[’num_filters’])*(i+1)),

59 kernel_size=dict_params[’kernel_size’],

60 strides=(1, 1), use_bias=True, padding=’same’,

61 kernel_regularizer=regularizers.l2(REG),

62 name=f’block1_conv{i+1}’)(x)

63 x = Activation(’relu’)(x)

64 x = Dropout(dict_params[’drop_out’])(x)

65 x = BatchNormalization()(x)

66

67 if i % cnns == 0:

68 x = MaxPool2D(pool_size=(2,2), name=f’block1_pool{i+1}’)(x)

69

70 # 2nd iteration for CNN blocks

71 for i in range(3*cnns):

72 x = Conv2D(filters=((dict_params[’num_filters’])*2*(i+3)),

73 kernel_size=dict_params[’kernel_size’],

74 strides=(1, 1), padding=’same’,

75 kernel_regularizer=regularizers.l2(REG),

76 name=f’block2_conv{i+1}’)(x)

77 x = Activation(’relu’)(x)

78 x = Dropout(dict_params[’drop_out’])(x)

79 x = BatchNormalization()(x)

80

81 if i % cnns == 0:

82 x = MaxPool2D(pool_size=(2,1), name=f’block2_pool{i+1}’)(x)

83

APPENDIX C. BAYESIAN HYPER-OPTIMIZATION 67

84 squeezed = Lambda(lambda x: K.squeeze(x,1), name=’squeeze’)(x)

85

86 x = Bidirectional(GRU(dict_params[’num_units’],

87 return_sequences=True, name=’gru1’))(squeezed)

88

89 x = Dropout(dict_params[’drop_out’])(x)

90

91 x = Bidirectional(GRU(dict_params[’num_units’],

92 return_sequences=True, name=’gru2’))(x)

93 x = Dropout(dict_params[’drop_out’])(x)

94 output_tensor= Dense(number_of_classes,activation=’softmax’)(x)

95

96 # instantiate and compile model

97 model = Model(inputs=input_tensor, outputs=output_tensor)

98 #model.summary()

99 inputs= model.input

100 outputs= model.output

101 opt= Adamax(dict_params[’learning_rate’]) # default = 0.001

102 labels=Input(name=’labels’,shape=[maxLabelLen],dtype=’float32’)

103 inp_len= Input(name=’input_length’, shape=[1], dtype=’int64’)

104 label_len= Input(name=’label_length’, shape=[1], dtype=’int64’)

105

106 def ctc_lambda_func(args):

107 y_pred, labels, inp_len, label_len = args

108

109 return K.ctc_batch_cost(labels,y_pred,inp_len,label_len)

110

111 loss_out= Lambda(ctc_lambda_func,output_shape=(1,),name=’ctc’)

112 ([outputs, labels, inp_len, label_len])

113

114 #model to be used at training time

115 model = Model(inputs=[inputs, labels, inp_len, label_len],

116 outputs=loss_out)

117 model.compile(loss={’ctc’: lambda y_true, y_pred: y_pred},

optimizer=opt, metrics=[’accuracy’])

118

119 # callbacks for early stopping and for learning rate reducer

120 callbacks_list = [EarlyStopping(monitor=’val_loss’,

121 patience=early_stop_epochs),

122 ReduceLROnPlateau(monitor=’val_loss’,

123 factor=0.1,patience=learning_rate_epochs,

124 verbose=0, mode=’auto’, min_lr=1.0e-6),

125 ModelCheckpoint(filepath=results_dir +

126 model_name + ’.h5’, monitor=’val_loss’,

127 save_best_only=True)]

128

APPENDIX C. BAYESIAN HYPER-OPTIMIZATION 68

129 # fit the model

130 h = model.fit(x=[X_train, y_train, train_inp_len,

131 train_label_length], y=np.zeros(len(X_train)),

132 batch_size=dict_params[’batch_size’],

133 epochs=maximum_epochs, #validation_split=0.1,

134 validation_data=([X_test, y_test, test_inp_len,

135 test_label_length], [np.zeros(len(X_test))]),

136 #shuffle=True,

137 verbose=0,

138 callbacks=callbacks_list)

139

140 # record actual best epochs and valid loss here,

141 # added to bayes opt parameter data frame (df) below

142 list_early_stop_epochs.append(len(h.history[’val_loss’]) -

143 early_stop_epochs)

144

145 # h.history[’val_loss’]

146 validation_loss = np.min(h.history[’val_loss’])

147 list_validation_loss.append(validation_loss)

148 list_saved_model_name.append(model_name)

149

150 # bayes opt is a maximization algorithm,

151 # to minimize validation_loss, return 1-this

152 bayes_opt_score = 1.0 - validation_loss

153

154 return bayes_opt_score

155

156 # end of create_model()

157 optimizer = BayesianOptimization(f=create_model,

158 pbounds={’num_cnn_blocks’:(1, 4), # *6

159 ’learning_rate’:(0.0001, 0.01),

160 ’num_filters’:(1, 4), # *32

161 ’kernel_size’:(1, 4),

162 ’num_units’:(1, 4), # *128

163 ’batch_size’:(1, 4), # *8

164 ’drop_out’: (0.2, 0.6)},

165 verbose=2)

166

167 optimizer.maximize(init_points=num_random_points,

168 n_iter=num_iterations)

169

170 print(’nbest result:’, optimizer.max)

171

172 elapsed_time_total = (time.time()-start_time_total)/60

173 print(’\n\ntotal elapsed time =’,elapsed_time_total,’ minutes’)

174

APPENDIX C. BAYESIAN HYPER-OPTIMIZATION 69

175 # optimizer.res is a list of dicts

176 list_dfs = []

177 counter = 0

178 for result in optimizer.res:

179 df_temp= pd.DataFrame.from_dict(data=result[’params’],

180 orient=’index’, columns=[’trial’ + str(counter)]).T

181 df_temp[’bayes opt error’] = result[’target’]

182

183 df_temp[’epochs’] = list_early_stop_epochs[counter]

184 df_temp[’validation_loss’] = list_validation_loss[counter]

185 df_temp[’model_name’] = list_saved_model_name[counter]

186

187 list_dfs.append(df_temp)

188

189 counter = counter + 1

190

191 df_results = pd.concat(list_dfs, axis=0)

192 df_results.to_pickle(results_dir+’bayes_results_parameters.pkl’)

193 df_results.to_csv(results_dir + ’bayes_results_parameters.csv’)

LISTING C.1: Python source code for Bayesian optimization.

APPENDIX C. BAYESIAN HYPER-OPTIMIZATION 70

C.2 Bayesian Optimization Sample Result for the Custom Model

TABLE C.1: A sample result during hyper-tuning for 50 trials (here, trial 3 is the best).

trial batch cnn dropout CNN kernel learning RNN bayes epochs model names
size blocks rate filters size rate units opt
(×8) (×6) (×32) (×128) error

0 1 1 0.38130 1 1 0.00345 2 -166.67 1 hawr_0112504
1 2 3 0.56179 2 1 0.00024 2 -169.20 1 hawr_0002319
2 3 2 0.50007 2 2 0.00868 3 -165.50 8 hawr_4888705
3 2 2 0.54272 2 1 0.00495 2 -144.65 12 hawr_8895593
4 2 3 0.45622 3 2 0.00158 1 -165.69 13 hawr_7888660
5 2 2 0.54107 2 1 0.00490 2 -165.49 3 hawr_4235324
6 3 1 0.33963 3 3 0.00787 3 -168.23 1 hawr_1413807
7 3 3 0.40692 3 1 0.00673 1 -168.78 1 hawr_5504421
8 1 3 0.54044 2 1 0.00466 1 -170.18 1 hawr_5874453
9 2 2 0.38639 3 2 0.00289 2 -167.05 18 hawr_6517570

10 3 1 0.57549 2 2 0.00050 1 -164.16 5 hawr_0074673
11 3 3 0.31867 2 1 0.00999 2 -149.24 8 hawr_7427297
12 2 1 0.50642 1 2 0.00856 2 -169.00 1 hawr_7065799
13 3 1 0.49877 1 1 0.00367 3 -165.98 7 hawr_9321885
14 1 1 0.49906 2 3 0.00410 2 -169.83 1 hawr_4718763
15 2 2 0.41710 1 3 0.00512 1 -168.20 1 hawr_7421182
16 3 2 0.31253 3 2 0.00730 2 -165.34 9 hawr_6470791
17 2 2 0.27829 3 1 0.00797 3 -168.78 4 hawr_3193661
18 2 3 0.41320 2 1 0.00056 2 -164.96 9 hawr_1804471
19 3 2 0.56304 2 3 0.00594 2 -166.94 1 hawr_9883286
20 1 2 0.53821 1 3 0.00302 1 -158.55 8 hawr_0822871
21 1 2 0.24980 3 3 0.00874 1 -162.91 3 hawr_6316071
22 1 1 0.58594 3 2 0.00164 3 -158.96 4 hawr_4027049
23 1 2 0.53265 3 3 0.00826 1 -169.12 1 hawr_2803434
24 1 1 0.46939 3 3 0.00826 2 -169.88 1 hawr_2379754
25 2 1 0.44754 1 2 0.00982 3 -165.75 14 hawr_0168926
26 2 3 0.29664 3 2 0.00752 3 -162.68 5 hawr_1539385
27 3 3 0.30110 1 2 0.00302 1 -164.67 16 hawr_6275462
28 2 3 0.49319 3 1 0.00591 1 -166.53 5 hawr_9702976
29 1 2 0.41063 3 1 0.00778 2 -166.95 6 hawr_1199178
30 1 1 0.43106 2 1 0.00888 1 -166.27 5 hawr_9756732
31 1 1 0.59074 3 3 0.00036 1 -170.81 1 hawr_1569277
32 1 2 0.41936 3 2 0.00106 2 -149.25 6 hawr_4514202
33 3 3 0.47076 3 2 0.00028 3 -165.56 8 hawr_6514668
34 2 2 0.55695 2 1 0.00568 2 -169.74 1 hawr_1179949
35 1 1 0.53929 2 1 0.00304 3 -162.94 13 hawr_0408958
36 2 2 0.37726 3 2 0.00019 3 -157.31 8 hawr_4886011
37 3 1 0.52930 2 1 0.00972 1 -160.04 5 hawr_8611309
38 1 2 0.59544 1 1 0.00149 1 -161.10 6 hawr_9177017
39 1 1 0.39657 2 1 0.00130 3 -156.55 5 hawr_5035048
40 2 3 0.37782 2 3 0.00073 1 -169.49 1 hawr_1432236
41 2 1 0.48703 3 1 0.00930 1 -169.00 1 hawr_2530413
42 1 2 0.52780 2 2 0.00506 1 -168.19 1 hawr_5785484
43 2 1 0.31183 1 1 0.00622 2 -170.38 1 hawr_4482785
44 3 1 0.31487 2 1 0.00679 1 -167.53 1 hawr_5052025
45 1 2 0.23887 2 1 0.00902 2 -164.27 2 hawr_5581458
46 2 3 0.58285 2 1 0.00518 3 -159.91 10 hawr_6649196
47 2 3 0.38500 3 2 0.00863 3 -169.09 1 hawr_4990366
48 2 1 0.44548 1 1 0.00558 3 -160.11 3 hawr_8886166
49 2 2 0.44279 3 1 0.00746 3 -162.41 15 hawr_6671779

Total elapsed time = 214.57529 minutes.

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	 Introduction
	 Background
	Amharic Language and Basics of its Writing System

	 Motivation
	 Problem Statement
	 Research Questions
	 Objectives
	 General Objective
	 Specific Objectives

	 Significance
	 Scope and Limitations
	 Thesis Structure

	Background Theory and Literature Review
	 Classical Machine Learning Approaches
	 Hidden Markov Model (HMM)

	Deep Learning Approaches
	 Overview of Neural Network (NN)
	 Convolutional Neural Network (CNN)
	 Recurrent Neural Network (RNN)
	 Connectionist Temporal Classification (CTC)

	 Commonly used Convolutional Neural Networks
	 Visual Geometry Group (VGG)
	 Residual Network (ResNet)
	 Dense Convolutional Network (DenseNet)
	 Efficient Network for CNNs (EfficientNet)

	 Literature Reviews
	 Related Works

	 Methodology
	 Proposed End-to-End HAWR Model
	 Data Collection
	 Data Pre–processing
	 Binarization
	 Image Cropping
	 Segmentation
	 Word Image Labeling
	 Data Augmentation
	 Data Standardization

	 Experimental Setup
	 CNN Based Feature Extraction
	 BRNN Based Sequence Modeling
	 CTC Based Transcription

	 Bayesian Optimization Algorithm
	 Evaluation Metrics
	 HAWR Model Training

	 Experimental Results and Discussion
	 Optimization Results of the Custom Model
	 Experimental Results of the Commonly used CNN Architectures with the Custom Model
	 Experimental Results using Augmented Data
	 10 – Fold Cross – Validation Result
	 Sample prediction Results

	Conclusion and Recommendation
	Conclusion
	Recommendation

	References
	Amharic Writing System
	Alphasyllabary
	Punctuation and Numerals

	CTC–Labels Representation
	CTC–Labels for Amharic Characters

	Bayesian Hyper-optimization
	Bayesian Optimization Source Code
	Bayesian Optimization Sample Result for the Custom Model

