

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING STRUCTURAL ENGINEERING STREAM OPTIMIZATION OF PRESTRESSED CONCRETE GIRDERS FOR BRIDGE DESIGN

BY

WUBISHET JEMANEH ABEBE

A Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirements for the Degree of Master of Science in Civil Engineering (Structural Engineering)

> JUNE 2018 JIMMA, ETHIOPIA

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING STRUCTURAL ENGINEERING STREAM OPTIMIZATION OF PRESTRESSED CONCRETE GIRDERS FOR BRIDGE DESIGN

BY

WUBISHET JEMANEH ABEBE

A Thesis Submitted to the School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirements for the Degree of Master of Science in Civil Engineering (Structural Engineering)

Advisor: Engr. Elmer C. Agon

Co-Advisor: Engr. Vinoth Raj Kumar

JUNE 2018 JIMMA, ETHIOPIA

JIMMA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

JIMMA INSTITUTE OF TECHNOLOGY

FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING

STRUCTURAL ENGINEERING STREAM

OPTIMIZATION OF PRESTRESSED CONCRETE GIRDERS FOR BRIDGE DESIGN

BY

WUBISHET JEMANEH ABEBE

APPROVED BY BOARD OF EXAMINERS

1.	Engr. Elmer C. Agon		,
	Main Advisor	Signature	Date
2.	Engr. Vinoth Raj Kumar		_ ,
	Co-Advisor	Signature	Date
3.	Dr. Fisseha Merese Alemayehu		_ ,
	External Examiner	Signature	Date
4.	Engr. Kefelow Zerfu		,
	Internal Examiner	Signature	Date
5.	Engr. V.S. Ravi Kumar		,
	Chair Person	Signature	Date

DECLARATION

Here the undersigned declare that all the works done in this study originates from my own work and that all secondary sources referred to have been duly acknowledged and cited.

Name: Wubishet Jemaneh		
	<u>6/06/2018</u>	
Place: Jimma University Institu	te of Technology	
Date of Submission: June 2018		
Engr. Elmer C. Agon		
Advisor	Signature	Date
Engr Vinoth Dai Kumar		
Engr. Vinoth Raj Kumar		
Co-Advisor	Signature	Date

Acknowledgement

First of all I would like to express my deepest gratitude to my advisor Engr. Elmer C. Agon (Associate Professor) for his support and advice during the whole course of the work on this thesis and for very precise proof reading of my manuscripts. I forward my pleasure to Engr. Vinoth Raj Kumar (co-advisor) for his inspiration and suggestion during the research work and supplementation of useful materials.

I would like to state my gratitude to the organization Ethiopian Roads Authority (ERA) for his complete sponsorship of this Master's program.

My heart full thanks go to Engr. Sebsebachew Getachew for his financial support during the early fulfillment of the requirements to register and attain this Master's program.

I wish to thank all members of Structural Engineering Stream of Jimma Institute of Technology who have cooperated and given me valuable comments in this work.

I am very glad to appreciate all my families for their support and treatment in all aspects from the start of date of schooling up to date of my studies.

Abstract

Structural concrete bridge girders forms almost major portions of total cost of superstructure and they appear deep particularly for large span bridges as compared to ordinary beams to meet the required stiffness and stability. Enlarged size of the girders makes the overall cost of the bridge be costlier and to cope with this, great cost saving was possible to achieve through the use of structural design optimization.

In this research, design optimization was carried out by taking total material cost of girders as an objective function and all requirements of strength, stability, serviceability, fatigue and geometric restrictions as constraint functions. A straight girder system bridge with a total width of 9.9m and supporting dual lanes of traffic with standard width of 3.65m each and 1.3m wide overhang both sides was used. It was subjected to three main load cases, the action of dead, live and prestressing loads. Dead load includes self-weight of bridge deck components, railings, girders, diaphragms and wearing surface. Live load was the design vehicular live load of AASHTO LRFD HL-93. Prestressing force was based on maximum tensile prestress at the top fiber and minimum compressive prestress at the bottom fiber. Other load effects like impact factor and multiple presence factor were also taken into account. Linear static method of analysis was used. A program was developed for design optimization of prestressed concrete girders in MATLAB R2017a software.

In this study, effects of construction materials, grades of concrete, girder spacing, bridge length on the optimum cost were investigated. The results of optimization indicates that reinforced concrete (RC) T girder was economical up to a span of 40m and for a span longer than 40m prestressed concrete (PC) box girder was better. It was observed that as grades of concrete increases depth of the girders reduces, for bridge supporting dual lane of traffic, an optimum girder spacing was found to be 2.5m. Optimum design of prestressed bridge girders could reduce cost of material with 38% for prestressed concrete T girder and 25% for prestressed concrete box girder as compared to the cost of conventional design approach.

Key words: Partially prestressed Concrete, Reinforced Concrete, T Girder, Box Girder, Design Optimization, Post tensioning, Genetic Algorithm, Girder Spacing, Grade of Concrete.

Contents

Acknowledgementii
Abstractiii
List of Figures
List of Tables
Abbreviations ix
Notations x
CHAPTER ONE1
INTRODUCTION1
1.1 Background 1
1.2 Statement of the problem
1.3 Objectives of the Research
1.4 Significances of the Study
1.5 Scope of the Study
1.6 Research Questions
CHAPTER TWO 6
RELATED LITERATURE REVIEW
2.1 Optimization Techniques
2.2 Forms of Structural Optimization
2.2.1 Shape Optimization
2.2.2 Size Optimization
2.2.3 Topology Optimization
2.3 Genetic Algorithm
2.3.1 Objective Function
2.3.2 Design Variables
2.3.3 Design Constraints
2.4 Nonlinear Constraint Solver Algorithms

2.4.1 Augmented Lagrangian Genetic Algorithm (ALGA)	. 15
2.4.2 Penalty Algorithm	. 16
2.5 Advantages of Partial Prestressing	. 17
CHAPTER THREE	18
RESEARCH METHODOLOGY	18
3.1 Method of Structural Analysis	. 18
3.2 Method of Design Optimization	. 18
3.3 Materials Used	. 19
3.4 Optimization Procedure with GA in Matlab	. 21
3.5 Study Variables	. 29
3.5.1 Independent variables	. 29
3.5.2 Dependent variables	. 29
CHAPTER FOUR	. 30
OPTIMIZATION OF PRESTRESSED CONCRETE GIRDERS	. 30
4.2 Optimization Model of Simply Supported Prestressed Concrete Girders	. 31
4.3 Load Analysis	. 32
4.3.1 Load Cases and Load Combinations	. 33
4.4 Design Philosophy	. 34
4.4 Optimization Problem Formulation	. 34
4.5 Fixed Design Variables	. 35
4.6 Design Variables	
4.7 Objective Function	. 37
4.8 Constraint Function	. 38
CHAPTER FIVE	. 59
RESULTS AND DISCUSSIONS	. 59
5.1 Effect of Construction Materials on Optimum Cost	. 59
5.2 Effect of Grades of Concrete on Optimum Cost	. 60
5.3 Optimum Girder Spacing	. 61
5.4 Cost comparison of optimum design and conventional design approach	. 62
Jimma University School of Graduate Studies	

Jimma Institute of Technology Faculty of Civil and Environmental Engineering

5.5 Effect of Grades of Concrete on Depth of the Girders	63
5.6 Comparison of Cost of Concrete and Steel	64
5.7 Optimum Girder Cross Sectional Dimensions	66
5.8 Comparison of Optimization Algorithms	67
CHAPTER SIX	69
CONCLUSIONS AND RECOMMENDATIONS	69
6.1 Conclusion	69
6.2 Recommendations for Future Studies	70
References	71
Appendix A Bridge Girders Analysis Data	74
Appendix B Unit Cost of Construction Materials	
Appendix C Design Optimization Code and Outputs using GA in Matlab	83
Appendix D Design Optimization Validation in Excel spreadsheet	
Appendix E conventional design of post tensioned girders	102

List of Figures

Figure 3.1 Reinforcement Bars and Prestressing 7-Wire Strands	20
Figure 3.2 Flow Chart for GA Optimization	28
Figure 4.1 Longitudinal Model of the Bridge	31
Figure 4.2 Cross Sectional Model of T-Girder Bridge	32
Figure 4.3 Cross Sectional Model of Box Girder Bridge	32
Figure 4.4 Characteristics of the Design Truck	33
Figure 4.5 Characteristics of the Design Tandem	34
Figure 4.6 Cracked Transformed Section	48
Figure 4.7 Design Truck Load Arrangement for Deflection Calculation	54
Figure 5.1 Effect of Construction Materials on Optimum Cost	60
Figure 5.2 Effect of grades of Concrete on Optimum Cost	61
Figure 5.3 Optimum Girder Spacing	62
Figure 5.4 Cost comparison of Optimum Design and Conventional Design	63
Figure 5.5 Effect of Compressive Strength of Concrete on Girder Depth	64
Figure 5.6 Cost Ratio of Concrete and Reinforcement Steel	65
Figure 5.7 Comparison of Efficiency of Optimization Solvers	68

List of Tables

Table 3.1 ASTM Standard Strands Designation	20
Table 3.2 Commonly Used Anchorage Devices	21
Table 4.1. Fixed Values of Material Properties	36
Table 4.2 Designation of Design Variables	37
Table 4.3 Unit Cost of Concrete	38
Table 5.1 Summary of Cost Comparison of Girder Cross Sections	59
Table 5.2 Effect of Grades of Concrete on Optimum Cost	60
Table 5.3 Optimum Girder Spacing	61
Table 5.4 Cost Comparison of Optimum and Conventional Design	62
Table 5.5 Effect of Grades of Concrete on the Optimum Girder Depth	64
Table 5.6 Cost Ratio of Concrete and Reinforcement Steel	65
Table 5.7 Ratios of Optimum Girder Cross Sectional Dimensions	66

Abbreviations

AASHTO	America Association of State highway and Transportation Officials
ACI	American Concrete Institute
ALGA	Augmented Lagrangian Genetic Algorithm
ASCE	American Society of Civil engineers
ASTM	American Society for Testing Materials
CEB	Comite Euro International dubeton
EA	Evolutionary algorithm
ETB	Ethiopian Birr
FIP	Federation International de la Precontrainte
GA	Genetic algorithm
IM	Impact factor
LRFD	Load and resistance factor design
ODOT	Ohio department of transportation
PC	Prestressed Concrete
RC	Reinforced Concrete
SLP	Sequential linear programming
SUMT	Sequential unconstrained minimization technique

Notations

All notation have been defined where they first used. These notations are summarized below:

- ϵ_{cp} Tensile strain in the concrete at the level of the tendon at decompression stage.
- ϵ_0 Compressive strain at the extreme top fiber at service load stage
- ϵ_{oc} Compressive strain in the concrete at the level of the tendon
- ϵ_s Tensile strain in the reinforcing steel at working loads
- A Cross sectional area of concrete (mm²)
- a Depth of equivalent rectangular stress block (mm)
- a' Distance from the left support to the point of truck load for which deflection is to be computed.
- A_c Area of concrete cross section (mm²)
- A_{ct} Area of cracked transformed section under service limit state (mm²)
- At Effective tension area of concrete surrounding one bar (mm2)
- A_p Area of prestressing steel (mm²)
- A_s Area of nonprestressed steel tension reinforcement (mm²)
- As' Area of nonprestressed steel compression zone reinforcement (mm²)
- A_v Cross sectional area of shear reinforcement within a distance S (mm2)
- be Width of compression face of the section of exterior girder (mm)
- b_i Width of compression face of the section of interior girder (mm)
- b_w Web width of the cross section (mm)
- C Resultant compressive force in compression zone of concrete (N)
- c Depth of the neutral axis (mm)

- C_c Unit cost of concrete per cubic millimeter (ETB/mm³)
- C_n Compressive force in compression zone of concrete used to reduce the resultant Compressive force C when NA depth exceeds flange thickness (N)
- C_p Unit cost of pre-stressing tendons per ton (ETB/ton)
- C_s Unit cost of reinforcement steel per ton (ETB/ton)
- d Distance from extreme compression fiber to centroid of nonprestressed tension reinforcement (mm)
- d_c Thickness of concrete cover measured from extreme tension fiber to centroid of closest bar ther to (mm)
- de Depth from extreme compression fiber to centroid of tensile force (mm)
- d_p Depth from extreme compression fiber to centroid of prestressing steel (mm)
- d_s' Distance from extreme compression fiber to centroid of nonprestressed compression zone reinforcement (mm)
- d_v Effective depth of shearing force (N)
- d_z Depth from extreme compression fiber to centroid of resultant compression force C (mm)
- d_{zn} Depth from extreme compression fiber to centroid of compression force C_n (mm)
- e Eccentricity of prestressing force from the centroid of the section (mm)
- E_c Modulus of elastic of concrete (N/mm²)
- E_p Modulus of elastic of prestressing steel (N/mm²)
- E_s Modulus of elastic of reinforcing steel (N/mm²)
- f_{br} Stress range at the extreme bottom fiber (N/mm²)
- fc' Specified cylindrical compressive strength of concrete (N/mm²)
- f_{cpe} Compressive stress in concrete due to effective prestress forces only (N/mm²)
- f_{ct} Maximum allowable compressive stress in concrete at initial prestress (N/mm²)

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

- f_{cw} Maximum allowable compressive stress in concrete at service load (N/mm²)
- f_{fp} Stress range in prestressing steel due to fatigue load (N/mm²)
- f_{fs} Stress range in reinforcing steel due to fatigue load (N/mm²)
- f_{inf} Stress at the extreme bottom fiber for a given eccentricity e (N/mm²)
- f_{min} Minimum live load stress where there is stress reversal (N/mm²)
- f_p Total stress in prestressing tendons at the application of service loads (N/mm²)
- f_{pe} Effective stress in prestressing steel (N/mm²)
- f_{ps} Average stress in prestressing steel (N/mm²)
- f_{pu} Ultimate tensile strength of prestressing steel (N/mm²)
- f_{py} Yield strength of prestressing steel (N/mm²)
- f_r Modulus of rupture (N/mm²)
- f_s $$$Stress in nonprestressed steel reinforcement at the application of service loads <math display="inline">$(N/mm^2)$$$
- f_{tr} Stress range at the extreme top fiber (N/mm²)
- f_{tt} Maximum allowable tensile stress in concrete at initial prestress (N/mm²)
- f_{tw} Maximum allowable tensile stress in concrete at service load (N/mm²)
- F_x Forces acting in the horizontal direction (N)
- f_y Yield strength of non prestressed steel tension reinforcement (N/mm²)
- f_y ' Yield strength of non prestressed steel compression zone reinforcement (N/mm²)
- γ Unit weight of steel reinforcement bars and prestressing tendons (ton/mm³)
- g_s Girder spacing (mm)
- *h* Height of the deformation (mm)
- η Prestress loss factor

h Over all depth of the section (mm) Distance from centroid of tensile steel to NA depth (mm) hı h_2 Depth from extreme compression fiber to depth of NA (mm) $h_{\rm f}$ Thickness of the flange (mm) Ι Second moment of area or moment of inertia of concrete cross section (mm⁴) Ict Moment of inertia of cracked transformed section under service limit state (mm⁴) Ie Effective moment of inertia of the section (mm⁴) L Span length of the girder (mm) M₃ Working moment at service limit state III (Nmm) Mcr Cracking moment (Nmm) M_d Ultimate factored design moment due to all loads (Nmm) Maximum fatigue load moment (Nmm) $M_{\rm f}$ Mg Total unfactored dead load moment (Nmm) M_{min} Minimum moment due to self weight or during handling of the member (Nmm) Mn Nominal moment of resistance (Nmm) Mr Total factored moment of resistance of the section (Nmm) M_w Working moment at service limit state I (Nmm) Modular ratio of prestressing steel np Modular ratio of reinforcing steel ns Ρ Prestressing force (N) Base radius of the deformation (mm) and r S Spacing of stirrups (mm) Tension force in the prestressing steel at service limit state (N) Tp T_s Tension force in the reinforcing steel at service limit state (N)

- V_c Shear resisting force due to tensile stress in the concrete (N)
- V_n Nominal shear resistance (N)
- V_p Component of prestressing force in the direction of shearing force (N)
- V_s Shear resisting force due to tensile stress in traverse reinforcement (N)
- V_u Factored design shearing force d distance from face of support (N)
- w_{oh} Width of overhang (mm)
- W_{str} Weight of stirrups (ton)
- x Distance from left support to a point at which maximum service load moment occurs.
- y NA depth of the cracked section under service limit state (mm)
- y_b Depth from extreme bottom fiber to centroid of the section (mm)
- y_{ct} Depth from extreme compression fiber to centroid of cracked section (mm)
- yt Depth from extreme top fiber to centroid of the section (mm)
- Z_b Section modulus of the extreme bottom fiber (mm³)
- Z_c Section modulus for the extreme fiber of the composite section where tensile stress is caused by externally applied loads (mm³)
- Z_{nc} Section modulus for the extreme fiber of monolithic or noncomposite section where tensile stress is caused by externally applied loads (mm³) that is Z_b
- Z_t Section modulus of the extreme top fiber (mm³).
- Δ_{all} Allowable deflection for live load (mm)
- Δ_d Total long term deflection due to dead load (mm)
- Δ_{di} Immediate deflection due to dead load (mm)
- Δ_{kl} Deflection due to truck load (mm)
- Δ_{LL} Deflection due to live load (mm)
- Δ_{Ln} Deflection due to design lane load (mm)
- Δ_p Upward deflection due to prestress force (mm)
- Φ Resistance factor
- β_1 Stress block factor
- ρ_s Density of reinforcement steel
 - Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

This page was intentionally left blank

This page was intentionally left blank

CHAPTER ONE

INTRODUCTION

1.1 Background

Nowadays, a rapid growth of computer performance enables and encourages new developments in science and engineering. Particularly, within the field of structural mechanics, modeling of materials and therefore the prediction of structural response is more accurate than in past decades. These are new challenges that we want to discover, but there are also several problems, that must be solved. For instance, the research within applied optimization is mainly lead by automotive and aerospace industries. Therefore, the emphasis is put mainly on the computational fluid dynamics domain and structural optimization area, especially on the shape optimization. Because Civil Engineering problems are dominantly connected with static problems and topology and/or size optimization, there is a gap between current researches and the application of new methods into the discipline of Civil Engineering [1].

In bridge construction, the cost of materials is often a factor in end of the project cost deliverables which is mostly expensive especially in overdesign structural members. Engineers most jump in to conclusion of increasing the section area and adding reinforcement on the design for fear of durability issue of the end product which is the structures itself. Structural optimization of members is often neglected during the design process for it may take another time from the tedious analysis and design of structures.

Therefore, the goal of this thesis was to review and enhance the current state of art regarding to structural design optimization and to show possibilities of this methods in cost

optimization of structural concrete that is reinforced concrete and prestressed concrete bridge girders.

1.2 Statement of the problem

The use of traditional method of design may leads to oversize structural members and as a result inefficient use of limited resources like construction materials and other are included in the practice. Design optimization is not only cross sectional sizing of the members but also it is looking for the optimal path (feasible direction) or possible combinations of alternatives that drive us to achieve the optimal cost or it may be selecting the best thing or material which brings optimal cost keeping all the requirements being satisfied.

On the other hand, although a significant amount of research has been published in the field of structural optimization since the 1960s, little of the research effort has been utilized in structural design practice. One reason for this is that only a small portion of the research targets real-world applications.

Therefore there is a need to conduct research on cost optimization of structures, particularly structural concrete bridges girders where significant cost savings may be possible. In this research cost optimization of bridge girders was studied to bridge the gap of oversizing member of bridge construction

1.3 Objectives of the Research General objective

The main objective of the research was to optimize cost of structural concrete bridge girders using suitable optimization program.

Specific objectives

To support the above general objective, the following specific objective was sought:

- To compare the effect of construction materials on the optimum cost of the girders.
- To study the effect characteristic strength of concrete on optimum cost of the girder.
- To compare the cost of optimum design with the conventional design approach.
- To investigate the optimal girder spacing.
- To compare cost ratio of concrete and steel over specific length of bridge.
- To investigate optimum cross sectional dimensions of bridge girders.
- To compare commonly used structural optimization algorithms.

1.4 Significances of the Study

The research targeted on cost optimization of prestressed concrete (PC) girder structures to facilitate the use of optimization methods in structural design practice. This was preferably be carried out for real-world projects to close the gap between theory and practice. The purpose of this thesis was to contribute to the closing of this gap by implementing cost optimization to practical problems. Ideally, the structure to optimize should both be common and large enough to allow for significant cost savings. Prestessed and reinforced concrete bridge girders meet both of these requirements and was therefore selected as the type of structure to optimize.

It is expected that developing practical implementations such as this will facilitate the usage of optimization methods by practicing engineers. To further promote this, the thesis puts emphasis on technical details of the implementation, and highlights the potential cost savings by comparing optimized bridge girders with conventionally designed bridge girders.

The research may benefit designers and bridge owners towards the use of partially prestressed concrete structures which is rarely used in Ethiopia. It may also be used to guide decision makers to compare and select economical bridge cross section and type at the phase feasibility study.

1.5 Scope of the Study

In this research, simply supported bridge with straight girder system which has a total width 9.9m with variable length was considered. Commonly used tee and box girder sections made up of reinforced concrete and post tensioned partially prestressed concrete were considered case by case and subjected to routine iterations of optimization by genetic algorithm (GA) to find the optimum cost of materials. Girders were spaced apart with a range of 1.5m to 4m within the road width to determine the optimum girder spacing. For this research, grades of concrete with specified characteristic cylindrical compressive strength of 30Mpa to 70Mpa, non prestressed reinforcement bars of grade 420 of diameter 12mm to 32mm , and commonly available prestressing strands of grade 270 (1860) low relaxation 7-wire strands of diameter 9.53mm to 15.24mm were used.

1.6 Research Questions

In this section the relevant research questions that bear in to the mind of the researcher were stated.

 Which section is economical from commonly used cast insitu tee and box girder sections?

- 2. For a given range of bridge length, what material is economical for bridge girder construction?
- 3. What is the effect of grades of concrete on the optimum cost and depth of prestressed concrete girders?
- 4. How much is the optimum girder spacing for bridge supporting dual lanes of traffic?
- 5. With what amount could design optimization reduce the cost of conventionally designed prestressed concrete bridge girders?
- 6. In comparison of cost of concrete and reinforcement steel, which material cost could govern for a given bridge span?
- 7. What is suitable structural design optimization program?

CHAPTER TWO

RELATED LITERATURE REVIEW

Recent advances in the field of computational intelligence have led to a number of promising optimization algorithms. These algorithms have the potential to find optimal or near-optimal solutions to complex problems within a reasonable time frame. Structural optimization is a research field where such algorithms are applied to optimally design structures. It is essentially a combination of two research fields: structural mechanics and computational intelligence [2].

Optimization is a process of making things better. Life is full of optimization problems which all of us are solving many of them each day in our life activities. Which route is closer to school? Which bread is better to buy having the lowest cost while giving good energy? Optimization is fine-tuning the inputs of a process, function or device to find the maximum or minimum output(s). The inputs are the variables, the process or function called objective function, cost function or fitness value (function) and the output(s) is fitness or cost [3].

The primary aim of structural optimization is to determine the most suitable combination of design variables, so to achieve satisfactory performance of the structure subject to the behavioral and geometric constraints imposed, with the goal of optimality being defined by the objective function for specified loading or environmental conditions. In this thesis cost minimization of bridge girders is tackled using genetic algorithm. Basically, the process of optimum design of prestressed concrete structures may be looked upon as a mathematical programming problem in which the total cost or consumption of materials is minimized, subject to certain functional constraints, such as the limitation of stresses, deflections and crack widths at serviceability limit states and flexure and shear strength requirements at the limit state of collapse [4].

Generally, optimization problems involve long and tedious computations and as such manual computations are limited to simple problems comprising a few design variables. However, the development of high speed electronic digital computers has revived the interest in optimization problems and significant advances have been made in the field of structural optimization. In fact, the real impetus to the growth of interest in optimum seeking methods came only after the pioneering work of Dantzig, who developed the simplex algorithm for the solution of linear programming problems [5].

2.1 Optimization Techniques

In using the mathematical programming methods, the process of optimization begins with an acceptable design point. A new point is selected suitably so as to minimize the objective function. The search for another new point is continued from the previous point until the optimum point is reached. There are several well established techniques for selecting a new point and to proceed towards the optimum point, depending upon the nature of the problem, such as linear and nonlinear programming.

Linear programming methods were used by Kirsch to optimize indeterminate prestressed concrete beams with prismatic cross sections through a "bounding procedure". In linear programming problem, the objective function and constraints are linear functions of the design variables and the solution is based on the elementary properties of systems of linear equations. The properties of systems of proportionality, additivity, divisibility and deterministic features are utilized in the mathematical formulation of the linear programming problem. A linear function in three dimensional space is a plane representing the locus all design points. In n dimensional space, the surface so defined is a hyper plane. In these cases, the intersections of the constraints give solutions which are the simultaneous solutions of the constraint equations meeting at that point. Due to linearity, the optimum solution should be any one of the intersections of the constraints [6].

Linear programming problems can be conveniently solved by the revised simplex method. The simplex algorithm for solving the general linear programming problem is an iterative procedure which yields an exact optimal solution in a finite number of steps. One of the most powerful techniques for solving nonlinear programming problems is to transform the problem by some means in to a form which permits the application of the simplex algorithm. Thus, the simplex method turns out to be one of the most powerful computational devices for solving linear as well as nonlinear programming problems [7].

Cohn and MacRae studied simply supported reinforced, fully prestressed (pretensioned and post-tensioned), and partially prestressed concrete I-beams with fixed cross sectional geometry subjected to serviceability and ultimate limit states constraints using a nonlinear programming technique. In nonlinear programming problems, the objective function and the constraints are nonlinear functions of the design variables. Since the boundaries of the feasible regions or the contours of equal values of the merit function are straight lines, the optimum solution need not necessarily be at an intersection of the constraints [8].

Over the years, several techniques have been developed for the solution of nonlinear programing problems. Some of the prominent techniques are [9]:

- 1. Method of feasible directions
- 2. Sequential unconstrained minimization technique (SUMT)
- 3. Sequential linear programming (SLP)
- 4. Dynamic programming.

The method of feasible direction can be grouped under the direct methods of approach on general nonlinear inequality constrained optimization problems. Two well-known procedures which embody the philosophy of the method of feasible directions are Rosen's gradient projection algorithm [10] and Zoutendijk's procedure [11]. This method was probably the first nonlinear programming procedure to be used in structural optimization problems by Schmit in 1960 [12]. In this method, starting from an initial feasible point, the nearest boundary is reached and a new feasible direction is found. An appropriate step is taken along this feasible direction to get the new design point. The procedure is repeated until the optimum design point is reached.

In sequential unconstrained minimization technique, the constrained minimization problem is converted in to an unconstrained one by introducing an interior or exterior penalty function. This method has proved to be highly advantageous in practical structural design problems.

In sequential linear programming, the nonlinear objective function and constraints are linearized in the vicinity of the starting point and a new design point is obtained by solving the linear programming problem. The sequence of linearizing in the neighborhood and solving by linear programming is continued from the new point till the optimum is reached.

Dynamic programming which widely applied in operations research and economics, is basically a mathematical approach for multi stage decision problems. This approach is well suited to the optimal design of certain kinds of structure, in general those in which the interaction between different parts is rather simple. The main limitation of dynamic programming is that it does not lend itself to the construction of general purpose computer programs suitable for a wide range of distinct problems.

2.2 Forms of Structural Optimization

2.2.1 Shape Optimization

In this form of optimization the topology of structure is known a-priori but there can be some part and/or detail of the structure, in which, for instance, high stresses can produce problems. Therefore the objective is usually to find the best shape that will result in the most suitable stress distribution. Parameters of shapes are dimensions of the optimized parts or a set of variables describing the shape, e.g. coefficients of spline functions. Examples for the reinforced concrete area herein can be finding the proper shape of holes within plate members [13].

2.2.2 Size Optimization

In this form of an optimization a structure is defined by a set of sizes, dimensions or crosssections. These are combined to achieve the desired optimality criteria.

In the case of steel structures in particular, nearly all possible optimization problems have been subjected to some form of investigation. To list a few successfully solved problems, optimization of nonlinear steel frames with semi-rigid connections [14], optimization against buckling [15] or a finding minimum weight in connection with a minimum number of steel profiles used in a design [16] and cost optimization of prestressed I girder [17] can be found in the corresponding literature.

As a consequence of the definitions introduced above, we can distinguish one additional form of structural optimization. If a design variable - the size of a member or the material property - can reach zero value, i.e. it is not necessary in the structure and can be removed. The cornerstone of this approach is the so-called ground structure, which defines all possible positions of nodes and the set of all possible members/connections among these nodes. Then the goal is the removal of inefficient members to obtain an optimal structure. If coordinates of nodes are also unknown, this form becomes part of topology optimization. Therefore the layout optimization can be seen as the connection point between the previously cited two kinds of optimization [18].

An interesting feature in solving this form of optimization is the possibility of failure of hard-kill methods. In some cases a weak member is removed although it is necessary for the efficiency of the static scheme [19].

2.2.3 Topology Optimization

By topology optimization we understand finding a structure without knowing its final form beforehand. Only the environment, optimality criteria and constraints are known. The major Civil Engineering representatives serve as a decision tool in selecting an appropriate static scheme of a desired structure. They are mostly applied to the pin-jointed structures, where the nodal coordinates of joints are optimization variables. Based on the position of supports and objective functions, several historically well-known schemes can be discovered. The typical example of this optimization form within the reinforced concrete area is placement of steel reinforcing bars into a concrete block. In other words, we search for the most suitable strut-and-tie model [20].

This form of optimization is the least investigated part of structural optimization. Here you can find the search for a proper shape for shell, membrane or tent like structures. Only few papers on this topic can be found in the literature, e.g. [21] or [22], with even fewer dealing with reinforced concrete structures. And finally, the Mathematical Programming methods are known as the only efficient solutions for this type of optimization problems.

2.3 Genetic Algorithm

Genetic Algorithm (GA) is global optimization technique developed by John Holland in 1975. It belongs to the family of evolutionary algorithms that search for solutions to optimization problems by "evolving" better and better solutions. A genetic algorithm begins with a "population" of solutions and then chooses "parents" to reproduce. During reproduction, each parent is copied, and then parents may combine in an analog to natural crossbreeding, or the copies may be modified, in an analog to genetic mutation. The new solutions are evaluated and added to the population, and low quality solutions are deleted from the population to make room for new solutions. As this process of parent selection, copying, crossbreeding, and mutation is repeated, the members of the population tends to

get better. When the algorithm is halted, the best member of the current population is taken as the solution to the problem posed. Then, the genetic algorithm loops over an iteration process to make the population evolve [23].

A single objective decision problem given an n-dimensional decision variable vector $\mathbf{x} = \{x_1, ..., x_n\}$ in the population space X, find a vector \mathbf{x}^* that minimizes the objective function to the value $f^*(x)$. The solution space X is generally restricted by a series of constraints, such as $g_i^*(x) = b_j$ for j = 1, ..., m and bounds on the decision variables. A solution is said to be *Pareto optimal* if it is not dominated by any other solution in the solution space. A Pareto optimal solution cannot be improved with respect to any objective without worsening at least one other objective. The set of all feasible non dominated solutions in X is referred to as the *Pareto optimal set*, and for a given Pareto optimal set, the corresponding objective function values in the objective space is called the *Pareto front*. For many problems, the number of Pareto optimal solutions is enormous (may be infinite).

In GA terminology, a solution vector $x \in X$ is called an individual or a *chromosome*. Chromosomes are made of discrete units called *genes*. Each gene controls one or more features of the chromosome. In the original implementation of GA by Holland, genes are assumed to be binary numbers. In later implementations, more varied gene types have been introduced. Normally, a chromosome corresponds to a unique solution x in the solution space. This requires a mapping mechanism between the solution space and the chromosomes. This mapping is called an encoding. In fact, GA works on the encoding of a problem, not on the problem itself.

GA operates with a collection of chromosomes, called a *population*. The population is normally randomly initialized. As the search evolves, the population includes fitter and fitter solutions, and eventually it converges, meaning that it is dominated by a single solution. Holland also presented a proof of convergence (the schema theorem) to the global optimum where chromosomes are binary vectors.

During the run of GA algorithm, a selection of parents for reproduction and recombination for creating offspring is essential. These aspects are called GA's operators [24].

Selection: the first step consists of selecting individuals for reproduction. This selection is done randomly with a probability depending on the relative fitness of the individuals so that best ones are often chosen for reproduction than poor ones.

Reproduction: in the second step, offspring is bred by the selected individuals. For generating new chromosomes, the algorithm can use both recombination and mutation. GA use two operators to generate new solutions from existing ones: *crossover* and *mutation*. The crossover operator is the most important operator of GA. In crossover, generally two chromosomes, called *parents*, are combined together to form new chromosomes, called *offspring*. The parents are selected among existing chromosomes in the population with preference towards fitness so that offspring is expected to inherit good genes which make the parents fitter. By iteratively applying the crossover operator, genes of good chromosomes are expected to appear more frequently in the population, eventually leading to convergence an overall good solution.

The mutation operator introduces random changes into characteristics of chromosomes. Mutation is generally applied at the gene level. In typical GA implementation, the mutation rate (probability of changing the properties of a gene) is very small, typically less than 1%. Therefore, the new chromosome produced by mutation will not be very different from the original one. Mutation plays a critical role in GA. As discussed earlier, crossover leads the population to converge by making the chromosomes in the population alike. Mutation reintroduces genetic diversity back into the population and assists the search escape from local optima.

Reproduction: during the last step, individuals from the old population are killed and replaced by the new ones which involves selection of chromosomes for the next generation. In the most general case, the fitness of an individual determines the probability of its survival for the next generation. There are different selection procedures in GA depending on how the fitness values are used. Proportional selection, ranking, and tournament selection are the most popular selection procedures.

Evaluation: then the fitness of the new chromosomes is evaluated. The algorithm is stopped when the population converges toward the optimal solution.

The three basic features of the structural optimization problem are;

- 1. The design variables
- 2. The objective function
- 3. The constraints

2.3.1 Objective Function

In the structural design problem, there should be a well-defined criterion by which the performance or cost of the structure can be judged under different combinations of design variables. This index is generally referred to as the objective function may comprise the cost of concrete, steel and prestressing tendons in the member.

2.3.2 Design Variables

The design variables are generally grouped under the following categories:

(a) Dimensional variables represented by the member sizes, such as the depth of a girder, cross sectional areas of a member and moment of inertia of a flexural member.

(b) Configuration or geometric variables, represented by the coordinates of element joints.

(c) Variables involving modulus of elasticity.

(d) A majority of the structural optimization problems are concerned with the selection of member sizes because of the relative simplicity of the problem and, in many of the practical problems of structural design, the geometry and material properties are preassigned and hence considered as fixed.

2.3.3 Design Constraints

Constraint is a limitation or restriction imposed directly on a variable or group of variables in order that the design is acceptable. They are expressed in the equality or inequality form and are divided into the following groups.

(a) *Side constraints* are specified limitations (minimum or maximum imposed on a design variable and are usually explicit in form).

(b) *Behavior constraints* are those imposed on the structural response. Typical explicit behavior constraints are given by formulae presented in design specifications. Behavior constraints are generally nonlinear functions of design variables and are implicitly related to design variables. In structural designs, behavior constraints are usually imposed on stresses and displacements. The displacement constraints prescribe the global rigidity of the structure.

2.4 Nonlinear Constraint Solver Algorithms

2.4.1 Augmented Lagrangian Genetic Algorithm (ALGA)

Augmented Lagrangian Genetic Algorithm by default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to solve nonlinear constraint problems without integer constraints. The optimization problem formulated by Samir El Mourabit [2] given below can be solved by the ALGA algorithm.

 $\min_{x} f(\mathbf{x}) \text{ such that}$ $g_{i}(x) \le 0, \ i = 1...m$ $g_{eq_{i}}(x) \le 0, \ i = m+1...mt$ $A.x \le b$ $A_{ea}.x \le b_{eq}$

 $lb \leq x_i \leq ub$,

Where f(x) is stands for the objective function, g(x) represents the nonlinear inequality constraints, $g_{eq}(x)$ represents the equality constraints, m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear constraints. The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear optimization problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately from nonlinear constraints. A sub problem is formulated by combining the fitness function and nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such optimization problems are approximately minimized using the genetic algorithm such that the linear

constraints and bounds are satisfied. A sub-problem formulation is defined as follows according to Deb [25].

$$\phi(x,\lambda,s,\rho) = f(x) - \sum_{i=1}^{m} \lambda_i s_i \log(s_i - c_i(x)) + \sum_{i=m+1}^{mt} \lambda_i c_{eq}(x) + \frac{\rho}{2} \sum_{i=m+1}^{mt} \lambda_i c_{eq}(x)^2 \quad (3.1)$$

Where

The components λ_i of the vector λ are nonnegative and are known as Lagrange multiplier estimates

The elements s_i of the vector s are nonnegative shifts

 ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (Initial Penalty). The genetic algorithm minimizes a sequence of sub problems, each of which is an approximation of the original problem. Each sub problem has a fixed value of λ , *s*, and ρ . When the sub problem is minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased by a penalty factor (Penalty Factor). This results in a new sub problem formulation and minimization problem. These steps are repeated until the stopping criteria are met [26].

Each sub problem solution represents one generation. The number of function evaluations per generation is therefore much higher when using nonlinear constraints than otherwise. Choose the Augmented Lagrangian algorithm by setting the Nonlinear Constraint Algorithm option to 'auglag' using optimoptions.

2.4.2 Penalty Algorithm

The penalty algorithm is similar to the Integer GA Algorithm. In its evaluation of the fitness of an individual, GA computes a penalty value as follows:

If the individual is feasible, the penalty function is the fitness function.

If the individual is infeasible, the penalty function is the maximum fitness function among feasible members of the population, plus a sum of the constraint violations of the (infeasible) individual [25].

2.5 Advantages of Partial Prestressing

Prestressing system is imposition of internal stresses into a structure in opposite action of stresses caused by service or working loads. So, in concrete structures, prestressing provides a pre-compressive axial force to eliminate or greatly reduce internal tensile stresses along service time of structure. The application of prestressing on concrete structures, thus concrete bridges, leads to considerable advantages such as smaller sections, longer spans, minimum deflections and increased durability due less or free from cracks. However, the disadvantages of prestressing are cost of some special equipment, expert supervision to ensure closer quality control in manufacture and losses in initial prestressing forces [27].

Generally, prestressing tendon is used to obtain full prestressed concrete (PC) structures. Sometimes, prestressing tendon may be used in combination with conventional reinforcing steel to obtain partial prestressed concrete (PPC), which in between full prestressed concrete (PC) and reinforced concrete (RC). Partial prestressed concrete (PPC) allows some tension and cracking under full service load while ensuring sufficient ultimate strength. Therefore, it is used to control camber and deflection, increase ductility and save costs.

CHAPTER THREE

RESEARCH METHODOLOGY

In this research design optimization problems were handled with the use of evolutionary or genetic algorithm (GA) after it has been tested under simple manually solved optimization problems and its performance was compared with other programs.

Recent advances in the field of computational intelligence led to a number of promising optimization algorithms. These algorithms have the potential to find optimal or nearly optimal solutions to complex problems within a reasonable time frame. Structural optimization is a research field where algorithms are applied to optimally design structures. It is essentially combination of two research fields: structural mechanics and computational intelligence.

In answering the thesis objectives, the commonly used cast insitu bridge girder cross sections tee and box sections have been considered case by case so as to compare their cost efficiency and recommend for practical use.

3.1 Method of Structural Analysis

Linear static method of structural analysis with the use of simplified load distribution factors for distributing the loads among internal and external girders was used. Structural analysis software SAP2000 and excel spread sheet were used.

3.2 Method of Design Optimization

In this research the worst load effects are investigated under applicable load combinations and then the results input into GA optimization code prepared within the built in MATLAB R2017a software. After that, the code was run to generate the out puts and the validity of the result was verified by exporting into excel spreadsheet. If the results were satisfactory, then it was used as an optimum results.

Genetic algorithm (GA) based optimization basically depends on three important aspects:

1) Coding of design variables

- 2) Evaluation of fitness of each solution string
- 3) Application of genetic parameters (selection, cross over and mutation) to generate the next generation of solution strings.

Beside the GA other optimization solvers such as fmincon, simulated annealing, and pattern search were also available in MATLAB R2017a software.

3.3 Materials Used

Structural concrete bridge construction materials such as concrete with grades of specified characteristic cylindrical compressive strength of 30Mpa to 70Mpa, grade G 420 deformed reinforcement bars with diameter of 12mm to 32mm as shown in Figure 3.1a, and for post tensioning system grade G 270 (1860) low relaxation 7 wire strands with a diameter ranging from 9.53mm to 15.24mm as per ASTM A 416/A 416 M designation, given in Figure 3.1b below. Tendons were assumed to be extended at the intermediate using couplers (if necessary) and at the end secured to end anchorage system. Parabolic tendon profile which used to provide shear resistance due to prestress was used and this layout was kept in position with the use of harping devices. Partially prestressed post tensioning system of prestressing was used in this study

(a)

(b)

Figure 3.1 Reinforcement Bars and Prestressing 7-Wire Strands (Source: http://www.Henan Prestressing Equipment Co., Ltd.com)

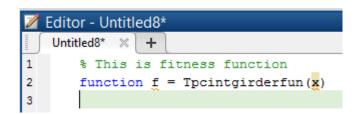
ASTM A416 Grade 1860 (270) Low relaxation strands were given in the following table.

Strand designation No	Diam. of strand (mm)	Area of strand (mm2)	Minimum breaking strength (kN)
9	9.53	54.80	102.30
11	11.11	74.20	137.90
13	12.70	98.70	183.70
13a	13.20	107.70	200.20
14	14.29	123.90	230.00
15	15.24	140.00	260.70
18	17.78	189.70	353.20

Table 3.1 ASTM Standard Strands Designation

Ducts for tendons were rigid or semi rigid either galvanized ferrous metal or polyethylene. For post tensioning system used in this design optimization, the strands were in closed within ducts whose inside cross sectional area of be at least 2.0 times the net area of the prestressing steel for multiple strand tendons used here with one exception where tendons are to be placed by the pull-through method, the duct area shall be at least 2.5 times the net area of the prestressing steel as stated in AASHTO LRFD Article 5.4.6.2. Tendons were anchored at the end supports by using end anchorage devices. These devices have a standard number of holes in which strands are secured like the one given in Table 3.2 below. This number determines the number of strands per tendon.

Table 3.2 Commonly Used Anchorage Devices


Anchorage Designation	No. of strands for diameter 9.53 to 13.2 (mm)	No. of strands for diameter 14.29 to 17.78 (mm)	Inside diameter of duct (mm)	Outside diameter of duct (mm)	Dist. b/n c.g duct & c.g strands, Z (mm)
XM-45	19	13	80	85	20
XM-50	22	15	90	95	20
XM-55	25	17	100	105	20
XM-60	27	19	100	105	20
XM-70	31	22	100	105	20
XM-75	37	25	115	120	25
XM-80	40	27	115	120	25
XM-85	46	31	125	130	25
XM-90	51	35	140	145	25
XM-100	55	37	140	145	25

(Source: http://www.cclint.com)

3.4 Optimization Procedure with GA in Matlab

Procedures involved in design optimization by genetic algorithm (GA) in Matlab was given by in following steps.

Step 1. Define fitness function. Open Matlab and from HOME menu click New Script button >> the new script edit field is displayed under the EDITOR menu. Use % symbol to write a comment for readers in which Matlab could not read if % appears before any statement. The new script start to type the fitness function and give it a name you want, in this case let it be '*Tpcintgirderfun*' to denote the fitness function of prestressed concrete interior T girder.

Enter other cost parameters before declaring the fitness function as follows

1	Edito	or - Untitled8*
1	Unti	tled8* × +
1		% This is fitness function
2		<pre>Function f = Tpcintgirderfun(x)</pre>
3		<pre>% Cost parameters</pre>
4		Cc = 2840e-9; % unit rate of fc'= 30 concrete (ETB/m3)
5		Ca = 27940; % unit rate of reinforcing steel (ETB/ton)
6		Cp = 46450; % unit rate of prestressing 7-wire strands (ETB/ton)
7		L = 50000; % span length (mm)
8		NL = 4; % number of legs of vertical stirrups
9		dsh = 12; % diam. of shear rebar (mm)
10		av = NL*pi*dsh^2/4; % area of f12mm for shear reinforcement within a distance S (mm2)
11		<pre>density = 7.850e-9; % density of steel_prestressing strands and reinforcing bars (ton/mm3)</pre>
12		<pre>hg = x(1)*x(2); % concrete cross sectional area of the girder (mm2)</pre>
13		<pre>Watr = density*av*(L/x(6)+1)*2*(x(2)/2+2*(x(1)-280)); % weight of stirrups (ton)</pre>

Now define the cost function as given below

💋 E	ditor - Untitled8*
	Jntitled8* × +
1	% This is fitness function
2	<pre>Function f = Tpcintgirderfun(x)</pre>
3	<pre>% Cost parameters</pre>
4	Cc = 2840e-9; % unit rate of fc'= 30 concrete (ETB/m3)
5	Cs = 27940; % unit rate of reinforcing steel (ETB/ton)
6	Cp = 46450; % unit rate of prestressing 7-wire strands (ETB/ton)
7	L = 50000; % span length (mm)
8	NL = 4; % number of legs of vertical stirrups
9	dsh = 12; % diam. of shear rebar (mm)
10	av = NL*pi*dsh^2/4; % area of f12mm for shear reinforcement within a distance S (mm2)
11	density = 7.850e-9; % density of steel_prestressing strands and reinforcing bars (ton/mm3)
12	Ag = $x(1) * x(2)$; % concrete cross sectional area of the girder (mm2)
13	Wstr = density*av*(L/x(6)+1)*2*(x(2)/2+2*(x(1)-280)); % weight of stirrups (ton)
14	<pre>% Cost cost function prestressed exterior T-girder</pre>
15	<pre>% z = Cc*((Ag-As-Ap)*L-Wstr/density)+ Cs*(density*As*L+Wstr)+Cp*(density*Ap*L)</pre>
16	f = Cc*((Ag - x(4) - x(5))*L-Wstr/density)+
17	Cs*(density*x(4)*L + Wstr)+ Cp*density*x(5)*L;
15 16	<pre>% z = Cc*((Ag-As-Ap)*L-Wstr/density)+ Cs*(density*As*L+Wstr)+Cp*(density*Ap*L) f = Cc*((Ag -x(4) - x(5))*L-Wstr/density)+</pre>

And save it suppressing "CTRL+S" to file folder you want, do not change the name it gives *Tpcintgirderfun*' which is the name of fitness function you define earlier.

Step 2. Define the constraint function. Click the plus sign to add a new script and type the constraint functions as follows.

1	🖉 Editor - Untitled9*						
1	Tpcintgirderfun.m 🛛 Untitled9* 🗶 🕂						
1	1 % NON LINEAR CONSTRAINT FUNCTIONS DEFINITION FOR PO	EXTER. T-GIRDER BRIDGE					
2	<pre>2 - function [c, ceq] = Tpcintgirderconst(x)</pre>						

Next enter parameters of constrained functions. Note c and c_{eq} stands for nonlinear inequality and equality constrained functions respectively.

📝 Ed	itor - Untitled9*
∏ ∫ Tp	cintgirderfun.m 🗙 Untitled9* 🗶 🕂
1	<pre>% NON LINEAR CONSTRAINT FUNCTIONS DEFINITION FOR PC EXTER. T-GIRDER BRIDGE</pre>
2	<pre>function [c, ceq] = Tpcintgirderconst(x)</pre>
3	S Problem parameters
4	h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
5	S = x(6), y = x(7)
6	-% Material properties
7	<pre>fc = 30; % cylindrical compr.strength (N/mm2)</pre>
8	<pre>fy = 420; % yield strength of reinforcing steel (N/mm2)</pre>
9	<pre>fpu = 1860; % Ultimate tensile strength of tendon (N/mm2)</pre>
10	Ec = 27660; % Young's modulus of concrete (N/mm2)
11	Es = 2e5; % Young's modulus of reinforcing steel (N/mm2)
12	Ep = 195e3; % Young's modulus of prestressing strands (N/mm2)
13	<pre>ns = Es/Ec; % Modular ratio os reinforcing steel</pre>
14	<pre>np =Ep/Ec; % Modular ratio os prestressing strands</pre>
15	<pre>% stress limits in concrete</pre>
16	<pre>fci = 0.8*fc; % Specified compressive strength of concrete at transfer of prestress</pre>
17	<pre>fct = 0.6*fci; % Allowable compressive stress at transfer of prestress</pre>
18	<pre>ftt = 0.63*sqrt(fci); % Allowable tensile stress at transfer of prestress</pre>

After you define all parameters in terms of design variables, next state the constraint functions as follows.

Z Editor	· - Untitled9*
Tpcint	tgirderfun.m 🗙 Untitled9* 🗙 🕂
176	%% Non linear inequality constraints [c] written of the form gi(xi)<= 0
177	g1 = ftt-P*(1/Ac+e/Zt)-Mg/Zt;
178	g2 = P*(1/Ac+e/Zb)-Mg/Zb-fct;
179	g3 = 0.85*P*(1/Ac-e/Zt)+Mw/Zt-fcw;
180	g4 = ftw-0.85*P*(1/Ac+e/Zb)+M3/Zb;
181	g5 = Md-0.9*Mn; % flexural strength required
182	g6 = Vu-0.9*Vn; % shear strength required
183	g7 = Vu/0.9-0.25*fc*x(2)*dv-Vp; % web requirment for shear
184	<pre>% limits of flexural reinf.</pre>
185	g8 = abs(Md)/(0.9*dv)+abs(Vu/0.9-Vp)-0.5*min([Vu/0.9,Vs])
186	<pre>x(4)*fy-x(5)*fps; % longitudinal reinf.</pre>
187	g9 = Vu/0.9-0.5*Vs-Vp-x(4)*fy-x(5)*fps; % min. longitudinal reinf.
188	g10 = min([1.33*Md,1.2*Mcr])-0.9*Mn; % minimumu flexural reinf. reqd
189	g11 = $0.004 \times (2) - x(4) - x(5)$; $ \min mumu flexural reinf. reqd$
190	g12 = Omp+Ompr-Omn-0.3; % maximumu limit of flexural reinf. reqd
191	g13 = c/de-0.42; % maximumu flexural reinf. reqd
192	<pre>% limits of traverse reinforcement</pre>
193	g14 = x(6)-fy*av/(0.083*x(2)*sqrt(fc)); %shear reinf.
194	if(abs(Vu-0.9*Vp)/(0.9*dv*x(2)) < 0.125*fc)
195	<pre>g15 = x(6)-min([0.8*dv,600]); % spacing of shear reinf.</pre>
196	else
197	σ15 = x(6)-min([0.4*dv.300]); % spacing of shear reinf.
<	

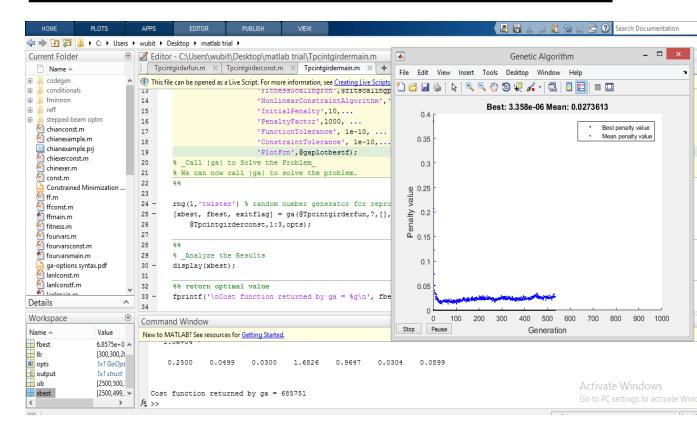
Finally define c and c_{eq} and save it with its name '*Tpcintgirderconst*' as follows.

```
📝 Editor - Untitled9*
   Tpcintgirderfun.m 🛛 Untitled9* 🗶 🕂
234
        g30 = -confcnvalm-tol;
235
        end
236
        if x(7) > x(3)
        radf = 0;
237
238
        tol = 1e-6;
239
        confcnvalf = Ts+Tp+Cn-C-radf;
240
         g31 = confcnvalf-tol; % sum of service load moments when NA depth y > hf
241
        g32 = -confcnvalf-tol;
242
        else
243
        radf = 0;
244
         tol = 1e-6;
245
         confcnvalf = Ts+Tp-C-radf;
246
         g31 = confcnvalf-tol; % sum of service load moments when NA depth y < hf
247
         g32 = -confcnvalf-tol;
248
        end
249
        g33 = 0.20 * x(1) - x(7);
250
        g34 = x(7) - 0.75 * x(1);
251
         % non linear equality const. functions defn.
252
        c = [g1;g2;g3;g4;g5;g6;g7;g8;g9;g10;g11;g12;g13;g14;g15;g16;g17;g18;g19;g20;...
253
            g21;g22;g23;g24;g25;g26;g29;g30;g31;g32;g33;g34]; % non linear inequality const. functions defn.
254
         ceq = [];
255
```

Step 3. Define the main function. Add new script and define boundaries of design variables in the main file as follows.

2	Editor - Untitled10*
5	Tpcintgirderfun.m × Tpcintgirderconst.m × Untitled10* × +
٩	This file can be opened as a Live Script. For more information, see Creating Live Scripts.
1	%% MAIN CODE FOR RUNNING THE GA ALGORITHIM
2	<pre>% Problem parameters</pre>
3	h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
4	S = x(6), y = x(7)
5	<pre>% set boundary values of varibles</pre>
6	lb = [300 300 200 500 600 200 50];
7	ub = [2500 500 300 35e3 35e3 450 900];

Set the optimization options using the following syntaxes.


	Editor - Untitled10*					
	Tpcintgirderfun.m × Tpcintgirderconst.m × Untitled10* × +					
٩	This file can be opened as a Live Script. For more information, see Creating Live Scripts.					
1	%% MAIN CODE FOR RUNNING THE GA ALGORITHIM					
2	% Problem parameters					
3	h = x(1), $bw = x(2)$, $hf = x(3)$, $As = x(4)$, $Ap = x(5)$					
4	S = x(6), y = x(7)					
5	% set boundary values of varibles					
6	1b = [300 300 200 500 600 200 50];					
7	ub = [2500 500 300 35e3 35e3 450 900];					
8	%% set ga options					
9	opts = optimoptions(@ga,					
10	'PopulationSize',5000,					
11	'CreationFcn', @gacreationlinearfeasible,					
12	'MaxGenerations',1000,					
13	'FitnessScalingFcn',@fitscalingprop,					
14	'NonlinearConstraintAlgorithm', 'auglag',					
15	'InitialPenalty',10,					
16	'PenaltyFactor',1000,					
17	'FunctionTolerance', 1e-10,					
18	'ConstraintTolerance', 1e-10,					
19	<pre>PlotFcn',@gaplotbestf);</pre>					

Note the three dots allows continuity of a sentence in a new line. Next call GA with the following syntax to solve the problem. Save this file with a name you want, let it be *'Tpcintgirdermain.m'* for this case.

```
Editor - Untitled10*
   Tpcintgirderfun.m 🛛 🛛
                     Tpcintgirderconst.m
                                       Х
                                          Untitled10* 🛛 💥
                                                        +
This file can be opened as a Live Script. For more information, see Creating Live Scripts.
13
                               'FitnessScalingFcn',@fitscalingprop, ...
14
                              'NonlinearConstraintAlgorithm', 'auglag', ...
15
                              'InitialPenalty',10,...
                              'PenaltyFactor',1000, ...
16
17
                              'FunctionTolerance', 1e-10, ...
18
                              'ConstraintTolerance', 1e-10,...
19
                              PlotFcn',@gaplotbestf);
20
        % Call |ga| to Solve the Problem
21
        % We can now call |ga| to solve the problem.
22
        88
23
24
        rng(1,'twister') % random number generator for reproducibility
25
        [xbest, fbest, exitflag] = ga(@Tpcintgirderfun,7,[],[],[],[],lb,ub,...
26
            @Tpcintgirderconst,1:3,opts);
27
28
        88
29
        % Analyze the Results
30
        display(xbest);
31
32
        %% return optimal value
33
        fprintf('\nCost function returned by ga = %g\n', fbest);
34
```

Step 4. Run the code. Press F5 to start running the code and generate optimization results. Note as soon you run it the program prompts you to change the folder so that click *change folder*. Unless the current folder is active or being opened by the program, Matlab couldn't understand your code and solve it. The following results obtained.

Optimization of Prestressed Concrete Girders for Bridge Design, Master's Thesis By Wubishet Jemaneh June, 2018

If all constraints are satisfied print the outputs and if not adjust lower and upper bounds and rerun it again. Note that Matlab is case sensitive due attention should be given to each characters you type in a code. If you miss even one character or mathematical symbol, the whole code could not run and correct it if such error warning message appeared following the error lines suggested in the message.

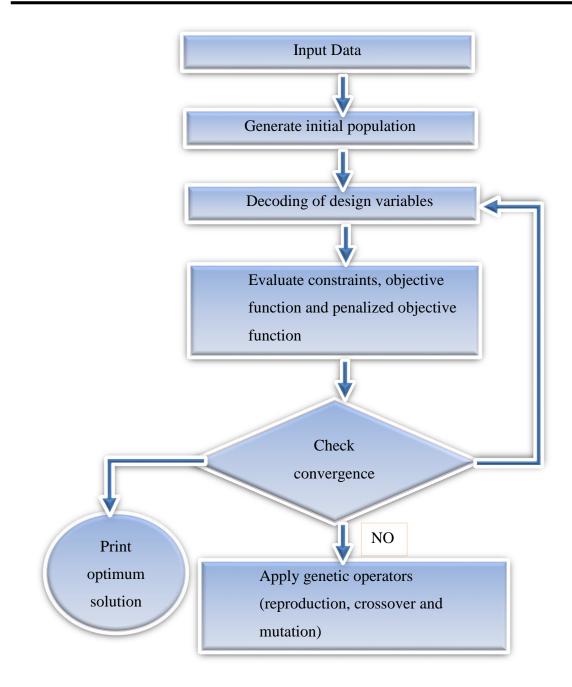


Figure 3.2 Flow Chart for GA Optimization

3.5 Study Variables

3.5.1 Independent variables

- ➢ Girder Cross section types.
- Grades of Concrete
- Span of the bridge.
- Construction Materials.
- Girder spacing.

3.5.2 Dependent variables

> Cost optimization of prestressed concrete bridge girders.

CHAPTER FOUR

OPTIMIZATION OF PRESTRESSED CONCRETE GIRDERS

Prestressed concrete bridge consists of a superstructure of either reinforced or prestressed concrete deck slab with prestressed concrete girders supported at the ends by abutments and at the intermediate there may or may not be pier supports at one or more points. The renewal of prestressed system in modern bridge engineering was due to the tendency of bridge engineers to obtain optimum structural performance through saving limited resources, construction materials. This fact is due to reduction of amount of steel and size of section required for relatively long span bridges by using prestressing system which reduces tensile stress, deflection and cracks in the section substantially and enhances bending, shear and torsional capacities of the member and hence its durability. Dimensioning of a particular bridge from economic consideration, meeting the safety and serviceability requirements is complicated due to wide possible range.

The studies of effects of individual parameter on relative optimum cost of bridge do not carry much significance. Thus in the present work the optimization is carried out by considering more design parameters as design variables simultaneously. In optimizing prestressed concrete girders, the cross sectional area of girders, amount of reinforcing steel and prestressing tendons, strength quality of concrete and steel are crucial and are decided based on the strength and stability criteria. In this research all the possible design parameters which affect the optimum cost of bridge significantly are considered as design variables and all types of constraints, strength, stability, and serviceability are incorporated in the optimization routine.

4.2 Optimization Model of Simply Supported Prestressed Concrete Girders

In this section, the model of PC girder of a bridge is described, showing the fixed parameters, the design variables' boundary, the design constraints and the objective function.

A simply supported Tee and box partially prestressed concrete and reinforced concrete girders with a variable span of L m and supporting a uniform superimposed gravity dead load of components W_{DC} kN/m, in addition to its own weight and design vehicular point live load of P_{LL} kN together with the design lane load, W_{LN} kN/m was applied. It is intended to optimize the design of bridge girders by keeping the provisions of the requirements of AASHTO LRFD Bridge Design Specifications are satisfied [28]. Figures (4.1), (4.2) and (4.3) below show the geometry of simply supported bridge girder.

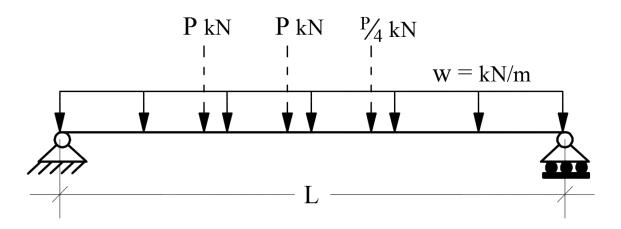


Figure 4.1 Longitudinal Model of the Bridge

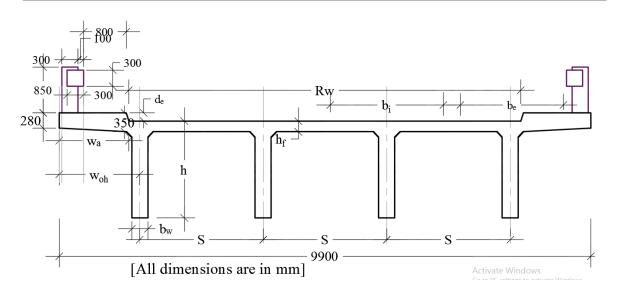


Figure 4.2 Cross Sectional Model of T-Girder Bridge

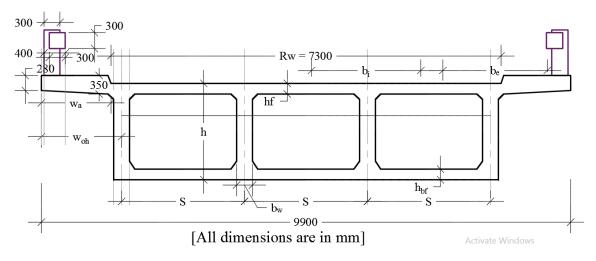


Figure 4.3 Cross Sectional Model of Box Girder Bridge

4.3 Load Analysis

Linear static structural analysis is made using distribution factors for shear and moment given under AASHTO Article 4.4.2.2. Girders are modelled as simply supported by abutments at their ends in which the support joints are assumed as roller and pin. In the analysis of loads dynamic load allowance or impact factor (IM) of 15% for fatigue and fracture limit state and 33% for all other limit states was considered as stated in AASTO Article 3.6.2.1.These factor accounts for hammering when riding surface discontinuities exist, and long undulations when settlement or resonant excitation occurs. Depending on

the number of lanes loaded multiple presence factor (m) specified under AASHTO Article 3.6.1.1.2 was used to modify the vehicular live loads for the probability that vehicular live loads occur together in a fully loaded state.

4.3.1 Load Cases and Load Combinations

Three main load cases were considered for the structure to analyze and design, the action of dead, live and prestressing loads. During the optimization process routine structure analysis for maximum response under any live load pattern at any section was made with the use of influence lines. Dead load includes self-weight of bridge deck components, railings and girders which are accounted for as a uniform loads and self-weight of diaphragms applied as point loads. Live load is design vehicular live load of AASHTO LRFD designated as HL-93. It includes point loads of maximum effect of either design truck or design tandem combined with a uniform design lane load of 9.3kN/m as shown in figure 4.4 and 4.5 below. Minimum prestressing force is obtained by selecting the maximum tensile prestress at the top fiber and a minimum compressive prestress at the bottom fiber. For post tensioning system a prestress loss factor of 0.85 is applied in this research.

Load combinations applicable to superstructure design that is strength limit state-I, strength limit state-IV, service limit state-I, service limit state-III, and fatigue limit state as specified in AASHTO LRFD Article 3.4 were used.

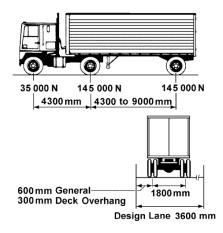


Figure 4.4 Characteristics of the Design Truck

Figure 4.5 Characteristics of the Design Tandem (Adopted from AASHTO LRFD Code Book Article 3.6.1.2.2)

4.4 Design Philosophy

Design philosophy used in this thesis is the AASHTO load and resistance factor design (LRFD) approach stated in Article 1.3.2 is given below.

$$\sum \eta_i \gamma_i Q_i \le \phi R_n \tag{4.1}$$

Where,

 η – load modifier as per ODOT recommendation is a value of 1.05 used.

 γ – load factor, statically based multipliers applied to force effects.

 Φ – resistance factor, statically based multipliers applied to nominal resistance; a value of 0.90 is used for both shear and flexure as given in AASHTO LRFD Article 5.5.4.

Q – force effects.

 R_n – nominal resistance.

4.4 Optimization Problem Formulation

In this thesis, problem formulation was based on linear elastic analysis and ultimate strength method of design with the consideration of serviceability constraints as per AASHTO LRFD 2005 Interim code is used. Two dimensional static linear analysis was adequate for all practical purposes in optimization of prestressed concrete bridges. While modeling the connection between girder and abutment, the connection node are separately considered and boundary conditions are applied independently.

Genetic algorithm (GA) deals with population that is collection of candidate solution and a population is a collection of N individuals. An important feature of a population, especially in the early generation of its evolution, is its genetic diversity. The too small population size may lead to scarcity of genetic diversity. It may result in a population dominated by almost equal chromosomes and then, after decoding the genes and evaluating the objective function it may converge quickly but may lead to local optimum. At the other extreme, in too large populations, the overabundance of genetic diversity can lead to clustering of individuals around different local optima. But the mating of individuals belonging to different clusters can produce children lacking the good genetic part of either of the parents. In addition, the manipulation of large populations may be excessively expensive in terms of computer time. Thus proper selection of population size is extremely important.

The formulation of optimization problem had been made by utilizing the interior penalty function method as an optimization method with the purpose of minimizing the objective function representing the cost of the girder. This cost includes cost of concrete, reinforcement, prestressing strands. Cost of form work was neglected as it takes only small portion of the material cost. Commonly used girder sections T and box sections made up of reinforced concrete and post tensioned partially prestressed concrete were intended to study.

4.5 Fixed Design Variables

The span of the girders, characteristic strength of concrete and reinforcement steel, modulus of elasticity, and unit weight of concrete and reinforcement, magnitude of dead and live loads were assumed to be fixed or pre-assigned parameters. It was also assumed that the total cost of concrete and reinforcement is proportional to volume and weight of each material, respectively. Consequently, the total cost of the structure was calculated using fixed parameters of the cost of unit volume of concrete and unit weight of reinforcement. Values of fixed parameters and the defined materials property are given in the following table.

Items	Properties	Values	Remark
Modulus of Elasticity of Concrete	Ec	27660 N/mm ²	<u>.</u>
Modulus of Elasticity of prestressing steel	E _p	195000 N/mm ²	
Modulus of Elasticity of non prestressing steel	E_s	200000 N/mm ²	
Specified compressive strength of concrete	f _c '	30 N/mm ²	Grade C-35
Yield strength of reinforcing bars	$\mathbf{f}_{\mathbf{y}}$	420 N/mm ²	Grade_420
Ultimate tensile strength of prestressing steel	\mathbf{f}_{pu}	1860 N/mm ²	Grade_270
Density of reinforcement steel	ρ_s	7.850x10 ⁻⁹	ton/mm ³

Table 4.1. Fixed Values of Material Properties

4.6 Design Variables

The formulations of an optimization problem begins with identifying the underlying geometric design variables. These variables should be independent of each other. If one of the design variables can be expressed in terms of the other then that variable can be eliminated from the model. Geometric design variables includes overall depth, web width, thickness of the flange, area of nonprestressed and prestressed reinforcement, spacing of traverse reinforcement and NA depth of the cracked transformed section. These variables are listed below.

- d effective depth of nonprestressed reinforcement
- b_w web width
- h_f thickness of the flange
- A_s Area of nonprestressed steel
- A_p Area of prestressing steel
- S spacing of traverse reinforcement
- y NA depth of the cracked transformed section

These variables can be assigned in terms of x_i's as follows

Variable designation	h	$b_{\rm w}$	h_{f}	As	Ap	S	У
Matlab code designation	X 1	X ₂	X 3	X 4	X5	X6	X 7

Table 4.2 Designation of Design	Variables
---------------------------------	-----------

4.7 Objective Function

In structural design, the dominant objective was to minimizing structural cost. There can be multi objective functions such as minimizing cost, maximize performance, maximize reliability, and others in one problem, but generally it is avoided by choosing the most important objective as the objective function and the other objective functions were included as constraints by restricting their values within a certain range.

In this research minimization of the initial cost of bridge girders was carried out. The most important cost items in the initial cost of the girders are usually the cost of material. So the total cost is the cost of concrete and the cost of reinforcement and prestressing steel.

The function below defines the total cost of the PC simple girder model in terms of the cost of concrete and reinforcement used.

$$f(x) = C_{c} x \left\{ \left(A_{c} - A_{s} - A_{p} \right) x L - \frac{W_{str}}{\gamma} \right\} + C_{s} x \left\{ \gamma x A_{s} x L + W_{str} \right\} + C_{p} x \left\{ \gamma x A_{p} x L \right\}$$
(4.2)

Where:

- C_c unit cost of concrete per cubic millimeter (ETB/mm³)
- C_s unit cost of reinforcement steel per ton (ETB/ton)
- C_p unit cost of pre-stressing tendons per ton (ETB/ton)
- A_c Area of concrete cross section (mm²)
- A_s Area of longitudinal reinforcement (mm²)
- A_p Area of prestressing tendons (mm²)
- L Span length of the girder (mm)
- W_{str} Weight of stirrups (ton)

 γ – Unit weight of steel reinforcement bars and prestressing tendons (ton/mm³)

Where unit cost of materials assessed based on the current market trend and given in the following table.

Grade of Concrete, Mpa	30	40	50	60	70	
Unit Cost, (ETB/mm ³ x10 ⁻⁹)	2,840	3,205	3,500	3,640	4,200	

Table 4.3 Unit Cost of Concrete	
---------------------------------	--

Unit cost of reinforcing steel and prestressing steel were evaluated as 27,940ETB/ton and 46,450ETB/ton respectively. It may be noted that in evaluating the cost of prestressing strands, since it is an imported material its price is referred from market price of China Hong Kong [29] and all necessary custom taxes [30] and freight costs are also included.

4.8 Constraint Function

The constraints reflect design requirements in the optimization problem. In other words they limit the range of acceptable designs in the problem. In this research, the constraints relevant to the design of PC girder are applied using a penalty function.

Generally, structural design is required to conform to number of inequality constraints related to stresses, deflection, dimensional relationships, and other code requirements.

Referring to the optimization model Figure 4.2 and 4.3 above, width of the compression face, b is given by adopted from AASHTO Article 4.6.2.6

$$i) for int \, erior girderb_{i} \leq \begin{cases} L/4 \\ /4 \\ 12h_{f} + b_{w} \\ Avg. girderspacing, g_{s} \end{cases} \Rightarrow b = \begin{cases} L/4 \\ /4 \\ 12h_{f} + b_{w} \leq 0 \\ g_{s} \end{cases}$$

$$ii) for exterior girder b_e = \frac{b_i}{2} + \leq \begin{cases} \frac{L}{8} \\ 6h_f + \frac{b_w}{2} \Rightarrow b = \frac{b_{int}}{2} + \leq \begin{cases} \frac{L}{8} \\ 6h_f + \frac{b_w}{2} \leq 0 \\ W_{oh} \end{cases}$$

Section properties of T-girder is given by;

⁽Source: Own Survey)

depth from centroid to extreme bottom fiber,
$$y_b = \frac{b_w \frac{h^2}{2} + (b - b_w)h_f \left(h - \frac{h_f}{2}\right)}{b_w h + (b - b_w)h_f}, \quad y_t = h - y_b$$

Moment of inertia, $I = \frac{b_w h^3}{12} + b_w h \left(\frac{h}{2} - y_t\right)^2 + \frac{(b - b_w)h_f^3}{12} + (b - b_w)h_f \cdot \left(y_t - \frac{h_f}{2}\right)^2$

Section moduli, $Z_b = \frac{I}{y_b}$, $Z_t = \frac{I}{y_t}$ and area of concrete section, $A = b_w h + (b - b_w) h_f$

Section properties of box-girder is given by;

From symmetry of the section both extreme top and bottom fibers located at equidistance from centroid of the section that is $y_b = y_b = \frac{h}{2}$, moment of inertia of the section is given

by:
$$I = \frac{b_w h^3}{12} + 2 \cdot \left(\frac{(b - b_w) h_f^3}{12} + (b - b_w) h_f \cdot \left(y_r - \frac{h_f}{2} \right)^2 \right),$$

Section moduli are: $Z_b = \frac{I}{y_b}$ & $Z_t = \frac{I}{y_t}$ and gross cross sectional area of concrete is

$$A_{c} = b_{w}h + 2.((b - b_{w})h_{f})$$

Where,

- b_w web width of the section (mm)
- $b_i \ width \ of \ compression \ face \ for \ interior \ girder \ (mm)$
- $b_e width \ of \ compression \ face \ of \ the \ section \ of \ exterior \ girder \ (mm)$
- $h_{\rm f}$ thickness of the flange (mm)
- g_s girder spacing (mm)
- w_{oh} width of overhang (mm)
- h over all depth of the section (mm)
- y_t depth from extreme top fiber to centroid of the section (mm)

- y_b depth from extreme bottom fiber to centroid of the section (mm)
- d_p depth from extreme compression fiber to centroid of prestressing steel (mm)
- A cross sectional area of concrete (mm^2)
- I second moment of area or moment of inertia of concrete cross section (mm⁴)
- Z_t Section modulus of the extreme top fiber (mm³).
- Z_b Section modulus of the extreme bottom fiber (mm³)

The constraint functions imposed in the design of a prestressed concrete flexural member are generally stated in the following articles:

1. Allowable stresses in the concrete

Stresses in the concrete at the two extreme outer fibers shall be less than the allowable values stated in code book of AASHTO Article 5.9.4. These stresses can be evaluated using the following equations adopted from the book of Krishna. R [27].

i. Top fiber subjected to tension at stress transfer stage:

$$\frac{P}{A} - \frac{Pe}{Z_t} + \frac{M_g}{Z_t} \ge f_{tt} \quad \Rightarrow g_1 = f_{tt} - \frac{P}{A} + \frac{Pe}{Z_t} - \frac{M_g}{Z_t} \le 0$$
(4.3a)

i. Bottom fiber subjected to compression at stress transfer:

$$\frac{P}{A} + \frac{Pe}{Z_b} - \frac{M_g}{Z_b} \le f_{ct} \quad \Rightarrow \quad g_2 = -\frac{P}{A} + \frac{Pe}{Z_b} - \frac{M_g}{Z_b} - f_{ct} \le 0$$
(4.3b)

ii. Top fiber subjected to compression at service loads:

$$\eta P\left(\frac{1}{A} - \frac{e}{Z_t}\right) + \frac{M_w}{Z_t} \le f_{cw} \qquad \Longrightarrow g_3 = \eta P\left(\frac{1}{A} - \frac{e}{Z_t}\right) + \frac{M_w}{Z_t} - f_{cw} \le 0$$
(4.3c)

iii. Bottom fiber subjected to tension at service loads:

$$\eta P\left(\frac{1}{A} + \frac{e}{Z_b}\right) - \frac{M_w}{Z_b} \ge f_{tw} \implies g_4 = f_{tw} - \eta P\left(\frac{1}{A} + \frac{e}{Z_b}\right) + \frac{M_3}{Z_b} \le 0$$
(4.4d)

The extreme bottom fiber stress, f_{inf} developed at a given eccentricity e is given by;

$$f_{\text{inf}} = \frac{f_{tw}}{\eta} + \frac{M_w}{\eta Z_b}$$
 and once knowing f_{inf} and using the section modulus Z_b of the provided

section, the minimum prestressing force required is given by: $P = \frac{A \cdot f_{inf} \cdot Z_b}{Z_b + A \cdot e}$. Depth from

extreme top fiber to centroid of prestressing steel is $d_p = y_t + e$

Where:

- P Prestressing force (N)
- e eccentricity of prestressing force from the centroid of the section (mm)
- M_{min} minimum moment due to self weight or during handling of the member (Nmm)
- Mw-working moment at service limit state I (Nmm)

M3 - working moment at service limit state III (Nmm)

- f_{ct} maximum allowable compressive stress in concrete at initial prestress (N/mm²)
- f_{tt} maximum allowable tensile stress in concrete at initial prestress (N/mm²)
- f_{cw} maximum allowable compressive stress in concrete at service load (N/mm²)
- f_{tw} maximum allowable tensile stress in concrete at service load (N/mm²)
- f_{tr} stress range at the extreme top fiber (N/mm²)
- $f_{br}-\,$ stress range at the extreme bottom fiber $(N\!/mm^2)$
- $f_{\text{inf}}-\text{stress}$ at the extreme bottom fiber for a given eccentricity e (N/mm^2)
- η Loss factor

2. Strength requirement for flexure at the limit state of collapse

NA axis depth for evaluate at the strength limit state is given by AASHTO LRFD Equation 5.7.3.1-3.

if
$$c > h_f$$
, then $c = \frac{A_p f_{pu} + A_s f_y - A_s f_y' - 0.85 \beta_1 fc' (b - b_w) h_f}{0.85 fc' \beta_1 b_w + 0.28 A_p f_{pu} / d_p}$ T section

else

 $c = \frac{A_p f_{pu} + A_s f_y - A_s f_y'}{0.85 f c' \beta_1 b + 0.28 A_p f_{pu} / d_p} \quad \dots \text{rectangular section}$

For rectangular or T section where $f_{pe} \ge 0.5 f_{pu}$, average stressin prestressing steel f_{ps} is given by AASHTO LRFD Equation 5.7.3.1.1-1 and 2

$$f_{ps} = f_{pu} \left(1 - k \frac{c}{d_p} \right) = f_{pu} \left(1 - \frac{0.28c}{d_p} \right) \text{ in which } k = 2 \left(1.04 - \frac{f_{py}}{f_{pu}} \right) \text{ for } \frac{f_{py}}{f_{pu}} = 0.90, \ k = 0.28$$

Effective depth from extreme compression fiber to centroid of tensile force, d_e is given by AASHTO LRFD Equation 5.7.3.3.1-2.

$$d_e = \frac{A_p f_{ps} d_p + A_s f_y d}{A_p f_{ps} + A_s f_y}$$

Depth of equivalent rectangular stressblock, $a = \beta_1$.c and the nominal moment of resistance M_n is given by AASHTO LRFD Equation 5.7.3.2.2-1 stated as follows.

$$if c > h_{f}, M_{n} = A_{p} f_{ps} \left(\frac{d_{p} - a_{2}}{2} \right) + A_{s} f_{y} \left(\frac{d - a_{2}}{2} \right) - A'_{s} f_{y'} \left(\frac{d'_{s} - a_{2}}{2} \right) + 0.85 f_{c}' \beta_{1} h_{f} \left(b - b_{w} \right) \left(\frac{a_{2}}{2} - \frac{h_{f}}{2} \right)$$

else, $M_{n} = A_{p} f_{ps} \left(\frac{d_{p} - a_{2}}{2} \right) + A_{s} f_{y} \left(\frac{d - a_{2}}{2} \right) - A'_{s} f_{y'} \left(\frac{d'_{s} - a_{2}}{2} \right)$

$$g_5 = M_u \le \varphi M_n \quad \Rightarrow M_u - 0.90 M_n \le 0 \tag{4.4}$$

Where,

- A_p area of prestressing steel (mm²)
- f_{pe} effective stress in prestressing steel (N/mm²)
- f_{pu} ultimate tensile strength of prestressing steel (N/mm²)
- f_{py} yield strength of prestressing steel (N/mm²)

 f_{ps} – average stress in prestressing steel (N/mm²)

d_p – distance from extreme compression fiber to centroid of prestressing tendons (mm)

 d_e – depth from extreme compression fiber to centroid of tensile force (mm)

As – area of nonprestressed steel tension reinforcement (mm²)

 f_y – yield strength of non prestressed steel tension reinforcement (N/mm²)

d – distance from extreme compression fiber to centroid of nonprestressed tension reinforcement (mm)

As' - area of nonprestressed steel compression zone reinforcement (mm²)

 f_y ' – yield strength of non prestressed steel compression zone reinforcement (N/mm²)

d_s' – distance from extreme compression fiber to centroid of nonprestressed compression zone reinforcement (mm)

 $f_{c}\text{'}-specified cylindrical compressive strength of concrete (N/mm^2)$

b – width of the cross section in compression zone (mm)

 b_w – web width of the cross section (mm)

 β_1 – stress block factor, β_1 = 0.85 for f_c ' = 28Mpa and reduced by 0.05 for each 7Mpa increment of f_c ' and $\beta_1 \ge 0.65$

- h_s depth of the deck slab or flange thickness (mm)
- c depth of the neutral axis (mm)
- a depth of equivalent rectangular stress block (mm)
- M_d ultimate factored design moment due to all loads (Nmm)
- M_n nominal moment of resistance (Nmm)
- Φ resistance factor
- 3. Strength requirements for shear design (AASHTO LRFD Article 5.8)

Effective shear depth is given by AASHTO LRFD Article 5.8.2.9, $d_v \ge \begin{cases} 0.9d_e \\ 0.72h \\ d_e - a/2 \end{cases}$

$$V_{c} = 0.083 \beta \sqrt{f_{c}} b_{w} d_{v} = 0.166 \sqrt{f_{c}} b_{w} d_{v} \quad for \ \beta = 2$$
$$V_{s} = \frac{A_{v} f_{y} d_{v}}{S}$$
$$V_{p} = \eta \cdot P \cdot \left(\frac{4.e}{L}\right)$$

Thus nominal shear resistance, $V_n \leq \begin{cases} V_c + V_s + V_p \\ 0.25f'_c b_w d_v + V_p \end{cases}$

then $V_{\text{d}} \leq \phi \, V_{\text{n}}$ from this we have the following

$$g_6 = V_u - 0.9V_n \le 0 \tag{4.5}$$

$$g_7 = \frac{V_u}{0.9} - 0.25 f_c b_w d_v - V_p \le 0$$
(4.6)

Longitudinal reinforcement

At each section the tensile capacity of the longitudinal reinforcement on the flexural tension side of the member shall satisfy the following requirement [28].

$$A_{s}f_{y} + A_{p}f_{ps} \ge \frac{|M_{d}|}{\varphi d_{v}} + 0.5\frac{N_{d}}{\varphi} + \left(\left|\frac{V_{u}}{\varphi} - V_{p}\right| - 0.5V_{s}\right)\cot\theta, \quad V_{s} \le \frac{V_{u}}{\varphi} \quad take\theta = 45^{\circ} \rightarrow \cot\theta = 1$$

$$g_{8} = \frac{|M_{d}|}{0.9d_{v}} + \left|\frac{V_{u}}{0.9} - V_{p}\right| - 0.5\min\left(\frac{V_{u}}{0.9}, \frac{A_{v}f_{y}d_{v}}{S}\right) - A_{s}f_{y} - A_{p}f_{ps} \le 0 \quad (4.7)$$

Where, N_d – factored longitudinal tension force (N)

For simple end supports to the section of critical shear the longitudinal reinforcement on the flexural tension side should satisfy the following conditions, AASHTO LRFD article 5.8.3.5:

$$A_s f_y + A_p f_{ps} \ge \left(\frac{V_u}{\varphi} - 0.5V_s - V_p\right) \cot\theta$$
 assume $\theta = 45^\circ$, $\cot\theta = 1$

$$g_9 = \frac{v_u}{0.9} - 0.5V_s - V_p - A_s f_y - A_p f_{ps} \le 0$$
(4.8)

Minimum spacing of traverse reinforcement, S

$$S \leq \frac{A_v f_y}{0.083 b_w \sqrt{f_c'}} \implies g_{10} = S - \frac{A_v f_y}{0.083 b_w \sqrt{f_c'}} \leq 0$$
 (4.9)

Maximum spacing of traverse reinforcement, S

$$if \frac{|V_u - \varphi V_p|}{\varphi b_w d_v} < 0.125 f_c' \ then,$$

$$g_{11} = S - \min \begin{cases} 0.8 d_v \\ 600 \end{cases} \le 0$$
(4.10a)

else

$$g_{11} = S - \min \begin{cases} 0.4d_{\nu} \\ 300 \end{cases} \le 0 \tag{4.10b}$$

Where;

V_u – factored design shearing force d distance from face of support (N)

V_n – nominal shear resistance (N)

V_c - shear resisting force due to tensile stress in the concrete (N)

 V_s – shear resisting force due to tensile stress in traverse reinforcement (N)

 V_p – component of prestressing force in the direction of shearing force (N)

S – spacing of stirrups (mm)

A_v- cross sectional area of shear reinforcement within a distance S (mm2)

dv - effective depth of shearing force (N)

4. Limits of reinforcement (AASHTO LRFD Article 5.7.3.3)

_ Minimum amount of reinforcement

Amount of prestressed and non prestressed tensile reinforcement shall be adequate to develop factored flexural resistance M_r which shall not be the lesser of 1.2 times cracking moment and 1.33 times factored design moment as equated below.

Cracking moment, $M_{cr} = Z_c (f_r + f_{cpe}) - M_g (\frac{Z_c}{Z_{nc}} - 1) \ge Z_e f_r$

for monolitic section substitute Z_{nc} for Z_c then, $M_{cr} = (f_r + f_{cpe}) \frac{I}{y_b}$

$$f_r = 0.97 \sqrt{f_c'}$$
$$f_{cpe} = \eta P\left(\frac{1}{A} + \frac{e}{Z_b}\right)$$

and $M_r = \phi M_n$

$$M_r \ge 1.2M_{cr} \implies g_{12a} = 1.2M_{cr} - 0.9M_n \le 0$$
 (4.11a)

$$M_r \ge 1.33M_d \implies g_{12b} = 1.33M_d - 0.9M_n \le 0$$
 (4.11b)

As per ACI-318 1989 minimum area of flexural reinforcement shall not be less than 0.4% of the area of concrete found between centroid of the section and tension face [31].

$$(A_p + A_s) \ge 0.004 y_b b_w \implies g_{13} = 0.004 y_b b_w - A_p - A_s \le 0$$
 (4.12)

Where,

 f_{cpe} – compressive stress in concrete due to effective prestress forces only (N/mm²)

Mg-total unfactored dead load moment (Nmm)

M_d-total factored design moment (Nmm)

Mr - total factored moment of resistance of the section (Nmm)

 M_{cr} – cracking moment (Nmm)

 Z_c – section modulus for the extreme fiber of the composite section where tensile stress is caused by externally applied loads (mm³)

 Z_{nc} – section modulus for the extreme fiber of monolithic or non-composite section where tensile stress is caused by externally applied loads (mm³) that is Z_b

 $f_r-modulus \ of \ rupture \ (N/mm^2)$

_ Maximum amount of reinforcement

For the section to develop enough ductility by yielding of steel before failure it should be designed as *under reinforced* section and the following equation shall meet. This will be done with the reinforcement index ω as per the report addressed by ACI 423 [32].

$$\rho = \frac{A_s}{bd} \rightarrow \omega = \rho \frac{f_y}{f_c}, \quad \rho' = \frac{A_s'}{bd} \rightarrow \omega' = \rho' \frac{f_y}{f_c}, \quad \rho_p = \frac{A_p}{bd_p} \rightarrow \omega_p = \rho_p \frac{f_y}{f_c}$$
$$\omega + \omega_p - \omega' \le 0.3 \quad \Rightarrow g_{14} = \omega + \omega_p - \omega' - 0.3 \le 0 \tag{4.13a}$$

Where,

 ω , ω ', ω_p - reinforcement indices of tension, compression and prestressing steels respectively

 ρ , ρ' , ρ_p - ratios of reinforcement of tension, compression and prestressing steels to area of concrete respectively

alternatively as per ASHTO equation 5.7.3.3.1-1, we have

$$\frac{c}{d_e} \le 0.42 \qquad \Rightarrow \quad g_{15} = -\frac{c}{d_e} - 0.42 \le 0 \tag{4.13b}$$

5. Permissible stresses in the reinforcement steels

The cracked section analysis of partially prestressed flanged section with prestressed tendons and nonprestressed reinforcement was carried out under the assumptions: the strain distribution across the section is linear and the tensile strength of concrete below the NA is negligible. The stress and forces acting on a cracked partially prestressed concrete section subjected to a moment a working or service load moment of M_w in excess of the cracking moment M_{cr} is shown in figure 4.6 below. The analysis was made with use of equations given by N. Krishna R, see reference [27].

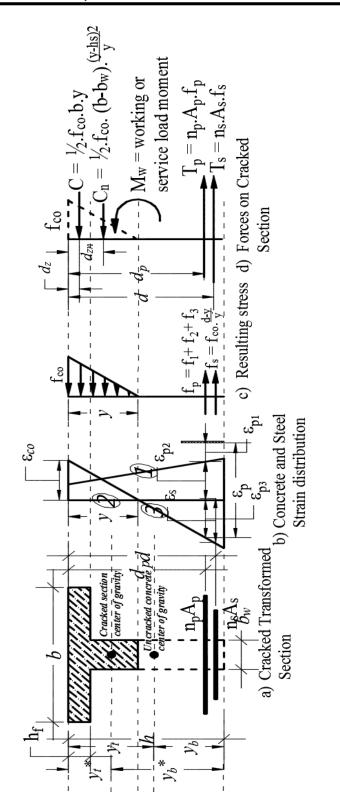


Figure 4.6 Cracked Transformed Section

From the cracked section analysis we have the following equations:

a. Just prior to the application of M_w or at stage (1) stress in the prestressing tendons is

$$f_{p1} = f_{pe} = \frac{P_e}{A_p} \qquad \Rightarrow f_{p1} = \frac{\eta . P}{A_p}$$

b. Next, it is useful to consider a fictitious load stage (2) corresponding to complete decompression of the concrete, at which there is zero concrete strain throughout the entire depth as shown in Figure 4.6b. compatibility of deformation of concrete and steel requires that changes in strain in the tendon is the same as that in the concrete at that level and the stress in tendon due to this stain is given by:

$$\varepsilon_{ce} = \frac{P_e}{E_c} \left(\frac{e^2}{I} + \frac{1}{A} \right) \text{ from which } f_{p2} = E_p \varepsilon_{ce} \Longrightarrow f_{p2} = n_p \eta P \left(\frac{e^2}{I} + \frac{1}{A} \right)$$

c. During the application of M_w , the concrete compressive strain in the bottom fiber reduces to zero and then becomes tensile. With M_w acting the tensile strain in the reinforcing steel is ε_s and the strain in the concrete at the level of the tendon has changed from a compression ε_{oc} to a tension of ε_{cp} . From linearity of strain distribution these strains can be defined in terms of the neutral axis depth y and top fiber strain ε_o .

Let the extreme top fiber strain be ε_o and NA depth be *y*, then from strain compatibility one can drive the strains and stresses in reinforcing steel and prestressing tendons at their respective depths. Once the strains are evaluated the corresponding stresses can be obtained from the stress-strain relationship as shown in the following steps.

The strain in reinforcing steel at a depth d is $\varepsilon_s = \varepsilon_{co} \frac{d-y}{y}$ and the corresponding stress is

 $f_s = \varepsilon_s E_s \implies f_s = E_s \varepsilon_{co} \frac{d-y}{y}$. Similarly the tensile strain in the concrete at the level of

prestressing steel or at a depth d_p is $\varepsilon_{cp} = \varepsilon_{co} \frac{d_p - y}{y}$. The prestressing tendons undergoes

this strain and thus the stress in the tendons is $f_{p3} = E_p \varepsilon_{cp} \Rightarrow f_{p3} = E_p \varepsilon_{co} \frac{d_p - y}{y}$ and stress in the concrete at the extreme top fiber is $f_{co} = \varepsilon_{co} E_c$. The prestressing steel undergoes a stress of $(f_{p2} + f_{p3})$ during the application of M_w so that the total tensile stress in the tendon is $f_p = f_1 + f_2 + f_3$. Tensile force in the prestressing and reinforcing steel respectively; $T_p = A_p f_p$ and $T_s = A_s f_s$. In the concrete compressive zone, the resultant compressive force is; $C = \frac{1}{2} f_{co}$ by which is acting at a depth $d_z = \frac{y}{3}$. This equation is valid if the neutral axis lies in the flange that is $y \le h_f$ and if $y > h_f$, the force C shall be reduced by C_n given by $C_n = \frac{1}{2} f_{co} (b - b_w) \frac{(y - h_f)^2}{y}$ which can be regarded as negative force and acting at a depth, $d_{zn} = h_f + \frac{y - h_f}{3}$.

The incremental strain, ε_{co} sought as loading passes from stage (2) to stage (3) can be defined in terms neutral axis depth, y as;

$$\varepsilon_{co} = \frac{A_p (f_{p1} + f_{p2})}{\frac{1}{2} E_c \left(b_w y + (b - b_w) h_f \left(1 + \frac{y - h_f}{y} \right) \right) - \left(E_s A_s \left(\frac{d - y}{y} \right) + E_p A_p \left(\frac{d_p - y}{y} \right) \right)}$$

In this equation is for flanged section so that substitute b_w by b if y is less than or equal to h_f . From equilibrium of moments we have,

if y > h_f, then
$$\Rightarrow g_{16} = T_s d + T_p d_p + C_n d_{zn} - C d_z - M_w \le 0$$
 (4.14a)

else

$$g_{17} = T_s d + T_p d_p - C d_z - M_w \le 0$$
(4.14b)

Since M_w is known solve for the strain ε_{co} and NA depth y and then equilibrium of x(horizontal of forces should be checked.

$$\sum F_x = o, \ C - C_n = T_s + T_p$$

If
$$y > h_f$$
, then $g_{18} = C - C_n - T_s - T_p \le 0$ (4.15a)

else,

$$g_{18} = C - T_s - T_p \le 0 \tag{4.15b}$$

Location of centroid of the cracked transformed section from extreme top fiber, yct is given

if
$$y > h_f$$
, $y_{ct} = \frac{b_w \frac{y^2}{2} + (b - b_w) \frac{h_f^2}{2} + n_p A_p d_p + n_s A_s d}{b_w y + (b - b_w) h_f + n_p A_p + n_s A_s}$

by

else,
$$y_{ct} = \frac{b\frac{y^2}{2} + n_p A_p d_p + n_s A_s d}{by + n_p A_p + n_s A_s}$$

The cross sectional area of the cracked transformed section, Act will be;

if
$$y > h_f$$
, $A_{ct} = b_w y + (b - b_w)h_f + n_p A_p + n_s A_s$
else $A_{ct} = b y + n_p A_p + n_s A_s$

Second moment of area or moment of inertia of the cracked transformed section, Ict is;

$$if \ y > h_f, \ I_{ct} = b_w \frac{y^3}{12} + b_w \ y \left(y_{ct} - \frac{y}{2} \right)^2 + (b - b_w) \frac{h_f^3}{12} + (b - b_w) h_f \left(y_{ct} - \frac{h_f}{2} \right)^2 + n_p A_p \left(d_p - y_{ct} \right)^2 + n_s A_s \left(d - y_{ct} \right)^2 \\else \ I_{ct} = b \frac{y^3}{12} + b \ y \left(y_{ct} - \frac{y}{2} \right)^2 + n_p A_p \left(d_p - y_{ct} \right)^2 + n_s A_s \left(d - y_{ct} \right)^2 \\end{tabular}$$

where,

 f_{p1} – incremental stress in prestressing tendons prior to the application of service loads or at stage (1) (N/mm²)

f $_{p2}$ – incremental stress in prestressing tendons as the section passes from prior to the application of service loads stage (1) to decompression stage (2) (N/mm²)

 f_{p3} – incremental stress in prestressing tendons due to change of stress from compression to tension in the concrete located at the level of the tendon (N/mm²)

 f_{co} – stress in the extreme top fiber during the application of service load moment (N/mm²)

- f_s stress in nonprestressed steel reinforcement at the application of service loads (N/mm²)
- f_p total stress in prestressing tendons at the application of service loads (N/mm²)
- ϵ_{oc} compressive strain in the concrete at the level of the tendon
- ϵ_{cp} tensile strain in the concrete at the level of the tendon
- ε_0 –compressive strain at the extreme top fiber
- ϵ_s tensile strain in the reinforcing steel at working loads
- n_p modular ratio of prestressing steel
- n_s modular ratio of reinforcing steel
- E_c –modulus of elastic of concrete (N/mm²)
- E_s modulus of elastic of reinforcing steel (N/mm²)
- E_p modulus of elastic of prestressing steel (N/mm²)
- F_x forces acting in the horizontal direction (N)
- T_s Tension force in the reinforcing steel at service limit state (N)
- T_p Tension force in the prestressing steel at service limit state (N)
- C resultant compressive force in compression zone of concrete (N)

 C_n – compressive force in compression zone of concrete used to reduce the resultant compressive force C when NA depth exceeds flange thickness (N)

y – NA depth of the cracked section under service limit state (mm)

 d_z – depth from extreme compression fiber to centroid of resultant compression force C (mm)

- d_{zn} depth from extreme compression fiber to centroid of compression force C_n (mm)
- y_{ct} depth from extreme compression fiber to centroid of cracked section (mm)
- Act area cracked transformed section under service limit state (mm²)

Ict – moment of inertia of cracked transformed section under service limit state (mm⁴)

- Permissible stresses in prestressing strands during stress transfer stage

$$\frac{\mathbf{P}}{\mathbf{A}_{p}} \le \mathbf{f}_{pt} \qquad \Longrightarrow \qquad g_{19} = \frac{\mathbf{P}}{\mathbf{A}_{p}} - \mathbf{f}_{pt} \le 0 \tag{4.16}$$

- Permissible stresses in prestressing strands during service limit state

$$f_p \le f_{pe} \implies g_{20} = f_p - f_{pe} \le 0$$
 (4.17)

- Permissible stress in nonprestressed steel at service limit state

$$f_{s} \leq \begin{cases} 0.5f_{y} = 0.5.420 = 210\\ 206 \end{cases} \implies g_{21} = f_{s} - 206 \leq 0 \tag{4.18}$$

6. Deflection control (ASHTO LRFD Article 5.7.3.6)

Deflection and camber calculations shall consider dead load, live load, prestressing, erection loads, concrete creep and shrinkage, and steel relaxation. Immediate or instantaneous deflection is computed by taking the effective moment of inertia, I_e .

Effective moment of inertia used to calculate the instantaneous deflection is given by

$$I_{e} \leq \begin{cases} \left(\frac{M_{ck}}{M_{w}}\right)^{3} I + \left(1 - \left(\frac{M_{ck}}{M_{w}}\right)^{3}\right) I_{ct} \\ I \end{cases}$$
$$M_{ck} = f_{rk} \frac{I}{y_{b}} \quad and \quad f_{rk} = 0.63\sqrt{f_{c}}$$

Where,

M_{ck} – Cracking moment (Nmm)

 f_{rk} – modulus of rupture of concrete (N/mm2)

Deflection due to dead loads and prestressing force

Instantaneous deflection for permanent loads calculation, Δ_{i}

• Thus total deflection due to dead load, $\Delta_d = 4 \Delta_{d_i}$

Note in integrating the dead load moment equations integral constants should be evaluated based on boundary conditions.

For parabolic tendon profile with central anchor upward deflection due to prestress is,

•
$$\Delta_P = -\frac{5.\eta.P.e.L^2}{48.E.I_e}$$

Hence, camber required is limited to, $g_{22} = \Delta_d - \Delta_P \le 0$ (4.19)

Deflection due to live loads

When investigating the maximum absolute deflection, all of the design lanes should be loaded and all of the girders may be assumed to deflect equally in supporting the loads. This statement is equivalent to a deflection distribution factor mg^d equal to the number of lanes divided by the number of girders [33]. Deflection of the bridge due to truck loads occurs at a wheel load position where maximum moment is occurring. For live load deflection evaluation, design vehicular live load of AASHTO HL-93 where the vehicle load includes the impact factor *IM* and the multiple presence factor *m*. In general, the deflection at the point of maximum moment, x due to each design truck load at a distance *a*, from the left support is given by:

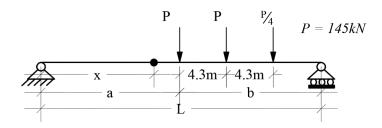


Figure 4.7 Design Truck Load Arrangement for Deflection Calculation

Live load deflection due to design truck load will be

• for x = a,
$$\Delta_{ki} = \frac{P.a^2.b^2}{3E.I_e.L}$$

• for x < a,
$$\Delta_{ki} = \frac{P.b.x}{6E.I_e.L} \cdot (L^2 - b^2 - x^2)$$
 individual truck load deflection

Thus total design truck deflection will be, $\Delta_{kt} = \sum_{i=1}^{3} \Delta_{ki}$

• Deflection due to each design lane load, $\Delta_{Ln} = \frac{5.w_{Ln}.L^4}{384.E.I_e}$ where $w_{Ln} = 9.3kN/m$

In computation of live load deflection design truck load alone or design lane load plus 25% of design truck load whichever is the greater as stated in AASHTO article 3.6.1.3.2.

- Thus live load deflection is, $\Delta_{LL} \geq \begin{cases} \Delta_{kl} \\ \Delta_{Ln} + 0.25\Delta_{kl} \end{cases}$
- Allowable live load deflectionis, $\Delta_{all} = \frac{L}{1000}$ Thus limit of live load deflectionis, $\Delta_{LL} \leq \Delta_{all}$

hence,
$$g_{23} = \Delta_{LL} - \frac{L}{1000} \le 0$$
 (4.20)

Where:

 I_e – effective moment of inertia of the section (mm⁴)

 Δ_{di} – Immediate deflection due to dead load (mm)

 Δ_d – total long term deflection due to dead load (mm)

 Δ_p – upward deflection due to prestress force (mm)

 Δ_{kl} – deflection due to truck load (mm)

 Δ_{Ln} – deflection due to design lane load (mm)

 Δ_{LL} – deflection due to live load (mm)

 Δ_{all} – allowable deflection for live load (mm)

x – distance from left support to a point at which maximum service load moment occurs.

a – distance from the left support to the point of truck load for which deflection is to be computed.

b – distance from the right support to the point of truck load for which deflection is to be computed.

7. Limit of the crack width

For dry air or protective membrane (class I) exposure condition an assumed allowable crack width is 0.41mm. The expressions that has figured prominently in the development of the crack control provisions in the ACI code is the one that developed by Gerley [34]. Crack width equation of the model code CEB-FIP-1970 is also used for determining the maximum crack width at the tension face of the girder. These equations are respectively.

$$w_{1} = 0.076 \frac{h_{2}}{h_{2}} f_{s} \sqrt[3]{d_{c}A_{ct}} \times 0.1451$$

$$w_{2} = (f_{s} - 40) \times 10^{-3}$$

$$g_{24} = \max \cdot \begin{cases} w_{1} \\ w_{2} \end{cases} - 0.41 \le 0$$
(4.21)

Where,

fs - service load stress in non prestressed steel (Mpa

 h_1 – distance from centroid of tensile steel to NA depth (mm)

h₂ – depth from extreme compression fiber to depth of NA (mm)

dc – thickness of concrete cover measured from extreme tension fiber to centroid of closest bar there to (mm)

Act – effective tension area of concrete surrounding one bar (mm2)

8. Fatigue limit state (AASHTO LRFD Article 5.5.3)

The stress range in reinforcing steel resulting from fatigue load is; $f_{fs} = \frac{n_s . M_f . (d - y_{ct})}{I}$ and

stress range in prestressing steel resulting from fatigue load is; $f_{fp} = \frac{n_p \cdot M_f \cdot (d_p - y_{ct})}{I_{ct}}$.

The allowable stress range in reinforcing steel is given by $=145-0.33f_{\min}+55(r/h)=1615$ Mpa by setting r/h=0.3, $f_{\min}=0.00$ where, r/h – ratio of base radius-to-height of rolled-on transverse deformation (a value of 0.3 can be used in the absence of specific data). Also the allowable stress range in prestressing tendons with

radius of curvature larger than 9000mm shall be less than 125Mpa. Thus, the following constraints stated as;

$$f_{fis} \le 161.5 \implies g_{25} = f_{fis} - 161.5 \le 0$$
 (4.22)

$$f_{ffp} \le 125 \implies g_{26} = f_{fp} - 125 \le 0$$
 (4.23)

Where,

 f_{fs} – stress range in reinforcing steel due to fatigue load (N/mm²)

 f_{fp} – stress range in prestressing steel due to fatigue load (N/mm²)

Mf - maximum fatigue load moment (Nmm)

 f_{min} – minimum live load stress where there is stress reversal (N/mm²)

r – base radius of the deformation (mm) and

h – height of the deformation (mm)

9. Partial Prestressing Ratio (AASHTO LRFD Article 5.5.4.2)

For partial prestressed concrete (class-III) structures partial prestressing ratio shall be in between 0.50 and 1. If this ratio is less than 0.5, the structure will be reinforced concrete not prestressed concrete and if it is equal to 1 it under go fully prestressing system (class-I) structure. PPR is given in the following:

$$PPR = \frac{A_p f_{py}}{A_p f_{py} + A_s f_y} \quad and \ 0.50 \le PPR < 1.00$$

From the above equation we the following constraints

$$g_{27} = 0.50 - PPR \le 0 \tag{4.24}$$

$$g_{28} = PPR - 1 \le 0 \tag{4.25}$$

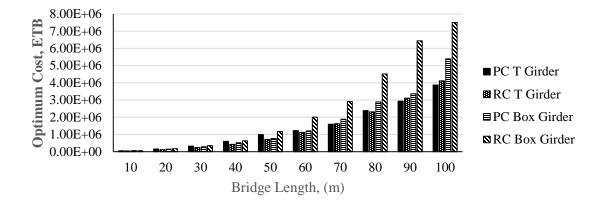
The constraint functions g_1 to g_{27} and fitness function f(x) formulated above were constrained nonlinear programming problem for numerical solutions of post tension T and box girders and reinforced concrete T and box girders. These formulations were coded in

the script for constraint function definition in GA packages of Matlab software. For RC girders, these constraint functions were developed in similar procedure.

10. Design Variables bounds

A bound constraint for lower and the upper limits of design variables were derived from point of view of geometric requirements, minimum practical dimension, code restriction etc. It were defined in the main scripts field for the given optimization problem accordingly.

CHAPTER FIVE


RESULTS AND DISCUSSIONS

The four cases presented earlier in section four that was reinforced concrete T girder, partially prestressed concrete T girder, reinforced concrete box girder, and partially prestressed concrete box girder were solved using genetic algorithm. The formulated optimization problem was coded in to Mat lab software to run the optimization genetic algorithm. The various parameters such as effect of bridge construction materials and grades of concrete on optimum cost, optimal girder spacing, optimum girder cross sectional dimensions, and comparison of cost of concrete and steel and comparison of properties of optimization solvers, has been studied. A discussion and comparison among the results were presented here in.

5.1 Effect of Construction Materials on Optimum Cost

	Optimum Costs, ETB											
Span, $L(m)$	RC T Girder	RC Box Girder	PC T Girder	PC Box Girder								
10	41,575.10	56,214.75	55,151.50	57,484.40								
20	115,729.00	169,340.00	149,936.00	148,419.50								
30	237,705.00	345,156.00	318,968.00	284,334.00								
40	426,042.00	628,953.00	597,499.50	513,705.50								
50	714,913.50	1,171,345.50	986,760.50	769,398.50								
60	1,117,095.00	2,004,765.00	1,222,780.00	1,207,886.00								
70	1,626,045.00	2,913,590.00	1,591,015.00	1,882,780.00								
80	2,308,745.00	4,512,120.00	2,383,755.00	2,888,645.00								
90	3,109,530.00	6,436,030.00	2,937,510.00	3,363,805.00								
100	4,111,565.00	7,503,240.00	3,873,375.00	5,384,450.00								

 Table 5.1 Summary of Cost Comparison of Girder Cross Sections

Graphical representation of effect construction materials was given below.

Figure 5.1 Effect of Construction Materials on Optimum Cost

Figure 5.1 shows cost comparison among commonly used girders in terms of cross sections and type of construction material. It can be noted from this figure that despite of the required stiffness, T section is economical for small to large spans preferably 20 to 40m [27]. However, partially prestressed box girder is stiffer than T girder and economical for spans larger than 40m.

5.2 Effect of Grades of Concrete on Optimum Cost

Summary of effect of grades of concrete on the optimum cost is given below.

		Optimum C	Costs, ETB	
Grades of				
Concrete,	RC T	RC Box	PC T	PC Box
Мра	Girder	Girder	Girder	Girder
30	710302	1471230	906221	1177935
40	765010	1175589.6	1120391	1344920
50	806293	1146074	1015500	1232800
60	817713	1195836.3	998500	1183500
70	922544	1375964.5	1023708	1232320

Table 5.2 Effect of Grades of Concrete on Optimum Cost

Graphical illustration of the effect of grades of concrete was shown below

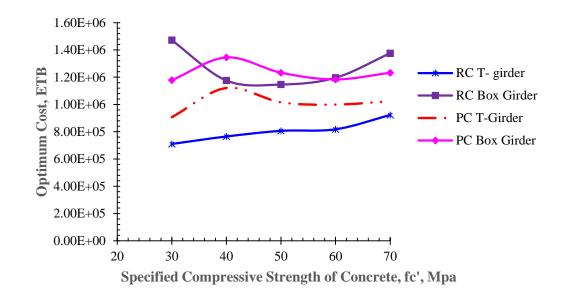
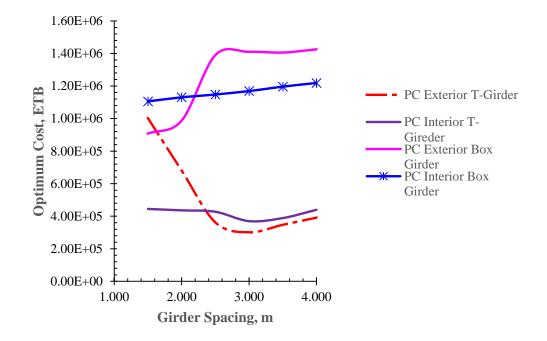


Figure 5.2 Effect of grades of Concrete on Optimum Cost

From the above graph 5.2 it may be considered that optimum cost will result for grades of concrete of values of specified cylindrical compressive strength of 30 to 50 Mpa.


5.3 Optimum Girder Spacing

Optimum cost for girder spacing of 1.5m to 4m was summarized in the following Table 5.3.

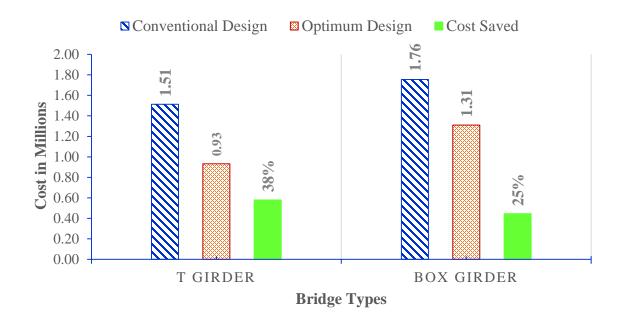
		PCTO	Girders	PC Box	Girders
Girder Spacing (m)	cing No. of girders Exterior Cinder		Interior Girder	Exterior Girder	Interior Girder
1.50	7	1,002,376.09	444,694.31	908,045.40	1,105,531.62
2.00	5	680,826.32	436,000.00	987,791.12	1,130,507.70
2.50	4	362,089.48	427,408.79	1,390,056.63	1,147,931.00
3.00	4	301,546.37	369,756.89	1,410,000.00	1,169,016.59
3.50	3	347,500.00	388,528.33	1,405,463.04	1,196,196.31
4.00	3	391,533.86	439,414.84	1,425,282.03	1,218,812.15

Table 5.3 Optimum Girder Spacing

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

Graphical representation of the optimal girder spacing was drawn in Figure 5.3 below.

Figure 5.3 Optimum Girder Spacing


The plot above reveals an effort made in detraining an optimal girder spacing as this is a parameter which determines load distribution factors between the girders. It is found that for road of two lanes of standard width of 3.65m each and an overhang of 1.3m wide both sides, the optimal girder spacing is 2.50m (point of intersection of exterior and interior girders).

5.4 Cost comparison of optimum design and conventional design approach

Summary of comparison of costs of optimum design and conventional design was tabulated below.

Span, 50m	Optin	num Design Cost (ETB)	Convent	Cost Saving			
Section types	Exterior Girder	Interior Girder Average Cost		Exterior Girder	Interior Girder	Average Cost	in Amount	in %
T girder	835,552.50	1,028,626.50	932,089.50	1,505,008.48	1,519,951.96	1,512,480.22	580,390.72	38%
Box girder	1,122,090.00	1,498,140.00	1,310,115.00	1,605,376.43	1,905,971.53	1,755,673.98	445,558.98	25%

Table 5.4 Cost Comparison of Optimum and Conventional Design

Cost comparison of the two design approaches was graphed below.

Figure 5.4 Cost comparison of Optimum Design and Conventional Design

From the Figure 5.4 it may be noted that optimum design of partially prestressed T and box girders could saves a cost with an amount of 38% and 25% of the cost of conventional design approach respectively. This result was comparable to the one investigated by Bhawar, P.D see reference [17].

5.5 Effect of Grades of Concrete on Depth of the Girders

The influence of grades of concrete on the optimum girder depth was given in Table 5.5 below.

	Opt	Optimum Girder Depth (mm)												
Grades of														
Concrete,	RC T	RC Box	PC T	PC Box										
Мра	Girder	Girder	Girder	Girder										
30	2981	2918	2796	2575										
40	2808	2794	2800	2550										
50	2726	2745	2792	2550										
60	2693	2751	2780	2550										
70	2689	2751	2766	2550										

 Table 5.5 Effect of Grades of Concrete on the Optimum Girder Depth

Graphical representation for elaborating the effects of grades of concrete on the girder depth was plotted in Figure 5.5.

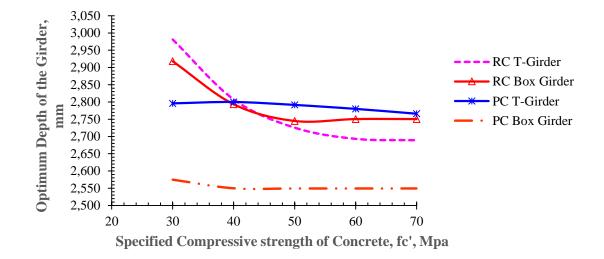


Figure 5.5 Effect of Compressive Strength of Concrete on Girder Depth

From the graph 5.5 it was obviously seen that depths of the girders reduces as grades of is increasing.

5.6 Comparison of Cost of Concrete and Steel

Ratio of cost of concrete to cost of reinforcement steel was given in Table 5.6 shown below.

		Ratio of	Cc/Cs	
Span (m)	RC T	RC Box	PC T	PC Box
10	0.2907	0.1852	0.0929	0.2857
20	0.3461	0.20705	0.1075	0.5026
30	0.4023	0.22637	0.1221	0.614
40	0.3871	0.25106	0.1366	0.6361
50	0.3503	0.32104	0.1299	0.674
60	0.356	0.34352	0.1231	0.7118
70	0.3542	0.33842	0.1221	0.7195
80	0.3489	0.33194	0.121	0.7271
90	0.3672	0.32275	0.173	0.7294
100	0.3649	0.32326	0.1597	0.7317
110	0.3657	0.31512	0.1548	0.7432
120	0.3607	0.3095	0.15	0.7613
130	0.384	0.30388	0.1632	0.7623
140	0.3417	0.29826	0.1681	0.7564
150	0.3873	0.29264	0.173	0.7505

Table 5.6 Cost Ratio of Concrete and Reinforcement Steel

Comparison of construction materials cost ratio over a specific bridge length was plotted in Figure 5.6.

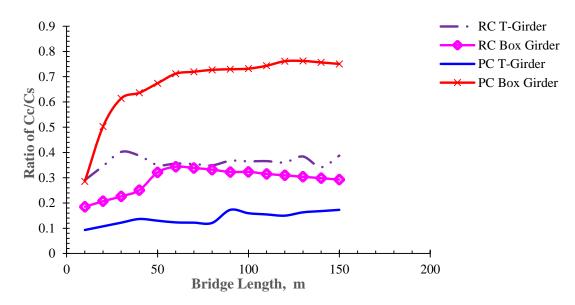


Figure 5.6 Cost Ratio of Concrete and Reinforcement Steel

In order to compare cost of concrete and steel reinforcement (prestressing steel and non prestressing steel reinforcement) Graph 5.6 was plotted as ratio cost of concrete to cost of steel versus bridge length. It was observed that cost of concrete is governing to a span of 40m and beyond this cost of steel reinforcement will dominate cost of bridge girders and due attention need to be considered in optimization process of these materials that is based on their nature cost dominance one over the other.

5.7 Optimum Girder Cross Sectional Dimensions

Duidaa	RC	C T Gird	ler	RC	Box Gir	der	PO	C T Gira	ler	PC	Box Gir	rder
Bridge Length, m	h/L	b _₩ ∕h	h _f ∕h	h/L	b _{w∕} h	h∳∕h	h/L	b _₩ ∕h	h _f ∕h	h/L	b _₩ ∕h	h _f ∕h
10	0.080	0.043	0.020	0.085	0.040	0.020	0.109	0.042	0.023	0.099	0.035	0.028
20	0.070	0.018	0.010	0.060	0.020	0.011	0.070	0.024	0.013	0.058	0.021	0.013
30	0.070	0.011	0.007	0.060	0.013	0.007	0.065	0.018	0.010	0.051	0.017	0.010
40	0.071	0.008	0.006	0.062	0.013	0.007	0.059	0.014	0.008	0.050	0.013	0.008
50	0.070	0.008	0.005	0.068	0.012	0.006	0.055	0.016	0.006	0.048	0.012	0.006
60	0.070	0.007	0.005	0.070	0.012	0.005	0.051	0.014	0.005	0.048	0.010	0.005
70	0.070	0.007	0.004	0.074	0.011	0.004	0.049	0.012	0.004	0.049	0.010	0.004
80	0.070	0.007	0.004	0.080	0.011	0.004	0.049	0.013	0.004	0.050	0.010	0.004
90	0.070	0.006	0.003	0.083	0.011	0.003	0.047	0.012	0.003	0.049	0.009	0.003
100	0.070	0.006	0.003	0.082	0.010	0.003	0.047	0.012	0.003	0.050	0.009	0.003
Minimum	0.070	0.006	0.003	0.060	0.010	0.003	0.047	0.012	0.003	0.048	0.009	0.003
Maximum	0.080	0.043	0.020	0.085	0.040	0.020	0.109	0.042	0.023	0.099	0.035	0.028
Mean values	0.071	0.012	0.007	0.072	0.015	0.007	0.060	0.018	0.008	0.055	0.015	0.008

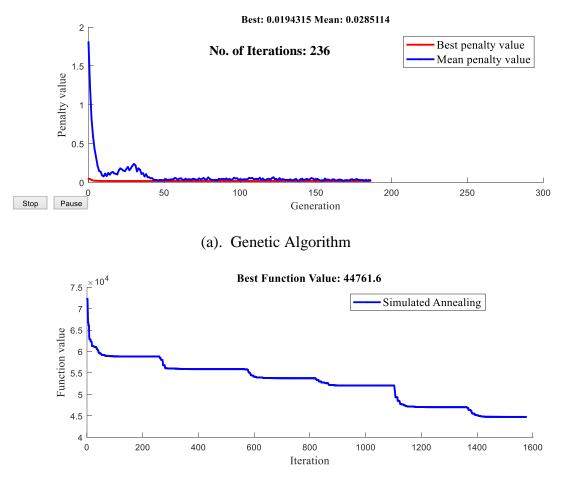

Table 5.7 Ratios of Optimum Girder Cross Sectional Dimensions

Table 5.7 ratios of depth to span (h/L), web width to depth (b_w/h), and flange thickness to depth (h_f/h) which are outcomes of the design optimization process. From the table it was seen that h/L may be considered as 0.071, 0.072, 0.060, and 0.055 for RC T, RC box, PC T, and PC box girders respectively. In similar manner b_w/h can be taken as 0.012, 0.015, 0.018, and 0.015 for RC T, RC box, PC T, and PC box girders respectively. The ratio of h_f/h for reinforced concrete, and partially prestressed girders 0.007, and 0.008 respectively

may be used. These are optimal girders section properties and may be used as a starting point for the design activities of bridge girders.

5.8 Comparison of Optimization Algorithms

The graphs under Figure 5.7 below were the plots showing the comparison optimization operating programs GA (a), simulated annealing (b), and f_{mincon} (c). Display of the graphs indicated that genetic algorithm has a rapid convergence property and produced better results. It also capable in handling large scale multivariable fitness function with either linear or nonlinear constraints or both.

(b). Simulated Annealing

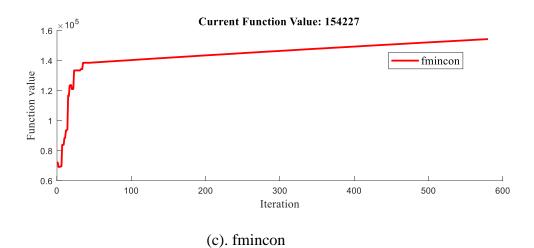


Figure 5.7 Comparison of Efficiency of Optimization Solvers

Generally, it was observed that GA is the best algorithm specially in solving complex multi variable fitness either single or multi objective subjected linear and nonlinear constraints. It is only GA which is capable of optimizing integer constraint problems.

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

The goal of this research was to optimize prestressed concrete bridge girders under the study variables construction materials, girder cross sections, span length, grades of concrete, and girder spacing. The following conclusions were drawn from the present work;

- Effect of bridge materials reveals that reinforced concrete girders are economical for smaller bridge length up to 40m and for span larger than 40 the use of prestressed box girder was economical and stiffer type of structure which was the same findings from the reference wrote by N. Krishna.
- 2. Optimum cost of bridge girders may results for the specified compressive strength values of 30 to 50 Mpa.
- 3. For a bridge supporting dual traffic lanes with an extended overhang of 1.5m wide, it was obtained through a number of iterations that the economical girder spacing is 2.5m.
- 4. Optimum design of prestressed concrete girders could capable of reducing cost with 38% for partially prestressed concrete tee girder and 25% for partially prestressed concrete box girder as compared to the cost of conventional design approach.
- 5. This study shows that depth of bridge girders could be made shallower by increasing compressive strength of concrete.
- 6. Cost of concrete could govern the cost of the girders to a span of nearly 40m and beyond that cost dominance hierarchy is shifted to cost of steel reinforcement.
- 7. In this research it was obtained that the ratio of section depth to span h/L may be considered as 0.071, 0.072, 0.060, and 0.055 for RC T, RC box, PC T, and PC box girders respectively. In similar manner the ratio of web width to section depth b_w/h may be taken as 0.012, 0.015, 0.018, and 0.015 for RC T, RC box, PC T, and PC box girders respectively. The ratio of top flange thickness to section depth h_f/h for

reinforced concrete, and partially prestressed girders 0.007, and 0.008 respectively may be used.

8. GA is a robust tool for structural design optimization. The present study was carried out using genetic algorithm which could handle both single and multi-objective fitness functions constrained linearly or nonlinearly and having more number of design variables easily. It is also more general to accommodate discrete and continuous variables.

6.2 Recommendations for Future Studies

In this study, the effect of bridge construction materials, grades of concrete, cross section properties, span length and girder spacing on the optimum cost have been investigated. The following ideas are recommended for further studies in the future.

- It is recommended to use T girder for a length less than 40m and box girder if the length is greater than 40m.
- Implement design optimization for continuously supported bridge system of variable depth of superstructure.
- Perform size optimization to available girder cross sections to obtain an effective and optimum cross section with the use of finite element analysis supplemented with simulation using programs like ANSYS.
- Apply design optimization to building structures also.
- Try out different optimization algorithms other than GA, it is of interest to find out which of the available algorithms that are most efficient for such optimization problems.

References

[1]. Leps, M., "Single and Multi-Objective Optimization in Civil Engineering with *Applications*", Doctoral Thesis, 2004, Czech Technical University in Prague Faculty of Civil Engineering.

[2]. Samir, E. M., "Optimization of Concrete Beam Bridges Development of Software for Design Automation and Cost Optimization", Master Thesis 486, 2016, KTH Royal Institute of Technology Department of Civil and Architectural Engineering.

[3]. Haupt, S. E. and Haupt, Randy L. "*Practical genetic algorithms*", Second Edition, John Wiley & Sons, Inc.1998.

[4]. Arora, J.S. 1989. Introduction to optimum design. McGraw-Hill, Inc., New York.

[5]. Dantzig, G.B., Linear programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.

[6]. Kirsch, U. (1995). Layout optimization using reduction and expansion processes. In [Olhoff and Rozvany, 1995], pages 95–102.

[7]. Fereig, S.M. 1985. Preliminary design of standard CPCI prestressed bridge girders by linear programming. Canadian Journal of Civil Engineering, 12: 213–225.

[8]. Cohn, M.Z., and MacRae, A.J. 1984b. Prestressing optimization and its implications for design. PCI Journal, 29(4): 68–83.

[9]. Rechenberg, I. (1973). Evolution strategy: Optimization of technical systems by means of biological evolution. Fromman-Holzboog, Stuttgart.

[10].Rosen, J.B., "the gradient projection method for nonlinear programming," Journal of the Society for industrial and applied Mechanics, part I, Linear constraints, Vol. 8, no. 1, 1960, pp. 181 - 217.

[11]. Zoutendijk. G., Methods of feasible directions, elsvier publishing company, amsterdam, 1960.

[12]. Schemit, L., "Structural design by systematic synthesis," Proceedings of A.E.C.E. 2nd Conference on Electronic Computations, Pittsburgh, Pa, 1960.

[13] Pedersen, P. (2000). On optimal shapes in materials and structures. Structural and Multidisciplinary Optimization, 19:169–182.

[14]. Kameshki, E. S. and Saka, M. P. (2001). Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Computers & Structures, 79:1593–1604.

[15]. Haifeng, F. and Lihua, C. (2014), "Buckling Capacity Optimization of Stiffened Rectangular Plate under Uniform Normal Compression" Journal of Computers, Vol. 9, No. 3.

[16]. Greiner, D., Winter, G., and Emperador, J. M. (2001). Optimising frame structures by different strategies of genetic algorithms. Finite Elements in Analysis and Design, 37:381–402.

[17]. Bhawar, P.D., Wakchaure, M.R., and Nagare P.N 1984b. Optimization of Prestressed concrete girder. International Journal of Research in Engineering and Technology, eISSN: 2319-1163.

[18]. Kirsch, U. 1997. How to optimize prestressed concrete beams. In Guide to structural optimization. Edited byJ.S. Arora. ASCE Manuals and Reports on Engineering Practice No. 90, American Society of Civil Engineers, New York. pp. 75–92.

[19]. Zhou, M. and Rozvany, G. I. N. (2001). On the validity of ESO type methods in topology optimization. Structural and Multidisciplinary Optimization, 21:80–83.

[20]. Bendsøe, M. P. and Sigmund, O. (2003). Topology Optimization: Theory, Methods and Applications. Springer-Verlag.

[21]. Goslingt, P. D. and Lewist, W. J. (1996). Optimal structural membranes-II. Formfinding of prestressed membranes using a curved quadrilateral finite element for surface definition. Computers & Structures, 61(5):895–895.

[22]. Schwarz, S., Maute, K., and Ramm, E. (2001). Topology and shape optimization for elastoplastic structural response. Computer Methods in Applied Mechanics and Engineering, 190:2135–2155.

[23]. Holland, J.H. (1975), 'Adaptation in natural and artificial systems', University of Michigan, Ann Arbor.

[24]. Beasley, D. and Bull, D. R. (1993). An Overview of Genetic Algorithm: Part 1 Fundamentals 1 Introduction 2 Basic Principles. Building, pages 1-16.

[25] Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering design. In [Miettinen et al., 1999], pages 135–161.

[26] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. "A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds," *Mathematics of Computation*, Volume 66, Number 217, pages 261–288, 1997.

[27]. N Krishna. R. (2007), "Prestressed Concrete", 4th Edition., Tata McGraw-Hill Publishing Company Limited, New Delhi.

[28]. AASHTO LRFD Bridge Design Specifications, 3rd Ed., American Association of State Highway and Transportation Officials. Washington, D.C. 2005.

[29]. https://www.alibaba.com/show room/prestressing-steel-strand-price.html.

[30]. https://www.erca.gov.et/index.php./tax-calculator.

[31]. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-71)," American Concrete Institute, Detroit, 1971.

[32]. ACI-ASCE Committee 423, Joint Report "State-of-the-Art Report on Partially Prestressed Concrete" American Concrete Institute, Detroit, 1999.

[33]. Richard, M. B. (2007), "*Design of Highway Bridges An LRFD Approach*", Second Edition, John Wiley & Sons, Inc.1987.

[34] P. Gerley and L. A. Lutz, "Maximum Crack Width in Reinforced Concrete Flexural Members," in Causes, Mechanisms, and Control of Cracking in Concrete, SP-20, American Concrete Institute, Detroit, MI, 1968, pp. 1-17.

Appendix A Bridge Girders Analysis Data

Fixed Geometric Para	meters	
Toatl road width =	9.9 <mark>m</mark>	
Clear roadway width, R _w =	7.3 m	
Width of abutment, W _A =	0.500 m	
Width of diaphram, $w_{di} =$	0.250 m	
Girder spacing, G _s =	2.300 m, G _s ≤ 2ł	lgirder
Number of girders $N_g = INT[R_w/G_s]+1 =$	5.000	
Curb width, $d_e = 0.5[R_w - (N_g - 1)G_s] =$	0.200 m	
Additional curb width, $C_w =$	1.300 m	
Width of the overhang, $W_{oh} = C_w + d_e =$	1.500 m	
Depth of overhang at the edge, $h_{oh} =$	0.280 m	
Curb depth, C _d =	0.150 m	
Width of post =	0.300 m	
Depth of post =	0.300 m	
Height of post =	0.850 m	
Average spacing between posts =	1.800 m	
Width of rail =	0.300 m	for RC box =tb = max(140, (gs-bw)/16)
Depth of rail =	0.300 m	for PC box =tb = max(140, (gs-bw)/30)
Number of design lanes, $N_L = INT[R_w/3600] =$	2.000	
Thickness of deck slab, h _s = MAX[G _{seff} /10, 175mm] =	0.200 m	
Size of fillet =	0.150 m	
Thickness of bottom flange of the girder, tb =	0.140 m	ASHTO art. 5.14.1.5, area of bottom slab reinf. And c/sectional dim. of T and Box girders
Web width of the girder, $b_w =$	0.300 m	
Bottom flange width of the girder, $b_b =$	0.600 m	
Thickness of asphalt layer, h _b =	0.075 m	
Skewness angle , $\Theta =$	0.000 deg	
Unit weight of concrete, $\rho_c =$	24.000 KN/m ³	
Unit weight of bituminous asphalt, $\rho_{\rm b} =$	22.500 KN/m4	

Distribution Factor	for Moment an	d Shear	r [T-Girder	·]		
The following approximate	e distribution factor e	equations	include multipl	e presence fact	or.	
i. Distribution factor fo	r moment					
- Interior Girder						
One lane loaded: $m_g^{SL} = 0$	$0.06 + [G_s/4300]^{0.4}$.	$G_{s}/L]^{0.3}.[1]$	$K_g/(Lt_s^3)]^{0.1}$			
		settin	$\log [K_g/(Lt_s^3)]^{0.5}$	$^{1} = 1, m_{g}^{SL} =$	0.37	
Two or more lane loaded	$m_g^{ML} = 0.075 + [G_g]$	/2900] ^{0.6}	$[G_{s}/L]^{0.2}.[K_{g}]$	$/(Lt_s^3)]^{0.1}$		
		setting	$g[K_g/(Lt_s^3)]^{0.1}$	= 1, $m_g^{ML} =$	0.55	
	Skewness co	rrection f	actor =1.05-0	$25 \tan \Theta = 1.05$	≈ 1, b/c Θ =0	
			th	us, $m_g^{ML} =$	0.55	
- Exerior Girder						
	each interior girders			$m=1.2$) using the $m_g^{SL} =$	e ff truck arranger 0.522	nnet.
Two or more lane loaded	$: m_{a}^{ML} = m_{a}^{ML} (IN)$	D.[0.77+	d_/28001			
		<i>/</i> L		$m_g^{SL} =$	0.46	
			th	us, $m_g^{ML} =$	0.52	
ii. Distribution factor fo	or shear					
- Interior Girder						
One lane loaded: $m_g^{SL} = 0$).36+[G _s /7600]					
				$m_g^{SL} =$	0.66	
Two or more lane loaded	$m_g^{ML} = 0.2 + [G_s/3]$	600]-[G _s /	/10700] ²	$m_g^{SL} =$	0.66	
Two or more lane loaded	$m_{g}^{ML} = 0.2 + [G_{s}/3)$	600]-[G _s /	/10700] ²	$m_g^{SL} =$ $m_g^{ML} =$	0.66	

- Exerior Girder						
One lane loaded: mg SL =						
one tane totaled. Ing =		m _g ^{SL} =	0.522	1.2/C		
			0.322	$= 1.2/G_{s}$		
Two or more lane loaded:	$m_g^{ML} = m_g^{ML} \text{ (INT).}[0.6+d]$	e/3000]				
de - is from c/l of ext. girder	to inner face of curb	m _g ^{SL} =	0.53			
		thus, $m_g^{ML} =$	0.53			
P/2	P/2					
∦0.6						
		l				
Ĩ.	T					
	^{1.8} +					
de	-Gs					
*Assume hing	e at B.					
Eig A1 Truelt wheel load or	monoment for the larger rale					
Fig.A1 Truck wheel load a	rangment for the lever rule					
Design Philosophy						
0 10	on ASUTO load and maint	anoa factor dagion (LDED)	roach			
		ance factor design (LRFD) app	ioacii.			
	ance (impact factor), I		110 1			
This factor accounts for har		discontinuities exist, and long u		nen settlement or	resonant excitation occu	rs.
		and fructure limit state, IM =	15%			
		for all other limit states, IM =	33%			
Multiple presence fa						
Multiple presence factors n		s for the probability that vehicul		<u> </u>		
	Multiple presence fact	tor for two design lanes, m =	1.00	MPF is not app	lied to fatigue limit st	ate!
Load Modifier						
Applicable only for stren	gth limit state load combi	ination. Using ODOT (Ohio	Departmen	t of Transporta	tion) recommendation	s,
		Ductility, $\eta_D =$	1.00	for all strength l	imit states	
		Redundancy $\eta_R =$	1.00	redundant bridg	ge if 4 girders with G _S < 3	.66m used!
		Importance, $\eta_I =$	1.05	for important b	ridge	
	load modifi	ier, $\eta_i \ge [\eta_D.\eta_R.\eta_I, 0.95]$	1.05	1		
Annlinghla I and Car		$(i, \eta_1 = [\eta_1], \eta_2, \eta_3, \eta_4, \eta_5, \eta_5]$	1.05			
Applicable Load Con	notnations					
i. Strengh limit state-I	and stability					
	ana siadiiiy					
		(V, V, V) + V + 1.25DC + 1.2	1 50001			
	$ce = 1.05[m_{gv}.1.75(1.33.MA)]$	$AX(V_{tr}, V_{tm}) + V_{ln}) + 1.25DC +$				
Ultimate factored shear for Ultimate factored bending r	$ce = 1.05[m_{gv}.1.75(1.33.MA]$ noment = 1.05[m _{gm} .1.75(1.33.MA])	$33.MAX(V_{tr}, V_{tm})+V_{ln})+1.25$]		
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i>	$ce = 1.05[m_{gv}.1.75(1.33.MA]$ noment = 1.05[m _{gm} .1.75(1.33.MA] <i>(for span >300ft =91.5m)</i>	$33.MAX(V_{tr}, V_{tm})+V_{ln})+1.25$]		
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear ford	$\begin{aligned} & \text{ce} = 1.05[\text{m}_{\text{gv}}.1.75(1.33.\text{M}\text{a}) \\ & \text{moment} = 1.05[\text{m}_{\text{gm}}.1.75(1.33,\text{m}\text{a}) \\ & \text{(for span > 300ft = 91.5m)} \\ & \text{ce} = 1.05[1.5(\text{DC+DW})] \end{aligned}$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25]		
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear ford Ultimate factored bending r	$ce = 1.05[m_{gv}.1.75(1.33.MA]$ noment = 1.05[m _{gm} .1.75(1.33.MA] <i>(for span >300ft =91.5m)</i>	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25				
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear ford Ultimate factored bending r <i>iv. Service limit state-I</i>	$ce = 1.05[m_{gv}.1.75(1.33.M_{eff})]$ $moment = 1.05[m_{gm}.1.75(1.33.M_{eff})]$ $ce = 1.05[n_{gm}.1.75(1.33.M_{eff})]$ $ce = 1.05[1.5(DC+DW)]$ $moment = 1.05[1.5(DC+DW)]$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25	DC+1.5DW		neeroto under normal	service conditie
Ultimate factored shear for Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear for Ultimate factored bending r <i>iv. Service limit state-I</i> - used to restrict stress, a	$ce = 1.05[m_{gv}.1.75(1.33.M_{ev}] + 1.05[m_{gm}.1.75(1.33.M_{ev}] + 1.05[m_{gm}.1.75(1.33.M_{ev}] + 1.05[1.5(D_{ev}] + 1.05[1.5(D_{ev}] + 1.05[1.5(D_{ev}] + 1.05[1.5(D_{ev}] + D_{ev}] + 1.05[1.5(D_{ev}] $	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25	DC+1.5DW		ncerete under normal	service conditio
Ultimate factored shear for Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear for Ultimate factored bending r <i>iv. Service limit state-I</i> - <i>used to restrict stress, a</i> Shear force = [m _{gv} .(1.33.)	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{M}\text{a}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.3, \text{M}\text{a}) \\ & \text{f}(\textit{for span > 300ft = 91.5m}) \\ & \text{ce} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{DC+DW})] \\ & \text{deflection, crack width and} \\ & \text{MAX}(V_{\text{tr}}, V_{\text{tm}}) + V_{\text{ln}}) + \text{DC+H} \end{aligned}$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25	DC+1.5DW		ncerete under normal	service conditia
Ultimate factored shear for Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear for Ultimate factored bending r <i>iv. Service limit state-I</i> - <i>used to restrict stress, a</i> Shear force = [m _{gv} .(1.33.) Bending moment = [m _{gm} .(1	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{M}\text{a}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.3,\text{M}\text{a}) \\ & \text{(for span > 300ft = 91.5m)} \\ & \text{ce} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{DC+DW})] \\ & \text{MAX}(V_{\text{tr}}, V_{\text{tm}}) + V_{\text{ln}}) + \text{DC+I} \\ & \text{.33.MAX}(V_{\text{tr}}, V_{\text{tm}}) + V_{\text{ln}}) + V_{\text{ln}}) + V_{\text{ln}}) + V_{\text{ln}} \\ \end{aligned}$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25	DC+1.5DW		ncerete under normal	service conditio
Ultimate factored shear for Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear for Ultimate factored bending r <i>iv. Service limit state-I</i> - used to restrict stress, a Shear force = [m _{gv} .(1.33.M Bending moment = [m _{gm} .(1 <i>v. Service limit state-III</i>)	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{M}\text{A}\text{moment} = 1.05[m_{\text{gm}}.1.75(1.33.\text{M}\text{A}\text{moment} = 1.05[m_{\text{gm}}.1.75(1.33.\text{M}\text{A}\text{moment} = 1.05[1.5(\text{DC}+\text{DW})] \\ & \text{ce} = 1.05[1.5(\text{DC}+\text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC}+\text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC}+\text{DW})] \\ & \text{MAX}(V_{\text{tr}}, V_{\text{tm}})+V_{\text{ln}})+\text{DC}+\text{I} \\ & \text{A3.MAX}(V_{\text{tr}}, V_{\text{tm}})+V_{\text{ln}})+\text{D} \\ & \text{A3.MAX}(V_{\text{tr}}, V_{\text{tm}})+V_{\text{ln}})+\text{I} \\ & \text{(for tension analysis of PC)} \end{aligned}$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure)	DC+1.5DW	in pretressed co	ncerete under normal	service conditio
Ultimate factored shear for Ultimate factored bending r ii. Strengh limit state-IV Ultimate factored shear for Ultimate factored bending r iv. Service limit state-I - used to restrict stress, a Shear force = [mgv.(1.33.) Bending moment = [mgm.(1 v. Service limit state-III (- used to check TENSIL	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{Ma}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.3] \\ & (\textit{for span} > 300\textit{ft} = 91.5\textit{m}) \\ & \text{ce} = 1.05[1.5(\text{DC} + \text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC} + \text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC} + \text{DW})] \\ & \text{deflection, crack width and} \\ & \text{MAX}(V_{\text{tr}}, V_{\text{tm}}) + V_{\text{ln}}) + \text{DC} + \text{I} \\ & .33.\text{MAX}(V_{\text{tr}}, V_{\text{tm}}) + V_{\text{ln}}) + \text{I} \\ & \textit{(for tension analysis of PC)} \\ & \text{E stress in prestress concells} \end{aligned}$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure) ere super structures with the	DC+1.5DW	in pretressed co	ncerete under normal	service conditio
Ultimate factored shear force Ultimate factored bending r ii. Strengh limit state-IV Ultimate factored shear force Ultimate factored bending r iv. Service limit state-I - used to restrict stress, a Shear force = [mgv.(1.33.) Bending moment = [mgm.(1 v. Service limit state-III) (- used to check TENSIL Shear force = [mgv.0.8(1.3)	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{Mathematical methods}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.3] \\ & \text{(for span > 300ft = 91.5m)} \\ & \text{ce} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{moment} = 1.05[1.5(\text{moment} = 1.05[1.5(moment$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure) ere super structures with the C+DW]	DC+1.5DW	in pretressed co	ncerete under normal	service conditio
Ultimate factored shear ford Ultimate factored bending r ii. Strengh limit state-IV Ultimate factored shear ford Ultimate factored bending r iv. Service limit state-I - used to restrict stress, a Shear force = [mgv.(1.33.) Bending moment = [mgm.(1 v. Service limit state-III (- used to check TENSIL Shear force = [mgv.0.8(1.3 Bending moment = [mgm.0.	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{Ma}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.33.\text{Ma}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.33.\text{Ma}) \\ & \text{ce} = 1.05[1.5(\text{DC}+\text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC}+\text{DW}$	33.MAX(Vtr, Vtm)+Vln)+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure) ere super structures with the C+DW]	DC+1.5DW	in pretressed con	ncerete under normal	service conditio
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear ford Ultimate factored bending r <i>iv. Service limit state-I</i> - <i>used to restrict stress, a</i> Shear force = [m _{gv} .(1.33.) Bending moment = [m _{gm} .(1 <i>v. Service limit state-III</i> (- <i>used to check TENSIL</i> Shear force = [m _{gv} .0.8(1.3 Bending moment = [m _{gn} .0. <i>vi. Fatigue and Fructure</i>	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{Ma}) \\ & \text{moment} = 1.05[m_{\text{gm}}.1.75(1.3] \\ & (\text{for span } > 300 \text{ft} = 91.5 \text{m}) \\ & \text{ce} = 1.05[1.5(\text{DC} + \text{DW})] \\ & \text{moment} = 1.05[1.5(\text{DC} + \text$	33.MAX(V _{tr} , V _{tm})+V _{ln})+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure) ere super structures with the C+DW]	DC+1.5DW	in pretressed con	ncerete under normal	service conditio
Ultimate factored shear ford Ultimate factored bending r <i>ii. Strengh limit state-IV</i> Ultimate factored shear ford Ultimate factored bending r <i>iv. Service limit state-I</i> - <i>used to restrict stress, a</i> Shear force = [m _{gv} .(1.33.) Bending moment = [m _{gm} .(1 <i>v. Service limit state-III</i> (- <i>used to check TENSIL</i> Shear force = [m _{gv} .0.8(1.3 Bending moment = [m _{gm} .0.	$\begin{aligned} & \text{ce} = 1.05[m_{\text{gv}}.1.75(1.33.\text{Mathematical moment} = 1.05[m_{\text{gm}}.1.75(1.33.\text{Mathematical moment} = 1.05[m_{\text{gm}}.1.75(1.3] \\ & \textbf{(for span > 300ft = 91.5m)} \\ & \text{ce} = 1.05[1.5(\text{DC+DW})] \\ & \text{moment} = 1.05[1.5(\text{DC+DW})] \\ & \text$	33.MAX(Vtr, Vtm)+Vln)+1.25 V)] d used to check COMPRESS DW] DC+DW] C structure) ere super structures with the C+DW]	DC+1.5DW	in pretressed con	ncerete under normal	service conditio

Calculation	n of load	ls							
		and non structu	ral componen	its					
				Weight of to	p deck slab =	4.80	KN/m ²		
			Weight of ove		-		KN/m ²		
					g at its end =		KN/m ²		
					ost and rail =		KN/m ²		
			1	-	ring surface =		KN/m ²		
Imposed dead	load react	ion transferred to		weight of wea	u ing sui iace –	1.09	KIN/III		
imposed dedd	ioud react	lon d'alisientea to	Sinders	KN/m					
DC (ext.gird)	DW(ext.g	DC (int.gird)	DW(int.grd)						
24.880	1.920	5.740	4.250						
24.88	1.92	5.74	4.25	used as a	constatnt				
		C & DW for							
	No. girde		DW(ext)	DC(int)	DW(int)	W _{ho} (m)	d _e (m)	0.07	
1.50	7 5	12.45	-0.03	7.292	2.34	0.45		-0.85	
2.00 2.50	5 4	18.85 21.65	0.82	7.91 8.795	3.5666667 4.64	0.95		-0.35 -0.10	
3.00	4	15.11	0.84	15.58	<u>4.04</u> 5.33	0.45		-0.10	
3.50	3	25.31	2.5	10.75	7.35	1.45		0.15	
4.00	3	20.85	2	19.67	8.35	0.95		-0.35	
	-								
ii. Influence	lines for b	ending moment	and shear fo	orce					
		ad is ASHTO 20			ehicle is cons	idered.			
i. influence li	ine (IL)for	r live load mom	ent	1					
									9.3
									Lane loadii
									Lune iouun
				145	145	35	KN		
				L/4	145	35	KN		
					+	•			
	X				4.30	4.30	KN m		
	X			L/4	4.30	4.30			
	X	→		L/4	+	4.30			
	X			L/4	4.30 or design truck	4.30			
	X			L/4 L Fig. A3. IL fa	4.30 or design truck	4.30			
	X			L/4	4.30 or design truck	4.30			
				L/4 L Fig. A3. IL fi 110 L/4	4.30 or design truck	4.30			
	- X	→ →		L/4 L Fig. A3. IL fi 110 L/4 L	4.30 pr design truck 110 1.20	4.30 KN			
		→ →		L/4 L Fig. A3. IL fi 110 L/4 L	4.30 or design truck	4.30 KN			
	X			L/4 L Fig. A3. IL fi 110 L/4 L	4.30 pr design truck 110 1.20	4.30 KN			
	X -			L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	X -	e load moment		L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		9.3kN/m
	x			L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	X -			L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x	35		L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x	35		L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x	4.30		L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x ine for live 145 4.30	4.30	KN m	L/4 L Fig. A3. IL fi 110 L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x ine for live 145 4.30	4.30	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	x ine for live 145 4.30	4.30 x Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
145	x ine for live 145 4.30	4.30 x Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	x ine for live 145 4.30	4.30 x Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	x ine for live 145 4.30	4.30 x Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	x ine for liv. 145 4.30	↓ 35 ↓ ↓ × Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		
	x ine for liv 145 4.30	4.30 x Fig A5. IL for de	KN m	L/4 LL Fig. A3. IL for L/4 L FigA4. IL for	4.30 or design truck 110 1.20 r design tanden	4.30 KN m	m		

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

. Design	Snear ana	Moment Co	mputation	Jor I-Gir	aer													
				For bridg	e span, L =	50.00	m											
		1	Estimated d	epth of the	girder, h =	2.30	m											
ii. Selfweigl	ht of girders	and diaphrams																
				Diaphran	n spacing, S =	5.000	m					P	P	Р	Р			
			N	umber of diaj	phrams, N _{di} =	9.00)				_	+	*	+				
		Dead	load of diaph	ram on exteri	or girder, P =	11.40	KN	$\mathbf{R} =$	51.30	KN	7 s	s s		S	S S	•		
		Dead	load of diaph	nram on interi	or girder, P =	22.80	KN	$\mathbf{R} =$	102.60	KN		1	X	1				
			Self weigh	t of the girder	s, $g = A_c \cdot \rho_c =$	17.100	KN/n	1			P					R		
Shear & Mor	ment equation	ons of DC and I	DW loads								_ ^		Fig	A7 Diaph	am Loadings	•		
- for Exterio	or girder																	
DC:	V(x) =	1049.50	-41.98	+ if(x <s,< td=""><td>R, if(x<2S, I</td><td>R-P, if(x<3S, 1</td><td>R-2P,</td><td>.)))</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Distribu</td><td>tion Factor</td><td>3</td></s,<>	R, if(x<2S, I	R-P, if(x<3S, 1	R-2P,	.)))								Distribu	tion Factor	3
DW:	V(x) =	48.00	-1.92	r											All other lin	nit states	Fatigue limi	t state
DC:	M(x) =	1049.50	x	-20.99	$x^2 + if(x < S)$, R.x, if(x<2S,	R.x-P()	4-S), if(x	<3S, R.x-P(2)	-3S), if(x<4	S, R.x-1	(3x-6S),	.))))		Moment	Shear	Moment	Shear
DW:	M(x) =	48.00	x	-0.96	x^2										m _{gM}	m_{gV}	m_{gM}^{SL}	m_{gV}^{SL}
- for Interio	or girder												Interio	or girder	0.55	0.79	0.31	0.55
DC:	V(x) =	571.00	-22.84	r + if(x < S.	R. if(x<2S.]	R-P, if(x<3S,	R-2P)))					Exterio	or girder	0.52	0.53	0.43	0.43
DW:	V(x) =	106.25	-4.25		, (···=», ·	,,							Î					
DC:	M(x) =	571.00	x	-11.42	$x^2 + if(x < S)$, R.x, if(x<2S,1	R.x-P(x	-S). if(x	<35. R.x-P(2x	-3S), if(x<4	S. R.x-1	(3x-6S)						
	M(x) =	106.25		-2.13				,,	,			(),	-,,,,,					

a) Interior gi	rder											
i. Shear force												677.25
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue		
x	V _{TR}	V _{TM}	V _{LN}	V _{DC}	V _{DW}	V _{S-I}	V _{S-IV}	V _{SI}	V _{SIII}	V _{FG}		
0.00	306.51	217.36			106.25	1983.87	1228.26		1185.80			
2.54	290.03	206.21							1088.28			
5.07	273.56	195.05		535.00				1055.03	967.96			
7.61	257.08	183.90			73.93	1476.28		950.29	870.44	106.93		
10.14	240.60	172.74										
12.68	224.12	161.59					615.64		652.60			
15.21	207.65	150.44	91.05			938.77	471.57	590.50	532.28			
17.75	191.17	139.28				779.55		485.76	434.76			
20.28	174.69	128.13	43.90		20.06	590.40	219.34		314.44	67.70		
22.82	158.21	116.97			9.29			253.50		59.85		
25.35	141.74	105.82							96.60			
27.89	125.26	94.67					-141.05	21.23	-0.92			
30.42	108.78	83.51		-157.99		-106.33		-106.30	-121.25	36.31		
32.96	92.30	72.36			-33.81	-265.56			-218.77	28.46		
35.49	75.83	61.20	-97.56	-296.59	-44.58	-454.70	-537.35	-338.57	-339.09	20.61		
$V_{max} =$						1983.87	1228.26	1287.29	1185.80	130.48		
ii. Bending M	loment										Service mon	nent due to
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue	dead load	selfweight
x		M _{TM}	M_{LN}			M _{S-I}	M _{S-IV}	M _{SI}	M _{SIII}	M _{FG}	Mg	M _{min}
0.000	462.25	66.00							268.08		0.00	
2.535	874.19	344.85	559.51	1634.19	255.69	4272.41	2976.56	2828.56	2640.82	447.82	1889.88	
5.070	1286.13	623.70		3120.01	484.06		5676.41	5113.76		557.11	3604.07	
7.605	1698.06	902.55		4402.85		10621.25						
10.140	2110.00	1181.40		5535.72		13311.33			8437.80			
12.675	2521.94	1460.25		6467.21	1005.33	15634.22		10499.81	9894.36		7472.54	
15.210	2933.88	1739.10		7247.14				11839.59	11145.99	994.27	8371.60	
17.745	3345.81	2017.95	2661.50	7827.29	1216.28	19311.33	14243.61	12919.69	12144.46	1103.56	9043.56	4893.72
20.280	3757.75	2296.80			1280.78	20663.44	15017.71	13786.74	12936.41	1212.85		
22.815	4169.69	2575.65		8483.07				14395.73	13476.79			
25.350	3543.38	2645.50		8557.11	1327.86			14037.41	13206.93	724.19		
27.885	3131.44	2366.65		8434.56	1310.44	20177.49	15348.37	13578.03	12811.42		9745.00	5272.59
30.420	2719.50			8155.66				12902.40			9421.36	
32.955	2307.56			7681.76		17652.10		11971.90				
35.490	1895.63	1530.10	2394.56	7049.91	1094.29	15899.83	12827.12	10823.56	10287.69	287.03	8144.20	4402.91
$M_{max} =$						21652.56	15568.84	14395.73	13476.79	1322.14	9884.98	5342.70

b) Exterior g	irder									
i. Shear force	8									
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue
x	VTR	V _{TM}	V _{LN}	V _{DC}	V _{DW}	V _{S-I}	V _{S-IV}	V _{SI}	V _{SIII}	V _{FG}
0.00	306.51	217.36	232.50	1100.80	48.00	2142.02	1809.36	1487.10	1419.44	102.74
2.54	290.03	206.21	208.92	994.38	43.13	1950.50	1634.08	1351.77	1288.92	96.56
5.07	273.56	195.05	185.35	876.56	38.27	1744.03	1440.85	1205.04	1147.00	90.38
7.61	257.08	183.90	161.77	770.14	33.40	1552.51	1265.58	1069.72	1016.48	84.20
10.14	240.60	172.74	138.20	652.32	28.53	1346.04	1072.35	922.99	874.56	78.02
12.68	224.12	161.59	114.62	545.90	23.66	1154.52	897.07	787.66	744.04	71.84
15.21	207.65	150.44	91.05	428.08	18.80	948.05	703.84	640.94	602.13	65.66
17.75	191.17	139.28	67.47	321.66	13.93	756.53	528.56	505.61	471.61	59.48
20.28	174.69	128.13	43.90	203.85	9.06	550.05	335.33	358.89	329.69	53.30
22.82	158.21	116.97	20.32	97.43	4.20	358.54	160.05	223.56	199.17	47.12
25.35	141.74	105.82	-3.26	-20.39	-0.67	152.06	-33.18	76.83	57.25	40.94
27.89	125.26	94.67	-26.83	-126.81	-5.54	-39.45	-208.45	-58.49	-73.27	34.77
30.42	108.78	83.51	-50.41	-244.63	-10.41	-245.93	-401.68	-205.22	-215.18	28.59
32.96	92.30	72.36	-73.98	-351.05	-15.27	-437.44	-576.96	-340.55	-345.70	22.41
35.49	75.83	61.20	-97.56	-468.87	-20.14	-643.92	-770.19	-487.27	-487.62	16.23
$V_{max} =$						2142.02	1809.36	1487.10	1419.44	102.74

ii. Bending M	<i>loment</i>										Service mon	nent due to
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue	dead load	selfweight
x	M _{TR}	M _{TM}	M _{LN}	M _{DC}	M _{DW}	M _{S-I}	M _{S-IV}	M _{SI}	M _{SIII}	M _{FG}	Mg	M _{min}
0.00	462.25	66.00	0.00	0.00	0.00	589.40	0.00	320.76	256.61	478.50	0.00	0.00
2.54	874.19	344.85	559.51	2655.64	115.51	5318.50	4364.56	3669.68	3489.97	632.98	2771.15	1028.77
5.07	1286.13	623.70	1059.25	5040.71	218.68	9615.75	8283.55	6704.51	6415.48	787.45	5259.40	1947.65
7.61	1698.06	902.55	1499.22	7127.91	309.52	13445.31	11713.95	9397.94	9005.84	941.93	7437.43	2756.64
10.14	2110.00	1181.40	1879.44	8943.74	388.01	16841.97	14697.51	11776.48	11287.54	1096.41	9331.75	3455.74
12.68	2521.94	1460.25	2199.89	10462.49	454.17	19771.99	17193.74	13814.43	13234.88	1250.88	10916.66	4044.96
15.21	2933.88	1739.10	2460.57	11887.26	507.99	22501.93	19522.51	15714.88	15050.95	1405.36	12395.25	4524.28
17.75	3345.81	2017.95	2661.50	12924.26	549.47	24646.20	21221.12	17184.04	16441.98	1559.84	13473.73	4893.72
20.28	3757.75	2296.80	2802.66	13691.49	578.61	26359.67	22475.41	18339.91	17525.95	1714.31	14270.10	5153.27
22.82	4169.69	2575.65	2884.05	14188.95	595.42	27642.33	23285.38	19182.49	18302.86	1868.79	14784.37	5302.93
25.35	3543.38	2645.50	2905.68	14416.63	599.88	27170.34	23651.01	18991.32	18196.36	1023.61	15016.52	5342.70
27.89	3131.44	2366.65	2867.55	14374.55	592.01	26540.90	23572.33	18635.61	17901.80	869.13	14966.56	5272.59
30.42	2719.50	2087.80	2769.65	14062.69	571.80	25480.65	23049.31	17966.62	17300.19	714.66	14634.48	5092.58
32.96	2307.56	1808.95	2611.99	13481.05	539.25	23989.59	22081.97	16984.33	16391.52	560.18	14020.30	4802.69
35.49	1895.63	1530.10	2394.56	12629.65	494.36	22067.73	20670.31	15688.74	15175.80	405.70	13124.01	4402.91
$M_{max} =$						27642.33	23651.01	19182.49	18302.86	1868.79	15016.52	5342.70

				For bridg	e span, L =	50.00	т									
		1	Estimated d	epth of the	girder, h =	2.300	т									
iii. Selfweigl	ht of girders	and diaphrams														
				Diaphran	n spacing, S =	5.000	m				Р	P P	P			
			N	umber of diaj	phrams, N _{di} =	9.00						+ +	*	_		
		Dead	load of diaph	ram on exteri	ior girder, P =	11.40	KN	R =	51.30	KN	S S	S S	S S	-		
		Dead	load of diaph	ram on interi	ior girder, P =	22.80	KN	R =	102.60	KN	x					
		Self	weight of the	exterior girde	er, $g = A_c \cdot \rho_c =$	19.056	KN/m				R			R		
		Self	weight of the	interior girde	er, $g = A_c \cdot \rho_c =$	22.920	KN/m				Fig A7 Dia	hram loading				
Shear & Moi	ment equation	ons of DC and I	OW loads													
- for Exterio	or girder															
DC	: Vx) =	1098.40	-47.80 x	x + if(x < S,	R, if(x<2S,	R-P, if(x<3S,	R-2P,)))						Distribu	tion Factor	2
DW	V(x) =	48.00	-1.92 x	r									All other limit	states	Fatigue limit st	ate
DC	M(x) =	1098.40	x	-21.97	$x^2 + if(x < S.$	R.x, if(x<2S,1	R.x-P(x-S), if(x∙	<38, R.x-P(2x-	-3S), if(x<4S	, R.x-p(3x-6S),.))))	Moment	Shear	Moment	Shear
DW	M(x) =	48.00	x	-0.96	x^2 + if(x <s. if(x<<="" r.="" td=""><td>2S. R-P.</td><td>if(x<</td><td>3S. R-2P))</td><td></td><td></td><td></td><td>m gM</td><td>m_{gV}</td><td>m_{gM}^{SL}</td><td>m_{gV}^{SL}</td></s.>	2S. R-P.	if(x<	3S. R-2P))				m gM	m_{gV}	m_{gM}^{SL}	m_{gV}^{SL}
- for Interio	r girder											Interior girder	0.51	0.76	0.29	0.53
DC	: Vx) =	716.50	-28.66 x	r + if(x <s< td=""><td>R if(x-2S</td><td>R-P, if(x<3S,</td><td>R.2P</td><td>m</td><td></td><td></td><td></td><td>Exterior girder</td><td>0.62</td><td>0.52</td><td>0.51</td><td>0.43</td></s<>	R if(x-2S	R-P, if(x<3S,	R.2P	m				Exterior girder	0.62	0.52	0.51	0.43
DW	V(x) =	106.25	-4.25 x		, n, n(x<20)	к-т, ц(х<30,	IX-21 ,	,,,,								
DC	M(x) =	716.50	x	-14.33	$x^2 + if(x < S)$	R v. iffv<28	R x-P(x-9	S) iffy	<35. R.x-P(2x	-35) if(x<45	5, R.x-p(3x-6S),					
				-2.13		,,(A \ 20);	1 (A-1	,,, л (л		····), 4(4~T)	, p(0x-00),					

a) Interior gi	rder									
i. Shear force	?									
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue
х	V _{TR}	V _{TM}	V _{LN}	V _{DC}	V _{DW}	V _{S-I}	V _{S-IV}	V _{SI}	V _{SIII}	V _{FG}
0.00	306.51	217.36	232.50	819.10	106.25	2142.25	1457.43	1415.06	1317.12	125.93
2.54	290.03	206.21	208.92	746.45	95.48	1965.98	1326.03	1296.83	1205.85	118.36
5.07	273.56	195.05	185.35	650.99	84.70	1759.79	1158.72	1155.81	1071.78	110.78
7.61	257.08	183.90	161.77	578.34	73.93	1583.52	1027.32	1037.58	960.52	103.21
10.14	240.60	172.74	138.20	482.89	63.16	1377.32	860.02	896.55	826.45	95.64
12.68	224.12	161.59	114.62	410.23	52.38	1201.05	728.62	778.33	715.19	88.06
15.21	207.65	150.44	91.05	314.78	41.61	994.86	561.31	637.30	581.12	80.49
17.75	191.17	139.28	67.47	242.13	30.83	818.59	429.92	519.07	469.85	72.91
20.28	174.69	128.13	43.90	146.68	20.06	612.39	262.61	378.05	335.79	65.34
22.82	158.21	116.97	20.32	74.02	9.29	436.12	131.21	259.82	224.52	57.76
25.35	141.74	105.82	-3.26	-21.43	-1.49	229.93	-36.10	118.80	90.45	50.19
27.89	125.26	94.67	-26.83	-94.08	-12.26	53.66	-167.49	0.57	-20.81	42.62
30.42	108.78	83.51	-50.41	-189.54	-23.04	-152.53	-334.80	-140.46	-154.88	35.04
32.96	92.30	72.36	-73.98	-262.19	-33.81	-328.80	-466.20	-258.68	-266.15	27.47
35.49	75.83	61.20	-97.56	-357.64	-44.58	-535.00	-633.51	-399.71	-400.21	19.89
$V_{max} =$						2142.25	1457.43	1415.06	1317.12	125.93

ii. Bending M	loment										Service mon	uent due to
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue	dead load	selfweight
x	M _{TR}	M _{TM}	M _{LN}	M _{DC}	M _{DW}	M _{S-I}	M _{S-IV}	M _{SI}	M _{SIII}	M _{FG}	Mg	M _{min}
0.00	462.25	66.00	0.00	0.00	0.00	575.49	0.00	313.19	250.55	314.98	0.00	0.00
2.54	874.19	344.85	559.51	1984.33	255.69	4619.22	3528.03	3117.34	2941.88	416.67	2240.02	1378.91
5.07	1286.13	623.70	1059.25	3786.08	484.06	8324.36	6725.48	5681.15	5398.95	518.36	4270.15	2610.53
7.61	1698.06	902.55	1499.22	5459.86	685.13	11762.57	9678.36	8059.24	7676.39	620.05	6144.99	3694.86
10.14	2110.00	1181.40	1879.44	7297.85	858.88	15317.35	12846.85	10543.77	10066.36	721.74	8156.73	4631.91
12.68	2521.94	1460.25	2199.89	8718.87	1005.33	18225.91	15315.60	12553.58	11987.71	823.42	9724.19	5421.66
15.21	2933.88	1739.10	2460.57	10882.08	1124.46	22009.62	18910.29	15247.83	14599.57	925.11	12006.53	6064.13
17.75	3345.81	2017.95	2661.50	12108.14	1216.28	24464.38	20985.96	16947.17	16222.62	1026.80	13324.42	6559.30
20.28	3757.75	2296.80	2802.66	14885.57	1280.78	28856.34	25462.00	20140.12	19345.36	1128.49	16166.35	6907.19
22.82	4169.69	2575.65	2884.05	15974.47	1317.98	30933.15	27235.62	21586.79	20727.92	1230.17	17292.45	7107.79
25.35	3543.38	2645.50	2905.68	19655.10	1327.86	35020.05	33048.18	24863.97	24087.77	673.82	20982.97	7161.10
27.89	3131.44	2366.65	2867.55	20664.65	1310.44	35769.09	34610.76	25557.56	24841.07	572.13	21975.09	7067.12
30.42	2719.50	2087.80	2769.65	25537.47	1265.70	41489.72	42215.00	30056.67	29405.97	470.44	26803.17	6825.85
32.96	2307.56	1808.95	2611.99	26525.46	1193.65	42012.53	43657.59	30613.18	30034.37	368.75	27719.11	6437.29
35.49	1895.63	1530.10	2394.56	32879.47	1094.29	49479.30	53508.66	36477.97	35977.13	267.06	33973.76	5901.44
$M_{max} =$						49479.30	53508.66	36477.97	35977.13	1230.17	33973.76	7161.10

b) Exterior g	irder									
i. Shear force	?									
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue
x	V _{TR}	V _{TM}	V _{LN}	V _{DC}	V _{DW}	V _{S-I}	V _{S-IV}	V _{SI}	V _{SIII}	V _{FG}
0.00	306.51	217.36	232.50	1149.70	48.00	2198.30	1886.38	1531.70	1464.90	102.74
2.54	290.03	206.21	208.92	1028.53	43.13	1987.98	1687.86	1381.92	1319.87	96.56
5.07	273.56	195.05	185.35	895.95	38.27	1762.70	1471.40	1220.75	1163.44	90.38
7.61	257.08	183.90	161.77	774.78	33.40	1552.38	1272.88	1070.97	1018.41	84.20
10.14	240.60	172.74	138.20	642.21	28.53	1327.11	1056.41	909.80	861.99	78.02
12.68	224.12	161.59	114.62	521.04	23.66	1116.79	857.90	760.02	716.96	71.84
15.21	207.65	150.44	91.05	388.46	18.80	891.51	641.43	598.85	560.53	65.66
17.75	191.17	139.28	67.47	267.29	13.93	681.19	442.92	449.07	415.50	59.48
20.28	174.69	128.13	43.90	134.72	9.06	455.91	226.45	287.90	259.08	53.30
22.82	158.21	116.97	20.32	13.54	4.20	245.60	27.94	138.13	114.05	47.12
25.35	141.74	105.82	-3.26	-119.03	-0.67	20.32	-188.53	-23.05	-42.38	40.94
27.89	125.26	94.67	-26.83	-240.20	-5.54	-190.00	-387.04	-172.82	-187.41	34.77
30.42	108.78	83.51	-50.41	-372.78	-10.41	-415.28	-603.51	-334.00	-343.83	28.59
32.96	92.30	72.36	-73.98	-493.95	-15.27	-625.60	-802.03	-483.77	-488.86	22.41
35.49	75.83	61.20	-97.56	-626.52	-20.14	-850.88	-1018.49	-644.95	-645.29	16.23
$V_{max} =$						2198.30	1886.38	1531.70	1464.90	102.74

ii. Bending M	loment										Service mon	nent due to
						Strength-I	Strength-IV	Service-I	Service-III	Fatigue	dead load	selfweight
x	M _{TR}	M _{TM}	M _{LN}	M _{DC}	M _{DW}	M _{S-I}	M _{S-IV}	M _{SI}	M _{SIII}	M _{FG}	Mg	M _{min}
0.00	462.25	66.00	0.00	0.00	0.00	696.20	0.00	378.88	303.11	565.20	0.00	0.0
2.54	874.19	344.85	559.51	2773.32	115.51	5772.12	4549.91	3950.17	3737.90	747.67	2888.83	1146.44
5.07	1286.13	623.70	1059.25	5263.50	218.68	10389.31	8634.43	7189.14	6847.75	930.14	5482.18	2170.43
7.61	1698.06	902.55	1499.22	7443.23	309.52	14511.94	12210.58	10068.51	9605.36	1112.61	7752.75	3071.90
10.14	2110.00	1181.40	1879.44	9339.03	388.01	18174.78	15320.09	12614.76	12037.22	1295.08	9727.04	3851.0
12.68	2521.94	1460.25	2199.89	10925.17	454.17	21344.11	17922.47	14802.20	14117.63	1477.54	11379.35	4507.64
15.21	2933.88	1739.10	2460.57	12226.59	507.99	24052.60	20056.96	16655.73	15871.50	1660.01	12734.58	5041.80
17.75	3345.81	2017.95	2661.50	13219.15	549.47	26268.63	21685.58	18151.25	17274.72	1842.48	13768.62	5453.49
20.28	3757.75	2296.80	2802.66	13926.18	578.61	28022.78	22845.06	19312.06	18350.61	2024.95	14504.80	5742.7
22.82	4169.69	2575.65	2884.05	14325.17	595.42	29285.50	23499.92	20115.65	19076.64	2207.42	14920.58	5909.5
25.35	3543.38	2645.50	2905.68	14437.81	599.88	28521.58	23684.37	19732.74	18793.73	1209.09	15037.70	5953.8
27.89	3131.44	2366.65	2867.55	14243.21	592.01	27590.16	23365.47	19169.12	18302.34	1026.62	14835.22	5875.7
30.42	2719.50	2087.80	2769.65	13761.48	571.80	26194.77	22574.91	18269.19	17482.01	844.15	14333.28	5675.1
32.96	2307.56	1808.95	2611.99	12973.29	539.25	24310.05	21282.25	17013.65	16313.43	661.69	13512.54	5352.0
35.49	1895.63	1530.10	2394.56	11897.17	494.36	21960.31	19516.67	15421.01	14815.11	479.22	12391.54	4906.54
$M_{max} =$						29285.50	23684.37	20115.65	19076.64	2207.42	15037.70	5953.83

Deflection Computation

I. Dead	l Load Deflectio	on T-Girder					
	Exte	rior T- Girder	dead load defle	ection calcula	tion including	long term ef	fects
	Uniform loads d	ead load on the					Total dead load long term
	gira	ler	Defl. Due to	Diaph. point	End rxn due to	Defl. Due to	deflection,
Span,	w_1 (coeff. of x)	w ₂ (coeff. of	$w_i, \Delta_w \cdot 1/EI_e$	load on the	diaph. Load, R	P_i, Δ_p .	$\Delta_d = 4 \cdot [\Delta_w + \Delta_P]_{instant.}$
		x^{2}) (N/mm)	<i>(mm)</i>	girder, P (N)	(N)	1/EI _e (mm)	$X 1/EI_e (mm)$
10000	154.70	-15.47	5.63E+15	600	300	1.25E+13	2.26E+16
20000	338.2	-16.91	9.85E+16	3000	4500	7.51E+14	3.97E+17
30000	561.3	-18.71	5.52E+17	6000	15000	5.07E+15	2.23E+18
40000	806	-20.15	1.88E+18	8400	29400	1.69E+16	7.58E+18
50000	1011.25	-20.225	4.60E+18	11400	51300	4.47E+16	1.86E+19
60000	1403.4	-23.39	1.10E+19	13800	75900	9.27E+16	4.45E+19
70000	1763.3	-25.19	2.20E+19	16800	109200	1.81E+17	8.88E+19
80000	2130.4	-26.63	3.97E+19	19200	144000	3.09E+17	1.60E+20
90000	2558.7	-28.43	6.79E+19	22200	188700	5.10E+17	2.74E+20
100000	2987	-29.87	1.09E+20	24600	233700	7.76E+17	4.38E+20
110000	3483.7	-31.67	1.69E+20	27600	289800	1.16E+18	6.80E+20
120000	3973.2	-33.11	2.50E+20	30000	345000	1.64E+18	1.01E+21
130000	4538.3	-34.91	3.63E+20	33000	412500	2.29E+18	1.46E+21
140000	5089	-36.35	5.08E+20	35400	477900	3.08E+18	2.05E+21
150000	5722.5	-38.15	7.03E+20	38400	556800	4.11E+18	2.83E+21

	Inte	rior T- Girder d	lead load defle	ection calculat	tion including	long term efj	fects
	Uniform	n loads	Defl. Due to	diaphram	To Low Los (Defl. Due to	Total dead load long term deflection,
- I ,			$w_i, \Delta_w x 1/EI_e$	point load on the girder, P	End rxn due to diaphram		$\Delta_d = 4 \cdot \left[\Delta_w + \Delta_P\right]_{instant.}$
L (mm)	(N/mm)	x^2) (N/mm)	(<i>mm</i>)	(N)	Load, $R(N)$	1/EI _e (mm)	X 1/EI _e (mm)
10000	70.65	-7.07	2.571E+15	1200	600	3.750E+13	1.044E+16
20000	170.1	-8.505	4.953E+16	6000	9000	1.5015E+15	2.041E+17
30000	309.15	-10.305	3.038E+17	12000	30000	1.01453E+16	1.256E+18
40000	469.8	-11.745	1.094E+18	16800	58800	3.37008E+16	<i>4.512E+18</i>
50000	763.375	-15.2675	3.473E+18	22800	102600	8.94188E+16	1.425E+19
60000	899.1	-14.985	7.068E+18	27600	151800	1.85369E+17	2.901E+19
70000	1174.95	-16.785	1.467E+19	33600	218400	3.62311E+17	6.012E+19
80000	1458	-18.225	2.717E+19	38400	288000	6.18701E+17	1.112E+20
90000	1802.25	-20.025	4.782E+19	44400	377400	1.01958E+18	1.954E+20
100000	2146.5	-21.465	7.812E+19	49200	467400	1.55134E+18	3.187E+20
110000	2559.15	-23.265	1.240E+20	55200	579600	2.31893E+18	5.052E+20
120000	2964.6	-24.705	1.864E+20	60000	690000	3.27564E+18	7.589E+20
130000	3445.65	-26.505	2.755E+20	66000	825000	4.58569E+18	1.120E+21
140000	3912.3	-27.945	3.907E+20	70800	955800	6.15002E+18	1.587E+21
150000	4461.75	-29.745	5.481E+20	76800	1113600	8.2134E+18	2.225E+21

All com	ponents assumed to Deflection dist						n loads should be fully loade		
	Deflection dist								
		ribution factor, n	$ng^d = N_L / N_g =$	0.5	IM =	33%	1.00, for two design lanes		
				Eack truck	wheel load defle	ction, Δ_{tk}	Total truck deflection	Lane load deflection	Total LL def.
Span,	$x_{at max.} M_w$	<i>.</i>			Δ_{tk2} . $1/EI_e$			Δ_{Ln} . 1/EI _e	mg^{d} . Δ_{LL} .
. (mm)	<i>(mm)</i>	a (mm)	b (mm)	<i>(mm)</i>	(<i>mm</i>)	<i>(mm)</i>	(<i>mm</i>)	(mm)	1/EI e (mm)
10000	4560	4560	5440	2.97E+15	9.79E+14	0.00E+00	5.26E+15	1.21E+15	2.63E+1
20000	9126	9126	10874	2.38E+16	1.98E+16	1.89E+15	6.05E+16	1.94E+16	3.03E+1
30000	13689	13689	16311	8.03E+16	7.53E+16	1.34E+16	2.25E+17	9.81E+16	1.12E+1
40000	18252	18252	21748	1.90E+17	1.85E+17	3.83E+16	5.50E+17	3.10E+17	2.75E+1
50000	22815	22815	27185	3.72E+17	3.67E+17	8.08E+16	1.09E+18	7.57E+17	5.45E+1
60000	27378	27378	32622	6.43E+17	6.40E+17	1.45E+17	1.90E+18	1.57E+18	1.02E+1
70000	31941	31941	38059	1.02E+18	1.02E+18	2.36E+17	3.03E+18	2.91E+18	1.83E+1
80000	40560	40560	39440	1.55E+18	1.52E+18	3.47E+17	4.53E+18	4.96E+18	3.05E+1
90000	45630	45630	44370	2.20E+18	2.17E+18	5.01E+17	6.48E+18	7.94E+18	4.78E+1
100000	50700	50700	49300	3.02E+18	2.98E+18	6.95E+17	8.90E+18	1.21E+19	7.17E+1
110000	55770	55770	54230	4.02E+18	3.97E+18	9.32E+17	1.19E+19	1.77E+19	1.03E+1
120000	60840	60840	59160	5.22E+18	5.17E+18	1.22E+18	1.54E+19	2.51E+19	1.45E+1
130000	59319	59319	70681	6.54E+18	6.57E+18	1.57E+18	1.95E+19	3.46E+19	1.97E+1
140000	63882	63882	76118	8.16E+18	8.21E+18	1.97E+18	2.44E+19	4.65E+19	2.63E+1
150000	60840	60840	89160	9.48E+18	9.65E+18	2.35E+18	2.86E+19	6.13E+19	3.42E+1
	P = 145000	145000	35000		$w_{I_{II}} = 9.3$				

3. Dead Load Deflection Box-Girder

	Uniform loads d gird		Deff Due to			Defl. Due to	Total dead load long tern deflection,
1	w_1 (coeff. of x)	w_2 (coeff. of	Defl. Due to $w_i, \Delta_w \cdot 1/EI_e$	Diaph. point load on the	End rxn due to diaph. Load, R	P_i, Δ_p .	$\Delta_d = 4 \cdot [\Delta_w + \Delta_P]_{instan}$
· /	· /	x^{2}) (N/mm)	<i>(mm)</i>	girder, P (N)	(N)	1/EI _e (mm)	,
10000	167.00	-16.70	6.08E+15	0	0	0.00E+00	2.43E+1
20000	362.8	-18.14	1.06E+17	2400	3600	6.01E+14	4.25E+
30000	587.4	-19.58	5.77E+17	4800	12000	4.06E+15	2.33E+
40000	840.8	-21.02	1.96E+18	7200	25200	1.44E+16	7.89E+
50000	1064.95	-21.299	4.84E+18	9600	43200	3.77E+16	1.95E+1
60000	1434	-23.9	1.13E+19	12000	66000	8.06E+16	4.54E+.
70000	1773.8	-25.34	2.21E+19	14400	93600	1.55E+17	8.92E+.
80000	2142.4	-26.78	3.99E+19	16800	126000	2.71E+17	1.61E+.
90000	2539.8	-28.22	6.74E+19	19200	163200	4.41E+17	2.71E+2
100000	2966	-29.66	1.08E+20	21600	205200	6.81E+17	4.35E+2
110000	3421	-31.1	1.66E+20	24000	252000	1.01E+18	6.67E+2
120000	3904.8	-32.54	2.46E+20	26400	303600	1.44E+18	9.88E+2
130000	4417.4	-33.98	3.53E+20	28800	360000	2.00E+18	1.42E+2
140000	4958.8	-35.42	4.95E+20	31200	421200	2.71E+18	1.99E +2
150000	5529	-36.86	6.79E+20	33600	487200	3.59E+18	2.73E+

			1 11 110			1 /	<u> </u>	
Interior Box- Giraei			dead load def	deflection calculation including long term effects				
				diaphram			Total dead load long term	
	Uniform	n loads	Defl. Due to	-	End rxn due to	Defl. Due to	deflection,	
Span,	w_1 (coeff. of x)	w ₂ (coeff. of	$w_i, \Delta_w x 1/EI_e$	the girder, P	diaphram	$P_i, \Delta_p x$	$\Delta_d = 4 \cdot \left[\Delta_w + \Delta_P \right]_{instant.}$	
L (mm)	(N/mm)	x^{2}) (N/mm)	<i>(mm)</i>	(N)	Load, $R(N)$	1/EI e (mm)	. 1/EI e (mm)	
10000	110.55	-11.06	4.024E+15	0	0	0.000E+00	1.609E+16	
20000	249.9	-12.495	7.276E+16	4800	7200	1.2012E+15	2.959E+17	
30000	418.05	-13.935	4.108E+17	9600	24000	8.1162E+15	1.676E+18	
40000	615	-15.375	1.433E+18	14400	50400	2.88864E+16	5.846E+18	
50000	922.075	-18.4415	4.195E+18	19200	86400	7.53E+16	1.708E+19	
60000	1095.3	-18.255	8.611E+18	24000	132000	1.6119E+17	3.509E+19	
70000	1378.65	-19.695	1.721E+19	28800	187200	3.10552E+17	7.009E+19	
80000	1690.8	-21.135	3.151E+19	33600	252000	5.41363E+17	1.282E+20	
90000	2031.75	-22.575	5.391E+19	38400	326400	8.81798E+17	2.192E+20	
100000	2401.5	-24.015	8.740E+19	43200	410400	1.36215E+18	3.551E+20	
110000	2800.05	-25.455	1.356E+20	48000	504000	2.01647E+18	5.506E+20	
120000	3227.4	-26.895	2.030E+20	52800	607200	2.88256E+18	8.234E+20	
130000	3683.55	-28.335	2.945E+20	57600	720000	4.00206E+18	1.194E+21	
140000	4168.5	-29.775	4.163E+20	62400	842400	5.42036E+18	1.687E+21	
150000	4682.25	-31.215	5.751E+20	67200	974400	7.18673E+18	2.329E+21	

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering Similarly done for all other cases required

Appendix B Unit Cost of Construction Materials

1. Unit Price of Concrete Material						
Cement (ETB/ku)	sand (ETB/m3)	Aggrg. (ETB/m3)	Water (ETB/m3)			
285	531.25	593.75	17.5			
	labour+equip cost =	25%	of material cost			
(over head + profit =	25%	of total cost			
	VAT =	15%	of total cost			
	total factor =	1.80	80% of mater	ial cost		
	mater=	56%				
labr+equip+	overhd+prot+vat =	44%		assume shrink	age =1.3 & wastage	e = 1.15
		100%				

					Quantity with in 1m3 of concrete				Unit Rate
comp. strength, f _c ' (Mpa)	cement	sand	Aggr.	8	cement (kg/m3)	sand (m3/m3)	88.8	water (m3/m3)	ETB/m3
15	1	2.02	2.72	0.5	306.25	0.48	0.65	0.12	2730
20	1	2.02	2.72	0.5	306.25	0.48	0.65	0.12	2730
25	1	2.02	2.72	0.5	306.25	0.48	0.65	0.12	2730
30	1	1.8	2.51	0.47	330.62	0.47	0.65	0.12	284
35	1	1.51	2.24	0.42	369.63	0.44	0.65	0.12	3010
40	1	1.25	2	0.37	413.64	0.41	0.65	0.12	3205
45	1	1.07	1.82	0.34	451.77	0.38	0.64	0.12	337
50	1	0.94	1.7	0.32	482.58	0.36	0.64	0.12	350
55	1	0.87	1.63	0.3	502.90	0.34	0.64	0.12	359
60	1	0.83	1.59	0.3	513.71	0.33	0.64	0.12	364
65	1	0.8	1.57	0.29	522.13	0.33	0.64	0.12	367
70	1	0.48	1.26	0.24	642.22	0.24	0.63	0.12	420
75	1	0.33	1.12	0.21	718.82	0.19	0.63	0.12	453
80	1	0.18	0.98	0.19	816.16	0.11	0.63	0.12	496
85	1	0.03	0.84	0.16	944.00	0.02	0.62	0.12	552
90	1	-0.12	0.69	0.13	1119.33	-0.11	0.61	0.12	628
			Summary of unit rate for concre	te					
			Grade of Concrete, Mpa	30	40	50	60	70	
			Unit Cost, ETB/mm ³ x10 ⁻⁹	2840	3205	3500	3640	4200	

		Reinj	forcing Steel unit cost				
Diam. (mm)	cost ETB/ton	kg/m	kg/12m	etb/berg	etb/kg	etb/ton	current
8	19010	0.395	4.736	90	19.01	19010	4746
10	16220	0.617	7.4	120	16.22	16220	4450
12	16900	0.888	10.656	180	16.9	16900	4125
14	24140	1.209	14.504	350	24.14	24140	4201
16	22700	1.579	18.944	430	22.7	22700	4218
20	19600	2.467	29.6	580	19.6	19600	4260
24	15250	3.552	42.624	650	15.25	15250	4350
30	11120	5.550	66.6	740	11.12	11120	4342
32	11220	6.315	75.776	850	11.22	11220	4365
avg =	17351.11			1	17.35	17351.11	43396.6

		labr+prof+ove	erhd (10%+15%+15% =40%) =	6940.44			
3. Unit Cost of Pr	estressing steel	I U	Vat (15%)=	3643.73			
	ost estimate (http://www.	alibaba.com)	Total unit cost =		ETB/ton		
<i>y</i> 0				kg/40ft container			
	U	trand per container =		tone/40ft contain			
	-	eight per container =		ETB/40ft container			
		t of freight per ton $=$		ETB/ton			
	container size=2280x259	91x12192mm =7.5x8	3.5x40ft				
		assume 20%+10%+	+15% = 45%				
unit cost analysis for j	prestressing strands wo	rks					
Dia. (mm)	Cost (ETB/ton)	Calculation of unit cost including tax (ETB/ton)					
9.53	19460	Base value		Rate	Tax		
11.11	20850	23583.05	Duty	5%	1179.1		
12.7	22240	24762.21	Excise	0%	0.0		
15.24	22796	24762.21	Surtax	10%	2476.2		
Arg selling price=	21336.5	27238.43	VAT	15%	4085.7		
Freight =	2171.88	23583.05	Withhold	3%	707.4		
<i>Insurance</i> (0.3%) =	64.01		Total	tax to be paid	8448.6.		
<i>Other cost (0.05%) =</i>	10.67		Total o	cost of material	32031.68		
	23583.05	Equipment + labour + profit & overhead					
Total material cost =					1		
<u>Total material cost =</u>				Total unit cost	46,450.00		
	alibaba.com/show room/p	restressing-steel-stra		Total unit cost	46,450.00		
(source: https://w w w .a	alibaba.com/show room/p s: https://w w w.erca.gov.		nd-price.html)	Total unit cost	46,450.00		

Appendix C Design Optimization Code and Outputs using GA in Matlab

Case (1). PC T-girder (code for interior girder)

```
function z = Tpcintgirderfun(x)
% Cost parameters
Cc = 2840e-9; % unit rate of fc'= 30 concrete (ETB/m3)
Cs = 27940; % unit rate of reinforcing steel (ETB/ton)
Cp = 46450; % unit rate of prestressing 7-wire strands (ETB/ton)
L = 50000; % span length (mm)
NL = 4; % number of legs of vertical stirrups
dsh = 12; % diam. of shear rebar (mm)
av = NL*pi*dsh^2/4; % area of f12mm for shear reinforcement within a
distance S (mm2)
density = 7.850e-9; % density of steel prestressing strands and
reinforcing bars (ton/mm3)
Ag = x(1) * x(2); % concrete cross sectional area of the girder (mm2)
Wstr = density*av* (L/x(6)+1)*2*(x(2)/2+2*(x(1)-280)); % weight of
stirrups (ton)
% Cost cost function prestressed exterior T-girder
% z = Cc*((Ag-As-Ap)*L-Wstr/density)+
Cs*(density*As*L+Wstr)+Cp*(density*Ap*L)
z = Cc^{*}((Ag - x(4) - x(5)))^{*}L-Wstr/density) + ...
    Cs*(density*x(4)*L + Wstr)+ Cp*density*x(5)*L;
```

```
% NON LINEAR CONSTRAINT FUNCTIONS DEFINITION FOR PC EXTER. T-GIRDER
BRIDGE
function [c, ceq] = Tpcintgirderconst(x)
% Problem parameters
h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
% S = x(6), y = x(7)
% Material properties
fc = 30; % cylindrical compr.strength (N/mm2)
fy = 420; % yield strength of reinforcing steel (N/mm2)
fpu = 1860; % Ultimate tensile strength of tendon (N/mm2)
Ec = 27660; % Young's modulus of concrete (N/mm2)
Es = 2e5; % Young's modulus of reinforcing steel (N/mm2)
Ep = 195e3; % Young's modulus of prestressing strands (N/mm2)
ns = Es/Ec; % Modular ratio os reinforcing steel
np =Ep/Ec; % Modular ratio os prestressing strands
% stress limits in concrete
fci = 0.8*fc; % Specified compressive strength of concrete at transfer
of prestress
fct = 0.6*fci; % Allowable compressive stress at transfer of prestress
ftt = 0.63*sqrt(fci); % Allowable tensile stress at transfer of
prestress
fcw = 0.45*fc; % Allowable compressive stress at working loads
ftw = 0.5*sqrt(fc); % Allowablee tensile stress at working loads
% stress ranges at extreme fibers
% stress limits in prestressing tendons
fpy = 0.9*fpu;% Yield strength of tendon
fpt = 0.74*fpu; %Allowable stress in tendons at transfer of prestress
fpe = 0.8*fpy; % Allowable stress in tendons at working loads
% Loadings
Vd = 2166.86e3; % design shear force (Nmm)
Md = 23751.24e6; % design bending moment (Nmm)
Mw = 15861.19e6; % Service limit state-I bending moment (Nmm)
M3 = 14887.59e6; % Service limit state-III bending moment (Nmm) for
tension control of pc
Mf = 1388.69e6; % fatigue load design bending moment (Nmm)
Mg = 11086.97e6; % Permanent load (self weight+additional deadloads)
bending moment (Nmm)
% Geometric properties
L = 50000; % Span length of the girder (mm)
gs = 2500; % gider spacing (mm)
woh = 1200; % width of overhang (mm)
wsup = 500; % width of support 9mm)
%be = 0.5*min([L/4,12*x(3)+x(2),gs])+min([L/8,6*x(3)+x(2)/2,woh]);%
effec.width for ext. girder
be = \min([L/4, 12*x(3)+x(2), gs]); effec.width for int. girder
% equations for effective depth of reinforcing steel
db = 32; % assumed diam. of bar assume it (mm).
Agg = 25; % maximu aggregare size (mm)
Sh = max([1.5*db,1.5*Agg,38]); % (mm) clear spacing of parallel pars
(horizontal)
Sv = max([25,db]); % (mm) clear spacing between layers of bars
(vertically)
as = pi*db^2/4; % area of a single reinf. bar (mm2)
nb = x(4)/as; % Number of bars
```

```
npr = min([(x(2)+Sh-124)/(Sh+db),nb]); % Number of bars per a row
nr = nb/npr; %Number of reinforcement rows
hr = nr*db+ Sv*(nr-1); % Height of reinforcement rows
dst = 62+hr/2; % depth from extreme tension fiber to centroid of reinf.
steel (mm)
d = x(1) - dst; % effective depth of reinf. steel(mm)
% effective depth of prestressing steel
dsrd = 15.24; % assumed diam. of prestressing low relaxation strand
(mm)
Nspt = 31;% number of strands per tendon
ap = 0.77*pi*dsrd^2/4; % steel area of a single strand (mm2)(using a
reduction factor of 77% of nominal area of the strand)
dduct = 125; % diameter of duct, (mm)
Sduct = 38; % clear vertical and horizontal spacing of ducts (mm)
nst = x(5)/ap ; % number of strands required
nt = nst/Nspt; % Number of tendons
ntr = min([(x(2)+Sduct-200)/(dduct+Sduct),nt]); %Number of tendons per
a row
nrt = nt/ntr; % Number of rows of prestressing tendons
hrt = dduct*nrt+Sduct*(nrt - 1); % height of rows of prestressing
tendons
dpt = 50+12+Sduct+25+hr+hrt/2; % Depth from extreme tension fiber to
centroid of prestressing tendons (mm)
dp = x(1) - dpt; % Depth from extreme top fiber to centroid of
prestressing steel (mm)
% shear reinforcement steel
NL = 4; % No. of legs of vertical stirrups
dsh = 12; % diam. of bar for shear reinforcement (mm)
av = NL*pi*dsh^2/4; % area of shear reinforcement within a distance S
(mm2)
% section properties
Ac = x(2) * x(1) + (be-x(2)) * x(3); % cross sectional area of concrete (mm2)
yt = (x(2)*x(1)^{2/2}+(be-x(2))*x(3)^{2/2})/(x(2)*x(1)+(be-x(2))*x(3)); 
depth from c.g of section to extreme top fiber (mm)
yb = x(1) - yt; % depth from c.g of section to extreme top fiber (mm)
I = x(2) * x(1) ^{3}/12 + x(2) * x(1) * (x(1)/2 - yt)^{2} + (be - x(2)) * x(3)^{3}/12 + ...
    (be-x(2))*x(3)*(yt-x(3)/2)^2; % Gross moment of inertia of concrete
mm4
Zb = I/yb; % section modulus of the extreme bootom fiber (mm3)
Zt = I/yt; % section modulus of the extreme top fiber (mm3)
% extreme fiber stresses for computing Prestressing force
 %fsup = ftt-Mg/Zt; % extreme bottom fiber stress, finf developed at a
given eccentricity e (N/mm2)
finf = ftw/0.85+Mw/(0.85*Zb); % extreme bottom fiber stress, finf
developed at a given eccentricity e (N/mm2)
e = yb - dpt; % possible maximum eccentricity of prestressing force
from c.g.c (mm)
P = Ac*finf*Zb/(Zb+Ac*e); % x(5)*fpt; minimum prestressing force at a
knwon eccentricity, e (N)
% NA depth c from equivalent stress block ananlysis
c0 = (x(5)*fpu+x(4)*fy-0.85^{2}fc*(be-x(2))*x(3))/(0.85^{2}fc*x(2)+...
        0.28*x(5)*fpu/dp);
if(c0 > x(3))
c = c0; % NA depth for T section (mm)
else
```

```
c = (x(5)*fpu+x(4)*fy)/(0.85^2*fc*be+0.28*x(5)*fpu/dp); % NA depth for
rectangular section (mm)
end
fps = fpu*(1-0.28*c/dp); % Average stress in prestressing steel (N/mm2)
de = (x(5)*fps*dp+x(4)*fy*d)/(x(5)*fps+x(4)*fy); % effective depth from
extreme compression fiber to centroid of tension force (mm)
a = 0.85*c; % depth of equivalent stress block (mm)
%Nominal flexural resistance, Mn
if(c>x(3))
Mn = x(5)*fps*(dp-a/2)+x(4)*fy*(d-a/2)+0.85^{2*fc*x(3)}*(be-...
        x(2))*(a/2-x(3)/2); % Mn for T section (mm)
else
Mn = x(5)*fps*(dp-a/2)+x(4)*fy*(d-a/2); % Mn for rectangular section
(mm)
end
% shearing force parameters
dv = max([0.9*de, 0.72*x(1), de-a/2]); % effective shear depth
Vu = Vd*(L/2-wsup/2-d)/(L/2); % ultimate design shear force at a
distance d from face of support (N)
Vc = 0.083*2*sqrt(fc)*x(2)*dv; %
Vs = av*fy*dv/(x(6)); %
Vp = 0.85*P*(4*e/L); %
Vn = min([(Vc+Vs+Vp), (0.25*fc*x(2)*dv+Vp)]); %
% limits of reinforcement
fcpe = 0.85*P*(1/Ac+e/Zb); % compressive stress in concrete due to
effective prestress forces only (N/mm2)
fr = 0.97*sqrt(fc); % modulus of rupture (N/mm2)
Mcr = (fcpe+fr) *I/yb; % cracking moment (Nmm)
% limits of max. reinf
% a). using reinf. index omega-om
Asn = 0;
rhp = x(4) / (be*d);
rhn = Asn/(be*d);
rhpr = x(5)/(be*dp);
Omp = rhp*fy/fc;
Omn = rhn*fy/fc;
Ompr = rhpr*fps/fc;
% b). ucing imperic.
% c/de <= 0.42
% cracked section analysis
fp1 = 0.85*P/Ac; % stress in the prestressing tendons prior to the
application of Mw (N/mm2)
fp2 = 0.85*np*P*(e^2/I+1/Ac); % stress in prestressing tendons due to
decompression (N/mm2)
% incremental strain during the appl. of Mw
\% let NA depth of cracked section be y = x(7)
if(x(7) > x(3))
eo = (x(5)*(fp1+fp2))/(0.5*Ec*(x(2)*x(7)+(be-x(2))*x(3)*...)
    (1+(x(7)-x(3))/x(7))) - (Es * x(4) * (d-x(7))/x(7) + Ep * x(5) * (dp-x(7))/x(7)) + Ep * x(5) * (dp-x(7))/x(7) + Ep * x(5) * (dp-x(7))/x(7))
x(7))/x(7));
else
eo = (x(5)*(fp1+fp2)) / (0.5*Ec*be*x(7) - (Es*x(4)*(d-
x(7))/x(7) + Ep^*x(5)^*...
    (dp-x(7))/x(7));
end
fco = eo*Ec; % stress in concrete at service limit state (N/mm2)
```

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

```
fs = Es * eo * (d-x(7)) / x(7); % tensile stress in reinforcing steel at
service stage (N/mm2)
fp3 = Ep*eo*(dp-x(7))/x(7); % tensile stress in prestressing steel at
service stage (N/mm2)
fp = fp1+fp2+fp3; % total tensil stress in prestressing steel at
service stage (N/mm2)
Ts = x(4)*fs; % tension force in reinforcing steel at service limit
state (N)
Tp = x(5)*fp; % tension force in prestressing steel at service limit
state (N)
C = 0.5 \pm (7);  total compression force in concrete (N)
Cn = 0.5 + fco + (be - x(2)) + (x(7) - x(3)) + 2/x(7); % a force used to reduce c
if y>hf (N)
dz = x(7)/3; % location of centroid of comp. force C from top (mm)
dzn = x(3) + (x(7) - x(3))/3; % location of centroid of comp. force Cn from
top (mm)
% section properties of cracked transformed section
% -----moment of inertia of cracked section-----moment of inertia of cracked section
---%
if(x(7) > x(3))
Ict = x(2) * x(7) ^{3/3} + (be - x(2)) * x(3) ^{3/12} + (be - x(2)) * x(3) * (x(7) - x(2)) + (be -
x(3)/2)^2+...
       np*x(5)*(dp-x(7))^{2+ns*x(4)*(d-x(7))^{2}; \ \ 2nd \ moment \ of \ area \ of
cracked transformed section (mm4)
else
Ict = be*x(7)^3/3+np*x(5)*(dp-x(7))^2+ns*x(4)*(d-x(7))^2; % 2nd moment
of area of cracked transformed section (mm4)
end
% ------deflection parameters------
frk = 0.63*sqrt(fc); % modulus of rupture for Ie computation (N/mm2)
Mck = frk*I/yb; % cracking moment for deflection computation(Nmm)
Ie = min([(Mck/Mw)^3*I+(1-(Mck/Mw)^3)*Ict, I]); %effective moment of
inertia for deflection calculation (mm4)
defD = 1.425E+19/(Ec*Ie); % total dead load deflection including long
term effcets (mm)
defLL = 5.45E+17/(Ec*Ie); % maximum live load deflection (mm)
defP = 0.85*5*P*e*L^2/(48*Ec*Ie); % % total effec. prestressing load
deflection (mm)
% maximum crack width
cw1 = (fs - 40) *1e-3; % CEB-FIP-1970, crack width eq. (mm)
h1 = d-x(7)-dst; % depth from steel centroid to NA (mm)
h2 = d-x(7); % depth from NA ~ tension face (mm)
dc = 62+db/2; % concrete cover to closest bar layer (mm)
Atc = x(2) * 2 * dst/nb; % effective tension area of concrete per bar (mm2)
cw2 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e-3*0.1451; % Gergely Lut2-1968
crack equation (mm)
cw = max([cw1, cw2]); % maximu of the crack width given by the above
eqns.
cwa = 0.41; % allowable crack width for moderate exposure condition
% fatigue stress ranges
ffs = ns* Mf*(d-x(7))/Ict; % fatigue stress range in reinforcing steel
(N/mm2)
```

```
ffp = np^* Mf^*(dp-x(7))/Ict; % fatigue stress range in prestressing
steel (N/mm2)
% partial prestressing ratio
PPR = x(5)*fpy/(x(5)*fpy+x(4)*fy); % partial prestressing ratio, 0.5 <
PPR < 1
%% Non linear inequality constraints [c] written of the form gi(xi)<= 0</pre>
g1 = ftt-P*(1/Ac+e/Zt)-Mg/Zt;
g2 = P*(1/Ac+e/Zb)-Mg/Zb-fct;
q3 = 0.85 * P * (1/Ac - e/Zt) + Mw/Zt - fcw;
q4 = ftw-0.85*P*(1/Ac+e/Zb)+M3/Zb;
g5 = Md-0.9*Mn; % flexural strength required
g6 = Vu-0.9*Vn; % shear strength required
q7 = Vu/0.9-0.25*fc*x(2)*dv-Vp; % web requirment for shear
% limits of flexural reinf.
q8 = abs(Md)/(0.9*dv)+abs(Vu/0.9-Vp)-0.5*min([Vu/0.9,Vs])- ...
    x(4)*fy-x(5)*fps; % longitudinal reinf.
g9 = Vu/0.9-0.5*Vs-Vp-x(4)*fy-x(5)*fps; % min. longitudinal reinf.
g10 = min([1.33*Md,1.2*Mcr])-0.9*Mn; % minimumu flexural reinf. reqd
g11 = 0.004 \times yb \times (2) - x(4) - x(5); % minimumu flexural reinf. reqd
g12 = Omp+Ompr-Omn-0.3; % maximumu limit of flexural reinf. reqd
g13 = c/de-0.42; % maximumu flexural reinf. reqd
% limits of traverse reinforcement
g14 = x(6) - fy*av/(0.083*x(2)*sqrt(fc)); %shear reinf.
if(abs(Vu-0.9*Vp)/(0.9*dv*x(2)) < 0.125*fc)
g15 = x(6) - min([0.8*dv, 600]); % spacing of shear reinf.
else
g15 = x(6) - min([0.4*dv, 300]); % spacing of shear reinf.
end
% service load stress limit
q16 = P - x(5) * fpt; % stress limit in tendons at transfer
g17 = fp - fpe; % stress limit in tendons at service limit state
g18 = fs - min([206,0.6*fy]); % stress limit in reinforcing steel at
service limit state
% deflection limit
radd = 0;
tol = 1e-6;
confcnvald = defD-defP-radd;
g19 = confcnvald-tol; % camber due to prestressing shall counter
balanced by dead load deflection
g20 = -confcnvald-tol;
g21 = defLL-L/1000; % limit of vehicular live load deflection
% Crack width
g22 = cw-cwa; % spacing of longitudinal bars for crck control
% fatigue stress limit
g23 = ffs-161.5; % limit on fatigue stress limit in reinforcing steel
g24 = ffp-125; % limit on fatigue stress limit in prestressing steel
% PPR limit
g25 = 0.5-PPR; % limit on partial prestressing ratio PPR > 0.50
g26 = PPR-1; % limit on partial prestressing ratio PPR < 1.00
% service load degree of prestress
%g27 = 0.5-Mdec/Mw; % service load degree of prestress > 0.50
%g28 = Mdec/Mw-1; % service load degree of prestress < 1.00</pre>
% check equilibrium conditions
% summations of internal couple must equal to working moment
```

```
if x(7) > x(3)
rad = Mw;
tol = 1e-6;
confcnvalm = Ts*d+Tp*dp+Cn*dzn-C*dz-rad;
g29 = confcnvalm-tol; % sum of service load moments when NA depth y >
hf
q30 = -confcnvalm-tol;
else
rad = Mw;
tol = 1e-6;
confcnvalm = Ts*d+Tp*dp-C*dz-rad;
g29 = confcnvalm-tol; % sum of service load moments when NA depth y <
hf
g30 = -confcnvalm-tol;
end
if x(7) > x(3)
radf = 0;
tol = 1e-6;
confcnvalf = Ts+Tp+Cn-C-radf;
g31 = confcnvalf-tol; % sum of service load moments when NA depth y >
hf
 g32 = -confcnvalf-tol;
else
 radf = 0;
tol = 1e-6;
confcnvalf = Ts+Tp-C-radf;
g31 = confcnvalf-tol; % sum of service load moments when NA depth y <
hf
 g32 = -confcnvalf-tol;
end
q33 = 0.20 \times x(1) - x(7);
g34 = x(7) - 0.75 * x(1);
% non linear equality const. functions defn.
C =
[q1;q2;q3;q4;q5;q6;q7;q8;q9;q10;q11;q12;q13;q14;q15;q16;q17;q18;q19;q20
;...
    g21;g22;g23;g24;g25;g26;g29;g30;g31;g32;g33;g34]; % non linear
inequality const. functions defn.
ceq = [];
%% MAIN CODE FOR RUNNING THE GA ALGORITHIM
% Problem parameters
h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
% S = x(6), y = x(7)
% set boundary values of varibles
lb = [300 \ 300 \ 200 \ 500 \ 600 \ 200 \ 50];
ub = [2500 500 300 35e3 35e3 450 900];
%% set ga options
opts = optimoptions(@ga, ...
                     'PopulationSize',5000, ...
                     'CreationFcn', @gacreationlinearfeasible, ...
                     'MaxGenerations',1000, ...
                     'FitnessScalingFcn',@fitscalingprop, ...
                     'NonlinearConstraintAlgorithm', 'auglag', ...
                     'InitialPenalty',10,...
                     'PenaltyFactor',1000, ...
```

Jimma University School of Graduate Studies Jimma Institute of Technology Faculty of Civil and Environmental Engineering

```
'FunctionTolerance', 1e-10, ...
                    'ConstraintTolerance', 1e-10);
                    %'PlotFcn',@gaplotbestf);
% Call |ga| to Solve the Problem
% We can now call |ga| to solve the problem.
88
rng(1,'twister') % random number generator for reproducibility
[xbest, fbest, exitflag] = ga(@Tpcintgirderfun,7,[],[],[],[],lb,ub,...
    @Tpcintgirderconst,1:3,opts);
88
% Analyze the Results
display(xbest);
%% return optimal value
fprintf('\nCost function returned by ga = %g\n', fbest);
% Results
% xbest =
[2500,499,300,16825.9907946415,9647.44734325986,304.083639994683,899.44
6462904115]
% fbest = 685751
```

```
Case (2). PC box girder (code for interior girder)
```

```
function z = Bpcintgirderfun(x)
% Map the discrete variables
% Cost parameters
L = 50000; % span length (mm)
gs = 2500; % boottom flange width, mm
NG = 4; % number of girders
tb = max([140, (gs-x(2))/30]); % thickness of bottom flange (/16 for RC,
/30 for PC), mm
tbmin = min([140, (gs-x(2))/30]); % minimum of bottom slab thickness, mm
Asb = 0.004*tb*((NG-1)*qs+x(2))+0.005*tbmin*((NG-1)*qs+x(2)); % total
area of bottom slab reinf.
VAsb = 0.004*tb*((NG-1)*qs+x(2))*L+0.005*tbmin*((NG-1)*qs+x(2))^2; %
volume of bottom slab reinf.
Cc = 2840e-9; % unit rate of fc'= 30 concrete (ETB/m3)
Cs = 27940; % unit rate of reinforcing steel (ETB/ton)
Cp = 46450; % unit rate of prestressing 7-wire strands (ETB/ton)
NL = 4; % number of legs of vertical stirrups
dsh = 12; % diam. of shear rebar (mm)
av = NL*pi*dsh^2/4; % area of f12mm for shear reinforcement within a
distance S (mm2)
density = 7.850e-9; % density of steel_prestressing strands and
reinforcing bars (ton/mm3)
Ag = x(1)*x(2)+tb*gs; % concrete cross sectional area of the girder
(mm2)
Wstr = density*av*(L/x(6)+1)*2*(x(2)/2+2*(x(1)-280)); % weight of
stirrups (ton)
% Cost cost function prestressed exterior T-girder
```

```
% z = Cc*((Ag-As-Ap)*L-Wstr/density)+
Cs*(density*As*L+Wstr)+Cp*(density*Ap*L)
z = Cc^*((Aq - x(4) - x(5))^*L-Wstr/density)+...
    Cs*(density*x(4)*L + density*VAsb/NG + Wstr)+ Cp*density*x(5)*L;
% NON LINEAR CONSTRAINT FUNCTIONS DEFINITION FOR PC EXTER. T-GIRDER
BRIDGE
function [c, ceq] = Bpcintgirderconst(x)
% Problem parameters
h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
% S = x(6), y = x(7)
% Material properties
fc = 30; % cylindrical compr.strength (N/mm2)
fy = 420; % yield strength of reinforcing steel (N/mm2)
fpu = 1860; % Ultimate tensile strength of tendon (N/mm2)
Ec = 27660; % Young's modulus of concrete (N/mm2)
Es = 2e5; % Young's modulus of reinforcing steel (N/mm2)
Ep = 195e3; % Young's modulus of prestressing strands (N/mm2)
ns = Es/Ec; % Modular ratio os reinforcing steel
np =Ep/Ec; % Modular ratio os prestressing strands
% stress limits in concrete
fci = 0.8*fc; % Specified compressive strength of concrete at transfer
of prestress
fct = 0.6*fci; % Allowable compressive stress at transfer of prestress
ftt = 0.63*sqrt(fci); % Allowable tensile stress at transfer of
prestress
fcw = 0.45*fc; % Allowable compressive stress at working loads
ftw = 0.5*sqrt(fc); % Allowablee tensile stress at working loads
% stress limits in prestressing tendons
fpy = 0.9*fpu;% Yield strength of tendon
fpt = 0.74*fpu; %Allowable stress in tendons at transfer of prestress
fpe = 0.8*fpy; % Allowable stress in tendons at working loads
% Loadings
Vd = 2357.21e3; % design shear force (Nmm)
Md = 58671.06e6; % design bending moment (Nmm)
Mw = 40218.79e6; % Service limit state-I bending moment (Nmm)
M3 = 39625.33e6; % Service limit state-III bending moment (Nmm) for
tension control of pc
Mf = 1466.48e6; % fatigue load design bending moment (Nmm)
Mg = 37251.47e6; % Permanent load (self weight+additional deadloads)
bending moment (Nmm)
% Geometric properties
L = 50000; % Span length of the girder (mm)
gs = 2500; % gider spacing (mm)
woh = 1200; % width of overhang (mm)
wsup = 500; % width of support 9mm)
%be = 0.5*min([L/4,12*x(3)+x(2),gs])+min([L/8,6*x(3)+x(2)/2,woh]);%
effec.width for ext. girder
be = min([L/4, 12*x(3)+x(2), gs]);% effec.width for int. girder
bb = be; % boottom flange width, mm
tb = max([140, (gs-x(2))/30]); % thickness of bottom flange (/16 for RC,
/30 for PC), mm
% equations for effective depth of reinforcing steel
```

```
db = 32; % assumed diam. of bar assume it (mm).
Agg = 25; % maximu aggregare size (mm)
Sh = max([1.5*db,1.5*Agq,38]); % (mm) clear spacing of parallel pars
(horizontal)
Sv = max([25,db]); % (mm) clear spacing between layers of bars
(vertically)
as = pi*db^2/4; % area of a single reinf. bar (mm2)
nb = x(4)/as; % Number of bars
npr = min([(x(2)+Sh-124)/(Sh+db),nb]); % Number of bars per a row
nr = nb/npr; %Number of reinforcement rows
hr = nr*db+ Sv*(nr-1); % Height of reinforcement rows
dst = 62+hr/2; % depth from extreme tension fiber to centroid of reinf.
steel (mm)
d = x(1)-dst; % effective depth of reinf. steel(mm)
% effective depth of prestressing steel
dsrd = 15.24; % assumed diam. of prestressing low relaxation strand
(mm)
Nspt = 31;% number of strands per tendon
ap = 0.77*pi*dsrd^2/4; % steel area of a single strand (mm2) (using a
reduction factor of 77% of nominal area of the strand)
dduct = 125; % diameter of duct, (mm)
Sduct = 38; % clear vertical and horizontal spacing of ducts (mm)
nst = x(5)/ap; % number of strands required
nt = nst/Nspt; % Number of tendons
ntr = min([(x(2)+Sduct-200)/(dduct+Sduct),nt]); %Number of tendons per
a row
nrt = nt/ntr; % Number of rows of prestressing tendons
hrt = dduct*nrt+Sduct*(nrt - 1); % height of rows of prestressing
tendons
dpt = 50+12+Sduct+25+hr+hrt/2; % Depth from extreme tension fiber to
centroid of prestressing tendons (mm)
dp = x(1) - dpt; % Depth from extreme top fiber to centroid of
prestressing steel (mm)
% shear reinforcement steel
NL = 4; % No. of legs of vertical stirrups
dsh = 12; % diam. of bar for shear reinforcement (mm)
av = NL*pi*dsh^2/4; % area of shear reinforcement within a distance S
(mm2)
% section properties
Ac = x(2) * x(1) + (be-x(2)) * x(3) + (bb-x(2)) * tb; % cross sectional area of
concrete (mm2)
yt = (x(2) * x(1) ^{2/2}+(be-x(2)) * x(3) ^{2/2}+(bb-x(2)) * tb*(x(1) - x(2)) * tb*(x(1) - x(1)) * tb*(x(1
tb/2))/(x(2)*x(1)+(be-x(2))*x(3)+(bb-x(2))*tb); % depth from c.g of
section to extreme bottom fiber (mm)
yb = x(1) - yt; % depth from c.g of section to extreme top fiber (mm)
I = x(2) * x(1) ^{3}/12 + x(2) * x(1) * (x(1)/2 - yt)^{2} + (be-x(2)) * x(3)^{3}/12 + ...
       (be-x(2)) * x(3) * (yt-x(3)/2) ^{2+} (bb-x(2)) * tb^{3/12+} (bb-x(2)) * tb^{*...}
       (yt-(x(1)-tb/2))^2; % Moment of inertia mm4
Zb = I/yb; % section modulus of the extreme bootom fiber (mm3)
Zt = I/yt; % section modulus of the extreme top fiber (mm3)
% extreme fiber stresses for computing Prestressing force
 %fsup = ftt-Mg/Zt; % extreme bottom fiber stress, finf developed at a
given eccentricity e (N/mm2)
finf = ftw/0.85+Mw/(0.85*Zb); % extreme bottom fiber stress, finf
developed at a given eccentricity e (N/mm2)
```

92

```
e = yb - dpt; % possible maximum eccentricity of prestressing force
from c.q.c (mm)
P = Ac*finf*Zb/(Zb+Ac*e); % x(5)*fpt; minimum prestressing force at a
knwon eccentricity, e (N)
% NA depth c from equivalent stress block ananlysis
c0 = (x(5)*fpu+x(4)*fy-0.85^{2}*fc*(be-x(2))*x(3))/(0.85^{2}*fc*x(2)+...
        0.28*x(5)*fpu/dp);
if(c0 > x(3))
c = c0; % NA depth for T section (mm)
else
c = (x(5)*fpu+x(4)*fy)/(0.85^2*fc*be+0.28*x(5)*fpu/dp); % NA depth for
rectangular section (mm)
end
fps = fpu*(1-0.28*c/dp); % Average stress in prestressing steel (N/mm2)
de = (x(5)*fps*dp+x(4)*fy*d)/(x(5)*fps+x(4)*fy); % effective depth from
extreme compression fiber to centroid of tension force (mm)
a = 0.85*c; % depth of equivalent stress block (mm)
%Nominal flexural resistance, Mn
if(c>x(3))
Mn = x(5)*fps*(dp-a/2)+x(4)*fy*(d-a/2)+0.85^{2}*fc*x(3)*(be-...
        x(2))*(a/2-x(3)/2); % Mn for T section (mm)
else
Mn = x(5)*fps*(dp-a/2)+x(4)*fy*(d-a/2); % Mn for rectangular section
(mm)
end
% shearing force parameters
dv = max([0.9*de, 0.72*x(1), de-a/2]); % effective shear depth
Vu = Vd*(L/2-wsup/2-d)/(L/2); % ultimate design shear force at a
distance d from face of support (N)
Vc = 0.083*2*sqrt(fc)*x(2)*dv; %
Vs = av*fy*dv/(x(6)); %
Vp = 0.85*P*(4*e/L); %
Vn = min([(Vc+Vs+Vp), (0.25*fc*x(2)*dv+Vp)]); %
% limits of reinforcement
fcpe = 0.85*P*(1/Ac+e/Zb); % compressive stress in concrete due to
effective prestress forces only (N/mm2)
fr = 0.97*sqrt(fc); % modulus of rupture (N/mm2)
Mcr = (fcpe+fr) *I/yb; % cracking moment (Nmm)
% limits of max. reinf
% a). using reinf. index omega-om
Asn = 0;
rhp = x(4) / (be*d);
rhn = Asn/(be*d);
rhpr = x(5)/(be*dp);
Omp = rhp*fy/fc;
Omn = rhn*fy/fc;
Ompr = rhpr*fps/fc;
% b). ucing imperic.
% c/de <= 0.42
% cracked section analysis
fp1 = 0.85*P/Ac; % stress in the prestressing tendons prior to the
application of Mw (N/mm2)
fp2 = 0.85*np*P*(e^2/I+1/Ac); % stress in prestressing tendons due to
decompression (N/mm2)
% incremental strain during the appl. of Mw
\% let NA depth of cracked section be y = x(7)
```

```
if(x(7) > x(3))
eo = (x(5)*(fp1+fp2))/(0.5*Ec*(x(2)*x(7)+(be-x(2))*x(3)*...
        (1+(x(7)-x(3))/x(7))) - (Es*x(4)*(d-x(7))/x(7)+Ep*x(5)*(dp-x(7)))
x(7))/x(7));
else
eo = (x(5)*(fp1+fp2))/(0.5*Ec*be*x(7)-(Es*x(4)*(d-
x(7))/x(7) + Ep * x(5) * ...
        (dp-x(7))/x(7));
end
fco = eo*Ec; % stress in concrete at service limit state (N/mm2)
fs = Es*eo*(d-x(7))/x(7); % tensile stress in reinforcing steel at
service stage (N/mm2)
fp3 = Ep*eo*(dp-x(7))/x(7); % tensile stress in prestressing steel at
service stage (N/mm2)
fp = fp1+fp2+fp3; % total tensil stress in prestressing steel at
service stage (N/mm2)
Ts = x(4)*fs; % tension force in reinforcing steel at service limit
state (N)
Tp = x(5)*fp; % tension force in prestressing steel at service limit
state (N)
C = 0.5 \pm (7); total compression force in concrete (N)
Cn = 0.5 + fco + (be - x(2)) + (x(7) - x(3)) + 2/x(7); % a force used to reduce c
if y>hf (N)
dz = x(7)/3; % location of centroid of comp. force C from top (mm)
dzn = x(3) + (x(7) - x(3))/3; % location of centroid of comp. force Cn from
top (mm)
% section properties of cracked transformed section
% -----moment of inertia of cracked section-----moment of inertia
---%
if(x(7) > x(3))
Ict = x(2) * x(7) ^{3/3} + (be - x(2)) * x(3) ^{3/12} + (be - x(2)) * x(3) * (x(7) - x(2)) + (be -
x(3)/2)^2+...
       np^{x}(5)^{(dp-x(7))^{2+ns^{x}(4)^{(d-x(7))^{2}}}  2nd moment of area of
cracked transformed section (mm4)
else
Ict = be*x(7)^3/3+np*x(5)*(dp-x(7))^2+ns*x(4)*(d-x(7))^2; % 2nd moment
of area of cracked transformed section (mm4)
end
% -----deflection parameters-----
____
frk = 0.63*sqrt(fc); % modulus of rupture for Ie computation (N/mm2)
Mck = frk*I/yb; % cracking moment for deflection computation(Nmm)
Ie = min([(Mck/Mw)^3*I+(1-(Mck/Mw)^3)*Ict, I]); %effective moment of
inertia for deflection calculation (mm4)
defD = 1.708E+19/(Ec*Ie); % total dead load deflection including long
term effcets (mm)
defLL = 5.45E+17/(Ec*Ie); % maximum live load deflection (mm)
defP = 0.85*5*P*e*L^2/(48*Ec*Ie); % % total effec. prestressing load
deflection (mm)
% maximum crack width
cw1 = (fs - 40)*1e-3; % CEB-FIP-1970, crack width eq. (mm)
h1 = d-x(7)-dst; % depth from steel centroid to NA (mm)
h2 = d-x(7); % depth from NA ~ tension face (mm)
```

```
dc = 62+db/2; % concrete cover to closest bar layer (mm)
Atc = x(2) * 2 * dst/nb; % effective tension area of concrete per bar (mm2)
cw2 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e-3*0.1451; % Gergely Lut2-1968
crack equation (mm)
cw = max([cw1, cw2]); % maximu of the crack width given by the above
eqns.
cwa = 0.41; % allowable crack width for moderate exposure condition
% fatigue stress ranges
ffs = ns* Mf*(d-x(7))/Ict; % fatigue stress range in reinforcing steel
(N/mm2)
ffp = np* Mf*(dp-x(7))/Ict; % fatigue stress range in prestressing
steel (N/mm2)
% partial prestressing ratio
PPR = x(5)*fpy/(x(5)*fpy+x(4)*fy); % partial prestressing ratio, 0.5 <
PPR < 1
%% Non linear inequality constraints [c] written of the form gi(xi)<= 0
g1 = ftt-P*(1/Ac+e/Zt)-Mg/Zt;
g2 = P*(1/Ac+e/Zb)-Mg/Zb-fct;
q3 = 0.85*P*(1/Ac-e/Zt)+Mw/Zt-fcw;
g4 = ftw-0.85*P*(1/Ac+e/Zb)+M3/Zb;
g5 = Md-0.9*Mn; % flexural strength required
q6 = Vu-0.9*Vn; % shear strength required
g7 = Vu/0.9-0.25*fc*x(2)*dv-Vp; % web requirment for shear
% limits of flexural reinf.
g8 = abs(Md)/(0.9*dv)+abs(Vu/0.9-Vp)-0.5*min([Vu/0.9,Vs])- ...
    x(4)*fy-x(5)*fps; % longitudinal reinf.
g9 = Vu/0.9-0.5*Vs-Vp-x(4)*fy-x(5)*fps; % min. longitudinal reinf.
g10 = min([1.33*Md,1.2*Mcr])-0.9*Mn; % minimumu flexural reinf. reqd
q11 = 0.004 \times yb \times (2) - x(4) - x(5); % minimumu flexural reinf. reqd
g12 = Omp+Ompr-Omn-0.3; % maximumu limit of flexural reinf. reqd
g13 = c/de-0.42; % maximumu flexural reinf. reqd
% limits of traverse reinforcement
q14 = x(6) - fy^*av / (0.083 * x(2) * sqrt(fc)); % shear reinf.
if (abs(Vu-0.9*Vp)/(0.9*dv*x(2)) < 0.125*fc)
g15 = x(6) - min([0.8*dv, 600]); % spacing of shear reinf.
else
g15 = x(6)-min([0.4*dv,300]); % spacing of shear reinf.
end
% service load stress limit
g16 = P - x(5)*fpt; % stress limit in tendons at transfer
g17 = fp - fpe; % stress limit in tendons at service limit state
g18 = fs - min([206,0.6*fy]); % stress limit in reinforcing steel at
service limit state
% deflection limit
radd = 0;
tol = 1e-6;
confcnvald = defD-defP-radd;
g19 = confcnvald-tol; % camber due to prestressing shall counter
balanced by dead load deflection
q20 = -confcnvald-tol;
g21 = defLL-L/1000; % limit of vehicular live load deflection
% Crack width
g22 = cw-cwa; % spacing of longitudinal bars for crck control
% fatigue stress limit
```

```
g23 = ffs-161.5; % limit on fatigue stress limit in reinforcing steel
g24 = ffp-125; % limit on fatigue stress limit in prestressing steel
% PPR limit
g25 = 0.5-PPR; % limit on partial prestressing ratio PPR > 0.50
g26 = PPR-1; % limit on partial prestressing ratio PPR < 1.00
% service load degree of prestress
% check equilibrium conditions
% summations of internal couple must equal to working moment
if x(7) > x(3)
rad = Mw;
tol = 1e-6;
confcnvalm = Ts*d+Tp*dp+Cn*dzn-C*dz-rad;
g27 = confcnvalm-tol; % sum of service load moments when NA depth y >
hf
g28 = -confcnvalm-tol;
else
rad = Mw;
tol = 1e-6;
confcnvalm = Ts*d+Tp*dp-C*dz-rad;
g27 = confcnvalm-tol; % sum of service load moments when NA depth y <
hf
g28 = -confcnvalm-tol;
end
if x(7) > x(3)
radf = 0;
tol = 1e-6;
confcnvalf = Ts+Tp+Cn-C-radf;
g29 = confcnvalf-tol; % sum of service load moments when NA depth y >
hf
g30 = -confcnvalf-tol;
else
radf = 0;
tol = 1e-6;
confcnvalf = Ts+Tp-C-radf;
g29 = confcnvalf-tol; % sum of service load moments when NA depth y <
hf
 q30 = -confcnvalf-tol;
end
q31 = 0.20 \times x(1) - x(7);
q_{32} = x(7) - 0.75 * x(1);
% non linear equality const. functions defn.
с =
[g1;g2;g3;g4;g5;g6;g7;g8;g9;g10;g11;g12;g13;g14;g15;g16;g17;g18;g19;g20
;...
    g21;g22;g23;g24;g25;g26;g27;g28;g29;g30;g31;g32]; % non linear
inequality const. functions defn.
ceq = [];
%% MAIN CODE FOR RUNNING THE GA ALGORITHIM
% Problem parameters
% h = x(1), bw = x(2), hf = x(3), As = x(4), Ap = x(5)
% S = x(6), y = x(7)
% set boundary values of varibles
lb = [300 \ 300 \ 200 \ 500 \ 600 \ 200 \ 50];
ub = [2500 700 300 10e3 21e3 450 700];
```

```
%% set ga options
opts = optimoptions(@ga, ...
                    'PopulationSize',500, ...
                    'CreationFcn', @gacreationlinearfeasible, ...
                    'MaxGenerations',1000, ...
                    'FitnessScalingFcn',@fitscalingprop, ...
                    'NonlinearConstraintAlgorithm', 'auglag', ...
                    'InitialPenalty',1,...
                    'PenaltyFactor',1, ...
                    'FunctionTolerance', 1e-10, ...
                    'ConstraintTolerance', 1e-10);
                    %'PlotFcn',@gaplotbestf);
% Call |ga| to Solve the Problem
% We can now call |ga| to solve the problem.
88
rng(1,'twister') % random number generator for reproducibility
[xbest, fbest, exitflag] = ga(@Bpcintgirderfun,7,[],[],[],[],lb,ub,...
    @Bpcintgirderconst,1:3,opts);
응응
% Analyze the Results
display(xbest);
%% return optimal value
fprintf('\nCost function returned by ga = %g\n', fbest);
% Press F5 to run the code and get the ff Results:
% xbest =
[2500,700,300,9994.54948775170,20995.0724864966,334.602112918657,681.61
7397769954]
%zbest = 941015
```

For all other case it was done in the same way.

Appendix D Design Optimization Validation in Excel spreadsheet

(a). Optimization results validation for PC T interior girder

	neck up of							rders	
Note: All	dimensions	are ir	ı {mm,	mm ² , mm	³ , mm ⁴ ,	N, Nmm I	N/mm ² }		
Input fixe	ed variab.				Optim	. Output	variab.		
Ec =	27660		h	bw	hf	As	Ар	S	у
Es =	200000		x1	x2	х3	x4	x5	х6	x7
Ep =	197000		2500	499	300	16826	9647.45	304.08	899.4465
fc' =	30								
fy =	420	LB =	300	300	180	1000	1000	100	875
fpu =	1860	UB =	700	500	250	5.00E+04	6.00E+04	450	350
ns =	7.23		Paste the optim output values below!!					w!!	
np =	7.12		2500	499	300	16825.9908	9647.44734	304.0836	899.4464629
L =	50000			No o	f legs of ver	t. stirrups =	4.0		
Gs =	2500		Diam.	stirrup, d _{sh} =	12	a _v =	452.4	b=	2500
woh =	1200							bex =	2450
wsup =								bb =	140
Vd =	2.17E+06							tb =	66.7
	2.38E+10					Effect.	depth of prest		
-	1.59E+10			depth of reinf.				and, dsrd =	
M3 =	1.49E+10		Diam. (Of bar, db =	32	are	a of single st	trand, ap =	140
	1.39E+09			gle bar, as =				liam, DD =	
	1.11E+10		max. aggr.	Size, Agg. =	25	clr ve	ert&hri. Duct	spcg, SD =	38
$E_c I_e$. defDL =	1.42E+19	clr s	pacing of /	/ bars, Sh =	48		No. stra	nds, nsrd =	68.68
$E_c I_e$. defLL =	5.45E+17	clr sj	pac. of bar	layers, Sv =	32		No strand p	er tendn =	35
Concrete s	tress limits		No. o	f bars, nb =	20.92			Tdn, nT =	-
fci = 0.8fc' =		N	lo. bars per	r row, npr =	5.29		No, Tdn,	/row, ntr =	2.07
fct = 0.6fci =				of bars, nr =			No. of	rows, nrt =	0.95
ftt = 0.63√fci =		ł	nt of rows o	of bars, hr =			ht of rows of		
fcw = 0.45fc' =				d' = dst =	172.62			dpt =	404.59
ftw = 0.5√fc' =				d =	2327.38			dp =	2095.41
prstressing ste									
fpy = 0.9fpu =									
fpt = 0.74fpu =									
fpe = 0.8fpy =	1339.200								

a). Section properties	
x(2)*x(1)+(be-x(2))*x(3) = 1847800	
$(2)^{*}x(1)+(be-x(2))^{*}x(3)) = 892.6398961$	
yb = x(1) - yt = 1607.360104	
2+(be-x(2))*x(3)^3/12+ e-x(2))*x(3)*(yt-x(3)/2)^2 1.14463E+12	
Zt = I/yt = 1282296748	
Zb = I/yb = 712117485.8	
b). Prestressing force, P	
= ftw/0.85+Mw/(0.85Zb) = 2.94E+01	
e = yb - dpt = 1202.77	
= Ac*finf*Zb/(Zb+Ac*e) = <mark>13194299.55</mark>	
	g10 = if(a
2))*x(3))/(0.85^2*fc*x(2)+ 0.28*x(5)*fpu/dp) 0.28*x(5)*fpu/dp)	
*be+0.28*x(5)*fpu/dp)) = 908.1275369	
$fps = fpu^{*}(1-0.28^{*}c/dp) = 1634.290846$	
$\frac{y^{*}d}{(x(5))^{*}fps+x(4))^{*}fy} = 2167.203572}{a = 0.85^{*}c} = 771.9084064}$	
(2)+0.85^2*fc*x(3)*(be-	
*(dp-a/2)+x(4)*fy*(d-a/2)	}
d). Shear force resistance	
9*de,0.72*x(1),de-a/2]) = 1950.483215	
*(L/2-wsup/2-d)/(L/2) = 1.98E+06	
).083*2*sqrt(fc)*x(2)*dv = 884935.2161	
$Vs = fy^*dv^*av/(x(6)) = 1218739.304$	
$Vp = 0.85^{\circ}P^{\circ}(4^{\circ}e/L) = 1.08E+06$	
,(0.25*fc*x(2)*dv+Vp)]) = 3182813.158	
. Minimum flexural reinf.	
= 0.85*P*(1/Ac+e/Zb) = 25.01188976	6
fr = 0.97*sqrt(fc) = 5.312908808	
Mcr = (fcpe+fr)*I/yb = 21594819315	;
Maximum limits of reinf.	
a. c/de = 0.419031949	
Asn = 0	
rhp = $x(4)/(be*d) = 0.00289183$ rhn = Asn/(be*d) = 0.00E+00	
rhpr = Ap/(be*dp) = 1.84E-03	
Omp = rhp*fy/fc = 0.040485614	
Omn = rhn*fy/fc = 0.00E+00	
Ompr = rhpr*fps/fc = 2.58E-02	
Omp+Ompr - Omn = 6.63E-02	
Cracked section analysis	
fp1 = 0.85*P/Ac = 6.07E+00	
0.85*np*P*(e^2/I+1/Ac) = 144.1807431	
+(be-x(2))*x(3)*(1+(x(7)- x(3))/x(7))) 1.19E-04 :(5)*(dp-x(7))/x(7))),else, +Ep*x(5)*(dp-x(7))/x(7)))	

fs = Es*eo*(d-x(7))/x(7) =	3.78E+01
fp3 = Ep*eo*(dp-x(7))/x(7) =	3.12E+01
fp = fp1+fp2+fp3 =	1.81E+02
fco = eo*Ec =	3.29E+00
Ts = x(4)*fs =	636179.014
Tp = x(5)*fp =	1750454.100
C = 0.5*fco*be*x(7) =	3.70E+06
Cn = 0.5*fco*(be-x(2))*(x(7)-x(3))^2/x(7) =	1316526.845
dz = x(7)/3 =	299.8154876
dzn = x(3)+(x(7)-x(3))/3 =	499.8154876
lct =if(y>hf)= x(2)*y^3/3+(be-x(2))*x(3)^3/12+	
(be-x(2))*x(3)*(y-x(3)/2)^2+np*x(5)*(dp-y)^2+	8 000E7E 11
ns*x(4)*(d-y)^2, else, lct = be*y^3/3+np*x(5)*(dp-y)^2+	8.09057E+11
ns*x(4)*(d-y)^2 =	
h). Deflection limit	
frk = 0.63*sqrt(fc) =	3.450652112
Mck = frk*I/yb =	2457269706
le = min([(Mck/Mw)^3*I+(1-(Mck/Mw)^3)*Ict, I]) =	8.10304E+11
defD = 2.26e16/(Ec*Ie) =	635.769341
defP = 0.85*5*P*e*L^2/(48*Ec*Ie) =	
defLL = 2.63e15/(Ec*Ie) =	24.33152184
i). Crack width limit	-
cw1 = (fs - 40)*1e-3 =	
h1 = d-x(7) - dst =	
h2 = d-x(7) =	
dc = 62+db/2 =	
Atc = x(2)*2*dst/nb =	
cw2 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e-3*0.1451 =	
j). Fatigue stress limit	
ffs = ns* Mf*(d-y)/Ict =	
ffp = np* Mf*(dp-y)/Ict =	14.62035029
k). Prestressing indices	
Mdec = x(5)*(fp1+fp2)*e =	
PPR = x(5)*fpy/(x(5)*fpy+x(4)*fy) =	0.695611217

CONSTRAINT FUNCTIONS	≤ 0	status
g1 = ftt-P*(1/Ac+e/Zt)-Mg/Zt =	-2.51E+01	ОК!
g2 = P*(1/Ac+e/Zb)-Mg/Zb-fct =	-5.43E-01	ОК!
g3 = 0.85*P*(1/Ac-e/Zt)+Mw/Zt-fcw =	-5.58E+00	ΟΚ!
g4 = ftw-0.85*P*(1/Ac+e/Zb)+M3/Zb =	-1.37E+00	ΟΚ!
g5 = Md - 0.9*Mn =	-1.56E+10	ОК!
g6 = Vu - 0.9*Vn =	-8.88E+05	ОК!
web requiremnt for shear, g6' = Vu/0.9-0.25*fc'*bw*dv-Vp =	-6.18E+06	ОК!
g7 = abs(Md)/(0.9*dv)+abs(Vu/0.9-Vp)-0.5*min(Vu/0.9,Vs)-	0.005.00	ОК!
x(4)*fy-x(5)*fps =		OK!
$g8 = Vu/0.9 - 0.5^*Vs - Vp - x(4)^*fy - x(5)^*fps =$		OK!
$g9 = x(6) - fy^*av/(0.083 * x(2) * sqrt(fc)) =$		
bs(Vu-0.9*Vp)/(0.9*dv*x(2)) < 0.125*fc), x(6)-min([0.8*dv,600]), x(6)-min([0.4*dv,300])	-295.91636	ОК!
g11 = min([1.33*Md,1.2*Mcr])/(0.9*Mn)-1 =	-1.35E+10	ОК!
g12 = 0.004*yb*x(2)-(x(4)+x(5)) =		ОК!
g13a = Omp+Ompr- Omn-0.3 =		ОК!
g13b = c/de-0.42 =		ОК!
g16 = P/x(5)-fpt) =	-8.753297588	ОК!
g17 = fp - fpe =		OK!
g18 = fs - 206 =		OK!
g20 = defLL - L/1000 =	-2.57E+01	ОК!
g21 = cw - 0.41 =	-0.369079616	ОК!
g22 = ffs - 161.5 =	-143.777977	ОК!
g23 = ffp - 125 =	-110.3796497	ОК!
g26 = 0.5 - PPR =		ОК!
g27 = PPR-1 =	-0.304388783	OK!

Optimization results of all other cases were verified in similar way.

Appendix E conventional design of post tensioned girders

All dimensions Are mm, mm2, mm3, mm4, i. Concerete		Design is for: Ext. 1		T	i. Section Property	
Specified compressive strength of concrete, f. '	30	i. Geometric data	gnuer	-	Depth, h =	3700
$f_{ci} = 0.8f_c$	24	Bridge span, L =	50000	1	Flange thickness, h _f =	250
Short term modulus elasticity of concrete, E. =	24	Girder spacing, G _s =	2500		web width, b _w =	1332
Long term modulus elasticity of concrete, E _{ef} =	10638.46	width of overhang, w _{ob} =	1200		Width of comp. face, b _i =	2500
Elastic modulus of rupture of concrete, $f_{er} =$	3.45	with of overhaing, w _{oh} =	1200		Width of comp. face, b _e =	2300
*. Permissible stresses in Concerete	3.45	Load Data			what of comp. race, be	2450
able compressive stress at transfer of prestress, $f_{rt} = 0.60f_{rti}$	14.40	Factored shear, V _d =	1.98E+06	ФМ _п	Area of Conc., Ac =	5.E+06
llowable tensile stress at transfer of prestress, $f_{ij} = 0.63\sqrt{f_{r,i}}$	2.84	Factored B/Moment, M _d =	2.57E+10	1.20E+11	Depth top fiber~c.g, y, =	1757
Allowable compressive stress at working loads, $f_{cw} = 0.45f_c =$	13.50	Service Ls I moment, M _w =	1.79E+10		Depth bott. fiber~c.g, yb =	1943
Allowablee tensile stress at working loads, $f_{tw} = 0.50 \sqrt{f_c}$	2.74	Service l.s_III moment, M ₃ =	1.71E+10		Moment of inertia, I =	6.E+12
Stress range at top fiber, $f_{tr} = f_{cw} - \gamma f_{tt} =$	11.08	Fatigue load Moment, Mf =	1.72E+09		Sec. mod. of top fiber, $Z_t =$	4.E+09
Stress range at bottom fiber, $f_{tr} = \eta f_{ct} - f_{tw} =$	9.50	Dead load moment, Mg =	1.41E+10		Sec. mod. of bott. fiber, Zb =	3.E+09
ii. Reinforcing steel (Grade 420 steel)		° Deflection	Deflection Effective depth of reinforcement			
Characteristic yield strength of reinforcing bars, $f_v =$	420	$\Delta_{DL} x 1/Ele_{[ext.girder]} =$	1.86E+19		Use diam.bars, $\Phi_b =$	32
Allowable service stress, $f_{sa} = 0.6f_y =$	252	$\Delta_{DL} x 1/Ele_{[int.girder]} =$	1.42E+19		No. bars =	15.00
Modulus elasticity of reinforcing steel, Es =	200000	$\Delta_{LL} x 1/Ele_{[ext.girder]} =$	5.45E+17		No. of bars per row =	15
Mudular ratio of reinforcing steel, ns =	7	**. Reinforcement bars		c/dp	No. of reinf. Rows =	1
el (grade G_270 Low-Relaxation 7 wire strands		Assume c/d _p =	0.40	0.40	Height of reif. Rows =	32
Ultimate tensile strength of tendon, fpu =	1860	f _{ps} =	1652		d _s ' =	78
Yield strength of tendon, $f_{py} = 0.9 f_{pu}$ =	1674	Assume PPR =	0.92		Effec-Depth-reinf. Stl, d = h-d'=	3622
Modulus elasticity of prestressing steel, $E_p =$	197000	Assume area of prest.reinf.Ap =	26000	[EnterTrially]	Use diam.strands, Φ_{st} =	15.24
Mudular ratio of prestressing strands, np =	7.00	Area of non prest.reinf.As =	8891		No. of strands =	185.11
Density of reinforcing steel and prestressing tendons, $\rho_s =$	0.00	Concrete Cover =	50		Diam. of duct =	125
Loss factor, η =	0.85	Max. aggregate size =	25		Clear hor. & vert. duct spac. =	38
**. Permissible stresses in the tendons		Horiz. Spacing of bars, S _h =	48		No. strands per tendon =	31
wable stress in tendons at transfer of prestress, $f_{pt} = 0.74 f_{pu}$	1376.40	Vert. Spacing of bars, S _v =	32		No. of tendons =	6
Allowable stress in tendons at working loads, $f_{\rm pe}$ =0.8 $f_{\rm py}$ =	1339.20	No. of legs of vert.stirr. NL=	4		No. of tendons per row =	6
Resistance factors, Φ (ASHTO art.5.5.4.2)		Diam. stirrup., Φ _{strr} =	12		No. of rows of prestr. Tendons =	1
for flexure and tension of RC member, $\Phi =$	0.90	Area of stirrups, Av =	452		Height of tendon Rows =	125
for flexure and tension of PPC member, $\Phi = 0.9+0.1$ xPPR =	0.90	Design for Flexure			d _p ' =	194.5
for shear and torsion of normal weight concrete, $\Phi =$	0.90	assume $c_0 > h_f$, then $c_0 =$	1406.38		$dp = h - d_{p}' =$	3506

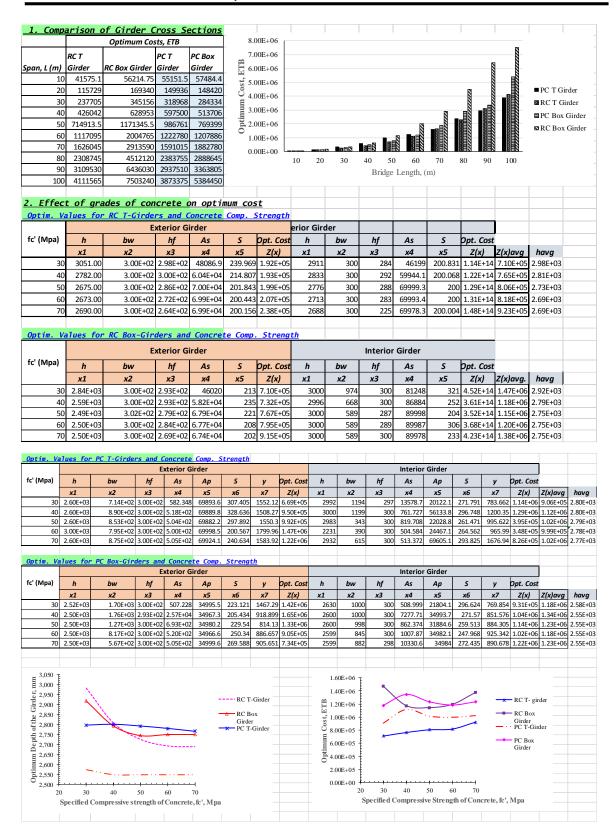
Design is for: Int. T gi	rder		i. Section Property		
i. Geometric data			Depth, h =	3700	
Bridge span, L =	50000		Flange thickness, $h_f =$	250	
Girder spacing, G _S =	2500		web width, b _w =	1332	
width of overhang, $w_{oh} =$	1200		Width of comp. face, $b_e =$	-	
			Width of comp. face, $b_i =$	2500	
Load Data					<u>u</u>
Factored shear, $V_d =$	2.17E+06	$\Phi M_n \dots$	Area of Conc., Ac =	5.E+06	1
Factored B/Moment, M _d =	2.38E+10	1.17E+11	Depth top fiber~c.g, $y_t =$	1754	
Service l.s_I moment, M _w =	1.59E+10		Depth bott. fiber~c.g, $y_b =$	1946	
Service l.s_III moment, M ₃ =	1.49E+10		Moment of inertia, I =	6.E+12	
Fatigue load Moment, M _f =	1.39E+09		Sec. mod. of top fiber, $Z_t =$	4.E+09	
Dead load moment, M_p =	1.11E+10		Sec. mod. of bott. fiber, $Z_{\rm b} =$	3.E+09	
Deflection	1.1112+10		Effective depth of reinforcement	5.1109	<u> </u>
$\Delta_{\rm DL} x \ 1/\rm Ele_{[ext.girder]} =$	1.86E+19	1	Use diam.bars, $\Phi_{\rm b}$ =	32	1
$\Delta_{\rm DL} x 1/\rm Ele_{[int.girder]} =$	1.42E+19	1	No. bars =	18.00	l
$\Delta_{LLX} 1/Ele_{[att.girder]} = \Delta_{LLX} 1/Ele_{[ext.girder]} = 0$	5.45E+17		No. of bars per row =		<u> </u>
<pre></pre>	J.+JE+17	c/dp	No. of reinf. Rows =	15 2	
Assume c/d _p =	0.41	0.41	Height of reif. Rows =	96	¥
$f_{ps} =$	1646		d _s ' =	110	
Assume PPR =	0.90		Effec-Depth-reinf. Stl, d = h-d'=	3590	
Assume area of prest.reinf.Ap =	25500	[EnterTrially]	Use diam.strands, Φ_{st} =	15.24	
Area of non prest.reinf.As =	11107		No. of strands =	181.55	
Concrete Cover =	50		Diam. of duct =	125	
Max. aggregate size =	25		Clear hor. & vert. duct spac. =	38	
Horiz. Spacing of bars, S _h =	48		No. strands per tendon =	31	ĺ
Vert. Spacing of bars, $S_v =$	32		No. of tendons =	6	
No. of legs of vert.stirr. NL=	4		No. of tendons per row =	6	
Diam. stirrup., Φ _{strr} =	12		No. of rows of prestr. Tendons =	1	ĺ
Area of stirrups, Av =	452		Height of tendon Rows =	125	
Design for Flexure			d _p ' =	258.5	
assume $c_0 > h_f$, then $c_0 =$	1398.29	Ī	$dp = h d_{p'} =$	3442	ĺ
NA depth, c =	1398.29		Eff. Dept. of tens. force, de =	3456	
Rect. Stres. Block depth, a =	1188.54		f _{inf} =	8.86E+00	
Nomin. Flexural resis., Mn =	1.31E+11		eccentricityof prestr. force, e =	1688	
Check flex. Capacity, $M_d \le \Phi M_n =$	OK!		Prestr. Force required, P =	1.E+07	
Design for shear			Check Stresses of extr. Fibers		Check!
width of support =	500		a. f_{tt} -P*(1/Ac+e/Z_t)-M_g/Z_t ≤ 0	-8.E+00	OK!
Spacing of stirrups, s =	310		b. $P^*(1/A_c+e/Z_b)-M_g/Z_b-f_{ct} \le 0$	-9.E+00	OK!
shear depth, d _v =		ΦV			OK!
	3110.715	$\Phi V_n \dots$		-1.E+01	
Design shear dv dist. From face of supp., V_U =	1.88E+06	6.41E+06	d. $f_{tw} = 0.85 * P * (1/A_c + e/Z_b) + M_3/Z_b \le 0$	-3.E-01	OK!
Concrete shear resis. Vc =	3.77E+06		Service load stresses, fs & fp		
Shear reinf. resis. Vs =	1.91E+06		fp1 = η P/Ac =	2.06	
Shear reis. of Prestressing, Vp =	1.45E+06		$fp2 = \eta \cdot n_p \cdot P(e^2/I+1/Ac) =$	47.62	
Nominal shear resi. Vn =	7.12E+06		Cracked NA depth, y =	976.7556835	
Check shear. Capacity, $V_u \le \Phi V_n =$	OK!		Concrete strain, $\varepsilon 0$ =	0.000197402	
Minimum area of reif. Area			fco =ε ₀ .Ec =	5.460126918	ĺ
$f_{cpe} = 0.85 * P * (1/A_c + e/Z_b) =$	8.E+00		fs = Es*eo*(d-y)/y =	105.6269636	
	5.312908808		fp3 = Ep*eo*(dp-y)/y =	98.1302455	ľ
Mcr =	4.E+10	chk!	fp =fp1+fp2+fp3 =	147.8048156	ĺ
$Min[1.2Mcr, 1.33Md]-\Phi Mn \le 0 =$	-9.E+10	OK!	Ts = fs.As =	1173214.78	1
Max. area of steel, $c/d_e \le 0.42 =$		OK!	Tp = fp.Ap =	3769022.798	ľ
$0.004^* \gamma_b^* b_w^- A_p^- A_s \leq 0 =$ Check delection & camber	-26236.2704	OK!	C = 0.5*fco*be*y = Cn = 0.5*fco*(be-bw)*(y-hf) ² /y =	6666512.499 1724274.921	

	3515	Eff. Dept. of tens. force, de =		1406.38	NA depth, $c =$
1	9.59E+00	$f_{inf} =$		1195.42	Rect. Stres. Block depth, a =
1	1748	eccentricityof prestr. force, e =		1.33E+11	Nomin. Flexural resis., Mn =
	1.E+07	Prestr. Force required, P =		OK!	Check flex. Capacity, $M_d \le \Phi M_n =$
Check!		Check Stresses of extr. Fibers			Design for shear
OK!	-1.E+01	a. f_{tt} -P*(1/Ac+e/Z _t)-M _g /Z _t ≤ 0		500	width of support =
OK!	-9.E+00	b. $P^*(1/A_c+e/Z_b)-M_g/Z_b-f_{ct} \le 0$		310	Spacing of stirrups, s =
OK!	-1.E+01	c. $0.85*P*(1/A_c-e/Z_t)+M_w/Z_t-f_{cw} \le 0$	$\Phi V_n \dots$	3163.338	shear depth, d _v =
OK!	-2.E-01	d. $f_{tw}=0.85*P*(1/A_c+e/Z_b)+M_3/Z_b \le 0$	6.61E+06	1.71E+06	Design shear dv dist. From face of supp., \mathbf{V}_{U} =
		Service load stresses, fs & fp		3.83E+06	Concrete shear resis. Vc =
1	2.17	fp1 = η P/Ac =		1.94E+06	Shear reinf. resis. Vs =
1	52.87	$fp2 = \eta .n_p.P(e^2/I+1/Ac) =$		1.58E+06	Shear reis. of Prestressing, Vp =
Ĭ	971.7999877	Cracked NA depth, y =		7.35E+06	Nominal shear resi. Vn =
	0.000222369	Concrete strain, ε0 =		OK!	Check shear. Capacity, $V_u \leq \Phi V_n =$
1	6.150730952	fco =ε ₀ .Ec =			Minimum area of reif. Area
1	121.2848298	fs = Es*eo*(d-y)/y =		8.E+00	$f_{cpe} = 0.85*P*(1/A_c+e/Z_b) =$
1	114.2139773	fp3 = Ep*eo*(dp-y)/y =		5.312908808	frp =
j –	169.2509163	fp =fp1+fp2+fp3 =	chk!	4.E+10	Mcr =
1	1078347.188	Ts = fs.As =	OK!	-9.E+10	$Min[1.2Mcr, 1.33Md]-\Phi Mn \le 0 =$
	4400523.823	Tp = fp.Ap =	OK!	0.40012744	Max. area of steel, $c/d_e \le 0.42 =$
1	7322168.323	C = 0.5*fco*be*y =	OK!	-24540.9749	$0.004*y_b*b_w-A_p-A_s \le 0 =$
]	1843297.311	$Cn = 0.5*fco*(be-bw)*(y-hf)^2/y =$			Check delection & camber
]	323.9333292	dz =y/3 =		203.4539444	Δ_{DL} =
	490.5999959	dzn =hf+ (y-hf)/3 =		56.29944061	$\Delta_{P} = 0.85*5*P*e*L^{2}/(48*Ec*le) =$
		Verify y using equlibrium	ΝΟΤ ΟΚ!	147.1545038	Camber, a = Δ_{DL} - Δ_{P} =
OK!	-3.8147E-06	Σ M-M _w =0		5.971114598	$\Delta_{LL} =$
OK!	0	ΣFx =0 =	OK!	50	$\Delta_{LL(allow.)} = L/1000 =$
-		Cracked Moment of inertia			
]	2.21486E+12	lct =			Crack Control
<u> </u>	3.450652112	f _{rup} = 0.63sqrt(fc') =		893.7999877	h1 = d-y-d' =
<u> </u>	11388009587	Mcrk =f _{rup} . Z _b =		2650.200012	h2 = d-y =
		Effective Moment of inertia		78	dc =62+db/2 =
<u> </u>	3.30189E+12	le =		13852.8	Atc = bw*2*ds'/nb =
		Check service strsses		0.40694575	cw1 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e- 3*0.1451 =
1	206	fsa =min(0.5fy,206) =		0.08128483	cw2 = (fs - 40)*1e-3 =
OK!	-84.71517023	fs - fsa ≤ 0 =		0.40694575	cw = max([cw1, cw2]) =
OK!	-1169.949084	fp - fpe ≤ 0 =	OK!	0.41	cwa =
		Check fatigue strsses			
1	161.5	ffa =145-0.33fmin+55(r/h) =			
	125	ffpa =			
OK!	14.40050367	ffs =ns* Mf*(d-y)/lct =			
OK!	13.7674727	ffp =np* Mf*(dp-y)/lct =			
		completed!! ===================================	. The Design is		

Δ_{DL} =	135.1266802		dz =y/3 =	325.5852278	
$\Delta_{\rm P} = 0.85*5*{\rm P*e*L}^2/(48*{\rm Ec*le}) =$	44.74772582		dzn =hf+ (y-hf)/3 =	492.2518945	
Camber, a = Δ_{DL} - Δ_{P} =	90.37895442		Verify y using equlibrium		
$\Delta_{LL} =$	5.171431775		Σ M-M _w =0	1.33514E-05	OK!
$\Delta_{LL(allow.)} = L/1000 =$	50	OK!	ΣFx =0 =	-9.31323E-10	OK!
			Cracked Moment of inertia		
Crack Control			lct =	2.24246E+12	
h1 = d-y-d' =	866.7556835		$f_{rup} = 0.63 sqrt(fc') =$	3.450652112	
h2 = d-y =	2613.244317		Mcrk = f_{rup} . Z _b =	11424165879	
dc =62+db/2 =	78		Effective Moment of inertia		
Atc = bw*2*ds'/nb =			le =	3.81247E+12	
cw1 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e-					9
3*0.1451 =	0.380296316		Check service strsses		
cw2 = (fs - 40)*1e-3 =	0.065626964		fsa =min(0.5fy,206) =	206	
cw = max([cw1, cw2]) =	0.38029632		fs - fsa ≤ 0 =	-100.3730364	OK!
cwa =	0.41	OK!	fp - fpe ≤ 0 =	-1191.395184	OK!
			Check fatigue strsses		
			ffa =145-0.33fmin+55(r/h) =	161.5	
			ffpa =	125	
			ffs =ns* Mf*(d-y)/lct =	11.32816362	OK!
			ffp =np* Mf*(dp-y)/lct =	10.68443035	OK!
		The Design is	completed!! ========================		

		i. Section Property		rder	Design is for: Ext. Box gi
	3750	Depth, h =			i. Geometric data
	250	Flange thickness, $h_f =$		50000	Bridge span, L =
	1350	web width, $b_w =$		2500	Girder spacing, G _S =
1	2500	Width of comp. face, $b_i =$		1200	width of overhang, $w_{oh} =$
	2450	Width of comp. face, $b_e =$			
	1225	effec. Width of bottom slab, $b_{eb} =$			Load Data
1	140	thickness of bott. Slab, tb =	ФМ _п	2.05E+06	Factored shear, $V_d =$
4	110		1.21E+11	2.73E+10	Factored B/Moment, M _d =
	5.E+06	Area of Conc., Ac =	1.211711	1.88E+10	Service ls_I moment, M _w =
	1779	Depth top fiber~c.g, $y_t =$		1.78E+10	Service l.s_III moment, $M_3 =$
	1971	Depth bott. fiber~c.g, $y_b =$		2.04E+09	Fatigue load Moment, M _f =
_	7.E+12	Moment of inertia, I =		1.41E+10	Dead load moment, Mg =
	4.E+09	Sec. mod. of top fiber, $Z_t =$			Deflection
	3.E+09	Sec. mod. of bott. fiber, $Z_b =$		1.95E+19	$\Delta_{DL} x 1/EIe_{[ext.girder]} =$
-		ffective depth of reinforcement	E	1.71E+19	$\Delta_{DL} x 1/EIe_{[int.girder]} =$
	32	Use diam.bars, $\Phi_{\rm b}$ =		5.45E+17	$\Delta_{LL} x 1/EIe_{[ext.girder]} =$
	24.00	No. bars =	c/dp		**. Reinforcement bars
	15	No. of bars per row =	0.41	0.41	Assume c/d _p =
	2	No. of reinf. Rows =		1646	$f_{ps} =$
	96	Height of reif. Rows =		0.87	Assume PPR =
	110	$d_s' =$	[EnterTrially]	25000	Assume area of prest.reinf.Ap =
	3640	Effec-Depth-reinf. Stl, d = h-d'=		14644	Area of non prest.reinf.As =
	15.24	Use diam.strands, $\Phi_{\rm st}$ =		50	Concrete Cover =
	177.99	No. of strands =		25	Max. aggregate size =
	125	Diam. of duct =		48	Horiz. Spacing of bars, $S_h =$
	38	Clear hor. & vert. duct spac. =		32	Vert. Spacing of bars, $S_v =$
	31	No. strands per tendon =		4	No. of legs of vert.stirr. NL=
	6	No. of tendons =		12	Diam. stirrup., Φ_{strr} =
	6	No. of tendons per row =		452	Area of stirrups, Av =
	1	No. of rows of prestr. Tendons =			Design for Flexure
	125	Height of tendon Rows =		1415.26	assume $c_0 > h_f$, then $c_0 =$
	258.5	d _p ' =		1415.26	NA depth, c =
	3492	$dp = h d_{p'} =$		1202.97	Rect. Stres. Block depth, a =
	3511	Eff. Dept. of tens. force, de =		1.35E+11	Nomin. Flexural resis., Mn =
	9.75E+00	$f_{inf} =$		OK!	Check flex. Capacity, $M_d \le \Phi M_n =$
	1713	eccentricityof prestr. force, e =			Design for shear
1	1.E+07	Prestr. Force required, P =		500	width of support =
Check!		Check Stresses of extr. Fibers		300	Spacing of stirrups, s =
OK!	-1.E+01	a. f_{tt} -P*(1/Ac+e/Z _t)-M _g /Z _t ≤ 0	$\Phi V_n \dots$	3159.7245	shear depth, d _v =
OK!	-9.E+00	b. $P^*(1/A_c+e/Z_b)-M_g/Z_b-f_{ct} \le 0$	6.76E+06	1.77E+06	Design shear dv dist. From face of supp., V_{U} =
OK!	-1.E+01	c. $0.85*P*(1/A_c-e/Z_t)+M_w/Z_t-f_{cw} \le 0$		3.88E+06	Concrete shear resis. Vc =
OK!	-3.E-01	d. f_{tw} -0.85*P*(1/A _c +e/Z _b)+M ₃ /Z _b ≤ 0		2.00E+06	Shear reinf. resis. Vs =
		Service load stresses, fs & fp		1.64E+06	Shear reis. of Prestressing, Vp =
	2.24	fp1 = η P/Ac =		7.52E+06	Nominal shear resi. Vn =
	52.47	$fp2 = \eta \cdot n_p \cdot P(e^2/I+1/Ac) =$		OK!	Check shear. Capacity, $V_u \leq \Phi V_n =$

$f_{cpe} = 0.85*P*(1/A_c+e/Z_b) =$	8.E+00		Concrete strain, $\varepsilon 0$ =	0.000225045	
frp =	5.312908808		fco =ɛ ₀ .Ec =	6.224730832	
Mcr =	5.E+10	chk!	fs = Es*eo*(d-y)/y =	116.2359012	
$Min[1.2Mcr, 1.33Md]-\Phi Mn \le 0 =$	-9.E+10	OK!	fp3 = Ep*eo*(dp-y)/y =	108.0127795	
Max. area of steel, $c/d_e \le 0.42 =$	0.403116629	OK!	fp =fp1+fp2+fp3 =	162.7252629	
$0.004*y_b*b_w-A_p-A_s \le 0 =$	-28998.7692	OK!	Ts = fs.As =	1702195.565	


Chack delection & combon			Tn – fn An –	4068131.572	
Check delection & camber Δ_{Dl} =	202.9198442		Tp = fp.Ap = C = 0.5*fco*be*y =	7747665.243	
$\Delta_{\rm P} = 0.85^{*}5^{*}{\rm P}^{*}{\rm e}^{*}{\rm L}^{2}/(48^{*}{\rm Ec}^{*}{\rm Ie}) =$			C = 0.5 fco be y = Cn = 0.5*fco*(be-bw)*(y-hf) ² /y =		
				1977338.106	
Camber, a = Δ_{DL} - Δ_{P} =		NUT UK!	dz =y/3 =	338.6826332	
Δ _{LL} =	5.666063104		dzn =hf+ (y-hf)/3 =	505.3492999	
$\Delta_{LL(allow.)} = L/1000 =$	50	OK!	Verify y using equlibrium		
			ΣM-M _w =0	-3.8147E-06	OK!
Crack Control			ΣFx =0 =	0	OK!
	906.0478997		Cracked Moment of inertia		
h2 = d-y =	2623.9521		lct =	2.46996E+12	
dc =62+db/2 =	78		$f_{rup} = 0.63 sqrt(fc') =$	3.450652112	
Atc = bw*2*ds'/nb =	12375		Mcrk =f _{rup} . Z _b =	11674460878	
cw1 = 0.076*(h2/h1)*fs*(dc*Atc)^(1/3)*1e					
3*0.1451 =	0.36686474		Effective Moment of inertia		
cw2 = (fs - 40)*1e-3 =	0.076235901		le =	3.47966E+12	
cw = max([cw1, cw2]) =	0.36686474		Check service strsses		
cwa =	0.41	OK!	fsa =min(0.5fy,206) =	206	
			fs - fsa ≤ 0 =	-89.7640988	OK!
			fp - fpe ≤ 0 =	-1176.474737	OK!
			Check fatigue strsses		
			ffa =145-0.33fmin+55(r/h) =	161.5	
			ffpa =	125	
			ffs =ns* Mf*(d-y)/lct =	15.17640481	OK!
			ffp =np* Mf*(dp-y)/Ict =	14.31751104	OK!
		= The Design is	completed!! ===================================		
			•		
Design is for: Int. Box g	irder		i. Section Property		
i. Geometric data	n		Depth, h =	3750	
Bridge span, L =	50000				
Girder spacing, G _S =			Flange thickness, $h_f =$	250	
width of overhang, woh =	2500		Flange thickness, $h_f =$ web width, $b_w =$		
width of overhalig, W _{oh} =	1200			250	
width of overhalig, w _{oh} =			web width, b _w =	250 1350	
Load Data			web width, $b_w =$ Width of comp. face, $b_i =$	250 1350 2500	
		ФМ _n	$\label{eq:webwidth} web width, b_w =$ Width of comp. face, $b_i =$ Width of comp. face, $b_e =$	250 1350 2500 2500	
Load Data	1200	ФМ _п	$\label{eq:webwidth} \begin{array}{l} web width, b_w = \\ Width of comp. face, b_i = \\ Width of comp. face, b_e = \\ effec. Width of bottom slab, b_{eb} = \end{array}$	250 1350 2500 2500 2500	
Load Data Factored shear, V _d =	1200 2.36E+06		$\label{eq:webwidth} \begin{array}{l} web width, b_w = \\ Width of comp. face, b_i = \\ Width of comp. face, b_e = \\ effec. Width of bottom slab, b_{eb} = \end{array}$	250 1350 2500 2500 2500	
Load Data Factored shear, V _d = Factored B/Moment, M _d =	1200 2.36E+06 5.87E+10 4.02E+10		$\label{eq:webwidth} \begin{array}{l} web width, b_w = \\ Width of comp. face, b_i = \\ Width of comp. face, b_e = \\ effec. Width of bottom slab, b_{eb} = \\ thickness of bott. Slab, tb = \\ \end{array}$	250 1350 2500 2500 2500 140	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service Ls_I moment, M _w =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10		$\label{eq:webwidth} \begin{split} webwidth, b_w &= \\ Width of comp. face, b_i &= \\ Width of comp. face, b_e &= \\ effec. Width of bottom slab, b_{eb} &= \\ thickness of bott. Slab, tb &= \\ \\ Area of Conc., Ac &= \\ \end{split}$	250 1350 2500 2500 2500 140 6.E+06	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service l.s_I moment, M _w = Service l.s_III moment, M ₃ =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10		$\label{eq:webwidth} \begin{split} webwidth, b_w &= \\ Width of comp. face, b_i &= \\ Width of comp. face, b_e &= \\ effec. Width of bottom slab, b_{eb} &= \\ thickness of bott. Slab, tb &= \\ \\ Area of Conc., Ac &= \\ Depth top fiber~c.g, y_t &= \\ \end{split}$	250 1350 2500 2500 2500 140 6.E+06 1836	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_II moment, M _w = Service 1.s_III moment, M ₃ = Fatigue load Moment, M _f =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10		$\label{eq:constraint} \begin{split} & web \ width, \ b_w = \\ & Width \ of \ comp. \ face, \ b_i = \\ & Width \ of \ comp. \ face, \ b_e = \\ & effec. \ Width \ of \ bottom \ slab, \ b_{eb} = \\ & thickness \ of \ bott. \ Slab, \ tb = \\ & Area \ of \ Conc., \ Ac = \\ & Depth \ top \ fiber~c.g. \ y_t = \\ & Depth \ bott. \ fiber~c.g. \ y_b = \\ \end{split}$	250 1350 2500 2500 2500 140 6.E+06 1836 1914	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_I moment, M _w = Service 1.s_III moment, M ₃ = Fatigue load Moment, M _f	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10		$\label{eq:webwidth, b_w} = \\ Width of comp. face, b_i = \\ Width of comp. face, b_e = \\ effec. Width of bottom slab, b_{eb} = \\ thickness of bott. Slab, tb = \\ \\ Area of Conc., Ac = \\ \\ Depth top fiber~c.g. y_t = \\ \\ Depth bott. fiber~c.g. y_b = \\ \\ Moment of inertia, I = \\ \\ \end{array}$	250 1350 2500 2500 140 6.E+06 1836 1914 7.E+12	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service Ls_I moment, M _w = Service Ls_III moment, M ₃ = Fatigue load Moment, M _f = Dead load moment, M _g = Deflect ion	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10	1.47E+11	web width, $b_w =$ Width of comp. face, $b_i =$ Width of comp. face, $b_e =$ effec. Width of bottom slab, $b_{eb} =$ thickness of bott. Slab, tb =Area of Conc., Ac =Depth top fiber~c.g. $y_t =$ Depth bott. fiber~c.g. $y_b =$ Moment of inertia, I =Sec. mod. of top fiber, $Z_t =$	250 1350 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_I moment, M _w = Service 1.s_III moment, M ₃ = Fatigue load Moment, M _g = Dead load moment, M _g = Deflect ion Δ _{DL} x 1/EIe _[ext.girder] =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10 1.95E+19	1.47E+11	$\label{eq:webwidth} \begin{split} webwidth, b_w &= \\ Width of comp. face, b_i &= \\ Width of comp. face, b_e &= \\ effec. Width of bottom slab, b_{eb} &= \\ thickness of bott. Slab, tb &= \\ \\ Area of Conc., Ac &= \\ Depth top fiber~c.g. y_t &= \\ Depth top fiber~c.g. y_b &= \\ \\ Moment of inertia, I &= \\ Sec. mod. of top fiber, Z_t &= \\ Sec. mod. of bott. fiber, Z_b &= \\ \\ \end{split}$	250 1350 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service l.s_I moment, M _w = Service l.s_III moment, M ₃ = Fatigue load Moment, M _f = Dead load moment, M _g = Deflect ior Δ _{DL} x 1/Ele _[ext.girder] = Δ _{DL} x 1/Ele _[int.girder] =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10 1.95E+19 1.71E+19	1.47E+11	$\label{eq:constraint} \begin{split} & \text{web width, } b_w = \\ & \text{Width of comp. face, } b_i = \\ & \text{Width of comp. face, } b_e = \\ & \text{effec. Width of bottom slab, } b_{eb} = \\ & \text{thickness of bott. Slab, } tb = \\ & \text{thickness of bott. Slab, } tb = \\ & \text{Area of Conc., } Ac = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth top fiber-c.g. } y_b = \\ & \text{Moment of inertia, I} = \\ & \text{Sec. mod. of top fiber, } Z_t = \\ & \text{Sec. mod. of bott. fiber, } Z_b = \\ & \text{Effective depth of reinforcement} \end{split}$	250 1350 2500 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09 4.E+09	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_II moment, M _w = Service 1.s_III moment, M _a = Fatigue load Moment, M _f = Dead load moment, M _g = Deflect ion $\Delta_{DL}x$ 1/Ele _[ext.girder] = $\Delta_{DL}x$ 1/Ele _[int.girder] = $\Delta_{LL}x$ 1/Ele _[ext.girder] =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10 1.95E+19 1.71E+19	1.47E+11	$\label{eq:constraint} \begin{split} & \text{web width, } b_w = \\ & \text{Width of comp. face, } b_i = \\ & \text{Width of comp. face, } b_e = \\ & \text{effec. Width of bottom slab, } b_{eb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{Area of Conc., } Ac = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth top fiber-c.g. } y_b = \\ & \text{Moment of inertia, I} = \\ & \text{Sec. mod. of top fiber, } Z_t = \\ & \text{Sec. mod. of bott. fiber, } Z_b = \\ & \text{Effective depth of reinforcement} \\ & \text{Use diam.bars, } \Phi_b = \\ \end{split}$	250 1350 2500 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09 4.E+09 32	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_II moment, M _w = Service 1.s_III moment, M _a = Fatigue load Moment, M _f = Dead load moment, M _g Deflection $\Delta_{DL}x$ 1/Ele _[ext.girder] = $\Delta_{DL}x$ 1/Ele _[int.girder] = $\Delta_{LL}x$ 1/Ele _[ext.girder] = **. Reinforcement bars	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10 1.95E+19 1.71E+19 5.45E+17	1.47E+11	$\label{eq:constraint} \begin{split} & \text{web width, } b_w = \\ & \text{Width of comp. face, } b_i = \\ & \text{Width of comp. face, } b_e = \\ & \text{effec. Width of bottom slab, } b_{eb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{Area of Conc., Ac} = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth bott. fiber-c.g. } y_b = \\ & \text{Moment of inertia, I} = \\ & \text{Sec. mod. of top fiber, } Z_t = \\ & \text{Sec. mod. of bott. fiber, } Z_b = \\ & \text{Effective depth of reinforcement} \\ & \text{Use diam.bars, } \Phi_b = \\ & \text{No. bars} = \\ \hline \end{split}$	250 1350 2500 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09 4.E+09 32 40.00	
Load Data Factored shear, V _d = Factored B/Moment, M _d = Service 1.s_II moment, M _w = Service 1.s_III moment, M ₃ = Fatigue load Moment, M _f = Dead load moment, M _g = Deflection $\Delta_{DL}x 1/Ele_{[ext.girder]} =$ $\Delta_{LL}x 1/Ele_{[int.girder]} =$ **. Reinforcement bars Assume c/d _p =	1200 2.36E+06 5.87E+10 4.02E+10 3.96E+10 1.47E+09 3.73E+10 1.95E+19 1.71E+19 5.45E+17 0.59	1.47E+11	$\label{eq:second} \begin{split} & \text{web width, } b_w = \\ & \text{Width of comp. face, } b_i = \\ & \text{Width of comp. face, } b_e = \\ & \text{effec. Width of bottom slab, } b_{eb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{thickness of bott. Slab, tb} = \\ & \text{Area of Conc., Ac} = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth top fiber-c.g. } y_t = \\ & \text{Depth bott. fiber-c.g. } y_b = \\ & \text{Moment of inertia, I} = \\ & \text{Sec. mod. of top fiber, } Z_t = \\ & \text{Sec. mod. of bott. fiber, } Z_b = \\ & \text{Effective depth of reinforcement} \\ & \text{Use diam.bars, } \Phi_b = \\ & \text{No. bars} = \\ & \text{No. of bars per row} = \\ \end{aligned}$	250 1350 2500 2500 2500 140 6.E+06 1836 1914 7.E+12 4.E+09 4.E+09 4.E+09 32 40.00 15	

Area of non prest.reinf.As =	24646	1	Effec-Depth-reinf. Stl, d = h-d'=	3608	
Concrete Cover =	24040 50		Use diam.strands, $\Phi_{st} =$	15.24	
Max. aggregate size =	25		No. of strands =	249.18	
Horiz. Spacing of bars, S _h =	48		Diam. of duct =	125	
Vert. Spacing of bars, S _v =	32				
No. of legs of vert.stirr. NL=	4		Clear hor. & vert. duct spac. = No. strands per tendon =	38 31	
Diam. stirrup., Φ_{strr} =	12		No. of tendons =	9	
Area of stirrups, Av =	452		No. of tendons per row =	7.288343558	
Design for Flexure	432	<u></u>	No. of rows of prestr. Tendons =	1.234848485	
assume $c_0 > h_f$, then $c_0 =$	2000.04		Height of tendon Rows =	163.280303	1
NA depth, c =	2000.04		d _p ' =	341.6401515	
Rect. Stres. Block depth, a =	1700.03		$dp = h d_p' =$	341.0401313 3408	
Nomin. Flexural resis., Mn =			Eff. Dept. of tens. force, de =	3408	
	1.63E+11				
Check flex. Capacity, $M_d \le \Phi M_n =$	OK!		f _{inf} =	1.56E+01	
Design for shear width of support =	500	1	eccentricityof prestr. force, e = Prestr. Force required, P =	1572 3.E+07	
Spacing of stirrups, s =	300		Check Stresses of extr. Fibers	3.L+07	Check!
shear depth, d _v =		$\Phi V_n \dots$	a. f_{tt} -P*(1/Ac+e/Z _t)-M _g /Z _t \leq 0	-2.E+01	OK!
Design shear dv dist. From face of supp., V_U =	2.04E+06	7.72E+06	b. $P^*(1/A_c+e/Z_b)-M_g/Z_b-f_{ct} \le 0$	-9.E+00	OK!
Concrete shear resis. Vc =	3.80E+06		c. $0.85*P*(1/A_c-e/Z_t)+M_w/Z_t-f_{cw} \le 0$	-8.E+00	OK!
Shear reinf. resis. Vs =	1.96E+06		d. $f_{tw} = 0.85 * P * (1/A_c + e/Z_b) + M_3/Z_b \le 0$	-2.E-01	OK!
Shear reis. of Prestressing, Vp =	2.81E+06		Service load stresses, fs & fp		
Nominal shear resi. Vn =	8.57E+06		fp1 = η P/Ac =	4.06	
Check shear. Capacity, $V_u \le \Phi V_n =$	OK!		$fp2 = \eta . n_p . P(e^2/I+1/Ac) =$	81.18	
Minimum area of reif. Area	UK:		Cracked NA depth, y =	1198.561439	
$f_{cpe} = 0.85*P*(1/A_c+e/Z_b) =$	1.E+01		Concrete strain, s0 =	0.000433715	
mp = Mcr =	5.312908808 7.E+10	chk!	$fco = \varepsilon_0.Ec =$ fs = Es*eo*(d-y)/y =	11.99655911 174.3774185	
Min[1.2Mcr,1.33Md]-ΦMn ≤ 0 =					
	-7.E+10	OK!	fp3 = Ep*eo*(dp-y)/y =	157.5300006	
Max. area of steel, $c/d_e \le 0.42 =$	0.41	OK!	fp =fp1+fp2+fp3 =	242.7737874	
$0.004*\gamma_{b}*b_{w}-A_{p}-A_{s} \le 0 =$	-49313.2367	OK!	Ts = fs.As =	4297788.894	
Check delection & camber			Tp = fp.Ap =	8497082.558	
Δ_{DL} =	179.0582418		C = 0.5*fco*be*y =	17973266.43	
$\Delta_{P} = 0.85*5*P*e*L^{2}/(48*Ec*Ie) =$	95.99203058		$Cn = 0.5*fco*(be-bw)*(y-hf)^2/y =$	5178394.979	
Camber, a = Δ_{DL} - Δ_{P} =	83.0662112	NOT OK!	dz =y/3 =	399.5204795	
$\Delta_{LL} =$	5.717103584		dzn =hf+ (y-hf)/3 =	566.1871462	
$\Delta_{LL(allow.)} = L/1000 =$	50	OK!	Verify y using equlibrium		
Elanow., ,			ΣM-M _w =0	0	OK!
				U	
Crack Control	4056 56 11	1	ΣFx =0 =	0	UK!
	1056.561439		Cracked Moment of inertia	2 205625-42	
	2409.438561		lct =	3.30562E+12	
dc =62+db/2 =	78		$f_{rup} = 0.63 \text{sqrt}(\text{fc'}) =$	3.450652112	
Atc = bw*2*ds'/nb =	9585		Mcrk =f _{rup} . Z _b =	13220049759	
$cw1 = 0.076*(h2/h1)*fs*(dc*Atc)^{(1/3)*1e-3*0.1451} = cw2 = (fc = 40)*10.2 = (fc = 4$			Effective Moment of inertia	2 449505 . 12	
cw2 = (fs - 40)*1e-3 = cw = max([cw1, cw2]) =	0.134377419 0.39800445		le = Check service strsses	3.44859E+12	
		OK!		206	1
cwa =	0.41		fsa =min(0.5fy,206) =	206	
			fs - fsa ≤ 0 =	-31.62258148	OK!
			fp - fpe ≤ 0 =	-1096.426213	OK!
			Check fatigue strsses		
			ffa =145-0.33fmin+55(r/h) =	161.5	
			ffpa =	125	
			npu -	125	
			ffs =ns* Mf*(d-y)/lct =	7.482330935	OK!
					ОК! ОК!

Appendix F Design Optimization Results

				Exterio	r Girder	Optin	1. OVa	lues fo	or PC T-C	Girder.	<u>s</u>	Interior	Cirdor			
Span, L	h	bw	hf	As	Ap	S	у	Opt. Cost	h	bw	hf	As	Ap	S	v	Opt. Cos
(mm)	x1	x2	x3	x4	x5	x6	x7	Z(x)	x1	x2	x3	x4	x5	x6	x7	Z(x)
10000	997	396		2618.357					1189	440	253		7826.691		285.3397	6.70E+0
20000	1300	447	200	3997.218	6999.014	375.6838	276.589	1.25E+05	1500	500	300	7982.893	8895.015			1.75E+0
30000	1900	543	300	7476.768	9936.481	387.4355	416.7794	2.98E+05	2000	550	300	12848.22	9731.936	388.7149	799.7575	3.40E+0
40000	2250	550		10957.91				5.45E+05	2500	600	300		7559.128			6.50E+0
50000	2250	700	300			276.6278	51	7.20E+05	3200	850	300	26064	12448	409	873	1.25E+0
60000 70000	2800 3150	800 800	300	9832.46	16271.83			1.07E+06 1.27E+06	3357 3700	846 900	297 300	28311.41 39952.5	13418.64 15573.1			1.38E+(1.91E+(
80000	3150	950		11888.24				2.06E+06	4200	900 1100	300	40228.27				2.71E+0
90000	4100	1000		9821.459				2.48E+06	4400	1200	300	35355.67			1294.822	3.39E+0
100000	4600	1100	300		30293.68			3.43E+06	4800	1300	300		27855.66		1427.909	4.32E+0
Avera	ge optim	um value	es for exte	erior & in	terior T-g	irders	Cost	of concret	e & steel							
h	bw	hf	As	Ар	S	Z(x)	Wstr	ost of Con	Cost of Steel							
	4.18E+02						4.30E-01	1.14E+04	4.37E+04							
	4.74E+02							3.43E+04	1.16E+05							
	5.47E+02							8.41E+04	2.35E+05							
	5.75E+02						5.18E+00	1.43E+05	4.55E+05							
	7.75E+02 8.23E+02						5.91E+00 8.54E+00	3.92E+05 4.08E+05	5.95E+05 8.14E+05							
	8.50E+02						9.66E+00	4.08E+03 5.55E+05	1.04E+05							
	1.03E+03							8.70E+05	1.51E+06							
	1.10E+03						1.89E+01	1.16E+06	1.78E+06							
4.70E+03	1.20E+03	3.00E+02	2.41E+04	2.91E+04	2.67E+02	3.87E+06	2.68E+01	1.54E+06	2.34E+06							
						Ontim	01/21	ues for	PC Box-	Cirdo	rc					
				Exterio	r Girder		orun		TC DOX	<u>ur</u>		Interior	Girder			
Span, L	h	bw	hf	As	Ар	S	у	Opt. Cost	h	bw	hf	As	Ар	S	у	Opt. Cos
(mm)	x1	х2	х3	x4	x5	х6	х7			-	-					Z(x)
10000	900	312	200	2272 525	2000 000			Z(x)	x1	x2	х3	x4	x5	х6	х7	. /
						324.6204		4.49E+04	1070	384	263	5111.904	6795.234	391.3076	226.2217	7.01E+0
20000	1100	350	203	3295.317	5000	351.6707	450	4.49E+04 1.09E+05	1070 1200	384 500	263 300	5111.904 11661.86	6795.234 7311.886	391.3076 339.3878	226.2217 293.3983	7.01E+0 1.88E+0
30000	1100 1450	350 400	203 276	3295.317 5993.789	5000 8581.932	351.6707 448.978	450 449.3894	4.49E+04 1.09E+05 2.39E+05	1070 1200 1600	384 500 600	263 300 300	5111.904 11661.86 5591.196	6795.234 7311.886 10667.94	391.3076 339.3878 302.2286	226.2217 293.3983 348.8622	7.01E+0 1.88E+0 3.30E+0
30000 40000	1100 1450 1900	350 400 450	203 276 300	3295.317 5993.789 9276.953	5000 8581.932 9596.698	351.6707 448.978 317.3982	450 449.3894 799.9137	4.49E+04 1.09E+05 2.39E+05 4.33E+05	1070 1200 1600 2100	384 500 600 600	263 300 300 300	5111.904 11661.86 5591.196 14655.74	6795.234 7311.886 10667.94 12725.18	391.3076 339.3878 302.2286 349.9817	226.2217 293.3983 348.8622 539.053	7.01E+(1.88E+(3.30E+(5.94E+(
30000 40000 50000	1100 1450 1900 2300	350 400 450 500	203 276 300 300	3295.317 5993.789 9276.953 5201.908	5000 8581.932 9596.698 12109.47	351.6707 448.978 317.3982 330.2099	450 449.3894 799.9137 999	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05	1070 1200 1600 2100 2500	384 500 600 600 700	263 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609	6795.234 7311.886 10667.94 12725.18 17490.64	391.3076 339.3878 302.2286 349.9817 237.9945	226.2217 293.3983 348.8622 539.053 631.2583	7.01E+0 1.88E+0 3.30E+0 5.94E+0 9.34E+0
30000 40000	1100 1450 1900	350 400 450	203 276 300	3295.317 5993.789 9276.953 5201.908 6146.748	5000 8581.932 9596.698 12109.47	351.6707 448.978 317.3982 330.2099 333.9222	450 449.3894 799.9137 999	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05	1070 1200 1600 2100	384 500 600 600	263 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02	6795.234 7311.886 10667.94 12725.18	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663	226.2217 293.3983 348.8622 539.053 631.2583 993.3222	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(
30000 40000 50000 60000	1100 1450 1900 2300 2800	350 400 450 500 550	203 276 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073	5000 8581.932 9596.698 12109.47 13757.59 16552.65	351.6707 448.978 317.3982 330.2099 333.9222 315.9206	450 449.3894 799.9137 999 996.2223	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06	1070 1200 1600 2100 2500 3000	384 500 600 600 700 700	263 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185	7.01E+C 1.88E+C 3.30E+C 5.94E+C 9.34E+C 1.54E+C 2.57E+C 4.14E+C
30000 40000 50000 60000 70000 80000 90000	1100 1450 1900 2300 2800 3300 4000 4100	350 400 450 500 550 600 650 700	203 276 300 300 300 300 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06	1070 1200 2100 2500 3000 3500 4000 4800	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 70000 80000	1100 1450 1900 2300 2800 3300 4000	350 400 450 500 550 600 650	203 276 300 300 300 300 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06	1070 1200 2100 2500 3000 3500 4000	384 500 600 600 700 700 800 950	263 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 70000 80000 90000	1100 1450 1900 2300 2800 3300 4000 4100	350 400 450 500 550 600 650 700	203 276 300 300 300 300 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06	1070 1200 2100 2500 3000 3500 4000 4800	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 70000 80000 90000 100000	1100 1450 1900 2300 2800 3300 4000 4100	350 400 500 550 600 650 700 700	203 276 300 300 300 300 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06	1070 1200 2100 2500 3000 3500 4000 4800 5200	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 70000 80000 90000 100000	1100 1450 1900 2300 2800 3300 4000 4100 4800	350 400 500 550 600 650 700 700	203 276 300 300 300 300 300 300 300	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06	1070 1200 2100 2500 3000 3500 4000 4800 5200	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(
30000 40000 50000 60000 70000 80000 90000 100000 Avera h	1100 1450 1900 2300 2800 3300 4000 4100 4800 ge optimu	350 400 450 550 600 650 700 700 700 700 700 700 700	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g S	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 irders Z(x)	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718 Cost	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 8.75E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06	1070 1200 1600 2100 3500 3500 4000 4800 5200	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 90000 100000 Avera h 9.85E+02 1.15E+03	1100 1450 1900 2300 2800 3300 4000 4100 4100 4800 ge optime bw 3.48E+02 4.25E+02	350 400 450 550 600 700 700 700 700 700 700 700 700 70	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap 5.40E+03 6.16E+03	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 3.58E+02 3.46E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 irders <u>Z(x)</u> 5.75E+04 1.48E+05	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718 Cost Wstr 3.61E-01 9.05E-01	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete ost of Con 9.34E+03 2.67E+04	1070 1200 1600 2500 3000 3500 4000 5200 4800 5200 8 steel Cost of Steel 4.81E+04 1.22E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 60000 70000 80000 90000 100000 100000 Avera h 9.85E+02 L.15E+03 L.53E+03	1100 1450 1900 2300 2800 3300 4000 4100 4800 4800 338E+02 4.25E+02 5.00E+02	350 400 550 600 650 700 700 700 700 700 700 700 700 700 7	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap 5.40E+03 9.62E+03	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 5 3.58E+02 3.58E+02 3.76E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 315.9206 306.203 257.3342 irders <u>Z(x)</u> 5.75E+04 1.48E+05 2.84E+05	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718 Cost Wstr 3.61E-01 9.05E-01 1.72E+00	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete ost of Con 9.34E+03 2.67E+04 6.30E+04	1070 1200 1600 2100 3500 3500 4000 4800 5200 & steel Cost of Steel 4.81E+04 1.22E+05 2.21E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 70000 80000 90000 100000 Avera h 9.85E+02 1.15E+03 1.53E+03 2.00E+03	1100 1450 2300 2800 3300 4000 4100 4800 3480 3485402 4.255402 5.005402 5.2555402	350 400 450 500 6600 700 700 700 700 700 700 700 700	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap 5.40E+03 9.62E+03 1.12E+04	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 5 3.58E+02 3.46E+02 3.76E+02 3.34E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 irders Z(x) 5.75E+04 1.48E+05 2.84E+05 5.14E+05	450 449.3894 799.9137 999 2023 1497.169 1041.412 1350.133 1924.718 Cost Wstr 3.61E-01 9.05E-01 1.72E+00 3.40E+00	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete of concrete of concrete 0.30E+03 2.67E+04 1.55E+05	1070 1200 1600 2100 3500 3500 4000 4800 5200 & steel Cost of Steel 4.81E+04 1.22E+05 2.21E+05 3.98E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 70000 80000 90000 100000 Avera h 9.85E+02 1.15E+03 1.53E+03 2.00E+03 2.40E+03	1100 1450 2300 2300 3300 4000 4100 4800 3 4800 3 48E+02 4.25E+02 5.0E+02 5.25E+02 6.00E+02	350 400 450 550 600 700 700 700 700 700 700 2.700 8.000 8.000 2.522 2.522 2.882 4.02 3.000 4.02 3.000 4.02	203 276 300 300 300 300 300 300 300 300 300 30	3295 317 5993.789 9276.553 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap 5.40E+03 6.16E+03 9.62E+03 1.12E+04 1.48E+04	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 3.58E+02 3.46E+02 3.34E+02 2.84E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 irders <u>Z(x)</u> 5.75E+04 1.48E+05 2.84E+05 7.14E+05 7.14E+05	450 449.3894 79.9137 999 906.2223 1497.169 1041.412 1350.133 1924.718 Cost Wstr 3.61E-01 9.05E-01 1.72E+00 3.40E+00 6.08E+00	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.20E+06 4.37E+06 4.37E+06 6 6 6 6 7 6 7 7 7 7 8 7 7 8 7 8 7 7 7 7 8 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	1070 1200 1600 2500 3000 3500 4800 5200 & steel Cost of Steel 4.81E+04 1.22E+05 2.21E+05 3.98E+05 5.70E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 80000 90000 100000 100000 Avera h 9.85E+02 1.15E+03 1.53E+03 2.00E+03 2.40E+03 2.90E+03	1100 1450 2300 2300 4000 4100 4800 ge optimu 3.48E+02 4.25E+02 5.0E+02 5.25E+02 6.02E+02 6.02E+02	350 400 450 550 600 650 700 700 700 700 700 2.00 hf 2.76E+02 2.52E+02 2.88E+02 3.00E+02 3.00E+02 3.00E+02	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8400.882 29343.93 445816.96 45816.96 5.40E+03 9.62E+03 1.12E+04 1.48E+04 2.29E+04	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 3 .58E+02 3.36E+02 3.34E+02 3.34E+02 2.37E+02 2.84E+02 2.71E+02	351.6707 448.978 317.382 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 <i>irders</i> <i>Z(x)</i> 5.75E+04 1.48E+05 2.84E+05 5.14E+05 1.21E+06	450 449.3894 799.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718 Cost Wstr 3.61E-01 9.05E-01 1.72E+00 3.40E+00 6.08E+00 9.25E+00	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete of concrete of concrete of concrete 0.34E+03 2.67E+04 6.30E+04 1.95E+05 3.01	1070 1200 1600 2500 3000 3500 4000 5200 * & steel Cost of Steel 4.81F+04 1.22E+05 2.21E+05 3.98E+05 5.70E+05 9.07E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 70000 90000 100000 100000 Avera h 9.85E+02 1.15E+03 1.53E+03 2.00E+03 2.40E+03 2.40E+03	1100 1450 2300 2300 4000 4100 4800 4800 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	350 400 550 600 650 700 700 700 700 2.52 50 50 50 50 50 50 50 50 50 50 50 50 50	203 276 300 300 300 300 300 300 300 300 300 30	3295.317 5993.789 9276.953 5201.908 6146.748 3727.073 8404.882 29343.93 45816.96 5.40E+03 5.40E+03 5.40E+03 9.62E+03 1.12E+04 1.48E+04 2.29E+04 3.49E+04	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 5 3.58E+02 3.36E+02 3.34E+02 2.84E+02 2.84E+02 2.60E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 irders 5.755±04 5.755±04 5.755±04 5.755±04 5.755±04 5.755±05 5.48±05 5.48±05 7.69±05 1.21±+06 1.885±06	450 449.3894 79.9137 999 996.2223 1497.169 1041.412 1350.133 1924.718 Vostr 3.61E-01 9.05E-01 1.72E+00 3.40E+00 6.08E+00 9.25E+00 1.33E+01	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete of concrete of concrete 0.30E+05 1.99E+05 3.01E+05 4.60E+05 4.60E+05	1070 1200 1600 2500 3000 3500 4000 5200 & steel Cost of Steel 4.81E-04 1.22E+05 2.21E+05 3.98E+05 5.70E+05 9.07E+05 1.42E+06	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E+(1.88E+(3.30E+(5.94E+(9.34E+(1.54E+(2.57E+(4.14E+(4.02E+(
30000 40000 50000 70000 90000 100000 100000 Avera h 9.85E+02 1.15E+03 1.53E+03 2.00E+03 2.40E+03 2.90E+03 3.40E+03	1100 1450 2300 2300 4000 4100 4800 ge optimu 3.48E+02 4.25E+02 5.0E+02 5.25E+02 6.02E+02 6.02E+02	350 400 450 550 600 650 700 700 700 700 700 700 700 700 700 7	203 276 300 300 300 300 300 300 300 300 300 30	3295 317 5993 789 9276 953 5201 908 6146.748 3727.073 8404.882 29343.93 45816.96 ior & inte Ap 5.40E+03 6.16E+03 6.16E+03 1.12E+04 1.48E+04 2.29E+04 3.49E+04 5.41E+04	5000 8581.932 9596.698 12109.47 13757.59 16552.65 18467.32 26875.95 44951.89 rior box g 3.58E+02 3.34E+02 2.84E+02 2.71E+02 2.60E+02 3.02E+02	351.6707 448.978 317.3982 330.2099 333.9222 315.9206 394.7657 306.203 257.3342 <i>irders</i> <i>Z(x)</i> 5.755404 1.48E+05 2.84E+05 5.14E+05 7.69E+05 1.21E+06 1.88E+06 2.89E+06	450 449,3894 79,9137 999 996,2223 1497,169 1041,412 1350,133 1924,718 Cost Wstr 3.61E-01 9.05E-01 1.72E+00 3.40E+00 6.08E+00 9.25E+00 1.33E+01 1.35E+01	4.49E+04 1.09E+05 2.39E+05 4.33E+05 6.05E+05 1.20E+06 1.64E+06 2.71E+06 4.37E+06 of concrete of concrete of concrete of concrete 0.34E+03 2.67E+04 6.30E+04 1.95E+05 3.01	1070 1200 1600 2500 3000 3500 4000 5200 * & steel Cost of Steel 4.81F+04 1.22E+05 2.21E+05 3.98E+05 5.70E+05 9.07E+05	384 500 600 700 700 800 950 900	263 300 300 300 300 300 300 300 300	5111.904 11661.86 5591.196 14655.74 9922.609 6406.02 7339.057 8810.585 8262.683	6795.234 7311.886 10667.94 12725.18 17490.64 32100.43 53227.64 83674.39 55779.97	391.3076 339.3878 302.2286 349.9817 237.9945 208.6663 203.524 208.3659 203.9949	226.2217 293.3983 348.8622 539.053 631.2583 993.3222 700.0185 800.0036 960.8919	7.01E++ 1.88E++ 3.30E++ 5.94E++ 9.34E++ 1.54E++ 2.57E++ 4.14E++ 4.02E++

					<u>Values</u>		<u>T-Girder</u>					
Span, L				or Girder	-		nterior Girde					
(mm)	h	bw	hf	As	S	Opt. Cost	h	bw	hf	As	S	Opt. Cos
	x1	x2	х3	x4	х5	Z(x)	x1	x2	х3	x4	х5	Z(x)
10000	800	369	200			3.58E+04	800	498	200	13055.24773		<u> </u>
20000	1400	339	208			1.10E+05	1400	393	200	14684.94072		1.22E+0
30000	2100	315	203	****	*****	2.34E+05	2100	361	221	18606.92714		2.42E+0
40000	2798	327	224		439.6861	4.34E+05	2900	338	223	23640.61908		4.18E+0
50000	3500	417	235		449.9574	7.32E+05	3499	408	284	31869.95181		6.98E+0
60000	4200	487	283			1.15E+06	4199	379	300	41767.01116		1.09E+0
70000	4896	466	300		408.6033	1.65E+06	4877 5599	483 484	300 280	51855.84762 64578.83753		1.60E+0
80000	5600 6293	604 595	300 294		449.9959	2.36E+06	6297	484 479	280	79544.82431		2.25E+0 3.07E+0
90000 100000	6993	595 603	294	****	*****	3.15E+06 4.16E+06	6991	587	297	94211.93219	000000000000000000000000000000000000000	4.06E+C
100000	0995	003	297	103726.5	574.2951	4.10E+00	0991	567	290	94211.95219	515.0275	4.00E+C
Aver	age Values	for exter	ior & inte	rior T-aird	lers		Cost of co	nc.& steel				
h	bw	hf	As	S	Z(x)	Wstr	Cost of Conc	Cost of Steel				
8.00E+02		2.00E+02		-	4.16E+04	2.71E-01	9.42E+03	3.22E+04				
1.40E+02		2.00L+02				1.30E+00	2.78E+04	8.79E+04				
2.10E+03		2.04E+02 2.12E+02		4.07E+02 4.27E+02		2.91E+00	5.78E+04	1.80E+05				
	3.33E+02	2.12E+02				5.33E+00	1.03E+05	3.23E+05				
	4.13E+02					8.03E+00	1.97E+05	5.18E+05				
	4.33E+02	2.92E+02				1.30E+01	2.98E+05	8.19E+05				
	4.75E+02	3.00E+02				1.80E+01	4.44E+05	1.18E+06				
	5.44E+02	2.90E+02				2.38E+01	6.68E+05	1.64E+06				
	5.37E+02	2.96E+02	8.28E+04			3.30E+01	8.31E+05	2.28E+06				
6.99E+03	5.95E+02	2.97E+02	9.90E+04	3.45E+02	4.11E+06	4.22E+01	1.14E+06	2.97E+06				
			0		-							
			100	- 7 m V	aluac	for RC	Rov_Cirda	nc				
					alues		Box-Girde					
Span, L	h	bw	Exterio	or Girder As	alues s		Box-Girde nterior Girde h		hf	As	S	Opt. Cost
Span, L (mm)	h x1	bw x2		or Girder		Opt. Cost	nterior Girde	r	hf x3	As x4	S x5	
(mm)	x1	x2	Exterio hf x3	or Girder As x4	S x5	Opt. Cost Z(x)	nterior Girde h x1	r bw x2	х3	x4	x5	Z(x)
(mm) 10000	x1	x2 397	Exterio hf x3 200	or Girder As x4 15095	S x5 309	Opt. Cost Z(x) 5.59E+04	nterior Girde h x1 1000	r bw x2	x3	x4 12038	x5 432	Z(x) 5.65E+0
(mm) 10000 20000	x1 700 1200	x2 397 398	Exterio hf x3 200 223	or Girder As x4 15095 19494	S x5 309 319	0pt. Cost Z(x) 5.59E+04 1.52E+05	nterior Girde h x1 1000 1200	r bw x2 393 398	x3 207 200	x4 12038 22708	x5 432 204	Z(x) 5.65E+0 1.86E+0
(mm) 10000 20000 30000	x1 700 1200 1799	x2 397 398 398	Exterio hf x3 200 223 203	or Girder As x4 15095 19494 24852	S x5 309 319 370	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05	nterior Girde h x1 1000 1200 1799	r bw x2 393 398 400	x3 207 200 219	x4 12038 22708 33549	x5 432 204 230	Z(x) 5.65E+0 1.86E+0 3.94E+0
(mm) 10000 20000 30000 40000	x1 700 1200 1799 2398	x2 397 398 398 398 397	Exterio hf x3 200 223 203 254	As As x4 15095 19494 24852 32692	S x5 309 319 370 365	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05	nterior Girde h x1 1000 1200 1799 2600	r bw x2 393 398 400 613	x3 207 200 219 282	x4 12038 22708 33549 50323	x5 432 204 230 450	Z(x) 5.65E+0 1.86E+0 3.94E+0 7.42E+0
(mm) 10000 20000 30000 40000 50000	x1 700 1200 1799 2398 3000	x2 397 398 398 397 400	Exterio hf x3 200 223 203 254 300	As x4 15095 19494 24852 32692 42215	S x5 309 319 370 365 337	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05	nterior Girde h x1 1000 1200 1799 2600 3800	r bw x2 393 398 400 613 779	x3 207 200 219 282 300	x4 12038 22708 33549 50323 81986	x5 432 204 230 450 450	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C
(mm) 10000 20000 30000 40000 50000 60000	x1 700 1200 1799 2398 3000 3.60E+03	x2 397 398 398 397 400 400	Exterio hf x3 200 223 203 254 300 254	As x4 15095 19494 24852 32692 42215 53303	S x5 309 319 370 365 337 288	0pt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800	r bw x2 393 398 400 613 779 1000	x3 207 200 219 282	x4 12038 22708 33549 50323 81986 116584	x5 432 204 230 450	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C
(mm) 10000 20000 30000 40000 50000 60000 70000	x1 700 1200 1799 2398 3000 3.60E+03 4198	x2 397 398 398 397 400	Exterio hf x3 200 223 203 254 300	As x4 15095 19494 24852 32692 42215 53303 63598	S x5 309 319 370 365 337 288 318	0pt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196	r bw x2 393 398 400 613 779 1000 1049	x3 207 200 219 282 300 300	x4 12038 22708 33549 50323 81986 116584 150700	x5 432 204 230 450 450 305	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C
(mm) 10000 20000 30000 40000 50000 60000	x1 700 1200 1799 2398 3000 3.60E+03	x2 397 398 398 397 400 400 486	Exterio hf x3 200 223 203 254 300 254	As x4 15095 19494 24852 32692 42215 53303	S x5 309 319 370 365 337 288	0pt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800	r bw x2 393 398 400 613 779 1000	x3 207 200 219 282 300 300 299	x4 12038 22708 33549 50323 81986 116584	x5 432 204 230 450 450 305 397	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C
(mm) 10000 20000 30000 40000 50000 60000 70000 80000	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800	x2 397 398 398 397 400 400 400 486 596	Exterio hf x3 200 223 203 254 300 254 288 296	As x4 15095 19494 24852 32692 42215 53303 63598 75274	S x5 309 319 370 365 337 288 318 318 362	Opt. Cost Z(x) 5.59E+04 1.52E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06	nterior Girde h x1 1000 1200 1799 2600 3800 3800 4800 6196 7983	r bw x2 393 398 400 613 779 1000 1049 1198	x3 207 200 219 282 300 300 299 297	x4 12038 22708 33549 50323 81986 116584 150700 210801	x5 432 204 230 450 450 305 397 346	Z(x) 5.65E+0 1.86E+0 3.94E+0 7.42E+0
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 5399	x2 397 398 398 397 400 400 486 596 656	Exteria hf x3 2000 2223 2033 254 3000 254 254 288 2966 298	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764	S x5 309 319 370 365 337 288 318 318 362 365	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500	r bw x2 393 398 400 613 779 1000 1049 1198 1250	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000	x1 700 1200 1799 2398 3000 3.60E+03 4.198 4800 5399 5999	x2 337 338 338 3397 400 400 486 5596 6556 753	Exteria hf x3 2000 2233 2033 2544 3000 2544 2888 2966 2988 2977	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188	5 x5 309 319 370 365 337 288 318 365 366 366	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06	nterior Girde h x1 1000 1200 1799 2600 3800 3800 6196 7983 9500 10432	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 50000 50000 90000 100000 Average	x1 700 1200 1799 2398 3000 3.60E+03 4.198 4800 5399 5999 5999	x2 397 398 398 397 400 400 486 596 6556 753 for exterior	Exterio hf x3 200 223 203 254 300 254 300 254 288 296 298 296 298 277	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 rot box gin	S x5 309 319 370 365 337 288 318 338 338 338 365 366 366 366	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 1.26E+06 1.77E+06 3.23E+06 4.27E+06	nterior Girde h x1 1000 1200 1799 2600 3800 3800 6196 7983 9500 10432 Cost of co	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 Averag h	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 5399 5999 5999 5999	x2 397 398 398 397 400 400 486 596 656 656 753 for exterior hf	Exteria hf x3 2000 2233 2033 2544 3000 2544 2888 2966 2988 2977 2777 2777 2777 2777 2777	or Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S	S 309 319 370 365 337 288 362 365 365 366 ders Z(x)	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06 4.27E+06 4.27E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of co Cost of Conc	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 Avera h 8.50E+02	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 5399 5999 5999 5999 5999 5999 5999 59	x2 397 398 398 397 400 400 400 400 486 5966 5966 5566 753 for exterior hf 2.04E+02	Exteria hf x3 200 223 203 254 300 254 288 296 298 277 277 277 277 277 277 277 277 277 27	or Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 3.71E+02	S x5 309 319 370 365 337 288 3182 365 365 365 366 ders Z(x) 5.62E+04	0pt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06 4.27E+06 4.27E+06 4.27E+06	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of conc 9.04E+03	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 <i>cost of Steel</i> 4.72E+04	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 100000 Averau h 8.50E+02 1.20E+03	x1 700 1200 1799 2338 3000 3.60E+03 4198 4800 53399 53999 5999 5999 5999 5999 5999	x2 397 398 398 397 400 400 400 400 486 596 6566 753 for exterio hf 2.04E+02 2.12E+02	Exterio hf x3 2000 223 203 254 3000 254 288 2966 2988 2966 2988 2977 07 & interi As 1.36E+04 2.11E+04	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 ror box gir S 3.71E+02 2.62E+02	S 309 319 370 3655 337 288 318 362 3655 3366 ders Z(x) 5.62E+04 1.69E+05	Opt. Cost Z(x) 5.59E+04 1.52E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06 4.27E+06 Wstr 3.11E-01 1.34E+00	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of con 0.04E+03 2.54E+04	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 mc.& steel Cost of Steel 4.72E+04 1.44E+05	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+(1.86E+(3.94E+(7.42E+(1.51E+(2.75E+(4.06E+(6.61E+(9.64E+(
(mm) 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 100000 Avera h 8.50E+02 1.20E+03 1.80E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 5399 5999 500 500	x2 397 398 397 4000 400 486 596 656 753 for exterior hf 2.04E+02 2.12E+02 2.11E+02	Exteria hf x3 2000 2233 2033 2544 3000 2554 2888 2966 2988 2977 2777 07 & interi As 1.36E+04 2.11E+04 2.92E+04	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 3.71E+02 2.62E+02 3.00E+02	S 309 319 370 365 337 288 318 362 365 365 365 365 366 ders Z(x) 5.62E+04 1.69E+05 3.45E+05	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 2.42E+06 3.23E+06 4.27E+06 4.27E+06 Wstr 3.11E-01 1.34E+00 2.82E+00	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of conc 9.04E+03 2.54E+04 5.76E+04	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 1205 1205 1205 1205 1205 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+(1.86E+(3.94E+(7.42E+(1.51E+(2.75E+(4.06E+(6.61E+(9.64E+(
(mm) 10000 20000 30000 40000 50000 70000 80000 90000 100000 Avera h 8.50E+02 1.20E+03 1.80E+03 2.50E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 5399 5999 5999 5999 5999 5999 5999 59	x2 397 398 397 400 400 486 596 656 753 607 607 607 607 607 607 607 607	Exteria hf x3 200 223 254 300 254 288 296 298 277 277 5 5 6 8 1.36 1.36 1.36 1.36 1.11 1.11 1.36 1.11 2.111 2.02 1.111 2.02 2.02 2.04 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 3.71E+02 2.62E+02 3.00E+02 4.08E+02	S x5 309 319 370 365 3377 288 318 362 365 365 367 288 318 362 365 366 5 366 5 366 5 366 5 366 5 366 366 366 366 366 366 366 366 366 366 366 366 366 367 368 369 360 361 362 362 362 362 362 362	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06 4.27E+06 3.11E-01 1.34E+00 2.82E+00 4.01E+00	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of co Cost of conc 9.04E+03 2.54E+04 5.76E+04 1.37E+05	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+(1.86E+(3.94E+(7.42E+(1.51E+(2.75E+(4.06E+(6.61E+(9.64E+(
(mm) 10000 20000 30000 40000 50000 60000 90000 100000 Avera h 8.50E+02 1.20E+03 1.20E+03 3.40E+03 3.40E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 4800 53399 5999 500 500	x2 397 398 397 400 400 486 596 656 753 607 2.04E+02 2.12E+02 2.12E+02 2.12E+02 2.12E+02 2.12E+02 3.00E+02	Exteria hf x3 200 223 203 203 203 203 204 204 208 296 298 296 298 297 1.36 1.36 1.36 1.36 1.36 1.16+04 2.11E+04 4.15E+04 6.21E+04	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 75274 89764 105188 07 box gir 2.62E+02 3.00E+02 4.08E+02 3.94E+02	S x5 309 319 370 387 387 387 362 365 365 366 1 5.62E+04 1.69E+05 3.45E+05 6.29E+05 1.7E+06	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 1.77E+06 2.42E+06 3.23E+06 4.27E+06 3.11E-01 1.34E+00 2.82E+00 4.01E+00 7.22E+00	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of con Cost of con Cost of con 0.04E+03 2.54E+04 1.37E+05 2.73E+05	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 1205 1205 1205 1205 1205 1205	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+(1.86E+(3.94E+(7.42E+(1.51E+(2.75E+(4.06E+(6.61E+(9.64E+(
(mm) 10000 20000 30000 40000 50000 60000 90000 100000 Avera h 8.50E+02 1.20E+03 1.20E+03 3.40E+03 3.40E+03 4.20E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 4400 5399 5999 500 500	x2 337 338 338 3397 400 400 486 596 656 753 753 607 exterio hf 2.04E+02 2.12E+02 2.11E+02 2.11E+02 2.11E+02 2.12E+02 3.00E+02 2.77E+02	Exteria hf x3 200 223 203 254 300 254 288 296 298 298 298 298 298 298 277 1.36 4.05 4.05 2.92E+04 4.15E+04 6.21E+04 8.49E+04	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 3.71E402 2.62E402 3.00E402 3.04E402 3.94E402 2.97E402	S 309 319 370 365 337 288 318 362 365 365 365 365 365 365 365 365 366 288 318 362 365 366 262 365 366 2 362 365 366 2 362 365 365 3455 6.295 1.175 2.005 2.005	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 3.23E+06 4.27E+06 4.27E+06 4.27E+06 4.27E+00 1.34E+00 2.82E+00 4.01E+00 7.22E+00 1.44E+01	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of con Cost of con Cost of Con Cost of Con Cost of Con 9.04E+03 2.54E+04 1.37E+05 2.73E+05 4.81E+05	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 0 1205 120	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+(1.86E+(3.94E+(7.42E+(1.51E+(2.75E+(4.06E+(6.61E+(9.64E+(
(mm) 10000 20000 30000 40000 50000 70000 80000 90000 100000 Avera h 8.50E+02 1.20E+03 1.80E+03 2.50E+03 3.40E+03 5.20E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 44800 5399 5999 5 999 5 90 5 05 6 102 5 .05E+02 5 .05E+02 5 .06E+02 7 .00E+02 7 .00E+02 7 .06E+02	x2 337 338 338 3397 4000 4000 4866 5966 6556 6556 7553 753 607 exterio hf 2.04E+02 2.12E+02 2.12E+02 2.68E+02 3.00E+02 2.77E+02 2.94E+02	Exteria hf x3 200 223 203 203 203 254 254 288 296 298 298 298 298 298 298 298 298 298 298	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 or box gir S 3.71E+02 2.62E+02 3.00E+02 3.04E+02 2.97E+02 3.58E+02	S 309 319 370 365 337 288 318 362 365 365 365 362 365 366 362 365 366 6 5.62E+04 1.69E+05 3.45E+05 6.29E+05 1.17E+06 2.00E+06 2.91E+06	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 2.32E+06 3.23E+06 4.27E+06 3.11E-01 1.34E+00 2.42E+00 4.01E+00 7.22E+00 1.44E+01 1.74E+01	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of co Cost of co Cost of con 9.04E+03 2.75E+04 1.37E+05 2.73E+05 4.81E+05 7.65E+05	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 1205 4.72E+04 1.44E+05 2.88E+05 4.92E+05 8.98E+05 1.52E+06 2.15E+06	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C
(mm) 10000 20000 30000 40000 50000 70000 80000 90000 100000 Avera h 8.50E+02 1.20E+03 1.80E+03 2.50E+03 3.40E+03 5.20E+03 5.20E+03 6.39E+03	x1 700 1200 1799 2398 3000 3.60E+03 4198 4400 5399 5999 500 500	x2 397 398 398 397 400 400 4866 596 6556 6556 753 607 2.04E+02 2.12E+02 2.12E+02 2.12E+02 2.68E+02 2.68E+02 2.68E+02 2.68E+02 2.68E+02 2.97E+02	Exteria hf x3 200 223 203 254 300 254 288 296 298 296 298 297 277 1.36E+04 2.11E+04 2.11E+04 4.15E+04 4.15E+04 8.49E+04 1.07E+05 1.43E+05	r Girder As x4 15095 19494 24852 32692 42215 53303 63598 75274 89764 105188 0 0 0 0 0 0 0 0 0 0 0 0 0	S 309 319 370 365 337 288 318 362 365 365 365 365 365 365 365 366 365 366 365 366 365 366 6 5.62E+04 1.69E+05 6.29E+05 6.29E+05 1.7E+06 2.00E+06 2.91E+06 4.51E+06	Opt. Cost Z(x) 5.59E+04 1.52E+05 2.97E+05 5.16E+05 8.28E+05 1.26E+06 3.23E+06 4.27E+06 4.27E+06 4.27E+06 4.27E+00 1.34E+00 2.82E+00 4.01E+00 7.22E+00 1.44E+01	nterior Girde h x1 1000 1200 1799 2600 3800 4800 6196 7983 9500 10432 Cost of con Cost of con Cost of Con Cost of Con Cost of Con 9.04E+03 2.54E+04 1.37E+05 2.73E+05 4.81E+05	r bw x2 393 398 400 613 779 1000 1049 1198 1250 1205 1205 1205 0 1205 120	x3 207 200 219 282 300 300 299 297 300	x4 12038 22708 33549 50323 81986 116584 150700 210801 264163	x5 432 204 230 450 450 305 397 346 241	Z(x) 5.65E+C 1.86E+C 3.94E+C 7.42E+C 1.51E+C 2.75E+C 4.06E+C 6.61E+C 9.64E+C

		<u>er Spacing</u>														
<u>Optim. Va</u>	alues fo	<u>r PC T-Girde</u>	<u>rs and Gird</u>	e <u>r Spaci</u>	1.60	^{E+06} Т										
Girder	No. of	Opt. Cost of	Opt. Cost of			Ę										
Spacing, S (mm)	girdres	ext.G, Z(x)	int.G, Z(x)		1.40	E+06		(-					
1.500	7	1.00E+06	4.45E+05		1.20	E+06				W	ж					
2.000	5	6.81E+05	4.43E+05 4.36E+05				*	*/*	- Ж	- *	_	PC Exte	erior T-Gird	er —		
2.500	4	3.62E+05	4.30E+03 4.27E+05		E 100	E+06						DC Into	rior T-Gireo			
3.000	4	3.02E+05	4.27E+05 3.70E+05		st,]		1					- rc me	rior 1-Gileo			
3.500	3	3.48E+05	3.89E+05		ටී _{8.00}	E+05	$\sim \lambda$						erior Box			
4.000	3	3.92E+05	4.39E+05		E .		•	N. Contraction				Girder		. —		
4.000	5	3.322403	4.35E105		.00	E+05		ίλ –				PC Inte	rior Box Gi	rder		
Ontim Va	alues fo	r PC Box-Gir	ders and Gi	rder Sna	00ptimum Cost, ETB 00'8 00'1	Ē		- X -								
Girder				uer opu		E+05 -					-					
Spacing, S	No. of	Opt. Cost of	Opt. Cost of			Ē		· · · ·								
(mm)	girdres	ext.G, Z(x)	int.G, Z(x)		2.00	E+05										
1.500	7	9.08E+05	1.11E+06		0.00	E+00										
2.000	5	9.88E+05	1.13E+06		0.00	E+00 + 1.00	1.50	2.00 2.50) 3.00	3.50 4	-00					
2.500	4	1.39E+06	1.15E+06					Girder Spa			-					
3.000	4	1.41E+06	1.17E+06					· · ·								
3.500	3	1.41E+06	1.20E+06													
4.000	3	1.43E+06	1.22E+06													
<u>4. Compa</u>	urison o	f Conventio	onal and O	otimum I	<u>Design</u>											
											Вох	• •				
											ex	int				
										L =	50000	50000				
										Gs =	2500	2500				rder
	557035	685751								Ng =	4	4			ext	int
										tb =	140	140		L =	50000	50000
	Av =	452.39	-							tbmin =	38.33	38.33		Gs =	2500	2500
Density	of steel =	7.85E-09								h=	3750	3750		h=	3700	3700
	Cc =	2.84E-06	ETB/mm3							bw=	1350	1350		bw=	1332	1332
	Cs =	27940.00	ETB/ton							Ap =	25000	35000		Ap =	26000	25500
	Cp =	46450.00	ETB/ton							As =						
											14644	24646		As =	8891	11107
			VAsb = 0.004	*tb*((NG-:	1)*gs+x(2))*L+0.005	*tbmin*((NG-1)*gs+	x(2))^2 =		14644 6.6E+07	6.6E+07		As = S =	8891 310	310
span, 50m		optimum design			1)*gs+x(2) tional desi			NG-1)*gs+ Saving	x(2))^2 =	V _{Asb} =						
span, 50m ection types	ext. girde	· · · · ·		convent		gn cost	Cost S			V _{Asb} =	6.6E+07	6.6E+07		S =	310	310
		· · · · ·	r cost	convent	ional desi int. girde	gn cost avg	Cost S in Amour	Saving		V _{Asb} = S =	6.6E+07 300	6.6E+07 300		S = Wstr =	310 8.65	310 8.65
ection types	ext. girde	int. girder	avg	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06	Cost S in Amour 5.80E+05	aving in %-tage		V _{Asb} = S = Wstr =	6.6E+07 300 9.07	6.6E+07 300 9.07		S = Wstr = Vc =	310 8.65 2.44E+11	310 8.65 2.43E+11
e ction types Tgirder	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	avg 9.32E+05	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06	Cost S in Amour 5.80E+05	aving in %-tage 38%		V _{Asb} = S = Wstr = Vc =	6.6E+07 300 9.07 2.54E+11	6.6E+07 300 9.07 2.57E+11	w	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
e ction types T girder	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	avg 9.32E+05	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06	Cost 5 in Amour 5.80E+05 4.46E+05	aving in %-tage 38% 25%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26	 	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
e ction types T girder	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	avg 9.32E+05	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06	Cost 5 in Amour 5.80E+05 4.46E+05	aving in %-tage 38% 25%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26	 	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
e ction types T girder	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	avg 9.32E+05	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06	Cost 5 in Amour 5.80E+05 4.46E+05 Avg =	aving in %-tage 38% 25%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26	 	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
e ction types T girder	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	avg 9.32E+05	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost 5 in Amour 5.80E+05 4.46E+05 Avg =	aving in %-tage 38% 25%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26	w	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1	ext. girden 8.36E+05	<i>int. girder</i> 1.03E+06	a cost avg 9.32E+05 1.31E+06	<i>convent</i> <i>ext. girde</i> 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost 5 in Amour 5.80E+05 4.46E+05 Avg =	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26	 	S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80	ext. girden 8.36E+05 1.12E+06	int. girder 1.03E+06 1.50E+06	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80	ext. girden 8.36E+05	int. girder 1.03E+06 1.50E+06	a cost avg 9.32E+05 1.31E+06	<i>convent</i> <i>ext. girde</i> 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80	ext. girden 8.36E+05 1.12E+06	int.girder 1.03E+06 1.50E+06	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80	ext. girden 8.36E+05 1.12E+06	0.93	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80	ext. girden 8.36E+05 1.12E+06	int.girder 1.03E+06 1.50E+06	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06 1.91E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80 1.60 2.00 1.80 1.60 2.00 1.80 1.00	ext. girden 8.36E+05 1.12E+06	0.93	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80 9 1.60 1.40 1.40 1.40 1.40 1.40 1.40 0.60 0.60 0.60 0.40 0.20	ext. girden 8.36E+05 1.12E+06	0.93	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	ional desi int. girde 1.52E+06 1.91E+06	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80 1.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	ext. girden 8.36E+05 1.12E+06	0.93	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	25%	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80 9 1.60 1.40 1.40 1.40 1.40 1.40 1.40 0.60 0.60 0.60 0.40 0.20	ext. girden 8.36E+05 1.12E+06	int.girder 1.03E+06 1.50E+06 1.50E+06 38% 38% T girder	o cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	25%	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01
2.00 1.80 1.60 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	ext. girden 8.36E+05 1.12E+06	int.girder 1.03E+06 1.50E+06 1.50E+06 38% 38% T girder	a cost avg 9.32E+05 1.31E+06	convent ext. girde 1.51E+06 1.61E+06	25%	gn cost avg 1.51E+06 1.76E+06	Cost S in Amour 5.80E+05 4.46E+05 Avg = m Design tional Desi	aving in %-tage 38% 25% 32%		V _{Asb} = S = Wstr = Vc = Wsteel =	6.6E+07 300 9.07 2.54E+11 15.33	6.6E+07 300 9.07 2.57E+11 19.26		S = Wstr = Vc = Wsteel =	310 8.65 2.44E+11 12.14	310 8.65 2.43E+11 13.01

<u>6. Materi</u>	ials Cos	<u>t Ratio</u>											
	B	ст	RC Box		РС Т		PC Box				Ratio c	of Cc/Cs	
Bridge Length, m	сос.	steel	Conc. steel		Conc steel		Conc steel			RC T	RC Box	PC T	PC Box
10	10927.12	37582.94514	13732.6808	74150.8	16124	173517	11684.2	40901.7		0.29075	0.1852	0.09292	0.2856
20	29389.99	84907.64748	36506.368	176321	37246	476867	47308.4	94133.2		0.34614	0.20705	0.1075	0.5025
30	66313.88	164850.1729	70319.42864	310636	86508	251650	170436	277584		0.40227	0.22637	0.12207	0.61
40	111071.2	286928.878	134952.613	537534	144820	723317	311565	489782		0.3871	0.25106	0.13665	0.6361
50	163183.7	465827.0993	402380.6149	1253354	202416	735990	484746	768743		0.35031	0.32104	0.12989	0.6739
60	276255.9	776104.8143	763473.9406	2222488	246699	2003526	857097	1204067		0.35595	0.34352	0.12313	0.7118
70	441449.7	1246297.269	1111983.627	3285766	357901	6782194	973223	1824468		0.35421	0.33842	0.12207	0.7194
80	653950.9	1874268.318	2521872.735	7597261	462072	3818298	1726532	2374660		0.34891	0.33194	0.12102	0.7270
90	681580.1	1856260.747	3521852.204	1.1E+07	827040	4780358	2009937	3814306		0.36718	0.32275	0.17301	0.7293
100	975359.1	2672875.043	4273959.565	1.3E+07	1001857	6275311	3134432	4283642		0.36491	0.32326	0.15965	0.7317
110	1348897	3688587.336	5630553.565	5.6E+07	1076789	9810217	4048931	5448118		0.36569		0.15481	0.7431
120	1798822	4986434.634	6911708.17	6.9E+07	1454474	9698991	4786667	6287806		0.36074	0.3095	0.14996	0.7612
130	2506380	6526935.514	8581830.425	8.7E+07	1859968	1.1E+07	5701354	7479073		0.38401		0.16318	0.7623
140	2881607	8432029.937	10040992.05	1.1E+08	2175177	1.5E+07	7011218	9269258		0.34175	0.29826	0.16812	0.7563
150	3889730	10042013.56	11549468.15	1.2E+08	2434377	1.4E+07	7916309	1.1E+07		0.38735	0.29264	0.17305	0.7504
- 0.9 F													
- 0.8 -													
- F		××××××	× × × ×		-								
0.7 =	×			$- \cdots RC$	T-Girder -								
8.0 CC/Cs 0.0 CC/Cs 0.4	r -			RC									
- 20.5 F	*			Girc PC	ler T-Girder								
0													
- teg			$2N^{2}$										
0.3	X _		0000	GIIC	lei –								
0.2	0000												
-	`	\sim											
0.1													
- 0 1) 100	150	200									
0		Bridge Length		200									
			,										
7 0			ational di										
<u>7. Optimu</u>	im Girae	r Cross se				7	D	a m a: 1		DC	D C :	7	
Bridge		RC T Girde			Box Gira			C T Girde			Box Gir	[
Length, m	h/L	b _w /h	h _f /h	h/L	$b_{w/}h$	h _f /h	h/L	b _w /h	h _f /h	h/L	b_w/h	h _f /h	
10	0.080	0.043	0.020	0.085	0.040	0.020	0.109	0.042	0.023	0.099	0.035	0.028	
20	0.070	0.018	0.010	0.060	0.020	0.011	0.070	0.024	0.013	0.058	0.021	0.013	
30	0.070	0.011	0.007	0.060	0.013	0.007	0.065	0.018	0.010	0.051	0.017	0.010	
40	0.071	0.008	0.006	0.062	0.013	0.007	0.059	0.014	0.008	0.050	0.013	0.008	
50	0.070	0.008	0.005	0.068	0.012	0.006	0.055	0.016	0.006	0.048	0.012	0.006	
60	0.070	0.007	0.005	0.070	0.012	0.005	0.051	0.014	0.005	0.048	0.010	0.005	
70	0.070	0.007	0.004	0.074	0.011	0.004	0.049	0.012	0.004	0.049	0.010	0.004	
80	0.070	0.007	0.004	0.080	0.011	0.004	0.049	0.013	0.004	0.050	0.010	0.004	
90	0.070	0.006	0.003	0.083	0.011	0.003	0.047	0.012	0.003	0.049	0.009	0.003	
100 Min imm	0.070	0.006	0.003	0.082	0.010	0.003	0.047	0.012	0.003	0.050	0.009	0.003	
Min imum	0.070	0.006	0.003	0.060	0.010	0.003	0.047	0.012	0.003	0.048	0.009	0.003	
Maximum	0.080	0.043	0.020	0.085	0.040	0.020	0.109	0.042	0.023	0.099	0.035	0.028	
1ean value:	0.071	0.012	0.007	0.072	0.015	0.007	0.060	0.018	0.008	0.055	0.015	0.008	
ummary of	Optimum	ı Girder Cr	oss sectio	onal di	mension								
Sections		RC T_Girde	r	RC	Box Gird	ler	PC	CT_Gird	er	PC	Box Gir	der	
Rations	h/L	bw/h	hf/h	h/L	bw/h	hf/h	h/L	bw/h	hf/h	h/L	bw/h	hf/h	
Values	0.071	0.012	0.007	0.072	0.015	0.007	0.060	0.018	0.008	0.055	0.015	0.008	